
MATLAB®

Function Reference

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference

© COPYRIGHT 1984–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11)
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)
September 2006 Online only Revised for 7.3 (Release 2006b)
March 2007 Online only Revised for 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)
March 2009 Online only Revised for Version 7.8 (Release 2009a)
September 2009 Online only Revised for Version 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)

Contents

Alphabetical List

1

Functions — Alphabetical List

2

Functions — Alphabetical List

3

v

vi Contents

1

Alphabetical List

Relational Operators < > <= >= == ~=
Logical Operators: Short-Circuit && ||
Special Characters [] () {} = ’ , ; : % ! @
colon (:)
abs
accumarray
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
actxcontrol
actxcontrollist
actxcontrolselect
actxGetRunningServer
actxserver
matlab.apputil.create
matlab.apputil.getInstalledAppInfo
matlab.apputil.install
matlab.apputil.package
matlab.apputil.run
matlab.apputil.uninstall
addCause (MException)
addevent

1 Alphabetical List

audioinfo
audioread
audiowrite
addframe (avifile)
addlistener (handle)
addOptional
addParameter
addParamValue
addcats
addpath
addpref
addprop (dynamicprops)
addproperty
addRequired
addsampletocollection
addtodate
addts
airy
align
alim
all
allchild
alpha
alphamap
amd
ancestor
and, &
angle
annotation
Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans

1-2

any
area
Areaseries Properties
array2table
arrayfun
ascii
asec
asecd
asech
asin
asind
asinh
assert
assignin
atan
atan2
atan2d
atand
atanh
audiodevinfo
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread
axes
Axes Properties
axis
balance
bandwidth
bar
barh
bar3
bar3h

1-3

1 Alphabetical List

Barseries Properties
baryToCart
base2dec
beep
BeginInvoke
bench
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaincinv
betaln
bicg
bicgstab
bicgstabl
bin2dec
binary
bitand
bitcmp
bitget
bitmax
bitnot
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box
break
brighten
brush
bsxfun
builddocsearchdb

1-4

builtin
bvp4c
bvp5c
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit
campan
campos
camproj
camroll
camtarget
camup
camva
camzoom
cartToBary
cart2pol
cart2sph
cast
cat
categorical
categories
caxis
cd
convexHull
cd
cdf2rdf
cdfepoch
cdfinfo

1-5

1 Alphabetical List

cdflib
cdflib.close
cdflib.closeVar
cdflib.computeEpoch
cdflib.computeEpoch16
cdflib.create
cdflib.createAttr
cdflib.createVar
cdflib.delete
cdflib.deleteAttr
cdflib.deleteAttrEntry
cdflib.deleteAttrgEntry
cdflib.deleteVar
cdflib.deleteVarRecords
cdflib.epoch16Breakdown
cdflib.epochBreakdown
cdflib.getAttrEntry
cdflib.getAttrgEntry
cdflib.getAttrMaxEntry
cdflib.getAttrMaxgEntry
cdflib.getAttrName
cdflib.getAttrNum
cdflib.getAttrScope
cdflib.getCacheSize
cdflib.getChecksum
cdflib.getCompression
cdflib.getCompressionCacheSize
cdflib.getConstantNames
cdflib.getConstantValue
cdflib.getCopyright
cdflib.getFileBackward
cdflib.getFormat
cdflib.getLibraryCopyright
cdflib.getLibraryVersion
cdflib.getMajority
cdflib.getName
cdflib.getNumAttrEntries

1-6

cdflib.getNumAttrgEntries
cdflib.getNumAttributes
cdflib.getNumgAttributes
cdflib.getReadOnlyMode
cdflib.getStageCacheSize
cdflib.getValidate
cdflib.getVarAllocRecords
cdflib.getVarBlockingFactor
cdflib.getVarCacheSize
cdflib.getVarCompression
cdflib.getVarData
cdflib.getVarMaxAllocRecNum
cdflib.getVarMaxWrittenRecNum
cdflib.getVarsMaxWrittenRecNum
cdflib.getVarName
cdflib.getVarNum
cdflib.getVarNumRecsWritten
cdflib.getVarPadValue
cdflib.getVarRecordData
cdflib.getVarReservePercent
cdflib.getVarSparseRecords
cdflib.getVersion
cdflib.hyperGetVarData
cdflib.hyperPutVarData
cdflib.inquire
cdflib.inquireAttr
cdflib.inquireAttrEntry
cdflib.inquireAttrgEntry
cdflib.inquireVar
cdflib.open
cdflib.putAttrEntry
cdflib.putAttrgEntry
cdflib.putVarData
cdflib.putVarRecordData
cdflib.renameAttr
cdflib.renameVar
cdflib.setCacheSize

1-7

1 Alphabetical List

cdflib.setChecksum
cdflib.setCompression
cdflib.setCompressionCacheSize
cdflib.setFileBackward
cdflib.setFormat
cdflib.setMajority
cdflib.setReadOnlyMode
cdflib.setStageCacheSize
cdflib.setValidate
cdflib.setVarAllocBlockRecords
cdflib.setVarBlockingFactor
cdflib.setVarCacheSize
cdflib.setVarCompression
cdflib.setVarInitialRecs
cdflib.setVarPadValue
cdflib.SetVarReservePercent
cdflib.setVarsCacheSize
cdflib.setVarSparseRecords
cdfread
cdfwrite
ceil
cell
cell2mat
cell2struct
cell2table
celldisp
cellfun
cellplot
cellstr
cgs
char
checkcode
checkin
checkout
chol
cholupdate
circshift

1-8

circumcenters
cla
clabel
class
classdef
clc
clear
clearvars
clear (serial)
clf
clipboard
clock
close
close
close (avifile)
close
close
closereq
cmopts
cmpermute
cmunique
colamd
colorbar
colordef
colormap
colormapeditor
ColorSpec (Color Specification)
colperm
Combine
comet
comet3
commandhistory
commandwindow
compan
compass
complex
computeStrip

1-9

1 Alphabetical List

computeTile
computer
cond
condeig
condest
coneplot
conj
continue
contour
contour3
contourc
contourf
Contourgroup Properties
contourslice
matlab.unittest.constraints
matlab.unittest.constraints.AbsoluteTolerance
and
or
matlab.unittest.constraints.AnyCellOf
matlab.unittest.constraints.AnyElementOf
matlab.unittest.constraints.BooleanConstraint
and
getNegativeDiagnosticFor
not
or
matlab.unittest.constraints.CellComparator
matlab.unittest.constraints.Constraint
getDiagnosticFor
satisfiedBy
matlab.unittest.constraints.ContainsSubstring
matlab.unittest.constraints.EndsWithSubstring
matlab.unittest.constraints.Eventually
matlab.unittest.constraints.EveryCellOf
matlab.unittest.constraints.EveryElementOf
matlab.unittest.constraints.HasElementCount
matlab.unittest.constraints.HasField
matlab.unittest.constraints.HasInf

1-10

matlab.unittest.constraints.HasLength
matlab.unittest.constraints.HasNaN
matlab.unittest.constraints.HasSize
matlab.unittest.constraints.IsAnything
matlab.unittest.constraints.IsEmpty
matlab.unittest.constraints.IsFalse
matlab.unittest.constraints.IsFinite
matlab.unittest.constraints.IsGreaterThan
matlab.unittest.constraints.IsGreaterThanOrEqualTo
matlab.unittest.constraints.IsEqualTo
matlab.unittest.constraints.IsInstanceOf
matlab.unittest.constraints.IsLessThan
matlab.unittest.constraints.IsLessThanOrEqualTo
matlab.unittest.constraints.IsOfClass
matlab.unittest.constraints.IsReal
matlab.unittest.constraints.IsSameHandleAs
matlab.unittest.constraints.IsSparse
matlab.unittest.constraints.IsSubstringOf
matlab.unittest.constraints.IssuesNoWarnings
matlab.unittest.constraints.IssuesWarnings
matlab.unittest.constraints.IsTrue
matlab.unittest.constraints.LogicalComparator
matlab.unittest.constraints.Matches
matlab.unittest.constraints.NumericComparator
matlab.unittest.constraints.ObjectComparator
matlab.unittest.constraints.PublicPropertyComparator
matlab.unittest.constraints.RelativeTolerance
and
or
matlab.unittest.constraints.ReturnsTrue
matlab.unittest.constraints.StartsWithSubstring
matlab.unittest.constraints.StringComparator
matlab.unittest.constraints.StructComparator
matlab.unittest.constraints.Throws
matlab.unittest.constraints.Tolerance
getDiagnosticFor
satisfiedBy

1-11

1 Alphabetical List

supports
contrast
conv
conv2
convhull
convhulln
convn
matlab.mixin.CustomDisplay
convertDimensionsToString
details
disp
display
displayEmptyObject
displayNonScalarObject
displayPropertyGroups
displayScalarHandleToDeletedObject
displayScalarObject
getClassNameForHeader
getDeletedHandleText
getDetailedFooter
getDetailedHeader
getFooter
getHandleText
getHeader
getPropertyGroups
getSimpleHeader
matlab.mixin.Copyable
copy
copyfile
copyobj
corrcoef
cos
cosd
cosh
cot
cotd
coth

1-12

countcats
cov
cplxpair
cputime
RandStream.create
createClassFromWsdl
createCopy
createSoapMessage
cross
csc
cscd
csch
csvread
ctranspose
csvwrite
cumprod
cumsum
cumtrapz
curl
currentDirectory
customverctrl
cylinder
daqread
daspect
datacursormode
datatipinfo
date
datenum
datestr
datetick
datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit

1-13

1 Alphabetical List

dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
dde23
ddeget
ddensd
ddesd
ddeset
deal
deblank
dec2base
dec2bin
dec2hex
decic
deconv
del2
DelaunayTri
DelaunayTri
delaunay
delaunayn
delaunayTriangulation
convexHull
isInterior
nearestNeighbor
pointLocation
voronoiDiagram
delete
delete (COM)
delete
delete (handle)
delete (serial)
deleteproperty
delevent
delsamplefromcollection

1-14

demo
depdir
depfun
det
details
detrend
deval
diag
matlab.unittest.diagnostics
matlab.unittest.diagnostics.ConstraintDiagnostic
addCondition
addConditionsFrom
getDisplayableString
getPreDescriptionString
getPostDescriptionString
getPostConditionString
getPostActValString
getPostExpValString
matlab.unittest.diagnostics.Diagnostic
diagnose
join
matlab.unittest.diagnostics.DisplayDiagnostic
matlab.unittest.diagnostics.FunctionHandleDiagnostic
matlab.unittest.diagnostics.StringDiagnostic
dialog
diary
diff
diffuse
dir
dir
disp
disp (MException)
disp (serial)
display
dither
divergence
dlmread

1-15

1 Alphabetical List

dlmwrite
dmperm
doc
docsearch
dos
dot
double
dragrect
drawnow
dsearchn
dynamicprops
echo
echodemo
edgeAttachments
edges
edit
eig
eigs
ellipj
ellipke
ellipsoid
empty
enableNETfromNetworkDrive
enableservice
end
EndInvoke
eomday
enumeration
eps
eq, ==
eq (MException)
erf
erfc
erfcinv
erfcx
erfinv
error

1-16

errorbar
Errorbarseries Properties
errordlg
etime
etree
etreeplot
eval
evalc
evalin
event.EventData
event.listener
event.PropertyEvent
event.proplistener
eventlisteners
events
events (COM)
Execute
exifread
exist
exit
exp
expint
expm
expm1
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
faceNormals
factor

1-17

1 Alphabetical List

factorial
false
fclose
fclose (serial)
feather
featureEdges
feof
ferror
feval
Feval (COM)
fft
fft2
fftn
fftshift
fftw
fgetl
fgetl (serial)
fgets
fgets (serial)
fieldnames
figure
Figure Properties
figurepalette
fileattrib
filebrowser
filemarker
fileparts
fileread
filesep
fill
fill3
filter
filter2
find
findall
findfigs
findobj

1-18

findobj (handle)
findprop (handle)
findstr
finish
fitsdisp
fitsinfo
fitsread
fitswrite
fix
matlab.unittest.fixtures
matlab.unittest.fixtures.CurrentFolderFixture
matlab.unittest.fixtures.Fixture
setup
teardown
addTeardown
isCompatibile
matlab.unittest.fixtures.PathFixture
matlab.unittest.fixtures.SuppressedWarningsFixture
matlab.unittest.fixtures.TemporaryFolderFixture
flintmax
flip
flipdim
fliplr
flipud
floor
flow
fminbnd
fminsearch
fopen
fopen (serial)
for
format
fplot
fprintf
fprintf (serial)
frame2im
fread

1-19

1 Alphabetical List

fread (serial)
freeBoundary
freqspace
frewind
fscanf
fscanf (serial)
fseek
ftell
FTP
full
fullfile
func2str
function
function_handle (@)
functions
functiontests
funm
fwrite
fwrite (serial)
fzero
gallery
gamma
gammainc
gammaincinv
gammaln
gca
gcbf
gcbo
gcd
gcf
gco
ge, >=
genpath
genvarname
get
get
get

1-20

get (COM)
get (hgsetget)
get
get (RandStream)
get (serial)
get (tscollection)
getabstime (tscollection)
getappdata
getaudiodata
GetCharArray
getdisp (hgsetget)
getenv
getfield
getFileFormats
getframe
GetFullMatrix
getpixelposition
getpref
getProfiles
getReport (MException)
getsampleusingtime (tscollection)
getTag
getTagNames
gettimeseriesnames
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
getVersion
GetWorkspaceData
ginput
global
gmres
gobjects

1-21

1 Alphabetical List

gplot
grabcode
gradient
graymon
grid
griddata
griddatan
griddedInterpolant
gsvd
gt, >
gtext
guidata
guide
guihandles
gunzip
gzip
h5create
h5disp
h5info
h5read
h5readatt
h5write
h5writeatt
H5.close
H5.garbage_collect
H5.get_libversion
H5.open
H5.set_free_list_limits
H5A.close
H5A.create
H5A.delete
H5A.get_info
H5A.get_name
H5A.get_space
H5A.get_type
H5A.iterate
H5A.open

1-22

H5A.open_by_idx
H5A.open_by_name
H5A.read
H5A.write
H5D.close
H5D.create
H5D.get_access_plist
H5D.get_create_plist
H5D.get_offset
H5D.get_space
H5D.get_space_status
H5D.get_storage_size
H5D.get_type
H5D.open
H5D.read
H5D.set_extent
H5D.vlen_get_buf_size
H5D.write
H5DS.attach_scale
H5DS.detach_scale
H5DS.get_label
H5DS.get_num_scales
H5DS.get_scale_name
H5DS.is_scale
H5DS.iterate_scales
H5DS.set_label
H5DS.set_scale
H5E.clear
H5E.get_major
H5E.get_minor
H5E.walk
H5F.close
H5F.create
H5F.flush
H5F.get_access_plist
H5F.get_create_plist
H5F.get_filesize

1-23

1 Alphabetical List

H5F.get_freespace
H5F.get_info
H5F.get_mdc_config
H5F.get_mdc_hit_rate
H5F.get_mdc_size
H5F.get_name
H5F.get_obj_count
H5F.get_obj_ids
H5F.is_hdf5
H5F.mount
H5F.open
H5F.reopen
H5F.set_mdc_config
H5F.unmount
H5G.close
H5G.create
H5G.get_info
H5G.open
H5I.dec_ref
H5I.get_file_id
H5I.get_name
H5I.get_ref
H5I.get_type
H5I.inc_ref
H5I.is_valid
H5L.copy
H5L.create_external
H5L.create_hard
H5L.create_soft
H5L.delete
H5L.exists
H5L.get_info
H5L.get_name_by_idx
H5L.get_val
H5L.iterate
H5L.iterate_by_name
H5L.move

1-24

H5L.visit
H5L.visit_by_name
H5ML.compare_values
H5ML.get_constant_names
H5ML.get_constant_value
H5ML.get_function_names
H5ML.get_mem_datatype
H5ML.hoffset
H5ML.sizeof
H5O.close
H5O.copy
H5O.get_comment
H5O.get_comment_by_name
H5O.get_info
H5O.link
H5O.open
H5O.open_by_idx
H5O.set_comment
H5O.set_comment_by_name
H5O.visit
H5O.visit_by_name
H5P.close
H5P.copy
H5P.create
H5P.get_class
H5P.close_class
H5P.equal
H5P.exist
H5P.get
H5P.get_class_name
H5P.get_class_parent
H5P.get_nprops
H5P.get_size
H5P.isa_class
H5P.iterate
H5P.set
H5P.get_btree_ratios

1-25

1 Alphabetical List

H5P.get_chunk_cache
H5P.get_dxpl_multi
H5P.get_edc_check
H5P.get_hyper_vector_size
H5P.set_btree_ratios
H5P.set_chunk_cache
H5P.set_dxpl_multi
H5P.set_edc_check
H5P.set_hyper_vector_size
H5P.all_filters_avail
H5P.fill_value_defined
H5P.get_alloc_time
H5P.get_chunk
H5P.get_external
H5P.get_external_count
H5P.get_fill_time
H5P.get_fill_value
H5P.get_filter
H5P.get_filter_by_id
H5P.get_layout
H5P.get_nfilters
H5P.modify_filter
H5P.remove_filter
H5P.set_alloc_time
H5P.set_chunk
H5P.set_deflate
H5P.set_external
H5P.set_fill_time
H5P.set_fill_value
H5P.set_filter
H5P.set_fletcher32
H5P.set_layout
H5P.set_nbit
H5P.set_scaleoffset
H5P.set_shuffle
H5P.get_alignment
H5P.get_driver

1-26

H5P.get_family_offset
H5P.get_fapl_core
H5P.get_fapl_family
H5P.get_fapl_multi
H5P.get_fclose_degree
H5P.get_libver_bounds
H5P.get_gc_references
H5P.get_mdc_config
H5P.get_meta_block_size
H5P.get_multi_type
H5P.get_sieve_buf_size
H5P.get_small_data_block_size
H5P.set_alignment
H5P.set_family_offset
H5P.set_fapl_core
H5P.set_fapl_family
H5P.set_fapl_log
H5P.set_fapl_multi
H5P.set_fapl_sec2
H5P.set_fapl_split
H5P.set_fapl_stdio
H5P.set_fclose_degree
H5P.set_gc_references
H5P.set_libver_bounds
H5P.set_mdc_config
H5P.set_meta_block_size
H5P.set_multi_type
H5P.set_sieve_buf_size
H5P.set_small_data_block_size
H5P.get_istore_k
H5P.get_sizes
H5P.get_sym_k
H5P.get_userblock
H5P.get_version
H5P.set_istore_k
H5P.set_sizes
H5P.set_sym_k

1-27

1 Alphabetical List

H5P.set_userblock
H5P.get_attr_creation_order
H5P.get_attr_phase_change
H5P.get_copy_object
H5P.set_attr_creation_order
H5P.set_attr_phase_change
H5P.set_copy_object
H5P.get_create_intermediate_group
H5P.get_link_creation_order
H5P.get_link_phase_change
H5P.set_create_intermediate_group
H5P.set_link_creation_order
H5P.set_link_phase_change
H5P.get_char_encoding
H5P.set_char_encoding
H5R.create
H5R.dereference
H5R.get_name
H5R.get_obj_type
H5R.get_region
H5S.copy
H5S.create
H5S.close
H5S.create_simple
H5S.extent_copy
H5S.get_select_bounds
H5S.get_select_elem_npoints
H5S.get_select_elem_pointlist
H5S.get_select_hyper_blocklist
H5S.get_select_hyper_nblocks
H5S.get_select_npoints
H5S.get_select_type
H5S.get_simple_extent_dims
H5S.get_simple_extent_ndims
H5S.get_simple_extent_npoints
H5S.get_simple_extent_type
H5S.is_simple

1-28

H5S.offset_simple
H5S.select_all
H5S.select_elements
H5S.select_hyperslab
H5S.select_none
H5S.select_valid
H5S.set_extent_none
H5S.set_extent_simple
H5T.close
H5T.commit
H5T.committed
H5T.copy
H5T.create
H5T.detect_class
H5T.equal
H5T.get_class
H5T.get_create_plist
H5T.get_native_type
H5T.get_size
H5T.get_super
H5T.lock
H5T.open
H5T.array_create
H5T.get_array_dims
H5T.get_array_ndims
H5T.get_cset
H5T.get_ebias
H5T.get_fields
H5T.get_inpad
H5T.get_norm
H5T.get_offset
H5T.get_order
H5T.get_pad
H5T.get_precision
H5T.get_sign
H5T.get_strpad
H5T.set_cset

1-29

1 Alphabetical List

H5T.set_ebias
H5T.set_fields
H5T.set_inpad
H5T.set_norm
H5T.set_offset
H5T.set_order
H5T.set_pad
H5T.set_precision
H5T.set_sign
H5T.set_size
H5T.set_strpad
H5T.get_member_class
H5T.get_member_index
H5T.get_member_name
H5T.get_member_offset
H5T.get_member_type
H5T.get_nmembers
H5T.insert
H5T.pack
H5T.enum_create
H5T.enum_insert
H5T.enum_nameof
H5T.enum_valueof
H5T.get_member_value
H5T.get_tag
H5T.set_tag
H5T.is_variable_str
H5T.vlen_create
H5Z.filter_avail
H5Z.get_filter_info
hadamard
handle
hankel
hdf5info
hdf5read
hdf5write
hdfan

1-30

hdfdf24
hdfdfr8
hdfh
hdfhd
hdfhe
hdfhx
hdfinfo
hdfml
hdfpt
hdfread
hdftool
hdfv
hdfvf
hdfvh
hdfvs
height
help
helpbrowser
helpdesk
helpdlg
helpwin
hess
matlab.mixin.Heterogeneous
cat
getDefaultScalarElement
horzcat
vertcat
hex2dec
hex2num
hgexport
hggroup
Hggroup Properties
hgload
hgsave
hgsetget
hgtransform
Hgtransform Properties

1-31

1 Alphabetical List

hidden
hilb
hist
histc
hold
home
horzcat
horzcat (tscollection)
hsv2rgb
hypot
i
ichol
idivide
if, elseif, else
ifft
ifft2
ifftn
ifftshift
ilu
im2frame
im2java
imag
image
Image Properties
imagesc
imapprox
imfinfo
imformats
import
importdata
imread
imwrite
incenters
inOutStatus
ind2rgb
ind2sub
Inf

1-32

inferiorto
info
inline
inmem
innerjoin
inpolygon
input
inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str
int8
int16
int32
int64
integral
integral2
integral3
interfaces
interp1
interp1q
interp2
interp3
interpft
interpn
interpstreamspeed
intersect
intmax
intmin
inv
invhilb
invoke
ipermute

1-33

1 Alphabetical List

is*
isa
isappdata
isbanded
iscategorical
iscategory
iscell
iscellstr
ischar
iscolumn
iscom
isdiag
isdir
isEdge
isempty
isempty (tscollection)
isequal
isequaln
isequal (MException)
isequalwithequalnans
isevent
isfield
isfinite
isfloat
isglobal
ishandle
ishermitian
ishghandle
ishold
isinf
isinteger
isinterface
isjava
isKey
iskeyword
isletter
islogical

1-34

ismac
ismatrix
ismember
ismethod
ismethod (COM)
ismissing
isnan
isnumeric
isobject
isocaps
isocolors
isonormals
isordinal
isosurface
ispc
ispref
isprime
isprop
isprop (COM)
isprotected
isreal
isrow
isscalar
issorted
isspace
issparse
isstr
isstrprop
isstruct
isstudent
issymmetric
isTiled
istable
istril
istriu
isundefined
isunix

1-35

1 Alphabetical List

isvalid (handle)
isvalid (serial)
isvarname
isvector
j
javaaddpath
javaArray
javachk
javaclasspath
matlab.exception.JavaException
javaMethod
javaMethodEDT
javaObject
javaObjectEDT
javarmpath
join
keyboard
keys
kron
last (MException)
lastDirectory
lasterr
lasterror
lastwarn
lcm
ldl
ldivide, .\
le, <=
legend
legendre
length
length
length (serial)
length (tscollection)
libfunctions
libfunctionsview
libisloaded

1-36

libpointer
lib.pointer
disp
isNull
plus
reshape
setdatatype
libstruct
license
light
Light Properties
lightangle
lighting
lin2mu
line
Line Properties
Lineseries Properties
LineSpec (Line Specification)
linkaxes
linkdata
linkprop
linsolve
linspace
RandStream.list
listdlg
listfonts
load
load (COM)
load (serial)
loadlibrary
loadobj
localfunctions
log
log10
log1p
log2
logical

1-37

1 Alphabetical List

loglog
logm
logspace
lookfor
lower
ls
lscov
lsqnonneg
lsqr
lt, <
lu
magic
makehgtform
containers.Map
mat2cell
mat2str
material
matfile
matlab.codetools.requiredFilesAndProducts
matlab.io.MatFile
matlab.io.fits.closeFile
matlab.io.fits.createFile
matlab.io.fits.deleteFile
matlab.io.fits.fileName
matlab.io.fits.fileMode
matlab.io.fits.openFile
matlab.io.fits.createImg
matlab.io.fits.getImgSize
matlab.io.fits.getImgType
matlab.io.fits.insertImg
matlab.io.fits.readImg
matlab.io.fits.setBscale
matlab.io.fits.writeImg
matlab.io.fits.deleteKey
matlab.io.fits.deleteRecord
matlab.io.fits.getHdrSpace
matlab.io.fits.readCard

1-38

matlab.io.fits.readKey
matlab.io.fits.readKeyCmplx
matlab.io.fits.readKeyDbl
matlab.io.fits.readKeyLongLong
matlab.io.fits.readKeyLongStr
matlab.io.fits.readKeyUnit
matlab.io.fits.readRecord
matlab.io.fits.writeComment
matlab.io.fits.writeDate
matlab.io.fits.writeKey
matlab.io.fits.writeKeyUnit
matlab.io.fits.writeHistory
matlab.io.fits.copyHDU
matlab.io.fits.deleteHDU
matlab.io.fits.getHDUnum
matlab.io.fits.getHDUtype
matlab.io.fits.getNumHDUs
matlab.io.fits.movAbsHDU
matlab.io.fits.movNamHDU
matlab.io.fits.movRelHDU
matlab.io.fits.writeChecksum
matlab.io.fits.imgCompress
matlab.io.fits.isCompressedImg
matlab.io.fits.setCompressionType
matlab.io.fits.setHCompScale
matlab.io.fits.setHCompSmooth
matlab.io.fits.setTileDim
matlab.io.fits.createTbl
matlab.io.fits.deleteCol
matlab.io.fits.deleteRows
matlab.io.fits.insertRows
matlab.io.fits.getAColParms
matlab.io.fits.getBColParms
matlab.io.fits.getColName
matlab.io.fits.getColType
matlab.io.fits.getEqColType
matlab.io.fits.getNumCols

1-39

1 Alphabetical List

matlab.io.fits.getNumRows
matlab.io.fits.insertCol
matlab.io.fits.insertATbl
matlab.io.fits.insertBTbl
matlab.io.fits.readATblHdr
matlab.io.fits.readBTblHdr
matlab.io.fits.readCol
matlab.io.fits.setTscale
matlab.io.fits.writeCol
matlab.io.fits.getConstantValue
matlab.io.fits.getVersion
matlab.io.fits.getOpenFiles
matlab.io.hdf4.sd
matlab.io.hdf4.sd.attrInfo
matlab.io.hdf4.sd.close
matlab.io.hdf4.sd.create
matlab.io.hdf4.sd.dimInfo
matlab.io.hdf4.sd.endAccess
matlab.io.hdf4.sd.fileInfo
matlab.io.hdf4.sd.findAttr
matlab.io.hdf4.sd.getCal
matlab.io.hdf4.sd.getChunkInfo
matlab.io.hdf4.sd.getCompInfo
matlab.io.hdf4.sd.getDataStrs
matlab.io.hdf4.sd.getDimID
matlab.io.hdf4.sd.getDimScale
matlab.io.hdf4.sd.getDimStrs
matlab.io.hdf4.sd.getFilename
matlab.io.hdf4.sd.getFillValue
matlab.io.hdf4.sd.getInfo
matlab.io.hdf4.sd.getRange
matlab.io.hdf4.sd.idToRef
matlab.io.hdf4.sd.idType
matlab.io.hdf4.sd.isCoordVar
matlab.io.hdf4.sd.isRecord
matlab.io.hdf4.sd.nameToIndex
matlab.io.hdf4.sd.nameToIndices

1-40

matlab.io.hdf4.sd.readAttr
matlab.io.hdf4.sd.readChunk
matlab.io.hdf4.sd.readData
matlab.io.hdf4.sd.refToIndex
matlab.io.hdf4.sd.select
matlab.io.hdf4.sd.setAttr
matlab.io.hdf4.sd.setCal
matlab.io.hdf4.sd.setChunk
matlab.io.hdf4.sd.setCompress
matlab.io.hdf4.sd.setDataStrs
matlab.io.hdf4.sd.setDimName
matlab.io.hdf4.sd.setDimScale
matlab.io.hdf4.sd.setDimStrs
matlab.io.hdf4.sd.setExternalFile
matlab.io.hdf4.sd.setFillMode
matlab.io.hdf4.sd.setFillValue
matlab.io.hdf4.sd.setNBitDataSet
matlab.io.hdf4.sd.setRange
matlab.io.hdf4.sd.start
matlab.io.hdf4.sd.writeChunk
matlab.io.hdf4.sd.writeData
matlab.io.hdfeos.gd
matlab.io.hdfeos.gd.attach
matlab.io.hdfeos.gd.close
matlab.io.hdfeos.gd.compInfo
matlab.io.hdfeos.gd.create
matlab.io.hdfeos.gd.defBoxRegion
matlab.io.hdfeos.gd.defComp
matlab.io.hdfeos.gd.defDim
matlab.io.hdfeos.gd.defField
matlab.io.hdfeos.gd.defOrigin
matlab.io.hdfeos.gd.defPixReg
matlab.io.hdfeos.gd.defProj
matlab.io.hdfeos.gd.defTile
matlab.io.hdfeos.gd.defVrtRegion
matlab.io.hdfeos.gd.detach
matlab.io.hdfeos.gd.dimInfo

1-41

1 Alphabetical List

matlab.io.hdfeos.gd.extractRegion
matlab.io.hdfeos.gd.fieldInfo
matlab.io.hdfeos.gd.getFillValue
matlab.io.hdfeos.gd.getPixels
matlab.io.hdfeos.gd.getPixValues
matlab.io.hdfeos.gd.gridInfo
matlab.io.hdfeos.gd.ij2ll
matlab.io.hdfeos.gd.inqAttrs
matlab.io.hdfeos.gd.inqDims
matlab.io.hdfeos.gd.inqFields
matlab.io.hdfeos.gd.inqGrid
matlab.io.hdfeos.gd.ll2ij
matlab.io.hdfeos.gd.nEntries
matlab.io.hdfeos.gd.open
matlab.io.hdfeos.gd.originInfo
matlab.io.hdfeos.gd.pixRegInfo
matlab.io.hdfeos.gd.projInfo
matlab.io.hdfeos.gd.readAttr
matlab.io.hdfeos.gd.readBlkSomOffset
matlab.io.hdfeos.gd.readField
matlab.io.hdfeos.gd.readTile
matlab.io.hdfeos.gd.regionInfo
matlab.io.hdfeos.gd.setFillValue
matlab.io.hdfeos.gd.setTileComp
matlab.io.hdfeos.gd.sphereCodeToName
matlab.io.hdfeos.gd.sphereNameToCode
matlab.io.hdfeos.gd.tileInfo
matlab.io.hdfeos.gd.writeAttr
matlab.io.hdfeos.gd.writeBlkSomOffset
matlab.io.hdfeos.gd.writeField
matlab.io.hdfeos.gd.writeTile
matlab.io.hdfeos.sw
matlab.io.hdfeos.sw.attach
matlab.io.hdfeos.sw.close
matlab.io.hdfeos.sw.compInfo
matlab.io.hdfeos.sw.create
matlab.io.hdfeos.sw.defBoxRegion

1-42

matlab.io.hdfeos.sw.defComp
matlab.io.hdfeos.sw.defDataField
matlab.io.hdfeos.sw.defDim
matlab.io.hdfeos.sw.defDimMap
matlab.io.hdfeos.sw.defGeoField
matlab.io.hdfeos.sw.defTimePeriod
matlab.io.hdfeos.sw.defVrtRegion
matlab.io.hdfeos.sw.detach
matlab.io.hdfeos.sw.dimInfo
matlab.io.hdfeos.sw.extractPeriod
matlab.io.hdfeos.sw.extractRegion
matlab.io.hdfeos.sw.fieldInfo
matlab.io.hdfeos.sw.geoMapInfo
matlab.io.hdfeos.sw.getFillValue
matlab.io.hdfeos.sw.idxMapInfo
matlab.io.hdfeos.sw.inqAttrs
matlab.io.hdfeos.sw.inqDataFields
matlab.io.hdfeos.sw.inqDims
matlab.io.hdfeos.sw.inqGeoFields
matlab.io.hdfeos.sw.inqIdxMaps
matlab.io.hdfeos.sw.inqMaps
matlab.io.hdfeos.sw.inqSwath
matlab.io.hdfeos.sw.mapInfo
matlab.io.hdfeos.sw.nEntries
matlab.io.hdfeos.sw.open
matlab.io.hdfeos.sw.periodInfo
matlab.io.hdfeos.sw.readAttr
matlab.io.hdfeos.sw.readField
matlab.io.hdfeos.sw.regionInfo
matlab.io.hdfeos.sw.setFillValue
matlab.io.hdfeos.sw.writeAttr
matlab.io.hdfeos.sw.writeField
matlab.io.saveVariablesToScript
matlab.lang.makeUniqueStrings
matlab.lang.makeValidName
matlabrc
matlabroot

1-43

1 Alphabetical List

matlab (UNIX)
matlab (Windows)
max
MaximizeCommandWindow
maxNumCompThreads
mean
median
memmapfile
memory
menu
mergecats
mesh
meshc
meshz
meshgrid
meta.class
meta.class.fromName
meta.DynamicProperty
meta.EnumeratedValue
meta.event
meta.MetaData
meta.method
meta.package
meta.abstractDetails
meta.package.fromName
meta.package.getAllPackages
meta.property
metaclass
methods
methodsview
mex
mex.getCompilerConfigurations
MException
mexext
mfilename
mget
min

1-44

MinimizeCommandWindow
minres
minus, -
mislocked
mkdir
mkdir
mkpp
mldivide, \
mrdivide, /
mlint
mlintrpt
mlock
mmfileinfo
mmreader
mod
mode
more
move
movefile
movegui
movie
movie2avi
mpower, ^
mput
msgbox
mtimes, *
mu2lin
multibandread
multibandwrite
munlock
namelengthmax
NaN
nargchk
nargin
narginchk
nargout
nargoutchk

1-45

1 Alphabetical List

native2unicode
nchoosek
ndgrid
ndims
ne, ~=
nearestNeighbor
ne (MException)
neighbors
NET
NET.addAssembly
NET.Assembly
NET.convertArray
NET.createArray
NET.createGeneric
NET.disableAutoRelease
NET.enableAutoRelease
NET.GenericClass
NET.invokeGenericMethod
NET.isNETSupported
NET.NetException
NET.setStaticProperty
nccreate
ncdisp
ncinfo
ncread
ncreadatt
ncwrite
ncwriteatt
ncwriteschema
netcdf
netcdf.abort
netcdf.close
netcdf.copyAtt
netcdf.create
netcdf.defDim
netcdf.defGrp
netcdf.defVar

1-46

netcdf.defVarChunking
netcdf.defVarDeflate
netcdf.defVarFill
netcdf.defVarFletcher32
netcdf.delAtt
netcdf.endDef
netcdf.getAtt
netcdf.getChunkCache
netcdf.getConstant
netcdf.getConstantNames
netcdf.getVar
netcdf.inq
netcdf.inqDimIDs
netcdf.inqFormat
netcdf.inqGrpName
netcdf.inqGrpNameFull
netcdf.inqGrpParent
netcdf.inqGrps
netcdf.inqNcid
netcdf.inqUnlimDims
netcdf.inqVarIDs
netcdf.inqVarChunking
netcdf.inqVarDeflate
netcdf.inqVarFill
netcdf.inqVarFletcher32
netcdf.inqAtt
netcdf.inqAttID
netcdf.inqAttName
netcdf.inqDim
netcdf.inqDimID
netcdf.inqLibVers
netcdf.inqVar
netcdf.inqVarID
netcdf.open
netcdf.putAtt
netcdf.putVar
netcdf.reDef

1-47

1 Alphabetical List

netcdf.renameAtt
netcdf.renameDim
netcdf.renameVar
netcdf.setChunkCache
netcdf.setDefaultFormat
netcdf.setFill
netcdf.sync
newplot
nextDirectory
nextpow2
nnz
noanimate
nonzeros
norm
normest
not, ~
notebook
notify (handle)
now
nthroot
null
num2cell
num2hex
num2str
numberOfStrips
numberOfTiles
numel
nzmax
ode15i
ode15s
ode23
ode23s
ode23t
ode23tb
ode45
ode113
odeget

1-48

odeset
odextend
onCleanup
ones
open
open
openfig
opengl
openvar
optimget
optimset
or, |
ordeig
orderfields
ordqz
ordschur
orient
orth
outerjoin
pack
padecoef
pagesetupdlg
pan
matlab.unittest.parameters
matlab.unittest.parameters.EmptyParameter
matlab.unittest.parameters.ClassSetupParameter
matlab.unittest.parameters.TestParameter
matlab.unittest.parameters.MethodSetupParameter
pareto
parfor
parse
parseSoapResponse
pascal
patch
Patch Properties
path
path2rc

1-49

1 Alphabetical List

pathsep
pathtool
pause
pbaspect
pcg
pchip
pcode
pcolor
pdepe
pdeval
peaks
perl
perms
permute
persistent
pi
pie
pie3
pinv
planerot
play
play
playblocking
plot
plot3
plotbrowser
plotedit
plotmatrix
plottools
plotyy
matlab.unittest.plugins
matlab.unittest.plugins.DiagnosticsValidationPlugin
matlab.unittest.plugins.FailureDiagnosticsPlugin
matlab.unittest.plugins.OutputStream
print
matlab.unittest.plugins.StopOnFailuresPlugin
matlab.unittest.plugins.TAPPlugin

1-50

matlab.unittest.plugins.ToFile
matlab.unittest.plugins.ToStandardOutput
matlab.unittest.plugins.TestRunnerPlugin
runTestSuite
createSharedTestFixture
setupSharedTestFixture
runTestClass
createTestClassInstance
setupTestClass
runTest
createTestMethodInstance
setupTestMethod
runTestMethod
teardownTestMethod
teardownTestClass
teardownSharedTestFixture
matlab.unittest.plugins.TestSuiteProgressPlugin
matlab.unittest.plugins.plugindata
matlab.unittest.plugins.plugindata.PluginData
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData
plus, +
pointLocation
pol2cart
polar
poly
polyarea
polyder
polyeig
polyfit
polyint
polyval
polyvalm
pow2
power, .^
ppval
prefdir

1-51

1 Alphabetical List

preferences
primes
print
printopt
printdlg
printpreview
prod
profile
profsave
propedit
propedit (COM)
properties
propertyeditor
matlab.mixin.util.PropertyGroup
psi
publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd
qmr
qr
qrdelete
qrinsert
qrupdate
quad
quad2d
quadgk
quadl
quadv
matlab.unittest.qualifications
matlab.unittest.qualifications.Assertable
assertClass
assertEmpty
assertEqual
assertError
assertFail

1-52

assertFalse
assertGreaterThan
assertGreaterThanOrEqual
assertInstanceOf
assertLength
assertLessThan
assertLessThanOrEqual
assertMatches
assertNotEmpty
assertNotEqual
assertNotSameHandle
assertNumElements
assertReturnsTrue
assertSameHandle
assertSize
assertSubstring
assertThat
assertTrue
assertWarning
assertWarningFree
matlab.unittest.qualifications.AssertionFailedException
matlab.unittest.qualifications.Assumable
assumeClass
assumeEmpty
assumeEqual
assumeError
assumeFail
assumeFalse
assumeGreaterThan
assumeGreaterThanOrEqual
assumeInstanceOf
assumeLength
assumeLessThan
assumeLessThanOrEqual
assumeMatches
assumeNotEmpty
assumeNotEqual

1-53

1 Alphabetical List

assumeNotSameHandle
assumeNumElements
assumeReturnsTrue
assumeSameHandle
assumeSize
assumeSubstring
assumeThat
assumeTrue
assumeWarning
assumeWarningFree
matlab.unittest.qualifications.AssumptionFailedException
matlab.unittest.qualifications.ExceptionEventData
matlab.unittest.qualifications.FatalAssertable
fatalAssertClass
fatalAssertEmpty
fatalAssertEqual
fatalAssertError
fatalAssertFail
fatalAssertFalse
fatalAssertGreaterThan
fatalAssertGreaterThanOrEqual
fatalAssertInstanceOf
fatalAssertLength
fatalAssertLessThan
fatalAssertLessThanOrEqual
fatalAssertMatches
fatalAssertNotEmpty
fatalAssertNotEqual
fatalAssertNotSameHandle
fatalAssertNumElements
fatalAssertReturnsTrue
fatalAssertSameHandle
fatalAssertSize
fatalAssertSubstring
fatalAssertThat
fatalAssertTrue
fatalAssertWarning

1-54

fatalAssertWarningFree
matlab.unittest.qualifications.FatalAssertionFailedException
matlab.unittest.qualifications.QualificationEventData
matlab.unittest.qualifications.Verifiable
verifyClass
verifyEmpty
verifyEqual
verifyError
verifyFail
verifyFalse
verifyGreaterThan
verifyGreaterThanOrEqual
verifyInstanceOf
verifyLength
verifyLessThan
verifyLessThanOrEqual
verifyMatches
verifyNotEmpty
verifyNotEqual
verifyNotSameHandle
verifyNumElements
verifyReturnsTrue
verifySameHandle
verifySize
verifySubstring
verifyThat
verifyTrue
verifyWarning
verifyWarningFree
questdlg
quit
Quit (COM)
quiver
quiver3
Quivergroup Properties
qz
rand

1-55

1 Alphabetical List

rand (RandStream)
randi
randi (RandStream)
randn
randn (RandStream)
randperm
randperm (RandStream)
RandStream
RandStream constructor
RandStream.getGlobalStream
RandStream.setGlobalStream
rank
rat
rats
rbbox
rcond
rdivide, ./
read
read
readasync
readEncodedStrip
readEncodedTile
readRGBAImage
readRGBAStrip
readRGBATile
Remove
RemoveAll
timeseries
addsample
append
ctranspose
delsample
detrend
filter
get
getabstime
getdatasamples

1-56

getdatasamplesize
getinterpmethod
getqualitydesc
getsamples
getsampleusingtime
idealfilter
iqr
max
mean
median
min
plot
resample
set
setabstime
setinterpmethod
setuniformtime
synchronize
transpose
std
sum
var
triangulation
barycentricToCartesian
cartesianToBarycentric
circumcenter
edgeAttachments
edges
faceNormal
featureEdges
freeBoundary
incenter
isConnected
neighbors
size
vertexAttachments
vertexNormal

1-57

1 Alphabetical List

readtable
real
reallog
realmax
realmin
realpow
realsqrt
record
record
recordblocking
rectangle
Rectangle Properties
rectint
recycle
reducepatch
reducevolume
refresh
refreshdata
regexp
regexpi
regexprep
regexptranslate
registerevent
rehash
release
Relational Operators (handle)
rem
remove
removecats
removets
renamecats
reordercats
rename
repmat
resample (tscollection)
reset
reset (RandStream)

1-58

reshape
residue
restoredefaultpath
rethrow
rethrow (MException)
return
rewriteDirectory
rgb2hsv
rgb2ind
rgbplot
ribbon
rmappdata
rmdir
rmdir
rmfield
rmpath
rmpref
rng
root object
Root Properties
roots
rose
rosser
rot90
rotate
rotate3d
round
rowfun
rref
rsf2csf
run
runtests
save
save (COM)
save (serial)
saveas
savefig

1-59

1 Alphabetical List

saveobj
savepath
scatter
scatter3
Scattergroup Properties
schur
script
scatteredInterpolant
sec
secd
sech
selectmoveresize
matlab.unittest.selectors
matlab.unittest.selectors.HasParameter
matlab.unittest.selectors.HasSharedTestFixture
matlab.unittest.selectors.HasBaseFolder
matlab.unittest.selectors.HasName
semilogx
semilogy
sendmail
serial
serialbreak
set
set
set
set (COM)
set (hgsetget)
set
set (RandStream)
set (serial)
set (tscollection)
setabstime (tscollection)
setappdata
setdiff
setDirectory
setdisp (hgsetget)
setenv

1-60

setfield
setpixelposition
setpref
setstr
setSubDirectory
setTag
settimeseriesnames
setxor
shading
shg
shiftdim
showplottool
shrinkfaces
sign
sin
sind
single
sinh
size
size
size
size (serial)
size
size (tscollection)
slice
smooth3
snapnow
sort
sortrows
sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular

1-61

1 Alphabetical List

speye
spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf
spy
sqrt
sqrtm
squeeze
ss2tf
sscanf
stack
stairs
Stairseries Properties
standardizeMissing
startup
std
stem
stem3
Stemseries Properties
stopasync
str2double
str2func
str2mat
str2num
strcat
strcmp
strcmpi
stream2

1-62

stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind
strings
strjoin
strjust
strmatch
strncmp
strncmpi
strread
strrep
strsplit
strtok
strtrim
struct
struct2cell
struct2table
structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum
summary
superclasses
superiorto
support
surf

1-63

1 Alphabetical List

surfc
surf2patch
surface
Surface Properties
Surfaceplot Properties
surfl
surfnorm
svd
svds
swapbytes
switch, case, otherwise
sylvester
symamd
symbfact
symmlq
symrcm
symvar
syntax
system
table
table2array
table2cell
table2struct
Table Properties
tan
tand
tanh
tar
tempdir
tempname
tetramesh
matlab.unittest.Test
matlab.unittest.TestCase
addTeardown
applyFixture
forInteractiveUse
getSharedTestFixtures

1-64

run
matlab.unittest.TestResult
matlab.unittest.TestRunner
addPlugin
run
withNoPlugins
withTextOutput
matlab.unittest.TestSuite
fromClass
fromFile
fromFolder
fromMethod
fromName
fromPackage
run
selectIf
texlabel
text
Text Properties
textread
textscan
textwrap
tfqmr
throw (MException)
throwAsCaller (MException)
tic
timeit
toc
Tiff
timer
delete
get
isvalid
set
start
startat
stop

1-65

1 Alphabetical List

timerfind
timerfindall
wait
times, .*
title
todatenum
toeplitz
toolboxdir
trace
transpose
trapz
treelayout
treeplot
tril
trimesh
triplequad
triplot
TriRep
TriRep
TriScatteredInterp
TriScatteredInterp
trisurf
triu
true
try, catch
tscollection
tsdata.event
tsearchn
tstool
type
typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol
Uicontrol Properties

1-66

uigetdir
uigetfile
uigetpref
uiimport
uimenu
Uimenu Properties
uint8
uint16
uint32
uint64
uiopen
uipanel
Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile
uiresume
uisave
uisetcolor
uisetfont
uisetpref
uistack
uitable
Uitable Properties
uitoggletool
Uitoggletool Properties
uitoolbar
Uitoolbar Properties
uiwait
uminus, -
undocheckout
unicode2native
union
unique
matlab.unittest
unix
unloadlibrary

1-67

1 Alphabetical List

unmesh
unmkpp
unregisterallevents
unregisterevent
unstack
untar
unwrap
unzip
uplus, +
upper
urlread
urlwrite
usejava
userpath
validateattributes
validatestring
values
vander
var
varargin
varargout
varfun
vectorize
ver
verctrl
verLessThan
version
vertcat
vertcat (tscollection)
vertexAttachments
VideoReader
VideoWriter
view
viewmtx
visdiff
volumebounds
voronoi

1-68

voronoiDiagram
voronoin
waitbar
waitfor
waitforbuttonpress
warndlg
warning
waterfall
wavfinfo
wavplay
wavread
wavrecord
wavwrite
web
weekday
what
whatsnew
which
while
whitebg
who
who
whos
whos
width
wilkinson
winopen
winqueryreg
wk1finfo
wk1read
wk1write
workspace
writetable
write
writeDirectory
writeEncodedStrip
writeEncodedTile

1-69

1 Alphabetical List

writeVideo
xlabel
ylabel
zlabel
xlim
ylim
zlim
xlsfinfo
xlsread
xlswrite
xmlread
xmlwrite
xor
xslt
zeros
zip
zoom
closePreview
preview
snapshot
webcam
webcamlist

1-70

Relational Operators < > <= >= == ~=

Purpose Relational operations

Syntax A < B
A > B
A <= B
A >= B
A == B
A ~= B

Description The relational operators are <, >, <=, >=, ==, and ~=. Relational
operators perform element-by-element comparisons between two
arrays. They return a logical array of the same size, with elements
set to logical 1 (true) where the relation is true, and elements set to
logical 0 (false) where it is not.

The operators <, >, <=, and >= use only the real part of their operands for
the comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors
of dissimilar length to be compared.

Note For some toolboxes, the relational operators are overloaded,
that is, they perform differently in the context of that toolbox. To see
the toolboxes that overload a given operator, type help followed by the
operator name. For example, type help lt. The toolboxes that overload
lt (<) are listed. For information about using the operator in that
toolbox, see the documentation for the toolbox.

Examples If one of the operands is a scalar and the other a matrix, the scalar
expands to the size of the matrix. For example, the two pairs of
statements

X = 5; X >= [1 2 3; 4 5 6; 7 8 10]
X = 5*ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

ans =

1-71

Relational Operators < > <= >= == ~=

1 1 1
1 1 0
0 0 0

See Also all | any | find | strcmp | Logical Operators: Short Circuit

1-72

Logical Operators: Short-Circuit && ||

Purpose Logical operations with short-circuiting

Syntax expr1 && expr2
expr1 || expr2

Description expr1 && expr2 represents a logical AND operation that employs
short-circuiting behavior. That is, expr2 is not evaluated if expr1 is
logical 0 (false). Each expression must evaluate to a scalar logical
result.

expr1 || expr2 represents a logical OR operation that employs
short-circuiting behavior. That is, expr2 is not evaluated if expr1 is
logical 1 (true). Each expression must evaluate to a scalar logical result.

Examples Use Scalar Logical Conditions

Create two vectors.

X = [1 0 0 1 1];
Y = [0 0 0 0 0];

Use the short-circuit OR operator with X and Y.

X || Y

Operands to the || and && operators must be convertible to logical sca

The short-circuit operators operate only with scalar logical conditions.

Use the any and all functions to reduce each vector to a single logical
condition.

any(X) || any(Y)

ans =

1

1-73

Logical Operators: Short-Circuit && ||

The expression is equivalent to 1 || 0, so it evaluates to logical 1
(true) after computing only the first condition, any(X).

Specify Dependent Logical Conditions

Specify a logical statement where the second condition depends on the
first. In the following statement, it doesn’t make sense to evaluate the
relation on the right if the divisor, b, is zero.

b = 1;
a = 20;
x = (b ~= 0) && (a/b > 18.5)

x =

1

The result is logical 1 (true). However, if (b ~= 0) evaluates to false,
MATLAB® assumes the entire expression to be false and terminates
its evaluation of the expression early.

Specify b = 0 and evaluate the same expression.

b = 0;
x = (b ~= 0) && (a/b > 18.5)

x =

0

The result is logical 0 (false). The first statement evaluates to logical 0
(false), so the expression short-circuits.

Change Structure Field Value

Create a structure with fields named 'File' and 'Format'.

S = struct('File',{'myGraph'},'Format',[])

S =

1-74

Logical Operators: Short-Circuit && ||

File: 'myGraph'
Format: []

Short-circuit expressions are useful in if statements when you want
multiple conditions to be true. The conditions can build on one another
in such a way that it only makes sense to evaluate the second expression
if the first expression is true.

Specify an if statement that executes only when S contains an empty
field named 'Format'.

if isfield(S,'Format') && isempty(S.Format)
S.Format = '.png';

end
S

S =

File: 'myGraph'
Format: '.png'

The first condition tests if the string 'Format' is the name of a field
in structure S. The second statement then tests whether the Format
field is empty. The truth of the second condition depends on the first.
The second condition can never be true if the first condition is not
true. Since S has an empty field named 'Format', the body statement
executes and assigns S.Format the value '.png'.

Definitions Logical Short-Circuiting

With logical short-circuiting, the second operand, expr2, is evaluated
only when the result is not fully determined by the first operand, expr1.

Due to the properties of logical AND and OR, the result of a logical
expression is sometimes fully determined before evaluating all of the
conditions. The logical and operator returns logical 0 (false) if even
a single condition in the expression is false. The logical or operator
returns logical 1 (true) if even a single condition in the expression is

1-75

Logical Operators: Short-Circuit && ||

true. When the evaluation of a logical expression terminates early
by encountering one of these values, the expression is said to have
short-circuited.

For example, in the expression A && B, MATLAB does not evaluate
condition B at all if condition A is false. If A is false, then the value of B
does not change the outcome of the operation.

When you use the element-wise & and | operators in the context of
an if or while loop expression (and only in that context), they use
short-circuiting to evaluate expressions.

Note Always use the && and || operators to enable short-circuit
evaluation. Using the & and | operators for short-circuiting can yield
unexpected results when the expressions do not evaluate to logical
scalars.

See Also all | any | find | logical | xor | true | false | and | or

Concepts • “Reduce Logical Arrays to Single Value”

1-76

Special Characters [] () {} = ’ , ; : % ! @

Purpose Special characters

Syntax []
{ }
()
=
'
.
.
.()
..
...
,
;
:
%
%{ %}
!
@

Description [] Brackets are used to form vectors and matrices. [6.9 9.64
sqrt(-1)] is a vector with three elements separated by blanks.
[6.9, 9.64, i] is the same thing. [1+j 2-j 3] and [1 +j
2 -j 3] are not the same. The first has three elements, the
second has five.

[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends
the first row.

Vectors and matrices can be used inside [] brackets. [A
B;C] is allowed if the number of rows of A equals the number
of rows of B and the number of columns of A plus the number
of columns of B equals the number of columns of C. This rule
generalizes to allow fairly complicated constructions.

1-77

Special Characters [] () {} = ’ , ; : % ! @

A = [] stores an empty matrix in A. A(m,:) = [] deletes
row m of A. A(:,n) = [] deletes column n of A. A(n) = []
reshapes A into a column vector and deletes the nth element.

[A1,A2,A3...] = function assigns function output to
multiple variables.

For the use of [and] on the left of an “=” in multiple
assignment statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For
example, A(2,1) = {[1 2 3; 4 5 6]}, or A{2,2} = ('str').
See help paren for more information about { }.

() Parentheses are used to indicate precedence in arithmetic
expressions in the usual way. They are used to enclose
arguments of functions in the usual way. They are also used
to enclose subscripts of vectors and matrices in a manner
somewhat more general than usual. If X and V are vectors,
then X(V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An
error occurs if any such subscript is less than 1 or greater than
the size of X. Some examples are

• X(3) is the third element of X.

• X([1 2 3]) is the first three elements of X.

See help paren for more information about ().

If X has n components, X(n: 1:1) reverses them. The same
indirect subscripting works in matrices. If V has m components
and W has n components, then A(V,W) is the m-by-n matrix
formed from the elements of A whose subscripts are the
elements of V and W. For example, A([1,5],:) = A([5,1],:)
interchanges rows 1 and 5 of A.

= Used in assignment statements. B = A stores the elements of
A in B. == is the relational equals operator. See the Relational
Operators page.

1-78

Special Characters [] () {} = ’ , ; : % ! @

' Matrix transpose. X' is the complex conjugate transpose of X.
X.' is the nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are
the ASCII codes for the characters. A quotation mark within
the text is indicated by two quotation marks.

. Decimal point. 314/100, 3.14, and .314e1 are all the same.

Element-by-element operations. These are obtained using .* ,
.^, ./, or .\. See the Arithmetic Operators page.

. Field access. S(m).f when S is a structure, accesses the
contents of field f of that structure.

.(
)

Dynamic Field access. S.(df) when S is a structure, accesses
the contents of dynamic field df of that structure. Dynamic
field names are defined at runtime.

.. Parent folder. See cd.

... Continuation. Three or more periods at the end of a line
continue the current function on the next line. Three or more
periods before the end of a line cause the MATLAB software to
ignore the remaining text on the current line and continue the
function on the next line. This effectively makes a comment out
of anything on the current line that follows the three periods.
For an example, see “Continue Long Statements on Multiple
Lines”.

, Comma. Used to separate matrix subscripts and function
arguments. Used to separate statements in multistatement
lines. For multistatement lines, the comma can be replaced by
a semicolon to suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an
expression or statement to suppress printing or to separate
statements.

: Colon. Create vectors, array subscripting, and for loop
iterations. See colon (:) for details.

1-79

Special Characters [] () {} = ’ , ; : % ! @

% Percent. The percent symbol denotes a comment; it indicates
a logical end of line. Any following text is ignored. MATLAB
displays the first contiguous comment lines in a function or
script file in response to a help command.

%{
%}

Percent-brace. The text enclosed within the %{ and %} symbols
is a comment block. Use these symbols to insert comments that
take up more than a single line in your script of function code.
Any text between these two symbols is ignored by MATLAB.

With the exception of whitespace characters, the %{ and %}
operators must appear alone on the lines that immediately
precede and follow the block of help text. Do not include any
other text on these lines.

! Exclamation point. Indicates that the rest of the input
line is issued as a command to the operating system. See
“Run External Commands, Scripts, and Programs” for more
information.

@ Function handle. MATLAB data type that is a handle to a
function. See function_handle (@) for details.

Tips Some uses of special characters have function equivalents, as shown:

Horizontal
concatenation

[A,B,C...] horzcat(A,B,C...)

Vertical
concatenation

[A;B;C...] vertcat(A,B,C...)

Subscript reference A(i,j,k...)subsref(A,S). See help
subsref.

Subscript
assignment

A(i,j,k...)=
B

subsasgn(A,S,B). See help
subsasgn.

1-80

Special Characters [] () {} = ’ , ; : % ! @

Note For some toolboxes, the special characters are overloaded, that
is, they perform differently in the context of that toolbox. To see the
toolboxes that overload a given character, type help followed by the
character name. For example, type help transpose. The toolboxes
that overload transpose (.') are listed. For information about using
the character in that toolbox, see the documentation for the toolbox.

See Also “Array vs. Matrix Operations”

Concepts • “Logical Operations”
• “Relational Operations”

1-81

colon (:)

Purpose Create vectors, array subscripting, and for-loop iterators

Description The colon is one of the most useful operators in MATLAB. It can create
vectors, subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced
vectors for scalar values i, j, and k:

j:k is the same as [j,j+1,j+2,...,j+m], where m = fix(k-j).
In the case where both j and k are integers, this is simply
[j,j+1,...,k]. This syntax returns an empty matrix when
j > k.

j:i:k is the same as [j,j+i,j+2i, ...,j+m*i], where m =
fix((k-j)/i). This syntax returns an empty matrix when
i == 0, i > 0 and j > k, or i < 0 and j < k.

If you specify nonscalar arrays, MATLAB interprets j:i:k as
j(1):i(1):k(1).

You can use the colon to create a vector of indices to select rows,
columns, or elements of arrays, where:

A(:,j) is the jth column of A.

A(i,:) is the ith row of A.

A(:,:) is the equivalent two-dimensional array. For matrices this
is the same as A.

A(j:k) is A(j), A(j+1),...,A(k).

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k).

A(:,:,k) is the kth page of three-dimensional array A.

1-82

colon (:)

A(i,j,k,:)is a vector in four-dimensional array A. The vector includes
A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On
the left side of an assignment statement, A(:) fills A,
preserving its shape from before. In this case, the right
side must contain the same number of elements as A.

When you create a vector to index into a cell array or structure array
(such as cellName{:} or structName(:).fieldName), MATLAB
returns multiple outputs in a comma-separated list. For more
information, see “How to Use the Comma-Separated Lists” in the
MATLAB Programming Fundamentals documentation.

Examples Using the colon with integers,

D = 1:4

results in

D =
1 2 3 4

Using two colons to create a vector with arbitrary real increments
between the elements,

E = 0:.1:.5

results in

E =
0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

1-83

colon (:)

generates a three-dimensional array whose first page is all zeros.

A(:,:,1) =
0 0 0
0 0 0
0 0 0

A(:,:,2) =
1 1 1
1 2 3
1 3 6

Using a colon with characters to iterate a for-loop,

for x='a':'d',x,end

results in

x =
a

x =
b

x =
c

x =
d

See Also for | linspace | logspace | reshape | varargin

1-84

abs

Purpose Absolute value and complex magnitude

Syntax abs(X)

Description abs(X) returns an array Y such that each element of Y is the absolute
value of the corresponding element of X.

If X is complex, abs(X) returns the complex modulus (magnitude),
which is the same as

sqrt(real(X).^2 + imag(X).^2)

Examples abs(-5)
ans =

5

abs(3+4i)
ans =

5

See Also angle | sign | unwrap

1-85

accumarray

Purpose Construct array with accumulation

Syntax A = accumarray(subs,val)
A = accumarray(subs,val,sz)
A = accumarray(subs,val,sz,fun)
A = accumarray(subs,val,sz,fun,fillval)
A = accumarray(subs,val,sz,fun,fillval,issparse)

Description A = accumarray(subs,val) returns an array, A, by accumulating
elements of vector val using the subscripts in subs. The values in each
row of the m-by-n matrix subs define an n-dimensional subscript into
the output, A. If subs is a column vector, the value in each row defines a
row subscript into the output, which is also a column vector.

The ith row of subs corresponds to the ith element in the vector, val.
The function collects all elements of val that have identical subscripts
in subs, applies the function @sum, and then stores the result in the
location of A corresponding to the subscript. Elements of A that are not
referred to by any row of subs contain the value 0.

A = accumarray(subs,val,sz) returns an array, A, with size sz.
Specify sz as a vector of positive integers to define the size of the
output, or as [] to let the subscripts in subs determine the size of the
output. Use sz when subs does not reference trailing rows, columns, or
dimensions that you would like to be present in the output.

A = accumarray(subs,val,sz,fun) applies the function fun to each
subset of elements in val that have identical subscripts in subs. Specify
fun using the @ symbol (e.g., @mean), or as [] to use the default function,
@sum.

A = accumarray(subs,val,sz,fun,fillval) fills all elements of A
that are not referred to by any subscript in subs with the scalar value,
fillval. The fillval input must have the same class as the values
returned by fun. Specify fillval as [] to use the default value, 0.

1-86

accumarray

A = accumarray(subs,val,sz,fun,fillval,issparse) returns an
array, A, that is sparse if the scalar issparse is true or 1, and full if
issparse is false or 0. The output, A, is full by default.

Input
Arguments

subs - Subscript matrix
vector of indices | matrix of indices | cell array of index vectors

Subscript matrix, specified as a vector of indices, matrix of indices, or
cell array of index vectors. The indices must be positive integers:

• The value in each row of the m-by-n matrix, subs, specifies an
n-dimensional index into the output, A. For example, if subs is a
3-by-2 matrix, it contains three 2-D subscripts. subs also can be a
column vector of indices, in which case the output, A, is also a column
vector.

• The ith row in subs corresponds to the ith data value in val.

Thus, subs determines which data in val to group, as well as its final
destination in the output. If subs is a cell array of index vectors, each
vector must have the same length, and the function treats the vectors
as columns of a subscript matrix.

val - Data
vector | scalar

Data, specified as a vector or scalar:

• If val is a vector, it must have the same length as the number of
rows in subs.

• If val is a scalar, it is scalar expanded.

In both cases, a one-to-one pairing is present between the subscripts in
each row of subs and the data values in val.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

1-87

accumarray

sz - Size of output array
vector of positive integers | [] (default)

Size of output array, specified as a vector of positive integers or []
(default). When you specify [] for the default size, the values in subs
determine the size of the output array, A.

When you specify sz as a vector of positive integers, it must satisfy
these properties:

• If subs is a nonempty m-by-n matrix with n > 1 columns, then
sz must have n elements and pass the logical test all(sz >=
max(subs,[],1)).

• If subs is a nonempty column vector, then sz must be [m 1] where m
>= max(subs).

Example: sz = [3 3]

fun - Function
function handle | [] (default)

Function, specified as a function handle or [] (default). The default
function is @sum. The fun function must accept a column vector and
return a numeric, logical, or char scalar, or a scalar cell. If the
subscripts in subs are not sorted with respect to their linear indices,
fun should not depend on the order of the values in its input data.

Example: fun = @max

Data Types
function_handle

fillval - Fill value
scalar | [] (default)

Fill value, specified as a scalar or [] (default). The default value of
fillval is 0. If subs does not reference each element in the output,
accumarray fills in the output with the value specified by fillval. The
class of fillval must be the same as the values returned by fun.

1-88

accumarray

issparse - Output sparsity
false (default) | true | 1 | 0

Output sparsity, specified as true, 1, 0, or false (default). Specify
true or 1 when you want the output array to be sparse. If issparse
is true or 1:

• fillval must be 0 or [].

• The values in val and the output values of fun must both have type
double.

Output
Arguments

A - Output array
vector | matrix | multidimensional array

Output array, returned as a vector, matrix, or multidimensional array.
A has the same class as the values returned by fun.

When sz is not specified, the size of A depends on the input subs:

• If subs is a nonempty matrix with n > 1 columns, then A is an
n-dimensional array of size max(subs,[],1).

• If subs is an empty matrix with n > 1 columns, then A is an
n-dimensional empty array with size 0-by-0-by-...-by-0.

• If subs is a nonempty column vector, then A is a column vector of
length max(subs,[],1). The length of A is 0 when subs is empty.

Examples Find Bin Counts

Create a vector of subscripts, subs.

subs = [1; 2; 4; 2; 4]

subs =
1
2
4
2
4

1-89

accumarray

Use accumarray with val = 1 to count the number of identical
subscripts in subs.

A = accumarray(subs,1)

A =

1
2
0
2

The result is a vector of bin counts. You can obtain the same answer
with histc(subs,1:4). However, accumarray also can compute bin
counts over higher dimensional grids.

Accumulate Data

Create a vector of data, val, and a vector of subscript values with the
same length, subs.

val = 101:105';
subs = [1; 3; 4; 3; 4]

subs =
1
3
4
3
4

Use accumarray to sum the values in val that have identical subscripts
in subs.

A = accumarray(subs,val)

A =

1-90

accumarray

101
0

206
208

The result is a vector of accumulated values. Since the second and
fourth elements of subs are equal to 3, A(3) is the sum of the second and
fourth elements of val, that is, A(3) = 102 + 104 = 206. Also, A(2) =
0 because subs does not contain the value 2. Since subs is a vector, the
output, A, is also a vector. The length of A is max(subs,[],1).

Specify Output Size

Create a vector of data, val, and a matrix of subscripts, subs.

val = 101:106';
subs = [1 1; 2 2; 3 2; 1 1; 2 2; 4 1]

subs =

1 1
2 2
3 2
1 1
2 2
4 1

The subscripts in subs define a 4-by-2 matrix for the output.

Use accumarray to sum the values in val that have identical subscripts
in subs.

A = accumarray(subs,val)

A =

205 0
0 207
0 103

1-91

accumarray

106 0

The result is a 4-by-2 matrix of accumulated values.

Use the sz input of accumarray to return a 4-by-4 matrix. You can
specify a size with each dimension equal to or greater than the default
size, in this case 4-by-2, but not smaller.

A = accumarray(subs,val,[4 4])

A =

205 0 0 0
0 207 0 0
0 103 0 0

106 0 0 0

The result is a 4-by-4 matrix of accumulated values.

Use Custom Functions

Create a vector of data, val, and a matrix of subscripts, subs.

val = [100.1 101.2 103.4 102.8 100.9 101.5]';
subs = [1 1; 1 1; 2 2; 3 2; 2 2; 3 2]

subs =

1 1
1 1
2 2
3 2
2 2
3 2

The subscripts in subs define a 3-by-2 matrix for the output.

1-92

accumarray

Use the fun input of accumarray to calculate the within-group variances
of data in val that have identical subscripts in subs. Specify fun as
@var.

A1 = accumarray(subs,val,[],@var)

A1 =

0.6050 0
0 3.1250
0 0.8450

The result is a 3-by-2 matrix of variance values.

Alternatively, you can specify fun as an anonymous function so long
as it accepts vector inputs and returns a scalar. A common situation
where this is useful is when you want to pass additional parameters
to a function. In this case, use the var function with a normalization
parameter.

A2 = accumarray(subs,val,[],@(x) var(x,1))

A2 =

0.3025 0
0 1.5625
0 0.4225

The result is a 3-by-2 matrix of normalized variance values.

Sum Values Natively

Create a vector of data, val, and a matrix of subscripts, subs.

val = int8(10:15);
subs = [1 1 1; 1 1 1; 1 1 2; 1 1 2; 2 3 1; 2 3 2]

subs =

1-93

accumarray

1 1 1
1 1 1
1 1 2
1 1 2
2 3 1
2 3 2

The subscripts in subs define a 2-by-3-by-2 multidimensional array
for the output.

Use accumarray to sum the data values in val that have identical
subscripts in subs. You can use a function handle to sum the values
in their native, int8, integer class by using the 'native' option of
the sum function.

A = accumarray(subs,val,[],@(x) sum(x,'native'))

A(:,:,1) =

21 0 0
0 0 14

A(:,:,2) =

25 0 0
0 0 15

The result is a 2-by-3-by-2 multidimensional array of class int8.

Group Values in Cell Array

Create a vector of data, val, and a matrix of subscripts, subs.

val = 1:10;
subs = [1 1;1 1;1 1;1 1;2 1;2 1;2 1;2 1;2 1;2 2]

subs =

1-94

accumarray

1 1
1 1
1 1
1 1
2 1
2 1
2 1
2 1
2 1
2 2

The subscripts in subs define a 2-by-2 matrix for the output.

Use accumarray to group the elements of val into a cell array.

A = accumarray(subs,val,[],@(x) {x})

A =

[4x1 double] []
[5x1 double] [10]

The result is a 2-by-2 cell array.

Verify that the vector elements are in the same order as they appear
in val.

A{2,1}

ans =

5
6
7
8
9

1-95

accumarray

Since the subscripts in subs are sorted, the elements of the numeric
vectors in the cell array are in the same order as they appear in val.

Using Functions That Depend on Data Order

Create a vector of data, val, and a matrix of subscripts, subs.

val = 1:5;
subs = [1 2; 1 1; 1 2; 1 1; 2 3]

subs =

1 2
1 1
1 2
1 1
2 3

The subscripts in subs define a 2-by-3 matrix for the output, but are
unsorted with respect to the linear indices in the output, A.

Group the values in val into a cell array by specifying fun = @(x) {x}.

A = accumarray(subs,val,[],@(x) {x})

A =

[2x1 double] [2x1 double] []
[] [] [5]

The result is a 2-by-3 cell array.

Examine the vector in A{1,2}.

A{1,2}

ans =

3

1-96

accumarray

1

The elements of the A{1,2} vector are in a different order than in val.
The first element of the vector is 3 instead of 1. If the subscripts in subs
are not sorted with respect to their linear indices, then accumarray
might not always preserve the order of the data in val when it passes
them to fun. In the unusual case that fun requires that its input values
be in the same order as they appear in val, sort the indices in subs with
respect to the linear indices of the output.

Use the two-output syntax of the sortrows function to reorder subs and
val concurrently with respect to the linear indices of the output, A.

[S,I] = sortrows(subs);
A = accumarray(S,val(I),[],@(x) {x});
A{3}

ans =

1
3

The elements of the A{3} vector are now in sorted order.

Fill Output with NaN Values

Create a vector of data, val, and a matrix of subscripts, subs.

val = 101:106';
subs = [1 1; 2 2; 3 3; 1 1; 2 2; 4 4]

subs =

1 1
2 2
3 3
1 1
2 2
4 4

1-97

accumarray

The subscripts in subs define a 4-by-4 matrix for the output, but only
reference 4 out of the 16 elements. By default, the other 12 elements
are 0 in the output.

Use the fillval input of accumarray to fill in the extra output elements
with NaN values.

A = accumarray(subs,val,[],[],NaN)

A =

205 NaN NaN NaN
NaN 207 NaN NaN
NaN NaN 103 NaN
NaN NaN NaN 106

The result is a 4-by-4 matrix padded with NaN values.

Change Output Sparsity

Create a vector of data, val, and a matrix of subscripts, subs.

val = [34 22 19 85 53 77 99 6];
subs = [1 1; 400 400; 80 80; 1 1; 400 400; 400 400; 80 80; 1 1]

subs =

1 1
400 400
80 80
1 1

400 400
400 400
80 80
1 1

The subscripts in subs define a 400-by-400 matrix for the output, but
only reference 3 out of the 160,000 elements. When the result of an
operation with accumarray leads to a large output array with low

1-98

accumarray

density of nonzero elements, you can save storage space by storing the
output as a sparse matrix.

Use the issparse input of accumarray to return a sparse matrix.

A = accumarray(subs,val,[],[],[],true)

A =

(1,1) 125
(80,80) 118

(400,400) 152

The result is a sparse matrix. You can obtain the same answer with
sparse(subs(:,1),subs(:,2),val).

Definitions Accumulating Elements

The following graphic illustrates the behavior of accumarray on a
vector of temperature data taken over a 12-month period. To find the
maximum temperature reading for each month, accumarray applies the
max function to each group of values in temperature that have identical
subscripts in month.

1-99

accumarray

No values in month point to the 5, 6, 7, or 10 positions of the output.
These elements are 0 in the output by default, but you can specify a
value to fill in using fillval.

Tips • The behavior of accumarray is similar to that of the histc function.
Both functions group data into bins.

1-100

accumarray

- histc groups continuous values into a 1-D range using bin edges.

- accumarray groups data using n-dimensional subscripts.

- histc returns the bin counts using @sum.

- accumarray can apply any function to the bins.

You can mimic the behavior of histc using accumarray with val
= 1.

• The sparse function also has accumulation behavior similar to that
of accumarray.

- sparse groups data into bins using 2-D subscripts, whereas
accumarray groups data into bins using n-dimensional subscripts.

- sparse adds elements that have identical subscripts into the
output. accumarray adds elements that have identical subscripts
into the output by default, but can optionally apply any function
to the bins.

See Also full | sparse | sum | function_handle | histc

1-101

acos

Purpose Inverse cosine in radians

Syntax Y = acos(X)

Description Y = acos(X) returns the inverse cosine (arccosine) for each element of
X. For real elements of X in the domain [–1, 1], acos(X) is real and
in the range [0, π]. For real elements of X outside the domain [–1, 1],
acos(X) is complex.

The acos function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Cosine Function

Graph the inverse cosine function over the domain .

x = -1:.05:1;
plot(x,acos(x)), grid on

1-102

acos

Definitions Inverse Cosine

The inverse can be defined as

cos () log .
/− = − + −()⎡

⎣
⎤
⎦1 2 1 2

1z i z i z

See Also acosd | acosh | cos

1-103

acosd

Purpose Inverse cosine in degrees

Syntax Y = acosd(X)

Description Y = acosd(X) returns the inverse cosine (cos-1) of the elements of X
in degrees. The function’s domain and range include complex values.
For real elements of X in the domain [-1,1], acosd returns values in
the range [0, 180]. For values of X outside this range, acosd returns
complex values.

Input
Arguments

X - Cosine of angle
scalar value | vector | matrix | N-D array

Cosine of angle, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The acosd operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Inverse Cosine of 0

Verify that inverse cosine of 0 is exactly 90.

acosd(0)

ans =

90

1-104

acosd

Round-Trip Calculation for Complex Angles

Show that the inverse cosine, followed by cosine, returns the original
values of X.

cosd(acosd([2 3]))

ans =

2.0000 3.0000

acosd([2 3]) returns two complex angles, which are then passed to
the cosd function. cosd returns the original values, 2 and 3.

See Also cosd | acos | cos

1-105

acosh

Purpose Inverse hyperbolic cosine

Syntax Y = acosh(X)

Description Y = acosh(X) returns the inverse hyperbolic cosine for each element
of X.

The acosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Hyperbolic Cosine Function

Graph the inverse hyperbolic cosine function over the domain
.

x = 1:pi/40:pi;
plot(x,acosh(x)), grid on

1-106

acosh

Definitions Inverse Hyperbolic Cosine

The inverse hyperbolic cosine can be defined as

cosh () log .
/− = + −()⎡

⎣
⎤
⎦1 2 1 2

1z z z

See Also acos | cosh | asinh | atanh

1-107

acot

Purpose Inverse cotangent in radians

Syntax Y = acot(X)

Description Y = acot(X) returns the inverse cotangent (arccotangent) for each
element of X.

The acot function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Cotangent Function

Graph the inverse cotangent function over the domains
and .

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),x2,acot(x2)), grid on

1-108

acot

Definitions Inverse Cotangent

The inverse cotangent can be defined as

cot () tan .− −= ⎛
⎝⎜
⎞
⎠⎟

1 1 1
z

z

See Also cot | acotd | acoth

1-109

acotd

Purpose Inverse cotangent in degrees

Syntax Y = acotd(X)

Description Y = acotd(X) returns the inverse cotangent (cot-1) of the elements of X
in degrees. The function’s domain and range include complex values.
For real elements of X in the range [-Inf,Inf], acotd returns values in the
range [-90,90]. For complex values of X, acotd returns complex values.

Input
Arguments

X - Cotangent of angle
scalar value | vector | matrix | N-D array

Cotangent of angle, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The acotd operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Inverse Cotangent of Vector

x = [0 20 Inf];
y = acotd(x)

y =

90.0000 2.8624 0

The acotd operation is element-wise when you pass a vector, matrix, or
N-D array.

1-110

acotd

Inverse Cotangent of Complex Value

acotd(1+i)

ans =

31.7175 -23.0535i

See Also cotd | cot | acot

1-111

acoth

Purpose Inverse hyperbolic cotangent

Syntax Y = acoth(X)

Description Y = acoth(X) returns the inverse hyperbolic cotangent for each
element of X.

The acoth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Hyperbolic Cotangent Function

Graph the inverse hyperbolic cotangent function over the domains
and .

x1 = -30:0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2)), grid on

1-112

acoth

Definitions Inverse Hyperbolic Cotangent

The inverse hyperbolic cotangent can be defined as

coth () tanh .− −= ⎛
⎝⎜
⎞
⎠⎟

1 1 1
z

z

See Also acot | coth | atanh | asinh | acosh

1-113

acsc

Purpose Inverse cosecant in radians

Syntax Y = acsc(X)

Description Y = acsc(X) returns the inverse cosecant (arccosecant) for each
element of X.

The acsc function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Cosecant Function

Graph the inverse cosecant function over the domains
and .

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2)), grid on

1-114

acsc

Definitions Inverse Cosecant

The inverse cosecant can be defined as

csc () sin .− −= ⎛
⎝⎜
⎞
⎠⎟

1 1 1
z

z

See Also csc | acscd | acsch

1-115

acscd

Purpose Inverse cosecant in degrees

Syntax Y = acscd(X)

Description Y = acscd(X) returns the inverse cosecant (cosec-1) of the elements of X
in degrees. The function’s domain and range include complex values.
For real elements of X in the domain [-Inf,1] and [1,Inf], acscd returns
values in the range [-90,90]. For values of X outside this range, acscd
returns complex values.

Input
Arguments

X - Cosecant of angle
scalar value | vector | matrix | N-D array

Cosecant of angle, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The acscd operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Inverse Cosecant of Vector

x = [20 10 Inf];
y = acscd(x)

y =

2.8660 5.7392 0

The acscd operation is element-wise when you pass a vector, matrix, or
N-D array.

1-116

acscd

Inverse Cosecant of Complex Value

acscd(1+i)

ans =

25.9136 -30.4033i

See Also cscd | csc | acsc

1-117

acsch

Purpose Inverse hyperbolic cosecant

Syntax Y = acsch(X)

Description Y = acsch(X) returns the inverse hyperbolic cosecant for each element
of X.

The acsch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Hyperbolic Cosecant Function

Graph the inverse hyperbolic cosecant function over the domains
and .

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2)), grid on

1-118

acsch

Inverse Hyperbolic Cosecant

The inverse hyperbolic cosecant can be defined as

csch− −= ⎛
⎝⎜
⎞
⎠⎟

1 1 1
() sinh .z

z

See Also acsc | csch | asinh | acosh

1-119

actxcontrol

Purpose Create Microsoft ActiveX control in figure window

Syntax h = actxcontrol('progid')
h = actxcontrol('progid','param1',value1,...)
h = actxcontrol('progid',position)
h = actxcontrol('progid', position, fig_handle)
h = actxcontrol('progid',position,fig_handle,event_handler)
h = actxcontrol('progid',position,fig_handle,event_handler,

'filename')

Description h = actxcontrol('progid') creates an ActiveX® control in a
figure window. The programmatic identifier (progid) for the control
determines the type of control created. (See the documentation provided
by the control vendor to get this string.) The returned object, h,
represents the default interface for the control.

You cannot use an ActiveX server for the progid because MATLAB
software cannot insert ActiveX servers in a figure. See actxserver for
use with ActiveX servers.

h = actxcontrol('progid','param1',value1,...) creates an
ActiveX control using the optional parameter name/value pairs.
Parameter names include:

• position— MATLAB position vector specifying the position of the
control. The format is [left, bottom, width, height] using pixel units.

• parent— Handle to parent figure, model, or Command Window.

• callback— Name of event handler. To use the same handler for all
events, specify a single name. To handle specific events, specify a cell
array of event name/event handler pairs.

• filename — Sets the initial conditions to the previously saved
control.

• licensekey— License key to create licensed ActiveX controls that
require design-time licenses. See “Deploy ActiveX Controls Requiring
Run-Time Licenses” for information on how to use controls that
require run-time licenses.

1-120

actxcontrol

One possible format is:

h = actxcontrol('myProgid','newPosition',[0 0 200 200],...
'myFigHandle',gcf,...
'myCallback',{'Click' 'myClickHandler';...
'DblClick' 'myDblClickHandler';...
'MouseDown' 'myMouseDownHandler'});

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the previous syntaxes are preferred.

h = actxcontrol('progid',position) creates an ActiveX control
having the location and size specified in the vector, position. The
format of this vector is:

[x y width height]

The first two elements of the vector determine where the control is
placed in the figure window, with x and y being offsets, in pixels, from
the bottom left corner of the figure window to the same corner of the
control. The last two elements, width and height, determine the size
of the control itself.

The default position vector is [20 20 60 60].

h = actxcontrol('progid', position, fig_handle) creates an
ActiveX control at the specified position in an existing figure window.
The Handle Graphics® handle, fig_handle, identifies this window.

The gcf command returns the current figure handle.

Note If the figure window designated by fig_handle is invisible, the
control is invisible. If you want the control you are creating to be
invisible, use the handle of an invisible figure window.

h = actxcontrol('progid',position,fig_handle,event_handler)
creates an ActiveX control that responds to events. Controls respond
to events by invoking a MATLAB function whenever an event (such

1-121

actxcontrol

as clicking a mouse button) is fired. The event_handler argument
identifies one or more functions to be used in handling events. For more
information, see “Specifying Event Handlers” on page 1-122.

h = actxcontrol('progid',position,fig_handle,event_handler,
'filename') creates an ActiveX control with the first four arguments,
and sets its initial state to that of a previously saved control. MATLAB
loads the initial state from the file specified in the string filename.

If you do not want to specify an event_handler, you can use an empty
string ('') as the fourth argument.

The progid argument must match the progid of the saved control.

Specifying Event Handlers

There is more than one valid format for the event_handler argument.
Use this argument to specify one of the following:

• A different event handler routine for each event supported by the
control

• One common routine to handle selected events

• One common routine to handle all events

In the first case, use a cell array for the event_handler argument, with
each row of the array specifying an event and handler pair:

{'event' 'eventhandler'; 'event2' 'eventhandler2'; ...}

event is either a string containing the event name or a numeric event
identifier (see Example 2), and eventhandler is a string identifying the
function you want the control to use in handling the event. Include only
those events that you want enabled.

In the second case, use the same cell array syntax described, but specify
the same eventhandler for each event. Again, include only those events
that you want enabled.

In the third case, make event_handler a string (instead of a cell array)
that contains the name of the one function that is to handle all events
for the control.

1-122

actxcontrol

There is no limit to the number of event and handler pairs you can
specify in the event_handler cell array. However, if you register
the same event name to the same callback handler multiple times,
MATLAB executes the event only once.

Event handler functions accept a variable number of arguments.

Strings used in the event_handler argument are not case-sensitive.

Note Although using a single handler for all events might be easier in
some cases, specifying an individual handler for each event creates
more efficient code, resulting in better performance.

Tips If the control implements any custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

When you no longer need the control, call release to release the
interface and free memory and other resources used by the interface.
Releasing the interface does not delete the control itself. To release the
interface, use the delete function.

For more information on handling control events, see Writing Event
Handlers.

For an example event handler, see the file sampev.m in the
toolbox\matlab\winfun\comcli folder.

COM functions are available on Microsoft® Windows® systems only.

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB or other non-VBA container applications, see “Use
Microsoft Forms 2.0 Controls”.

1-123

actxcontrol

Examples Handling Events

The event_handler argument specifies how you want the control to
handle any events that occur. The control can handle all events with
one common handler function, selected events with a common handler
function, or each type of event can be handled by a separate function.

This command creates an mwsamp control that uses one event handler,
sampev, to respond to all events:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, 'sampev');

The next command also uses a common event handler, but will only
invoke the handler when selected events, Click and DblClick are fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {'Click' 'sampev'; 'DblClick' 'sampev'});

This command assigns a different handler routine to each event. For
example, Click is an event, and myclick is the routine that executes
whenever a Click event is fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {'Click', 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

The next command does the same thing, but specifies the events using
numeric event identifiers:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {-600, 'myclick'; -601 'my2click'; -605 'mymoused'});

For examples of event handler functions and how to register them with
MATLAB, see “Sample Event Handlers”.

See Also actxserver | release | delete (COM) | save (COM) | load (COM) |
interfaces

1-124

actxcontrollist

Purpose List currently installed Microsoft ActiveX controls

Syntax info = actxcontrollist

Description info = actxcontrollist returns a list of controls in info, a 1-by-3
cell array containing the name, programmatic identifier (ProgID), and
file name for the control. Each control has one row, which MATLAB
software sorts by file name.

COM functions are available on Microsoft Windows systems only.

Examples Show information for two controls:

list = actxcontrollist;
for k = 1:2

sprintf(' Name = %s\n ProgID = %s\n File = %s\n', list{k,:})
end

MATLAB displays information like:

ans =
Name = Calendar Control 11.0
ProgID = MSCAL.Calendar.7
File = C:\Program Files\MSOffice\OFFICE11\MSCAL.OCX

ans =
Name = CTreeView Control
ProgID = CTREEVIEW.CTreeViewCtrl.1
File = C:\WINNT\system32\dmocx.dll

See Also actxcontrolselect | actxcontrol

1-125

actxcontrolselect

Purpose Create Microsoft ActiveX control from GUI

Syntax h = actxcontrolselect
[h, info] = actxcontrolselect

Description h = actxcontrolselect displays a GUI listing all ActiveX controls
installed on the system and creates the one you select from the list.
Returns handle h for the object. Use the handle to identify this control
when calling MATLAB COM functions.

[h, info] = actxcontrolselect returns a 1-by-3 cell array info
containing the name, programmatic identifier (ProgID), and file name
for the control.

COM functions are available on Microsoft Windows systems only.

See Also actxcontrollist | actxcontrol

How To • “Creating Control Objects Using a GUI”

1-126

actxGetRunningServer

Purpose Handle to running instance of Automation server

Syntax h = actxGetRunningServer('progid')

Description h = actxGetRunningServer('progid') gets a reference to a running
instance of the OLE Automation server. progid is the programmatic
identifier of the Automation server object and h is the handle to the
default interface of the server object.

The function returns an error if the server specified by progid is
not currently running or if the server object is not registered. When
multiple instances of the Automation server are running, the operating
system controls the behavior of this function.

COM functions are available on Microsoft Windows systems only.

Examples Get a handle to the MATLAB application:

h = actxGetRunningServer('matlab.application')

See Also actxcontrol | actxserver

How To • “MATLAB COM Automation Server Interface”

1-127

actxserver

Purpose Create COM server

Syntax h = actxserver('progid')
h = actxserver('progid','machine','machineName')
h = actxserver('progid','interface','interfaceName')
h = actxserver('progid','machine','machineName','interface',

'interfaceName')
h = actxserver('progid',machine)

Description h = actxserver('progid') creates a local OLE Automation server,
where progid is the programmatic identifier of an OLE-compliant COM
server, and h is the handle of the server’s default interface.

Get progid from the control or server vendor’s documentation. To
see the progid values for MATLAB software, refer to “Programmatic
Identifiers”.

h = actxserver('progid','machine','machineName') creates an
OLE Automation server on a remote machine, where machineName is a
string specifying the name of the machine on which to start the server.

h = actxserver('progid','interface','interfaceName') creates a
Custom interface server, where interfaceName is a string specifying
the interface name of the COM object. Values for interfaceName are

• IUnknown — Use the IUnknown interface.

• The Custom interface name

You must know the name of the interface and have the server
vendor’s documentation in order to use the interfaceName value. For
information about custom COM servers and interfaces, see “COM
Server Types”.

Note The MATLAB COM Interface does not support invoking
functions with optional parameters.

1-128

actxserver

h =
actxserver('progid','machine','machineName','interface',
'interfaceName') creates a Custom interface server on a
remote machine.

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the syntaxes described earlier are
preferred:

h = actxserver('progid',machine) creates a COM server running
on the remote system named by the machine argument. This can be an
IP address or a DNS name. Use this syntax only in environments that
support Distributed Component Object Model (for more information,
see “Using MATLAB Application as DCOM Server”).

Tips For components implemented in a dynamic link library (DLL),
actxserver creates an in-process server. For components implemented
as an executable (EXE), actxserver creates an out-of-process server.
Out-of-process servers can be created either on the client system or on
any other system on a network that supports DCOM.

If the control implements any Custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

You can register events for COM servers.

COM functions are available on Microsoft Windows systems only.

Examples Microsoft Excel® Workbook Example

This example creates an OLE Automation server, Excel version 9.0, and
manipulates a workbook in the application.

Create a COM server running Microsoft Excel.

e = actxserver ('Excel.Application')

e =
COM.Excel.application

1-129

actxserver

Make the Excel frame window visible.

e.Visible = 1;

Use the get method on the Excel object e to list all properties of the
application.

e.get

Application: [1x1
Interface.Microsoft_Excel_9.0_Object_Library._Application]

Creator: 'xlCreatorCode'
.
.
.

Workbooks: [1x1
Interface.Microsoft_Excel_9.0_Object_Library.Workbooks]

.

.

.
Caption: 'Microsoft Excel - Book1'

CellDragAndDrop: 0
ClipboardFormats: {3x1 cell}

.

.

.
Cursor: 'xlNorthwestArrow'

.

.

.

Create an interface eWorkBooks.

eWorkbooks = e.Workbooks

eWorkbooks =
Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

1-130

actxserver

List all methods for that interface.

eWorkbooks.invoke

Add: 'handle Add(handle, [Optional]Variant)'
Close: 'void Close(handle)'
Item: 'handle Item(handle, Variant)'
Open: 'handle Open(handle, string, [Optional]Variant)'

OpenText: 'void OpenText(handle, string, [Optional]Variant)'
.
.
.

Add a new workbook w, also creating a new interface.

w = eWorkbooks.Add

w =
Interface.Microsoft_Excel_9.0_Object_Library._Workbook

Close Excel and delete the object.

e.Quit;
e.delete;

See Also actxcontrol | actxGetRunningServer | release | delete (COM) |
save (COM) | load (COM) | interfaces | invoke

Related
Examples

• “Read Excel Spreadsheet Data”
• “Use MATLAB Application as Automation Client”

1-131

matlab.apputil.create

Purpose Create or modify app project file for packaging app into .mlappinstall
file using interactive dialog box

Syntax matlab.apputil.create
matlab.apputil.create(prjfile)

Description matlab.apputil.create opens the Package App dialog box that steps
you through the process of creating an .mlappinstall file.

matlab.apputil.create(prjfile) loads the specified .prj file and
populates the Package App dialog box with the information from the
specified project file. Use this option if you need to update an existing
app.

Input
Arguments

prjfile - Full or partial path to the .prj file
string

Full or partial path to the .prj file you created previously with the
Package App dialog box, specified as a string

Example: 'C:\myapp.prj'

Examples Open Dialog Box for Creating an App Package

matlab.apputil.create

1-132

matlab.apputil.create

1-133

matlab.apputil.create

Minimally, add a main file and specify an app name. MATLAB creates
and continuously saves a .prj file, regardless of whether you click
Package. However, MATLAB does not create a .mlappinstall file if
you do not click Package.

Update Existing App Package

Assume you have an existing project file, myapp.prj. You want to add
a file and update the description.

Open the Package App dialog box, specifying the previously created
.prj file:

matlab.apputil.create('myapp.prj')

The dialog box opens populated with the data you previously specified
for myapp. Adjust the information in the dialog box, as needed.

See Also matlab.apputil.package

Concepts • “MATLAB App Installer File — mlappinstall”

1-134

matlab.apputil.getInstalledAppInfo

Purpose List installed app information

Syntax matlab.apputil.getInstalledAppInfo

appinfo = matlab.apputil.getInstalledAppInfo

Description matlab.apputil.getInstalledAppInfo displays the ID and name of
all installed custom apps. It does not display this information for apps
packaged with MathWorks® products.

appinfo = matlab.apputil.getInstalledAppInfo returns structure
to appinfo, which includes the status, ID, location, and name of all
installed custom apps. It does not return this information for apps
packaged with MathWorks products.

Output
Arguments

appinfo - Information about installed apps
structure array

Information about the installed app, returned as a structure array,
with one element for each installed app. Each element of the structure
array has the following fields:

status - Installation status
'installed'

Status of the installation, returned as the string 'installed'.

id - Unique identifier for the installed app
string

Unique identifier for the installed app, returned as a string

The ID is for use when running or uninstalling the app
programmatically.

location - Folder where the app is installed
string

1-135

matlab.apputil.getInstalledAppInfo

Folder where the app is installed, returned as a string

name - Name of the installed app
string

Name of the installed app as it appears in the apps gallery, returned
as a string

Examples Display Installed Apps Information in the Command Window

Assume you installed two apps, LinePlotter and PlotRandNumbers.
Display the app information in the Command Window.

matlab.apputil.getInstalledAppInfo

ID Name
------------------ ---------------
LinePlotterAPP LinePlotter
PlotRandNumbersAPP PlotRandNumbers

Store Installed App Information in a Variable

Assume you installed an app, ColorPalette. Get the app information
and store it in a variable, myappinfo.

myappinfo = matlab.apputil.getInstalledAppInfo;

Store Installed App Information in a Variable and Display IDs

Assume you installed two apps, LinePlotter and PlotRandNumbers.
Get and store the app information for both installed apps in a variable,
myappinfo. Then, get the id for each app.

myappinfo = matlab.apputil.getInstalledAppInfo

myappinfo =

1x2 struct array with fields:
id

1-136

matlab.apputil.getInstalledAppInfo

name
status
location

Get the id of each installed app:

appids={myappinfo.id}

appids =

'LinePlotterAPP' 'PlotRandNumbersAPP'

See Also matlab.apputil.install | matlab.apputil.uninstall |
matlab.apputil.run

Concepts • “MATLAB App Installer File — mlappinstall”

1-137

matlab.apputil.install

Purpose Install app from a .mlappinstall file

Syntax appinfo = matlab.apputil.install(appfile)

Description appinfo = matlab.apputil.install(appfile) installs the specified
app file and returns information about the app.

Input
Arguments

appfile - Full or partial path to .mlappinstall file
string

Full or partial path of the app file you want to install, specified as a
string.

Example: 'C:\myguis\myapps\myapp.mlappinstall'

Output
Arguments

appinfo - Information about installed app
structure

Information about the installed app, returned as a structure with the
fields:

status - Installation status
'installed' | 'updated'

Installation status, returned as a string:

• 'installed' — New app is installed.

• 'updated'— Previously installed app is updated.

id - Unique identifier
string

Unique identifier for the installed app, returned as a string

The ID is for use when running or uninstalling the app
programmatically.

location - Folder where app is installed
string

1-138

matlab.apputil.install

Folder where app is installed, returned as a string

name - Name of installed app
string

Name of installed app as it appears in the apps gallery, returned as
a string

Examples Install App and Display Information About the Installation

Assume you have downloaded an app from File Exchange named
EmployeeData. Install it and return information about the installation
to the variable appinfo. Later, if you decide to deinstall the app
programmatically, you have the app id required to do so.

appinfo = matlab.apputil.install...
('C:\myguis\myapps\EmployeeData.mlappinstall')

appinfo =

id: 'EmployeeDataApp'
name: 'EmployeeData'

status: 'installed'
location: 'C:\myguis\myapps\EmployeeData.mlappinstall'

See Also matlab.apputil.uninstall | matlab.apputil.getInstalledAppInfo
| matlab.apputil.package

Concepts • “MATLAB App Installer File — mlappinstall”

1-139

matlab.apputil.package

Purpose Package app files into .mlappinstall file

Syntax matlab.apputil.package(prjfile)

Description matlab.apputil.package(prjfile) creates a .mlappinstall file
based on the information in the specified prjfile.

Input
Arguments

prjfile - Full or partial path to app project (.prj) file
string

Full or partial path to app project (.prj) file, specified as a string.

Example: 'plotdata.prj'

Examples Create mlappinstall File for Previously Created Project File

Assume you previously created myprjfile.prj using
matlab.apputil.create. The following command creates the
corresponding .mlappinstall file.

matlab.apputil.package('myprjfile.prj')

Tips • To create a .prj file, use matlab.apputil.create.

See Also matlab.apputil.create | matlab.apputil.install |
matlab.apputil.run

1-140

matlab.apputil.run

Purpose Run app programmatically

Syntax matlab.apputil.run(appid)

Description matlab.apputil.run(appid) runs the custom app specified by the
unique identifier, appid.

Input
Arguments

appid - ID of custom app
string

ID of custom app you want to run, specified as a string.

Example: 'DataExplorationAPP'

Tips • The ID of a custom app is returned when you install it. You can use
matlab.apputil.getInstalledAppInfo to get the ID after you have
installed an app.

• When a custom app runs, MATLAB adds any folders it needs to have
added to the path, as identified when the app was packaged. When
the app exits, MATLAB removes those folders from the path.

• You can run multiple, different custom apps concurrently. However,
you cannot run two instances of the same app concurrently.

Examples Run Previously Installed App

Assume you installed two apps, PlotData and setslider. Run
PlotData programmatically, using its ID.

Get IDs of all installed apps.

matlab.apputil.getInstalledAppInfo

ID Name
------------------- ----------------
setsliderAPP setslider
PlotDataAPP PlotData

1-141

matlab.apputil.run

Run PlotData.

matlab.apputil.run('PlotDataAPP')

See Also matlab.apputil.create | matlab.apputil.install |
matlab.apputil.getInstalledAppInfo

1-142

matlab.apputil.uninstall

Purpose Uninstall app

Syntax matlab.apputil.uninstall(appid)

Description matlab.apputil.uninstall(appid) removes the app specified by the
unique identifier, appid. MATLAB removes all files corresponding to
the app and removes the app from the app gallery.

Input
Arguments

appid - ID of app
string

ID of app to be uninstalled, specified as a string.

Example: 'DataExplorationAPP'

Tips • To determine the appid of an installed app, preserve
the value returned when you install the app
programmatically with matlab.apputil.install, or use
matlab.apputil.getInstalledAppInfo.

Examples Uninstall App

Assume you previously installed two apps, setslider and simplegui.
Get the IDs of all installed apps, and then use the ID for simplegui
to uninstall it.

View the IDs of all apps

matlab.apputil.getInstalledAppInfo

ID Name
------------------- ----------------
setsliderAPP setslider
simpleguiAPP simplegui

Uninstall the simplegui app.

matlab.apputil.uninstall('simpleguiAPP')

1-143

matlab.apputil.uninstall

Confirm the app was removed, by running
matlab.apputil.getInstalledAppInfo again.

matlab.apputil.getInstalledAppInfo

ID Name
------------------- ----------------
setsliderAPP setslider

See Also matlab.apputil.install | matlab.apputil.getInstalledAppInfo

1-144

addCause (MException)

Purpose Record additional causes of exception

Syntax baseExcep = addCause(baseExcep, causeExcep)

Description baseExcep = addCause(baseExcep, causeExcep) adds information to
existing exception baseExcep to help determine its cause. The added
information is in the form of a second exception causeExcep. Both
baseExcep and causeExcep are objects of the MException class. The
baseExcep and causeExcep inputs are scalar objects of the mException
class.

The exception has a property called cause in which you can store
a series of additional exceptions, each saving information on what
caused the initial error. (See the figure in the documentation for “The
MException Class”.) When your program calls addCause, MATLAB
appends a new exception cause to this field in the base exception
exception. When your error handling code catches the error in a
try/catch statement, execution of the catch part of this statement
makes the base exception, along with all of the appended cause records,
available to help diagnose the error.

Examples This example attempts to open a file in a folder that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the file still cannot be found, the
program issues an exception with the first error appended to the second
using addCause:

function data = read_it(filename);
try

% Attempt to open and read from a file.
fid = fopen(filename, 'r');
data = fread(fid);

catch exception1
% If the error was caused by an invalid file ID, try
% reading from another location.
if strcmp(exception1.identifier, 'MATLAB:FileIO:InvalidFid')

msg = sprintf(...

1-145

addCause (MException)

'\nCannot open file %s. Try another location? ', ...
filename);

reply = input(msg, 's')
if reply(1) == 'y'

newFolder = input('Enter folder name: ', 's');
else

throw(exception1);
end
oldpath = addpath(newFolder);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch exception2
exception3 = addCause(exception2, exception1)
path(oldpath);
throw(exception3);

end
path(oldpath);

end
end
fclose(fid);

try
d = read_it('anytextfile.txt');

catch exception
end

exception
exception =
MException object with properties:

identifier: 'MATLAB:FileIO:InvalidFid'
message: 'Invalid file identifier. Use fopen

to generate a valid file identifier.'
stack: [1x1 struct]
cause: {[1x1 MException]}

1-146

addCause (MException)

Cannot open file anytextfile.txt. Try another location?y
Enter folder name: xxxxxxx
Warning: Name is nonexistent or not a directory: xxxxxxx.
> In path at 110

In addpath at 89

See Also last(MException) | throwAsCaller(MException)
| rethrow(MException) | throw(MException) |
getReport(MException) | MException | assert | error |
try, catch

1-147

addevent

Purpose Add event to timeseries object

Syntax ts = addevent(ts,e)
ts = addevent(ts,Name,Time)

Description ts = addevent(ts,e) adds one or more tsdata.event objects, e, to
the timeseries object ts. e is either a single tsdata.event object or
an array of tsdata.event objects.

ts = addevent(ts,Name,Time) constructs one or more tsdata.event
objects and adds them to the Events property of ts. Name is a cell array
of event name strings. Time is a cell array of event times.

Examples Create a time-series object and add an event to this object.

%% Import the sample data
load count.dat

%% Create time-series object
count1=timeseries(count(:,1),1:24,'name', 'data');

%% Modify the time units to be 'hours' ('seconds' is default)
count1.TimeInfo.Units = 'hours';

%% Construct and add the first event at 8 AM
e1 = tsdata.event('AMCommute',8);

%% Specify the time units of the time
e1.Units = 'hours';

View the properties (EventData, Name, Time, Units, and StartDate)
of the event object.

get(e1)

MATLAB software responds with

EventData: []

1-148

addevent

Name: 'AMCommute'
Time: 8

Units: 'hours'
StartDate: ''

%% Add the event to count1
count1 = addevent(count1,e1);

An alternative syntax for adding two events to the time series count1 is
as follows:

count1 = addevent(count1,{'AMCommute' 'PMCommute'},{8 18})

See Also timeseries | tsdata.event

1-149

audioinfo

Purpose Information about audio file

Syntax info = audioinfo(filename)

Description info = audioinfo(filename) returns information about the contents
of the audio file specified by filename.

Input
Arguments

filename - Name of file
string

Name of file, specified as a string. If a path is specified, it can be
absolute, relative, or partial.

Example: 'myFile.mp3'

Example: '../myFile.mp3'

Example: 'C:\temp\myFile.mp3'

audioinfo supports the following file formats.

Platform Support File Format

WAVE (.wav)

OGG (.ogg)

FLAC (.flac)

All platforms

AU (.au)

MP3 (.mp3)Windows 7 (or later), Macintosh,
and Linux® MPEG-4 AAC (.m4a, .mp4)

On Windows 7 platforms (or later), audioinfo might also return
information about the contents of any files supported by Windows
Media® Foundation.

On Linux platforms, audioinfo might also return information about
the contents of any files supported by GStreamer.

1-150

audioinfo

audioinfo can extract audio metadata from MPEG-4 (.mp4, .m4v) video
files on Windows 7 or later, Mac OS X 10.7 Lion or higher, and Linux,
and from Windows Media Video (.wmv) and AVI (.avi) files on Windows
7 (or later) and Linux platforms.

Output
Arguments

info - Information about audio file
structure

Information about audio file, returned as a structure. info can contain
the following fields.

Field Name Description Data Type

Filename Filename including
the absolute path to
the file and the file
extension.

string

CompressionMethod Compression method
used.

string

NumChannels Number of audio
channels encoded in
the audio file.

double

SampleRate Sample rate of the
audio data in the file,
in hertz.

double

TotalSamples Total number of audio
samples in the file.

double

Duration Duration of the file,
in seconds.

double

BitsPerSample Number of bits per
sample encoded in
the audio file.

Only valid for WAVE
(.wav) and FLAC
(.flac) files.

double

1-151

audioinfo

Field Name Description Data Type

BitRate Number of kilobits
per second (kbit/s)
used for compressed
audio files.

Only valid for MP3
(.mp3) and MPEG-4
Audio (.m4a, .mp4)
files.

double

Title Value of 'Title', if
any.

string

Artist Value of 'Artist', if
any.

string

Comment Value of 'Comment',
if any.

string

Note The BitRate property returns the actual bit rate on Mac
platforms, and not the encoded bit rate. This means that bit rate values
might be lower than specified at the time of the encoding, depending
on the source data.

Note On Mac platforms, audioinfo returns metadata from .m4a and
.mp4 files only on Mac OS X 10.7 Lion or higher. Previous versions of
Mac OS X will not read the 'Title', 'Author', or 'Comment' fields.

Examples Get Information About Audio File

Create a WAVE file from the example file handel.mat, and get
information about the file.

1-152

audioinfo

Create a WAVE (.wav) file in the current folder.

load handel.mat
filename = 'handel.wav';
audiowrite(filename,y,Fs);
clear y Fs

Use audioinfo to return information about the WAVE file.

info = audioinfo(filename)

info =
Filename: 'S:\handel.wav'

CompressionMethod: 'Uncompressed'
NumChannels: 1
SampleRate: 8192

TotalSamples: 73113
Duration: 8.9249

Title: []
Comment: []
Artist: []

BitsPerSample: 16

Limitations • For MP3 and MPEG-4 AAC audio files on Windows 7 or later
and Linux platforms, audioinfo might report fewer samples than
expected. On Linux platforms, this is due to a limitation in the
underlying GStreamer framework.

• On Linux platforms, audioinfo interprets single channel data in
MPEG-4 AAC files as stereo data.

See Also audioread | audiowrite

1-153

audioread

Purpose Read audio file

Syntax [y,Fs] = audioread(filename)
[y,Fs] = audioread(filename,samples)

[y,Fs] = audioread(___ ,dataType)

Description [y,Fs] = audioread(filename) reads data from the file named
filename, and returns sampled data,y, and a sample rate for that
data, Fs.

[y,Fs] = audioread(filename,samples) reads the selected range
of audio samples in the file, where samples is a vector of the form
[start,finish].

[y,Fs] = audioread(___ ,dataType) returns sampled data in the
data range corresponding to the dataType of 'native' or 'double',
and can include any of the input arguments in previous syntaxes.

Input
Arguments

filename - Name of file to read
string

Name of file to read, specified as a string that includes the file extension.
If a path is specified, it can be absolute, relative or partial.

Example: 'myFile.mp3'

Example: '../myFile.mp3'

Example: 'C:\temp\myFile.mp3'

audioread supports the following file formats.

1-154

audioread

Platform Support File Format

WAVE (.wav)

OGG (.ogg)

FLAC (.flac)

All platforms

AU (.au)

MP3 (.mp3)Windows 7 (or later), Macintosh,
and Linux MPEG-4 AAC (.m4a, .mp4)

On Windows platforms prior to Windows 7, audioread does not read
WAVE files with MP3 encoded data.

On Windows 7 (or later) platforms, audioread might also read any files
supported by Windows Media Foundation.

On Linux platforms, audioread might also read any files supported
by GStreamer.

audioread can extract audio from MPEG-4 (.mp4, .m4v) video files on
Windows 7 or later, Macintosh, and Linux, and from Windows Media
Video (.wmv) and AVI (.avi) files on Windows 7 (or later) and Linux
platforms.

samples - Audio samples to read
[1,inf] (default) | two-element vector of positive scalar integers

Audio samples to read, specified as a two-element vector of the form
[start,finish], where start and finish are the first and last
samples to read, and are positive scalar integers.

• start must be less than or equal to finish.

• start and finish must be less than the number of audio samples
in the file,

• You can use inf to indicate the last sample in the file.

1-155

audioread

Note When reading a portion of some MP3 files on Windows 7
platforms, audioread might read a shifted range of samples. This
is due to a limitation in the underlying Windows Media Foundation
framework.

When reading a portion of MP3 and M4A files on Linux platforms,
audioread might read a shifted range of samples. This is due to a
limitation in the underlying GStreamer framework.

Example: [1,100]

Data Types
double

dataType - Data format of audio data, y
'double' (default) | 'native'

Data format of audio data,y, specified as one of the following strings:

'double' Double-precision normalized samples.

'native' Samples in the native format found in the file.

For compressed audio formats, such as MP3 and MPEG-4 AAC that do
not store data in integer form, 'native' defaults to 'single'.

Output
Arguments

y - Audio data
matrix

Audio data in the file, returned as an m-by-n matrix, where m is the
number of audio samples read and n is the number of audio channels
in the file.

• If you do not specify dataType, or dataType is 'double', then y is
of type double, and matrix elements are normalized values between
−1.0 and 1.0.

1-156

audioread

• If dataType is 'native', then y can be one of several MATLAB data
types, depending on the file format and the BitsPerSample value
of the input file. Call audioinfo to determine the BitsPerSample
value of the file.

File Format BitsPerSample Data Type of
y

Data Range
of y

8 uint8 0 ≤ y ≤ 255

16 int16 -32768 ≤ y ≤
+32767

24 int32 -2^32 ≤ y ≤
2^32–1

32 int32 -2^32 ≤ y ≤
2^32–1

32 single -1.0 ≤ y ≤ +1.0

WAVE (.wav)

64 double -1.0 ≤ y ≤ +1.0

8 uint8 0 ≤ y ≤ 255

16 int16 -32768 ≤ y ≤
+32767

FLAC (.flac)

24 int32 -2^32 ≤ y ≤
2^32–1

MP3 (.mp3),
MPEG-4 AAC
(.m4a, .mp4),
OGG (.ogg),
and certain
compressed
WAVE files

N/A single -1.0 ≤ y ≤ +1.0

1-157

audioread

Note Where y is single or double and the BitsPerSample is 32 or 64,
values in y might exceed −1.0 or +1.0.

Fs - Sample rate
positive scalar

Sample rate, in hertz, of audio data y, returned as a positive scalar.

Examples Read Complete Audio File

Create a WAVE file from the example file handel.mat, and read the file
back into MATLAB.

Create a WAVE (.wav) file in the current folder.

load handel.mat

filename = 'handel.wav';
audiowrite(filename,y,Fs);
clear y Fs

Read the data back into MATLAB using audioread.

[y,Fs] = audioread('handel.wav');

Play the audio.

sound(y,Fs);

Read Portion of Audio File

Create a FLAC file from the example file handel.mat, and then read
only the first 2 seconds.

Create a FLAC (.flac) file in the current folder.

load handel.mat

1-158

audioread

filename = 'handel.flac';
audiowrite(filename,y,Fs);

Read only the first 2 seconds.

samples = [1,2*Fs];
clear y Fs
[y,Fs] = audioread(filename,samples);

Play the samples.

sound(y,Fs);

Return Audio in Native Integer Format

Create a FLAC file and read the first 2 seconds according to the previous
Example. Then, view the data type of the sampled data y.

whos y

Name Size Bytes Class Attributes

y 16384x1 131072 double

The data type of y is double.

Request audio data in the native format of the file, and then view the
data type of the sampled data y.

[y,Fs] = audioread(filename,'native');
whos y

Name Size Bytes Class Attributes

y 16384x1 32768 int16

The data type of y is now int16.

1-159

audioread

Limitations • For MP3 and MPEG-4 AAC audio files on Windows 7 or later and
Linux platforms, audioreadmight read fewer samples than expected.
On Windows 7 platforms, this is due to a limitation in the underlying
Media Foundation framework. On Linux platforms, this is due to a
limitation in the underlying GStreamer framework. If you require
sample-accurate reading, work with WAV or FLAC files.

• On Linux platforms, audioread reads MPEG-4 AAC files that
contain single-channel data as stereo data.

See Also audiowrite | audioinfo

1-160

audiowrite

Purpose Write audio file

Syntax audiowrite(filename,y,Fs)
audiowrite(filename,y,Fs,Name,Value)

Description audiowrite(filename,y,Fs) writes a matrix of audio data, y, with
sample rate Fs to a file called filename. The filename input also
specifies the output file format. The output data type depends on the
output file format and the data type of the audio data, y.

audiowrite(filename,y,Fs,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

filename - Name of file to write
string

Name of file to write, or the full path to the file, specified as a string
that includes the file extension. If a path is specified, it can be absolute
or relative. If you do not specify the path, then the destination directory
is the current working directory.

audiowrite supports the following file formats.

Platform Support File Format

WAVE (.wav)

OGG (.ogg)

All platforms

FLAC (.flac)

Windows and Mac MPEG-4 AAC (.m4a, .mp4)

Example: 'myFile.m4a'

Example: '../myFile.m4a'

Example: 'C:\temp\myFile.m4a'

When writing AAC files on Windows, audiowrite pads the front and
back of the output signal with extra samples of silence. The Windows

1-161

audiowrite

AAC encoder also places a very sharp fade-in and fade-out on the audio.
This results in audio with an increased number of samples after being
written to disk.

y - Audio data to write
matrix

Audio data to write, specified as an m-by-nmatrix, where m is the number
of audio samples to write and n is the number of audio channels to write.

If either m or n is 1, then audiowrite assumes that this dimension
specifies the number of audio channels, and the other dimension
specifies the number of audio samples.

The maximum number of channels depends on the file format.

File Format Maximum Number of
Channels

WAVE (.wav) 256

OGG (.ogg) 255

FLAC (.flac) 8

MPEG-4 AAC (.m4a, .mp4) 2

The valid range for the data in y depends on the data type of y.

Data Type of y Valid Range for y

uint8 0 ≤ y ≤ 255

int16 -32768 ≤ y ≤ +32767

int32 -2^32 ≤ y ≤ 2^32–1

single -1.0 ≤ y ≤ +1.0

double -1.0 ≤ y ≤ +1.0

Data beyond the valid range is clipped.

1-162

audiowrite

If y is single or double, then audio data in y should be normalized to
values in the range −1.0 and 1.0, inclusive.

Data Types
single | double | int16 | int32 | uint8

Fs - Sample rate
positive scalar

Sample rate, in hertz, of audio data y, specified as a positive scalar
greater than 0. Values of Fs are truncated to integer boundaries.
When writing to .m4a or .mp4 files on Windows platforms, audiowrite
supports only samples rates of 44100 and 48000.

Example: 44100

Data Types
double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Title','Symphony No. 9','Artist','My Orchestra'
instructs audiowrite to write an audio file with the title “Symphony
No. 9” and the artist information “My Orchestra.”

’BitsPerSample’ - Number of output bits per sample
16 (default) | 8 | 24 | 32 | 64

Number of output bits per sample, specified as the comma-separated
pair consisting of 'BitsPerSample' and a number.

Only available for WAVE (.wav) and FLAC (.flac) files. For FLAC
files, only 8, 16, or 24 bits per sample are supported.

Example: 'BitsPerSample',32

1-163

audiowrite

’BitRate’ - Kilobits per second (kbit/s)
128 (default) | 64 | 96 | 160 | 192 | 256 | 320

Number of kilobits per second (kbit/s) used for compressed audio files,
specified as the comma-separated pair consisting of 'BitRate' and an
integer. Noninteger values are truncated. On Windows 7 or later, the
only valid values are 96, 128, 160, and 192.

In general, a larger BitRate value results in higher compression quality.

Only available for MPEG-4 (.m4a, .mp4) files.

Example: 'BitRate',96

’Quality’ - Quality setting for the Ogg Vorbis Compressor
75 (default) | value in the range [0 100]

Quality setting for the Ogg Vorbis Compressor, specified as the
comma-separated pair consisting of 'Quality' and a number in the
range [0 100], where 0 is lower quality and higher compression, and 100
is higher quality and lower compression.

Only available for OGG (.ogg) files.

Example: 'Quality',25

’Title’ - Title information
[] (default) | string

Title information, specified as the comma-separated pair consisting of
'Title' and a string.

’Artist’ - Artist information
[] (default) | string

Artist information, specified as the comma-separated pair consisting
of 'Artist' and a string.

’Comment’ - Additional information
[] (default) | string

1-164

audiowrite

Additional information, specified as the comma-separated pair
consisting of 'Comment' and a string.

Note On Mac platforms, audiowrite writes metadata to WAVE, OGG,
and FLAC files only, and will not write the 'Title', 'Author', or
'Comment' fields to MPEG-4 AAC files.

Examples Write an Audio File

Create a WAVE file from the example file handel.mat, and read the file
back into MATLAB.

Write a WAVE (.wav) file in the current folder.

load handel.mat

filename = 'handel.wav';
audiowrite(filename,y,Fs);
clear y Fs

Read the data back into MATLAB using audioread.

[y,Fs] = audioread(filename);

Listen to the audio.

sound(y,Fs);

Specify Bits Per Sample and Metadata

Create a FLAC file from the example file handel.mat and specify the
number of output bits per sample and a comment.

load handel.mat

filename = 'handel.flac';

1-165

audiowrite

audiowrite(filename,y,Fs,'BitsPerSample',24,...
'Comment','This is my new audio file.');
clear y Fs

View information about the new FLAC file.

info = audioinfo(filename)

info =

Filename: 'S:\handel.flac'
CompressionMethod: 'FLAC'

NumChannels: 1
SampleRate: 8192

TotalSamples: 73113
Duration: 8.9249

Title: []
Comment: 'This is my new audio file.'
Artist: []

BitsPerSample: 24

Algorithms The output data type is determined by the file format, the data type of
y, and the specified output BitsPerSample.

File Formats Data Type of
y

Output
BitsPerSample

Output Data
Type

8 uint8

16 int16

uint8, int16,
int32, single,
double

24 int32

uint8, int16,
int32

32 int32

single, double 32 single

WAVE (.wav),

single, double 64 double

1-166

audiowrite

File Formats Data Type of
y

Output
BitsPerSample

Output Data
Type

8 int8

16 int16

FLAC (.flac) uint8, int16,
int32, single,
double

24 int32

MPEG-4 (.m4a,
.mp4),
OGG (.ogg)

uint8, int16,
int32, single,
double

N/A single

See Also audioinfo | audioread

1-167

addframe (avifile)

Purpose Add frame to Audio/Video Interleaved (AVI) file

Syntax aviobj = addframe(aviobj,frame)
aviobj = addframe(aviobj,frame1,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

Description aviobj = addframe(aviobj,frame) appends the data in frame to
the AVI file identified by aviobj, which was created by a previous
call to avifile. frame can be either an indexed image (m-by-n) or a
truecolor image (m-by-n-by-3) of double or uint8 precision. If frame is
not the first frame added to the AVI file, it must be consistent with the
dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For
example, addframe updates the TotalFrames property of the AVI file
object each time it adds a frame to the AVI file.

aviobj = addframe(aviobj,frame1,frame2,frame3,...) adds
multiple frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frames contained in the
MATLAB movie mov to the AVI file aviobj. MATLAB movies that store
frames as indexed images use the colormap in the first frame as the
colormap for the AVI file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or
axis handle h and appends this frame to the AVI file. addframe renders
the figure into an offscreen array before appending it to the AVI file.
This ensures that the figure is written correctly to the AVI file even if
the figure is obscured on the screen by another window or screen saver.

Tips • avifile cannot write files larger than 2 GB. Use VideoWriter and
writeVideo to create larger files.

• If you are creating an animation from a figure with an EraseMode
property set to 'xor', you must use getframe to capture the graphics
into a frame of a MATLAB movie. Add the frame to the AVI file using

1-168

addframe (avifile)

the syntax aviobj = addframe(aviobj,mov). See the example for
an illustration.

Examples This example calls addframe to add frames to the AVI file object aviobj.

aviobj = avifile('example.avi','compression','None');

t = linspace(0,2.5*pi,40);
fact = 10*sin(t);
fig=figure;
[x,y,z] = peaks;
for k=1:length(fact)

h = surf(x,y,fact(k)*z);
axis([-3 3 -3 3 -80 80])
axis off
caxis([-90 90])

F = getframe(fig);
aviobj = addframe(aviobj,F);

end
close(fig);
aviobj = close(aviobj);

See Also VideoWriter | avifile | close (avifile) | movie2avi

1-169

addlistener (handle)

Purpose Create event listener

Syntax lh = addlistener(Hsource,'EventName',callback)
lh = addlistener(Hsource,property,'EventName',callback)

Description lh = addlistener(Hsource,'EventName',callback) creates a
listener for the specified event.

lh = addlistener(Hsource,property,'EventName',callback)
creates a listener for one of the predefined property events. There are
four property events:

• PreSet — triggered just before the property value is set, before
calling its set access method.

• PostSet— triggered just after the property value is set.

• PreGet — triggered just before a property value query is serviced,
before calling its get access method.

• PostGet — triggered just after returning the property value to the
query

See “Events and Listeners — Syntax and Techniques” for more
information.

Input
Arguments

Hsource
Handle of the object that is the source of the event, or an array
of source handles.

EventName
Name of the event, which is triggered by the source objects.

callback
Function handle referencing a function to execute when the event
is triggered.

property
Character string that can be:

• the name of the property

1-170

addlistener (handle)

• a cell array of strings where each string is the name of a
property that exists in object array Hsource

• a meta.property object or an array of meta.property objects

• a cell array of meta.property objects

If Hsource is a scalar, then any of the properties can be dynamic
properties. If Hsource is non-scalar, then the properties must
belong to the class of Hsource and can not include dynamic
properties (which are not part of the class definition).

For more information, see the following sections:

• The GetObservable and SetObservable property attributes in
the “Property Attributes” table.

• “Creating Property Listeners”

• “Dynamic Properties — Adding Properties to an Instance”

Output
Arguments

lh
Handle of the event.listener object returned by addlistener.

Removing
a Listener

To remove a listener, delete the listener object returned by addlistener.
For example,

delete(lh)

calls the handle class delete method to delete the object from the
workspace and remove the listener.

When you use addlistener to create a listener, redefining the variable
containing the handle to the listener does not delete the listener
because the event object still has a reference to the event.listener
object. addlistener ties the listener’s lifecycle to the object that is the
source of the event. If you want to define a listener that is not tied
to the event object, use the event.listener constructor directly to
create the listener.

1-171

addlistener (handle)

See Also delete (handle) | handle | notify (handle)

How To • “Limiting Listener Scope — Constructing event.listener Objects
Directly”

1-172

inputParser.addOptional

Purpose Add optional positional argument to input parser scheme

Syntax addOptional(p,argName,default)
addOptional(p,argName,default,validationFcn)

Description addOptional(p,argName,default) adds optional input, argName, to
the input parser scheme of inputParser object, p. When the inputs
that you are checking do not include a value for this optional input, the
input parser assigns the default value to the input.

addOptional(p,argName,default,validationFcn) specifies a
validation function for the input argument.

Tips • For optional string inputs, specify a validation function. Without a
validation function, the input parser interprets valid string inputs as
invalid parameter names and throws an error.

• Use addOptional to add an individual argument into the input
parser scheme. If you want to parse an optional name-value pair,
use addParameter.

Input
Arguments

p

Object of class inputParser.

argName

String that specifies the internal name for the input argument.

Arguments added with addOptional are positional. When you
call a function with positional inputs:

• Specify inputs in the same order that they are added into the
input parser scheme.

• Specify a value for the kth argument by assigning values for
the first (k 1) arguments in the input scheme.

default

1-173

inputParser.addOptional

Default value for the input. This value can be of any data type.

validationFcn

Handle to a function that checks if the input argument is valid.

inputParser accepts two types of validation functions: functions
that return true or false, and functions that pass or throw an
error. Both types of validation functions must accept a single
input argument.

Examples Add Optional Input

Create an inputParser object and add an optional input named
myinput with a default value of 0 to the input scheme.

p = inputParser;
argName = 'myinput';
default = 0;
addOptional(p,argName,default);

Validate Optional Input

Check whether an optional input named num with a default value of 1 is
a numeric scalar greater than zero.

p = inputParser;
argName = 'num';
default = 1;
validationFcn = @(x) isnumeric(x) && isscalar(x) && (x > 0);
addOptional(p,argName,default,validationFcn);

The syntax @(x) creates a handle to an anonymous function with one
input.

Attempt to parse an invalid input, such as -1:

parse(p,-1)

The value of 'num' is invalid. It must satisfy the function: @(x)isnumeric(x)&&isscalar(x)&&(x>0).

1-174

inputParser.addOptional

Validate Optional Input with validateattributes

Create an inputParser object and define a validation function using
validateattributes to test that optional input is numeric, positive,
and even. Add the required input to the scheme.

p = inputParser;
argName = 'evenPosNum';
default = 1;
validationFcn = @(x) validateattributes(x,{'numeric'},...

{'even','positive'});
addOptional(p,argName,default,validationFcn);

Parse an input string. Parse will fail.

parse(p,'hello')

The value of 'evenPosNum' is invalid. Expected input to be one of these types:

double, single, uint8, uint16, uint32, uint64, int8, int16, int32, int64

Instead its type was char.

Parse an odd number. Parse will fail.

parse(p,13)

The value of 'evenPosNum' is invalid. Expected input to be even.

Parse an even, positive number. Parse will pass.

parse(p,42)

See Also addParameter | addRequired | inputParser | function_handle |
validateattributes

Concepts • “Anonymous Functions”

1-175

inputParser.addParameter

Purpose Add optional parameter name-value pair argument to input parser
scheme

Syntax addParameter(p,paramName,default)
addParameter(p,paramName,default,validationFcn)
addParameter(___ ,'PartialMatchPriority',
matchPriorityValue)

Description addParameter(p,paramName,default) adds parameter name and
value argument paramName to the input parser scheme of inputParser
object, p. When the inputs that you are checking do not include a value
for this optional parameter, the input parser assigns the default value.

addParameter(p,paramName,default,validationFcn) specifies a
validation function for the input argument.

addParameter(___ ,'PartialMatchPriority',
matchPriorityValue) allows specification of matchPriorityValue to
indicate priority for matching of conflicting partial parameter names
and can include any of the input arguments in the previous syntaxes.

Input
Arguments

p

Object of class inputParser.

paramName

String that specifies the internal name for the input parameter.

Parameter names and values are optional inputs. When calling
the function, name and value pairs can appear in any order, with
the general form Name1,Value1,...,NameN,ValueN.

default

Default value for the input. This value can be of any data type.

matchPriorityValue

Positive integer value indicating the priority for matching of
conflicting partial parameter names. The input parser selects

1-176

inputParser.addParameter

lower priority values over higher ones. If, within an input parser
scheme, partial parameter names are ambiguous and have the
same priority, inputParser will throw an error. If the names are
ambiguous, but have different PartialMatchPriority values,
inputParser issues a warning indicating the matched name.

Default: 1

validationFcn

Handle to a function that checks if the input argument is valid.

inputParser accepts two types of validation functions: functions
that return true or false, and functions that pass or throw an
error. Both types of validation functions must accept a single
input argument.

Examples Add Optional Parameter Value Input

Create an inputParser object and add an optional input named
myparam with a default value of 0 to the input scheme.

p = inputParser;
paramName = 'myparam';
default = 0;
addParameter(p,paramName,default);

Unlike the positional inputs added with the addRequired and
addOptional methods, each parameter added with addParameter
corresponds to two input arguments: one for the name and one for the
value of the parameter.

Pass both the parameter name and value to the parse method.

parse(p,'myparam',100);
p.Results

ans =

1-177

inputParser.addParameter

myparam: 100

Validate Parameter Value

Check whether the value corresponding to myparam is a numeric scalar
greater than zero.

p = inputParser;
paramName = 'myparam';
default = 1;
errorStr = 'Value must be positive, scalar, and numeric.';
validationFcn = @(x) assert(isnumeric(x) && isscalar(x) ...

&& (x > 0),errorStr);
addParameter(p,paramName,default,validationFcn);

The syntax @(x) creates a handle to an anonymous function with one
input.

Attempt to parse an invalid value, such as -1:

parse(p,'myparam',-1)

The value of 'myparam' is invalid. Value must be positive, scalar, and numeric.

Validate Parameter Value Input with validateattributes

Create an inputParser object and define a validation function using
validateattributes to test that input parameter myName is a
nonempty string.

p = inputParser;
paramName = 'myName';
default = 'John Doe';
validationFcn = @(x) validateattributes(x,{'char'},{'nonempty'});
addParameter(p,paramName,default,validationFcn);

Define myName as a number. The attempt to parse fails.

1-178

inputParser.addParameter

parse(p,'myName',1138)

The value of 'myName' is invalid. Expected input to be one of these types:

char

Instead its type was double.

Parse a string. The attempt to parse passes.

parse(p,'myName','George')

See Also addOptional | addRequired | inputParser | function_handle |
validateattributes

Concepts • “Anonymous Functions”

1-179

inputParser.addParamValue

Purpose (Not recommended) Add parameter name and value argument to Input
Parser scheme

Compatibility addParamValue is not recommended. Use addParameter instead.

Syntax addParamValue(p,paramName,default)
addParamValue(p,paramName,default,validationFcn)

Description addParamValue(p,paramName,default) adds parameter name and
value argument paramName to the input scheme of inputParser object
p. When the inputs that you are checking do not include a value for this
optional parameter, the parser assigns the default value.

addParamValue(p,paramName,default,validationFcn) specifies a
validation function for the input argument.

Tips • If your parameter values do not require validation, you do not have
to include them in the input scheme with addParamValue. As an
alternative, set the KeepUnmatched property of the inputParser
object to true. The parser stores extra parameter names and values
in the Unmatched property rather than in the Results property of the
object. For an example, see the inputParser reference page.

Input
Arguments

p

Object of class inputParser.

paramName

String that specifies the internal name for the input parameter.

Parameter names and values are optional inputs. When calling
the function, name and value pairs can appear in any order, with
the general form Name1,Value1,...,NameN,ValueN.

default

Default value for the input. This value can be of any data type.

validationFcn

1-180

inputParser.addParamValue

Handle to a function that checks if the input argument is valid.

inputParser accepts two types of validation functions: functions
that return true or false, and functions that pass or throw an
error. Both types of validation functions must accept a single
input argument.

Examples Add Optional Parameter Value Input

Create an inputParser object and add an optional input named
myparam with a default value of 0 to the input scheme.

p = inputParser;
paramName = 'myparam';
default = 0;
addParameter(p,paramName,default);

Unlike the positional inputs added with the addRequired and
addOptional methods, each parameter added with addParameter
corresponds to two input arguments: one for the name and one for the
value of the parameter.

Pass both the parameter name and value to the parse method.

parse(p,'myparam',100);
p.Results

ans =

myparam: 100

Validate Parameter Value

Check whether the value corresponding to myparam is a numeric scalar
greater than zero.

p = inputParser;

1-181

inputParser.addParamValue

paramName = 'myparam';
default = 1;
validationFcn = @(x) isnumeric(x) && isscalar(x) && (x > 0);
addParamValue(p,paramName,default,validationFcn);

The syntax @(x) creates a handle to an anonymous function with one
input.

Attempt to parse an invalid value, such as -1:

parse(p,'myparam',-1)

Argument 'myparam' failed validation @(x)isnumeric(x)&&isscalar(x)&&(x>0)

See Also addOptional | addRequired | inputParser | function_handle

Concepts • “Anonymous Functions”

1-182

addcats

Purpose Add categories to categorical array

Syntax B = addcats(A,newcats)
B = addcats(A,newcats,'Before',beforewhere)
B = addcats(A,newcats,'After',afterwhere)

Description B = addcats(A,newcats) adds categories to the end of the category
list for the input categorical array, A. The output categorical array,
B, contains the same values as A. The output, B, does not contain any
elements equal to the new categories until you assign values from
newcats to elements in B.

If A is an ordinal categorical array, you must specify the
'Before',beforewhere or 'After',afterwhere input arguments.

B = addcats(A,newcats,'Before',beforewhere) adds categories
before the category specified by beforewhere.

B = addcats(A,newcats,'After',afterwhere) adds categories after
the category specified by afterwhere.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

newcats - New categories
string | cell array of strings

New categories, specified as a string or a cell array of strings.

beforewhere - Category to precede
string

Category to precede, specified as a string.

1-183

addcats

afterwhere - Category to follow
string

Category to follow, specified as a string.

Examples Add Categories at End

Create a nonordinal categorical array.

A = categorical({'republican' 'democrat' 'republican';...
'democrat' 'republican' 'democrat'})

A =

republican democrat republican
democrat republican democrat

Display the categories of A.

categories(A)

ans =

'democrat'
'republican'

A is a 2-by-3 categorical array with two categories.

Add the categories, independent and undeclared, to the end of the
category list

B = addcats(A,{'independent' 'undeclared'})

B =

republican democrat republican
democrat republican democrat

B contains the same values as A.

1-184

addcats

Display the categories of B.

categories(B)

ans =

'democrat'
'republican'
'independent'
'undeclared'

B is a 2-by-3 categorical array with four categories.

Add Categories and Specify Category to Precede

Create an ordinal categorical array.

A = categorical({'medium' 'large'; 'small' 'xlarge'; 'large' 'medium'},...

{'small' 'medium' 'large' 'xlarge'},'Ordinal',true)

A =

medium large
small xlarge
large medium

Display the categories of A.

categories(A)

ans =

'small'
'medium'
'large'
'xlarge'

Since A is ordinal, the categories have the mathematical ordering small
< medium < large < xlarge.

1-185

addcats

Add the category xsmall before small.

B = addcats(A,'xsmall','Before','small')

B =

medium large
small xlarge
large medium

B contains the same values as A.

Display the categories of B.

categories(B)

ans =

'xsmall'
'small'
'medium'
'large'
'xlarge'

The categories have the mathematical ordering xsmall < small <
medium < large < xlarge.

See Also categories | removecats | iscategory | mergecats | renamecats
| reordercats

1-186

addpath

Purpose Add folders to search path

Syntax addpath(folderName1,...,folderNameN)
addpath(folderName1,...,folderNameN,position)

addpath(___ ,'-frozen')

oldpath = addpath(___)

Description addpath(folderName1,...,folderNameN) adds the specified folders to
the top of the search path. Use addpath statements in a startup.m file
to modify the search path programmatically at startup.

addpath(folderName1,...,folderNameN,position) adds the
specified folders to the top or bottom of the search path, as specified
by position.

addpath(___ ,'-frozen') additionally disables folder change detection
on Windows for folders being added, which conserves Windows change
notification resources (Windows only). Type help changenotification
in the Command Window for more information.

Add '-frozen' to the input arguments in any of the previous syntaxes.
You can specify '-frozen' and position in either order.

oldpath = addpath(___) additionally returns the path prior to adding
the specified folders.

Input
Arguments

folderName1,...,folderNameN - Names of folders to add to
search path
string

Names of folders to add to the search path, specified as strings. Use the
full path name for each folder. Use genpath with addpath to add all
subfolders of folderName.

1-187

addpath

Example: 'c:\matlab\work'

Example: '/home/user/matlab'

Example: '/home/user/matlab','/home/user/matlab/test'

position - Position on the search path
'-begin' (default) | '-end'

Position on the search path, specified as one of the following strings.

Value of position Description

'-begin' Add specified folders to the top of the search
path.

'-end' Add specified folders to the bottom of the
search path.

Output
Arguments

oldpath - Path prior to addition of folders
string

Path prior to the addition of folders, returned as a string.

Examples Add Folder to Top of Search Path

If you do not have a folder called c:/matlab/myfiles, create the folder.

mkdir('c:/matlab/myfiles')

Add c:/matlab/myfiles to the top of the search path.

addpath('c:/matlab/myfiles')

Add Folder to End of Search Path

Add c:/matlab/myfiles to the end of the search path.

addpath('c:/matlab/myfiles','-end')

1-188

addpath

Add Folder and Its Subfolders to Search Path

Add c:/matlab/myfiles and its subfolders to the search path.

Call genpath inside of addpath to add all subfolders of
c:/matlab/myfiles to the search path.

addpath(genpath('c:/matlab/myfiles'))

Add Folder to Search Path and Disable Folder Change
Notification

On Windows, add the folder c:/matlab/myfiles to the top of the search
path, disable folder change notification, and return the search path
before adding the folder.

oldpath = addpath('c:/matlab/myfiles','-frozen');

Tips • If you use addpath within a local function, the path change persists
after program control returns from the function. That is, the scope of
the path change is global.

See Also genpath | path | pathsep | rmpath | savepath

Concepts • “What Is the MATLAB Search Path?”
• “Files and Folders that MATLAB Accesses”
• “Specify File Names”
• “Specifying Startup Options in MATLAB Startup File”

1-189

addpref

Purpose Add preference

Syntax addpref('group','pref',val)
addpref('group',{'pref1','pref2',...'prefn'},{val1,val2,...valn})

Description addpref('group','pref',val) creates the preference specified by
group and pref and sets its value to val. It is an error to add a
preference that already exists. Individual preference values can be
any MATLAB data type, including numeric types, strings, cell arrays,
structures, and objects.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g. 'ApplicationOnePrefs'. The input argument pref
identifies an individual preference in that group, and must be a legal
variable name.

addpref('group',{'pref1','pref2',...'prefn'},{val1,val2,...valn})
creates the preferences specified by the cell array of names 'pref1',
'pref2',...,'prefn', setting each to the corresponding value.

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples Add a preference called version to the mytoolbox group of preferences,
setting its value to the cell array {'1.0','beta'}.

addpref('mytoolbox','version',{'1.0','beta'})

Add a preference called documentation to the mytoolbox group of
preferences, setting its value to a struct you define as having four fields:

mydoc.docexists = 1;
mydoc.docpath = fullfile(docroot,'techdoc',...

'matlab_env','examples');

1-190

addpref

mydoc.demoexists = 1;
mydoc.demopath = fullfile(docroot,'techdoc',...

'matlab_env','examples','demo_examples');
addpref('mytoolbox','documentation',mydoc)
% Retrieve the preference with GETPREF
p = getpref('mytoolbox','documentation')

p =
docexists: 1

docpath: [1x109 char]
demoexists: 1

demopath: [1x123 char]

See Also getpref | ispref | rmpref | setpref | uigetpref | uisetpref

1-191

addprop (dynamicprops)

Purpose Add dynamic property

Syntax P = addprop(Hobj,'PropName')

Description P = addprop(Hobj,'PropName') adds a property named PropName
to each object in array Hobj. The class definition is not affected by
the addition of dynamic properties. Note that you can add dynamic
properties only to objects derived from the dynamicprops class. You
can set and retrieve the data in dynamic properties as you would any
property.

The output argument P is an array the same size as Hobj of
meta.DynamicProperty objects, which you can use to assign SetMethod
and GetMethod functions to the property. These functions operate just
like property set and get access methods.

See “Dynamic Properties — Adding Properties to an Instance” for more
information and examples.

See Also handle | dynamicprops

1-192

addproperty

Purpose Add custom property to COM object

Syntax h.addproperty('propertyname')
addproperty(h,'propertyname')

Description h.addproperty('propertyname') adds the custom property specified
in the string propertyname to the object or interface h. Use the COM
set function to assign a value to the property.

addproperty(h,'propertyname') is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Add a custom property to an instance of the MATLAB sample control:

1 Create an instance of the control:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

MATLAB displays its properties:

Label: 'Label'
Radius: 20

2 Add a custom property named Position and assign a value:

h.addproperty('Position');
h.Position = [200 120];
h.get

MATLAB displays (in part):

Label: 'Label'
Radius: 20

Position: [200 120]

3 Delete the custom property Position:

1-193

addproperty

h.deleteproperty('Position');
h.get

MATLAB displays the original list of properties:

Label: 'Label'
Radius: 20

See Also deleteproperty | get (COM) | set (COM) | inspect

How To • “Use Object Properties”

1-194

inputParser.addRequired

Purpose Add required positional argument to input parser scheme

Syntax addRequired(p,argName)
addRequired(p,argName,validationFcn)

Description addRequired(p,argName) adds required argument, argName, to the
input parser scheme of inputParser object, p.

addRequired(p,argName,validationFcn) includes a validation
function for the input argument.

Input
Arguments

p

Object of class inputParser.

argName

String that specifies the internal name for the input argument.

Arguments added with addRequired are positional. When you
call a function with positional inputs, you must specify inputs in
the order that they are added to the input parser scheme.

validationFcn

Handle to a function that checks if the input argument is valid.

inputParser accepts two types of validation functions: functions
that return true or false, and functions that pass or throw an
error. Both types of validation functions must accept a single
input argument.

Examples Add Required Input

Create an inputParser object and add a required input named myinput
to the input scheme.

p = inputParser;
argName = 'myinput';
addRequired(p,argName);

1-195

inputParser.addRequired

Validate Required Input

Check whether a required input named num is a numeric scalar greater
than zero.

p = inputParser;
argName = 'num';
validationFcn = @(x) isnumeric(x) && isscalar(x) && (x > 0);
addRequired(p,argName,validationFcn);

The syntax @(x) creates a handle to an anonymous function with one
input.

Attempt to parse an invalid input, such as -1:

parse(p,-1)

The value of 'num' is invalid. It must satisfy the function: @(x)isnumeric(x)&&isscalar(x)&&(x>0).

Validate Required Input with validateattributes

Create an inputParser object and define a validation function using
validateattributes to test that required input is numeric, positive,
and even. Add the required input to the scheme.

p = inputParser;
argName = 'evenPosNum';
validationFcn = @(x) validateattributes(x,{'numeric'},...

{'even','positive'});
addRequired(p,argName,validationFcn);

Parse an input string. Parse will fail.

parse(p,'hello')

The value of 'evenPosNum' is invalid. Expected input to be one of these types:

double, single, uint8, uint16, uint32, uint64, int8, int16, int32, int64

Instead its type was char.

1-196

inputParser.addRequired

Parse an odd number. Parse will fail.

parse(p,13)

The value of 'evenPosNum' is invalid. Expected input to be even.

Parse an even, positive number. Parse will pass.

parse(p,42)

See Also addOptional | addParameter | inputParser | function_handle |
validateattributes

Concepts • “Anonymous Functions”

1-197

addsampletocollection

Purpose Add sample to tscollection object

Syntax tsc = addsampletocollection(tsc,'time',Time,TS1Name,TS1Data, TSnName,
TSnData)

Description tsc =
addsampletocollection(tsc,'time',Time,TS1Name,TS1Data,
TSnName, TSnData) adds data samples TSnData to the collection
member TSnName in the tscollection object tsc at one or more Time
values. Here, TSnName is the string that represents the name of a time
series in tsc, and TSnData is an array containing data samples.

Tips If you do not specify data samples for a time-series member in tsc,
that time-series member will contain missing data at the times given
by Time (for numerical time-series data), NaN values, or (for logical
time-series data) false values.

When a time-series member requires Quality values, you can specify
data quality codes together with the data samples by using the following
syntax:

tsc = addsampletocollection(tsc,'time',time,TS1Name,...
ts1cellarray,TS2Name,ts2cellarray,...)

Specify data in the first cell array element and Quality in the second
cell array element.

Note If a time-series member already has Quality values but you only
provide data samples, 0s are added to the existing Quality array at
the times given by Time.

Examples The following example shows how to create a tscollection that
consists of two timeseries objects, where one timeseries does not
have quality codes and the other does. The final step of the example
adds a sample to the tscollection.

1-198

addsampletocollection

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name','acceleration');

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name','speed');

2 Define a dictionary of quality codes and descriptions for ts2.

ts2.QualityInfo.Code = [0 1];
ts2.QualityInfo.Description = {'bad','good'};

3 Assign a quality of code of 1, which is equivalent to 'good', to each
data value in ts2.

ts2.Quality = ones(5,1);

4 Create a time-series collection tsc, which includes time series ts1
and ts2.

tsc = tscollection({ts1,ts2});

5 Add a data sample to the collection tsc at 3.5 seconds.

tsc = addsampletocollection(tsc,'time',3.5,'acceleration',10,'speed',{5 1});

The cell array for the timeseries object 'speed' specifies both the
data value 5 and the quality code 1.

Note If you do not specify a quality code when adding a data sample
to a time series that has quality codes, then the lowest quality code is
assigned to the new sample by default.

See Also delsamplefromcollection | timeseries | tscollection

1-199

addtodate

Purpose Modify date number by field

Syntax R = addtodate(D, Q, F)

Description R = addtodate(D, Q, F) adds quantity Q to the indicated date field F
of a scalar serial date number D, returning the updated date number R.

The quantity Q to be added can be a positive or negative integer. The
absolute value of Q must be less than or equal to 1e16. The date field F
must be a 1-by-N character array equal to one of the following: 'year',
'month', 'day', 'hour', 'minute', 'second', or 'millisecond'.

If the addition to the date field causes the field to roll over, the MATLAB
software adjusts the next more significant fields accordingly. Adding a
negative quantity to the indicated date field rolls back the calendar on
the indicated field. If the addition causes the field to roll back, MATLAB
adjusts the next less significant fields accordingly.

Examples Modify the hours, days, and minutes of a given date:

t = datenum('07-Apr-2008 23:00:00');
datestr(t)
ans =

07-Apr-2008 23:00:00

t= addtodate(t, 2, 'hour');
datestr(t)
ans =

08-Apr-2008 01:00:00

t= addtodate(t, -7, 'day');
datestr(t)
ans =

01-Apr-2008 01:00:00

t= addtodate(t, 59, 'minute');
datestr(t)
ans =

1-200

addtodate

01-Apr-2008 01:59:00

Adding 20 days to the given date in late December causes the calendar
to roll over to January of the next year:

R = addtodate(datenum('12/24/2007 12:45'), 20, 'day');

datestr(R)
ans =

13-Jan-2008 12:45:00

See Also date | datenum | datestr | datevec

1-201

addts

Purpose Add timeseries object to tscollection object

Syntax tsc = addts(tsc,ts)
tsc = addts(tsc,ts)
tsc = addts(tsc,ts,Name)
tsc = addts(tsc,Data,Name)

Description tsc = addts(tsc,ts) adds the timeseries object ts to tscollection
object tsc.

tsc = addts(tsc,ts) adds a cell array of timeseries objects ts to
the tscollection tsc.

tsc = addts(tsc,ts,Name) adds a cell array of timeseries objects
ts to tscollection tsc. Name is a cell array of strings that gives the
names of the timeseries objects in ts.

tsc = addts(tsc,Data,Name) creates a new timeseries object from
Data with the name Name and adds it to the tscollection object tsc.
Data is a numerical array and Name is a string.

Tips The timeseries objects you add to the collection must have the same
time vector as the collection. That is, the time vectors must have the
same time values and units.

Suppose that the time vector of a timeseries object is associated with
calendar dates. When you add this timeseries to a collection with a
time vector without calendar dates, the time vectors are compared based
on the units and the values relative to the StartDate property. For
more information about properties, see the timeseries reference page.

Examples The following example shows how to add a time series to a time-series
collection:

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name','acceleration');

1-202

addts

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name','speed');

2 Create a time-series collection tsc, which includes ts1.

tsc = tscollection(ts1);

3 Add ts2 to the tsc collection.

tsc = addts(tsc, ts2);

4 To view the members of tsc, type

tsc

at the MATLAB prompt. the response is

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of the timeseries objects
ts1 and ts2, respectively.

See Also removets | tscollection

1-203

airy

Purpose Airy Functions

Syntax W = airy(Z)
W = airy(k,Z)
W = airy(k,Z,scale)

Description W = airy(Z) returns the Airy function, Ai(Z), for each element of Z.

W = airy(k,Z) returns any of four different Airy functions, depending
on the value of k, such as the Airy function of the second kind or the
first derivative of an Airy function.

W = airy(k,Z,scale) scales the resulting Airy function. airy applies
a specific scaling function to W depending on your choice of k and scale.

Input
Arguments

Z - System variable
vector | matrix | N-D Array

System variable, specified as a real or complex vector, matrix, or N-D
array.

Data Types
single | double
Complex Number Support: Yes

k - Type of Airy function
0 (default) | 1 | 2 | 3

Type of Airy function, specified as one of four values.

k Returns

0
Airy function, Ai Z() , which is the same as
airy(Z).

1
First derivative of Airy function, Ai Z′() .

1-204

airy

k Returns

2
Airy function of the second kind, Bi Z()

3 First derivative of Airy function of the second

kind, Bi Z′()

Data Types
single | double

scale - Scaling option
0 (default) | 1

Scaling option, specified as 0 or 1. Use scale = 1 to enable the scaling
of Z. The values you specify for k and scale determine the scaling
function airy applies to Z.

scale k Scaling applied to
output

0 Any None

1 0 or 1

e Z2
3

3 2(/)

1 2 or 3

e
Re Z 2

3
3 2()(/)

Data Types
single | double

Output
Arguments

W - Airy function of Z
vector | matrix | N-D Array

Airy function of Z, returned as an array the same size as Z.

1-205

airy

Definitions Airy Functions

The Airy functions form a pair of linearly independent solutions to

d W

dZ
ZW

2

2
0− = .

The relationship between the Airy and modified Bessel functions is

Ai Z
Z

K

Bi Z
Z

I I

() ()

() () () ,

/

/ /

=
⎡

⎣
⎢

⎤

⎦
⎥

= +[]−

1
3

3

1 3

1 3 1 3

where

 = 2
3

3 2Z / .

Examples Airy Function of Real-Valued x

Define x.

x = -10:0.01:1;

Calculate Ai(x)

ai = airy(x);

Calculate Bi(x) using .

bi = airy(2,x);

Plot both results together on the same axes.

figure
plot(x,ai,'-b',x,bi,'-r');

1-206

airy

axis([-10 1 -0.6 1.4]);
xlabel('x');
legend('Ai(x)','Bi(x)','Location','NorthWest');

Airy Function of Complex-Valued x

Compute the Airy function at a slice through the complex plane at .

Take a slice through the complex plane.

1-207

airy

x = -4:0.1:4;
z = x+1i;

Calculate Ai(z).

w = airy(z);

Plot the real part of the result.

figure
plot(x, real(w));
axis([-4 4 -1.5 1]);
xlabel('real(z)');

1-208

airy

Scaled Airy Function

Define x.

x = -10:0.01:1;

Calculate the scaled and unscaled Airy function.

scaledAi = airy(0,x,1);
noscaleAi = airy(0,x,0);

1-209

airy

Plot the real part of each result.

rscaled = real(scaledAi);
rnoscale = real(noscaleAi);
figure
plot(x,rscaled,'-b',x,rnoscale,'-r');
axis([-10 1 -0.60 0.60]);
xlabel('x');
legend('scaled','not scaled','Location','SouthEast');

1-210

airy

See Also besseli | besselj | besselk | bessely | besselh

1-211

align

Purpose Align user interface controls (uicontrols) and axes

Syntax align(HandleList,'HorizontalAlignment','VerticalAlignment')
Positions = align(HandleList, 'HorizontalAlignment',

'VerticalAlignment')
Positions = align(CurPositions, 'HorizontalAlignment',

'VerticalAlignment')

Description align(HandleList,'HorizontalAlignment','VerticalAlignment')
aligns the uicontrol and axes objects in HandleList, a vector
of handles, according to the options HorizontalAlignment and
VerticalAlignment. The following tables show the possible values for
HorizontalAlignment and VerticalAlignment.

HorizontalAlignment Definition

None No horizontal alignment

Left Shifts the objects’ left edges to that of the
first object selected

Center Shifts objects to center their positions to
the average of the extreme x-values of the
group

Right Shifts the objects’ right edges to that of
the first object selected

Distribute Equalizes x-distances between all objects
within the span of the extreme x-values

Fixed Spaces objects to have a specified number
of points between them in the y-direction

VerticalAlignment Definition

None No vertical alignment

Top Shifts the objects’ top edges to that of the
first object selected

1-212

align

VerticalAlignment Definition

Middle Shifts objects to center their positions to
the average of the extreme y-values of the
group

Bottom Shifts the objects’ bottom edges to that of
the first object selected

Distribute Equalizes y-distances between all objects
within the span of the extreme y-values

Fixed Spaces objects to have a specified number
of points between them in the x-direction

Aligning objects does not change their absolute sizes. All alignment
options align the objects within the bounding box that encloses the
objects. Distribute and Fixed align objects to the bottom left of the
bounding box. Distribute evenly distributes the objects while Fixed
distributes the objects with a fixed distance (in points) between them.
When you specify both horizontal and vertical distance together, the
keywords 'HorizontalAlignment' and 'VerticalAlignment' are not
necessary.

If you use Fixed for HorizontalAlignment or VerticalAlignment,
you must also specify the distance, in points, where 72 points equals 1
inch. For example:

align(HandleList,'Fixed',Distance,'VerticalAlignment')

distributes the specified components Distance points horizontally and
aligns them vertically as specified.

align(HandleList,'HorizontalAlignment','Fixed',Distance)

aligns the specified components horizontally as specified and distributes
them Distance points vertically.

align(HandleList,'Fixed',HorizontalDistance,...
'Fixed',VerticalDistance)

1-213

align

distributes the specified components HorizontalDistance points
horizontally and distributes them VerticalDistance points vertically.

Positions = align(HandleList, 'HorizontalAlignment',
'VerticalAlignment') returns updated positions for the specified
objects as a vector of Position vectors. The position of the objects on
the figure does not change.

Positions = align(CurPositions, 'HorizontalAlignment',
'VerticalAlignment') returns updated positions for the objects whose
positions are contained in CurPositions, where CurPositions is a
vector of Position vectors. The position of the objects on the figure
does not change.

Examples Create a GUI with three buttons and use align to line up the buttons.

% Create a figure window and one button object:
f=figure;
u1 = uicontrol('Style','push', 'parent', f,'pos',...
[20 100 100 100],'string','button1');
% Create two more button objects, not aligned with
% each other or any part of the figure window:
u2 = uicontrol('Style','push', 'parent', f,'pos',...
[150 250 100 100],'string','button2');
u3 = uicontrol('Style','push', 'parent', f,'pos',...
[250 100 100 100],'string','button3');
% Align the button objects with the bottom of the first
% button object, equalizing the distance between the
% objects within the span of the extreme x-values:
align([u1 u2 u3],'distribute','bottom');

1-214

align

Alternatives See “Alignment Tool — Aligning and Distributing Objects” for the GUI
alternative.

See Also uicontrol | uistack

1-215

alim

Purpose Set or query axes alpha limits

Syntax alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode')
alim(axes_handle,...)

Description alpha_limits = alim returns the alpha limits (ALim property) of the
current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin
is the value of the data mapped to the first alpha value in the alphamap,
and amax is the value of the data mapped to the last alpha value in the
alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or
last alphamap value, whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (ALimMode
property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes.
alim_mode can be

• auto — MATLAB automatically sets the alpha limits based on the
alpha data of the objects in the axes.

• manual— MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

Examples Map transparency to a surface plot of z-data and change the alim
property to make all values below zero transparent:

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2-y.^2);
% Plot the data, using the gradient of z as
% the alphamap:
surf(x,y,z+.001,'FaceAlpha','flat',...
'AlphaDataMapping','scaled',...

1-216

../ref/axes_props.html#ALim
../ref/axes_props.html#ALimMode

alim

'AlphaData',gradient(z),...
'FaceColor','blue');
axis tight
% Adjust the alim property to see only where
% the gradient is between 0 and 0.15:
alim([0 .15])

See Also alpha | alphamap | caxis | Axes: ALim | Axes: ALimMode | Surface:
AlphaData | Patch: FaceVertexAlphaData

Tutorials • “Making Objects Transparent”

1-217

../ref/axes_props.html#ALim
../ref/axes_props.html#ALimMode
../ref/surface_props.html#AlphaData
../ref/surface_props.html#AlphaData
../ref/patch_props.html#FaceVertexAlphaData

all

Purpose Determine if all array elements are nonzero or true

Syntax B = all(A)
B = all(A,dim)

Description B = all(A) tests along the first array dimension of A whose size does
not equal 1, and determines if the elements are all nonzero or logical
1 (true). In practice, all is a natural extension of the logical AND
operator.

• If A is a vector, then all(A) returns logical 1 (true) if all the elements
are nonzero and returns logical 0 (false) if one or more elements
are zero.

• If A is a nonempty, nonvector matrix, then all(A) treats the columns
of A as vectors and returns a row vector of logical 1s and 0s.

• If A is an empty 0-by-0 matrix, then all(A) returns logical 1 (true).

• If A is a multidimensional array, then all(A) acts along the first
array dimension whose size does not equal 1 and returns an array of
logical values. The size of this dimension becomes 1, while the sizes
of all other dimensions remain the same.

B = all(A,dim) tests elements along dimension dim. The dim input is
a positive integer scalar.

Input
Arguments

A - Input Array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

dim - Dimension to operate along

1-218

all

positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider a two-dimensional input array, A:

• all(A,1) works on successive elements in the columns of A and
returns a row vector of logical values.

• all(A,2) works on successive elements in the rows of A and returns
a column vector of logical values.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output
Arguments

B - Logical array
scalar | vector | matrix | multidimensional array

Logical array, returned as a scalar, vector, matrix, or multidimensional
array. The dimension of A acted on by all has size 1 in B.

Examples Test Matrix Columns

Create a 3-by-3 matrix.

A = [0 0 3;0 0 3;0 0 3]

1-219

all

A =

0 0 3
0 0 3
0 0 3

Test each column for all nonzero elements.

B = all(A)

B =

0 0 1

Reduce a Logical Vector to a Single Condition

Create a vector of decimal values and test which values are less than 0.5.

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69];
B = (A < 0.5)

B =

0 0 1 1 1 1 0

The output is a vector of logical values. The all function reduces such a
vector of logical values to a single condition. In this case, B = all(A <
0.5) yields logical 0.

This makes all particularly useful in if statements.

if all(A < 0.5)
%do something

else
%do something else

end

1-220

all

The code is executed depending on a single condition, rather than a
vector of possibly conflicting conditions.

Test Arrays of Any Dimension

Create a 3-by-7-by-5 multidimensional array and test to see if all of its
elements are less than 3.

A = rand(3,7,5) * 5;
B = all(A(:) < 3)

B =

0

You can also test the array for elements that are greater than zero.

B = all(A(:) > 0)

B =

1

The syntax A(:) turns the elements of A into a single column vector, so
you can use this type of statement on an array of any size.

Test Matrix Rows

Create a 3-by-3 matrix.

A = [0 0 3;0 0 3;0 0 3]

A =

0 0 3
0 0 3
0 0 3

Test the rows of A for all nonzero elements by specifying dim = 2.

1-221

all

B = all(A,2)

B =

0
0
0

See Also any | and | colon (:) | prod | sum

Concepts • “Reduce Logical Arrays to Single Value”

1-222

allchild

Purpose Find all children of specified objects

Syntax child_handles = allchild(handle_list)

Description child_handles = allchild(handle_list) returns the list of all
children (including ones with hidden handles) for each handle. If
handle_list is a single element, allchild returns the output in a
vector. If handle_list is a vector of handles, the output is a cell array.

Examples Compare the results these two statements return:

axes
get(gca,'Children')
allchild(gca)

See Also findall | findobj

1-223

alpha

Purpose Set transparency properties for objects in current axes

Syntax alpha
alpha(object_handle,value)
alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data_mapping)

Description alpha sets one of three transparency properties, depending on what
arguments you specify with the call to this function. For available
arguments, see Inputs.

alpha(object_handle,value) sets the transparency property only on
the object identified by object_handle.

Input
Arguments

Face Alpha

alpha(face_alpha) sets the FaceAlpha property of all image, patch,
and surface objects in the current axes. You can set face_alpha to

scalar Set the FaceAlpha property to the specified
value (for images, set the AlphaData property
to the specified value).

'flat' Set the FaceAlpha property to flat.

'interp' Set the FaceAlpha property to interp.

'texture' Set the FaceAlpha property to texture.

'opaque' Set the FaceAlpha property to 1.

'clear' Set the FaceAlpha property to 0.

See “Specifying Transparency” for more information.

AlphaData (Surface Objects)

alpha(alpha_data) sets the AlphaData property of all surface objects
in the current axes. You can set alpha_data to

1-224

alpha

matrix the same size
as CData

Set the AlphaData property to the specified
values.

'x' Set the AlphaData property to be the same
as XData.

'y' Set the AlphaData property to be the same
as YData.

'z' Set the AlphaData property to be the same
as ZData.

'color' Set the AlphaData property to be the same
as CData.

'rand' Set the AlphaData property to a matrix of
random values equal in size to CData.

AlphaData (Image Objects)

alpha(alpha_data) sets the AlphaData property of all image objects in
the current axes. You can set alpha_data to

matrix the same size
as CData

Set the AlphaData property to the specified
value.

'x' Ignored.

'y' Ignored.

'z' Ignored.

'color' Set the AlphaData property to be the same
as CData.

'rand' Set the AlphaData property to a matrix of
random values equal in size to CData.

AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of
all image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to

1-225

alpha

'scaled' Set the AlphaDataMapping property to
scaled.

'direct' Set the AlphaDataMapping property to
direct.

'none' Set the AlphaDataMapping property to none.

Examples Create a surface plot and change its transparency using alpha:

surf(peaks);
alpha(0.5);

1-226

alpha

See Also alim | alphamap | Image: AlphaData | Image: AlphaDataMapping
| Patch: FaceAlpha | Patch: FaceVertexAlphaData | Patch:
AlphaDataMapping | Surface: FaceAlpha | Surface: AlphaData |
Surface: AlphaDataMapping

Tutorials • “Making Objects Transparent”

1-227

../ref/image_props.html#AlphaData
../ref/image_props.html#AlphaDataMapping
../ref/patch_props.html#FaceAlpha
../ref/patch_props.html#FaceVertexAlphaData
../ref/patch_props.html#AlphaDataMapping
../ref/patch_props.html#AlphaDataMapping
../ref/surface_props.html#FaceAlpha
../ref/surface_props.html#AlphaData
../ref/surface_props.html#AlphaDataMapping

alphamap

Purpose Specify figure alphamap (transparency)

Syntax alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter',delta)
alphamap(figure_handle,...)
alpha_map = alphamap
alpha_map = alphamap(figure_handle)
alpha_map = alphamap('parameter')

Description alphamap(alpha_map) sets the AlphaMap of the current figure to the
specified m-by-1 array of alpha values, alpha_map.

alphamap('parameter') creates a new alphamap or modifies the
current alphamap. You can specify the following parameters:

• 'default' — Set the AlphaMap property to the figure’s default
alphamap.

• 'rampup' — Create a linear alphamap with increasing opacity
(default length equals the current alphamap length).

• 'rampdown' — Create a linear alphamap with decreasing opacity
(default length equals the current alphamap length).

• 'vup' — Create an alphamap that is opaque in the center and
becomes more transparent linearly towards the beginning and end
(default length equals the current alphamap length).

• 'vdown' — Create an alphamap that is transparent in the center
and becomes more opaque linearly towards the beginning and end
(default length equals the current alphamap length).

• 'increase'—Modify the alphamap making it more opaque (default
delta is .1, added to the current values).

• 'decrease' — Modify the alphamap making it more transparent
(default delta is .1, subtracted from the current values).

1-228

../ref/figure_props.html#Alphamap

alphamap

• 'spin' — Rotate the current alphamap (default delta is 1; delta
must be an integer).

alphamap('parameter',length) creates a new alphamap with the
length specified by the integer length (used with parameters 'rampup',
'rampdown', 'vup', 'vdown').

alphamap('parameter',delta) modifies the existing alphamap
using the value specified by the integer delta (used with parameters
'increase', 'decrease', 'spin').

alphamap(figure_handle,...) performs the operation on the
alphamap of the figure identified by figure_handle.

alpha_map = alphamap returns the current alphamap.

alpha_map = alphamap(figure_handle) returns the current
alphamap from the figure identified by figure_handle.

alpha_map = alphamap('parameter') returns the alphamap modified
by the parameter, but does not set the AlphaMap property.

Examples Create a surface plot and change the alphamap

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2-y.^2);
% Plot the data, using the gradient of z as
% the alphamap:
surf(x,y,z+.001,'FaceAlpha','flat',...
'AlphaDataMapping','scaled',...
'AlphaData',gradient(z),...
'FaceColor','blue');
% Change the alphamap to be opaque at the middle and
% transparent towards the ends:
alphamap('vup')

1-229

alphamap

See Also alim | alpha | Image: AlphaData | Image: AlphaDataMapping
| Patch: FaceAlpha | Patch: FaceVertexAlphaData | Patch:
AlphaDataMapping | Surface: FaceAlpha | Surface: AlphaData |
Surface: AlphaDataMapping

Tutorials • “Making Objects Transparent”

1-230

../ref/image_props.html#AlphaData
../ref/image_props.html#AlphaDataMapping
../ref/patch_props.html#FaceAlpha
../ref/patch_props.html#FaceVertexAlphaData
../ref/patch_props.html#AlphaDataMapping
../ref/patch_props.html#AlphaDataMapping
../ref/surface_props.html#FaceAlpha
../ref/surface_props.html#AlphaData
../ref/surface_props.html#AlphaDataMapping

amd

Purpose Approximate minimum degree permutation

Syntax P = amd(A)
P = amd(A,opts)

Description P = amd(A) returns the approximate minimum degree permutation
vector for the sparse matrix C = A + A'. The Cholesky factorization
of C(P,P) or A(P,P) tends to be sparser than that of C or A. The amd
function tends to be faster than symamd, and also tends to return better
orderings than symamd. Matrix A must be square. If A is a full matrix,
then amd(A) is equivalent to amd(sparse(A)).

P = amd(A,opts) allows additional options for the reordering. The
opts input is a structure with the two fields shown below. You only
need to set the fields of interest:

• dense — A nonnegative scalar value that indicates what is
considered to be dense. If A is n-by-n, then rows and columns
with more than max(16,(dense*sqrt(n))) entries in A + A' are
considered to be "dense" and are ignored during the ordering.
MATLAB software places these rows and columns last in the output
permutation. The default value for this field is 10.0 if this option
is not present.

• aggressive — A scalar value controlling aggressive absorption. If
this field is set to a nonzero value, then aggressive absorption is
performed. This is the default if this option is not present.

MATLAB software performs an assembly tree post-ordering, which
is typically the same as an elimination tree post-ordering. It is not
always identical because of the approximate degree update used, and
because “dense” rows and columns do not take part in the post-order. It
well-suited for a subsequent chol operation, however, If you require a
precise elimination tree post-ordering, you can use the following code:

P = amd(S);
C = spones(S)+spones(S');
[ignore, Q] = etree(C(P,P));
P = P(Q);

1-231

amd

If S is already symmetric, omit the second line, C =
spones(S)+spones(S').

Examples This example constructs a sparse matrix and computes a two Cholesky
factors: one of the original matrix and one of the original matrix
preordered by amd. Note how much sparser the Cholesky factor of the
preordered matrix is compared to the factor of the matrix in its natural
ordering:

A = gallery('wathen',50,50);
p = amd(A);
L = chol(A,'lower');
Lp = chol(A(p,p),'lower');

figure;
subplot(2,2,1); spy(A);
title('Sparsity structure of A');

subplot(2,2,2); spy(A(p,p));
title('Sparsity structure of AMD ordered A');

subplot(2,2,3); spy(L);
title('Sparsity structure of Cholesky factor of A');

subplot(2,2,4); spy(Lp);
title('Sparsity structure of Cholesky factor of AMD ordered A');

set(gcf,'Position',[100 100 800 700]);

See Also colamd | colperm | symamd | symrcm

1-232

ancestor

Purpose Ancestor of graphics object

Syntax p = ancestor(h,type)
p = ancestor(h,type,'toplevel')

Description p = ancestor(h,type) returns the handle of the closest ancestor of
h, if the ancestor is one of the types of graphics objects specified by
type. type can be:

• a string that is the name of a single type of object. For example,
'figure'

• a cell array containing the names of multiple objects. For example,
{'hgtransform','hggroup','axes'}

If MATLAB cannot find an ancestor of h that is one of the specified
types, then ancestor returns p as empty. When ancestor searches
the hierarchy, it includes the object itself in the search. Therefore, if
the object with handle h is of one of the types listed in type, ancestor
will return object h.

ancestor returns p as empty but does not issue an error if h is not the
handle of a Handle Graphics object.

p = ancestor(h,type,'toplevel') returns the highest-level ancestor
of h, if this type appears in the type argument.

Examples Find the ancestors of a line object:

% Create some line objects and parent them
% to an hggroup object.
hgg = hggroup;
hgl = line(randn(5),randn(5),'Parent',hgg);
% Now get the ancestor of the lines:
p = ancestor(hgg,{'figure','axes','hggroup'});
get(p,'Type')
% Now get the top-level ancestor:
ptop=ancestor(hgg,{'figure','axes','hggroup'},'toplevel');
get(ptop,'type')

1-233

ancestor

See Also findobj

1-234

and, &

Purpose Find logical AND

Syntax A & B & ...
and(A, B)

Description A & B & ... performs a logical AND of all input arrays A, B, etc., and
returns an array containing elements set to either logical 1 (true)
or logical 0 (false). An element of the output array is set to 1 if all
input arrays contain a nonzero element at that same array location.
Otherwise, that element is set to 0.

Each input of the expression can be an array or can be a scalar value.
All nonscalar input arrays must have equal dimensions. If one or more
inputs are an array, then the output is an array of the same dimensions.
If all inputs are scalar, then the output is scalar.

If the expression contains both scalar and nonscalar inputs, then
each scalar input is treated as if it were an array having the same
dimensions as the other input arrays. In other words, if input A is a
3-by-5 matrix and input B is the number 1, then B is treated as if it
were a 3-by-5 matrix of ones.

and(A, B) is called for the syntax A & B when either A or B is an object.

Note The symbols & and && perform different operations in the
MATLAB software. The element-wise AND operator described here is
&. The short-circuit AND operator is &&.

Examples If matrix A is

0.4235 0.5798 0 0.7942 0
0.5155 0 0.7833 0.0592 0.8744
0.3340 0 0 0 0.0150
0.4329 0.6405 0.6808 0.0503 0

and matrix B is

1-235

and, &

0 1 0 1 0
1 1 1 0 1
0 1 1 1 0
0 1 0 0 1

then

A & B
ans =

0 1 0 1 0
1 0 1 0 1
0 0 0 0 0
0 1 0 0 0

See Also any | all | bitand | Logical Operators: Short Circuit | xor
| or | not

Concepts • “Truth Table for Logical Operations”

1-236

angle

Purpose Phase angle

Syntax P = angle(Z)

Description P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between ±π.

For complex Z, the magnitude R and phase angle theta are given by

R = abs(Z)
theta = angle(Z)

and the statement

Z = R.*exp(i*theta)

converts back to the original complex Z.

Examples Z = [1 - 1i 2 + 1i 3 - 1i 4 + 1i
1 + 2i 2 - 2i 3 + 2i 4 - 2i
1 - 3i 2 + 3i 3 - 3i 4 + 3i
1 + 4i 2 - 4i 3 + 4i 4 - 4i]

P = angle(Z)

P =
-0.7854 0.4636 -0.3218 0.2450
1.1071 -0.7854 0.5880 -0.4636

-1.2490 0.9828 -0.7854 0.6435
1.3258 -1.1071 0.9273 -0.7854

Algorithms The angle function can be expressed as angle(z) = imag(log(z)) =
atan2(imag(z),real(z)).

See Also abs | atan2 | unwrap

1-237

annotation

Purpose Create annotation objects

Syntax annotation(annotation_type)
annotation('line',x,y)
annotation('arrow',x,y)
annotation('doublearrow',x,y)
annotation('textarrow',x,y)
annotation('textbox',[x y w h])
annotation('ellipse',[x y w h])
annotation('rectangle',[x y w h])
annotation(figure_handle,...)
annotation(...,'PropertyName',PropertyValue,...)
anno_obj_handle = annotation(...)

Description annotation(annotation_type) creates the specified annotation type
using default values for all properties. annotation_type can be one of
the following strings:

• 'line'

• 'arrow'

• 'doublearrow' (two-headed arrow),

• 'textarrow' (arrow with attached text box),

• 'textbox'

• 'ellipse'

• 'rectangle'

annotation('line',x,y) creates a line annotation object that extends
from the point defined by x(1),y(1) to the point defined by x(2),y(2),
specified in normalized figure units.

annotation('arrow',x,y) creates an arrow annotation object that
extends from the point defined by x(1),y(1) to the point defined by
x(2),y(2), specified in normalized figure units.

1-238

annotation

annotation('doublearrow',x,y) creates a two-headed annotation
object that extends from the point defined by x(1),y(1) to the point
defined by x(2),y(2), specified in normalized figure units.

annotation('textarrow',x,y) creates a textarrow annotation object
that extends from the point defined by x(1),y(1) to the point defined
by x(2),y(2), specified in normalized figure units. The tail end of the
arrow is attached to an editable text box.

annotation('textbox',[x y w h]) creates an editable text box
annotation with its lower left corner at the point x,y, a width w, and a
height h, specified in normalized figure units. Specify x, y, w, and h in
a single vector.

To type in the text box, enable plot edit mode (plotedit) and
double-click within the box.

annotation('ellipse',[x y w h]) creates an ellipse annotation with
the lower left corner of the bounding rectangle at the point x,y, a width
w, and a height h, specified in normalized figure units. Specify x, y,
w, and h in a single vector.

annotation('rectangle',[x y w h]) creates a rectangle annotation
with the lower left corner of the rectangle at the point x,y, a width w,
and a height h, specified in normalized figure units. Specify x, y, w, and
h in a single vector.

annotation(figure_handle,...) creates the annotation in the
specified figure.

annotation(...,'PropertyName',PropertyValue,...) creates the
annotation and sets the specified properties to the specified values.

anno_obj_handle = annotation(...) returns the handle to the
“Annotation Objects”.

Examples Add Text Box to Graph

Annotate the graph with a text box. Specify the text box location in
normalized figure coordinates.

1-239

annotation

figure; % new figure window
plot(1:10);
annotation('textbox', [0.2,0.4,0.1,0.1],...

'String', 'Straight Line Plot 1 to 10');

Add Text Box with Multiple Lines to Graph

Insert multiple lines in a text box by creating a cell array of strings.
Each element is used as a separate line.

1-240

annotation

figure
plot(1:10);
str = {'Straight Line', 'Plot of 1 to 10'};
annotation('textbox', [0.2,0.4,0.1,0.1],...

'String', str);

Add Text Arrow to Graph

Add a text arrow to the graph. Define the text arrow to start from
(0.3,0.6) and extend to (0.5,0.5) in normalized figure coordinates.

1-241

annotation

figure
plot(1:10);
annotation('textarrow', [0.3,0.5], [0.6,0.5],...

'String' , 'Straight Line');

Adding
Annotations
Interactively

It is often convenient to place annotations interactively. For details, see
“Customize Graph Using Plot Tools”.

1-242

annotation

See Also Annotation Arrow Properties | Annotation Doublearrow
Properties | Annotation Ellipse Properties | Annotation Line
Properties | Annotation Rectangle Properties | Annotation
Textarrow Properties | Annotation Textbox Properties

How To • “How to Annotate Graphs”

• “Annotation Objects”

1-243

Annotation Arrow Properties

Purpose Define annotation arrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Annotation Objects” in
the MATLAB Graphics documentation.

Annotation
Arrow
Property
Descriptions

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color. See “Adding Arrows and Lines to Graphs”.

HeadLength
size in points

Length of the arrowhead. Specify this property in points. 1 point =
1/72 inch. The default value is 10. See also HeadWidth.

HeadStyle
string

Style of arrowhead. Specify this property as one of the strings
from the following table.

1-244

Annotation Arrow Properties

Arrow Head Style Table

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

cback2

cback3

HeadWidth
size in points

Width of arrowhead. Specify in points. 1 point = 1/72 inch. The
default value is 10. See also HeadLength.

1-245

Annotation Arrow Properties

LineStyle
{-} | -- | : | -. | none

Style of arrow stem.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of arrow stem. Specify in points. 1 point = 1/72 inch. The
default is 0.5 points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of
the object with the first two elements of the vector defining the
point x, y in units normalized to the figure (when Units property
is normalized). width and height specify the object’s dx and dy,
respectively, in units normalized to the figure. The default value
is [0.3 0.3 0.1 0.1].

Units
{normalized} | inches | centimeters | characters |
points | pixels

1-246

Annotation Arrow Properties

Position units. MATLAB uses this property to determine the units
used by the Position property. All positions are measured from
the lower left corner of the figure window.

• normalized — Interpret Position as a fraction of the width
and height of the parent axes. When you resize the axes,
MATLAB modifies the size of the object accordingly.

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

X
vector [Xbegin Xend]

x-coordinates of beginning and ending points for line. A vector of
x-axis (horizontal) values specifying the beginning and ending
points of the line, units normalized to the figure. The default
value is [0.3 0.4].

Y
vector [Ybegin Yend]

y-coordinates of beginning and ending points for line. A vector of
y-axis (vertical) values specifying the beginning and ending points
of the line, units normalized to the figure. The default value
is [0.3 0.4].

See Also annotation

How To • “Annotation Objects”

• “Adding Arrows and Lines to Graphs”

1-247

Annotation Doublearrow Properties

Purpose Define annotation doublearrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Annotation Objects” in
the MATLAB Graphics documentation.

Annotation
Doublearrow
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color. See “Adding Arrows and Lines to Graphs”.

Head1Length
size in points

Length of first arrowhead. Specify in points.1 point = 1/72 inch.
The default value is 10.

The first arrowhead is located at the end defined by the point
x(1), y(1).

See also the Head1Style, Head1Width, X and Y properties.

Head2Length
size in points

1-248

Annotation Doublearrow Properties

Length of second arrowhead. Specify in points.1 point = 1/72 inch.
The default value is 10.

The first arrowhead is located at the end defined by the point
x(end), y(end).

See also the Head1Style, Head1Width, X and Y properties.

Head1Style
string

Style of first arrowhead. Specify this property as one of the strings
from the following table.

Arrow Head Style Table

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

1-249

Annotation Doublearrow Properties

Head Style
String Head

Head Style
String Head

cback1 deltoid

cback2

cback3

See also Head1Width, Head1Length, and LineWidth.

Head2Style
string

Style of second arrowhead. Specify this property as one of the
strings shown in the table for the Head1Style property.

See also Head2Width, Head2Length, LineWidth.

Head1Width
size in points

Width of first arrowhead. Specify in points.1 point = 1/72 inch.
See also Head1Length.

Head2Width
size in points

Width of second arrowhead. Specify in points.1 point = 1/72 inch.
See also Head2Length.

LineStyle
{-} | -- | : | -. | none

Style of arrow stem.

1-250

Annotation Doublearrow Properties

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

See also Head1Style, Head1Length, and LineWidth.

LineWidth
size in points

Width of arrow stem. Specify in points.1 point = 1/72 inch. The
default is 0.5 points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of
the object with the first two elements of the vector defining the
point x, y in units normalized to the figure (when Units property
is normalized). width and height specify the object’s dx and dy,
respectively, in units normalized to the figure. The default value
is [0.3 0.3 0.1 0.1].

Units
{normalized} | inches | centimeters | characters |
points | pixels

Position units. MATLAB uses this property to determine the units
used by the Position property. All positions are measured from
the lower left corner of the figure window.

1-251

Annotation Doublearrow Properties

• normalized — Interpret Position as a fraction of the width
and height of the parent axes. When you resize the axes,
MATLAB modifies the size of the object accordingly.

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

X
vector [Xbegin Xend]

x-coordinates of beginning and ending points for line. A vector of
x-axis (horizontal) values specifying the beginning and ending
points of the line, units normalized to the figure. The default
value is [0.3 0.4].

Y
vector [Ybegin Yend]

y-coordinates of beginning and ending points for line. A vector of
y-axis (vertical) values specifying the beginning and ending points
of the line, units normalized to the figure. The default value
is [0.3 0.4].

See Also annotation

How To • “Annotation Objects”

• “Adding Arrows and Lines to Graphs”

1-252

Annotation Ellipse Properties

Purpose Define annotation ellipse properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Annotation Objects” in
the MATLAB Graphics documentation.

Annotation
Ellipse
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

EdgeColor
ColorSpec | none

Edge color of object’. A three-element RGB vector or one of the
MATLAB predefined names, specifying the edge color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color.

FaceColor
{flat} | none | ColorSpec

Color of filled areas.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas.

• none — Do not draw faces. Note that MATLAB draws
EdgeColor independently of FaceColor.

• flat — The object uses the figure colormap to determine the
color of the filled areas.

LineStyle
{-} | -- | : | -. | none

1-253

Annotation Ellipse Properties

Line style of ellipse.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of
the object with the first two elements of the vector defining the
point x, y in units normalized to the figure (when Units property
is normalized). width and height specify the object’s dx and dy,
respectively, in units normalized to the figure. The default value
is [0.3 0.3 0.1 0.1].

Units
{normalized} | inches | centimeters | characters |
points | pixels

Position units. MATLAB uses this property to determine the units
used by the Position property. All positions are measured from
the lower left corner of the figure window.

1-254

Annotation Ellipse Properties

• normalized — Interpret Position as a fraction of the width
and height of the parent axes. When you resize the axes,
MATLAB modifies the size of the object accordingly.

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

See Also annotation

How To • “Annotation Objects”

• “How to Annotate Graphs”

1-255

Annotation Line Properties

Purpose Define annotation line properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Annotation Objects” in
the MATLAB Graphics documentation.

Annotation
Line
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color. See “Adding Arrows and Lines to Graphs”.

LineStyle
{-} | -- | : | -. | none

Line style of annotation line object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

1-256

Annotation Line Properties

Specifier Line Style

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of
the object with the first two elements of the vector defining the
point x, y in units normalized to the figure (when Units property
is normalized). width and height specify the object’s dx and dy,
respectively, in units normalized to the figure. The default value
is [0.3 0.3 0.1 0.1].

Units
{normalized} | inches | centimeters | characters |
points | pixels

Position units. MATLAB uses this property to determine the units
used by the Position property. All positions are measured from
the lower left corner of the figure window.

• normalized — Interpret Position as a fraction of the width
and height of the parent axes. When you resize the axes,
MATLAB modifies the size of the object accordingly.

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width

1-257

Annotation Line Properties

of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

X
vector [Xbegin Xend]

x-coordinates of beginning and ending points for line. A vector of
x-axis (horizontal) values specifying the beginning and ending
points of the line, units normalized to the figure. The default
value is [0.3 0.4].

Y
vector [Ybegin Yend]

y-coordinates of beginning and ending points for line. A vector of
y-axis (vertical) values specifying the beginning and ending points
of the line, units normalized to the figure. The default value
is [0.3 0.4].

See Also annotation

How To • “Annotation Objects”

• “Adding Arrows and Lines to Graphs”

1-258

Annotation Rectangle Properties

Purpose Define annotation rectangle properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Annotation Objects” in
the MATLAB Graphics documentation.

Annotation
Rectangle
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

EdgeColor
ColorSpec | none

Edge color of object’. A three-element RGB vector or one of the
MATLAB predefined names, specifying the edge color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. Defines the degree to which
the object’s background color is transparent. A value of 1 (the
default) makes the background opaque, a value of 0 makes the
background completely transparent (that is, invisible). The
default value is 1.

FaceColor
{flat} | none | ColorSpec

Color of filled areas.

1-259

Annotation Rectangle Properties

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas.

• none — Do not draw faces. Note that MATLAB draws
EdgeColor independently of FaceColor.

• flat — The object uses the figure colormap to determine the
color of the filled areas.

LineStyle
{-} | -- | : | -. | none

Line style of annotation rectangle object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of
the object with the first two elements of the vector defining the
point x, y in units normalized to the figure (when Units property
is normalized). width and height specify the object’s dx and dy,

1-260

Annotation Rectangle Properties

respectively, in units normalized to the figure. The default value
is [0.3 0.3 0.1 0.1].

Units
{normalized} | inches | centimeters | characters |
points | pixels

Position units. MATLAB uses this property to determine the units
used by the Position property. All positions are measured from
the lower left corner of the figure window.

• normalized — Interpret Position as a fraction of the width
and height of the parent axes. When you resize the axes,
MATLAB modifies the size of the object accordingly.

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

See Also annotation

1-261

Annotation Textarrow Properties

Purpose Define annotation textarrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Annotation Objects” in
the MATLAB Graphics documentation.

Annotation
Textarrow
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Color
ColorSpec

Color of the arrow, text and text border. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
color of the arrow, the color of the text (TextColor property), and
the rectangle enclosing the text (TextEdgeColor property). The
default value is [0 0 0] (black).

Setting the Color property also sets the TextColor and
TextEdgeColor properties to the same color. However, if the
value of the TextEdgeColor is none, it remains none and the text
box is not displayed. You can set TextColor or TextEdgeColor
independently without affecting other properties.

For example, if you want to create a textarrow with a red arrow
and black text in a black box, you must:

1 Set the Color property to red — set(h,'Color','r')

2 Set the TextColor to black — set(h,'TextColor','k')

3 Set the TextEdgeColor to black .—
set(h,'TextEdgeColor','k')

1-262

Annotation Textarrow Properties

If you do not want display the text box, set the TextEdgeColor
to none.

See the ColorSpec reference page for more information on
specifying color.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
string

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported
on your system. The default font is Helvetica.

FontSize
size in points

Approximate size of text characters. Specify in points. 1 point =
1/72 inch. The default size is 10.

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units. 1 point = 1/72 inch.

FontWeight
{normal} | bold | light | demi

1-263

Annotation Textarrow Properties

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HeadLength
size in points

Length of the arrowhead. Specify this property in points. 1 point =
1/72 inch. The default value is 10. See also HeadWidth.

HeadStyle
string

Style of arrowhead. Specify this property as one of the strings
from the following table.

Arrow Head Style Table

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

1-264

Annotation Textarrow Properties

Head Style
String Head

Head Style
String Head

cback1 deltoid

cback2

cback3

HeadWidth
size in points

Width of arrowhead. Specify in points. 1 point = 1/72 inch. The
default value is 10. See also HeadLength.

HorizontalAlignment
left | center | {right}

Horizontal alignment of text. Specifies the horizontal justification
of the text string. This property determines where MATLAB
places the string horizontally with regard to the points specified
by the Position property.

Interpreter
latex | {tex} | none

Interpret TeX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TeX instructions (default) or displays all characters literally.
The options are:

• latex — Supports a basic subset of the LaTeX markup
language.

• tex — Supports a subset of plain TeX markup language. See
the String property for a list of supported TeX instructions.

1-265

Annotation Textarrow Properties

• none — Displays literal characters.

LineStyle
{-} | -- | : | -. | none

Line style of arrow stem.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of arrow stem. Specify in points 1 point = 1/72 inch. The
default is 0.5 points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of
the object with the first two elements of the vector defining the
point x, y in units normalized to the figure (when Units property
is normalized). width and height specify the object’s dx and dy,
respectively, in units normalized to the figure. The default value
is [0.3 0.3 0.1 0.1].

String
string

1-266

Annotation Textarrow Properties

Text string. Specify this property as a quoted string for single-line
strings, or as a cell array of strings, or a padded string matrix for
multiline strings. MATLAB displays this string at the specified
location. Vertical slash characters are not interpreted as line
breaks in text strings, and are drawn as part of the text string.
See Mathematical Symbols, Greek Letters, and TeX Characters
for an example.

Note The words default, factory, and remove are reserved
words that will not appear in a figure when quoted as a normal
string. In order to display any of these words individually, type
'\reserved_word' instead of 'reserved_word'.

When the text Interpreter property is tex (the default), you can
use a subset of TeX commands embedded in the string to produce
special characters such as Greek letters and mathematical
symbols. This table lists these characters and the character
sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\angle ∠ \phi Φ \leq ≤

\ast * \chi χ \infty ∞

\beta β \psi ψ \clubsuit ♣

\gamma γ \omega ω \diamondsuit ♦

\delta δ \Gamma Γ \heartsuit ♥

\epsilon ε \Delta Δ \spadesuit ♠

\zeta ζ \Theta Θ \leftrightarrow ↔

1-267

Annotation Textarrow Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\eta η \Lambda Λ \leftarrow ←

\theta Θ \Xi Ξ \Leftarrow ⇐

\vartheta \Pi Π \uparrow ↑

\iota ι \Sigma Σ \rightarrow →

\kappa κ \Upsilon \Rightarrow

\lambda λ \Phi Φ \downarrow ↓

\mu µ \Psi Ψ \circ º

\nu ν \Omega Ω \pm ±

\xi ξ \forall ∀ \geq ≥

\pi π \exists ∃ \propto ∝

\rho ρ \ni ∋ \partial ∂

\sigma σ \cong \bullet •
\varsigma ς \approx ≈ \div ÷

\tau τ \Re ℜ \neq ≠

\equiv ≡ \oplus ⊕ \aleph

\Im ℑ \cup ∪ \wp ℘

\otimes ⊗ \subseteq ⊆ \oslash ∅

\cap ∩ \in \supseteq ⊇

\supset ⊃ \lceil ⌈ \subset ⊂

\int ∫ \cdot · \o ο

\rfloor ⌋ \neg ¬ \nabla ∇

1-268

Annotation Textarrow Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\lfloor ⌊ \times x \ldots ...

\perp ⊥ \surd √ \prime ´

\wedge ∧ \varpi ϖ \0 ∅

\rceil ⌉ \rangle \mid |

\vee ∨ \copyright ©

\langle

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers.

TextBackgroundColor
ColorSpec | {none}

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

TextColor
ColorSpec

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color. The default value is
[0 0 0] (black).

1-269

Annotation Textarrow Properties

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

TextEdgeColor
ColorSpec | {none}

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

TextLineWidth
width in points

Width of text rectangle edge. Specify in points. 1 point = 1/72 inch.
The default value is 0.5.

TextMargin
size in pixels

Space around text. A value in pixels that defines the space around
the text string, but within the rectangle. Default value is 5 pixels.

TextRotation
rotation angle in degrees

Text orientation. Determines the orientation of the text string.
Specify values of rotation in degrees (positive angles cause
counterclockwise rotation). Angles are absolute and not relative
to previous rotations; a rotation of 0 degrees is always horizontal.
Default is 0.

Units
{normalized} | inches | centimeters | characters |
points | pixels

1-270

Annotation Textarrow Properties

Position units. MATLAB uses this property to determine the units
used by the Position property. All positions are measured from
the lower left corner of the figure window.

• normalized — Interpret Position as a fraction of the width
and height of the parent axes. When you resize the axes,
MATLAB modifies the size of the object accordingly.

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. Specifies the vertical justification of
the text string. It determines where MATLAB places the string
vertically with regard to the points specified by the Position
property.

Note that top and cap both place the text at the top, while
baseline and bottom both align the text on the bottom.

X
vector [Xbegin Xend]

x-coordinates of beginning and ending points for line. A vector of
x-axis (horizontal) values specifying the beginning and ending
points of the line, units normalized to the figure. The default
value is [0.3 0.4].

Y
vector [Ybegin Yend]

1-271

Annotation Textarrow Properties

y-coordinates of beginning and ending points for line. A vector of
y-axis (vertical) values specifying the beginning and ending points
of the line, units normalized to the figure. The default value
is [0.3 0.4].

See Also annotation

1-272

Annotation Textbox Properties

Purpose Define annotation textbox properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Annotation Objects” in
the MATLAB Graphics documentation.

Annotation
Textbox
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

BackgroundColor
ColorSpec | {none}

Color of text background rectangle. A three-element RGB vector
or one of the MATLAB predefined names, specifying the rectangle
background color. The default value is none.

See the ColorSpec reference page for more information on
specifying color.

Color
ColorSpec

Text color. A three-element RGB vector or one of the predefined
names, specifying the text color. The default value is black. See
ColorSpec for more information on specifying color.

EdgeColor
ColorSpec | {none}

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

1-273

Annotation Textbox Properties

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. Defines the degree to which
the object’s background color is transparent. A value of 1 (the
default) makes the background opaque, a value of 0 makes the
background completely transparent (that is, invisible). The
default value is 1.

FitBoxToText
{on} | off

Automatically adjust text box width and height to fit text. When
this property is on (the default), MATLAB automatically resizes
textboxes to fit the x-extents and y-extents of the text strings they
contain. When it is off, text strings are wrapped to fit the width
of their textboxes, which can cause them to extend below the
bottom of the box.

If you resize a textbox in plot edit mode or change the width or
height of its Position property directly, MATLAB sets the object’s
FitBoxToText property to off. You can toggle this property with
set, with the Property Inspector, or in plot edit mode via the
object’s context menu.

FitHeightToText
on | off

Automatically adjust text box width and height to fit text.
MATLAB automatically wraps text strings to fit the width of the
text box. However, if the text string is long enough, it can extend
beyond the bottom of the text box.

1-274

Annotation Textbox Properties

Note The property is obsolete. To control line wrapping behavior
in textboxes, use FitBoxToText instead.

When you set this mode to on, MATLAB automatically adjusts
the height of the text box to accommodate the string, doing so
as you create or edit the string.

The fit-size-to-text behavior turns off if you resize the text box
programmatically or manually in plot edit mode.

1-275

Annotation Textbox Properties

However, if you resize the text box from any other handles, the
position you set is honored without regard to how the text fits
the box.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
string

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported
on your system. The default font is Helvetica.

1-276

Annotation Textbox Properties

FontSize
size in points

Approximate size of text characters. Specify in points. 1 point =
1/72 inch. The default size is 10.

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units. 1 point = 1/72 inch.

FontWeight
{normal} | bold | light | demi

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. Specifies the horizontal justification
of the text string within the textbox. It determines where
MATLAB places the string horizontally with regard to the points
specified by the Position property.

Interpreter
latex | {tex} | none

Interpret TeX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TeX instructions (default) or displays all characters literally.
The options are:

1-277

Annotation Textbox Properties

• latex — Supports a basic subset of the LaTeX markup
language.

• tex — Supports a subset of plain TeX markup language. See
the String property for a list of supported TeX instructions.

• none — Displays literal characters.

LineStyle
{-} | -- | : | -. | none

Line style of annotation textbox object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Margin
size in pixels

Space around text. A value in pixels that defines the space around
the text string, but within the rectangle. Default value is 5 pixels.

Position
four-element vector [x, y, width, height]

1-278

Annotation Textbox Properties

Size and location of the object. Specify the lower left corner of
the object with the first two elements of the vector defining the
point x, y in units normalized to the figure (when Units property
is normalized). width and height specify the object’s dx and dy,
respectively, in units normalized to the figure. The default value
is [0.3 0.3 0.1 0.1].

String
string

Text string. Specify this property as a quoted string for single-line
strings, or as a cell array of strings, or a padded string matrix for
multiline strings. MATLAB displays this string at the specified
location. Vertical slash characters are not interpreted as line
breaks in text strings, and are drawn as part of the text string.
See Mathematical Symbols, Greek Letters, and TeX Characters
for an example.

Note The words default, factory, and remove are reserved
words that will not appear in a figure when quoted as a normal
string. In order to display any of these words individually, type
'\reserved_word' instead of 'reserved_word'.

When the text Interpreter property is tex (the default), you can
use a subset of TeX commands embedded in the string to produce
special characters such as Greek letters and mathematical
symbols. This table lists these characters and the character
sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\angle ∠ \phi Φ \leq ≤

\ast * \chi χ \infty ∞

1-279

Annotation Textbox Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\beta β \psi ψ \clubsuit ♣

\gamma γ \omega ω \diamondsuit ♦

\delta δ \Gamma Γ \heartsuit ♥

\epsilon ε \Delta Δ \spadesuit ♠

\zeta ζ \Theta Θ \leftrightarrow ↔

\eta η \Lambda Λ \leftarrow ←

\theta Θ \Xi Ξ \Leftarrow ⇐

\vartheta \Pi Π \uparrow ↑

\iota ι \Sigma Σ \rightarrow →

\kappa κ \Upsilon \Rightarrow

\lambda λ \Phi Φ \downarrow ↓

\mu µ \Psi Ψ \circ º

\nu ν \Omega Ω \pm ±

\xi ξ \forall ∀ \geq ≥

\pi π \exists ∃ \propto ∝

\rho ρ \ni ∋ \partial ∂

\sigma σ \cong \bullet •
\varsigma ς \approx ≈ \div ÷

\tau τ \Re ℜ \neq ≠

\equiv ≡ \oplus ⊕ \aleph

\Im ℑ \cup ∪ \wp ℘

1-280

Annotation Textbox Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\otimes ⊗ \subseteq ⊆ \oslash ∅

\cap ∩ \in \supseteq ⊇

\supset ⊃ \lceil ⌈ \subset ⊂

\int ∫ \cdot · \o ο

\rfloor ⌋ \neg ¬ \nabla ∇

\lfloor ⌊ \times x \ldots ...

\perp ⊥ \surd √ \prime ´

\wedge ∧ \varpi ϖ \0 ∅

\rceil ⌉ \rangle \mid |

\vee ∨ \copyright ©

\langle

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers.

Units
{normalized} | inches | centimeters | characters |
points | pixels

Position units. MATLAB uses this property to determine the units
used by the Position property. All positions are measured from
the lower left corner of the figure window.

1-281

Annotation Textbox Properties

• normalized — Interpret Position as a fraction of the width
and height of the parent axes. When you resize the axes,
MATLAB modifies the size of the object accordingly.

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. Specifies the vertical justification of the
text string within the textbox. It determines where MATLAB
places the string vertically with regard to the points specified by
the Position property.

Note that top and cap both place the text at the top of the box,
while baseline and bottom both align the text on the bottom.

See Also annotation

1-282

ans

Purpose Most recent answer

Syntax ans

Description The MATLAB software creates the ans variable automatically when
you specify no output argument.

Examples The statement

2+2

is the same as

ans = 2+2

See Also display

1-283

any

Purpose Determine if any array elements are nonzero

Syntax B = any(A)
B = any(A,dim)

Description B = any(A) tests along the first array dimension of A whose size does
not equal 1, and determines if any element is a nonzero number or
logical 1 (true). In practice, any is a natural extension of the logical
OR operator.

• If A is a vector, then B = any(A) returns logical 1 (true) if any of the
elements of A is a nonzero number or is logical 1, and returns logical
0 (false) if all the elements are zero.

• If A is a nonempty, nonvector matrix, then B = any(A) treats the
columns of A as vectors, returning a row vector of logical 1s and 0s.

• If A is an empty 0-by-0 matrix, any(A) returns logical 0 (false).

• If A is a multidimensional array, any(A) acts along the first array
dimension whose size does not equal 1 and returns an array of logical
values. The size of this dimension becomes 1, while the sizes of all
other dimensions remain the same.

B = any(A,dim) tests elements along dimension dim. The dim input is
a positive integer scalar.

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array. The any function ignores elements of A that are NaN (Not a
Number).

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

1-284

any

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider a two-dimensional input array, A:

• any(A,1) works on successive elements in the columns of A and
returns a row vector of logical values.

• any(A,2) works on successive elements in the rows of A and returns
a column vector of logical values.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output
Arguments

B - Logical array
scalar | vector | matrix | multidimensional array

Logical array, returned as a scalar, vector, matrix, or multidimensional
array. The dimension of A acted on by any has size 1 in B.

Examples Test Matrix Columns

Create a 3-by-3 matrix.

1-285

any

A = [0 0 3;0 0 3;0 0 3]

A =

0 0 3
0 0 3
0 0 3

Test each column for nonzero elements.

B = any(A)

B =

0 0 1

Reduce a Logical Vector to a Single Condition

Create a vector of decimal values and test which values are less than 0.5.

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69];
B = (A < 0.5)

B =

0 0 1 1 1 1 0

The output is a vector of logical values. The any function reduces such a
vector of logical values to a single condition. In this case, B = any(A <
0.5) yields logical 1.

This makes any particularly useful in if statements.

if any(A < 0.5)
%do something

else
%do something else

end

1-286

any

The code is executed depending on a single condition, rather than a
vector of possibly conflicting conditions.

Test Arrays of Any Dimension

Create a 3-by-7-by-5 multidimensional array and test to see if any of
its elements are greater than 3.

A = rand(3,7,5) * 5;
B = any(A(:) > 3)

B =

1

You can also test the array for elements that are less than zero.

B = any(A(:) < 0)

B =

0

The syntax A(:) turns the elements of A into a single column vector, so
you can use this type of statement on an array of any size.

Test Matrix Rows

Create a 3-by-3 matrix.

A = [0 0 3;0 0 3;0 0 3]

A =

0 0 3
0 0 3
0 0 3

Test the rows of A for nonzero elements by specifying dim = 2.

1-287

any

B = any(A,2)

B =

1
1
1

See Also all | colon (:) | or | prod | sum

Concepts • “Reduce Logical Arrays to Single Value”

1-288

area

Purpose Filled area 2-D plot

Syntax area(Y)
area(X,Y)
area(...,basevalue)
area(...,'PropertyName',PropertyValue,...)
area(axes_handle,...)
h = area(...)

Description An area graph displays elements in Y as one or more curves and fills the
area beneath each curve. When Y is a matrix, the curves are stacked
showing the relative contribution of each row element to the total height
of the curve at each x interval.

area(Y) plots the vector Y or plots each column in matrix Y as a
separate curve and stacks the curves. The x-axis automatically scales
to 1:size(Y,1).

area(X,Y) For vectors X and Y, area(X,Y) is the same as plot(X,Y)
except that the area between 0 and Y is filled. When Y is a matrix,
area(X,Y) plots the columns of Y as filled areas. For each X, the net
result is the sum of corresponding values from the rows of Y.

If X is a vector, length(X) must equal length(Y). If X is a matrix,
size(X) must equal size(Y).

area(...,basevalue) specifies the base value for the area fill.
The default basevalue is 0. See the BaseValue property for more
information.

area(...,'PropertyName',PropertyValue,...) specifies property
name and property value pairs for the patch graphics object created
by area.

area(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

1-289

area

h = area(...) returns handles of areaseries graphics objects.

Creating an area graph of an m-by-n matrix creates n areaseries objects
(that is, one per column), whereas a 1-by-n vector creates one areaseries
object.

Some areaseries object properties that you set on an individual
areaseries object set the values for all areaseries objects in the graph.
See the property descriptions for information on specific properties.

Examples Create Area Graph

Plot the data in matrix Y as an area graph.

Y = [1, 5, 3;
3, 2, 7;
1, 5, 3;
2, 6, 1];

figure
area(Y)

1-290

../ref/areaseriesproperties.html

area

Adjust Base Value of Area Graph

By default, area uses the y-axis as the base value. Change the base
value by setting the basevalue input argument to -4.

Y = [1, 5, 3;
3, 2, 7;
1, 5, 3;
2, 6, 1];

figure

1-291

area

basevalue = -4;
area(Y,basevalue)

Specify Color and Line Styles for Area Plot

Create an area plot of the data in matrix Y. Set the line style and line
width for the three areaseries objects created, one for each column in Y.
Store the areaseries object handles in vector h.

Y = [1, 5, 3;

1-292

area

3, 2, 7;
1, 5, 3;
2, 6, 1];

figure
h = area(Y,'LineStyle',':',...

'LineWidth',2);

Use the areaseries object handles to specify a different face color for
each object.

1-293

area

set(h(1),'FaceColor',[0,0.25,0.25]);
set(h(2),'FaceColor',[0,0.5,0.5]);
set(h(3),'FaceColor',[0,0.75,0.75]);

See Also bar | plot | sort | Areaseries Properties

How To • “Compare Data Sets Using Overlayed Area Graphs”

1-294

Areaseries Properties

Purpose Define areaseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See “Plot Objects” for more information on areaseries objects.

Areaseries
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of areaseries objects in legends. Specifies
whether this areaseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the areaseries
object is displayed in a figure legend.

IconDisplayStyle
Value

Purpose

on Include the areaseries object in a legend as
one entry, but not its children objects

off Do not include the areaseries or its children
in a legend (default)

children Include only the children of the areaseries as
separate entries in the legend

1-295

Areaseries Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BaseValue
double: y-axis value

Value where filled area base is drawn. Specify the value along the
y-axis at which the MATLAB software draws the baseline of the
bottommost filled area. The default is 0.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

1-296

Areaseries Properties

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press
a mouse button while the pointer is over this object, but not
over another graphics object. See the HitTestArea property for
information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

1-297

Areaseries Properties

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

1-298

Areaseries Properties

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

1-299

Areaseries Properties

String used by legend. The legend function uses the DisplayName
property to label the areaseries object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line separating filled areas. You can set the color of the
edges of filled areas to a three-element RGB vector or one of the
MATLAB predefined names, including the string none. The
default value is [0 0 0] (black). See the ColorSpec reference
page for more information on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated

1-300

Areaseries Properties

sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

1-301

Areaseries Properties

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas.

• none — Do not draw faces. Note that MATLAB draws
EdgeColor independently of FaceColor.

• flat — The object uses the figure colormap to determine the
color of the filled areas.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

1-302

Areaseries Properties

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

1-303

Areaseries Properties

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the objects that compose the area graph. If HitTest is off,
clicking this object selects the object below it (which is usually
the axes containing it).

HitTestArea
on | {off}

Select areaseries object on filled area or extent of graph. Select
plot objects by:

• Clicking an area (default).

• Clicking anywhere in the extent of the area plot.

When HitTestArea is off, you must click an area to select the
areaseries object. When HitTestArea is on, you can select the
areaseries object by clicking anywhere within the extent of the
area graph (that is, anywhere within a rectangle that encloses
all the area plots).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

1-304

Areaseries Properties

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of edges of filled areas.

1-305

Areaseries Properties

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

1-306

Areaseries Properties

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, use findobj to
find the object’s handle. The following statement changes the
FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For areaseries objects, Type is
’hggroup’.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

1-307

Areaseries Properties

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
vector | matrix

x-axis values for graph. The x-axis values for graphs are specified
by the X input argument. If XData is a vector, length(XData)
must equal length(YData) and must be monotonic. If XData is a
matrix, size(XData) must equal size(YData) and each column
must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped.

1-308

Areaseries Properties

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the X input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after specifying XData, MATLAB
resets the x-axis ticks to 1:size(YData,1) or to the column
indices of the ZData, overwriting any previous values for XData.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

set(h,'XDataSource','xdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector | matrix

1-309

Areaseries Properties

Area plot data. YData contains the data plotted as filled areas
(the Y input argument). If YData is a vector, area creates a single
filled area whose upper boundary is defined by the elements of
YData. If YData is a matrix, area creates one filled area per
column, stacking each on the previous plot. The default value
is the Y input argument.

The input argument Y in the area function calling syntax assigns
values to YData.

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

set(h,'YDataSource','Ydatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

How To • “Plot Objects”

• “Setting Default Property Values”

1-310

array2table

Purpose Convert homogeneous array to table

Syntax T = array2table(A)
T = array2table(A,Name,Value)

Description T = array2table(A) converts the m-by-n array, A, to an m-by-n table,
T. Each column of A becomes a variable in T.

array2table uses the input array name appended with the column
number for the variable names in the table. If these names are not
valid MATLAB identifiers, array2table uses strings of the form
'Var1',...,'VarN', where N is the number of columns in A.

T = array2table(A,Name,Value) creates a table from an array, A,
with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify row names or variable names to include
in the table.

Input
Arguments

A - Input array
matrix

Input array, specified as a matrix.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char | struct | cell
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-311

array2table

Example: ’RowNames',{'row1','row2','row3'} uses the row names,
row1, row2, and row3 for the table, T.

’RowNames’ - Row names for T
{} (default) | cell array of nonempty, distinct strings

Row names for T, specified as the comma-separated pair consisting of
'RowNames' and a cell array of nonempty, distinct strings. The number
of strings must equal the number of rows, size(A,1).

’VariableNames’ - Variable names for T
cell array of nonempty, distinct strings

Variable names for T, specified as the comma-separated pair consisting
of 'VariableNames' and a cell array of nonempty, distinct strings. The
number of strings must equal the number of variables, size(A,2).

Furthermore, the strings must be valid MATLAB identifiers. If valid
MATLAB identifiers are not available for use as variable names,
MATLAB uses a cell array of N strings of the form {'Var1' ...
'VarN'} where N is the number of variables. You can determine valid
MATLAB variable names using the function isvarname.

Output
Arguments

T - Output table
table

Output table, returned as a table. The table can store metadata such as
descriptions, variable units, variable names, and row names. For more
information, see Table Properties.

Examples Convert Numeric Array to Table

Create an array of numeric data.

A = [1 4 7; 2 5 8; 3 6 9]

A =

1 4 7

1-312

array2table

2 5 8
3 6 9

Convert the array, A, to a table.

T = array2table(A)

T =

A1 A2 A3
__ __ __

1 4 7
2 5 8
3 6 9

The table has variable names that append the column number to the
input array name, A.

Convert Array to Table Including Variable Names

Create an array of numeric data.

A = [1 12 30.48; 2 24 60.96; 3 36 91.44]

A =

1.0000 12.0000 30.4800
2.0000 24.0000 60.9600
3.0000 36.0000 91.4400

Convert the array, A, to a table and include variable names.

T = array2table(A,...
'VariableNames',{'Feet' 'Inches' 'Centimeters'})

T =

Feet Inches Centimeters

1-313

array2table

____ ______ ___________

1 12 30.48
2 24 60.96
3 36 91.44

Tips • If A is a cell array, use cell2table(A) to create a table from the
contents of the cells in A. Each variable in the table is numeric or a
cell array of strings. array2table(A) creates a table where each
variable is a column of cells.

See Also table2array | cell2table | struct2table | table | isvarname

Related
Examples

• “Access Data in a Table”

1-314

arrayfun

Purpose Apply function to each element of array

Syntax [B1,...,Bm] = arrayfun(func,A1,...,An)
[B1,...,Bm] = arrayfun(func,A1,...,An,Name,Value)

Description [B1,...,Bm] = arrayfun(func,A1,...,An) calls the function
specified by function handle func and passes elements from arrays
A1,...,An, where n is the number of inputs to function func. Output
arrays B1,...,Bm, where m is the number of outputs from function
func, contain the combined outputs from the function calls. The
ith iteration corresponds to the syntax [B1(i),...,Bm(i)] =
func(A1{i},...,An{i}). The arrayfun function does not perform the
calls to function func in a specific order.

[B1,...,Bm] = arrayfun(func,A1,...,An,Name,Value) calls
function func with additional options specified by one or more
Name,Value pair arguments. Possible values for Name are
'UniformOutput' or 'ErrorHandler'.

Input
Arguments

func

Handle to a function that accepts n input arguments and returns m
output arguments.

If function func corresponds to more than one function file (that is, if
func represents a set of overloaded functions), MATLAB determines
which function to call based on the class of the input arguments.

A1,...,An

Arrays that contain the n inputs required for function func. Each array
must have the same dimensions. Arrays can be numeric, character,
logical, cell, structure, or user-defined object arrays.

If any input A is a user-defined object array, and you overloaded the
subsref or size methods, arrayfun requires that:

• The size method returns an array of type double.

• The object array supports linear indexing.

1-315

arrayfun

• The product of the sizes returned by the size method does not exceed
the limit of the array, as defined by linear indexing into the array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’UniformOutput’

Logical value, as follows:

true (1) Indicates that for all inputs, each output from function
func is a cell array or a scalar value that is always of the
same type and size. The arrayfun function combines the
outputs in arrays B1,...,Bm, where m is the number of
function outputs. Each output array is of the same type
as the individual function outputs.

false
(0)

Requests that the arrayfun function combine the outputs
into cell arrays B1,...,Bm. The outputs of function func
can be of any size or type.

Default: true

’ErrorHandler’

Handle to a function that catches any errors that occur when MATLAB
attempts to execute function func. Define this function so that it
rethrows the error or returns valid outputs for function func.

MATLAB calls the specified error-handling function with two input
arguments:

• A structure with these fields:

1-316

arrayfun

identifier Error identifier.

message Error message text.

index Linear index corresponding to the element of the
input cell array at the time of the error.

• The set of input arguments to function func at the time of the error.

Output
Arguments

B1,...,Bm

Arrays that collect the m outputs from function func. Each array B is
the same size as each of the inputs A1,...,An.

Function func can return output arguments of different classes.
However, if UniformOutput is true (the default):

• The individual outputs from function func must be scalar values
(numeric, logical, character, or structure) or cell arrays.

• The class of a particular output argument must be the same for each
set of inputs. The class of the corresponding output array is the same
as the class of the outputs from function func.

Examples To run the examples in this section, create a nonscalar structure array
with arrays of different sizes in field f1.

s(1).f1 = rand(3, 6);
s(2).f1 = magic(12);
s(3).f1 = ones(5, 10);

Count the number of elements in each f1 field.

counts = arrayfun(@(x) numel(x.f1), s)

The syntax @(x) creates an anonymous function. This code returns

counts =

1-317

arrayfun

18 144 50

Compute the size of each array in the f1 fields.

[nrows, ncols] = arrayfun(@(x) size(x.f1), s)

This code returns

nrows =
3 12 5

ncols =
6 12 10

Compute the mean of each column in the f1 fields of s. Because the
output is nonscalar, set UniformOutput to false.

averages = arrayfun(@(x) mean(x.f1), s, 'UniformOutput', false)

This code returns

averages =
[1x6 double] [1x12 double] [1x10 double]

Create additional nonscalar structures t and u, and test for equality
between the arrays in fields f1 across structures s, t, and u.

t = s; t(1).f1(:)=0;
u = s; u(2).f1(:)=0;

same = arrayfun(@(x,y,z) isequal(x.f1, y.f1, z.f1), s, t, u)

This code returns

same =
0 0 1

1-318

arrayfun

See Also structfun | cellfun | spfun | function_handle | cell2mat

Tutorials • “Anonymous Functions”

1-319

FTP.ascii

Purpose Set FTP transfer type to ASCII

Syntax ascii(ftpobj)

Description ascii(ftpobj) sets the download and upload FTP mode to ASCII,
which converts new line characters. Use this method only for text files,
including HTML pages and Rich Text Format (RTF) files.

Input
Arguments

ftpobj

FTP object created by ftp.

Examples Connect to the MathWorks FTP server, and switch from binary (default)
to ASCII mode:

mw=ftp('ftp.mathworks.com');
ascii(mw)

See Also binary | ftp

1-320

asec

Purpose Inverse secant in radians

Syntax Y = asec(X)

Description Y = asec(X) returns the inverse secant (arcsecant) for each element
of X.

The asec function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Secant Function

Graph the inverse secant over the domains and .

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2)), grid on

1-321

asec

Definitions Inverse Secant

The inverse secant can be defined as

sec () cos .− −= ⎛
⎝⎜
⎞
⎠⎟

1 1 1
z

z

See Also asecd | asech | sec

1-322

asecd

Purpose Inverse secant in degrees

Syntax Y = asecd(X)

Description Y = asecd(X) returns the inverse secant (sec-1) of the elements of X
in degrees. The function’s domain and range include complex values.
For real elements of X in the domain [-Inf,1] and [1,Inf], asecd returns
values in the range [0, 180]. For values of X outside this range, asecd
returns complex values.

Input
Arguments

X - Secant of angle
scalar value | vector | matrix | N-D array

Secant of angle, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The asecd operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Inverse Secant of Vector

x = [10 1 Inf];
y = asecd(x)

y =

84.2608 0 90.0000

The asecd operation is element-wise when you pass a vector, matrix, or
N-D array.

1-323

asecd

Inverse Secant of Complex Value

asecd(1+i)

ans =

64.0864 +30.4033i

See Also secd | asec | sec

1-324

asech

Purpose Inverse hyperbolic secant

Syntax Y = asech(X)

Description Y = asech(X) returns the inverse hyperbolic secant for each element
of X.

The asech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Hyperbolic Secant Function

Graph the inverse hyperbolic secant over the domain .

x = 0.01:0.001:1;
plot(x,asech(x)), grid on

1-325

asech

Definitions Inverse Hyperbolic Secant

The inverse hyperbolic secant can be defined as

sech− −= ⎛
⎝⎜
⎞
⎠⎟

1 1 1
() cosh .z

z

See Also asec | sech | asinh | acosh

1-326

asin

Purpose Inverse sine in radians

Syntax Y = asin(X)

Description Y = asin(X) returns the inverse sine (arcsine) for each element of X.
The asin function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.
For real elements of X in the domain [-1,1], asin(X) is in the range

−⎡
⎣⎢

⎤
⎦⎥

2 2

, .

For real elements of x outside the range [-1,1], asin(X) is complex.

Examples Graph of Inverse Sine Function

Graph the inverse sine over the domain .

x = -1:.01:1;
plot(x,asin(x)), grid on

1-327

asin

Definitions Inverse Sine

The inverse sine can be defined as

sin (.() log) /

1 2 1 21z i iz z

See Also asind | sin | sind

1-328

asind

Purpose Inverse sine in degrees

Syntax Y = asind(X)

Description Y = asind(X) returns the inverse sine (sin-1) of the elements of X in
degrees. The function’s domain and range include complex values.
For real elements of X in the domain [-1,1], asind returns values in
the range [-90,90]. For values of X outside this range, asind returns
complex values.

Input
Arguments

X - Sine of angle
scalar value | vector | matrix | N-D array

Sine of angle, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The asind operation is element-wise
when X is nonscalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Inverse Sine of Scalar

Show that the inverse sine of 1 is exactly 90°.

asind(1)

ans =

90

1-329

asind

Round-Trip Calculation for Complex Angles

Show that the inverse sine, followed by sine, returns the original values
of X.

sind(asind([2 3]))

ans =

2.0000 3.0000

Graph of Inverse Sine Function

Plot the inverse sine function over the domain .

x = -1:.01:1;
plot(x,asind(x))
grid on

1-330

asind

See Also sind | sin | asin

1-331

asinh

Purpose Inverse hyperbolic sine

Syntax Y = asinh(X)

Description Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

The asinh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Hyperbolic Sine Function

Graph the inverse hyperbolic sine over the domain .

x = -5:.01:5;
plot(x,asinh(x)), grid on

1-332

asinh

Definitions Inverse Hyperbolic Sine

The inverse hyperbolic sine can be defined as

sinh (.() log) /− = + +⎡
⎣

⎤
⎦

1 2 1 21z z z

See Also asin | sinh | acosh

1-333

assert

Purpose Generate error when condition is violated

Syntax assert(expression)
assert(expression, 'msgString')
assert(expression, 'msgString', value1, value2, ...)
assert(expression, 'msgIdent', 'msgString',
value1, value2, ...)

Description assert(expression) evaluates expression and, if it is false,
generates an exception. Depending on how the program has been
designed to respond to the assertion failure, MATLAB either enters a
catch block to handle the condition, or exits the program.

assert(expression, 'msgString') evaluates expression and, if it
is false, generates an exception and displays the string contained in
msgString. This string must be enclosed in single quotation marks.
When msgString is the last input to assert, the MATLAB software
displays it literally, without performing any substitutions on the
characters in msgString.

assert(expression, 'msgString', value1, value2, ...)
evaluates expression and, if it is false, generates an exception and
displays the formatted string contained in msgString. The msgString
string can include escape sequences such as \t or \n, as well as any of
the C language conversion operators supported by the sprintf function
(e.g., %s or %d). Additional arguments value1, value2, etc. provide
values that correspond to and replace the conversion operators.

See “Formatting Strings” in the MATLAB Programming Fundamentals
documentation for more detailed information on using string formatting
commands.

MATLAB makes substitutions for escape sequences and conversion
operators in msgString in the same way that it does for the sprintf
function.

assert(expression, 'msgIdent', 'msgString', value1, value2,
...) evaluates expression and, if it is false, generates an exception
and displays the formatted string msgString, also tagging the error

1-334

assert

with the message identifier msgIdent. See “Message Identifiers” in the
MATLAB Programming Fundamentals documentation for information.

Examples This function tests input arguments using assert:

function write2file(varargin)
min_inputs = 3;
assert(nargin >= min_inputs, ...

'You must call function %s with at least %d inputs', ...
mfilename, min_inputs)

infile = varargin{1};
assert(ischar(infile), ...

'First argument must be a filename.')
assert(exist(infile)~=0, 'File %s not found.', infile)

fid = fopen(infile, 'w');
assert(fid > 0, 'Cannot open file %s for writing', infile)

fwrite(fid, varargin{2}, varargin{3});

See Also try | errordlg | error | eval | dbstop | warning | warndlg |
MException | rethrow(MException) | throwAsCaller(MException) |
throw(MException) | addCause(MException) | last(MException) |
getReport(MException)

1-335

assignin

Purpose Assign value to variable in specified workspace

Syntax assignin(ws, 'var', val)

Description assignin(ws, 'var', val) assigns the value val to the variable var
in the workspace ws. The var input must be the array name only; it
cannot contain array indices. If var does not exist in the specified
workspace, assignin creates it. ws can have a value of 'base' or
'caller' to denote the MATLAB base workspace or the workspace of
the caller function.

The assignin function is particularly useful for these tasks:

• Exporting data from a function to the MATLAB workspace

• Within a function, changing the value of a variable that is defined
in the workspace of the caller function (such as a variable in the
function argument list)

Tips The MATLAB base workspace is the workspace that is seen from
the MATLAB command line (when not in the debugger). The caller
workspace is the workspace of the function that called the currently
running function. Note that the base and caller workspaces are
equivalent in the context of a function that is invoked from the
MATLAB command line. For more information, see “Base and Function
Workspaces”.

Examples Example 1

This example creates a dialog box for the image display function,
prompting a user for an image name and a colormap name. The
assignin function is used to export the user-entered values to the
MATLAB workspace variables imfile and cmap.

prompt = {'Enter image name:', 'Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;
def = {'my_image', 'hsv'};
answer = inputdlg(prompt, title, lines, def);

1-336

assignin

assignin('base', 'imfile', answer{1});
assignin('base', 'cmap', answer{2});

Example 2

assignin does not assign to specific elements of an array. The following
statement generates an error:

X = 1:8;
assignin('base', 'X(3:5)', -1);

However, you can use the evalin function to do this:

evalin('base','X(3:5) = -1')
X =

1 2 -1 -1 -1 6 7 8

See Also evalin

1-337

atan

Purpose Inverse tangent in radians

Syntax Y = atan(X)

Description Y = atan(X) returns the inverse tangent (arctangent) for each element
of X. For real elements of X, atan(X) is in the range [–π/2, π/2].

The atan function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph of Inverse Tangent Function

Graph the inverse tangent over the domain .

x = -20:0.01:20;
plot(x,atan(x)), grid on

1-338

atan

Definitions Inverse Tangent

The inverse tangent can be defined as

tan () log .− = +
−

⎛
⎝⎜

⎞
⎠⎟

1

2
z

i i z
i z

See Also atan2 | tan | atand | atanh

1-339

atan2

Purpose Four-quadrant inverse tangent

Syntax P = atan2(Y,X)

Description P = atan2(Y,X) returns an array P the same size as X and Y containing
the element-by-element, four-quadrant inverse tangent (arctangent) of
Y and X, which must be real.

Elements of P lie in the closed interval [-pi,pi], where pi is the
MATLAB floating-point representation of π. atan uses sign(Y) and
sign(X) to determine the specific quadrant.

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the
interval [–π/2, π/2], or the right side of this diagram.

Examples Any complex number z = x + iy is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

For example,

z = 4 + 3i;

1-340

atan2

r = abs(z)
theta = atan2(imag(z),real(z))

r =
5

theta =
0.6435

This is a common operation, so MATLAB software provides a function,
angle(z), that computes theta = atan2(imag(z),real(z)).

To convert back to the original complex number

z = r * exp(i * theta)
z =

4.0000 + 3.0000i

See Also angle | atan | atanh | atan2d

1-341

atan2d

Purpose Four-quadrant inverse tangent in degrees

Syntax D = atan2d(Y,X)

Description D = atan2d(Y,X) returns the four-quadrant inverse tangent of points
specified in the x-y plane. The result, D, is expressed in degrees.

Input
Arguments

Y - y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates, specified as a real-valued scalar, vector, matrix, or N-D
array.

Data Types
single | double

X - x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates, specified as a real-valued scalar, vector, matrix, or N-D
array.

1-342

atan2d

Data Types
single | double

Output
Arguments

D - Angles in degrees
scalar value | vector | matrix | N-D array

Angles in degrees, returned as a scalar, vector, matrix, or N-D array.
These angles correspond to the points defined by X and Y, and they lie
in the closed interval [–180,180].

Examples Inverse Tangent of Four Points on the Unit Circle

x = [1 0 -1 0];
y = [0 1 0 -1];
d = atan2d(y,x)

d =

0 90 180 -90

Tips • Use atand(Y/X) for the inverse tangent with results on the interval
[–90, 90].

See Also atan2 | atan | atand | tan | tand

1-343

atand

Purpose Inverse tangent in degrees

Syntax Y = atand(X)

Description Y = atand(X) returns the inverse tangent (tan-1) of the elements of X in
degrees. The function’s domain and range include complex values. For
real elements of X in the domain [-Inf, Inf], atand returns values in the
range [-90, 90]. For complex values of X, atand returns complex values.

Input
Arguments

X - Tangent of angle
scalar value | vector | matrix | N-D array

Tangent of angle, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The atand operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Inverse Tangent of Vector

x = [-50 -20 0 20 50];
y = atand(x)

y =

-88.8542 -87.1376 0 87.1376 88.8542

The atand operation is element-wise when you pass a vector, matrix, or
N-D array.

1-344

atand

Inverse Tangent of Complex Value

atand(10+i)

ans =

84.3450 + 0.5618i

See Also tand | atan | tan | atan2d

1-345

atanh

Purpose Inverse hyperbolic tangent

Syntax Y = atanh(X)

Description The atanh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element
of X.

Examples Graph of Inverse Hyperbolic Tangent Function

Graph the inverse hyperbolic tangent over the domain .

x = -0.99:0.01:0.99;
plot(x,atanh(x)), grid on

1-346

atanh

Definitions Inverse Hyperbolic Tangent

The inverse hyperbolic tangent can be defined as

tanh () log .− = +
−

⎛
⎝⎜

⎞
⎠⎟

1 1
2

1
1

z
z
z

See Also atan2 | atan | tanh | asinh | acosh | tan

1-347

audiodevinfo

Purpose Information about audio device

Syntax info = audiodevinfo
nDevices = audiodevinfo(IO)
name = audiodevinfo(IO,ID)
DriverVersion = audiodevinfo(IO,ID,'DriverVersion')
support = audiodevinfo(IO,ID,Fs,nBits,nChannels)

ID = audiodevinfo(IO,name)
ID = audiodevinfo(IO,Fs,nBits,nChannels)

Description info = audiodevinfo returns information about the input and output
audio devices on the system.

nDevices = audiodevinfo(IO) returns the number of input devices
on the system if IO is 1, and returns the number of output devices on
the system if IO is 0.

name = audiodevinfo(IO,ID) returns the name of the audio device
specified by the device identifier, ID.

DriverVersion = audiodevinfo(IO,ID,'DriverVersion') returns
the name of the driver for the audio device specified by ID.

support = audiodevinfo(IO,ID,Fs,nBits,nChannels) returns 1 if
the input or output audio device specified by ID supports the sample
rate, number of bits, and number of channels specified by the values of
Fs, nBits, and nChannels, respectively. Otherwise, support is 0.

ID = audiodevinfo(IO,name) returns the device identifier of the input
or output audio device identified by the device name, name. If no device
is found with the specified name, then ID is -1.

1-348

audiodevinfo

ID = audiodevinfo(IO,Fs,nBits,nChannels) returns the device
identifier of the first input or output device that supports the sample
rate, number of bits, and the number of channels specified by the values
of Fs, nBits, and nChannels, respectively. If no supporting device is
found, then ID is -1.

Input
Arguments

IO - Input or output device
1 | 0

Input or output device, specified as 1 to indicate input, or 0 to indicate
output.

ID - Audio device identifier
integer

Audio device identifier, specified as an integer. The device can be an
input or output audio device.

Fs - Sample rate
scalar

Sample rate, in hertz, specified as a positive scalar.

Example: 44100

Data Types
single | double

nBits - Number of bits per sample
scalar

Number of bits per sample, specified as a scalar.

Example: 16

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

nChannels - Number of audio channels
1 | 2

1-349

audiodevinfo

Number of audio channels, specified as 1 (mono) or 2 (stereo).

name - Name of input or output device
string

Name of the input or output audio device, specified as a string.

Data Types
char

Output
Arguments

info - Information about audio devices
structure array

Information about audio devices, returned as a structure array
containing two fields, input and output. Each field is an array of
structures, with each structure containing information about one of the
audio input or output devices on the system. The individual device
structure fields are:

• Name — Name of the device, returned as a string.

• DriverVersion — Name of the driver used to communicate with
the device, returned as a string.

• ID — Device identifier, returned as a scalar.

Examples View Information About Audio Devices

Call audiodevinfo with no inputs to view information about the input
and output audio devices on a system.

info = audiodevinfo

info =

input: [1x2 struct]
output: [1x3 struct]

audiodevinfo returns a structure containing two fields, input and
output.

1-350

audiodevinfo

View the contents of the input field in the Variables editor.

openvar info.input

The Variables editor displays the input audio device names, driver
used, and device identifiers. The values on your system might differ
from this example.

View Number of Output Devices

View the number of output audio devices on the system, using an IO
value of 0 to indicate output.

nDevices = audiodevinfo(0)

nDevices =

3

This example shows three output devices, but your system might vary.

Check Support for Input Device

Check if the input audio device identified by the ID value, 0, supports a
sample rate of 44100 hertz, with 16 bits per sample, and two channels.

support = audiodevinfo(1,0,44100,16,2)

support =

1

1-351

audiodevinfo

The input device supports the specified sample rate, number of bits
and number of channels.

See Also audioplayer | audiorecorder

1-352

audioplayer

Purpose Create object for playing audio

Syntax player = audioplayer(Y,Fs)
player = audioplayer(Y,Fs,nBits)
player = audioplayer(Y,Fs,nBits,ID)
player = audioplayer(recorder)
player = audioplayer(recorder,ID)

Description player = audioplayer(Y,Fs) creates an audioplayer object for
signal Y, using sample rate Fs. The function returns a handle to the
audioplayer object, player.

player = audioplayer(Y,Fs,nBits) uses nBits bits per sample for
signal Y.

player = audioplayer(Y,Fs,nBits,ID) uses the audio device
identified by ID for output.

player = audioplayer(recorder) creates an audioplayer object
using audio recorder object recorder.

player = audioplayer(recorder,ID) creates an object from recorder
that uses the audio device identified byID for output.

Input
Arguments

Y

Audio signal represented by a vector or two-dimensional array
containing single, double, int8, uint8, or int16 values.

The value range of the input sample depends on the data type. The
following table lists these ranges.

Data Type Sample Value Range

int8 -128 to 127

uint8 0 to 255

int16 -32768 to 32767

1-353

audioplayer

Data Type Sample Value Range

single -1 to 1

double -1 to 1

Fs

Sampling rate in Hz. Valid values depend on the specific audio
hardware installed. Typical values supported by most sound cards are
8000, 11025, 22050, 44100, 48000, and 96000 Hz.

nBits

Bits per sample. Specify only when signal Y is represented by
floating-point values. Valid values depend on the audio hardware
installed: 8, 16, or 24.

Default: 16

ID

Device identifier. To obtain the ID of a device, use the audiodevinfo
function.

Default: -1 (default device)

recorder

Audio recorder object created by audiorecorder.

Methods
Note When calling any method, include the audioplayer object name
using function syntax, such as stop(player).

get Query properties of audioplayer object.
isplaying Query whether playback is in progress: returns

true or false.

1-354

audioplayer

pause Pause playback.
play Play audio from beginning to end.
playblocking Play, and do not return control until playback

completes.
resume Restart playback from paused position.
set Set properties of audioplayer object.
stop Stop playback.

See the reference pages for get, play, playblocking, and set for
additional syntax options.

Properties BitsPerSample Number of bits per sample. (Read-only)

CurrentSample Current sample that the audio output device
is playing. If the device is not playing,
CurrentSample is the next sample to play with
play or resume. (Read-only)

DeviceID Identifier for audio device. (Read-only)

NumberOfChannels Number of audio channels. (Read-only)

Running Status of the audio player: 'on' or 'off'.
(Read-only)

SampleRate Sampling frequency in Hz.

TotalSamples Total length of the audio data in samples.
(Read-only)

Tag String that labels the object.

Type Name of the class: 'audioplayer'. (Read-only)

UserData Any type of additional data to store with the
object.

The following four properties apply to callback functions. The first two
inputs to your callback function must be the audioplayer object and
an event structure.

1-355

audioplayer

StartFcn Function to execute one time when playback
starts.

StopFcn Function to execute one time when playback
stops.

TimerFcn Function to execute repeatedly during
playback. To specify time intervals for the
repetitions, use the TimerPeriod property.

TimerPeriod Time in seconds between TimerFcn callbacks.
Default: .05

Examples Load and play a sample audio file of Handel’s “Hallelujah Chorus:”

load handel;
player = audioplayer(y, Fs);
play(player);

See Also audiodevinfo | audiorecorder | sound

How To • “Characteristics of Audio Files”

• “Play Audio”

1-356

audiorecorder

Purpose Create object for recording audio

Syntax recorder = audiorecorder
recorder = audiorecorder(Fs,nBits,nChannels)
recorder = audiorecorder(Fs,nBits,nChannels,ID)

Description recorder = audiorecorder creates an 8000 Hz, 8-bit, 1-channel
audiorecorder object.

recorder = audiorecorder(Fs,nBits,nChannels) sets the sample
rate Fs (in Hz), the sample size nBits, and the number of channels
nChannels.

recorder = audiorecorder(Fs,nBits,nChannels,ID) sets the audio
input device to the device specified by ID.

Tips • To use an audiorecorder object, your system must have a properly
installed and configured sound card.

• audiorecorder is not intended for long, high-sample-rate recording.
audiorecorder uses system memory for storage and does not use
disk buffering. When you attempt a large recording, your MATLAB
performance sometimes degrades over time.

Input
Arguments

Fs

Sampling rate in Hz. Valid values depend on the specific audio
hardware installed. Typical values supported by most sound cards are
8000, 11025, 22050, 44100, 48000, and 96000 Hz.

Default: 8000

nBits

Bits per sample. Valid values depend on the audio hardware installed:
8, 16, or 24.

Default: 8

1-357

audiorecorder

nChannels

The number of channels: 1 (mono) or 2 (stereo).

Default: 1

ID

Device identifier. To obtain the ID of a device, use the audiodevinfo
function.

Default: -1 (default device)

Methods
Note When calling any method, include the audiorecorder object
name using function syntax, such as stop(recorder).

get Query properties of audiorecorder object.
getaudiodata Create an array that stores the recorded signal

values.
getplayer Create an audioplayer object.
isrecording Query whether recording is in progress:

returns true or false.
pause Pause recording.
play Play recorded audio. This method returns an

audioplayer object.
record Start recording.
recordblocking Record, and do not return control until

recording completes. This method requires a
second input for the length of the recording in
seconds:
recordblocking(recorder,length)

resume Restart recording from paused position.
set Set properties of audiorecorder object.
stop Stop recording.

1-358

audiorecorder

See the reference pages for get, getaudiodata, play, record,
recordblocking, and set for additional syntax options.

Properties BitsPerSample Number of bits per sample. (Read-only)

CurrentSample Current sample that the audio input device
is recording. If the device is not recording,
CurrentSample is the next sample to record
with record or resume. (Read-only)

DeviceID Identifier for audio device. (Read-only)

NumberOfChannels Number of audio channels. (Read-only)

Running Status of the audio recorder: 'on' or 'off'.
(Read-only)

SampleRate Sampling frequency in Hz. (Read-only)

TotalSamples Total length of the audio data in samples.
(Read-only)

Tag String that labels the object.

Type Name of the class: 'audiorecorder'.
(Read-only)

UserData Any type of additional data to store with the
object.

The following four properties apply to callback functions. The first
two inputs to your callback function must be the audiorecorder
object and an event structure.

StartFcn Function to execute one time when recording
starts.

StopFcn Function to execute one time when recording
stops.

1-359

audiorecorder

TimerFcn Function to execute repeatedly during
recording. To specify time intervals for the
repetitions, use the TimerPeriod property.

TimerPeriod Time in seconds between TimerFcn callbacks.
Default: .05

audiorecorder ignores any specified values for these properties,
which will be removed in a future release.

BufferLength Length of buffer in seconds.

NumberOfBuffers Number of buffers.

Examples Create an audiorecorder object for CD-quality audio in stereo, and
view its properties:

recObj = audiorecorder(44100, 16, 2);
get(recObj)

Collect a sample of your speech with a microphone, and plot the signal
data:

% Record your voice for 5 seconds.
recObj = audiorecorder;
disp('Start speaking.')
recordblocking(recObj, 5);
disp('End of Recording.');

% Play back the recording.
play(recObj);

% Store data in double-precision array.
myRecording = getaudiodata(recObj);

% Plot the waveform.
plot(myRecording);

1-360

audiorecorder

See Also audiodevinfo | audioplayer | sound

How To • “Characteristics of Audio Files”

• “Record Audio”

• “Record or Play Audio within a Function”

1-361

aufinfo

Purpose Information about NeXT/SUN (.au) sound file

Note aufinfo will be removed in a future release. Use audioinfo
instead.

Syntax [m d] = aufinfo(aufile)

Description [m d] = aufinfo(aufile) returns information about the contents of
the AU sound file specified by the string aufile.

m is the string 'Sound (AU) file', if filename is an AU file.
Otherwise, it contains an empty string ('').

d is a string that reports the number of samples in the file and the
number of channels of audio data. If filename is not an AU file, it
contains the string 'Not an AU file'.

See Also audioread | audioinfo

1-362

auread

Purpose Read NeXT/SUN (.au) sound file

Note auread will be removed in a future release. Use audioread
instead.

Syntax y = auread(aufile)
[y,Fs] = auread(aufile)
[y,Fs,nbits] = auread(aufile)
[___] = auread(aufile,N)
[___] = auread(aufile,[N1 N2])
siz = auread(aufile,'size')

Description y = auread(aufile) loads a sound file specified by the string aufile,
returning the sampled data in y. The .au extension is appended if no
extension is given. Amplitude values are in the range [-1,+1]. auread
supports multichannel data in the following formats:

• 8-bit mu-law

• 8-, 16-, and 32-bit linear

• Floating-point

[y,Fs] = auread(aufile) returns the sample rate (Fs) in Hertz used
to encode the data in the file.

[y,Fs,nbits] = auread(aufile) returns the number of bits per
sample (nbits).

[___] = auread(aufile,N) returns only the first N samples from each
channel in the file.

[___] = auread(aufile,[N1 N2]) returns only samples N1 through
N2 from each channel in the file.

siz = auread(aufile,'size') returns the size of the audio data
contained in the file in place of the actual audio data, returning the
vector siz = [samples channels].

1-363

auread

Examples Create a sound file from the example file handel.mat, and read portions
of the file back into MATLAB:

% Create .au file in current folder.
load handel.mat

hfile = 'handel.au';
auwrite(y, Fs, hfile)
clear y Fs

% Read the data back into MATLAB, and listen to audio.
[y, Fs, nbits] = auread(hfile);
sound(y, Fs);

% Pause before next read and playback operation.
duration = numel(y) / Fs;
pause(duration + 2)

% Read and play only the first 2 seconds.
nsamples = 2 * Fs;
[y2, Fs] = auread(hfile, nsamples);
sound(y2, Fs);
pause(4)

% Read and play the middle third of the file.
sizeinfo = auread(hfile, 'size');

tot_samples = sizeinfo(1);
startpos = tot_samples / 3;
endpos = 2 * startpos;

[y3, Fs] = auread(hfile, [startpos endpos]);
sound(y3, Fs);

See Also audiowrite | audioinfo | audioplayer | audiorecorder | sound |
audioread

1-364

auwrite

Purpose Write NeXT/SUN (.au) sound file

Note auwrite will be removed in a future release.

Syntax auwrite(y,aufile)
auwrite(y,Fs,aufile)
auwrite(y,Fs,N,aufile)
auwrite(y,Fs,N,method,aufile)

Description auwrite(y,aufile) writes a sound file specified by the string aufile.
The data should be arranged with one channel per column. Amplitude
values outside the range [-1,+1] are clipped prior to writing. auwrite
supports multichannel data for 8-bit mu-law and 8- and 16-bit linear
formats.

auwrite(y,Fs,aufile) specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N,aufile) selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N,method,aufile) allows selection of the encoding
method, which can be either 'mu' or 'linear'. Note that mu-law files
must be 8-bit. By default, method = 'mu'.

See Also audioread | audiowrite

1-365

avifile

Purpose Create new Audio/Video Interleaved (AVI) file

Note avifile will be removed in a future release. Use VideoWriter
instead.

Syntax aviobj = avifile(filename)
avifile(filename, ParameterName, ParameterValue)

Description aviobj = avifile(filename) creates an avifile object, giving it
the name specified in filename, using default values for all avifile
object properties. If filename does not include an extension, avifile
appends .avi to the file name. AVI is a file format for storing audio
and video data.

avifile returns a handle to an AVI file object aviobj. Use this object
to refer to the AVI file in other functions. An AVI file object supports
properties and methods that control aspects of the AVI file created.

aviobj = avifile(filename, ParameterName, ParameterValue)
accepts one or more comma-separated parameter name/value pairs. Set
parameter values before any calls to addframe. The following table lists
the available parameters and values.

Parameter
Name Value Default

'colormap' An m-by-3 matrix defining the colormap for indexed
AVI movies, where m is no more than 256 (236 for
Indeo compression).

Valid only when the 'compression' is 'MSVC',
'RLE', or 'None'.

No default

'compression' A text string specifying the compression codec to
use. To create an uncompressed file, specify a value
of 'None'.

'Indeo5'
on Windows
systems.

1-366

avifile

Parameter
Name Value Default

On UNIX® operating systems, the only valid value is
'None'.

On Windows systems, valid values include:

• 'MSVC'

• 'RLE'

• 'Cinepak' on 32-bit systems.

• 'Indeo3' or 'Indeo5' on 32-bit Windows XP
systems.

Alternatively, specify a custom compression codec
on Windows systems using the four-character code
that identifies the codec (typically included in the
codec documentation). If MATLAB cannot find the
specified codec, it returns an error.

'None' on UNIX
systems.

'fps' A scalar value specifying the speed of the AVI movie
in frames per second (fps).

15 fps

'keyframe' For compressors that support temporal compression,
the number of key frames per second.

2.1429 key
frames per second

'quality' A number from 0 through 100. Higher quality
numbers result in higher video quality and larger
file sizes. Lower quality numbers result in lower
video quality and smaller file sizes.

Valid only for compressed movies.

75

'videoname' A descriptive name for the video stream, no more
than 64 characters.

filename

1-367

avifile

Tips • On some Windows systems, including all 64-bit systems, the default
Indeo® 5 codec is not available. MATLAB issues a warning, and
creates an uncompressed file.

• On 32-bit Windows XP systems, MATLAB can create AVI files
compressed with Indeo 3 and Indeo 5 codecs. However, Microsoft
Windows XP Service Pack 3 (SP3) with Security Update 954157
disables playback of Indeo 3 and Indeo 5 codecs in Windows Media
Player and Internet Explorer®. Consider specifying a compression
value of 'None'.

• avifile cannot write files larger than 2 GB.

• You can use dot notation to set avifile object properties. For
example, set the quality property to 100:

aviobj = avifile('myavifile');
aviobj.quality = 100;

All property names of an avifile object are the same as the
parameter names, except for the keyframe parameter, which
corresponds to the KeyFramePerSec property. For example, change
keyframe to 2.5:

aviobj.KeyFramePerSec = 2.5;

Examples Create the AVI file example.avi:

aviobj = avifile('example.avi','compression','None');

t = linspace(0,2.5*pi,40);
fact = 10*sin(t);
fig=figure;
[x,y,z] = peaks;
for k=1:length(fact)

h = surf(x,y,fact(k)*z);
axis([-3 3 -3 3 -80 80])
axis off
caxis([-90 90])

1-368

http://www.microsoft.com/technet/security/advisory/954157.mspx

avifile

F = getframe(fig);
aviobj = addframe(aviobj,F);

end
close(fig);
aviobj = close(aviobj);

Alternatives Use VideoWriter rather than avifile to create AVI files. VideoWriter
supports files larger than 2 GB, and by default, creates files with Motion
JPEG compression, which all platforms support.

See Also VideoWriter | addframe (avifile) | close (avifile) | movie2avi

1-369

aviinfo

Purpose Information about Audio/Video Interleaved (AVI) file

Note aviinfo will be removed in a future release. Use VideoReader
and the get method instead.

Syntax fileinfo = aviinfo(filename)

Description fileinfo = aviinfo(filename) returns a structure whose fields
contain information about the AVI file specified in the string filename.
If filename does not include an extension, then .avi is used. The
file must be in the current working directory or in a directory on the
MATLAB path.

The set of fields in the fileinfo structure is shown below.

Field Name Description

AudioFormat String containing the name of the format
used to store the audio data, if audio data
is present

AudioRate Integer indicating the sample rate in
Hertz of the audio stream, if audio data
is present

Filename String specifying the name of the file

FileModDate String containing the modification date of
the file

FileSize Integer indicating the size of the file in
bytes

FramesPerSecond Integer indicating the desired frames per
second

Height Integer indicating the height of the AVI
movie in pixels

1-370

aviinfo

Field Name Description

ImageType String indicating the type of image. Either
'truecolor' for a truecolor (RGB) image,
or 'indexed' for an indexed image.

NumAudioChannels Integer indicating the number of channels
in the audio stream, if audio data is
present

NumFrames Integer indicating the total number of
frames in the movie

NumColormapEntries Integer specifying the number of colormap
entries. For a truecolor image, this value
is 0 (zero).

Quality Number between 0 and 100 indicating
the video quality in the AVI file. Higher
quality numbers indicate higher video
quality; lower quality numbers indicate
lower video quality. This value is not
always set in AVI files and therefore can
be inaccurate.

VideoCompression String containing the compressor used to
compress the AVI file. If the compressor
is not Microsoft Video 1, Run Length
Encoding (RLE), Cinepak, or Intel® Indeo,
aviinfo returns the four-character code
that identifies the compressor.

Width Integer indicating the width of the AVI
movie in pixels

See also mmfileinfo, VideoReader, VideoWriter

1-371

aviread

Purpose Read Audio/Video Interleaved (AVI) file

Note aviread will be removed in a future release. Use VideoReader
instead.

Syntax mov = aviread(filename)
mov = aviread(filename, index)

Description mov = aviread(filename) reads the AVI movie filename into the
MATLAB movie structure mov. If filename does not include an
extension, then .avi is used. Use the movie function to view the movie
mov. On UNIX platforms, filename must be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields
varies depending on the type of image.

Image Type cdata Field colormap Field

Truecolor Height-by-width-by-3
array of uint8 values

Empty

Indexed Height-by-width
array of uint8 values

m-by-3 array of
double values

aviread supports 8-bit frames, for indexed and grayscale images, 16-bit
grayscale images, or 24-bit truecolor images. Note, however, that movie
only accepts 8-bit image frames; it does not accept 16-bit grayscale
image frames.

mov = aviread(filename, index) reads only the frames specified by
index. index can be a single index or an array of indices into the video
stream. In AVI files, the first frame has the index value 1, the second
frame has the index value 2, and so on.

See also mmfileinfo, movie, VideoReader, VideoWriter

1-372

axes

Purpose Create axes graphics object

Syntax axes
axes('PropertyName',propertyvalue,...)
axes(h)
h = axes(...)

Properties For a list of properties, see Axes Properties.

Description axes creates an axes graphics object in the current figure using default
property values. axes is the low-level function for creating axes
graphics objects. MATLAB automatically creates an axes, if one does
not already exist, when you issue a command that creates a graph.

axes('PropertyName',propertyvalue,...) creates an axes object
having the specified property values. For a description of the properties,
see Axes Properties. MATLAB uses default values for any properties
that you do not explicitly define as arguments. The axes function
accepts property name/property value pairs, structure arrays, and cell
arrays as input arguments (see the set and get commands for examples
of how to specify these data types). While the basic purpose of an axes
object is to provide a coordinate system for plotted data, axes properties
provide considerable control over the way MATLAB displays data.

axes(h) makes existing axes h the current axes and brings the figure
containing it into focus. It also makes h the first axes listed in the
figure’s Children property and sets the figure’s CurrentAxes property
to h. The current axes is the target for functions that draw image, line,
patch, rectangle, surface, and text graphics objects.

If you want to make an axes the current axes without changing the
state of the parent figure, set the CurrentAxes property of the figure
containing the axes:

set(figure_handle,'CurrentAxes',axes_handle)

This command is useful if you want a figure to remain minimized or
stacked below other figures, but want to specify the current axes.

1-373

axes

h = axes(...) returns the handle of the created axes object.

Use the set function to modify the properties of an existing axes or the
get function to query the current values of axes properties. Use the gca
command to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly
used properties that control the scaling and appearance of axes.

Set default axes properties on the figure and root object levels:

set(0,'DefaultAxesPropertyName',PropertyValue,...)
set(gcf,'DefaultAxesPropertyName',PropertyValue,...)

PropertyName is the name of the axes property and PropertyValue is
the value you are specifying. Use set and get to access axes properties.

Stretch-to-Fill

By default, MATLAB stretches the axes to fill the axes position
rectangle (the rectangle defined by the last two elements in the
Position property). This results in graphs that use the available space
in the rectangle. However, some 3-D graphs (such as a sphere) appear
distorted because of this stretching, and are better viewed with a
specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto (the default). However, stretch-to-fill is turned off when the
DataAspectRatio, PlotBoxAspectRatio, or CameraViewAngle is
user-specified, or when one or more of the corresponding modes is set to
manual (which happens automatically when you set the corresponding
property value).

This picture shows the same sphere displayed both with and without
the stretch-to-fill. The dotted lines show the axes rectangle.

1-374

axes

When stretch-to-fill is disabled, MATLAB sets the size of the axes to
be as large as possible within the constraints imposed by the Position
rectangle without introducing distortion. In the picture above, the
height of the rectangle constrains the axes size.

Examples Define Multiple Axes in Figure Window

Define multiple axes in a single figure window.

figure
axes('Position',[0.1,0.1,0.7,0.7])
contour(peaks(20))

axes('Position',[0.7,0.7,0.28,0.28])
surf(peaks(20))

1-375

axes

Alternatives To create a figure select New > Figure from the figure window File
menu. To add an axes to a figure, click one of the New Subplots icons
in the Figure Palette, and slide right to select an arrangement of new
axes. For details, see “Customize Graph Using Plot Tools”.

See Also axis | cla | clf | figure | gca | grid | subplot | title | xlabel
| ylabel | zlabel | view | Axes Properties

1-376

axes

Tutorials • “Axes Objects — Defining Coordinate Systems for Graphs”

• “Axes Property Operations”

1-377

Axes Properties

Purpose Modify axes properties

Creating
Axes
Objects

Use axes to create axes objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “Customize Objects in Graph” is an interactive tool that enables you
to see and change object property values.

• The set and get commands let you set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values” in the Handle Graphics Objects documentation.

Axes
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

ActivePositionProperty
{outerposition} | position

Use OuterPosition or Position property for resize. Specifies
which property (Position or OuterPosition) MATLAB holds
constant as you resize the figure (interactively or during a
printing or exporting operation).

Setting a value for the Position property makes position the
value of the ActivePositionProperty. The same is also true of
setting a value for the OuterPosition property; outerposition
becomes the value of the ActivePositionProperty.

See OuterPosition and Position for related properties.

See Automatic Axes Resize for a discussion of how to use axes
positioning properties.

1-378

Axes Properties

ALim
[amin, amax]

Alpha axis limits. Determines how MATLAB maps the AlphaData
values of surface, patch, and image objects to the figure’s
alphamap.

• amin — Value of the data mapped to the first alpha value in
the alphamap.

• amax — Value of the data mapped to the last alpha value in
the alphamap.

MATLAB linearly interpolates data values in between across the
alphamap and clamps data values outside to either the first or
last alphamap value, whichever is closest.

If the axes contains multiple graphics objects, MATLAB
sets ALim to span the range of all objects’ AlphaData (or
FaceVertexAlphaData for patch objects).

See the alpha function reference page for additional information.

ALimMode
{auto} | manual

Alpha axis limits mode.

• auto—MATLAB sets the ALim property to span the AlphaData
limits of the graphics objects displayed in the axes.

• manual — MATLAB does not change the value of ALim when
the AlphaData limits of axes children change.

Setting the ALim property sets ALimMode to manual.

AmbientLightColor
ColorSpec

1-379

Axes Properties

Background light in a scene. Ambient light is a directionless
light that shines uniformly on all objects in the axes. However, if
there are no visible light objects in the axes, MATLAB does not
use AmbientLightColor. If there are light objects in the axes,
MATLAB adds the AmbientLightColor to the other light sources.

AspectRatio
(Obsolete)

This property produces a warning message when
queried or changed. The DataAspectRatio[Mode] and
PlotBoxAspectRatio[Mode] properties have superseded it.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

See the close and delete function reference pages for related
information.

Box
on | {off}

Axes box mode. Specifies whether to enclose the axes extent in a
box for 2-D views or a cube for 3-D views. The default is to not
display the box.

BusyAction
cancel | {queue}

1-380

Axes Properties

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press a
mouse button while the pointer is within the axes, but not over
another graphics object parented to the axes. For 3-D views, the
active area is a rectangle that encloses the axes.

See the figure’s SelectionType property to determine whether
modifier keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of axes associated with the button down event and an event
structure, which is empty for this property).

1-381

Axes Properties

For information on the syntax of callback functions, see Function
Handle Callbacks.

Some Plotting Functions Reset the ButtonDownFcn

Most MATLAB plotting functions clear the axes and reset a
number of axes properties, including the ButtonDownFcn before
plotting data. To create an interface that lets users plot data
interactively, consider using a control device such as a push
button (uicontrol), which plotting functions do not affect.

If you must use the axes ButtonDownFcn to plot data, then you
should use low-level functions such as line, patch, and surface
and manage the process with the figure and axes NextPlot
properties.

See “High-Level Versus Low-Level Functions” for information on
how plotting functions behave.

See “Preparing Figures and Axes for Graphics” for more
information.

Camera Properties

See View Control with the Camera Toolbar for information related to
the Camera properties.

See Defining Scenes with Camera Graphics for information on the
camera properties.

See View Projection Types for information on orthogonal and
perspective projections.

CameraPosition
[x, y, z] axes coordinates

Location of the camera. Position from which the camera views the
scene. Specify the point in axes coordinates.

1-382

Axes Properties

If you fix CameraViewAngle, you can zoom in and out on the
scene by changing the CameraPosition, moving the camera
closer to the CameraTarget to zoom in and farther away
from the CameraTarget to zoom out. As you change the
CameraPosition, the amount of perspective also changes, if
Projection is perspective. You can also zoom by changing the
CameraViewAngle; however, this does not change the amount of
perspective in the scene.

CameraPositionMode
{auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB
automatically calculates the CameraPosition such that the
camera lies a fixed distance from the CameraTarget along the
azimuth and elevation specified by view. Setting a value for
CameraPosition sets this property to manual.

CameraTarget
[x, y, z] axes coordinates

Camera aiming point. Specifies the location in the axes that the
camera points to. The CameraTarget and the CameraPosition
define the vector (the view axis) along which the camera looks.

CameraTargetMode
{auto} | manual

Auto or manual CameraTarget placement. When this property is
auto, MATLAB automatically positions the CameraTarget at the
centroid of the axes plot box. Specifying a value for CameraTarget
sets this property to manual.

CameraUpVector
[x, y, z] axes coordinates

Camera rotation. Specifies the rotation of the camera around
the viewing axis defined by the CameraTarget and the
CameraPosition properties. Specify CameraUpVector as a

1-383

Axes Properties

three-element array containing the x, y, and z components of the
vector. For example, [0 1 0] specifies the positive y-axis as the
up direction.

The default CameraUpVector is [0 0 1], which defines the
positive z-axis as the up direction.

CameraUpVectorMode
{auto} | manual

Default or user-specified up vector. When CameraUpVectorMode
is auto, MATLAB uses a value of [0 0 1] (positive z-direction
is up) for 3-D views and [0 1 0] (positive y-direction is up) for
2-D views. Setting a value for CameraUpVector sets this property
to manual.

CameraViewAngle
scalar greater than 0 and less than or equal to 180 (angle in
degrees)

Field of view. Determines the camera field of view. Changing this
value affects the size of graphics objects displayed in the axes, but
does not affect the degree of perspective distortion. The greater
the angle, the larger the field of view, and the smaller objects
appear in the scene.

CameraViewAngleMode
{auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB
sets CameraViewAngle to the minimum angle that captures the
entire scene (up to 180°).

The following table summarizes MATLAB camera behavior
using various combinations of CameraViewAngleMode,
CameraTargetMode, and CameraPositionMode:

1-384

Axes Properties

CameraViewAngleMode CameraTargetMode CameraPositionMode Behavior

auto auto auto

Sets CameraTarget
to plot box
centroid, sets
CameraViewAngle
to capture entire
scene, sets
CameraPosition
along the view axis.

auto auto manual

Sets CameraTarget
to plot box
centroid, sets
CameraViewAngle
to capture entire
scene.

auto manual auto

Sets
CameraViewAngle
to capture entire
scene, sets
CameraPosition
along the view axis.

auto manual manual

Sets
CameraViewAngle
to capture entire
scene.

manual auto auto

Sets CameraTarget
to plot box
centroid, sets
CameraPosition
along the view axis.

manual auto manual
Sets CameraTarget
to plot box centroid.

1-385

Axes Properties

CameraViewAngleMode CameraTargetMode CameraPositionMode Behavior

manual manual auto
Sets
CameraPosition
along the view axis.

manual manual manual
User specifies all
camera properties.

Children
vector of graphics object handles

Handles of all graphics objects rendered within the axes (whether
visible or not). The graphics objects that can be children of axes
are image, light, line, patch, rectangle, surface, and text.
Change the order of the handles to change the stacking of the
objects on the display.

The text objects used to label the x-, y-, and z-axes and the title are
also children of axes, but their HandleVisibility properties are
set to off. This means their handles do not show up in the axes
Children property unless you set the Root ShowHiddenHandles
property to on.

When an object’s HandleVisibility property is off, its parent’s
Children property does not list it. See HandleVisibility for
more information.

CLim
[cmin, cmax]

Color axis limits. Determines how MATLAB maps the CData
values of surface and patch objects to the figure’s Colormap. cmin
is the value of the data mapped to the first color in the colormap.
cmax is the value of the data mapped to the last color in the
colormap. MATLAB linearly interpolates data values in between
across the colormap and clamps data values outside to either the
first or last alphamap colormap color, whichever is closest.

1-386

../ref/axes_props.html#HandleVisibility

Axes Properties

When CLimMode is auto (the default), MATLAB assigns cmin the
minimum data value and cmax the maximum data value in the
graphics object’s CData. This maps CData elements with minimum
data value to the first colormap entry and with maximum data
value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim
to span the range of all objects’ CData.

See the caxis function reference page for related information.

CLimMode
{auto} | manual

Color axis limits mode.

• auto — MATLAB sets the CLim property to span the CData
limits of the graphics objects displayed in the axes.

• manual — MATLAB does not change the value of CLim when
the CData limits of axes children change.

Setting the CLim property sets this property to manual.

Clipping
{on} | off

Clipping mode. This property has no effect on axes.

Color
{[1,1,1]} | ColorSpec

Color of the axes back planes. Setting this property to none means
that the axes is transparent and the figure color shows through. A
ColorSpec is a three-element RGB vector or one of the MATLAB
predefined names.

ColorOrder
m-by-3 matrix of RGB values

1-387

Axes Properties

Colors to use for multiline plots. Defines the colors used by the
plot and plot3 functions to color each line plotted. If you do not
specify a line color with plot and plot3, these functions cycle
through the ColorOrder property to obtain the color for each line
plotted. To obtain the current ColorOrder, which might be set
during startup, get the property value:

get(gca,'ColorOrder')

Note that if the axes NextPlot property is replace (the default),
high-level functions like plot reset the ColorOrder property
before determining the colors to use. If you want MATLAB to use
a ColorOrder that is different from the default, set NextPlot
to replacechildren. You can also specify your own default
ColorOrder.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Executes when
MATLAB creates an axes object. You must define this property as
a default value for axes. For example, the statement:

set(0,'DefaultAxesCreateFcn',@ax_create)

defines a default value on the Root level that sets axes properties
whenever you (or MATLAB) create an axes.

function ax_create(src,evnt)
set(src,'Color','b',...
'XLim',[1 10],...
'YLim',[0 100])

end

MATLAB executes this function after setting all properties for the
axes. Setting the CreateFcn property on an existing axes object
has no effect.

1-388

Axes Properties

MATLAB passes the handle of the object whose CreateFcn is
being executed as the first argument to the callback function and
is also accessible through the Root CallbackObject property,
which can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

CurrentPoint
2-by-3 matrix

Location of last button click, in axes data units. Contains the
coordinates of two points defined by the location of the pointer
at the last mouse click. MATLAB returns the coordinates with
respect to the requested axes.

Clicking Within the Axes — Orthogonal Projection

The two points lie on the line that is perpendicular to the plane of
the screen and passes through the pointer. This is true for both
2-D and 3-D views.

The 3-D coordinates are the points, in the axes coordinate system,
where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, y, and z limits).

The returned matrix is of the form:

x y z

x y z
front front front

back back back

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where front defines the point nearest to the camera position.
Therefore, if the CurrentPoint property returns the cp matrix ,
then the first row,

cp(1,:)

1-389

Axes Properties

specifies the point nearest the viewer and the second row,

cp(2,:)

specifies the point furthest from the viewer.

Clicking Outside the Axes — Orthogonal Projection

When you click outside the axes volume, but within the figure,
the returned values are:

• Back point — a point in the plane of the camera target (which
is perpendicular to the viewing axis).

• Front point — a point in the camera position plane (which is
perpendicular to the viewing axis).

These points lie on a line that passes through the pointer and is
perpendicular to the camera target and camera position planes.

Clicking Within the Axes — Perspective Projection

The values of the current point when using perspective project
can be different from the same point in orthographic projection
because the shape of the axes volume can be different.

Clicking Outside the Axes — Perspective Projection

Clicking outside of the axes volume returns the front point as the
current camera position at all times. Only the back point updates
with the coordinates of a point that lies on a line extending from
the camera position through the pointer and intersecting the
camera target at the point.

Related Information

See the figure CurrentPoint property for more information.

1-390

Axes Properties

DataAspectRatio
[dx dy dz]

Relative scaling of data units. Controls the relative scaling of
data units in the x, y, and z directions. For example, setting this
property to [1 2 1] causes the length of one unit of data in the
x-direction to be the same length as two units of data in the
y-direction and one unit of data in the z-direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode
properties to control how MATLAB scales the x-, y-, and z-axis.
Setting the DataAspectRatio disables the stretch-to-fill behavior
if DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto.

The following table describes the interaction between properties
when you disable stretch-to-fill behavior.

Interaction Between Properties With Stretch-to-Fill
Disabled

X-, Y-,
Z-LimitModes DataAspectRatio PlotBoxAspectRatio Behavior

auto auto auto Limits chosen to
span data range in
all dimensions.

auto auto manual Limits chosen to
span data range
in all dimensions.
MATLAB modifies
DataAspectRatio
to achieve
the requested
PlotBoxAspectRatio

1-391

Axes Properties

X-, Y-,
Z-LimitModes DataAspectRatio PlotBoxAspectRatio Behavior

within the limits the
software selected.

auto manual auto Limits chosen to
span data range
in all dimensions.
MATLAB modifies
PlotBoxAspectRatio
to achieve
the requested
DataAspectRatio
within the limits the
software selected.

auto manual manual Limits chosen to
completely fit and
center the plot
within the requested
PlotBoxAspectRatio
given the requested
DataAspectRatio
(this might produce
empty space
around 2 of the 3
dimensions).

manual auto auto MATLAB honors
limits and
modifies the
DataAspectRatio
and
PlotBoxAspectRatio
as necessary.

1-392

Axes Properties

X-, Y-,
Z-LimitModes DataAspectRatio PlotBoxAspectRatio Behavior

manual auto manual MATLAB honors
limits and
PlotBoxAspectRatio
and modifies
DataAspectRatio as
necessary.

manual manual auto MATLAB honors
limits and
DataAspectRatio
and modifies the
PlotBoxAspectRatio
as necessary.

1 manual

2 auto

manual manual MATLAB selects
the 2 automatic
limits to honor the
specified aspect
ratios and limit. See
"Examples."

2 or 3 manual manual manual MATLAB honors
limits and
DataAspectRatio
while
ignoringPlotBoxAspectRatio.

See “Understanding Axes Aspect Ratio” for more information.

DataAspectRatioMode
{auto} | manual

User or MATLAB controlled data scaling. Controls whether
the values of the DataAspectRatio property are user-defined
or selected automatically by MATLAB. Setting values for the
DataAspectRatio property automatically sets this property

1-393

Axes Properties

to manual. Changing DataAspectRatioMode to manual
disables the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Delete axes callback function. Executes when you delete the axes
object (for example, when you issue a delete or clf command).
MATLAB executes the routine before destroying the object’s
properties so the callback can query these values.

MATLAB passes the handle of the object whose DeleteFcn is
executing as the first argument to the callback function. The
handle is also accessible through the Root CallbackObject
property, which can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DrawMode
{normal} | fast

Rendering mode. Controls the way MATLAB renders graphics
objects displayed in the axes when the figure Renderer property
is painters.

• normal — Draws objects in back to front ordering based on
the current view in order to handle hidden surface elimination
and object intersections.

• fast — Draws objects in the order in which you specify the
drawing commands, without considering the relationships of
the objects in three dimensions. This results in faster rendering
because it requires no sorting of objects according to location
in the view, but can produce undesirable results because it

1-394

Axes Properties

bypasses the hidden surface elimination and object intersection
handling provided by normal DrawMode.

When the figure Renderer property is zbuffer, MATLAB ignores
DrawMode and always provides hidden surface elimination and
object intersection handling.

FontAngle
{normal} | italic | oblique

Select italic or normal font. Selects the character slant for axes
text. normal specifies a nonitalic font. italic and oblique
specify italic font.

FontName
name (such as Courier) | FixedWidth

Font family name. Specifies the font to use for axes labels. To
display and print properly, FontName must be a font that your
system supports. Note that MATLAB does not display the x-, y-,
and z-axis labels in a new font until you manually reset them (by
setting the XLabel, YLabel, and ZLabel properties or by using the
xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

Specifying a Fixed-Width Font

If you want an axes to use a fixed-width font that looks good in
any locale, set FontName to the string FixedWidth:

set(axes_handle,'FontName','FixedWidth')

This eliminates the need to hardcode the name of a fixed-width
font, which might not display text properly on systems that do not
use ASCII character encoding (such as in Japan, where character
sets can be multibyte). A properly written MATLAB application
that needs to use a fixed-width font should set FontName to
FixedWidth (note that this string is case sensitive) and rely

1-395

Axes Properties

on FixedWidthFontName to be set correctly in the end user’s
environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes
an immediate update of the display to use the new font.

FontSize
Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels
and titles, in units determined by the FontUnits property. The
default point size is 12 and the maximum allowable font size
depends on your operating system. MATLAB does not display x-,
y-, and z-axis text labels in a new font size until you manually
reset them (by setting the XLabel, YLabel, or ZLabel properties
or by using the xlabel, ylabel, or zlabel command). Tick mark
labels change immediately.

FontUnits
{points} | normalized | inches | centimeters | pixels

Units used to interpret the FontSize property. When set to
normalized, MATLAB interprets the value of FontSize as a
fraction of the height of the axes. For example, a normalized
FontSize of 0.1 sets the text characters to a font whose height
is one tenth of the axes’ height. The default units (points), are
equal to 1/72 of an inch.

If you set both the FontSize and the FontUnits in one function
call, you must set the FontUnits property first so that MATLAB
correctly interprets the specified FontSize.

FontWeight
{normal} | bold | light | demi

1-396

Axes Properties

Select bold or normal font. The character weight for axes text.
MATLAB does not display the x-, y-, and z-axis text labels in bold
until you manually reset them (by setting the XLabel, YLabel,
and ZLabel properties or by using the xlabel, ylabel, or zlabel
commands). Tick mark labels change immediately.

GridLineStyle
- | - -| {:} | -. | none

Line style used to draw grid lines. The line style is a string
consisting of a character, in quotes, specifying solid lines (-),
dashed lines (--), dotted lines(:), or dash-dot lines (-.). The default
grid line style is dotted. To turn on grid lines, use the grid
command.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children,
functions that obtain handles by searching the object hierarchy or

1-397

Axes Properties

querying handle properties cannot return it. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close.

When you restrict a handle’s visibility by using callback or
off, the object’s handle does not appear in its parent’s Children
property, figures do not appear in the Root’s CurrentFigure
property, objects do not appear in the Root’s CallbackObject
property or in the figure’s CurrentObject property, and axes do
not appear in their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. Determines if the axes can become the
current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click the axes. If
HitTest is off, clicking the axes selects the object below it (which
is usually the figure containing it).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is

1-398

Axes Properties

the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.

1-399

Axes Properties

For more information, see “Control Callback Execution and
Interruption”.

Layer
{bottom} | top

Draw axis lines below or above graphics objects. Determines
whether to draw axis lines and tick marks on top or below axes
children objects for any 2-D view (for example, when you are
looking along the x-, y-, or z-axis). Use this property to place grid
lines and tick marks on top of images.

LineStyleOrder
LineSpec {a solid line '-'}

Order of line styles and markers used in a plot. Specifies which
line styles and markers to use and in what order when creating
multiple-line plots. For example:

set(gca,'LineStyleOrder', '-*|:|o')

sets LineStyleOrder to solid line with asterisk marker, dotted
line, and hollow circle marker. The default is (-), which specifies a
solid line for all data plotted. Alternatively, you can create a cell
array of character strings to define the line styles:

set(gca,'LineStyleOrder',{'-*',':','o'})

MATLAB supports four line styles, which you can specify any
number of times in any order. MATLAB cycles through the
line styles only after using all colors defined by the ColorOrder
property. For example, the first eight lines plotted use the
different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second
line style specified, and so on.

You can also specify line style and color directly with the plot
and plot3 functions or by altering the properties of the line or
lineseries objects after creating the graph.

1-400

Axes Properties

High-Level Functions and LineStyleOrder

Note that, if the axes NextPlot property is replace (the default),
high-level functions like plot reset the LineStyleOrder property
before determining the line style to use. If you want MATLAB
to use a LineStyleOrder that is different from the default, set
NextPlot to replacechildren.

Specifying a Default LineStyleOrder

You can specify your own default LineStyleOrder. For example:

set(0,'DefaultAxesLineStyleOrder',{'-*',':','o'})

creates a default value for the axes LineStyleOrder that
high-level plotting functions will not reset.

LineWidth
line width in points

Width of axis lines. Specifies the width, in points, of the x-, y-, and
z-axis lines. The default line width is 0.5 points 1 point = 1/72 inch.

MinorGridLineStyle
- | - -| {:} | -. | none

Line style used to draw minor grid lines. The line style is a string
consisting of one or more characters, in quotes, specifying solid
lines (-), dashed lines (--), dotted lines (:), or dash-dot lines (-.).
The default minor grid line style is dotted. To turn on minor grid
lines, use the grid minor command.

NextPlot
add | {replace} | replacechildren

Where to draw the next plot. Determines how high-level plotting
functions draw into an existing axes.

• add— Use the existing axes to draw graphics objects.

1-401

Axes Properties

• replace— Reset all axes properties except Position to their
defaults and delete all axes children before displaying graphics
(equivalent to cla reset).

• replacechildren— Remove all child objects, but do not reset
axes properties (equivalent to cla).

The newplot function simplifies the use of the NextPlot property
and is useful for functions that draw graphs using only low-level
object creation routines. Note that figure graphics objects also
have a NextPlot property.

OuterPosition
four-element vector

Position of axes including labels, title, and a margin. Specifies a
rectangle that locates the outer bounds of the axes, including axis
labels, the title, and a margin. The vector is as follows:

[left bottom width height]

where left and bottom define the distance from the lower-left
corner of the figure window to the lower-left corner of the
rectangle. width and height are the dimensions of the rectangle.

The following picture shows the region defined by the
OuterPosition enclosed in a yellow rectangle.

1-402

Axes Properties

When ActivePositionProperty is OuterPosition (the default),
resizing the figure will not clip any of the text. The default value
of [0 0 1 1] (normalized units) includes the interior of the figure.

The Units property specifies all measurement units.

See the property for related information.

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

Parent
figure or uipanel handle

Axes parent. The handle of the axes’ parent object. The parent of
an axes object is the figure which displays it or the uipanel object
that contains it. The utility function gcf returns the handle of

1-403

Axes Properties

the current axes Parent. You can reparent axes to other figure
or uipanel objects.

PlotBoxAspectRatio
[px py pz]

Relative scaling of axes plot box. Controls the relative scaling of
the plot box in the x, y, and z directions. The plot box is a box
enclosing the axes data region as defined by the x-, y-, and z-axis
limits.

Note that the PlotBoxAspectRatio property interacts with the
DataAspectRatio, XLimMode, YLimMode, and ZLimMode properties
to control the way MATLAB displays graphics objects. Setting
the PlotBoxAspectRatio disables stretch-to-fill behavior,
if DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto.

PlotBoxAspectRatioMode
{auto} | manual

User or MATLAB controlled axis scaling. Controls whether the
values of the PlotBoxAspectRatio property are user-defined
or selected automatically by MATLAB. Setting values for the
PlotBoxAspectRatio property automatically sets this property
to manual. Changing the PlotBoxAspectRatioMode to manual
disables stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

Position
four-element vector

Position of axes. Specifies a rectangle that locates the axes within
its parent container (figure or uipanel). The vector is of the form:

[left bottom width height]

1-404

Axes Properties

where left and bottom define the distance from the lower-left
corner of the container to the lower-left corner of the rectangle.
width and height are the dimensions of the rectangle. The Units
property specifies the units for all measurements.

When you enable axes stretch-to-fill behavior (when
DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto), MATLAB stretches the axes
to fill the Position rectangle. When you disable stretch-to-fill,
MATLAB makes the axes as large as possible, while obeying
all other properties, without extending outside the Position
rectangle.

See the OuterPosition property for related information.

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

Projection
{orthographic} | perspective

Type of projection. Selects one of the following projection types:

• orthographic— Maintains the correct relative dimensions of
graphics objects regarding the distance a given point is from
the viewer and draws parallel lines in the data parallel on the
screen.

• perspective — Incorporates foreshortening, which allows
you to perceive depth in 2-D representations of 3-D objects.
Perspective projection does not preserve the relative dimensions
of objects; it displays a distant line segment smaller than a
nearer line segment of the same length. Parallel lines in the
data might not appear parallel on screen.

Selected
on | {off}

1-405

Axes Properties

Is object selected? When you set this property to on, MATLAB
displays selection “handles” at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that the axes has been selected.

SelectionHighlight
{on} | off

Highlights objects when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, suppose you want to direct all graphics output from a
file to a particular axes, regardless of user actions that might have
changed the current axes. To do this, identify the axes with a Tag:

axes('Tag','Special Axes')

Then make that axes the current axes before drawing by searching
for the Tag with findobj:

axes(findobj('Tag','Special Axes'))

TickDir
in | out

1-406

Axes Properties

Direction of tick marks. For 2-D views, the default is to direct tick
marks inward from the axis lines; 3-D views direct tick marks
outward from the axis line.

TickDirMode
{auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs
tick marks inward for 2-D views and outward for 3-D views. When
you specify a setting for TickDir, MATLAB sets TickDirMode to
manual. In manual mode, MATLAB does not change the specified
tick direction.

TickLength
[2DLength 3DLength]

Length of tick marks. Specifies the length of axes tick marks.
The first element is the length of tick marks used for 2-D views
and the second element is the length of tick marks used for 3-D
views. Specify tick mark lengths in units normalized relative to
the longest of the visible x-, y-, or z-axis annotation lines.

TightInset
[left bottom right top] Read only

Margins added to Position to include text labels. The distances
between the bounds of the Position property and the extent of
the axes text labels and title. When added to the Position width
and height values, the TightInset defines the tightest bounding
box that encloses the axes and its labels and title.

See “Automatic Axes Resize” for more information.

Title
handle of text object

Axes title. The handle of the text object used for the axes title.
Use this handle to change the properties of the title text or you can

1-407

Axes Properties

set Title to the handle of an existing text object. For example, the
following statement changes the color of the current title to red:

set(get(gca,'Title'),'Color','r')

To create a new title, set this property to the handle of the text
object you want to use:

set(gca,'Title',text('String','New Title','Color','r'))

However, it is simpler to use the title command to create or
replace an axes title:

title('New Title','Color','r') % Make text color red
title({'This title','has 2 lines'}) % Two line title

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For axes objects, Type is always
’axes’.

UIContextMenu
handle of uicontextmenu object

Associate a context menu with the axes. Assign this property the
handle of a uicontextmenu object created in the axes’ parent
figure. Use the uicontextmenu function to create the context
menu. MATLAB displays the context menu whenever you
right-click over the axes.

Units
inches | centimeters | {normalized} | points | pixels
| characters

1-408

Axes Properties

Axes position units. The units used to interpret the Position
property. MATLAB measures all units from the lower left corner
of the figure window.

Note The Units property controls the positioning of the axes
within the figure. This property does not affect the data units
used for graphing. See the axes XLim, YLim, and ZLim properties
to set the limits of each axis data units.

• normalized — Units map the lower left corner of the figure
window to (0,0) and the upper right corner to (1.0, 1.0).

• inches, centimeters, and points — Absolute units. 1 point
= 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

When specifying the units as property/value pairs during object
creation, you must set the Units property before specifying the
properties that you want to use these units.

UserData
matrix

User-specified data. Data you want to associate with the axes
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

View
Obsolete

The axes camera properties now controls the functionality
provided by the View property — CameraPosition, CameraTarget,
CameraUpVector, and CameraViewAngle. See the view command.

1-409

Axes Properties

Visible
{on} | off

Visibility of axes. By default, axes are visible. Setting this
property to off prevents axis lines, tick marks, and labels from
being displayed. The Visible property does not affect children
of axes.

XAxisLocation
top | {bottom}

Location of x-axis tick marks and labels. Controls where MATLAB
displays the x-axis tick marks and labels. Setting this property to
top moves the x-axis to the top of the plot from its default position
at the bottom. This property applies to 2–D views only.

YAxisLocation
right | {left}

Location of y-axis tick marks and labels. Controls where MATLAB
displays the y-axis tick marks and labels. Setting this property to
rightmoves the y-axis to the right side of the plot from its default
position on the left side. This property applies to 2–D views only.
See the plotyy function for a simple way to use two y-axes.

Properties That Control the X-, Y-, or Z-Axis

XColor
YColor
ZColor

ColorSpec

Color of axis lines. A three-element vector specifying an RGB
triple, or a predefined MATLAB color string. This property
determines the color of the axis lines, tick marks, tick mark
labels, and the axis grid lines of the respective x-, y-, and z-axis.
The default axis color is black. See ColorSpec for details on
specifying colors.

1-410

Axes Properties

XDir
YDir
ZDir

{normal} | reverse

Direction of increasing values. A mode controlling the direction of
increasing axis values. Axes form a right-hand coordinate system.
By default:

• x-axis values increase from left to right. To reverse the
direction of increasing x values, set this property to reverse.

set(gca,'XDir','reverse')

• y-axis values increase from bottom to top (2-D view) or front to
back (3-D view). To reverse the direction of increasing y values,
set this property to reverse.

set(gca,'YDir','reverse')

• z-axis values increase pointing out of the screen (2-D view)
or from bottom to top (3-D view). To reverse the direction of
increasing z values, set this property to reverse.

set(gca,'ZDir','reverse')

XGrid
YGrid
ZGrid

on | {off}

Axis gridline mode. When you set any of these properties to on,
MATLAB draws grid lines perpendicular to the respective axis
(for example, along lines of constant x, y, or z values). Use the
grid command to set all three properties on or off at once.

set(gca,'XGrid','on')

1-411

Axes Properties

XLabel
YLabel
ZLabel

handle of text object

Axis labels. The handle of the text object used to label the x-, y-,
or z-axis, respectively. To assign values to any of these properties,
you must obtain the handle to the text string you want to use as a
label. This statement defines a text object and assigns its handle
to the XLabel property:

set(get(gca,'XLabel'),'String','axis label')

MATLAB places the string 'axis label' appropriately for an
x-axis label and moves any text object whose handle you specify as
an XLabel, YLabel, or ZLabel property to the appropriate location
for the respective label.

Alternatively, you can use the xlabel, ylabel, and zlabel
functions, which generally provide a simpler means to label axis
lines.

Note that using a bitmapped font (for example, Courier is usually
a bitmapped font) might cause the labels to rotate improperly. As
a workaround, use a TrueType font (for example, Courier New)
for axis labels. See your system documentation to determine the
types of fonts installed on your system.

XLim
YLim
ZLim

[minimum maximum]

Axis limits. Specifies the minimum and maximum values of the
respective axis. The data you plot determines these values.

1-412

Axes Properties

Changing these properties affects the scale of the x-, y-, or
z-dimension as well as the placement of labels and tick marks on
the axis. The default values for these properties are [0 1].

See the axis, datetick, xlim, ylim, and zlim commands to set
these properties.

XLimMode
YLimMode
ZLimMode

{auto} | manual

MATLAB or user-controlled limits. The axis limits mode
determines whether MATLAB calculates axis limits based on the
data plotted (for example, the XData, YData, or ZData of the axes
children) or uses the values explicitly set with the XLim, YLim, or
ZLim property, in which case, the respective limits mode is set
to manual.

XMinorGrid
YMinorGrid
ZMinorGrid

on | {off}

Enable or disable minor gridlines. When set to on, MATLAB
draws gridlines aligned with the minor tick marks of the
respective axis. Note that you do not have to enable minor ticks
to display minor grids.

XMinorTick
YMinorTick
ZMinorTick

on | {off}

Enable or disable minor tick marks. When set to on, MATLAB
draws tick marks between the major tick marks of the respective
axis. MATLAB automatically determines the number of minor
ticks based on the space between the major ticks.

1-413

Axes Properties

XScale
YScale
ZScale

{linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis.
See also loglog, semilogx, and semilogy.

XTick
YTick
ZTick

vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine
the location of tick marks along the respective axis. If you do not
want tick marks displayed, set the respective property to the
empty vector, []. These vectors must contain monotonically
increasing values.

XTickLabel
YTickLabel
ZTickLabel

string

Tick labels. A matrix of strings to use as labels for tick marks
along the respective axis. These labels replace the numeric labels
generated by MATLAB. If you do not specify enough text labels
for all the tick marks, MATLAB uses all of the labels specified,
then reuses the specified labels.

For example, the statement:

set(gca,'XTickLabel',{'One';'Two';'Three';'Four'})

labels the first four tick marks on the x-axis and then reuses the
labels for the remaining ticks.

1-414

Axes Properties

Labels can be cell arrays of strings, padded string matrices,
string vectors separated by vertical slash characters, or numeric
vectors (where MATLAB implicitly converts each number to
the equivalent string using num2str). All of the following are
equivalent:

set(gca,'XTickLabel',{'1';'10';'100'})
set(gca,'XTickLabel','1|10|100')
set(gca,'XTickLabel',[1;10;100])
set(gca,'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences
(however, the Title, XLabel, YLabel, and ZLabel properties do).

XTickMode
YTickMode
ZTickMode

{auto} | manual

MATLAB or user-controlled tick spacing. The axis tick modes
determine whether MATLAB calculates the tick mark spacing
based on the range of data for the respective axis (auto mode) or
uses the values explicitly set for any of the XTick, YTick, and
ZTick properties (manual mode). Setting values for the XTick,
YTick, or ZTick properties sets the respective axis tick mode to
manual.

XTickLabelMode
YTickLabelMode
ZTickLabelMode

{auto} | manual

MATLAB or user-determined tick labels. The axis tick mark
labeling modes determine whether MATLAB uses numeric tick
mark labels that span the range of the plotted data (auto mode)
or uses the tick mark labels specified with the XTickLabel,
YTickLabel, or ZTickLabel property (manual mode). Setting

1-415

Axes Properties

values for the XTickLabel, YTickLabel, or ZTickLabel property
sets the respective axis tick label mode to manual.

See Also axes

1-416

axis

Purpose Axis scaling and appearance

Syntax axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])
v = axis
axis auto
axis manual
axis tight
axis fill
axis ij
axis xy
axis equal
axis image
axis square
axis vis3d
axis normal
axis off
axis on
axis(axes_handles,...)
[mode,visibility,direction] = axis('state')

Description axis manipulates commonly used axes properties. (See Algorithm
section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis
of the current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-,
and z-axis limits and the color scaling limits (see caxis) of the current
axes.

v = axis returns a row vector containing scaling factors for the x-, y-,
and z-axis. v has four or six components depending on whether the
current axes is 2-D or 3-D, respectively. The returned values are the
current axes XLim, Ylim, and ZLim properties.

axis auto sets MATLAB default behavior to compute the current axes
limits automatically, based on the minimum and maximum values of
x, y, and z data. You can restrict this automatic behavior to a specific

1-417

axis

axis. For example, axis 'auto x' computes only the x-axis limits
automatically; axis 'auto yz' computes the y- and z-axis limits
automatically.

axis manual and axis(axis) freezes the scaling at the current limits,
so that if hold is on, subsequent plots use the same limits. This sets the
XLimMode, YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that
the axes fill the position rectangle. This option has an effect only if
PlotBoxAspectRatioMode or DataAspectRatioMode is manual.

axis ij places the coordinate system origin in the upper left corner.
The i-axis is vertical, with values increasing from top to bottom. The
j-axis is horizontal with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with
the coordinate system origin in the lower left corner. The x-axis is
horizontal with values increasing from left to right. The y-axis is
vertical with values increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same
in every direction. The aspect ratio of the x-, y-, and z-axis is adjusted
automatically according to the range of data units in the x, y, and z
directions.

axis image is the same as axis equal except that the plot box fits
tightly around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). This option adjusts the x-axis, y-axis, and z-axis so
that they have equal lengths and adjusts the increments between data
units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D
objects and overrides stretch-to-fill.

axis normal automatically adjusts the aspect ratio of the axes and the
relative scaling of the data units so that the plot fits the figure’s shape
as well as possible.

1-418

axis

axis off turns off all axis lines, tick marks, and labels.

axis on turns on all axis lines, tick marks, and labels.

axis(axes_handles,...) applies the axis command to the specified
axes. For example, the following statements

h1 = subplot(221);
h2 = subplot(222);
axis([h1 h2],'square')

set both axes to square.

[mode,visibility,direction] = axis('state') returns three
strings indicating the current setting of axes properties:

Output
Argument Strings Returned

mode 'auto' | 'manual'

visibility 'on' | 'off'

direction 'xy' | 'ij'

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual.

Keywords to axis can be combined, separated by a space (e.g., axis
tight equal). These are evaluated from left to right, so subsequent
keywords can overwrite properties set by prior ones.

Tips You can create an axes (and a figure for it) if none exists with the axis
command. However, if you specify non-default limits or formatting for
the axes when doing this, such as [4 8 2 9], square, equal, or image,
the property is ignored because there are no axis limits to adjust in the
absence of plotted data. To use axis in this manner, you can set hold
on to keep preset axes limits from being overridden.

1-419

axis

Examples Set Axis Limits

Plot the tan function from 0 to .

x = 0:.01:pi/2;
y = tan(x);

figure
plot(x,y,'-o')

1-420

axis

Change the axis limits so that the x-axis ranges from 0 to and the
y-axis ranges from 0 to 5.

axis([0,pi/2,0,5])

Algorithms When you specify minimum and maximum values for the x-, y-, and
z-axes, axis sets the XLim, Ylim, and ZLim properties for the current
axes to the respective minimum and maximum values in the argument

1-421

axis

list. Additionally, the XLimMode, YLimMode, and ZLimMode properties for
the current axes are set to manual.

axis auto sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'auto'.

axis manual sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'manual'.

The following table shows the values of the axes properties set by axis
equal, axis normal, axis square, and axis image.

Axes Property or
Behavior axis equal

axis
normal axis square axis image

DataAspectRatio property [1 1 1] not set not set [1 1 1]

DataAspectRatioMode
property

manual auto auto manual

PlotBoxAspectRatio
property

[3 4 4] not set [1 1 1] auto

PlotBoxAspectRatioMode
property

manual auto manual auto

Stretch-to-fill behavior; disabled active disabled disabled

See Also axes | grid | subplot | xlim | ylim | zlim | axes properties

1-422

balance

Purpose Diagonal scaling to improve eigenvalue accuracy

Syntax [T,B] = balance(A)
[S,P,B] = balance(A)
B = balance(A)
B = balance(A,'noperm')

Description [T,B] = balance(A) returns a similarity transformation T such that
B = T\A*T, and B has, as nearly as possible, approximately equal row
and column norms. T is a permutation of a diagonal matrix whose
elements are integer powers of two to prevent the introduction of
roundoff error. If A is symmetric, then B == A and T is the identity
matrix.

[S,P,B] = balance(A) returns the scaling vector S and the
permutation vector P separately. The transformation T and balanced
matrix B are obtained from A, S, and P by T(:,P) = diag(S) and
B(P,P) = diag(1./S)*A*diag(S).

B = balance(A) returns just the balanced matrix B.

B = balance(A,'noperm') scales A without permuting its rows and
columns.

Tips •

Nonsymmetric matrices can have poorly conditioned eigenvalues.
Small perturbations in the matrix, such as roundoff errors, can lead
to large perturbations in the eigenvalues. The condition number
of the eigenvector matrix,

cond(V) = norm(V)*norm(inv(V))

where

[V,T] = eig(A)

1-423

balance

relates the size of the matrix perturbation to the size of the
eigenvalue perturbation. Note that the condition number of A itself is
irrelevant to the eigenvalue problem.

Balancing is an attempt to concentrate any ill conditioning of the
eigenvector matrix into a diagonal scaling. Balancing usually
cannot turn a nonsymmetric matrix into a symmetric matrix; it
only attempts to make the norm of each row equal to the norm of
the corresponding column.

Note The MATLAB eigenvalue function, eig(A), automatically
balances A before computing its eigenvalues. Turn off the balancing
with eig(A,'nobalance').

Examples This example shows the basic idea. The matrix A has large elements
in the upper right and small elements in the lower left. It is far from
being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 *
0.0001 0.0100 1.0000
0.0000 0.0001 0.0100
0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers
of two and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)
T =

1.0e+03 *
2.0480 0 0

0 0.0320 0
0 0 0.0003

B =
1.0000 1.5625 1.2207

1-424

balance

0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A,
shown here as the columns of V.

[V,E] = eig(A); V
V =
0.9999 -0.9999 -0.9999
0.0100 0.0059 + 0.0085i 0.0059 - 0.0085i
0.0001 0.0000 - 0.0001i 0.0000 + 0.0001i

Note that all three vectors have the first component the largest. This
indicates V is badly conditioned; in fact cond(V) is 8.7766e+003. Next,
look at the eigenvectors of B.

[V,E] = eig(B); V
V =
0.6933 -0.6993 -0.6993
0.4437 0.2619 + 0.3825i 0.2619 - 0.3825i
0.5679 0.2376 - 0.4896i 0.2376 + 0.4896i

Now the eigenvectors are well behaved and cond(V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed
eigenvalues of A and B agree within roundoff error; balancing has little
effect on the computed results.

Limitations Balancing can destroy the properties of certain matrices; use it with
some care. If a matrix contains small elements that are due to roundoff
error, balancing might scale them up to make them as significant as the
other elements of the original matrix.

See Also eig

1-425

bandwidth

Purpose Lower and upper matrix bandwidth

Syntax B = bandwidth(A,type)

[lower,upper] = bandwidth(A)

Description B = bandwidth(A,type) returns the bandwidth of matrix A specified
by type. Specify type as 'lower' for the lower bandwidth, or 'upper'
for the upper bandwidth.

[lower,upper] = bandwidth(A) returns the lower bandwidth, lower,
and upper bandwidth, upper, of matrix A.

Input
Arguments

A - Input matrix
2-D numeric matrix

Input matrix, specified as a 2-D numeric matrix. A can be either full or
sparse.

Data Types
single | double
Complex Number Support: Yes

type - Bandwidth type
'lower' | 'upper'

Bandwidth type, specified as 'lower' or 'upper'.

• Specify 'lower' for the lower bandwidth. The lower bandwidth is
the number of nonzero diagonals below the main diagonal.

• Specify 'upper' for the upper bandwidth. The upper bandwidth is
the number of nonzero diagonals above the main diagonal.

Data Types
char

1-426

bandwidth

Output
Arguments

B - Lower or upper bandwidth
nonnegative integer scalar

Lower or upper bandwidth, returned as a nonnegative integer scalar.

• If type is 'lower', then B is the number of nonzero diagonals below
the main diagonal and 0 ≤ B ≤ size(A,1)-1.

• If type is 'upper', then B is the number of nonzero diagonals above
the main diagonal and 0 ≤ B ≤ size(A,2)-1.

lower - Lower bandwidth
nonnegative integer scalar

Lower bandwidth, returned as a nonnegative integer scalar. The lower
bandwidth is the number of nonzero diagonals below the main diagonal.
lower is in the range 0 ≤ lower ≤ size(A,1)-1.

upper - Upper bandwidth
nonnegative integer scalar

Upper bandwidth, returned as a nonnegative integer scalar. The upper
bandwidth is the number of nonzero diagonals above the main diagonal.
upper is in the range 0 ≤ upper ≤ size(A,2)-1.

Examples Find Bandwidth of Triangular Matrix

Create a 6-by-6 lower triangular matrix.

A = tril(magic(6))

A =

35 0 0 0 0 0
3 32 0 0 0 0

31 9 2 0 0 0
8 28 33 17 0 0

30 5 34 12 14 0
4 36 29 13 18 11

1-427

bandwidth

Find the lower bandwidth of A by specifying type as 'lower'.

B = bandwidth(A,'lower')

B =

5

The result is 5 because every diagonal below the main diagonal has
nonzero elements.

Find the upper bandwidth of A by specifying type as 'upper'.

B = bandwidth(A,'upper')

B =

0

The result is 0 because there are no nonzero elements above the main
diagonal.

Find Bandwidth of Sparse Block Matrix

Create a 100-by-100 sparse block matrix.

B = kron(speye(25),ones(4));

View a 10-by-10 section of elements from the top left of B.

full(B(1:10,1:10))

ans =

1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0

1-428

bandwidth

0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1

B has 4-by-4 blocks of ones centered on the main diagonal.

Find both the lower and upper bandwidths of B by specifying two output
arguments.

[lower,upper] = bandwidth(B)

lower =

3

upper =

3

The lower and upper bandwidths are both 3.

Bandwidth

The upper and lower bandwidths of a matrix are the number of nonzero
diagonals above and below the main diagonal, respectively.

In terms of the upper and lower bandwidths, the total bandwidth of the
matrix is equal to upper + lower + 1.

Tips • Use the isbanded function to test if a matrix is within a specific
lower and upper bandwidth.

See Also isbanded | isdiag | istriu | istril | diag

1-429

bar

Purpose Bar graph

Syntax bar(Y)
bar(x,Y)

bar(___ ,width)
bar(___ ,style)
bar(___ ,bar_color)
bar(___ ,Name,Value)

bar(axes_handle, ___)

h = bar(___)

Description bar(Y) draws one bar for each element in Y.

bar(x,Y) draws bars for each column in Y at locations specified in x.

bar(___ ,width) sets the relative bar width and controls the separation
of bars within a group and can include any of the input arguments in
previous syntaxes.

bar(___ ,style) specifies the style of the bars and can include any of
the input arguments in previous syntaxes.

bar(___ ,bar_color) displays all bars using the color specified by the
single-letter abbreviation of bar_color and can include any of the input
arguments in previous syntaxes.

bar(___ ,Name,Value) sets the property names to the specified values
and can include any of the input arguments in previous syntaxes.

1-430

bar

Note You cannot specify names and values when using hist or histc
options.

bar(axes_handle, ___) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = bar(___) returns a vector of handles to barseries graphics objects,
one for each created.

Change the colormap to use a different color scheme. Use the colormap
function to specify the figure colormap.

Use shading flat to turn off bar edges. Use shading faceted to turn
on bar edges. See the shading function for more information.

Input
Arguments

x - x-axis intervals
vector | 2-D array

x-axis intervals for vertical bars, specified as a vector or a 2-D array..

The x-values can be nonmonotonic, but cannot contain duplicate values.

Example: x = 1:10;

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Y - Bar lengths
vector | 2-D array

Bar lengths, specified as a vector or a 2-D array.

• If Y is a vector, then bar creates length(Y) bars. The bar function
treats all vectors as column vectors.

• If Y is a 2–D array, then bar groups the bars produced by the
elements in each row.

1-431

bar

• If Y is complex, then bar(Y) plots the imaginary parts of Y versus
the index of each entry. If either x or Y is complex, then bar(x,Y)
ignores the imaginary parts and plots the real parts of Y versus the
real parts of x.

Example: y = [10,8,5,7,3,9,1];

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

width - Bar width
0.8 (default) | scalar

Bar width of each bar, specified as a fraction of the total width of a bar
and the space between bars. The default of 0.8 means the a bar width
is 80% of the space from the previous bar to the next bar, with 10%
of that space on each side.

If width is 1, the bars within a group touch one another.

Example: bar(y,0.5);

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

style - Bar style, specified as one of the following strings
'grouped' (default) | 'stacked' | 'hist' | 'histc'

Bar style, specified by one of these values.

1-432

bar

Style Purpose

'grouped' Displays one group for each row
in Y.

• If Y is an m-by-n matrix, then
MATLAB displays m groups of
n vertical bars, where m is the
number of rows and n is the
number of columns in Y.

• If Y is a vector of length n, then
MATLAB treats Y as a column
vector and displays one group
of n bars.

'stacked' Displays one bar for each row in
Y.

• If Y is an m-by-n matrix, then
MATLAB displays m bars
where each bar height is the
sum of the elements in the
row. Each bar is multicolored.
Colors correspond to distinct
elements and show the relative
contribution each row element
makes to the total sum.

• If Y is a vector of length n, then
MATLAB treats Y as a column
vector and displays n bars.

1-433

bar

Style Purpose

'histc' Displays the graph in histogram
format, in which bars touch one
another.

'hist' Displays the graph in histogram
format, but centers each bar over
the x-ticks, rather than making
bars span x-ticks as the histc
option does.

Example: bar(Y,'hist')

Data Types
char

bar_color - Bar color
'b' | 'r' | 'g' | 'b' | 'c' | 'm' | 'y' | 'k' | 'w'

Bar color, specified as a single-letter abbreviation, assigns the color
specified to all bars.

Example: bar(Y,'r')

Data Types
char

axes_handle - Axes handle
current axes (default) | axes handle

Axes handle specifying the target axes for the bar graph.

Example: bar(ah,Y);

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-434

bar

For more information see “Barseries Property Descriptions” on page
1-478.

Example: bar(Y,'EdgeColor','g')

’BarLayout’ - Arrangement of bars
grouped (default) | stacked

Arrangement of bars, specified as the comma-separated pair consisting
of 'BarLayout' and one of these values:

• grouped — Display m groups of n vertical bars, where m is the
number of rows and n is the number of columns in the input
argument Y. The group contains one bar per column in Y.

• stacked — Display one bar for each row in the input argument Y.
The bar height is the sum of the elements in the row. Each bar
is multicolored, with colors corresponding to distinct elements and
showing the relative contribution each row element makes to the
total sum.

’BaseValue’ - Base line location
0 (default) | scalar

Base line location, specified as the comma-separated pair consisting of
'BaseValue' and the value along the y-axis (vertical bars) or x-axis
(horizontal bars) at which MATLAB draws the baseline.

’BarWidth’ - Relative width of bars
0.8 (default) | scalar

Relative bar width, specified as the comma-separated pair consisting
of 'BarWidth' and a value relative to width and spacing. BarWidth
controls the separation of bars within a group. By default, the bars
within a group have a slight separation. A value of 1 makes bars touch
with no space. A value greater than 1 makes the bars overlap.

’EdgeColor’ - Color of bar edges
[0,0,0] (default) | none | ColorSpec

1-435

bar

Color of bar edges, specified as the comma-separated pair consisting of
'EdgeColor' and a three-element RGB vector, or one of the MATLAB
predefined color specifier names.

’FaceColor’ - Color of bars
flat (default) | none | ColorSpec

Color of bars, specified as the comma-separated pair consisting of
'FaceColor' and one of these values:

• flat— Use the figure colormap to determine the color of the bars.

• ColorSpec — A three-element RGB vector or one of the MATLAB
predefined names, specifying a single color for all bars.

• none — Do not draw faces. Note that MATLAB draws EdgeColor
independently of FaceColor.

’LineStyle’ - Line style of bar edges
– (default) | - | -- | : | -. | none

Line style of bar edges, specified as the comma-separated pair consisting
of 'LineStyle' and one of the predefined line style strings.

’LineWidth’ - Width of bar edges
0.5 points (default) | scalar width specified in points

Width of bar edges, specified as the comma-separated pair consisting of
'LineWidth' and a scalar value representing the line width in points.

Output
Arguments

h - Handle to barseries objects
array of one or more handles

Handle to barseries objects, returned as an array of one or more handles.

Examples Single Data Series

Use the bar function to plot vector data.

y = [75.995,91.972,105.711,123.203,131.669,...
150.697,179.323,203.212,226.505,249.633,281.422];

1-436

bar

figure;
bar(y);

X-Axis Tick Labels

Specify the numeric values of the x-axis tick labels.

x = 1900:10:2000;
y = [75.995,91.972,105.711,123.203,131.669,...

150.697,179.323,203.212,226.505,249.633,281.422];

1-437

bar

figure;
bar(x,y);

Plot the y-values at each x-value. Notice that the length(x) and
length(y) have to be same.

Bar Width

Set width of each bar to 40 percent of the total space available for each
bar.

1-438

bar

y = [75.995,91.972,105.711,123.203,131.669,...
150.697,179.323,203.212,226.505,249.633,281.422];

figure;
bar(y,0.4);

Bar Graph Styles

Create a figure with four subplots containing bar graphs. In each
subplot, apply a different style to the bar graph.

1-439

bar

Y = round(rand(5,3)*10);

figure;
subplot(2,2,1);
bar(Y,'grouped');
title('Group')

subplot(2,2,2);
bar(Y,'stacked');
title('Stack')

subplot(2,2,3);
bar(Y,'histc');
title('Histc')

subplot(2,2,4);
bar(Y,'hist');
title('Hist')

1-440

bar

Specify Axes

Specify the axes for the bar graph by passing an axes handle to bar.

rng(0,'twister'); % initialize random number generator
Y = round(rand(5,3)*10);

figure;
ax = subplot(2,1,2);
bar(ax,Y,'stacked');

1-441

bar

title('Lower Subplot')

Bar Color

Specify a red color for the bar graph.

y = [75.995,91.972,105.711,123.203,131.669,...
150.697,179.323,203.212,226.505,249.633,281.422];

figure;
bar(y,'r');

1-442

bar

Bar Face and Edge Color

Specify green bars and use an RGB color specification for the bar edge
color.

y = [75.995,91.972,105.711,123.203,131.669,...
150.697,179.323,203.212,226.505,249.633,281.422];

figure;
bar(y,'g','EdgeColor',[1,0.5,0.5]);

1-443

bar

Bar Graph of 2-D Array

Plot a 6-by-3 array as six groups with three bars each.

c = load('count.dat');
Y = c(1:6,:);
figure;
bar(Y);

1-444

bar

Emphasize Subset of Data

Set appearance of one column of data.

Set LineWidth and EdgeColor for the bars representing the second
column in the data array y. Pass the handles returned by bar to the set
function to set the barseries properties.

c = load('count.dat');
Y = c(1:6,:);

1-445

bar

figure
hArray = bar(Y);
set(hArray(2),'LineWidth',2,'EdgeColor','red');

See Also barh | bar3 | bar3h | ColorSpec | stairs | hist

1-446

bar

Related
Examples

• “Modify Baseline of Bar Graph”
• “Overlay Bar Graphs”
• “Overlay Line Plot on Bar Graph Using Two y-Axes”

1-447

barh

Purpose Plot bar graph horizontally

Syntax barh(Y)
barh(X,Y)
barh(...,width)
barh(...,'style')
barh(...,'bar_color')
barh(...,'PropertyName',PropertyValue,...)
barh(axes_handle,...)
h = barh(...)

Description A barh graph displays the values in a vector or matrix as horizontal
bars.

barh(Y) draws one horizontal bar for each element in Y. If Y is a matrix,
barh groups the bars produced by the elements in each row. The
x-axis scale ranges from 1 up to length(Y) when Y is a vector, and 1
to size(Y,1), which is the number of rows, when Y is a matrix. The
default is to assign an appropriate progression of tick values according
to the data. If you want the x-axis scale to end exactly at the last bar,
set the axis limits as,

set(gca,'XLim',[1 length(Y)])

barh(X,Y) draws a bar for each element in Y at locations specified
in x, where X is a vector defining the x-axis intervals for the vertical
bars. The x-values can be nonmonotonic, but cannot contain duplicate
values. If Y is a matrix, barh groups the elements of each row in Y at
corresponding locations in X.

barh(...,width) sets the relative bar width and controls the
separation of bars within a group. The default width is 0.8, so if you
do not specify X, the bars within a group have a slight separation. If

1-448

barh

width is 1, the bars within a group touch one another. The value of
width must be a scalar.

barh(...,'style') specifies the style of the bars. 'style' is
'grouped' or 'stacked'. Default mode of display is 'grouped'.

• 'grouped' displays m groups of n vertical bars, where m is the
number of rows and n is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

• 'histc' displays the graph in histogram format, in which bars touch
one another.

• 'hist' also displays the graph in histogram format, but centers each
bar over the x-ticks, rather than making bars span x-ticks as the
histc option does.

Note When you use either the hist or histc option, you cannot also
use parameter/value syntax. These two options create graphic objects
that are patches rather than barseries.

barh(...,'bar_color') displays all bars using the color specified by
the single-letter abbreviation 'r', 'g', 'b', 'c', 'm', 'y', 'k', or 'w'.

barh(...,'PropertyName',PropertyValue,...) sets the named
property or properties to the specified values. You cannot specify
properties when hist or histc options are used. See the barseries
property descriptions for information on what properties you can set.

barh(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

1-449

barh

h = barh(...) returns a vector of handles to barseries graphics
objects, one for each created. When Y is a matrix, barh creates one
barseries graphics object per column in Y.

Barseries
Objects

Creating a bar graph of anm-by-nmatrix createsm groups of n barseries
objects. Each barseries object contains the data for corresponding x
values of each bar group (as indicated by the coloring of the bars).

Examples Horizontal Bar Graph of Single Data Series

Create a horizontal bar graph of vector data.

y = [57,91,105,123,131,150,...
170,203,226.5,249,281.4];

figure;
barh(y);

1-450

barh

barh draws one horizontal bar for each element in y.

Specify Width for Horizontal Bar Graph

Specify the bar width to 0.4.

y = [57,91,105,123,131,150,...
170,203,226.5,249,281.4];

figure;

1-451

barh

width = 0.4;
barh(y,width);

Specify Style for Horizontal Bar Graph

Create a figure with four subplots. In each subplot, create a horizontal
bar graph using a different style option for each graph.

x = [2,4];
y = [1,2,3,4;...

1-452

barh

5,6,7,8];

figure;
subplot(2,2,1);
barh(x,y,'grouped'); % groups by row
title('Grouped Style')

subplot(2,2,2);
barh(x,y,'stacked'); % stacks values in each row together
title('Stacked Style')

subplot(2,2,3);
barh(x,y,'hist'); % centers bars over x values
title('hist Style')

subplot(2,2,4);
barh(x,y,'histc'); % spans bars over x values
title('histc Style')

1-453

barh

Specify Color for Horizontal Bar Graph

Create a horizontal bar graph and change the color of the bars to red.

y = [57,91,105,123,131,150,...
170,203,226.5,249,281.4];

figure
barh(y,'r')

1-454

barh

Specify Bar Properties Using Name-Value Pairs

Create a horizontal bar graph and set the line width to 2. Use RGB
triplets to set the face color and edge color for the bars.

y = [57,91,105,123,131,150,...
170,203,226.5,249,281.4];

figure
barh(y,'FaceColor',[0,0.5,0.5],...

1-455

barh

'EdgeColor',[0,0,0.9],...
'LineWidth',2)

Specify Horizontal Bar Locations

Define x and y as vectors of data.

x = 1900:10:2000;
y = [57,91,105,123,131,150,...

170,203,226.5,249,281.4];

1-456

barh

Create a horizontal bar graph of the data in y. Use x to specify the bar
locations along the y-axis.

figure
barh(x,y)

1-457

barh

Horizontal Bar Graph of Matrix Data

Load the data set count.dat, which returns a three-column matrix,
count. Store y as the first six rows of count.

load count.dat;
y = count(1:6,:);

Create a horizontal bar graph of matrix y.

figure;
barh(y);

1-458

barh

By default, barh groups the bars by row.

Specify Bar Properties for Multiple Barseries Objects

Load the data set, count.dat, which returns a three-column array,
count. Store y as the first six rows of count.

load count.dat;
y = count(1:6,:);

1-459

barh

Create a horizontal bar graph of y and return the handles to the three
barseries objects. Set the line width and line style for all three sets
of bars.

figure
h = barh(y,'LineWidth',2,...

'LineStyle',':');

1-460

barh

Use the barseries object handles to set Name-Value pairs for a specific
barseries object. Set the face color for the first barseries object to cyan.
Set the face color for the last barseries object to an RGB color value.

set(h(1),'FaceColor','c')
set(h(3),'FaceColor',[0,0.5,0.5])

1-461

barh

Change Baseline Value for Horizontal Bar Graph

Load the data set count.dat, which returns a three-column matrix,
count. Store y as the first six rows of count.

load count.dat;
y = count(1:6,:);

Create a horizontal bar graph of y and set the basevalue to 25.

figure
barh(y,'BaseValue',25);

1-462

barh

See Also bar | bar3 | bar3h | ColorSpec | stairs | hist | Barseries
Properties

How To • “Modify Baseline of Bar Graph”

• “Overlay Bar Graphs”

• “Overlay Line Plot on Bar Graph Using Two y-Axes”

1-463

bar3

Purpose Plot 3-D bar graph

Syntax bar3(Y)
bar3(x,Y)
bar3(...,width)
bar3(...,'style')
bar3(...,LineSpec)
bar3(axes_handle,...)
h = bar3(...)

Description bar3 draws a three-dimensional bar graph.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from
1 to length(Y). When Y is a matrix, the x-axis scale ranges from 1 to
size(Y,1) and the elements in each row are grouped together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations
specified in x, where x is a vector defining the y-axis intervals for
vertical bars. The x-values can be nonmonotonic, but cannot contain
duplicate values. If Y is a matrix, bar3 clusters elements from the
same row in Y at locations corresponding to an element in x. Values of
elements in each row are grouped together.

bar3(...,width) sets the width of the bars and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
x, bars within a group have a slight separation. If width is 1, the bars
within a group touch one another.

bar3(...,'style') specifies the style of the bars. 'style' is
'detached', 'grouped', or 'stacked'. Default mode of display is
'detached'.

1-464

bar3

• 'detached' displays the elements of each row in Y as separate blocks
behind one another in the x direction.

• 'grouped' displays n groups of m vertical bars, where n is the
number of rows and m is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by
LineSpec.

bar3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = bar3(...) returns a vector of handles to surface objects, one for
each created. When Y is a matrix, bar3 creates one surface object per
column in Y.

Examples Create 3-D Bar Graph

Load the data set count.dat, which returns a three-column matrix,
count. Store Y as the first 10 rows of count.

load count.dat
Y = count(1:10,:);

Create a 3-D bar graph of Y. By default, the style is detached.

figure
bar3(Y)
title('Detached Style')

1-465

bar3

Specify Bar Width for 3-D Bar Graph

Load the data set count.dat, which returns a three-column matrix,
count. Store Y as the first 10 rows of count.

load count.dat
Y = count(1:10,:);

Create a 3-D bar graph of Y and set the bar width to 0.5.

1-466

bar3

width = 0.5;

figure
bar3(Y,width)
title('Bar Width of 0.5')

3-D Bar Graph with Grouped Style

Load the data set count.dat, which returns a three-column matrix,
count. Store Y as the first 10 rows of count.

1-467

bar3

load count.dat
Y = count(1:10,:);

Create a 3-D bar graph of Y. Group the elements in each row of Y by
specifying the style option as grouped.

figure
bar3(Y,'grouped')
title('Grouped Style')

1-468

bar3

3-D Bar Graph with Stacked Style

Load the data set count.dat, which returns a three-column matrix,
count. Store Y as the first 10 rows of count.

load count.dat
Y = count(1:10,:);

Create a 3-D bar graph of Y. Stack the elements in each row of Y by
specifying the style option as stacked.

figure
bar3(Y,'stacked')
title('Stacked Style')

1-469

bar3

See Also bar | barh | bar3h | LineSpec

How To • “Color 3-D Bars by Height”

1-470

bar3h

Purpose Plot horizontal 3-D bar graph

Syntax bar3h(Y)
bar3h(x,Y)
bar3h(...,width)
bar3h(...,'style')
bar3h(...,LineSpec)
bar3h(axes_handle,...)
h = bar3h(...)

Description bar3h draws three-dimensional horizontal bar charts.

bar3h(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the y-axis scale ranges from
1 to length(Y). When Y is a matrix, the y-axis scale ranges from 1 to
size(Y,1) and the elements in each row are grouped together.

bar3h(x,Y) draws a bar chart of the elements in Y at the locations
specified in x, where x is a vector defining the y-axis intervals for
horizontal bars. The x-values can be nonmonotonic, but cannot contain
duplicate values. If Y is a matrix, bar3 clusters elements from the
same row in Y at locations corresponding to an element in x. Values of
elements in each row are grouped together.

bar3h(...,width) sets the width of the bars and controls the
separation of bars within a group. The default width is 0.8, so if you do
not specify x, bars within a group have a slight separation. If width is
1, the bars within a group touch one another.

bar3h(...,'style') specifies the style of the bars. 'style' is
'detached', 'grouped', or 'stacked'. Default mode of display is
'detached'.

• 'detached' displays the elements of each row in Y as separate blocks
behind one another in the y direction.

1-471

bar3h

• 'grouped' displays n groups of m vertical bars, where n is the
number of rows and m is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar length is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

bar3h(...,LineSpec) displays all bars using the color specified by
LineSpec.

bar3h(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = bar3h(...) returns a vector of handles to surface objects, one
for each created. When Y is a matrix, bar3h creates one surface object
per column in Y.

Examples Create 3-D Horizontal Bar Graph

Load the data set count.dat, which returns a three-column matrix,
count. Store Y as the first ten rows of count.

load count.dat;
Y = count(1:10,:);

Create a 3-D horizontal bar graph of Y. By default, the style is detached.

figure
bar3h(Y)

1-472

bar3h

Specify Bar Width for 3-D Horizontal Bar Graph

Load the data set count.dat, which returns a three-column matrix,
count. Store Y as the first ten rows of count.

load count.dat;
Y = count(1:10,:);

Create a 3-D horizontal bar graph of Y and set the bar width to 0.5.

1-473

bar3h

width = 0.5;

figure
bar3h(Y,width)
title('Width of 0.5')

3-D Horizontal Bar Graph with Grouped Style

Load the data set count.dat, which returns a three-column matrix,
count. Store Y as the first ten rows of count.

1-474

bar3h

load count.dat;
Y = count(1:10,:);

Create a 3-D horizontal bar graph of Y and specify the style option as
grouped.

figure
bar3h(Y,'grouped')
title('Grouped Style Option')

1-475

bar3h

3-D Horizontal Bar Graph with Stacked Option

Load the data set count.dat, which returns a three-column matrix,
count. Store Y as the first ten rows of count.

load count.dat;
Y = count(1:10,:);

Create a 3-D horizontal bar graph of Y and specify the style option as
stacked.

figure
bar3h(Y,'stacked')
title('Stacked Style Option')

1-476

bar3h

See Also bar | barh | bar3 | LineSpec | patch

1-477

Barseries Properties

Purpose Define barseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for barseries objects.

See “Plot Objects” for more information on barseries objects.

Barseries
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of barseries objects in legends. Specifies
whether this barseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the barseries
object is displayed in a figure legend.

IconDisplayStyle
Value

Purpose

on Include the barseries object in a legend as
one entry, but not its children objects

off Do not include the barseries or its children
in a legend (default)

children Include only the children of the barseries as
separate entries in the legend

1-478

Barseries Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BarLayout
{grouped} | stacked

Specify grouped or stacked bars.

• grouped— Display m groups of n vertical bars, where m is the
number of rows and n is the number of columns in the input
argument Y. The group contains one bar per column in Y.

• stacked— Display one bar for each row in the input argument
Y. The bar height is the sum of the elements in the row. Each
bar is multicolored, with colors corresponding to distinct
elements and showing the relative contribution each row
element makes to the total sum.

BarWidth
scalar in range [0 1]

Width of individual bars. BarWidth specifies the relative bar
width and controls the separation of bars within a group. The
default is 0.8, so if you do not specify x, the bars within a group
have a slight separation. If BarWidth is 1, the bars within a group
touch one another.

BaseLine
handle

1-479

Barseries Properties

Handle of the baseline line object. Handle of the line object used
as the baseline. You can set the properties of this line using its
handle.
Create a bar graph, obtain the handle of the baseline from the
barseries object, and then set line properties that make the
baseline a dashed, red line:

bar_handle = bar(randn(10,1));
baseline_handle = get(bar_handle,'BaseLine');
set(baseline_handle,'LineStyle','--','Color','red')

BaseValue
double: y-axis value

1-480

Barseries Properties

Baseline location. You can specify the value along the y-axis
(vertical bars) or x-axis (horizontal bars) at which the MATLAB
software draws the baseline. The default is 0.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

1-481

Barseries Properties

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press
a mouse button while the pointer is over this object, but not
over another graphics object. See the HitTestArea property for
information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
array of graphics object handles

Children of the barseries object. The handle of a patch object that
is the child of this object (whether visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

1-482

Barseries Properties

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

1-483

Barseries Properties

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the barseries object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

1-484

Barseries Properties

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line separating filled areas. You can set the color of the
edges of filled areas to a three-element RGB vector or one of the
MATLAB predefined names, including the string none. The
default value is [0 0 0] (black). See the ColorSpec reference
page for more information on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,

1-485

Barseries Properties

the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas.

• none — Do not draw faces. Note that MATLAB draws
EdgeColor independently of FaceColor.

1-486

Barseries Properties

• flat — The object uses the figure colormap to determine the
color of the filled areas.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

1-487

Barseries Properties

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on
the objects that compose the bar graph. If HitTest is off, clicking
this object selects the object below it (which is usually the axes
containing it).

HitTestArea
on | {off}

Select barseries object on bars or area of extent. This property
enables you to select barseries objects in two ways:

• Select by clicking bars (default).

1-488

Barseries Properties

• Select by clicking anywhere in the extent of the bar graph.

When HitTestArea is off, you must click the bars to select the
barseries object. When HitTestArea is on, you can select the
barseries object by clicking anywhere within the extent of the
bar graph (that is, anywhere within a rectangle that encloses all
the bars).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

1-489

Barseries Properties

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of barseries object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

1-490

Barseries Properties

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

ShowBaseLine
{on} | off

1-491

Barseries Properties

Turn baseline display on or off. This property determines whether
bar plots display a baseline from which the bars are drawn. By
default, the baseline is displayed.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create a barseries object and set the Tag property:

t = bar(Y,'Tag','bar1')

To access the barseries object, use findobj to find the barseries
object’s handle. The following statement changes the FaceColor
property of the object whose Tag is bar1.

set(findobj('Tag','bar1'),'FaceColor','red')

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For barseries objects, Type is
’hggroup’.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of uicontextmenu object

1-492

Barseries Properties

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
array

Location of bars. The x-axis intervals for the vertical bars or
y-axis intervals for horizontal bars (as specified by the X input
argument). If YData is a vector, XData must be the same size.
If YData is a matrix, the length of XData must be equal to the
number of rows in YData.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the X input

1-493

Barseries Properties

argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after specifying XData, MATLAB
resets the x-axis ticks to 1:size(YData,1) or to the column
indices of the ZData, overwriting any previous values for XData.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

set(h,'XDataSource','xdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar | vector | matrix

Bar plot data. YData contains the data plotted as bars (the Y input
argument). Each value in YData is represented by a bar in the bar
graph. If XYData is a matrix, the bar function creates a "group"

1-494

Barseries Properties

or a "stack" of bars for each column in the matrix. See the bar
reference page for examples of grouped and stacked bar graphs.

The input argument Y in the bar function calling syntax assigns
values to YData.

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

set(h,'YDataSource','Ydatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

How To • “Types of Bar Graphs”

• “Plot Objects”

• “Setting Default Property Values”

• “Customize Objects in Graph”

1-495

TriRep.baryToCart

Purpose (Will be removed) Convert point coordinates from barycentric to
Cartesian

Note baryToCart(TriRep) will be removed in a future release. Use
barycentricToCartesian(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax XC = baryToCart(TR, SI, B)

Description XC = baryToCart(TR, SI, B) returns the Cartesian coordinates XC of
each point in B that represents the barycentric coordinates with respect
to its associated simplex SI.

Input
Arguments

TR Triangulation representation.

SI Column vector of simplex indices that index into the
triangulation matrix TR.Triangulation

B B is a matrix that represents the barycentric
coordinates of the points to convert with respect to the
simplices SI. B is of size m-by-k, where m = length(SI),
the number of points to convert, and k is the number of
vertices per simplex.

Output
Arguments

XC Matrix of cartesian coordinates of the converted points.
XC is of size m-by-n, where n is the dimension of the
space where the triangulation resides. That is, the
Cartesian coordinates of the point B(j) with respect
to simplex SI(j) is XC(j).

Definitions A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

1-496

TriRep.baryToCart

Examples Compute the Delaunay triangulation of a set of points.

x = [0 4 8 12 0 4 8 12]';
y = [0 0 0 0 8 8 8 8]';
dt = DelaunayTri(x,y)

Compute the barycentric coordinates of the incenters.

cc = incenters(dt);
tri = dt(:,:);

Plot the original triangulation and reference points.

figure
subplot(1,2,1);
triplot(dt); hold on;
plot(cc(:,1), cc(:,2), '*r'); hold off;
axis equal;

Stretch the triangulation and compute the mapped locations of the
incenters on the deformed triangulation.

b = cartToBary(dt,[1:length(tri)]',cc);
y = [0 0 0 0 16 16 16 16]';
tr = TriRep(tri,x,y)
xc = baryToCart(tr, [1:length(tri)]', b);

Plot the deformed triangulation and mapped locations of the reference
points.

subplot(1,2,2);
triplot(tr); hold on;
plot(xc(:,1), xc(:,2), '*r'); hold off;
axis equal;

1-497

TriRep.baryToCart

See Also cartesianToBarycentric | pointLocation | delaunayTriangulation
| triangulation

1-498

base2dec

Purpose Convert base N number string to decimal number

Syntax d = base2dec('strn', base)

Description d = base2dec('strn', base) converts the string number strn of the
specified base into its decimal (base 10) equivalent. base must be an
integer between 2 and 36. If 'strn' is a character array, each row is
interpreted as a string in the specified base.

Examples The expression base2dec('212',3) converts 2123 to decimal, returning
23.

See Also dec2base

1-499

beep

Purpose Produce operating system beep sound

Syntax beep
beep on
beep off

status = beep

Description beep produces your computer’s default beep sound, if it is enabled.

beep on turns the beep on.

beep off turns the beep off.

status = beep returns the current beep mode (on or off).

Examples Produce Beep Sound

Produce your system’s default beep sound after a period of silence.

Pause for 5 seconds of silence, and then produce your system’s default
beep sound.

pause(5)
beep

Tips • If you have configured your system not to produce any sound, then
beep is silent.

• beep produces the operating system’s default beep sound. To produce
a sound and specify its pitch and duration in MATLAB, use the
sound function.

See Also sound

1-500

BeginInvoke

Purpose Initiate asynchronous .NET delegate call

Syntax result = BeginInvoke(arg1,...,argN,callback,object)

Description result = BeginInvoke(arg1,...,argN,callback,object) initiates
asynchronous call to a .NET delegate. You must call EndInvoke to
complete the asynchronous call.

Input
Arguments

arg1,...,argN

Input arguments for delegate. The type and number of arguments must
agree with the delegate signature.

callback

.NET System.AsyncCallback delegate, or [] null value.

object

User-defined object, or [] null value.

Output
Arguments

result

.NET System.IAsyncResult object. Used to monitor the progress of the
asynchronous call. Input argument to EndInvoke.

See Also EndInvoke

How To • “Calling .NET Methods Asynchronously”

Related
Links

• MSDN® Calling Synchronous Methods Asynchronously

1-501

http://msdn.microsoft.com/en-us/library/system.asynccallback.aspx
http://msdn.microsoft.com/en-us/library/system.iasyncresult.aspx
http://msdn.microsoft.com/en-us/library/2e08f6yc.aspx

bench

Purpose MATLAB benchmark

Syntax bench
bench(N)
bench(0)
t = bench(N)

Description bench times six different MATLAB tasks and compares the execution
speed with the speed of several other computers. The six tasks are:

Test Description Performance Factors

LU Perform LU of a full matrix Floating-point, regular memory access

FFT Perform FFT of a full vector Floating-point, irregular memory access

ODE Solve van der Pol equation with
ODE45

Data structures and MATLAB function files

Sparse Solve a symmetric sparse linear
system

Mixed integer and floating-point

2-D Plot Bernstein polynomial graph 2-D line drawing graphics

3-D Display animated L-shape
membrane logo

3-D animated OpenGL graphics

A final bar chart shows speed, which is inversely proportional to time.
The longer bars represent faster machines, and the shorter bars
represent the slower ones.

bench(N) runs each of the six tasks N times.

bench(0) just displays the results from other machines.

t = bench(N) returns an N-by-6 array with the execution times.

1-502

bench

Tips
Note A benchmark is intended to compare performance of one
particular version of MATLAB on different machines. It does not offer
direct comparisons between different versions of MATLAB as tasks and
problem sizes change from version to version.

The LU and FFT tasks involve large matrices and long vectors. The 2-D
and 3-D tasks measure graphics performance, including software or
hardware support for OpenGL. The command

opengl info

describes the OpenGL support available on a particular machine.

Fluctuations of five or ten percent in the measured times of repeated
runs on a single machine are not uncommon. Your own mileage may
vary.

See Also profile | profsave | mlint | mlintrpt | memory | pack | tic |
cputime | rehash

1-503

besselh

Purpose Bessel function of third kind (Hankel function)

Syntax H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,K,Z,1)

Definitions The differential equation

z
d y

dz
z

dy
dz

z y2
2

2
2 2 0+ + −() = ,

where ν is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions. Jν(z) and J–ν(z) form a fundamental set of
solutions of Bessel’s equation for noninteger ν. Yν(z) is a second solution
of Bessel’s equation—linearly independent of Jν(z)—defined by

Y z
J z J z

()

() cos() ()
sin()

.=
− −

The relationship between the Hankel and Bessel functions is

H

H

z J z iY z

z J z iY z

()

()

() () ()

() () (),

1

2

where Jν(z) is besselj, and Yν(z) is bessely.

Description H = besselh(nu,K,Z) computes the Hankel function H zK

() () where K

= 1 or 2, for each element of the complex array Z. If nu and Z are arrays
of the same size, the result is also that size. If either input is a scalar,
besselh expands it to the other input’s size.

H = besselh(nu,Z) uses K = 1.

H = besselh(nu,K,Z,1) scales H zK

() () by exp(-i*Z) if K = 1, and by
exp(+i*Z) if K = 2.

1-504

besselh

Examples Modulus and Phase of Hankel Function

This example generates the contour plots of the modulus and phase of

the Hankel function shown on page 359 of Abramowitz and
Stegun, Handbook of Mathematical Functions [1].

Create a grid of values for the domain.

[X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);

Calculate the Hankel function over this domain and generate the
modulus contour plot.

H = besselh(0,1,X+1i*Y);
contour(X,Y,abs(H),0:0.2:3.2), hold on

1-505

besselh

In the same figure, add the contour plot of the phase.

contour(X,Y,(180/pi)*angle(H),-180:10:180); hold off

1-506

besselh

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965.

See Also besselj | bessely | besseli | besselk

1-507

besseli

Purpose Modified Bessel function of first kind

Syntax I = besseli(nu,Z)
I = besseli(nu,Z,1)

Definitions The differential equation

z
d y

dz
z

dy
dz

z y2
2

2
2 2 0+ − +() = ,

where ν is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

Iν(z) and I–ν(z) form a fundamental set of solutions of the modified
Bessel’s equation. Iν(z) is defined by

I
k

z
z

z

kk

k

()

()!
,

()

2 1

4

0

2

where Γ(a) is the gamma function.

Kν(z) is a second solution, independent of Iν(z). It can be computed
using besselk.

Description I = besseli(nu,Z) computes the modified Bessel function of the first
kind, Iν(z), for each element of the array Z. The order nu need not be an
integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size.

I = besseli(nu,Z,1) computes
besseli(nu,Z).*exp(-abs(real(Z))).

1-508

besseli

Examples Vector of Function Values

Create a column vector of domain values.

z = (0:0.2:1)';

Calculate the function values using besseli with nu = 1.

format long
besselk(1,z)

ans =

Inf
4.775972543220472
2.184354424732687
1.302834939763502
0.861781634472180
0.601907230197235

Plot Modified Bessel Functions of First Kind

Define the domain.

X = 0:0.01:5;

Calculate the first five modified Bessel functions of the first kind.

I = zeros(5,501);
for i=0:4

I(i+1,:) = besseli(i,X);
end

Plot the results.

plot(X,I,'LineWidth',1.5)

1-509

besseli

axis([0 5 0 8])
grid on;
legend('I_0','I_1','I_2','I_3','I_4','Location','Best')
title('Modified Bessel Functions of the First Kind for v = 0,1,2,3,4')
xlabel('X')
ylabel('I_v(X)')

Algorithms The besseli functions use a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

1-510

besseli

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also airy | besselh | besselj | besselk | bessely

1-511

besselj

Purpose Bessel function of first kind

Syntax J = besselj(nu,Z)
J = besselj(nu,Z,1)

Definitions The differential equation

z
d y

dz
z

dy
dz

z y2
2

2
2 2 0+ + −() = ,

where ν is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

Jν(z) and J–ν(z) form a fundamental set of solutions of Bessel’s equation
for noninteger ν. Jν(z) is defined by

J
k

z
z

z

kk

k

()

()!()

2 1

4

0

2

where Γ(a) is the gamma function.

Yν(z) is a second solution of Bessel’s equation that is linearly
independent of Jν(z). It can be computed using bessely.

Description J = besselj(nu,Z) computes the Bessel function of the first kind,
Jν(z), for each element of the array Z. The order nu need not be an
integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size.

J = besselj(nu,Z,1) computes
besselj(nu,Z).*exp(-abs(imag(Z))).

1-512

besselj

Tips The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

H

H

z J z iY z

z J z iY z

()

()

() () ()

() () ()

1

2

where H zK

() () is besselh, Jν(z) is besselj, and Yν(z) is bessely. The

Hankel functions also form a fundamental set of solutions to Bessel’s
equation (see besselh).

Examples Vector of Function Values

Create a column vector of domain values.

z = (0:0.2:1)';

Calculate the function values using besselj with nu = 1.

format long
besselj(1,z)

ans =

0
0.099500832639236
0.196026577955319
0.286700988063916
0.368842046094170
0.440050585744934

Plot Bessel Functions of First Kind

Define the domain.

X = 0:0.1:20;

Calculate the first five Bessel functions of the first kind.

1-513

besselj

J = zeros(5,201);
for i=0:4

J(i+1,:) = besselj(i,X);
end

Plot the results.

plot(X,J,'LineWidth',1.5)
axis([0 20 -.5 1])
grid on;
legend('J_0','J_1','J_2','J_3','J_4','Location','Best')
title('Bessel Functions of the First Kind for v = 0,1,2,3,4')
xlabel('X')
ylabel('J_v(X)')

1-514

besselj

Algorithms The besselj function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

1-515

besselj

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also besselh | besseli | besselk | bessely

1-516

besselk

Purpose Modified Bessel function of second kind

Syntax K = besselk(nu,Z)
K = besselk(nu,Z,1)

Definitions The differential equation

z
d y

dz
z

dy
dz

z y2
2

2
2 2 0+ − +() = ,

where ν is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

A solution Kν(z) of the second kind can be expressed as:

K
z

z
I I z

()

()
sin()

,
()

2

where Iν(z) and I–ν(z) form a fundamental set of solutions of the modified
Bessel’s equation,

I
z

z

k
z

kk

k

()

()!

2 1

4

0

2

and Γ(a) is the gamma function. Kν(z) is independent of Iν(z).

Iν(z) can be computed using besseli.

Description K = besselk(nu,Z) computes the modified Bessel function of the
second kind, Kν(z), for each element of the array Z. The order nu need
not be an integer, but must be real. The argument Z can be complex.
The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size.

1-517

besselk

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

Examples Column Vector of Function Values

Create a column vector of domain values.

z = (0:0.2:1)';

Calculate the function values using besselk with nu = 1.

format long
besselk(1,z)

ans =

Inf
4.775972543220472
2.184354424732687
1.302834939763502
0.861781634472180
0.601907230197235

Plot Modified Bessel Functions of Second Kind

Define the domain.

X = 0:0.01:5;

Calculate the first five modified Bessel functions of the second kind.

K = zeros(5,501);
for i=0:4

K(i+1,:) = besselk(i,X);
end

1-518

besselk

Plot the results.

plot(X,K,'LineWidth',1.5)
axis([0 5 0 8])
grid on;
legend('K_0','K_1','K_2','K_3','K_4','Location','Best')
title('Modified Bessel Functions of the Second Kind for v = 0,1,2,3,4
xlabel('X')
ylabel('K_v(X)')

1-519

besselk

Algorithms The besselk function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3], [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also airy | besselh | besseli | besselj | bessely

1-520

bessely

Purpose Bessel function of second kind

Syntax Y = bessely(nu,Z)
Y = bessely(nu,Z,1)

Definitions The differential equation

z
d y

dz
z

dy
dz

z y2
2

2
2 2 0+ + −() = ,

where ν is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

A solution Yν(z) of the second kind can be expressed as

Y z
J z J z

()

() cos() ()
sin()

where Jν(z) and J–ν(z) form a fundamental set of solutions of Bessel’s
equation for noninteger ν

J z
z

z

k kv

k

k

()
! ()

,= ⎛
⎝⎜
⎞
⎠⎟

−
⎛
⎝
⎜

⎞
⎠
⎟

+ +=

∞

∑2
4

1

2

0

Γ

and Γ(a) is the gamma function. Yν(z) is linearly independent of Jν(z).

Jν(z) can be computed using besselj.

Description Y = bessely(nu,Z) computes Bessel functions of the second kind,
Yν(z), for each element of the array Z. The order nu need not be an
integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size.

1-521

bessely

Y = bessely(nu,Z,1) computes
bessely(nu,Z).*exp(-abs(imag(Z))).

Tips The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

H z J z iY z

H z J z iY z

()

()

() () ()

() () (),

1

2

= +

= −

where H zK

() () is besselh, Jν(z) is besselj, and Yν(z) is bessely. The

Hankel functions also form a fundamental set of solutions to Bessel’s
equation (see besselh).

Examples Vector of Function Values

Create a column vector of domain values.

z = (0:0.2:1)';

Calculate the function values using bessely with nu = 1.

format long
bessely(1,z)

ans =

-Inf
-3.323824988111848
-1.780872044270052
-1.260391347177388
-0.978144176683359
-0.781212821300289

Plot Bessel Functions of Second Kind

Define the domain.

1-522

bessely

X = 0:0.1:20;

Calculate the first five Bessel functions of the second kind.

Y = zeros(5,201);
for i=0:4

Y(i+1,:) = bessely(i,X);
end

Plot the results.

plot(X,Y,'LineWidth',1.5)
axis([-0.1 20.2 -2 0.6])
grid on;
legend('Y_0','Y_1','Y_2','Y_3','Y_4','Location','Best')
title('Bessel Functions of the Second Kind for v = 0,1,2,3,4')
xlabel('X')
ylabel('Y_v(X)')

1-523

bessely

Algorithms The bessely function uses a Fortran MEX-file to call a library
developed by D. E Amos [3] [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

1-524

bessely

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also besselh | besseli | besselj | besselk

1-525

beta

Purpose Beta function

Syntax B = beta(Z,W)

Definitions The beta function is

B z w t t dt
z w
z w

z w(,) ()
() ()
()

0

1 1 11

where Γ(z) is the gamma function.

Description B = beta(Z,W) computes the beta function for corresponding elements
of arrays Z and W. The arrays must be real and nonnegative. They must
be the same size, or either can be scalar.

Examples In this example, which uses integer arguments,

beta(n,3)
= (n-1)!*2!/(n+2)!
= 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to
recover the exact result.

format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252

1-526

beta

1/360
1/495
1/660

Algorithms beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

See Also betainc | betaln | gammaln

1-527

betainc

Purpose Incomplete beta function

Syntax I = betainc(X,Z,W)
I = betainc(X,Z,W,tail)

Definitions The incomplete beta function is

I t dtz w
B z w

tx
x z w(,)

(,)
()= −∫ − −1
1

0
1 1

where B z w(,) , the beta function, is defined as

B z w t t dt
z w
z w

z w(,) ()
() ()
()

= − =
+∫ − −

0

1 1 11
Γ Γ
Γ

and Γ()z is the gamma function.

Description I = betainc(X,Z,W) computes the incomplete beta function for
corresponding elements of the arrays X, Z, and W. The elements of Xmust
be in the closed interval [0,1]. The arrays Z and W must be nonnegative
and real. All arrays must be the same size, or any of them can be scalar.

I = betainc(X,Z,W,tail) specifies the tail of the incomplete beta
function. Choices are:

'lower' (the default) Computes the integral from 0 to x

'upper' Computes the integral from x to 1

These functions are related as follows:

1-betainc(X,Z,W) = betainc(X,Z,W,'upper')

Note that especially when the upper tail value is close to 0, it is more
accurate to use the 'upper' option than to subtract the 'lower' value
from 1.

1-528

betainc

Examples format long
betainc(.5,(0:10)',3)

ans =
1.00000000000000
0.87500000000000
0.68750000000000
0.50000000000000
0.34375000000000
0.22656250000000
0.14453125000000
0.08984375000000
0.05468750000000
0.03271484375000
0.01928710937500

See Also beta | betaln

1-529

betaincinv

Purpose Beta inverse cumulative distribution function

Syntax x = betaincinv(y,z,w)
x = betaincinv(y,z,w,tail)

Description x = betaincinv(y,z,w) computes the inverse incomplete beta
function for corresponding elements of y, z, and w, such that y =
betainc(x,z,w). The elements of y must be in the closed interval [0,1],
and those of z and w must be nonnegative. y, z, and w must all be real
and the same size (or any of them can be scalar).

x = betaincinv(y,z,w,tail) specifies the tail of the incomplete
beta function. Choices are 'lower' (the default) to use the integral
from 0 to x, or 'upper' to use the integral from x to 1. These
two choices are related as follows: betaincinv(y,z,w,'upper') =
betaincinv(1-y,z,w,'lower'). When y is close to 0, the 'upper'
option provides a way to compute x more accurately than by subtracting
from y from 1.

Definitions The incomplete beta function is defined as

I z w
z w

t t dtx
z w

x

(,)
(,)

()() ()= −− −∫1
11 1

0
β

betaincinv computes the inverse of the incomplete beta function with
respect to the integration limit x using Newton’s method.

See Also betainc | beta | betaln

1-530

betaln

Purpose Logarithm of beta function

Syntax L = betaln(Z,W)

Description L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(Z,W)), for corresponding elements of arrays Z and W, without
computing beta(Z,W). Since the beta function can range over very large
or very small values, its logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or
either can be scalar.

Examples x = 510
betaln(x,x)

ans =
-708.8616

-708.8616 is slightly less than log(realmin). Computing beta(x,x)
directly would underflow (or be denormal).

Algorithms betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

See Also beta | betainc | gammaln

1-531

bicg

Purpose Biconjugate gradients method

Syntax x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

Description x = bicg(A,b) attempts to solve the system of linear equations A*x =
b for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. A can be a
function handle, afun, such that afun(x,'notransp') returns A*x and
afun(x,'transp') returns A'*x.

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If bicg converges, it displays a message to that effect. If bicg fails
to converge after the maximum number of iterations or halts for any
reason, it prints a warning message that includes the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tol is [], then
bicg uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use
the preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicg applies

1-532

bicg

no preconditioner. M can be a function handle mfun, such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then bicg uses the default, an all-zero vector.

[x,flag] = bicg(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicg converged to the desired tolerance tol within
maxit iterations.

1 bicg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicg stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicg
became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a
vector of the residual norms at each iteration including norm(b-A*x0).

Examples Using bicg with a Matrix Input

This example shows how to use bicg with a matrix input. bicg. The
following code:

n = 100;
on = ones(n,1);

1-533

bicg

A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2);

displays this message:

bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Using bicg with a Function Handle

This example replaces the matrix A in the previous example with
a handle to a matrix-vector product function afun. The example is
contained in a file run_bicg that

• Calls bicg with the @afun function handle as its first argument.

• Contains afun as a nested function, so that all variables in run_bicg
are available to afun.

Place the following into a file called run_bicg:

function x1 = run_bicg
n = 100;
on = ones(n,1);
b = afun(on,'notransp');
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = bicg(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

y = 4 * x;

1-534

bicg

y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1 = run_bicg;

MATLAB software displays the message

bicg converged at iteration 9 to a solution with ...
relative residual
5.3e-009

Using bicg with a Preconditioner

This example demonstrates the use of a preconditioner.

Load A = west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12; maxit = 20;

Use bicg to find a solution at the requested tolerance and number of
iterations.

1-535

bicg

[x0,fl0,rr0,it0,rv0] = bicg(A,b,tol,maxit);

fl0 is 1 because bicg does not converge to the requested tolerance
1e-12 within the requested 20 iterations. In fact, the behavior of bicg
is so poor that the initial guess (x0 = zeros(size(A,2),1)) is the best
solution and is returned as indicated by it0 = 0. MATLAB® stores
the residual history in rv0.

Plot the behavior of bicg.

semilogy(0:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-536

bicg

The plot shows that the solution does not converge. You can use a
preconditioner to improve the outcome.

Create the preconditioner with ilu, since the matrix A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

1-537

bicg

MATLAB cannot construct the incomplete LU as it would result in a
singular factor, which is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the
error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = bicg(A,b,tol,maxit,L,U);

fl1 is 0 because bicg drives the relative residual to 4.1410e-014 (the
value of rr1). The relative residual is less than the prescribed tolerance
of 1e-12 at the sixth iteration (the value of it1) when preconditioned
by the incomplete LU factorization with a drop tolerance of 1e-6. The
output rv1(1) is norm(b), and the output rv1(7) is norm(b-A*x2).

You can follow the progress of bicg by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0).

semilogy(0:it1,rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-538

bicg

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

See Also bicgstab | cgs | function_handle | gmres | ilu | lsqr | minres |
pcg | qmr | symmlq | mldivide

1-539

bicgstab

Purpose Biconjugate gradients stabilized method

Syntax x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

Description x = bicgstab(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be square and should
be large and sparse. The column vector b must have length n. A can be
a function handle, afun, such that afun(x) returns A*x.

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If bicgstab converges, a message to that effect is displayed. If
bicgstab fails to converge after the maximum number of iterations
or halts for any reason, a warning message is printed displaying the
relative residual norm(b-A*x)/norm(b) and the iteration number at
which the method stopped or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tol is [],
then bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of
iterations. If maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2)
use preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicgstab applies no
preconditioner. M can be a function handle mfun, such that mfun(x)
returns M\x.

1-540

bicgstab

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0
is [], then bicgstab uses the default, an all zero vector.

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicgstab converged to the desired tolerance tol
within maxit iterations.

1 bicgstab iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstab stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
bicgstab became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the
iteration number at which xwas computed, where 0 <= iter <= maxit.
iter can be an integer + 0.5, indicating convergence halfway through
an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns
a vector of the residual norms at each half iteration, including
norm(b-A*x0).

Examples Using bicgstab with a Matrix Input

This example first solves Ax = b by providing A and the preconditioner
M1 directly as arguments.

The code:

1-541

bicgstab

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = bicgstab(A,b,tol,maxit,M1);

displays the message:

bicgstab converged at iteration 12.5 to a solution with relative
residual 2e-014.

Using bicgstab with a Function Handle

This example replaces the matrix A in the previous example with a
handle to a matrix-vector product function afun, and the preconditioner
M1 with a handle to a backsolve function mfun. The example is contained
in a file run_bicgstab that

• Calls bicgstab with the function handle @afun as its first argument.

• Contains afun and mfun as nested functions, so that all variables in
run_bicgstab are available to afun and mfun.

The following shows the code for run_bicgstab:

function x1 = run_bicgstab
n = 21;
b = afun(ones(n,1));
tol = 1e-12;
maxit = 15;
x1 = bicgstab(@afun,b,tol,maxit,@mfun);

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

1-542

bicgstab

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end
end

When you enter

x1 = run_bicgstab;

MATLAB software displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 2e-014.

Using bicgstab with a Preconditioner

This example demonstrates the use of a preconditioner.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12; maxit = 20;

Use bicgstab to find a solution at the requested tolerance and number
of iterations.

[x0,fl0,rr0,it0,rv0] = bicgstab(A,b,tol,maxit);

fl0 is 1 because bicgstab does not converge to the requested tolerance
1e-12 within the requested 20 iterations. In fact, the behavior of
bicgstab is so bad that the initial guess (x0 = zeros(size(A,2),1))

1-543

bicgstab

is the best solution and is returned as indicated by it0 = 0. MATLAB®
stores the residual history in rv0.

Plot the behavior of bicgstab.

semilogy(0:0.5:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-544

bicgstab

The plot shows that the solution does not converge. You can use a
preconditioner to improve the outcome.

Create a preconditioner with ilu, since A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

MATLAB cannot construct the incomplete LU as it would result in a
singular factor, which is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the
error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = bicgstab(A,b,tol,maxit,L,U);

fl1 is 0 because bicgstab drives the relative residual to 5.9829e-014
(the value of rr1). The relative residual is less than the prescribed
tolerance of 1e-12 at the third iteration (the value of it1) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. The output rv1(1) is norm(b) and the output rv1(7) is
norm(b-A*x2) since bicgstab uses half iterations.

You can follow the progress of bicgstab by plotting the relative
residuals at each iteration starting from the initial estimate (iterate
number 0).

semilogy(0:0.5:it1,rv1/norm(b),'-o');
xlabel('Iteration Number');
ylabel('Relative Residual');

1-545

bicgstab

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] van der Vorst, H.A., "BI-CGSTAB: A fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric linear systems,"
SIAM J. Sci. Stat. Comput., March 1992, Vol. 13, No. 2, pp. 631–644.

1-546

bicgstab

See Also bicg | cgs | function_handle | gmres | lsqr | ilu | minres | pcg |
qmr | symmlq | mldivide

1-547

bicgstabl

Purpose Biconjugate gradients stabilized (l) method

Syntax x = bicgstabl(A,b)
x = bicgstabl(afun,b)
x = bicgstabl(A,b,tol)
x = bicgstabl(A,b,tol,maxit)
x = bicgstabl(A,b,tol,maxit,M)
x = bicgstabl(A,b,tol,maxit,M1,M2)
x = bicgstabl(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstabl(A,b,...)
[x,flag,relres] = bicgstabl(A,b,...)
[x,flag,relres,iter] = bicgstabl(A,b,...)
[x,flag,relres,iter,resvec] = bicgstabl(A,b,...)

Description x = bicgstabl(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be square and the
right-hand side column vector b must have length n.

x = bicgstabl(afun,b) accepts a function handle afun instead of the
matrix A. afun(x) accepts a vector input x and returns the matrix-vector
product A*x. In all of the following syntaxes, you can replace A by afun.

x = bicgstabl(A,b,tol) specifies the tolerance of the method. If tol
is [] then bicgstabl uses the default, 1e-6.

x = bicgstabl(A,b,tol,maxit) specifies the maximum number of
iterations. If maxit is [] then bicgstabl uses the default, min(N,20).

x = bicgstabl(A,b,tol,maxit,M) and x =
bicgstabl(A,b,tol,maxit,M1,M2) use preconditioner M or M=M1*M2
and effectively solve the system A*inv(M)*x = b for x. If M is [] then a
preconditioner is not applied. M may be a function handle returning M\x.

x = bicgstabl(A,b,tol,maxit,M1,M2,x0) specifies the initial guess.
If x0 is [] then bicgstabl uses the default, an all zero vector.

[x,flag] = bicgstabl(A,b,...) also returns a convergence flag:

1-548

bicgstabl

Flag Convergence

0 bicgstabl converged to the desired tolerance tol
within maxit iterations.

1 bicgstabl iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstabl stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
bicgstabl became too small or too large to continue
computing.

[x,flag,relres] = bicgstabl(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstabl(A,b,...) also returns the
iteration number at which xwas computed, where 0 <= iter <= maxit.
iter can be k/4 where k is some integer, indicating convergence at
a given quarter iteration.

[x,flag,relres,iter,resvec] = bicgstabl(A,b,...) also returns
a vector of the residual norms at each quarter iteration, including
norm(b-A*x0).

Examples Using bicgstabl with Inputs or with a Function

You can pass inputs directly to bicgstabl:

n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M = diag([10:-1:1 1 1:10]);
x = bicgstabl(A,b,tol,maxit,M);

You can also use a matrix-vector product function:

1-549

bicgstabl

function y = afun(x,n)
y = [0; x(1:n-1)] + [((n-1)/2:-1:0)';
(1:(n-1)/2)'].*x+[x(2:n); 0];

and a preconditioner backsolve function:

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)';
1;
(1:(n-1)/2)'];

as inputs to bicgstabl:

x1 = bicgstabl(@(x)afun(x,n),b,tol,maxit,@(x)mfun(x,n));

Using bicgstabl with a Preconditioner

This example demonstrates the use of a preconditioner.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12; maxit = 20;

Use bicgstabl to find a solution at the requested tolerance and number
of iterations.

[x0,fl0,rr0,it0,rv0] = bicgstabl(A,b,tol,maxit);

fl0 is 1 because bicgstabl does not converge to the requested tolerance
1e-12 within the requested 20 iterations. In fact, the behavior of
bicgstabl is so poor that the initial guess (x0 = zeros(size(A,2),1))

1-550

bicgstabl

is the best solution and is returned as indicated by it0 = 0. MATLAB®
stores the residual history in rv0.

Plot the behavior of bicgstabl.

semilogy(0:0.25:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-551

bicgstabl

The plot shows that the solution does not converge. You can use a
preconditioner to improve the outcome.

Create a preconditioner with ilu, since A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing the
drop tolerance or consider using the 'udiag' option.

MATLAB cannot construct the incomplete LU as it would result in a
singular factor, which is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the
error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = bicgstabl(A,b,tol,maxit,L,U);

fl1 is 0 because bicgstabl drives the relative residual to 1.0257e-015
(the value of rr1). The relative residual is less than the prescribed
tolerance of 1e-12 at the sixth iteration (the value of it1) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. The output rv1(1) is norm(b), and the output rv1(9) is
norm(b-A*x2) since bicgstabl uses quarter iterations.

You can follow the progress of bicgstabl by plotting the relative
residuals at each iteration starting from the initial estimate (iterate
number 0).

semilogy(0:0.25:it1,rv1/norm(b),'-o');
set(gca,'XTick',0:0.25:it1);
xlabel('Iteration number');
ylabel('Relative residual');

1-552

bicgstabl

See Also bicg | bicgstab | cgs | function_handle | gmres | lsqr | ilu |
minres | pcg | qmr | symmlq | mldivide

1-553

bin2dec

Purpose Convert binary number string to decimal number

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary string binarystr and
returns the equivalent decimal number.

bin2dec ignores any space (' ') characters in the input string.

Examples Binary 010111 converts to decimal 23:

bin2dec('010111')
ans =

23

Because space characters are ignored, this string yields the same result:

bin2dec(' 010 111 ')
ans =

23

See Also dec2bin

1-554

FTP.binary

Purpose Set FTP transfer type to binary

Syntax binary(ftpobj)

Description binary(ftpobj) sets the FTP download and upload mode to binary,
which does not convert new line characters. Binary mode is the default
for FTP objects. If you previously called the ascii method, use this
method before transferring a nontext file, such as an executable or ZIP
archive.

Input
Arguments

ftpobj

FTP object created by ftp.

Examples Connect to the MathWorks FTP server, and set the transfer mode to
binary:

mw=ftp('ftp.mathworks.com');
binary(mw)

See Also ascii | ftp

1-555

bitand

Purpose Bit-wise AND

Syntax intout = bitand(integ1,integ2)
intout = bitand(integ1,integ2,assumedtype)

objout = bitand(netobj1,netobj2)

Description intout = bitand(integ1,integ2) returns the bit-wise AND of values
integ1 and integ2.

intout = bitand(integ1,integ2,assumedtype) assumes that
integ1 and integ2 are of assumedtype.

objout = bitand(netobj1,netobj2) returns the bit-wise AND of the
.NET enumeration objects netobj1 and netobj2.

Input
Arguments

integ1, integ2 - Input values
signed integer arrays | unsigned integer arrays | double arrays

Input values, specified as signed integer arrays, unsigned integer
arrays, or double arrays. integ1 and integ2 must be the same data
type, or one must be a scalar double value.

• If integ1 and integ2 are double arrays, and assumedtype is not
specified, then MATLAB treats integ1 and integ2 as unsigned
64-bit integers.

• If assumedtype is specified, then all elements in integ1 and
integ2 must have integer values within the range of assumedtype.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype - Assumed data type of integ1 and integ2
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' |
'int16' | 'int8'

1-556

bitand

Assumed data type of integ1 and integ2, specified as 'uint64',
'uint32', 'uint16', 'uint8', 'int64', 'int32', 'int16', or 'int8'.

• If integ1 and integ2 are double arrays, then assumedtype can
specify any valid integer type, but defaults to 'uint64'.

• If integ1 and integ2 are integer type arrays, then assumedtype
must specify that same integer type.

Data Types
char

netobj1, netobj2 - Input values
.NET enumeration objects

Input values, specified as .NET enumeration objects. You must be
running a version of Windows to use .NET enumeration objects as input
arguments.

bitand is an instance method for MATLAB enumeration objects created
from a .NET enumeration.

Output
Arguments

intout - Bit-wise AND result
signed integer array | unsigned integer array | double array

Bit-wise AND result, returned as a signed integer array, unsigned
integer array, or double array. intout is the same data type and size
as integ1 and integ2.

• If either integ1 or integ2 is a scalar double, and the other is a
non-double integer type, intout is the non-double integer type.

objout - Bit-wise AND result
.NET enumeration object

Bit-wise AND result, returned as a .NET enumeration objects.

Examples Truth Table

Create a truth table for the logical AND operation.

1-557

bitand

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TTable = bitand(A, B)

TTable =

0 0
0 1

bitand returns 1 only if both bit-wise inputs are 1.

Negative Values

Explore how bitand handles negative values

MATLAB encodes signed integers using two’s complement. Thus, the
bit-wise AND of 5 (11111010) and 6 (00000110) is 2 (00000010).

C = -5;
D = 6;
bitand(C,D,'int8')

ans =

2

See Also bitcmp | bitget | bitor | bitnot | bitshift | bitset | bitxor |
intmax

Related
Examples

• “Creating .NET Enumeration Bit Flags”

1-558

bitcmp

Purpose Bit-wise complement

Compatibility bitcmp(A,N) will not accept N in a future release. Use bitcmp(A) or
bitcmp(A,assumedtype) instead.

Syntax cmp = bitcmp(A)
cmp = bitcmp(A,assumedtype)

cmp = bitcmp(A,N)

Description cmp = bitcmp(A) returns the bit-wise complement of A.

cmp = bitcmp(A,assumedtype) assumes that A is of assumedtype.

cmp = bitcmp(A,N) returns an N-bit complement of A. Elements of A
cannot exceed 2N-1.

Input
Arguments

A - Input value
signed integer array | unsigned integer array | double array

Input value, specified as a signed integer array, unsigned integer array,
or double array.

• If A is a double array, and assumedtype is not specified, then
MATLAB treats A as an unsigned 64-bit integer.

• If assumedtype is specified, then all elements in A must have
integer values within the range of assumedtype.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype - Assumed data type of A
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' |
'int16' | 'int8'

1-559

bitcmp

Assumed data type of A, specified as 'uint64', 'uint32', 'uint16',
'uint8', 'int64', 'int32', 'int16', or 'int8'.

• If A is a double array, then assumedtype can specify any valid
integer type, but defaults to 'uint64'.

• If A is an integer type array, then assumedtype must specify that
same integer type.

Data Types
char

N - number of returned bits
integer

Number of returned bits, specified as an integer. N cannot exceed the
number of bits in the integer type of A.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output
Arguments

cmp - Bit-wise complement
signed integer array | unsigned integer array | double array

Bit-wise complement, returned as a signed integer array, unsigned
integer array, or double array. cmp is the same size and type as A.

Examples Complement of a Negative Integer

A = int8(-11);
cmp = bitcmp(A)

cmp =

10

You can see the complement operation when the numbers are shown in
binary.

1-560

bitcmp

original = bitget(A,8:-1:1)
complement = bitget(bitcmp(A),8:-1:1)

original =

1 1 1 1 0 1 0 1

complement =

0 0 0 0 1 0 1 0

Complement of Unsigned Integers

cmp = bitcmp(64,'uint8')
maxint = intmax('uint8') - 64

cmp =

191

maxint =

191

The complement of an unsigned integer is equal to itself subtracted
from the maximum integer of its data type.

See Also bitand | bitget | bitor | bitshift | bitset | bitxor | intmax

1-561

bitget

Purpose Get bit at specified position

Syntax b = bitget(A,bit)
b = bitget(A,bit,assumedtype)

Description b = bitget(A,bit) returns the bit value at position bit in integer
array A.

b = bitget(A,bit,assumedtype) assumes that A is of assumedtype.

Input
Arguments

A - Input value
signed integer array | unsigned integer array | double array

Input value, specified as a signed integer array, unsigned integer array,
or double array.

• If A is a double array, and assumedtype is not specified, then
MATLAB treats A as an unsigned 64-bit integer.

• If assumedtype is specified, then all elements in A must have
integer values within the range of assumedtype.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

bit - Bit position
integer | integer array

Bit position, specified as an integer or integer array. bit must be
between 1 (the least-significant bit) and the number of bits in the
integer class of A.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype - Assumed data type of A

1-562

bitget

'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' |
'int16' | 'int8'

Assumed data type of A, specified as 'uint64', 'uint32', 'uint16',
'uint8', 'int64', 'int32', 'int16', or 'int8'.

• If A is a double array, then assumedtype can specify any valid
integer type, but defaults to 'uint64'.

• If A is an integer type array, then assumedtype must specify that
same integer type.

Data Types
char

Output
Arguments

b - Bit value at bit
0 | 1

Bit value at bit, returned as 0 or 1. b is the same data type as A.

Examples Maximum Integer

Find the difference in the binary representation between the maximum
integer of signed and unsigned integers.

a1 = intmax('int8');
a2 = intmax('uint8');
b1 = bitget(a1,8:-1:1)
b2 = bitget(a2,8:-1:1)

b1 =

0 1 1 1 1 1 1 1

b2 =

1 1 1 1 1 1 1 1

The signed integers require a bit to accommodate negative integers.

1-563

bitget

Negative Numbers Using Two’s Complement

Find the 8-bit representation of a negative number.

A = -29;
b = bitget(A,8:-1:1,'int8')

b =

1 1 1 0 0 0 1 1

See Also bitand | bitcmp | bitor | bitshift | bitset | bitxor | intmax

1-564

bitmax

Purpose Maximum double-precision floating-point integer

Compatibility bitmax will be removed in a future release. Use flintmax instead.

Syntax bitmax

Description bitmax returns the maximum unsigned double-precision floating-point
integer for your computer. It is the value when all bits are set, namely

the value .

Note Instead of integer-valued double-precision variables, use unsigned
integers for bit manipulations and replace bitmax with intmax.

Examples Display in different formats the largest floating point integer and the
largest 32 bit unsigned integer:

format long e
bitmax
ans =

9.007199254740991e+015

intmax('uint32')
ans =

4294967295

format hex
bitmax
ans =

433fffffffffffff

intmax('uint32')
ans =

ffffffff

1-565

bitmax

In the second bitmax statement, the last 13 hex digits of bitmax
are f, corresponding to 52 1’s (all 1’s) in the mantissa of the binary
representation. The first 3 hex digits correspond to the sign bit 0 and
the 11 bit biased exponent 10000110011 in binary (1075 in decimal),
and the actual exponent is (1075-1023) = 52. Thus the binary value of
bitmax is 1.111...111 x 2^52 with 52 trailing 1’s, or 2^53-1.

See Also bitand | bitcmp | bitget | bitor | bitset | bitshift | bitxor

1-566

bitnot

Purpose .NET enumeration object bit-wise NOT instance method

Syntax objout = bitnot(netobj)

Description objout = bitnot(netobj) reverses all bits of the .NET enumeration
objects netobj.

Input
Arguments

netobj - Input value
.NET enumeration objects

Input value, specified as .NET enumeration object. You must be
running a version of Windows to use .NET enumeration objects as input
arguments.

Output
Arguments

objout - Bit-wise NOT result
.NET enumeration object

Bit-wise NOT result, returned as a .NET enumeration object.

Limitations • The method is an instance method for MATLAB enumeration objects
created from a .NET enumeration. This method does not have an
equivalent MATLAB function.

See Also bitand | bitor | bitxor

Related
Examples

• “Creating .NET Enumeration Bit Flags”

1-567

bitor

Purpose Bit-wise OR

Syntax intout = bitor(integ1,integ2)
intout = bitor(integ1,integ2,assumedtype)

objout = bitor(netobj1,netobj2)

Description intout = bitor(integ1,integ2) returns the bit-wise OR of integ1
and integ2.

intout = bitor(integ1,integ2,assumedtype) assumes that integ1
and integ2 are of assumedtype.

objout = bitor(netobj1,netobj2) returns the bit-wise OR of the
.NET enumeration objects netobj1 and netobj2.

Input
Arguments

integ1, integ2 - Input values
signed integer arrays | unsigned integer arrays | double arrays

Input values, specified as signed integer arrays, unsigned integer
arrays, or double arrays. integ1 and integ2 must be the same data
type, or one must be a scalar double value.

• If integ1 and integ2 are double arrays, and assumedtype is not
specified, then MATLAB treats integ1 and integ2 as unsigned
64-bit integers.

• If assumedtype is specified, then all elements in integ1 and
integ2 must have integer values within the range of assumedtype.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype - Assumed data type of integ1 and integ2
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' |
'int16' | 'int8'

1-568

bitor

Assumed data type of integ1 and integ2, specified as 'uint64',
'uint32', 'uint16', 'uint8', 'int64', 'int32', 'int16', or 'int8'.

• If integ1 and integ2 are double arrays, then assumedtype can
specify any valid integer type, but defaults to 'uint64'.

• If integ1 and integ2 are integer type arrays, then assumedtype
must specify that same integer type.

Data Types
char

netobj1, netobj2 - Input values
.NET enumeration objects

Input values, specified as .NET enumeration objects. You must be
running a version of Windows to use .NET enumeration objects as input
arguments.

bitor is an instance method for MATLAB enumeration objects created
from a .NET enumeration.

Output
Arguments

intout - Bit-wise OR result
signed integer array | unsigned integer array | double array

Bit-wise OR result, returned as a signed integer array, unsigned integer
array, or double array. intout is the same data type and size as
integ1 and integ2.

• If either integ1 or integ2 is a scalar double, and the other is a
non-double integer type, intout is the non-double integer type.

objout - Bit-wise OR result
.NET enumeration object

Bit-wise OR result, returned as a .NET enumeration objects.

Examples Truth Table

Create a truth table for the logical OR operation.

1-569

bitor

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TTable = bitor(A, B)

TTable =

0 1
1 1

bitor returns 1 if either bit-wise input is 1.

Negative Values

Explore how bitor handles negative values.

MATLAB encodes negative integers using two’s complement. Thus, the
bit-wise OR of -5 (11111010) and 6 (00000110) is -1 (11111110).

C = -5;
D = 6;
bitor(C,D,'int8')

ans =

-1

See Also bitand | bitnot | bitcmp | bitget | bitshift | bitset | bitxor |
intmax

Related
Examples

• “Creating .NET Enumeration Bit Flags”

1-570

bitset

Purpose Set bit at specific location

Syntax intout = bitset(A,bit)
intout = bitset(A,bit,assumedtype)

intout = bitset(A,bit,V)
intout = bitset(A,bit,V,assumedtype)

Description intout = bitset(A,bit) returns the value of A with position bit
set to 1 (on).

intout = bitset(A,bit,assumedtype) assumes A is of type
assumedtype.

intout = bitset(A,bit,V) returns A with position bit set to the
value of V.

• If V is zero, then the bit position bit is set to 0 (off).

• If V is nonzero, then the bit position bit is set to 1 (on).

intout = bitset(A,bit,V,assumedtype) assumes A is of type
assumedtype.

Input
Arguments

A - Input value
signed integer array | unsigned integer array | double array

Input value, specified as a signed integer array, unsigned integer array,
or double array.

• If A is a double array, and assumedtype is not specified, then
MATLAB treats A as an unsigned 64-bit integer.

• If assumedtype is specified, then all elements in A must have
integer values within the range of assumedtype.

1-571

bitset

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

bit - Bit position
integer | integer array

Bit position, specified as an integer or integer array. bit must be
between 1 (the least significant bit) and the number of bits in the
integer class of A.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype - Assumed data type of A
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' |
'int16' | 'int8'

Assumed data type of A, specified as 'uint64', 'uint32', 'uint16',
'uint8', 'int64', 'int32', 'int16', or 'int8'.

• If A is a double array, then assumedtype can specify any valid
integer type, but defaults to 'uint64'.

• If A is an integer type array, then assumedtype must specify that
same integer type.

Data Types
char

V - bit value
scalar | numeric array

Bit value, specified as a scalar or a numeric array. If V and bit are
arrays, they must be the same size.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1-572

bitset

Output
Arguments

intout - Adjusted integer
signed integer array | unsigned integer array | double array

Adjusted integer, returned as a signed integer array, unsigned integer
array, or double array. intout is the same size and type as A.

Examples Set Bits to On

Add powers of 2 onto a number.

A = 4;
intout = bitset(A,4:6)

intout =

12 20 36

You can see that bitset sequentially turns on bits 4 through 6.

c = dec2bin(intout)

c =

001100
010100
100100

Out of Range of Integer Type

MATLAB throws an error if you specify an integer outside the range of
assumedtype.

intout = bitset(300,5,'int8')

Error using bitset
Double inputs must have integer values in the range of ASSUMEDTYPE.

You can avoid this error by limiting your input to the range of the
specified datatype.

1-573

bitset

Set Bits to Off

Repeatedly subtract powers of 2 from a number.

a = intmax('uint8')
for k = 0:7

a = bitset(a, 8-k, 0);
b(1,k+1) = a;

end
b

a =

255

b =

127 63 31 15 7 3 1 0

Set Multiple Bits

Set multiple bits to different values

bits = 2:6;
val = [1 0 0 1 1];
intout = bitset(0,bits,val,'int8')

intout =

2 0 0 16 32

See Also bitand | bitcmp | bitget | bitor | bitshift | bitxor | intmax

1-574

bitshift

Purpose Shift bits specified number of places

Compatibility bitshift(A,k,N) will not accept the argument N in a future release.
Use bitshift(A,k) or bitcmp(A,k,assumedtype) instead.

bitshift no longer interprets double values as 53-bit unsigned integers
by default, but as uint64 values.

Syntax intout = bitshift(A,k)
intout = bitshift(A,k,assumedtype)

intout = bitshift(A,k,N)

Description intout = bitshift(A,k) returns A shifted to the left by k bits,
equivalent to multiplying by 2k. Negative values of k correspond to
shifting bits right or dividing by 2|k| and rounding to the nearest integer
towards negative infinite. Any overflow bits are truncated.

• If A is an array of signed integers, then bitshift returns the
arithmetic shift results, preserving the signed bit when k is negative,
and not preserving the signed bit when k is positive.

• If k is positive, MATLAB shifts the bits to the left and inserts k
0-bits on the right.

• If k is negative and A is nonnegative, then MATLAB shifts the bits to
the right and inserts |k| 0-bits on the left.

• If k is negative and A is negative, then MATLAB shifts the bits to the
right and inserts |k| 1-bits on the left.

intout = bitshift(A,k,assumedtype) assumes A is of type
assumedtype.

intout = bitshift(A,k,N) truncates any bits that overflow N bits.

1-575

bitshift

Input
Arguments

A - Input value
signed integer array | unsigned integer array | double array

Input value, specified as a signed integer array, unsigned integer array,
or double array.

• If A is a double array, and assumedtype is not specified, then
MATLAB treats A as an unsigned 64-bit integer.

• If assumedtype is specified, then all elements in A must have
integer values within the range of assumedtype.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

k - Number of switched bits
integer | integer array

Number of switched bits, specified as an integer or integer array.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype - Assumed data type of A
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' |
'int16' | 'int8'

Assumed data type of A, specified as 'uint64', 'uint32', 'uint16',
'uint8', 'int64', 'int32', 'int16', or 'int8'.

• If A is an integer type array, then assumedtype must specify that
same integer type.

• If A is a double array, then assumedtype can specify any valid
integer type.

Data Types
char

1-576

bitshift

N - Number of bits kept
nonnegative integer | nonnegative integer array

Number of bits kept, specified as a nonnegative integer or integer array.
N must be less than or equal to the number of bits in the unsigned
integer class of A.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output
Arguments

intout - Shifted value
signed integer array | unsigned integer array | double array

Shifted value, returned as signed integer array, unsigned integer array,
or double array. intout is the same size and type as A.

Examples Shifted 8-bit Integer

Repeatedly shift the bits of an unsigned 8-bit value to the left until all
the nonzero bits overflow.

a = intmax('uint8');
s1 = 'Initial uint8 value %5d is %08s in binary\n';
s2 = 'Shifted uint8 value %5d is %08s in binary\n';
fprintf(s1,a,dec2bin(a))
for i = 1:8

a = bitshift(a,1);
fprintf(s2,a,dec2bin(a))

end

Initial uint8 value 255 is 11111111 in binary
Shifted uint8 value 254 is 11111110 in binary
Shifted uint8 value 252 is 11111100 in binary
Shifted uint8 value 248 is 11111000 in binary
Shifted uint8 value 240 is 11110000 in binary
Shifted uint8 value 224 is 11100000 in binary
Shifted uint8 value 192 is 11000000 in binary
Shifted uint8 value 128 is 10000000 in binary

1-577

bitshift

Shifted uint8 value 0 is 00000000 in binary

Different Results for Different Integer Types

Find the shift for a number using different assumed integer types.

uintout = bitshift(6,5:7,'uint8')
intout = bitshift(6,5:7,'int8')

uintout =

192 128 0

intout =

-64 -128 0

See Also bitand | bitcmp | bitget | bitor | bitset | bitxor | intmax

1-578

bitxor

Purpose Bit-wise XOR

Syntax intout = bitxor(integ1,integ2)
intout = bitxor(integ1,integ2,assumedtype)

objout = bitxor(netobj1,netobj2)

Description intout = bitxor(integ1,integ2) returns the bit-wise XOR of
integ1 and integ2.

intout = bitxor(integ1,integ2,assumedtype) assumes that
integ1 and integ2 are of assumedtype.

objout = bitxor(netobj1,netobj2) returns the bit-wise XOR of the
.NET enumeration objects netobj1 and netobj2.

Input
Arguments

integ1, integ2 - Input values
signed integer arrays | unsigned integer arrays | double arrays

Input values, specified as signed integer arrays, unsigned integer
arrays, or double arrays. integ1 and integ2 must be the same data
type, or one must be a scalar double value.

• If integ1 and integ2 are double arrays, and assumedtype is not
specified, then MATLAB treats integ1 and integ2 as unsigned
64-bit integers.

• If assumedtype is specified, then all elements in integ1 and
integ2 must have integer values within the range of assumedtype.

Data Types
double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

assumedtype - Assumed data type of integ1 and integ2
'uint64' | 'uint32' | 'uint16' | 'uint8' | 'int64' | 'int32' |
'int16' | 'int8'

1-579

bitxor

Assumed data type of integ1 and integ2, specified as 'uint64',
'uint32', 'uint16', 'uint8', 'int64', 'int32', 'int16', or 'int8'.

• If integ1 and integ2 are double arrays, then assumedtype can
specify any valid integer type, but defaults to 'uint64'.

• If integ1 and integ2 are integer type arrays, then assumedtype
must specify that same integer type.

Data Types
char

netobj1, netobj2 - Input values
.NET enumeration objects

Input values, specified as .NET enumeration objects. You must be
running a version of Windows to use .NET enumeration objects as input
arguments.

bitxor is an instance method for MATLAB enumeration objects created
from a .NET enumeration.

Output
Arguments

intout - Bit-wise XOR result
signed integer array | unsigned integer array | double array

Bit-wise XOR result, returned as a signed integer array, unsigned
integer array, or double array. intout is the same data type and size
as integ1 and integ2.

• If either integ1 or integ2 is a scalar double, and the other is a
non-double integer type, intout is the non-double integer type.

objout - Bit-wise XOR result
.NET enumeration object

Bit-wise XOR result, returned as a .NET enumeration objects.

Examples Truth Table

Create a truth table for the logical XOR operation.

1-580

bitxor

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TTable = bitxor(A, B)

TTable =

0 1
1 0

bitxor returns 0 if both bit-wise inputs are equal.

Negative Values

Explore how bitxor handles negative values.

MATLAB encodes negative integers using two’s complement. Thus, the
bit-wise XOR of -5 (11111010) and 6 (00000110) is -3 (11111100).

C = -5;
D = 6;
bitxor(C,D,'int8')

ans =

-3

See Also bitand | bitcmp | bitget | bitor | bitnot | bitshift | bitset |
intmax

Related
Examples

• “Creating .NET Enumeration Bit Flags”

1-581

blanks

Purpose Create string of blank characters

Syntax blanks(n)

Description blanks(n) is a string of n blanks.

Examples blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'])

displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

See Also clc | format | home

1-582

blkdiag

Purpose Construct block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...), where a, b, c, d, ... are matrices,
outputs a block diagonal matrix of the form

The input matrices do not have to be square, nor do they have to be of
equal size.

See Also diag | horzcat | vertcat

1-583

box

Purpose Axes border

Syntax box on
box off
box
box(axes_handle,...)

Description box on displays the boundary of the current axes.

box off does not display the boundary of the current axes.

box toggles the visible state of the current axes boundary.

box(axes_handle,...) uses the axes specified by axes_handle instead
of the current axes.

Algorithms The box function sets the axes Box property to on or off.

See Also axes | grid

1-584

break

Purpose Terminate execution of for or while loop

Syntax break

Description break terminates the execution of a for or while loop. Statements in
the loop that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs.
Control passes to the statement that follows the end of that loop.

Tips break is not defined outside a for or while loop. Use return in this
context instead.

Examples The example below shows a while loop that reads the contents of the
file fft.m into a MATLAB character array. A break statement is used
to exit the while loop when the first empty line is encountered. The
resulting character array contains the command line help for the fft
program.

fid = fopen('fft.m','r');
s = '';

while ~feof(fid)
line = fgetl(fid);
if isempty(line) || ~ischar(line)

break
end
s = sprintf('%s%s\n', s, line);

end
disp(s);

fclose(fid);

See Also for | while | end | continue | return

1-585

brighten

Purpose Brighten or darken colormap

Syntax brighten(beta)
brighten(h,beta)
newmap = brighten(beta)
newmap = brighten(cmap,beta)

Description brighten(beta) increases or decreases the color intensities in
a colormap by replacing the current colormap with a brighter
or darker colormap of essentially the same colors. The modified
colormap is brighter if 0 < beta < 1 and darker if -1 < beta < 0.
brighten(beta), followed by brighten(-beta), where beta < 1,
restores the original map.

brighten(h,beta) brightens all objects that are children of the figure
having the handle h.

newmap = brighten(beta) returns a brighter or darker version of the
current colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version
of the colormap cmap without changing the display.

Examples Brighten Colormap

Display a surface plot of membrane.

surf(membrane);

1-586

brighten

Brighten the colormap.

beta = .7;
brighten(beta);

1-587

brighten

Algorithms brighten raises values in the colormap to the power of gamma, where
gamma is

=
− >

+
≤

⎧
⎨
⎪

⎩⎪

1 0
1

1
0

,

,

brighten has no effect on graphics objects defined with true color.

1-588

brighten

See Also colormap | rgbplot

How To • “Altering Colormaps”

1-589

brush

Purpose Interactively mark, delete, modify, and save observations in graphs

Syntax brush on
brush off
brush
brush color
brush(figure_handle,...)
brushobj = brush(figure_handle)

Description Data brushing is a mode for interacting with graphs in figure windows
in which you can click data points or drag a selection rectangle
around data points to highlight observations in a color of your choice.
Highlighting takes different forms for different types of graphs, and
brushing marks persist—even in other interactive modes—until
removed by deselecting them.

brush on turns on interactive data brushing mode.

brush off turns brushing mode off, leaving any brushed observations
still highlighted.

brush by itself toggles the state of the data brushing tool.

brush color sets the current color used for brushing graphics to
the specified ColorSpec. Changing brush color affects subsequent
brushing, but does not change the color of observations already brushed
or the brush tool’s state.

brush(figure_handle,...) applies the function to the specified figure
handle.

brushobj = brush(figure_handle) returns a brush mode object for
that figure, useful for controlling and customizing the figure’s brushing
state. The following properties of such objects can be modified using
get and set:

1-590

brush

Enable 'on' |
{'off'}

Specifies whether this figure mode is currently
enabled on the figure.

FigureHandle The associated figure handle. This property
supports get only.

Color Specifies the color to be used for brushing.

brush cannot return a brush mode object at the same time you are
calling it to set a brushing option.

Tips • “Types of Plots You Can Brush” on page 1-591

• “Plot Types You Cannot Brush” on page 1-593

• “Mode Exclusivity and Persistence” on page 1-594

• “How Data Linking Affects Data Brushing” on page 1-595

• “Mouse Gestures for Data Brushing” on page 1-596

• “Brush Mode Callbacks” on page 1-597

Types of Plots You Can Brush

Data brushing places lines and patches on plots to create highlighting,
marking different types of graphs as follows (brushing marks are shown
in red):

1-591

brush

Graph Type Brushing Annotation Overlays? Example

lineseries Colored lines slightly wider than
those in the lineseries with a marker
distinct from those on the lineseries
(filled circles if none) to identify
brushed vertices. Only those line
segments that connect brushed
vertices are highlighted

Y

scattergroup Line with LineStyle 'none' and
a marker with a color distinct from
and slightly larger than the base
scattergroup marker.

Y

stemseries The brushed stems and stem heads
are shaded in the brushing color.

Y

barseries The interior of selected bars is filled
in the brushing color.

N

histogram The bars to which brushed
observations contribute are
proportionately filled from the
bottom up with the brushing color.

N

1-592

brush

Graph Type Brushing Annotation Overlays? Example

areaseries Patches filling the region between
selected points and the x-axis in the
brushing color.

N

surfaceplot Patches with edges slightly wider
than the surfaceplot line width and
with a marker distinct from that of
the surfaceplot (X if none) to identify
brushed vertices. Patches are
plotted only when all four vertices
that define them are brushed. The
brushed observations are the set of
marked vertices, not the patches.

N

When using the linked plots feature, a graph can become brushed
when you brush another graph that displays some of the same data,
potentially brushing the same observations more than once. The
overlaid brushing marks (whether lines or markers) are slightly wider
than the brushing marks that they overlay; this makes multiply
brushed observations visually distinct. The wider brushing marks are
placed under the narrower ones, so that if they happen to have different
colors, you can see all the colors. See the subsection “How Data Linking
Affects Data Brushing” on page 1-595 for more information about
brushing linked figures.

As the above table indicates, only lineseries, scatterseries, and
stemseries brushing marks can be overlaid in this manner. Although
you can brush them, you cannot overlay brushing marks on areaseries,
barseries, histograms, or surfaceplots.

Plot Types You Cannot Brush

Currently, not all plot types enable data brushing. Graph functions
that do not support brushing are:

1-593

brush

• Line plots created with line

• Scatter plots created with spy

• Contour plots created with contour, contourf, or contour3

• Pie charts created with pie or pie3

• Radial graphs created with polar, compass, or rose

• Direction graphs created with feather, quiver, or comet

• Area and image plots created with fill, image, imagesc, or pcolor

• Bar graphs created with pareto or errorbar

• Functional plots created with ezcontour or ezcontourf

• 3-D plot types other than plot3, stem3, scatter3, mesh, meshc,
surf, surfl, and surfc

You can use some of these functions to display base data that do not
need to be brushable. For example, use line to plot mean y-values as
horizontal lines that you do not need or want to brush.

Mode Exclusivity and Persistence

Data brushing mode is exclusive, like zoom, pan, data cursor, or plot edit
mode. However, brush marks created in data brushing mode persist
through all changes in mode. Brush marks that appear in other graphs
while they are linked via linkdata also persist even when data linking
is subsequently turned off. That is, severing connections to a graph’s
data sources does not remove brushing marks from it. The only ways to
remove brushing marks are (in brushing mode):

• Brush an empty area in a brushed graph.

• Right-click and select Clear all brushing from the context menu.

Changing the brushing color for a figure does not recolor brushing marks
on it until you brush it again. If you hold down the Shift key, all existing
brush marks change to the new color. All brush marks that appear on
linked plots in the same or different figure also change to the new color
if the brushing action affects them. The behavior is the same whether
you select a brushing color from the Brush Tool dropdown palette, set

1-594

brush

it by calling brush(colorspec), or by setting the Color property of a
brush mode object (e.g., set(brushobj,'Color',colorspec).

How Data Linking Affects Data Brushing

When you use the Data Linking tool or call the linkdata function,
brushing marks that you make on one plot appear on other plots that
depict the same variable you are brushing—if those plots are also
linked. This happens even if the affected plot is not in Brushing mode.
That is, brushing marks appear on a linked plot in any mode when you
brush another plot linked to it via a common variable or brush that
variable in the Variables editor. Be aware that the following conditions
apply, however:

• The graph type must support data brushing (see “Types of Plots
You Can Brush” on page 1-591 and “Plot Types You Cannot Brush”
on page 1-593)

• The graphed variable must not be complex; if you can plot a complex
variable you can brush it, but such graphs do not respond when
you brush the complex variable in another linked plot. For more
information about linking complex variables, see Example 3 in the
linkdata reference page.

• Observations that you brush display in the same color in all linked
graphs. The color is the brush color you have selected in the window
you are interacting with, and can differ from the brushing colors
selected in the other affected figures. When you brush linked plots,
the brushing color is associated with the variable(s) you brush

The last bullet implies that brush marks on an unlinked graph can
change color when data linking is turned on for that figure. Brushing
marks can, in fact, vanish and be replaced by marks in the same or
different color when the plot enters a linked state. In the linked state,
brushing is tied to variables (data sources), not just the graphics. If
different observations for the same variable on a linked figure are
brushed, those variables override the brushed graphics on the newly
linked plot. In other words, the newly linked graph loses all its previous
brush marks when it “joins the club” of common data sources.

1-595

brush

Mouse Gestures for Data Brushing

You can brush graphs in several ways. The basic operation is to drag
the mouse to highlight all observations within the rectangle you define.
The following table lists data brushing gestures and their effects.

Action Gesture Result

Select data
using a
region of
interest

ROI mouse
drag

Region of interest (ROI) rectangle
(or rectangular prism for 3-D axes)
appears during the gesture and
all brushable observations within
the rectangle are highlighted. All
other brushing marks in the axes
are removed. The ROI rectangle
disappears when the mouse button is
released.

Select a
single point

Single left-click
on a graphic
object that
supports data
brushing

Produces an equivalent result to
ROI rectangle, brushing where the
rectangle encloses only the single
vertex on the graphical object closest
to the mouse. All other brushing
annotations in the figure are removed.

Add a
point to the
selection or
remove a
highlighted
one

Single left-click
on a graphic
object that
supports data
brushing, with
the Shift key
down

Equivalent brushing by dragging
an ROI rectangle that encloses only
the single vertex on the graphic
object closest to the mouse. All other
brushed regions in the figure remain
brushed.

Select
all data
associated
with a
graphic
object

Double
left-click on
a graphic object
that supports
data brushing

All vertices for the graphic object are
brushed.

1-596

brush

Action Gesture Result

Add to or
subtract
from region
of interest

Click or ROI
drag with the
Shift or Ctrl
keys down

Region of interest grows; all
unbrushed vertices within the
rectangle become brushed and all
brushed observations in it become
unbrushed. All brushed vertices
outside the ROI remain brushed.

Copy
brushed
data to
Editor,
Command
Window,
Variables
editor, or
Workspace
Browser

Drag brushed
data to another
window or to
a program/icon
on the system
desktop

Equivalent to copying brushed data
and pasting into other window or an
existing/new variable.

Brush Mode Callbacks

You can program the following callbacks for brush mode operations.

• ActionPreCallback <function_handle> — Function to execute
before brushing

Use this callback to execute code when a brush operation begins.
The function handle should reference a function with two implicit
arguments:

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked
% event_obj object containing struct of event data

The event data struct has the following field:

Axes The handle of the axes that is being brushed

1-597

brush

• ActionPostCallback <function_handle> — Function to execute
after brushing

Use this callback to execute code when a brush operation ends.
The function handle should reference a function with two implicit
arguments:

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked
% event_obj object containing struct of event data
% (same as the event data of the
% 'ActionPreCallback' callback)

Examples Example 1

On a scatterplot, drag out a rectangle to brush the graph:

x = rand(20,1);
y = rand(20,1);
scatter(x,y,80,'s')
brush on

1-598

brush

Example 2

Brush observations from -.2 to .2 on a lineseries plot in dark red:

x = [-2*pi:.1:2*pi];
y = sin(x);
plot(x,y);
h = brush;
set(h,'Color',[.6 .2 .1],'Enable','on');

1-599

brush

See Also linkaxes | linkdata | pan | rotate3d | zoom

How To • “Marking Up Graphs with Data Brushing”

1-600

bsxfun

Purpose Apply element-by-element binary operation to two arrays with singleton
expansion enabled

Syntax C = bsxfun(fun,A,B)

Description C = bsxfun(fun,A,B) applies the element-by-element binary operation
specified by the function handle fun to arrays A and B, with singleton
expansion enabled. fun can be one of the following built-in functions:

@plus Plus

@minus Minus

@times Array multiply

@rdivide Right array divide

@ldivide Left array divide

@power Array power

@max Binary maximum

@min Binary minimum

@rem Remainder after division

@mod Modulus after division

@atan2 Four-quadrant inverse tangent;
result in radians

@atan2d Four-quadrant inverse tangent;
result in degrees

@hypot Square root of sum of squares

@eq Equal

@ne Not equal

@lt Less than

@le Less than or equal to

@gt Greater than

1-601

bsxfun

@ge Greater than or equal to

@and Element-wise logical AND

@or Element-wise logical OR

@xor Logical exclusive OR

fun can also be a handle to any binary element-wise function not listed
above. A binary element-wise function of the form C = fun(A,B)
accepts arrays A and B of arbitrary, but equal size and returns output of
the same size. Each element in the output array C is the result of an
operation on the corresponding elements of A and B only. fun must also
support scalar expansion, such that if A or B is a scalar, C is the result of
applying the scalar to every element in the other input array.

The corresponding dimensions of A and B must be equal to each other or
equal to one. Whenever a dimension of A or B is singleton (equal to one),
bsxfun virtually replicates the array along that dimension to match the
other array. In the case where a dimension of A or B is singleton, and
the corresponding dimension in the other array is zero, bsxfun virtually
diminishes the singleton dimension to zero.

The size of the output array C is equal to:
max(size(A),size(B)).*(size(A)>0 & size(B)>0).

Examples Deviations from Mean

Use bsxfun to subtract the column mean from the corresponding
column elements of a matrix, A.

A = [1 2 10; 1 4 20;1 6 15] ;
C = bsxfun(@minus, A, mean(A))

C =

0 -2 -5
0 0 5
0 2 0

1-602

bsxfun

Singleton Expansion with Custom Function

Call a custom-defined binary function with bsxfun by specifying a
handle to the function.

fun = @(A,B) A.*sin(B);
A = 1:7;
B = pi*[0 1/4 1/3 1/2 2/3 3/4 1].';
C = bsxfun(fun,A,B)

C =

0 0 0 0 0 0 0
0.7071 1.4142 2.1213 2.8284 3.5355 4.2426 4.9497
0.8660 1.7321 2.5981 3.4641 4.3301 5.1962 6.0622
1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000
0.8660 1.7321 2.5981 3.4641 4.3301 5.1962 6.0622
0.7071 1.4142 2.1213 2.8284 3.5355 4.2426 4.9497
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Singleton expansion allows bsxfun to expand the input vectors into a
full matrix.

See Also repmat | arrayfun

1-603

builddocsearchdb

Purpose Build searchable documentation database

Syntax builddocsearchdb(folder)

Description builddocsearchdb(folder) builds a searchable database from HTML
files in the specified folder. The builddocsearchdb function creates
a subfolder named helpsearch to contain the database files. The
database enables MATLAB to search for content within the HTML files,
as long as the version of MATLAB is the same as the version used to
create the database.

Input
Arguments

folder - Full path to folder with HTML files
string

Full path to a folder with HTML files, specified as a string.

To include a particular HTML document in the search database, the
builddocsearchdb function requires that:

• The document has a title.

• The content is different from the title.

Example: builddocsearchdb('c:\myfiles\html')

Examples Search Custom Help Files

Build a search database for custom help files.

MATLAB includes a set of sample files to demonstrate how to create
a custom toolbox and supporting documentation. This sample toolbox
is called the Upslope Area Toolbox. The upslope folder includes a file
named info.xml, which is required to display custom documentation,
and a subfolder named html, which contains HTML documentation
and supporting files.

Copy the sample files to a temporary folder, and add the copied files
to the path.

sample = fullfile(...

1-604

builddocsearchdb

matlabroot,'help','techdoc','matlab_env',...
'examples','upslope');

tmp = tempname;
mkdir(tmp);
copyfile(sample,tmp);
addpath(tmp);

Create a search database.

folder = fullfile(tmp,'html');
builddocsearchdb(folder)

Open the Supplemental Software documentation browser. There is a
link to this browser at the bottom of the documentation home page.

Search the supplemental documentation for the term tarboton, which
appears in several of the example help files. The search returns several
results from the Upslope Area Toolbox.

1-605

builddocsearchdb

Remove the temporary example files.

rmpath(tmp)
rmdir(tmp,'s')

See Also doc | help

Concepts • “Display Custom Documentation”

1-606

builtin

Purpose Execute built-in function from overloaded method

Syntax builtin(function,x1,...,xn)
[y1,...,yn] = builtin(function,x1,...,xn)

Description builtin(function,x1,...,xn) executes the built-in function with
the input arguments x1 through xn. Use builtin to execute the original
built-in from within a method that overloads the function. To work
properly, you must never overload builtin.

[y1,...,yn] = builtin(function,x1,...,xn) stores any output
from function in y1 through yn.

Input
Arguments

function - Built-in function name
string

Valid built-in function name in the MATLAB path, specified as a string.
function cannot be a function handle.

x1,...,xn - Valid input arguments for function
supported data types

Valid input arguments for function, specified by supported data types.

Examples Run an Overloaded Function within a Class Definition

Execute the built-in functionality from within an overloaded method.

Create a simple class describing the speed of a particle and providing
a disp method by pasting the following code into a file called
MyParticle.m.

classdef MyParticle
properties

velocity;
end
methods

function p = MyParticle(x,y,z)

1-607

builtin

p.velocity.x = x;
p.velocity.y = y;
p.velocity.z = z;

end
function disp(p)

builtin('disp',p) %call builtin
if isscalar(p)

disp(' Velocity')
disp([' x: ',num2str(p.velocity.x)])
disp([' y: ',num2str(p.velocity.y)])
disp([' z: ',num2str(p.velocity.z)])

end
end

end
end

Create an instance MyParticle.

p = MyParticle(1,2,4)

p =

MyParticle

Properties:
velocity: [1x1 struct]

Methods

Velocity
x: 1
y: 2
z: 4

Definitions built-in function

A built-in function is part of the MATLAB executable. MATLAB does
not implement these functions in the MATLAB language. Although

1-608

builtin

most built-in functions have a .m file associated with them, this file only
supplies documentation for the function.

You can use the syntax which function to check whether a function
is built-in.

See Also feval | which

1-609

bvp4c

Purpose Solve boundary value problems for ordinary differential equations

Syntax sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)
solinit = bvpinit(x, yinit, params)

Arguments odefun A function handle that evaluates the differential
equations f(x,y). It can have the form

dydx = odefun(x,y)
dydx = odefun(x,y,parameters)

For a scalar x and a column vector y, odefun(x,y)
must return a column vector, dydx, representing f(x,y).
parameters is a vector of unknown parameters.

bcfun A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form bc(y(a),y(b)), bcfun can have the
form

res = bcfun(ya,yb)
res = bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding
to y(a) and y(b). parameters is a vector of unknown
parameters. The output res is a column vector.

See “Multipoint Boundary Value Problems” on page
1-613 for a description of bcfun for multipoint boundary
value problems.

solinit A structure containing the initial guess for a solution.
You create solinit using the function bvpinit. solinit
has the following fields.

1-610

bvp4c

x Ordered nodes of the initial mesh.
Boundary conditions are imposed at a =
solinit.x(1) and b = solinit.x(end).

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the
solution at the node solinit.x(i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named x, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create
using the bvpset function. See bvpset for details.

Description sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

y′ = f(x,y)

on the interval [a,b] subject to two-point boundary value conditions
bc(y(a),y(b)) = 0.

odefun and bcfun are function handles. See the function_handle
reference page for more information.

“Parameterizing Functions” explains how to provide additional
parameters to the function odefun, as well as the boundary condition
function bcfun, if necessary.

bvp4c can also solve multipoint boundary value problems. See
“Multipoint Boundary Value Problems” on page 1-613. You can use the
function bvpinit to specify the boundary points, which are stored in
the input argument solinit. See the reference page for bvpinit for
more information.

1-611

bvp4c

The bvp4c solver can also find unknown parameters p for problems
of the form

y′ = f(x,y, p)

0 = bc(y(a),y(b),p)

where p corresponds to parameters. You provide bvp4c an initial
guess for any unknown parameters in solinit.parameters. The
bvp4c solver returns the final values of these unknown parameters
in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp4c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp4c has the following fields:

sol.x Mesh selected by bvp4c

sol.y Approximation to y(x) at the mesh points of
sol.x

sol.yp Approximation to y′(x) at the mesh points of
sol.x

sol.parameters Values returned by bvp4c for the unknown
parameters, if any

sol.solver ’bvp4c’

sol.stats Computational cost statistics (also displayed
when the stats option is set with bvpset).

The structure sol can have any name, and bvp4c creates the fields x,
y, yp, parameters, and solver.

1-612

bvp4c

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems

bvp4c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

y′ = S · y/x + F(x,y,p)

0 = bc(y(0),y(b),p)

The interval is required to be [0, b] with b > 0. Often such problems arise
when computing a smooth solution of ODEs that result from partial
differential equations (PDEs) due to cylindrical or spherical symmetry.
For singular problems, you specify the (constant) matrix S as the value
of the 'SingularTerm' option of bvpset, and odefun evaluates only
f(x,y,p). The boundary conditions must be consistent with the necessary
condition S ·y(0) = 0 and the initial guess should satisfy this condition.

Multipoint Boundary Value Problems

bvp4c can solve multipoint boundary value problems where
a = a0 < a1 < a2 < ...< an = b are boundary points in the interval [a,b].
The points a1,a2,...,an−1 represent interfaces that divide [a,b] into
regions. bvp4c enumerates the regions from left to right (from a to b),
with indices starting from 1. In region k, [ak−1,ak], bvp4c evaluates
the derivative as

yp = odefun(x,y,k)

In the boundary conditions function

bcfun(yleft,yright)

1-613

bvp4c

yleft(:,k) is the solution at the left boundary of [ak−1,ak]. Similarly,
yright(:,k) is the solution at the right boundary of region k. In
particular,

yleft(:,1) = y(a)

and

yright(:,end) = y(b)

When you create an initial guess with

solinit = bvpinit(xinit,yinit),

use double entries in xinit for each interface point. See the reference
page for bvpinit for more information.

If yinit is a function, bvpinit calls y = yinit(x,k) to get an initial
guess for the solution at x in region k. In the solution structure sol
returned by bpv4c, sol.x has double entries for each interface point.
The corresponding columns of sol.y contain the left and right solution
at the interface, respectively.

To see an example that solves a three-point boundary value problem,
type threebvp at the MATLAB command prompt.

Note The bvp5c function is used exactly like bvp4c, with the
exception of the meaning of error tolerances between the two solvers.
If S(x) approximates the solution y(x), bvp4c controls the residual
|S′(x) – f(x,S(x))|. This controls indirectly the true error |y(x) – S(x)|.
bvp5c controls the true error directly. bvp5c is more efficient than
bvp4c for small error tolerances.

Examples Using Initial Guess to Indicate Desired Solution

Boundary value problems can have multiple solutions. One purpose
of the initial guess is to indicate which solution, among several, that
you want.

1-614

bvp4c

The second-order differential equation

has exactly two solutions that satisfy the boundary conditions

Before using bvp4c to solve the problem, you need to rewrite the
differential equation as a system of two first-order ODEs,

where and . This system has the required form

The function, f, and the boundary conditions, bc, are coded in MATLAB
as the functions twoode and twobc.

function dydx = twoode(x,y)
dydx = [y(2); -abs(y(1))];

function res = twobc(ya,yb)
res = [ya(1); yb(1) + 2];

Form a guess structure consisting of an initial mesh of five equally
spaced points in [0,4] and a guess of the constant values

1-615

bvp4c

solinit = bvpinit(linspace(0,4,5),[1 0]);

Solve the problem using bvp4c.

sol = bvp4c(@twoode,@twobc,solinit);

Evaluate the numerical solution at 100 equally spaced points and plot
y(x).

x = linspace(0,4);
y = deval(sol,x);
plot(x,y(1,:));

1-616

bvp4c

To obtain the other solution of this problem, use the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]);
sol = bvp4c(@twoode,@twobc,solinit);
x = linspace(0,4);
y = deval(sol,x);

1-617

bvp4c

plot(x,y(1,:));

Compute Fourth Eigenvalue of Mathieu’s Equation

This boundary value problem involves an unknown parameter. The
task is to compute the fourth (q = 5) eigenvalue λ of Mathieu’s equation

y” + (λ – 2q cos2x)y = 0.

1-618

bvp4c

Because the unknown parameter λ is present, this second-order
differential equation is subject to three boundary conditions:

y′(0) = 0

y′(π) = 0

y(0) = 1

It is convenient to use local functions to place all the functions required
by bvp4c in a single file.

function mat4bvp

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@mat4bc,solinit);

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)

xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% --
function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [y(2)

-(lambda - 2*q*cos(2*x))*y(1)];
% --
function res = mat4bc(ya,yb,lambda)
res = [ya(2)

yb(2)

1-619

bvp4c

ya(1)-1];
% --
function yinit = mat4init(x)
yinit = [cos(4*x)

-4*sin(4*x)];

The differential equation (converted to a first-order system) and the
boundary conditions are coded as local functions mat4ode and mat4bc,
respectively. Because unknown parameters are present, these functions
must accept three input arguments, even though some of the arguments
are not used.

The guess structure solinit is formed with bvpinit. An initial guess
for the solution is supplied in the form of a function mat4init. We chose
y = cos 4x because it satisfies the boundary conditions and has the
correct qualitative behavior (the correct number of sign changes). In the
call to bvpinit, the third argument (lambda = 15) provides an initial
guess for the unknown parameter λ.

After the problem is solved with bvp4c, the field sol.parameters
returns the value λ = 17.097, and the plot shows the eigenfunction
associated with this eigenvalue.

1-620

bvp4c

Algorithms bvp4c is a finite difference code that implements the three-stage
Lobatto IIIa formula. This is a collocation formula and the collocation
polynomial provides a C1-continuous solution that is fourth-order
accurate uniformly in [a,b]. Mesh selection and error control are based
on the residual of the continuous solution.

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with
bvp4c,” available at http://www.mathworks.com/bvp_tutorial

See Also @ | bvp5c | bvpget | bvpinit | bvpset | bvpxtend | deval

1-621

http://www.mathworks.com/bvp_tutorial

bvp5c

Purpose Solve boundary value problems for ordinary differential equations

Syntax sol = bvp5c(odefun,bcfun,solinit)
sol = bvp5c(odefun,bcfun,solinit,options)
solinit = bvpinit(x, yinit, params)

Arguments odefun A function handle that evaluates the differential
equations f(x,y). It can have the form

dydx = odefun(x,y)
dydx = odefun(x,y,parameters)

For a scalar x and a column vector y, odefun(x,y)
must return a column vector, dydx, representing f(x,y).
parameters is a vector of unknown parameters.

bcfun A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form bc(y(a),y(b)), bcfun can have the
form

res = bcfun(ya,yb)
res = bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding
to y(a) and y(b). parameters is a vector of unknown
parameters. The output res is a column vector.

solinit A structure containing the initial guess for a solution.
You create solinit using the function bvpinit. solinit
has the following fields.

x Ordered nodes of the initial mesh.
Boundary conditions are imposed at a =
solinit.x(1) and b = solinit.x(end).

1-622

bvp5c

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the
solution at the node solinit.x(i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named x, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create
using the bvpset function. See bvpset for details.

Description sol = bvp5c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

y′ = f(x,y)

on the interval [a,b] subject to two-point boundary value conditions

bc(y(a),y(b)) = 0

odefun and bcfun are function handles. See the function_handle
reference page for more information.

“Parameterizing Functions” explains how to provide additional
parameters to the function odefun, as well as the boundary condition
function bcfun, if necessary. You can use the function bvpinit to
specify the boundary points, which are stored in the input argument
solinit.

The bvp5c solver can also find unknown parameters p for problems
of the form

y′ = f(x,y,p)

0 = bc(y(a),y(b),p)

1-623

bvp5c

where p corresponds to parameters. You provide bvp5c an initial
guess for any unknown parameters in solinit.parameters. The
bvp5c solver returns the final values of these unknown parameters
in sol.parameters.

bvp5c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp5c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp5c has the following fields:

sol.x Mesh selected by bvp5c

sol.y Approximation to y(x) at the mesh points of
sol.x

sol.parameters Values returned by bvp5c for the unknown
parameters, if any

sol.solver 'bvp5c'

sol.stats Computational cost statistics (also displayed
when the stats option is set with bvpset).

The structure sol can have any name, and bvp5c creates the fields x, y,
parameters, and solver.

sol = bvp5c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems

bvp5c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

1-624

bvp5c

y′ = S· y/x + f(x,y,p)

0 = bc(y(0),y(b),p)

The interval is required to be [0, b] with b > 0. Often such problems arise
when computing a smooth solution of ODEs that result from partial
differential equations (PDEs) due to cylindrical or spherical symmetry.
For singular problems, you specify the (constant) matrix S as the value
of the 'SingularTerm' option of bvpset, and odefun evaluates only
f(x,y,p). The boundary conditions must be consistent with the necessary
condition S· y(0) = 0 and the initial guess should satisfy this condition.

Multipoint Boundary Value Problems

bvp5c can solve multipoint boundary value problems where a = a0 < a1
< a2 < ... < an = b are boundary points in the interval [a,b]. The points
a1,a2, ... ,an–1 represent interfaces that divide [a,b] into regions. bvp5c
enumerates the regions from left to right (from a to b), with indices
starting from 1. In region k, [ak–1,ak], bvp5c evaluates the derivative as

yp = odefun(x,y,k)

In the boundary conditions function

bcfun(yleft,yright)

yleft(:, k) is the solution at the left boundary of [ak–1,ak]. Similarly,
yright(:,k) is the solution at the right boundary of region k. In
particular,

yleft(:,1) = y(a)

and

yright(:,end) = y(b)

When you create an initial guess with

solinit = bvpinit(xinit,yinit),

1-625

bvp5c

use double entries in xinit for each interface point. See the reference
page for bvpinit for more information.

If yinit is a function, bvpinit calls y = yinit(x, k) to get an initial
guess for the solution at x in region k. In the solution structure sol
returned by bvp5c, sol.x has double entries for each interface point.
The corresponding columns of sol.y contain the left and right solution
at the interface, respectively.

To see an example of that solves a three-point boundary value problem,
type threebvp at the MATLAB command prompt.

Algorithms bvp5c is a finite difference code that implements the four-stage
Lobatto IIIa formula. This is a collocation formula and the collocation
polynomial provides a C1-continuous solution that is fifth-order
accurate uniformly in [a,b]. The formula is implemented as an
implicit Runge-Kutta formula. bvp5c solves the algebraic equations
directly; bvp4c uses analytical condensation. bvp4c handles unknown
parameters directly; while bvp5c augments the system with trivial
differential equations for unknown parameters.

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with
bvp4c” http://www.mathworks.com/bvp_tutorial. Note that this
tutorial uses the bvp4c function, however in most cases the solvers can
be used interchangeably.

See Also @ | bvp4c | bvpget | bvpinit | bvpset | bvpxtend | deval

1-626

http://www.mathworks.com/bvp_tutorial

bvpget

Purpose Extract properties from options structure created with bvpset

Syntax val = bvpget(options,'name')
val = bvpget(options,'name',default)

Description val = bvpget(options,'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = bvpget(options,'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = bvpget(options,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in options.

See Also bvp4c | bvp5c | bvpinit | bvpset | deval

1-627

bvpinit

Purpose Form initial guess for BVP solvers

Syntax solinit = bvpinit(x,yinit)
solinit = bvpinit(x,yinit,parameters)
solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(sol,[anew bnew],parameters)

Description solinit = bvpinit(x,yinit) forms the initial guess for a boundary
value problem solver.

x is a vector that specifies an initial mesh. If you want to solve the BVP
on [a,b], then specify x(1) as a and x(end) as b. The solver adapts
this mesh to the solution, so a guess like xb=nlinspace(a,b,10) often
suffices. However, in difficult cases, you should place mesh points
where the solution changes rapidly. The entries of x must be in

• Increasing order if a<b

• Decreasing order if a>b

For two-point boundary value problems, the entries of x must be
distinct. That is, if a<b, the entries must satisfy x(1) < x(2) < ... <
x(end). If a>b, the entries must satisfy x(1) > x(2) > ... > x(end)

For multipoint boundary value problem, you can specify the points in
[a,b] at which the boundary conditions apply, other than the endpoints
a and b, by repeating their entries in x. For example, if you set

x = [0, 0.5, 1, 1, 1.5, 2];

the boundary conditions apply at three points: the endpoints 0 and
2, and the repeated entry 1. In general, repeated entries represent
boundary points between regions in [a,b]. In the preceding example, the
repeated entry 1 divides the interval [0,2] into two regions: [0,1]
and [1,2].

yinit is a guess for the solution. It can be either a vector, or a function:

• Vector – For each component of the solution, bvpinit replicates
the corresponding element of the vector as a constant guess across

1-628

bvpinit

all mesh points. That is, yinit(i) is a constant guess for the ith
component yinit(i,:) of the solution at all the mesh points in x.

• Function – For a given mesh point, the guess function must return a
vector whose elements are guesses for the corresponding components
of the solution. The function must be of the form

y = guess(x)

where x is a mesh point and y is a vector whose length is the same as
the number of components in the solution. For example, if the guess
function is a function, bvpinit calls

y(:,j) = guess(x(j))

at each mesh point.

For multipoint boundary value problems, the guess function must
be of the form

y = guess(x, k)

where y an initial guess for the solution at x in region k. The function
must accept the input argument k, which is provided for flexibility
in writing the guess function. However, the function is not required
to use k.

solinit = bvpinit(x,yinit,parameters) indicates that the
boundary value problem involves unknown parameters. Use the vector
parameters to provide a guess for all unknown parameters.

solinit is a structure with the following fields. The structure can have
any name, but the fields must be named x, y, and parameters.

x Ordered nodes of the initial mesh.

y Initial guess for the solution with solinit.y(:,i)
a guess for the solution at the node solinit.x(i).

parameters Optional. A vector that provides an initial guess
for unknown parameters.

1-629

bvpinit

solinit = bvpinit(sol,[anew bnew]) forms an initial guess on
the interval [anew bnew] from a solution sol on an interval [a,b].
The new interval must be larger than the previous one, so either
anew <= a < b <= bnew or anew >= a > b >= bnew. The solution sol is
extrapolated to the new interval. If sol contains parameters, they are
copied to solinit.

solinit = bvpinit(sol,[anew bnew],parameters) forms solinit
as described above, but uses parameters as a guess for unknown
parameters in solinit.

See Also @ | bvp4c | bvp5c | bvpget | bvpset | bvpxtend | deval

1-630

bvpset

Purpose Create or alter options structure of boundary value problem

Syntax options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts,'name1',value1,...)
options = bvpset(oldopts,newopts)
bvpset

Description options = bvpset('name1',value1,'name2',value2,...) creates a
structure options that you can supply to the boundary value problem
solver bvp4c, in which the named properties have the specified
values. Any unspecified properties retain their default values. For
all properties, it is sufficient to type only the leading characters that
uniquely identify the property. bvpset ignores case for property names.

options = bvpset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = bvpset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

bvpset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function bvpget to query the options structure for
the value of a specific property.

BVP
Properties

bvpset enables you to specify properties for the boundary value problem
solver bvp4c. There are several categories of properties that you can set:

• “Error Tolerance Properties” on page 1-632

• “Vectorization” on page 1-633

• “Analytical Partial Derivatives” on page 1-634

• “Singular BVPs” on page 1-635

• “Mesh Size Property” on page 1-636

1-631

bvpset

• “Solution Statistic Property” on page 1-637

Error Tolerance Properties

Because bvp4c uses a collocation formula, the numerical solution
is based on a mesh of points at which the collocation equations are
satisfied. Mesh selection and error control are based on the residual of
this solution, such that the computed solution S(x) is the exact solution
of a perturbed problem S′(x) = f(x,S(x)) + res(x). On each subinterval of
the mesh, a norm of the residual in the ith component of the solution,
res(i), is estimated and is required to be less than or equal to a
tolerance. This tolerance is a function of the relative and absolute
tolerances, RelTol and AbsTol, defined by the user.

res abs AbsTol RelTol RelTol() / max () , () /i f i i

The following table describes the error tolerance properties.

BVP Error Tolerance Properties

Property Value Description

RelTol Positive
scalar {1e-3}

A relative error tolerance that applies to all components of
the residual vector. It is a measure of the residual relative
to the size of f(x,y). The default, 1e-3, corresponds to
0.1% accuracy.

The computed solution S(x) is the exact solution of S′(x) =
F(x,S(x)) + res(x). On each subinterval of the mesh, the
residual res(x) satisfies

res abs AbsTol RelTol RelTol() / max () , () /i F i i

AbsTol Positive
scalar or
vector {1e-6}

Absolute error tolerances that apply to the corresponding
components of the residual vector. AbsTol(i) is a
threshold below which the values of the corresponding
components are unimportant. If a scalar value is
specified, it applies to all components.

1-632

bvpset

Vectorization

The following table describes the BVP vectorization property.
Vectorization of the ODE function used by bvp4c differs from the
vectorization used by the ODE solvers:

• For bvp4c, the ODE function must be vectorized with respect to the
first argument as well as the second one, so that F([x1 x2 ...],[y1
y2 ...]) returns [F(x1,y1) F(x2,y2)...].

• bvp4c benefits from vectorization even when analytical Jacobians
are provided. For stiff ODE solvers, vectorization is ignored when
analytical Jacobians are used.

Vectorization Properties

Property Value Description

Vectorized on | {off} Set on to inform bvp4c that you have
coded the ODE function F so that
F([x1 x2 ...],[y1 y2 ...]) returns
[F(x1,y1) F(x2,y2) ...]. That
is, your ODE function can pass to
the solver a whole array of column
vectors at once. This enables the
solver to reduce the number of function
evaluations and may significantly
reduce solution time.

With the MATLAB array notation, it
is typically an easy matter to vectorize
an ODE function. In the shockbvp
example shown previously, the
shockODE function has been vectorized
using colon notation into the subscripts
and by using the array multiplication
(.*) operator.

function dydx = shockODE(x,y,e)

1-633

../ref/colon.html

bvpset

Vectorization Properties (Continued)

Property Value Description
pix = pi*x;
dydx = [y(2,:)...
-x/e.*y(2,:)-pi^2*cos(pix)-
pix/e.*sin(pix)];

Analytical Partial Derivatives

By default, the bvp4c solver approximates all partial derivatives with
finite differences. bvp4c can be more efficient if you provide analytical
partial derivatives ∂f/∂y of the differential equations, and analytical
partial derivatives, ∂bc/∂ya and ∂bc/∂yb, of the boundary conditions.
If the problem involves unknown parameters, you must also provide
partial derivatives, ∂f/∂p and ∂bc/∂p, with respect to the parameters.

The following table describes the analytical partial derivatives
properties.

BVP Analytical Partial Derivative Properties

Property Value Description

FJacobian Function
handle

A function handle that computes
the analytical partial derivatives
of f(x,y). When solving y′ = f(x,y),
set this property to @fjac if
dfdy = fjac(x,y) evaluates the
Jacobian ∂f/∂y. If the problem
involves unknown parameters
p, [dfdy,dfdp] = fjac(x,y,p)
must also return the partial
derivative ∂f/∂p. For problems with
constant partial derivatives, set

1-634

bvpset

BVP Analytical Partial Derivative Properties (Continued)

Property Value Description
this property to the value of dfdy
or to a cell array {dfdy,dfdp}.

BCJacobian Function
handle

A function handle that computes
the analytical partial derivatives of
bc(ya,yb). For boundary conditions
bc(ya,yb), set this property to
@bcjac if [dbcdya,dbcdyb] =
bcjac(ya,yb) evaluates the
partial derivatives ∂bc/∂ya,
and ∂bc/∂yb. If the problem
involves unknown parameters
p, [dbcdya,dbcdyb,dbcdp] =
bcjac(ya,yb,p) must also return
the partial derivative ∂bc/∂p. For
problems with constant partial
derivatives, set this property to
a cell array {dbcdya,dbcdyb} or
{dbcdya,dbcdyb,dbcdp}.

Singular BVPs

bvp4c can solve singular problems of the form

 y S
y
x

f x y p(, ,)

posed on the interval [0,b] where b > 0. For such problems, specify the
constant matrix S as the value of SingularTerm. For equations of
this form, odefun evaluates only the f(x,y,p) term, where p represents
unknown parameters, if any.

1-635

bvpset

Singular BVP Property

Property Value Description

SingularTerm Constant
matrix

Singular term of singular BVPs.
Set to the constant matrix S for
equations of the form

 y S
y
x

f x y p(, ,)

posed on the interval [0,b]
where b > 0.

Mesh Size Property

bvp4c solves a system of algebraic equations to determine the numerical
solution to a BVP at each of the mesh points. The size of the algebraic
system depends on the number of differential equations (n) and the
number of mesh points in the current mesh (N). When the allowed
number of mesh points is exhausted, the computation stops, bvp4c
displays a warning message and returns the solution it found so far.
This solution does not satisfy the error tolerance, but it may provide an
excellent initial guess for computations restarted with relaxed error
tolerances or an increased value of NMax.

The following table describes the mesh size property.

1-636

bvpset

BVP Mesh Size Property

Property Value Description

NMax positive integer
{floor(1000/n)}

Maximum number of mesh
points allowed when solving
the BVP, where n is the number
of differential equations in the
problem. The default value
of NMax limits the size of the
algebraic system to about 1000
equations. For systems of a
few differential equations, the
default value of NMax should be
sufficient to obtain an accurate
solution.

Solution Statistic Property

The Stats property lets you view solution statistics.

The following table describes the solution statistics property.

BVP Solution Statistic Property

Property Value Description

Stats on | {off} Specifies whether statistics about
the computations are displayed.
If the stats property is on, after
solving the problem, bvp4c displays:

• The number of points in the mesh

• The maximum residual of the
solution

• The number of times it called
the differential equation function
odefun to evaluate f(x,y)

1-637

bvpset

BVP Solution Statistic Property (Continued)

Property Value Description

• The number of times it called
the boundary condition function
bcfun to evaluate bc(y(a),y(b))

Examples To create an options structure that changes the relative error tolerance
of bvp4c from the default value of 1e-3 to 1e-4, enter

options = bvpset('RelTol',1e-4);

To recover the value of 'RelTol' from options, enter

bvpget(options,'RelTol')

ans =

1.0000e-004

See Also function_handle | bvp4c | bvp5c | bvpget | bvpinit | deval

1-638

bvpxtend

Purpose Form guess structure for extending boundary value solutions

Syntax solinit = bvpxtend(sol,xnew,ynew)
solinit = bvpxtend(sol,xnew,extrap)
solinit = bvpxtend(sol,xnew)
solinit = bvpxtend(sol,xnew,ynew,pnew)
solinit = bvpxtend(sol,xnew,extrap,pnew)

Description solinit = bvpxtend(sol,xnew,ynew) uses solution sol computed on
[a,b] to form a solution guess for the interval extended to xnew. The
extension point xnew must be outside the interval [a,b], but on either
side. The vector ynew provides an initial guess for the solution at xnew.

solinit = bvpxtend(sol,xnew,extrap) forms the guess at xnew by
extrapolating the solution sol. extrap is a string that determines the
extrapolation method. extrap has three possible values:

• 'constant'— ynew is a value nearer to end point of solution in sol.

• 'linear'— ynew is a value at xnew of linear interpolant to the value
and slope at the nearer end point of solution in sol.

• 'solution'— ynew is the value of (cubic) solution in sol at xnew.
The value of extrap is case-insensitive and only the leading, unique
portion needs to be specified.

solinit = bvpxtend(sol,xnew) uses the extrapolating solution where
extrap is 'constant'. If there are unknown parameters, values
present in sol are used as the initial guess for parameters in solinit.

solinit = bvpxtend(sol,xnew,ynew,pnew) specifies a different guess
pnew. pnew can be used with extrapolation, using the syntax solinit
= bvpxtend(sol,xnew,extrap,pnew). To modify parameters without
changing the interval, use [] as place holder for xnew and ynew.

See Also bvp4c | bvp5c | bvpinit

1-639

calendar

Purpose Calendar for specified month

Syntax c = calendar
c = calendar(d)
c = calendar(y, m)

Description c = calendar returns a 6-by-7 matrix containing a calendar for the
current month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string,
returns a calendar for the specified month.

c = calendar(y, m), where y and m are integers, returns a calendar
for the specified month of the specified year.

Examples The command

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

Oct 1957
S M Tu W Th F S
0 0 1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 0 0
0 0 0 0 0 0 0

See Also datenum

1-640

calllib

Purpose Call function in shared library

Syntax [x1,...,xN] = calllib(libname,funcname,arg1,...,argN)

Description [x1,...,xN] = calllib(libname,funcname,arg1,...,argN) calls
function, funcname, in library, libname, passing input arguments,
arg1,...,argN, and returns output values obtained from funcname
in x1,...,xN.

Input
Arguments

libname - Name of shared library
string

Name of shared library, specified as a string. If you call loadlibrary
using the alias option, then you must use the alias name for the
libname argument.

Data Types
char

funcname - Name of function in library
string

Name of function in library, specified as a string.

Data Types
char

arg1,...,argN - Input arguments
any type

Input arguments, 1 through N, required by funcname (if any), specified
by any type. The argument type is specified by the funcname argument
list.

Output
Arguments

x1,...,xN - Output arguments
any type

Output arguments, 1 through N, from funcname (if any), returned as
any type. The argument type is specified by the funcname argument list.

1-641

calllib

Limitations • Use with libraries that are loaded using the loadlibrary function.

Examples Call addStructByRef Function

Load the library.

if ~libisloaded('shrlibsample')
addpath(fullfile(matlabroot,'extern','examples','shrlib'))
loadlibrary('shrlibsample')

end

Display function signature.

libfunctionsview shrlibsample

[double, c_structPtr] addStructByRef(c_structPtr)

The input argument is a pointer to a c_struct data type.

Create a MATLAB structure, struct:

struct.p1 = 4; struct.p2 = 7.3; struct.p3 = -290;

Call the function.

[res,st] = calllib('shrlibsample','addStructByRef',struct);

Display the results.

res

res =
-279

Cleanup.

unloadlibrary shrlibsample

See Also loadlibrary | libfunctionsview

1-642

calllib

Concepts • Passing Arguments
• “MATLAB Crashes Calling Function in Shared Library”

1-643

callSoapService

Purpose Send SOAP message to endpoint

Syntax response = callSoapService(endpoint,soapAction,message)

Description response = callSoapService(endpoint,soapAction,message)
sends message, a Java® document object model (DOM), to
the soapAction service at endpoint. Create message using
createSoapMessage, and extract results from response using
parseSoapResponse.

Examples This example uses callSoapService in conjunction with other SOAP
functions to retrieve information about books from a library database,
specifically, the author’s name for a given book title.

Note The example does not use an actual endpoint; therefore, you
cannot run it. The example only illustrates how to use the SOAP
functions.

% Create the message:
message = createSoapMessage(...
'urn:LibraryCatalog',...
'getAuthor',...
{'In the Fall'},...
{'nameToLookUp'},...
{'{http://www.w3.org/2001/XMLSchema}string'},...
'rpc');
%
% Send the message to the service and get the response:
response = callSoapService(...
'http://test/soap/services/LibraryCatalog',...
'urn:LibraryCatalog#getAuthor',...
message)
%
% Extract MATLAB data from the response

1-644

callSoapService

author = parseSoapResponse(response)

MATLAB returns:

author = Kate Alvin

where author is a char class (type).

See Also createClassFromWsdl | createSoapMessage | parseSoapResponse |
urlread | xmlread

How To • “Access Web Services Using MATLAB SOAP Functions”

1-645

camdolly

Purpose Move camera position and target

Syntax camdolly(dx,dy,dz)
camdolly(dx,dy,dz,'targetmode')
camdolly(dx,dy,dz,'targetmode','coordsys')
camdolly(axes_handle,...)

Description camdolly(dx,dy,dz) moves the camera position and the camera target
by the specified amounts dx, dy, and dz.

camdolly(dx,dy,dz,'targetmode') uses the targetmode argument
to determine how the camera moves:

• movetarget (default) — Move both the camera and the target.

• fixtarget — Move only the camera.

camdolly(dx,dy,dz,'targetmode','coordsys') uses the coordsys
argument to determine how MATLAB interprets dx, dy, and dz:

• camera (default) — Move in the coordinate system of the camera. dx
moves left/right, dy moves down/up, and dz moves along the viewing
axis. MATLAB normalizes the units to the scene.

For example, setting dx to 1 moves the camera to the right, which
pushes the scene to the left edge of the box formed by the axes
position rectangle. A negative value moves the scene in the other
direction. Setting dz to 0.5 moves the camera to a position halfway
between the camera position and the camera target.

• pixels— Interpret dx and dy as pixel offsets and ignore dz.

• data— Interpret dx, dy, and dz as offsets in axes data coordinates.

camdolly(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camdolly operates on the current axes.

camdolly sets the axes CameraPosition and CameraTarget properties,
which in turn sets the CameraPositionMode and CameraTargetMode
properties to manual.

1-646

camdolly

Examples Move the camera along the x- and y-axes in a series of steps:

surf(peaks)
axis vis3d
t = 0:pi/20:2*pi;
dx = sin(t)./40;
dy = cos(t)./40;
for i = 1:length(t);

camdolly(dx(i),dy(i),0)
drawnow

end

See Also axes | campos | camproj | camtarget | camup | camva | Axes
CameraPosition property | Axes CameraTarget property | Axes
CameraUpVector property | Axes CameraViewAngle property | Axes
Projection property

How To • “Camera Graphics Terminology”

1-647

cameratoolbar

Purpose Control camera toolbar programmatically

Syntax cameratoolbar
cameratoolbar('NoReset')
cameratoolbar('SetMode',mode)
cameratoolbar('SetCoordSys',coordsys)
cameratoolbar('Show')
cameratoolbar('Hide')
cameratoolbar('Toggle')
cameratoolbar('ResetCameraAndSceneLight')
cameratoolbar('ResetCamera')
cameratoolbar('ResetSceneLight')
cameratoolbar('ResetTarget')
mode = cameratoolbar('GetMode')
paxis = cameratoolbar('GetCoordsys')
vis = cameratoolbar('GetVisible')
cameratoolbar(fig,...)
h = cameratoolbar
cameratoolbar('Close')

Description cameratoolbar creates a toolbar that enables interactive manipulation
of the axes camera and light when you drag the mouse on the figure
window. Several axes camera properties are set when the toolbar is
initialized.

cameratoolbar('NoReset') creates the toolbar without setting any
camera properties.

cameratoolbar('SetMode',mode) sets the toolbar mode (depressed
button). mode can be 'orbit', 'orbitscenelight', 'pan', 'dollyhv',
'dollyfb', 'zoom', 'roll', 'nomode'. For descriptions of the various
modes, see “Camera Toolbar”. You can also set these modes using the
toolbar, by clicking the respective buttons.

cameratoolbar('SetCoordSys',coordsys) sets the principal axis of
the camera motion. coordsys can be: 'x', 'y', 'z', 'none'.

cameratoolbar('Show') shows the toolbar on the current figure.

1-648

cameratoolbar

cameratoolbar('Hide') hides the toolbar on the current figure.

cameratoolbar('Toggle') toggles the visibility of the toolbar.

cameratoolbar('ResetCameraAndSceneLight') resets the current
camera and scenelight.

cameratoolbar('ResetCamera') resets the current camera.

cameratoolbar('ResetSceneLight') resets the current scenelight.

cameratoolbar('ResetTarget') resets the current camera target.

mode = cameratoolbar('GetMode') returns the current mode.

paxis = cameratoolbar('GetCoordsys') returns the current
principal axis.

vis = cameratoolbar('GetVisible') returns the visibility of the
toolbar (1 if visible, 0 if not visible).

cameratoolbar(fig,...) specifies the figure to operate on by passing
the figure handle as the first argument.

h = cameratoolbar returns the handle to the toolbar.

cameratoolbar('Close') removes the toolbar from the current figure.

In general, the use of OpenGL hardware improves rendering
performance.

Alternatives Display the toolbar by selecting Camera Toolbar from the figure
window’s View menu.

See Also rotate3d | zoom

How To • “Camera Toolbar”

1-649

camlight

Purpose Create or move light object in camera coordinates

Syntax camlight('headlight')
camlight('right')
camlight('left')
camlight
camlight(az,el)
camlight(...,'style')
camlight(light_handle,...)
light_handle = camlight(...)

Description camlight('headlight') creates a light at the camera position.

camlight('right') creates a light right and up from camera.

camlight('left') creates a light left and up from camera.

camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and
elevation (el) with respect to the camera position. The camera target is
the center of rotation and az and el are in degrees.

camlight(...,'style') defines the style argument using one of two
values:

• local (default) — The light is a point source that radiates from the
location in all directions.

• infinite — The light shines in parallel rays.

camlight(light_handle,...) uses the light specified in
light_handle.

light_handle = camlight(...) returns the light object handle.

camlight sets the light object Position and Style properties. A light
created with camlight does not track the camera. In order for the light
to stay in a constant position relative to the camera, call camlight
whenever you move the camera.

1-650

camlight

Examples Create a light positioned to the left of the camera and then reposition
the light each time the camera moves:

surf(peaks)
axis vis3d
h = camlight('left');
for i = 1:20;
camorbit(10,0)
camlight(h,'left')
drawnow;

end

See Also lightangle | light

How To • “Lighting Overview”

1-651

camlookat

Purpose Position camera to view object or group of objects

Syntax camlookat(object_handles)
camlookat(axes_handle)
camlookat

Description camlookat(object_handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat(axes_handle) views the objects that are children of the
axes identified by axes_handle.

camlookat views the objects that are in the current axes by moving the
camera position and camera target while preserving the relative view
direction and camera view angle. The viewed object (or objects) roughly
fill the axes position rectangle. To change the view, camlookat sets the
axes CameraPosition and CameraTarget properties.

Examples Create three spheres at different locations and then progressively
position the camera so that the scene composes around each sphere
individually:

% Create three spheres using the sphere function:
[x y z] = sphere;
s1 = surf(x,y,z);
hold on
s2 = surf(x+3,y,z+3);
s3 = surf(x,y,z+6);
% Set the data aspect ratio using daspect:
daspect([1 1 1])
% Set the view:
view(30,10)
% Set the projection type using camproj:
camproj perspective
% Compose the scene around the current axes
camlookat(gca)
pause(2)
% Compose the scene around sphere s1

1-652

camlookat

camlookat(s1)
pause(2)
% Compose the scene around sphere s2
camlookat(s2)
pause(2)
% Compose the scene around sphere s3
camlookat(s3)
pause(2)
camlookat(gca)

See Also campos | camtarget

How To • “Camera Graphics Terminology”

1-653

camorbit

Purpose Rotate camera position around camera target

Syntax camorbit(dtheta,dphi)
camorbit(dtheta,dphi,'coordsys')
camorbit(dtheta,dphi,'coordsys','direction')
camorbit(axes_handle,...)

Description camorbit(dtheta,dphi) rotates the camera position around the camera
target by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi,'coordsys') rotates the camera position
around the camera target, using the coordsys argument to determine
the center of rotation. coordsys can take on two values:

• data (default) — Rotate the camera around an axis defined by the
camera target and the direction (default is the positive z direction).

• camera— Rotate the camera about the point defined by the camera
target.

camorbit(dtheta,dphi,'coordsys','direction') defines the
axis of rotation for the data coordinate system using the direction
argument in conjunction with the camera target. Specify direction as
a three-element vector containing the x-, y-, and z-components of the
direction or one of the characters, x, y, or z, to indicate [1 0 0], [0 1
0], or [0 0 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camorbit operates on the current axes.

The behavior of camorbit differs from the rotate3d function in that
while the rotate3d tool modifies the View property of the axes, the
camorbit function fixes the aspect ratio and modifies the CameraTarget,
CameraPosition and CameraUpVector properties of the axes. See Axes
Properties for more information.

1-654

camorbit

Examples Rotate the camera horizontally about a line defined by the camera
target point and a direction that is parallel to the y-axis. Visualize this
rotation as a cone formed with the camera target at the apex and the
camera position forming the base:

surf(peaks)
axis vis3d
for i=1:36

camorbit(10,0,'data',[0 1 0])
drawnow

end

Rotate in the camera coordinate system to orbit the camera around the
axes along a circle while keeping the center of a circle at the camera
target:

surf(peaks)
axis vis3d
for i=1:36

camorbit(10,0,'camera')
drawnow

end

Alternatives Enable 3-D rotation from the figure Tools menu or the figure toolbar.

See Also axes | axis | camdolly | campan | camzoom | camroll

How To • “Camera Graphics Terminology”

1-655

campan

Purpose Rotate camera target around camera position

Syntax campan(dtheta,dphi)
campan(dtheta,dphi,coordsys)
campan(dtheta,dphi,coordsys,direction)
campan(axes_handle,...)

Description campan(dtheta,dphi) rotates the camera target of the current axes
around the camera position by the amounts specified in dtheta and
dphi (both in degrees). dtheta is the horizontal rotation and dphi is
the vertical rotation.

campan(dtheta,dphi,coordsys) determine the center of rotation using
the coordsys argument. It can take on two values:

• 'data' (default) — Rotate the camera target around an axis defined
by the camera position and the direction (default is the positive
z direction)

• 'camera' — Rotate the camera about the point defined by the
camera target.

campan(dtheta,dphi,coordsys,direction) defines the axis of
rotation for the data coordinate system using the direction argument
with the camera position. Specify direction as a three-element vector
containing the x-, y-, and z-components of the direction or one of the
characters, 'x', 'y', or 'z', to indicate [1 0 0], [0 1 0], or [0 0 1]
respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle,
campan operates on the current axes.

Examples Move the camera target to pan the object in a circular motion.

sphere;
axis vis3d
hPan = sin(-pi:1:pi);
vPan = cos(-pi:1:pi);

1-656

campan

for k=1:length(hPan)
campan(hPan(k),vPan(k))
drawnow
pause(.1)

end

See Also axes | camdolly | camorbit | camtarget | camzoom | camroll

How To • “Camera Graphics Terminology”

1-657

campos

Purpose Set or query camera position

Syntax campos
campos([camera_position])
campos('mode')
campos('auto')
campos('manual')
campos(axes_handle,...)

Description campos returns the camera position in the current axes.

campos([camera_position]) sets the position of the camera in
the current axes to the specified value. Specify the position as a
three-element vector containing the x-, y-, and z-coordinates of the
desired location in the data units of the axes.

campos('mode') returns the value of the camera position mode, which
can be either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.

campos('manual') sets the camera position mode to manual.

campos(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, campos operates on the current axes.

campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

Examples Move the camera along the x-axis in a series of steps:

surf(peaks)
axis vis3d off
for x = -200:5:200

campos([x,5,10])
drawnow

end

1-658

campos

See Also axis | camproj | camtarget | camup | camva | Axes: CameraPosition
| Axes: CameraTarget | Axes: CameraUpVector | Axes:
CameraViewAngle | Axes: Projection

How To • “Camera Graphics Terminology”

1-659

camproj

Purpose Set or query projection type

Syntax camproj
camproj('projection_type')
camproj(axes_handle,...)

Description camproj returns the projection type setting in the current axes.
The projection type determines whether MATLAB 3-D views use a
perspective or orthographic projection.

camproj('projection_type') sets the projection type in the current
axes to the specified value. Possible values for projection_type are
orthographic and perspective.

camproj(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camproj operates on the current axes.

camproj sets or queries values of the axes object Projection property.

Examples Compare the different camproj settings using subplot:

subplot(1,2,1); surf(membrane); camproj('perspective')
subplot(1,2,2); surf(membrane); camproj('orthographic')

1-660

camproj

See Also axis | campos | camtarget | camup | camva | Axes: CameraPosition
| Axes: CameraTarget | Axes: CameraUpVector | Axes:
CameraViewAngle | Axes: Projection

How To • “Camera Graphics Terminology”

1-661

camroll

Purpose Rotate camera about view axis

Syntax camroll(dtheta)
camroll(axes_handle,dtheta)

Description camroll(dtheta) rotates the camera around the camera viewing axis
by the amounts specified in dtheta (in degrees). The viewing axis is the
line passing through the camera position and the camera target.

camroll(axes_handle,dtheta) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camroll operates on the current axes.

camroll sets the axes CameraUpVector property and also sets the
CameraUpVectorMode property to manual.

Examples Rotate the camera around the viewing axis:

surf(peaks)
axis vis3d
for i=1:36
camroll(10)
drawnow

end

See Also axes | axis | camdolly | camorbit | camzoom | campan

How To • “Camera Graphics Terminology”

1-662

camtarget

Purpose Set or query location of camera target

Syntax camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

Description camtarget returns the location of the camera target in the current
axes. The camera target is the location in the axes that the camera
points to. The camera remains oriented toward this point regardless
of its position.

camtarget([camera_target]) sets the camera target in the current axes
to the specified value. Specify the target as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the
data units of the axes.

camtarget('mode') returns the value of the camera target mode, which
can be either auto (default) or manual.

camtarget('auto') sets the camera target mode to auto. When the
camera target mode is auto, the camera target is the center of the axes
plot box.

camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes
identified by axes_handle. When you do not specify an axes handle,
camtarget operates on the current axes.

camtarget sets or queries values of the axes object CameraTarget and
CameraTargetMode properties.

Examples Move the camera position and the camera target along the x-axis in a
series of steps:

surf(peaks);
axis vis3d

1-663

camtarget

xp = linspace(-150,40,50);
xt = linspace(25,50,50);
for i=1:50

campos([xp(i),25,5]);
camtarget([xt(i),30,0])
drawnow

end

See Also axis | campos | camup | camva | Axes: CameraPosition | Axes:
CameraTarget | Axes: CameraUpVector | Axes: CameraViewAngle |
Axes: Projection

How To • “Camera Graphics Terminology”

1-664

camup

Purpose Set or query camera up vector

Syntax camup
camup([up_vector])
camup('mode')
camup('auto')
camup('manual')
camup(axes_handle,...)

Description camup returns the camera up vector setting in the current axes. The
camera up vector specifies the direction that is oriented up in the scene.

camup([up_vector]) sets the up vector in the current axes to the
specified value. Specify the up vector as x, y, and z components.

camup('mode') returns the current value of the camera up vector mode,
which can be either auto (default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
[0 1 0] is the up vector of for 2-D views. This means the y-axis points
up. For 3-D views, the up vector is [0 0 1], meaning the z-axis points
up.

camup('manual') sets the camera up vector mode to manual. In manual
mode, the value of the camera up vector does not change unless you
set it.

camup(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camup operates on the current axes.

Examples Set the x-axis to be the up axis:

surf(peaks)
camup([1 0 0]);

1-665

camup

See Also axis | campos | camup | camtarget | Axes: CameraPosition | Axes:
CameraTarget | Axes: CameraUpVector | Axes: CameraViewAngle |
Axes: Projection

How To • “Camera Graphics Terminology”

1-666

camva

Purpose Set or query camera view angle

Syntax camva
camva(view_angle)
camva('mode')
camva('auto')
camva('manual')
camva(axes_handle,...)

Description camva returns the camera view angle setting in the current axes. The
camera view angle determines the field of view of the camera. Larger
angles produce a smaller view of the scene. Implement zooming by
changing the camera view angle.

camva(view_angle) sets the view angle in the current axes to the
specified value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle
mode, which can be either auto (the default) or manual.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual.

camva(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camva operates on the current axes.

Tips The camva function sets or queries values of the axes object
CameraViewAngle and CameraViewAngleMode properties.

When the camera view angle mode is auto, the camera view angle
adjusts so that the scene fills the available space in the window. If
you move the camera to a different position, the camera view angle
changes to maintain a view of the scene that fills the available area
in the window.

Setting a camera view angle or setting the camera view angle to manual
disables the MATLAB stretch-to-fill feature (stretching of the axes

1-667

camva

to fit the window). This means setting the camera view angle to its
current value,

camva(camva)

can cause a change in the way the graph looks. See axes for more
information.

Examples Create two pushbuttons, one that zooms in and another that zooms out:

% Set the range checking in the callback statements to keep

% the values for the camera view angle in the range greater

% than zero and less than 180.

uicontrol('Style','pushbutton',...

'String','Zoom In',...

'Position',[20 20 60 20],...

'Callback','if camva <= 1;return;else;camva(camva-1);end');

uicontrol('Style','pushbutton',...

'String','Zoom Out',...

'Position',[100 20 60 20],...

'Callback',...

'if camva >= 179;return;else;camva(camva+1);end');

% Now create a graph to zoom in and out on:

surf(peaks);

See Also axis | campos | camup | camtarget | Axes: CameraPosition | Axes:
CameraTarget | Axes: CameraUpVector | Axes: CameraViewAngle |
Axes: Projection

How To • “Camera Graphics Terminology”

1-668

camzoom

Purpose Zoom in and out on scene

Syntax camzoom(zoom_factor)
camzoom(axes_handle,...)

Description camzoom(zoom_factor) zooms in or out on the scene depending on the
value specified by zoom_factor. If zoom_factor is greater than 1, the
scene appears larger; if zoom_factor is greater than zero and less than
1, the scene appears smaller.

camzoom(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camzoom operates on the current axes.

Tips camzoom sets the axes CameraViewAngle property, which in turn
causes the CameraViewAngleMode property to be set to manual. Note
that setting the CameraViewAngle property disables the MATLAB
stretch-to-fill feature (stretching of the axes to fit the window). This
may result in a change to the aspect ratio of your graph. See the axes
function for more information on this behavior.

See Also axes | camdolly | camorbit | campan | camroll | camva

How To • “Camera Graphics Terminology”

1-669

TriRep.cartToBary

Purpose (Will be removed) Convert point coordinates from cartesian to
barycentric

Note cartToBary(TriRep) will be removed in a future release. Use
cartesianToBarycentric(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax B = cartToBary(TR, SI, XC)

Description B = cartToBary(TR, SI, XC) returns the barycentric coordinates of
each point in XC with respect to its associated simplex SI.

Input
Arguments

TR Triangulation representation.

SI Column vector of simplex indices that index into the
triangulation matrix TR.Triangulation.

XC Matrix that represents the Cartesian coordinates of the
points to be converted. XC is of size m-by-n, where m is
of length(SI), the number of points to convert, and n
is the dimension of the space where the triangulation
resides.

Output
Arguments

B Matrix of dimension m-by-k where k is the number of
vertices per simplex.

Definitions A simplex is a triangle/tetrahedron or higher dimensional equivalent.

Examples Compute the Delaunay triangulation of a set of points.

x = [0 4 8 12 0 4 8 12]';

1-670

TriRep.cartToBary

y = [0 0 0 0 8 8 8 8]';
dt = DelaunayTri(x,y)

Compute the barycentric coordinates of the incenters.

cc = incenters(dt);
tri = dt(:,:);

Plot the original triangulation and reference points.

figure
subplot(1,2,1);
triplot(dt); hold on;
plot(cc(:,1), cc(:,2), '*r');
hold off;
axis equal;

Stretch the triangulation and compute the mapped locations of the
incenters on the deformed triangulation.

b = cartToBary(dt,[1:length(tri)]',cc);
y = [0 0 0 0 16 16 16 16]';
tr = TriRep(tri,x,y)
xc = baryToCart(tr, [1:length(tri)]', b);

Plot the deformed triangulation and mapped locations of the reference
points.

subplot(1,2,2);
triplot(tr);
hold on;
plot(xc(:,1), xc(:,2), '*r');
hold off;
axis equal;

1-671

TriRep.cartToBary

See Also barycentricToCartesian | pointLocation | delaunayTriangulation
| triangulation

1-672

cart2pol

Purpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional
Cartesian coordinates stored in corresponding elements of arrays X, Y,
and Z, into cylindrical coordinates. THETA is a counterclockwise angular
displacement in radians from the positive x-axis, RHO is the distance
from the origin to a point in the x-y plane, and Z is the height above
the x-y plane. Arrays X, Y, and Z must be the same size (or any can be
scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into
polar coordinates.

Algorithms The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to
cylindrical coordinates is

1-673

cart2pol

See Also cart2sph | pol2cart | sph2cart

1-674

cart2sph

Purpose Transform Cartesian coordinates to spherical

Syntax [azimuth,elevation,r] = cart2sph(X,Y,Z)

Description [azimuth,elevation,r] = cart2sph(X,Y,Z) transforms Cartesian
coordinates stored in corresponding elements of arrays X, Y, and Z
into spherical coordinates. azimuth and elevation are angular
displacements in radians. azimuth is the counterclockwise angle in the
x-y plane measured from the positive x-axis. elevation is the elevation
angle from the x-y plane. r is the distance from the origin to a point.

Arrays X, Y, and Z must be the same size (or any of them can be scalar).

Algorithms The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is

azimuth = atan2(y,x)
elevation = atan2(z,sqrt(x.^2 + y.^2))
r = sqrt(x.^2 + y.^2 + z.^2)

1-675

cart2sph

The notation for spherical coordinates is not standard. For the cart2sph
function, elevation is measured from the x-y plane. Notice that if
elevation = 0, the point is in the x-y plane. If elevation = pi/2, then
the point is on the positive z-axis.

See Also cart2pol | pol2cart | sph2cart

1-676

cast

Purpose Cast variable to different data type

Syntax B = cast(A,newclass)
B = cast(A,'like',p)

Description B = cast(A,newclass) converts A to class newclass, where newclass
is the name of a built-in data type compatible with A. The cast function
truncates any values in A that are too large to map into newclass.

B = cast(A,'like',p) converts A to the same data type and sparsity
as the variable p. If A and p are both real, then B is also real. Otherwise,
B is complex.

Examples Convert Numeric Data Type

Convert an int8 value to uint8.

Define a scalar 8-bit integer.

a = int8(5);

Convert a to an unsigned 8-bit integer.

b = cast(a,'uint8');
class(b)

ans =
uint8

Match Data Type and Complex Nature of p

Define a single precision vector p that is complex valued.

p = single([1+i 2]);

Define a 2-by-3 matrix of ones.

A = ones(2,3);

Convert A to the same data type and complexity (real or complex) as p.

1-677

cast

B = cast(A,'like',p)

B =

1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i
1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i

Check the class of B.

class(B)

ans =

single

See Also class | typecast

Concepts • “Class Support for Array-Creation Functions”

1-678

cat

Purpose Concatenate arrays along specified dimension

Syntax C = cat(dim, A, B)
C = cat(dim, A1, A2, A3, A4, ...)

Description C = cat(dim, A, B)concatenates the arrays A and B along array the
dimension specified by dim. The dim argument must be a real, positive,
integer value.

C = cat(dim, A1, A2, A3, A4, ...) concatenates all the input
arrays (A1, A2, A3, A4, and so on) along array dimension dim.

For nonempty arrays, cat(2, A, B) is the same as [A, B], and cat(1,
A, B) is the same as [A; B].

If your input arrays are tables, dim must be either 1 or 2. cat then
concatenates by calling horzcat or vertcat respectively.

Tips When used with comma-separated list syntax, cat(dim, C{:}) or
cat(dim, C.field) is a convenient way to concatenate a cell or
structure array containing numeric matrices into a single matrix.

You can concatenate categorical arrays with cell arrays of strings. For
more information, see “Combine Categorical Arrays”.

If all the input arrays are ordinal categorical arrays, they must have
the same sets of categories including their order. For more information,
see “Ordinal Categorical Arrays”.

For information on combining unlike integer types, integers with
nonintegers, cell arrays with non-cell arrays, or empty matrices with
other elements, see “Valid Combinations of Unlike Classes”

Examples Given

A = B =
1 2 5 6
3 4 7 8

1-679

cat

concatenating along different dimensions produces

The commands

A = magic(3); B = pascal(3);
C = cat(4, A, B);

produce a 3-by-3-by-1-by-2 array.

See Also vertcat | horzcat | strcat | char | num2cell | reshape | squeeze
| strjoin | shiftdim | special character

1-680

categorical

Purpose Create categorical array

Syntax B = categorical(A)
B = categorical(A,valueset)
B = categorical(A,valueset,catnames)
B = categorical(A, ___ ,Name,Value)

Description B = categorical(A) creates a categorical array from the array, A. The
categories of B are the sorted unique values from A.

For more information on creating and using categorical arrays, see
“Categorical Arrays”.

B = categorical(A,valueset) creates one category for each value in
valueset. The categories of B are in the same order as the values of
valueset.

You can use valueset to include categories for values not present in
A. Conversely, if A contains any values not present in valueset, the
corresponding elements of B are undefined.

B = categorical(A,valueset,catnames) names the categories in
B by matching the category values in valueset with the names in
catnames.

B = categorical(A, ___ ,Name,Value) creates a categorical array
with additional options specified by one or more Name,Value pair
arguments. You can include any of the input arguments in previous
syntaxes.

For example, you can specify that the categories have a mathematical
ordering.

Input
Arguments

A - Input array
numeric array | logical array | categorical array | cell array of strings
| ...

1-681

categorical

Input array, specified as a numeric array, logical array, categorical
array, or cell array of strings.

If A contains missing values, the corresponding element of B is
<undefined>. Missing values are NaN for numeric arrays, the empty
string ('') for cell arrays of strings, and <undefined> for categorical
arrays. B does not have a category for undefined values. To create an
explicit category for missing or undefined values, you must include
the desired category name in catnames, and NaN, the empty string, or
<undefined> in valueset.

In addition to an array, A can be an object with the following class
methods:

• unique

• eq

valueset - Values to define categories
unique(A) (default) | vector of unique values

Values to define categories, specified as a vector of unique values. The
data type of valueset and the data type of A must be the same.

catnames - Category names
cell array of strings

Category names, specified as a cell array of strings. If you do not
specify the catnames input argument, categorical uses the values
in valueset as category names.

To merge multiple distinct values in A into a single category in B,
include duplicate names corresponding to those values.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-682

categorical

Example: 'Ordinal',true specifies that the categories have a
mathematical ordering

’Ordinal’ - Mathematical ordering indicator
false (default) | true | 0 | 1

Mathematical ordering indicator, specified as the comma-separated pair
consisting of 'Ordinal' and either false, true, 0, or 1.

false categorical creates a categorical array that is not
ordinal. This is the default behavior.

The categories of B have no mathematical ordering.
Therefore, you can only compare the values in B for
equality.

true categorical creates an ordinal categorical array.

The categories of B have a mathematical ordering,
such that the first category specified is the smallest
and the last category is the largest. You can
compare the values in B using relational operators,
such as less than and greater than, in addition to
comparing the values for equality.

’Protected’ - Category protection indicator
false | true | 0 | 1

Category protection indicator specified as the comma-separated
pair consisting of 'Protected' and either false, true, 0, or 1. The
categories of ordinal categorical arrays are always protected. The
default value is true when you specify 'Ordinal',true and false
otherwise.

1-683

categorical

false When you assign new values to B, the categories
update automatically. Therefore, you can combine
(nonordinal) categorical arrays that have different
categories. The categories can update accordingly to
include the categories from both arrays.

true When you assign new values to B, the values must
belong to one of the existing categories. Therefore,
you can only combine arrays that have the same
categories. To add new categories to B, you must
use the function addcats.

Examples Create Categorical Array from Strings

Convert a cell array of strings to a categorical array.

Create a cell array of strings.

A = {'r' 'b' 'g'; 'g' 'r' 'b'; 'b' 'r' 'g'}

A =

'r' 'b' 'g'
'g' 'r' 'b'
'b' 'r' 'g'

A is a 3-by-3 cell array containing three unique values.

Convert the cell array of strings, A, to a categorical array, B.

B = categorical(A)

B =

r b g
g r b
b r g

The contents of B match the contents of A.

1-684

categorical

Display the categories of B.

categories(B)

ans =

'b'
'g'
'r'

The categories of B are the unique values from A in alphabetical order.

Create Categorical Array and Specify Possible Unique Values

Convert a cell array of strings, A, to a categorical array. Specify a list of
categories that includes values that are not present in A.

Create a cell array of strings.

A = {'republican' 'democrat'; 'democrat' 'democrat'; 'democrat' 'republican'}

A =

'republican' 'democrat'
'democrat' 'democrat'
'democrat' 'republican'

A is a 3-by-2 cell array containing two unique values.

Convert the cell array of strings, A, to a categorical array, B and include
a category for independent.

valueset = {'democrat' 'republican' 'independent'}
B = categorical(A,valueset)

B =

republican democrat
democrat democrat
democrat republican

1-685

categorical

The contents of B match the contents of A.

Display the categories of B.

categories(B)

ans =

'democrat'
'republican'
'independent'

The categories of B are in the same order as the values specified in
valueset.

Create Categorical Array and Specify Category Names

Create a cell array of strings.

A = {'r' 'b' 'g'; 'g' 'r' 'b'; 'b' 'r' 'g'}

A =

'r' 'b' 'g'
'g' 'r' 'b'
'b' 'r' 'g'

A is a 3-by-3 cell array containing three unique values.

Convert the cell array of strings, A, to a categorical array, B, and specify
category names.

B = categorical(A,{'r' 'g' 'b'},{'red' 'green' 'blue'})

B =

red blue green
green red blue

1-686

categorical

blue red green

B uses the specified category names for the contents from A.

Display the categories of B.

categories(B)

ans =

'red'
'green'
'blue'

The categories of B are in the order they were specified.

Create Categorical Array from Integers

Create a 2-by-3 numeric array.

A = gallery('integerdata',3,[2,3],3)

A =

2 1 2
1 1 3

A contains the values 1, 2, and 3.

Convert the numeric array, A, to a categorical array. Use the values 1,
2, and 3 to define the categories car, bus, and bike, respectively.

valueset = 1:3;
catnames = {'car' 'bus' 'bike'};

B = categorical(A,valueset,catnames)

B =

bus car bus

1-687

categorical

car car bike

categorical maps the numeric values in valueset to the category
names in catnames.

The 2-by-3 categorical array, B, is not ordinal. Therefore, you can only
compare the values in B for equality. To compare the values in B using
relational operators, such as less than and greater than, you must
include the 'Ordinal',true name-value pair argument.

Create Ordinal Categorical Array from Integers

Create a 5-by-2 numeric array.

A = gallery('integerdata',3,[5,2],1)

A =

3 2
3 3
3 2
2 1
3 2

A contains the values 1, 2, and 3.

Convert the numeric array, A, to an ordinal categorical array where 1,
2, and 3 represent child, adult, and senior respectively.

valueset = [1:3];
catnames = {'child' 'adult' 'senior'};

B = categorical(A,valueset,catnames,'Ordinal',true)

B =

senior adult
senior senior
senior adult

1-688

categorical

adult child
senior adult

Since B is ordinal, the categories of B have a mathematical ordering,
child < adult < senior.

See Also categories

Concepts • “Advantages of Using Categorical Arrays”

1-689

categories

Purpose Categories of categorical array

Syntax C = categories(A)

Description C = categories(A) returns a cell array of strings containing the
categories of the categorical array, A.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

Examples List Categories in Categorical Array

Create a categorical array, A.

A = categorical({'plane' 'car' 'train' 'car' 'plane'})

A =

plane car train car plane

A is a 1-by-5 categorical array.

Display the categories of A.

C = categories(A)

C =

'car'
'plane'
'train'

Since you created A by specifying only an input array, the categories
appear in alphabetical order.

1-690

categories

List Categories in Ordinal Categorical Array

Create an ordinal categorical array.

A = categorical({'medium' 'large'; 'small' 'xlarge'; 'large' 'medium'},...

{'small' 'medium' 'large' 'xlarge'},'Ordinal',true)

A =

medium large
small xlarge
large medium

A is a 3-by-2 ordinal categorical array.

Display the categories of A.

C = categories(A)

C =

'small'
'medium'
'large'
'xlarge'

The categories appear in the order in which you specified them. Since
A is ordinal, the categories have the mathematical ordering small <
medium < large < xlarge.

Tips • C includes all categories in A, even if A does not contain any data from
a category. To see the unique values in A, use unique(A).

• The order of the categories listed in C is the same order used by
functions, such as summary and hist. To change the order of the
categories, use reordercats.

See Also categorical | unique | addcats | removecats | iscategory |
mergecats | renamecats | reordercats | hist

1-691

caxis

Purpose Color axis scaling

Syntax caxis([cmin cmax])
caxis auto
caxis manual
caxis(caxis)
v = caxis
caxis(axes_handle,...)

Description caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping
set to scaled. It does not affect surfaces, patches, or images with true
color CData or with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and
maximum values. Data values less than cmin or greater than cmax map
to cmin and cmax, respectively. Values between cmin and cmax linearly
map to the current colormap.

caxis auto computes the color limits automatically using the minimum
and maximum data values. This is the default behavior. Color values
set to Inf map to the maximum color, and values set to -Inf map to
the minimum color. Faces or edges with color values set to NaN are
not drawn.

caxis manual and caxis(caxis)freeze the color axis scaling at the
current limits. This enables subsequent plots to use the same limits
when hold is on.

v = caxis returns a two-element row vector containing the [cmin
cmax] currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle
instead of the current axes.

caxis changes the CLim and CLimMode properties of axes graphics
objects.

1-692

caxis

Tips How Color Axis Scaling Works

Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled map CData values to colors in the figure
colormap each time they render. CData values equal to or less than cmin
map to the first color value in the colormap, and CData values equal to
or greater than cmax map to the last color value in the colormap. The
following linear transformation is performed on the intermediate values
(referred to as C below) to map them to an entry in the colormap (whose
length is m, and whose row index is referred to as index below).

index = fix((C-cmin)/(cmax-cmin)*m)+1;
%Clamp values outside the range [1 m]
index(index<1) = 1;
index(index>m) = m;

Examples Change Color Axis Scaling

Define X, Y, and Z as data for a sphere and view the data as a surface.
Define the colors for the surface, C.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

1-693

caxis

Values of C are in the range [-1,1]. Values of C near -1 are assigned
the lowest values in the colormap. Values of C near 1 are assigned the
highest values in the colormap.

Map the top half of the surface to the highest value in the color table by
setting the maximum color limit to 0.

caxis([-1,0])

1-694

caxis

Reset the axis scaling back to its default range.

caxis auto

1-695

caxis

Return the values of the current color limits.

v = caxis

v =

-1 1

1-696

caxis

Set Color Axis Scaling for Image Data

Load the cape file which contains the image data, X, and the colormap,
map, for Cape Cod, Massachusetts.

load cape

Display the image with CDataMapping set to scaled, and use the map
colormap.

figure
image(X,'CDataMapping','scaled')
colormap(map)

1-697

caxis

The color limits span the range of the image data, which is 1 to 192. The
blue color of the ocean is the first color in the colormap and is mapped to
the lowest data value, 1. You can effectively move sea level by changing
the lower color limit value using caxis.

Display the image data using four different color limit values.

load cape

figure

1-698

caxis

colormap(map)

subplot(2,2,1)
image(X,'CDataMapping','scaled')
title('caxis = [1 192]')

subplot(2,2,2)
image(X,'CDataMapping','scaled')
caxis([4,192]) % change caxis
title('caxis = [4 192]')

subplot(2,2,3)
image(X,'CDataMapping','scaled')
caxis([7,192]) % change caxis
title('caxis = [7 192]')

subplot(2,2,4)
image(X,'CDataMapping','scaled')
caxis([10,192]) % change caxis
title('caxis = [10 192]')

1-699

caxis

See Also axes | axis | colormap | get | mesh | pcolor | set | surf | CLim
| Colormap | CLimMode

How To • “Axes Color Limits — the CLim Property”

1-700

cd

Purpose Change current folder

Syntax cd(newFolder)
oldFolder = cd(newFolder)
cd

Description cd(newFolder) changes the current folder to newFolder.

oldFolder = cd(newFolder) returns the existing current folder
as a string to oldFolder, and then changes the current folder to
newFolder.

cd displays the current folder.

Tips • When using the command syntax (cd newfolder), if the newFolder
string contains spaces, enclose the string in single quotation marks.

• On UNIX platforms, use the ~ (tilde) character to represent the user
home directory.

• If you use cd within a local function, the folder change persists after
program control returns from the function. That is, the scope of the
folder change is global.

Input
Arguments

newFolder

A string specifying the folder to which you want to change the current
folder. Valid values can be any one of the following:

• A full or relative path.

• ../, which indicates one level up from the current folder.

• Multiple strings of ../, which indicates multiple levels up from the
current folder.

• ./, which indicates a path relative to the current folder, although
without the ./, cd assumes that the path is relative to the current
folder.

1-701

cd

Output
Arguments

oldFolder

A string specifying the current folder that was in place when you issued
the cd command.

Definitions The current folder is a reference location that MATLAB uses to find
files. This folder is sometimes referred to as the current directory,
current working folder, or present working directory.

Examples Use cd with the matlabroot function to change the current folder to the
examples directory for the currently running version of MATLAB:

cd(fullfile(matlabroot, '/help/techdoc/matlab_env/examples'))

On a Microsoft Windows platform, specify the full path to change the
current folder from any location to the examples directory for MATLAB
Version 7.11 (R2010b), assuming that version is installed on your C:
drive:

cd('C:/Program Files/MATLAB/R2010b/help/techdoc/matlab_env/examples')

% Change the current folder from
% C:/Program Files/MATLAB/R2010b/help/techdoc/matlab_env/examples to
% C:/Program Files/MATLAB/R2010b/help/techdoc:

cd ../..

% Use a relative path to change the current folder from
% C:/Program Files/MATLAB/R2010b/help/techdoc back to
% C:/Program Files/MATLAB/R2010b/help/techdoc/matlab_env/examples:

cd matlab_env/examples

% Change the current folder from its current location to a new
% location,but save its previous location. Later, change the
% current folder to the previous location.

1-702

cd

% This returns
% C:/Program Files/MATLAB/R2010b/help/techdoc/matlab_env/examples
% to oldFolder, and then changes the current folder to
% C:/Program Files:

oldFolder = cd('C:/Program Files')

% Display current folder:

pwd

% Change the current folder to the previous location:
cd(oldFolder)

pwd

On a UNIX platform, change the current folder to the examples
directory for the currently running version of MATLAB, assuming it is
installed in your home location:

cd('~/help/techdoc/matlab_env/examples')

See Also dir | fileparts | path | pwd | what

How To • “Specify File Names”

• “Files and Folders that MATLAB Accesses”

1-703

DelaunayTri.convexHull

Purpose (Will be removed) Convex hull

Note convexHull(DelaunayTri) will be removed in a future release.
Use convexHull(delaunayTriangulation) instead.

DelaunayTri will be removed in a future release. Use
delaunayTriangulation instead.

Syntax K = convexHull(DT)
[K AV] = convexHull(DT)

Description K = convexHull(DT) returns the indices into the array of points DT.X
that correspond to the vertices of the convex hull.

[K AV] = convexHull(DT) returns the convex hull and the area or
volume bounded by the convex hull.

Input
Arguments

DT Delaunay triangulation.

Output
Arguments

K If the points lie in 2-D space, K is a column vector
of length numf. Otherwise K is a matrix of size
numf-by-ndim, numf being the number of facets in the
convex hull, and ndim the dimension of the space
where the points reside.

AV The area or volume of the convex hull.

Definitions The convex hull of a set of points X is the smallest convex region
containing all of the points of X.

1-704

DelaunayTri.convexHull

Examples Example 1

Compute the convex hull of a set of random points located within a
unit square in 2-D space.

x = rand(10,1)
y = rand(10,1)
dt = DelaunayTri(x,y)
k = convexHull(dt)
plot(dt.X(:,1),dt.X(:,2), '.', 'markersize',10); hold on;
plot(dt.X(k,1),dt.X(k,2), 'r'); hold off;

Example 2

Compute the convex hull of a set of random points located within a unit
cube in 3-D space, and the volume bounded by the convex hull.

1-705

DelaunayTri.convexHull

X = rand(25,3)
dt = DelaunayTri(X)
[ch v] = convexHull(dt)
trisurf(ch, dt.X(:,1),dt.X(:,2),dt.X(:,3), 'FaceColor', 'cyan')

See Also voronoiDiagram | delaunayTriangulation | triangulation |
convhull | convhulln

1-706

FTP.cd

Purpose Change or view current folder on FTP server

Syntax cd(ftpobj,folder)
cd(ftpobj)

Description cd(ftpobj,folder) changes the current folder on the FTP server.

cd(ftpobj) displays the current folder on the server.

Input
Arguments

ftpobj

FTP object created by ftp.

folder

String enclosed in single quotation marks that specifies the target
folder. To specify the folder above the current one, use '..'.

Examples Connect to the MathWorks FTP server, change to the pub folder, and
view its contents:

mw=ftp('ftp.mathworks.com');
cd(mw,'pub');
dir(mw)

See Also dir | ftp

1-707

cdf2rdf

Purpose Convert complex diagonal form to real block diagonal form

Syntax [V,D] = cdf2rdf(V,D)
[V,D] = cdf2rdf(V,D)

Description If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing
in complex-conjugate pairs, cdf2rdf transforms the system so D is in
real diagonal form, with 2-by-2 real blocks along the diagonal replacing
the complex pairs originally there. The eigenvectors are transformed
so that

X = V*D/V

continues to hold. The individual columns of V are no longer
eigenvectors, but each pair of vectors associated with a 2-by-2 block in
D spans the corresponding invariant vectors.

Examples The matrix

X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =

1.0000 -0.0191 - 0.4002i -0.0191 + 0.4002i
0 0 - 0.6479i 0 + 0.6479i
0 0.6479 0.6479

D =

1.0000 0 0

1-708

cdf2rdf

0 4.0000 + 5.0000i 0
0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

V =

1.0000 -0.0191 -0.4002
0 0 -0.6479
0 0.6479 0

D =

1.0000 0 0
0 4.0000 5.0000
0 -5.0000 4.0000

Algorithms The real diagonal form for the eigenvalues is obtained from the complex
form using a specially constructed similarity transformation.

See Also eig | rsf2csf

1-709

cdfepoch

Purpose Convert MATLAB formatted dates to CDF formatted dates

Syntax E = cdfepoch(date)

Description E = cdfepoch(date) converts the date, specified by date, into a
cdfepoch object. datemust be a valid date string, returned by datestr,
or a serial date number, returned by datenum. date can also be a
cdfepoch object.

When writing data to a CDF file using cdfwrite, use cdfepoch to
convert MATLAB formatted dates to CDF formatted dates. The
MATLAB cdfepoch object simulates the CDFEPOCH data type in CDF
files.

To convert a cdfepoch object into a MATLAB serial date number, use
the todatenum function.

Definitions The MATLAB serial date number calculates dates differently than CDF
epochs.

A MATLAB serial date number represents the whole and fractional
number of days from 1-Jan-0000 to a specific date. The year 0000 is
merely a reference point and is not intended to be interpreted as a real
year in time.

A CDF epoch is the number of milliseconds since 1-Jan-0000.

Examples Convert the current time in serial date number format into a CDF
epoch object.

% NOW function returns current time as serial date number
dateobj = cdfepoch(now)

dateobj =

cdfepoch object:
11-Mar-2009 15:09:25

1-710

cdfepoch

Convert the current time in date string format into a CDF epoch object.

% DATESTR function returns date as string
dateobj2 = cdfepoch(datestr(now))

dateobj2 =

cdfepoch object:
11-Mar-2009 15:09:25

Convert the CDF epoch object into a serial date number.

dateobj = cdfepoch(now);
mydatenum = todatenum(dateobj)

mydatenum =

7.3384e+005

See Also datenum | datestr | todatenum | cdfinfo | cdfread

1-711

cdfinfo

Purpose Information about Common Data Format (CDF) file

Syntax info = cdfinfo(filename)

Description info = cdfinfo(filename) returns information about the Common
Data Format (CDF) file specified in the string filename.

Note Because cdfinfo creates temporary files, the current working
directory must be writeable.

The following table lists the fields returned in the structure, info. The
table lists the fields in the order that they appear in the structure.

Field Description

Filename Text string specifying the name of the file

FileModDate Text string indicating the date the file was
last modified

FileSize Double scalar specifying the size of the file,
in bytes

Format Text string specifying the file format

FormatVersion Text string specifying the version of the CDF
library used to create the file

FileSettings Structure array containing library settings
used to create the file

Subfiles Filenames containing the CDF file’s data, if it
is a multi-file format CDF

1-712

cdfinfo

Field Description

N-by-6 cell array, where N is the number of
variables, containing information about the
variables in the file. The columns present the
following information:

Column
1

Text string specifying name of
variable

Column
2

Double array specifying the
dimensions of the variable, as
returned by the size function

Column
3

Double scalar specifying the
number of records assigned for the
variable

Column
4

Text string specifying the data
type of the variable, as stored in
the CDF file

Variables

Column
5

Text string specifying the record
and dimension variance settings
for the variable. The single
T or F to the left of the slash
designates whether values vary
by record. The zero or more T or
F letters to the right of the slash
designate whether values vary at
each dimension. Here are some
examples.

T/ (scalar variable

F/T (one-dimensional variable)

T/TFF (three-dimensional variable)

1-713

cdfinfo

Field Description

GlobalAttributes Structure array that contains one field for
each global attribute. The name of each field
corresponds to the name of an attribute. The
data in each field, contained in a cell array,
represents the entry values for that attribute.

VariableAttributes Structure array that contains one field for
each variable attribute. The name of each
field corresponds to the name of an attribute.
The data in each field is contained in a n-by-2
cell array, where n is the number of variables.
The first column of this cell array contains the
variable names associated with the entries.
The second column contains the entry values.

Note Attribute names returned by cdfinfo might not match the
names of the attributes in the CDF file exactly. Attribute names can
contain characters that are illegal in MATLAB field names. cdfinfo
removes illegal characters that appear at the beginning of attributes
and replaces other illegal characters with underscores (’_’). When
cdfinfo modifies an attribute name, it appends the attribute’s internal
number to the end of the field name. For example, the attribute name
Variable%Attribute becomes Variable_Attribute_013.

Note To improve performance, turn off the file validation which the
CDF library does by default when opening files. For more information,
see cdflib.setValidate.

Examples Get Information About CDF File

Get information about the sample file, example.cdf.

1-714

cdfinfo

info = cdfinfo('example.cdf')

info =

Filename: 'example.cdf'
FileModDate: '13-May-2010 13:38:20'

FileSize: 1310
Format: 'CDF'

FormatVersion: '2.7.0'
FileSettings: [1x1 struct]

Subfiles: {}
Variables: {6x6 cell}

GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

View information about the variables in the file.

info.Variables

ans =

Columns 1 through 5

'Time' [1x2 double] [24] 'epoch' 'T/'
'Longitude' [1x2 double] [1] 'int8' 'F/FT'
'Latitude' [1x2 double] [1] 'int8' 'F/TF'
'Data' [1x3 double] [1] 'double' 'T/TTT'
'multidimensional' [1x4 double] [1] 'uint8' 'T/TTTT
'Temperature' [1x2 double] [10] 'int16' 'T/TT'

Column 6

'Full'
'Full'

1-715

cdfinfo

'Full'
'Full'
'Full'
'Full'

See Also cdflib.setValidate | cdfread

1-716

cdflib

Purpose Summary of Common Data Format (CDF) capabilities

Description The MATLAB product provides both high-level and low-level access
to Common Data Format (CDF) files. The high-level access functions
make it easy to read data from a CDF file or write data from the
workspace to a CDF file. The low-level interface provides you with more
control over the import and export operations.

Note For information about MATLAB support for the Network
Common Data Form (netCDF), which is a completely separate,
incompatible format, see netcdf.

High-Level Functions

MATLAB includes functions that provide high-level access to CDF files:

• cdfinfo

• cdfread

In addition, MATLAB provides functions that convert time data to and
from the CDF epoch data type: cdfepoch and todatenum.

Low-Level Functions

MATLAB provides direct access to dozens of functions in the CDF
library. Using these functions, you can read and write data, create
variables, attributes, and entries, and take advantage of other features
of the CDF library. To use these functions, you must be familiar with
the CDF C interface. Documentation about CDF, version 3.3.0, is
available at the CDF Web site.

The MATLAB functions correspond to functions in the CDF library new
Standard Interface. In most cases, the syntax of a MATLAB function is
similar to the syntax of the corresponding CDF library function. To use
these functions, you must prefix the function name with the package
name, cdflib. For example, to use the CDF library function to open an
existing CDF file, you would use this syntax:

1-717

http://cdf.gsfc.nasa.gov/

cdflib

cdfid = cdflib.open('example.cdf');

The following tables list all of the functions in the MATLAB CDF
library package, grouped by category.

Library Information
cdflib Summary of Common Data

Format (CDF) capabilities

cdflib.getConstantNames Names of Common Data Format
(CDF) library constants

cdflib.getConstantValue Numeric value corresponding to
Common Data Format (CDF)
library constant

cdflib.getFileBackward Return current backward
compatibility mode setting

cdflib.getLibraryCopyright Copyright notice of Common Data
Format (CDF) library

cdflib.getLibraryVersion Library version and release
information

cdflib.getValidate Library validation mode

cdflib.setFileBackward Set backward compatibility mode

cdflib.setValidate Specify library validation mode

File Operations
cdflib.close Close Common Data Format

(CDF) file

cdflib.create Create Common Data Format
(CDF) file

cdflib.delete Delete existing Common Data
Format (CDF) file

cdflib.getCacheSize Number of cache buffers used

cdflib.getChecksum Checksum mode

1-718

cdflib

cdflib.getCompression Compression settings

cdflib.getCompressionCacheSize Number of compression cache
buffers

cdflib.getCopyright Copyright notice in Common
Data Format (CDF) file

cdflib.getFormat Format of Common Data Format
(CDF) file

cdflib.getMajority Majority of variables

cdflib.getName Name of Common Data Format
(CDF) file

cdflib.getReadOnlyMode Read-only mode

cdflib.getStageCacheSize Number of cache buffers for
staging

cdflib.getVersion Common Data Format (CDF)
library version and release
information

cdflib.inquire Basic characteristics of Common
Data Format (CDF) file

cdflib.open Open existing Common Data
Format (CDF) file

cdflib.setCacheSize Specify number of dotCDF cache
buffers

cdflib.setChecksum Specify checksum mode

cdflib.setCompression Specify compression settings

cdflib.setCompressionCacheSize Specify number of compression
cache buffers

cdflib.setFormat Specify format of Common Data
Format (CDF) file

cdflib.setMajority Specify majority of variables

1-719

cdflib

cdflib.setReadOnlyMode Specify read-only mode

cdflib.setStageCacheSize Specify number of staging cache
buffers for Common Data Format
(CDF) file

Variables
cdflib.closeVar Close specified variable from

multifile format Common Data
Format (CDF) file

cdflib.createVar Create new variable

cdflib.deleteVar Delete variable

cdflib.deleteVarRecords Delete range of records from
variable

cdflib.getVarAllocRecords Number of records allocated for
variable

cdflib.getVarBlockingFactor Blocking factor for variable

cdflib.getVarCacheSize Number of multifile cache buffers

cdflib.getVarCompression Information about compression
used by variable

cdflib.getVarData Single value from record in
variable

cdflib.getVarMaxAllocRecNum Maximum allocated record
number for variable

cdflib.getVarMaxWrittenRecNum Maximum written record number
for variable

cdflib.getVarName Variable name, given variable
number

cdflib.getVarNum Variable number, given variable
name

1-720

cdflib

cdflib.getVarNumRecsWritten Number of records written to
variable

cdflib.getVarPadValue Pad value for variable

cdflib.getVarRecordData Entire record for variable

cdflib.getVarReservePercent Compression reserve percentage
for variable

cdflib.getVarsMaxWrittenRecNum Maximum written record number
for CDF file

cdflib.getVarSparseRecords Information about how variable
handles sparse records

cdflib.hyperGetVarData Read hyperslab of data from
variable

cdflib.hyperPutVarData Write hyperslab of data to
variable

cdflib.inquireVar Information about variable

cdflib.putVarData Write single value to variable

cdflib.putVarRecordData Write entire record to variable

cdflib.renameVar Rename existing variable

cdflib.setVarAllocBlockRecords Specify range of records to be
allocated for variable

cdflib.setVarBlockingFactor Specify blocking factor for
variable

cdflib.setVarCacheSize Specify number of multi-file cache
buffers for variable

cdflib.setVarCompression Specify compression settings used
with variable

cdflib.setVarInitialRecs Specify initial number of records
written to variable

1-721

cdflib

cdflib.setVarPadValue Specify pad value used with
variable

cdflib.SetVarReservePercent Specify reserve percentage for
variable

cdflib.setVarsCacheSize Specify number of cache buffers
used for all variables

cdflib.setVarSparseRecords Specify how variable handles
sparse records

Attributes
cdflib.createAttr Create attribute

cdflib.deleteAttr Delete attribute

cdflib.deleteAttrEntry Delete attribute entry

cdflib.deleteAttrgEntry Delete entry in global attribute

cdflib.getAttrEntry Value of entry in attribute with
variable scope

cdflib.getAttrgEntry Value of entry in global attribute

cdflib.getAttrMaxEntry Number of last entry for variable
attribute

cdflib.getAttrMaxgEntry Number of last entry for global
attribute

cdflib.getAttrName Name of attribute, given attribute
number

cdflib.getAttrNum Attribute number, given attribute
name

cdflib.getAttrScope Scope of attribute

cdflib.getNumAttrEntries Number of entries for attribute
with variable scope

cdflib.getNumAttrgEntries Number of entries for attribute
with global scope

1-722

cdflib

cdflib.getNumAttributes Number of attributes with
variable scope

cdflib.getNumgAttributes Number of attributes with global
scope

cdflib.inquireAttr Information about attribute

cdflib.inquireAttrEntry Information about entry in
attribute with variable scope

cdflib.inquireAttrgEntry Information about entry in
attribute with global scope

cdflib.putAttrEntry Write value to entry in attribute
with variable scope

cdflib.putAttrgEntry Write value to entry in attribute
with global scope

cdflib.renameAttr Rename existing attribute

Utility Functions
cdflib.computeEpoch Convert time value to CDF_EPOCH

value

cdflib.computeEpoch16 Convert time value to
CDF_EPOCH16 value

cdflib.epoch16Breakdown Convert CDF_EPOCH16 value to
time value

cdflib.epochBreakdown Convert CDF_EPOCH value into
time value

See Also cdfread | cdfinfo

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-723

cdflib.close

Purpose Close Common Data Format (CDF) file

Syntax cdflib.close(cdfId)

Description cdflib.close(cdfId) closes the specified CDF file. cdfId identifies
the CDF file.

You must close a CDF to guarantee that all modifications you made
since opening the CDF are actually written to the file.

Examples Open the example CDF file and then close it.

cdfid = cdflib.open('example.cdf');
cdflib.close(cdfid)

References This function corresponds to the CDF library C API routine
CDFcloseCDF.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.open | cdflib.create

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-724

http://cdf.gsfc.nasa.gov/

cdflib.closeVar

Purpose Close specified variable from multifile format Common Data Format
(CDF) file

Syntax cdflib.closeVar(cdfId,varNum)

Description cdflib.closeVar(cdfId,varNum) closes a variable in a multifile
format CDF.

cdfId identifies the CDF file and varNum is a numeric value that
specifies the variable. Variable identifiers (variable numbers) are
zero-based.

For multifile CDFs, you must close all open variable files to guarantee
that all modifications you have made are actually written to the CDF
file(s). You do not need to call this function for variables in a single-file
format CDF.

Examples Create a multifile CDF, create a variable, and then close the variable.
To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_multifile.cdf');

% Make it a multifile format CDF
cdflib.setFormat(cdfid,'MULTI_FILE')

% Create a variable in the CDF.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Close the variable.
cdflib.closeVar(cdfid, varnum)

% Clean up
cdflib.delete(cdfid)
clear cdfid

References This function corresponds to the CDF library C API routine
CDFclosezVar.

1-725

cdflib.closeVar

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarNum | cdflib.setFormat | cdflib.getFormat

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-726

http://cdf.gsfc.nasa.gov/

cdflib.computeEpoch

Purpose Convert time value to CDF_EPOCH value

Syntax epoch = cdflib.computeEpoch(timeval)

Description epoch = cdflib.computeEpoch(timeval) converts the time value
specified by timeval into a CDF_EPOCH value.

Input
Arguments

timeval

7-by-1 time vector. The following table describes the time components.

Component Description

year AD e.g. 1994

month 1 12

day 1 31

hour 0 23

minute 0 59

second 0 59

millisecond 0 999

Output
Arguments

epoch

MATLAB double representing a CDF_EPOCH time value.

Examples Convert a time value into a CDF_EPOCH value.

timeval = [1999 12 31 23 59 59 0];
epoch = cdflib.computeEpoch(timeval);

References This function corresponds to the CDF library C API routine
computeEPOCH.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

1-727

http://cdf.gsfc.nasa.gov/

cdflib.computeEpoch

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.computeEpoch16 | cdflib.epochBreakdown |
cdflib.epoch16Breakdown

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-728

cdflib.computeEpoch16

Purpose Convert time value to CDF_EPOCH16 value

Syntax epoch16 = cdflib.computeEpoch16(timeval)

Description epoch16 = cdflib.computeEpoch16(timeval) converts the time value
specified by timeval into a CDF_EPOCH16 value.

Input
Arguments

timeval

10-by-1 time vector. The following table describes the time components.
To specify multiple time values, use additional columns.

Component Description

year AD e.g. 1994

month 1 12

day 1 31

hour 0 23

minute 0 59

second 0 59

millisecond 0 999

microsecond 0 999

nanosecond 0 999

picosecond 0 999

Output
Arguments

epoch16

CDF Epoch16 time value. If the input argument timeval has m-by-10
elements, the return value epoch16 will have size 2-by-m

Examples Convert the time value into an CDF_EPOCH16 value:

timeval = [1999; 12; 31; 23; 59; 59; 50; 100; 500; 999];

1-729

cdflib.computeEpoch16

epoch16 = cdflib.computeEpoch16(timeval);

References This function corresponds to the CDF library C API routine
computeEPOCH16.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.computeEpoch | cdflib.epochBreakdown |
cdflib.epoch16Breakdown

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-730

http://cdf.gsfc.nasa.gov/

cdflib.create

Purpose Create Common Data Format (CDF) file

Syntax cdfId = cdflib.create(filename)

Description cdfId = cdflib.create(filename) creates a new CDF file with the
name specified by the text string filename. Returns the CDF file
identifier cdfId.

Examples Create a CDF file. To run this example, you must have write permission
in your current directory.

cdfId = cdflib.create('myfile.cdf');

% Clean up
cdflib.delete(cdfId);

clear cdfId

References This function corresponds to the CDF library C API routine
CDFcreateCDF.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.open | cdflib.close

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-731

http://cdf.gsfc.nasa.gov/

cdflib.createAttr

Purpose Create attribute

Syntax attrnum = cdflib.createAttr(cdfId,attrName,scope)

Description attrnum = cdflib.createAttr(cdfId,attrName,scope) creates an
attribute in a CDF file with the specified scope.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrName

Text string that specifies the name you want to assign to the attribute.

scope

One of the following text strings, or its numeric equivalent, that
specifies the scope of the attribute.

Text String Description

'global_scope' Attribute applies to the CDF as a
whole.

'variable_scope' Attribute applies only to the variable

To get the numeric equivalent of these text string constants, use the
cdflib.getConstantValue function.

Output
Arguments

attrNum

Numeric value identifying the attribute. Attribute numbers are
zero-based.

Examples Create a CDF, and then create an attribute in the CDF. To run this
example, you must be in a writable folder.

1-732

cdflib.createAttr

cdfid = cdflib.create('your_file.cdf');

% Create attribute
attrNum = cdflib.createAttr(cdfId,'Purpose','global_scope');

% Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFcreateAttr.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getAttrNum | cdflib.deleteAttr |
cdflib.getConstantValue | cdflib.getConstantNames

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-733

http://cdf.gsfc.nasa.gov/

cdflib.createVar

Purpose Create new variable

Syntax varnum = cdflib.createVar(cdfId, varname, datatype,
numElements, dims,

recVariance, dimVariance)

Description varnum = cdflib.createVar(cdfId, varname, datatype,
numElements, dims, recVariance, dimVariance) creates a new
variable in the Common Data Format (CDF) file with the specified
characteristics.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varname

Text string that specifies the name you want to assign to the variable.

datatype

Data type of the variable. One of the following text strings, or its
numeric equivalent, that specifies a valid CDF data type.

CDF Data Type Description

CDF_BYTE 1-byte, signed integer

CDF_CHAR 1 byte, signed character data type that maps to
the MATLAB char class

CDF_INT1 1-byte, signed integer

CDF_UCHAR 1 byte, unsigned character data type that maps
to the MATLAB uint8 class

CDF_UINT1 1-byte, unsigned integer

CDF_INT2 2-byte, signed integer

1-734

cdflib.createVar

CDF Data Type Description

CDF_UINT2 2-byte, unsigned integer

CDF_INT4 4-byte, signed integer

CDF_UINT4 4-byte, unsigned integer

CDF_FLOAT 4-byte, floating point

CDF_REAL4 4-byte, floating point

CDF_REAL8 8-byte, floating point.

CDF_DOUBLE 8-byte, floating point

CDF_EPOCH 8-byte, floating point

CDF_EPOCH16 two 8-byte, floating point

numElements

Number of elements per datum. Value should be 1 for all data types,
except CDF_CHAR and CDF_UCHAR.

dims

A vector of the dimensions extents; empty if there are no dimension
extents.

recVariance

Specifies record variance: true or false.

dimVariance

A vector of logicals; empty if there are no dimensions.

Output
Arguments

varNum

The numeric identifier for the variable. Variable numbers are
zero-based.

1-735

cdflib.createVar

Examples Create a CDF file and then create a variable named 'Time' in the CDF.
The variable has no dimensions and varies across records. To run this
example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Initially the file contains no variables.
info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: -1
numVars: 0

numvAttrs: 0
numgAttrs: 0

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Retrieve info about the file again to verify variable was created.
% Note value of numVars field is now 1.
info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: -1
numVars: 1

numvAttrs: 0
numgAttrs: 0

% Clean up
cdflib.delete(cdfid);

1-736

cdflib.createVar

clear cdfid

References This function corresponds to the CDF library C API routine
CDFcreatezVar.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.deleteVar | cdflib.closeVar

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-737

http://cdf.gsfc.nasa.gov/

cdflib.delete

Purpose Delete existing Common Data Format (CDF) file

Syntax cdflib.delete(cdfId)

Description cdflib.delete(cdfId) deletes the existing CDF file specified by
the identifier cdfId. If the CDF file is a multi-file format CDF, the
cdflib.delete function also deletes the variable files (having file
extensions of .z0, .z1, etc.).

Examples Create a CDF file, and then delete it. To run this example, you must be
in a writable folder.

cdfId = cdflib.create('mytempfile.cdf');

% Verify that the file was created.
ls *.cdf

mytempfile.cdf

% Delete the file.
cdflib.delete(cdfId)

% Verify that the file no longer exists.
ls *.cdf

References This function corresponds to the CDF library C API routine
CDFdeleteCDF.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.create | cdflib.setFormat

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-738

http://cdf.gsfc.nasa.gov/

cdflib.deleteAttr

Purpose Delete attribute

Syntax cdflib.deleteAttr(cdfId,attrNum)

Description cdflib.deleteAttr(cdfId,attrNum) deletes the specified attribute
from the CDF file.

cdfId identifies the Common Data Format (CDF) file.attrNum is a
numeric identifier that specifies the attribute. Attribute numbers are
zero-based.

Examples Create a CDF file, and then create an attribute in the file. Then delete
the attribute. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create attribute.
attrNum = cdflib.createAttr(cdfId,'Purpose','global_scope');

% Prove it exists.
anum = cdflib.getAttrNum(cdfid,'Purpose')

anum =

0

% Delete the attribute.
cdflib.deleteAttr(cdfid,attrNum);

% Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFdeleteAttr.

1-739

cdflib.deleteAttr

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.createAttr | cdflib.getAttrNum

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-740

http://cdf.gsfc.nasa.gov/

cdflib.deleteAttrEntry

Purpose Delete attribute entry

Syntax cdflib.deleteAttrEntry(cdfId,attrNum,entryNum)

Description cdflib.deleteAttrEntry(cdfId,attrNum,entryNum) deletes an entry
from an attribute in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are
zero-based. The attribute must have variable scope.

entryNum

Numeric value that specifies the entry in the attribute. Entry numbers
are zero-based.

Examples Create a CDF, and then create an attribute in the file. Write a value
to an entry for the attribute, and then delete the entry. To run this
example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Initially the file contains no attributes, global or variable.

info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'

majority: 'ROW_MAJOR'

maxRec: -1

numVars: 0

numvAttrs: 0

1-741

cdflib.deleteAttrEntry

numgAttrs: 0

% Create an attribute with variable scope in the file.

attrNum = cdflib.createAttr(cdfid,'my_var_scope_attr','variable_scope');

% Write a value to an entry for the attribute

cdflib.putAttrEntry(cdfid,attrNum,0,'CDF_CHAR','My attr value');

% Get the value of the attribute entry

value = cdflib.getAttrEntry(cdfid,attrNum,0)

value =

My attr value

% Delete the entry

cdflib.deleteAttrEntry(cdfid,attrNum,0);

% Now try to view the value of the entry

% Should return NO_SUCH_ENTRY failure.

value = cdflib.getAttrEntry(cdfid,attrNum,0) % Should fail

% Clean up

cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFdeleteAttrzEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.deleteAttr

Tutorials • “Importing CDF Files”

1-742

http://cdf.gsfc.nasa.gov/

cdflib.deleteAttrEntry

• “Exporting to CDF Files”

1-743

cdflib.deleteAttrgEntry

Purpose Delete entry in global attribute

Syntax cdflib.deleteAttrgEntry(cdfId,attrNum,entryNum)

Description cdflib.deleteAttrgEntry(cdfId,attrNum,entryNum) deletes an
entry from a global attribute in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are
zero-based. The attribute must have global scope.

entryNum

Numeric value that specifies the entry in the attribute. Entry numbers
are zero-based.

Examples Create a CDF and create a global attribute in the file. Write a value
to an entry for the attribute and then delete the entry. To run this
example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Initially the file contains no attributes, global or variable.

info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'

majority: 'ROW_MAJOR'

maxRec: -1

numVars: 0

numvAttrs: 0

1-744

cdflib.deleteAttrgEntry

numgAttrs: 0

% Create an attribute with global scope in the file.

attrNum = cdflib.createAttr(cdfid,'my_global_attr','global_scope');

% Write a value to an entry for the attribute

cdflib.putAttrgEntry(cdfid,attrNum,0,'CDF_CHAR','My global attr');

% Get the value of the global attribute entry

value = cdflib.getAttrgEntry(cdfid,attrNum,0)

value =

My global attr

% Delete the entry

cdflib.deleteAttrgEntry(cdfid,attrNum,0);

% Now try to view the value of the entry

% Should return NO_SUCH_ENTRY failure.

value = cdflib.getAttrgEntry(cdfid,attrNum,0) % Should fail

% Clean up

cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFdeleteAttrgEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.deleteAttr | cdflib.deleteAttrEntry

Tutorials • “Importing CDF Files”

1-745

http://cdf.gsfc.nasa.gov/

cdflib.deleteAttrgEntry

• “Exporting to CDF Files”

1-746

cdflib.deleteVar

Purpose Delete variable

Syntax cdflib.deleteVar(cdfId,varNum)

Description cdflib.deleteVar(cdfId,varNum) deletes a variable from a Common
Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that specifies
the variable. Variable numbers are zero-based.

Examples Create a CDF, create a variable in the CDF, and then delete it.

cdfid = cdflib.create('mycdf.cdf');

% Initially the file contains no variables.
info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: -1
numVars: 0

numvAttrs: 0
numgAttrs: 0

% Create a variable in the CDF.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Retrieve info about the variable in the CDF.

info = cdflib.inquireVar(cdfid, 0)

info =

name: 'Time'
datatype: 'cdf_int1'

1-747

cdflib.deleteVar

numElements: 1
dims: []

recVariance: 1
dimVariance: []

% Delete the variable from the CDF

cdflib.deleteVar(cdfid,0);

% Check to see if the variable was deleted from the CDF.
info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: -1
numVars: 0

numvAttrs: 0
numgAttrs: 0

% Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFdeletezVar.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.createVar

Tutorials • “Importing CDF Files”

1-748

http://cdf.gsfc.nasa.gov/

cdflib.deleteVar

• “Exporting to CDF Files”

1-749

cdflib.deleteVarRecords

Purpose Delete range of records from variable

Syntax cdflib.deleteVarRecords(cdfId,varNum,startRec,endRec)

Description cdflib.deleteVarRecords(cdfId,varNum,startRec,endRec) deletes
a range of records from a variable in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value that identifies the variable. Variable numbers are
zero-based.

startRec

Numeric value that specifies the record at which to start deleting
records. Record numbers are zero-based.

endRec

Numeric value that specifies the record at which to stop deleting
records. Record numbers are zero-based.

Examples Make a writable copy of the example CDF, get the number of a variable
in the CDF, and delete specific records in the variable. To run this
example, you must be in a writable folder.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.cdf');
copyfile(srcFile,'myfile.cdf');
fileattrib('myfile.cdf','+w');
cdfid = cdflib.open('myfile.cdf');
varnum = cdflib.getVarNum(cdfid,'Temperature');
cdflib.deleteVarRecords(cdfid,varnum,1,2);
cdflib.close(cdfid);

1-750

cdflib.deleteVarRecords

References This function corresponds to the CDF library C API routine
CDFdeletezVarRecords.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarNumRecsWritten | cdflib.putVarRecordData

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-751

http://cdf.gsfc.nasa.gov/

cdflib.epoch16Breakdown

Purpose Convert CDF_EPOCH16 value to time value

Syntax timeVec = cdflib.epoch16Breakdown(epoch16Time)

Description timeVec = cdflib.epoch16Breakdown(epoch16Time) convert a
CDF_EPOCH16 value into a time vector. timeVec will have 10-by-n
elements, where n is the number of CDF_EPOCH16 values.

The following table describes the time value components.

timeVec Element Description Valid Values

timeVec(1,:) Year AD e.g. 1994

timeVec(2,:) Month 1 12

timeVec(3,:) Day 1 31

timeVec(4,:) Hour 0 23

timeVec(5,:) Minute 0 59

timeVec(6,:) Second 0 59

timeVec(7,:) Millisecond 0 999

timeVec(8,:) Microsecond 0 999

timeVec(9,:) Nanosecond 0 999

timeVec(10,:) Picosecond 0 999

Examples Convert CDF_EPOCH16 value into time value.

timeval = [1999; 12; 31; 23; 59; 59; 50; 100; 500; 999];
epoch16 = cdflib.computeEpoch16(timeval);

timevec = cdflib.epoch16Breakdown(epoch16)

timevec =

1999

1-752

cdflib.epoch16Breakdown

12
31
23
59
59
50

100
500
999

References This function corresponds to the CDF library C API routine
EPOCH16breakdown.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.computeEpoch16

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-753

http://cdf.gsfc.nasa.gov/

cdflib.epochBreakdown

Purpose Convert CDF_EPOCH value into time value

Syntax timeVec = cdflib.epochBreakdown(epochTime)

Description timeVec = cdflib.epochBreakdown(epochTime) decomposes the
CDF_EPOCH value, epochTime value into individual time components.
timeVec will have 7-by-n elements, where n is the number of CDF_EPOCH
values in epochTime.

The return value timeVec has the following elements:

timeVec Element Description Valid Values

timeVec(1,:) Year AD e.g. 1994

timeVec(2,:) Month 1 12

timeVec(3,:) Day 1 31

timeVec(4,:) Hour 0 23

timeVec(5,:) Minute 0 59

timeVec(6,:) Second 0 59

timeVec(7,:) Millisecond 0 999

Examples Convert a CDP_EPOCH value into a time vector.

% First convert a time vector into a CDF_EPOCH value
timeval = [1999 12 31 23 59 59 0];
epoch = cdflib.computeEpoch(timeval);

% Convert the CDF_EPOCH value into a time vector
timevec = cdflib.epochBreakdown(epoch)

timevec =

1999
12
31

1-754

cdflib.epochBreakdown

23
59
59
0

References This function corresponds to the CDF library C API routine
EPOCHbreakdown.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.computeEpoch | cdflib.epochBreakdown |
cdflib.epoch16Breakdown

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-755

http://cdf.gsfc.nasa.gov/

cdflib.getAttrEntry

Purpose Value of entry in attribute with variable scope

Syntax value = cdflib.getAttrEntry(cdfId,attrNum,entryNum)

Description value = cdflib.getAttrEntry(cdfId,attrNum,entryNum) returns
the value of an attribute entry in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are
zero-based. The attribute must have variable scope.

entryNum

Numeric value that specifies the entry in the attribute. Entry numbers
are zero-based.

Output
Arguments

Value

Value of the entry.

Examples Open the example CDF and get the value of an entry associated with an
attribute with variable scope in the file.

cdfid = cdflib.open('example.cdf');

% The fourth attribute is of variable scope.
attrscope = cdflib.getAttrScope(cdfid,3)

attrscope =

VARIABLE_SCOPE

1-756

cdflib.getAttrEntry

% Get information about the first entry for this attribute
[dtype numel] = cdflib.inquireAttrEntry(cdfid,3,0)

dtype =

cdf_char

numel =

10

% Get the value of the entry for this attribute.
% Note that it's a character string, 10 characters in length
value = cdflib.getAttrEntry(cdfid,3,0)

value =

Time value

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetAttrzEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.putAttrEntry | cdflib.getAttrgEntry |
cdflib.putAttrgEntry

Tutorials • “Importing CDF Files”

1-757

http://cdf.gsfc.nasa.gov/

cdflib.getAttrEntry

• “Exporting to CDF Files”

1-758

cdflib.getAttrgEntry

Purpose Value of entry in global attribute

Syntax value = cdflib.getAttrgEntry(cdfId,attrNum,entryNum)

Description value = cdflib.getAttrgEntry(cdfId,attrNum,entryNum) returns
the value of a global attribute entry in a Common Data Format (CDF)
file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are
zero-based. The attribute must have global scope.

entryNum

Numeric value that specifies the entry in the attribute. Entry numbers
are zero-based.

Output
Arguments

Value

Value of the entry.

Examples Open the example CDF, and then get the value of an entry associated
with a global attribute in the file:

cdfid = cdflib.open('example.cdf');

% Any of the first three attributes have global scope.
attrscope = cdflib.getAttrScope(cdfid,0)

attrscope =

GLOBAL_SCOPE

1-759

cdflib.getAttrgEntry

% Get information about the first entry for global attribute
[dtype numel] = cdflib.inquireAttrgEntry(cdfid,0,0)

dtype =

cdf_char

numel =

23

% Get the value of the first entry for this global attribute.
value = cdflib.getAttrgEntry(cdfid,0,0)

value =

This is a sample entry.

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetAttrgEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.putAttrgEntry | cdflib.getAttrEntry |
cdflib.putAttrEntry

Tutorials • “Importing CDF Files”

1-760

http://cdf.gsfc.nasa.gov/

cdflib.getAttrgEntry

• “Exporting to CDF Files”

1-761

cdflib.getAttrMaxEntry

Purpose Number of last entry for variable attribute

Syntax maxEntry = cdflib.getAttrMaxEntry(cdfId,attrNum)

Description maxEntry = cdflib.getAttrMaxEntry(cdfId,attrNum) returns the
number of the last entry for an attribute in a Common Data Format
(CDF) file.

cdfId identifies the CDF file.

attrNum is a numeric value that specifies the attribute. Attribute
numbers are zero-based. The attribute must have variable scope.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are
zero-based. The attribute must have variable scope.

Output
Arguments

maxEntry

Entry number of the last entry in the attribute. Entry numbers are
zero-based.

Examples Open the example CDF and get the number of the last entry associated
with an attribute with variable scope in the file:

cdfid = cdflib.open('example.cdf');

% The fourth attribute is of variable scope.
attrscope = cdflib.getAttrScope(cdfid,3)

attrscope =

VARIABLE_SCOPE

1-762

cdflib.getAttrMaxEntry

% Get the number of the last entry for this attribute.
entrynum = cdflib.getAttrMaxEntry(cdfid,3)

entrynum =

3

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetAttrMaxzEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getAttrMaxgEntry

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-763

http://cdf.gsfc.nasa.gov/

cdflib.getAttrMaxgEntry

Purpose Number of last entry for global attribute

Syntax maxEntry = cdflib.getAttrMaxgEntry(cdfId,attrNum)

Description maxEntry = cdflib.getAttrMaxgEntry(cdfId,attrNum) returns the
last entry number of a global attribute in a Common Data Format
(CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are
zero-based. The attribute must have global scope.

Output
Arguments

maxEntry

Entry number of the last entry in the attribute. Entry numbers are
zero-based.

Examples Open the example CDF and get the number of the last entry associated
with a global attribute in the file:

cdfid = cdflib.open('example.cdf');

% Any of the first three attribute are of global scope.
attrscope = cdflib.getAttrScope(cdfid,0)

attrscope =

GLOBAL_SCOPE

% Get the number of the last entry for this attribute.
entrynum = cdflib.getAttrMaxgEntry(cdfid,0)

1-764

cdflib.getAttrMaxgEntry

entrynum =

4

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetAttrMaxgEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getAttrMaxEntry

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-765

http://cdf.gsfc.nasa.gov/

cdflib.getAttrName

Purpose Name of attribute, given attribute number

Syntax name = cdflib.getAttrName(cdfId,attrNum)

Description name = cdflib.getAttrName(cdfId,attrNum) returns the name of an
attribute in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that identifies the attribute. Attribute numbers are
zero-based.

Output
Arguments

name

Text string specifying the name of the attribute.

Examples Open the example CDF and get name of an attribute.

cdfid = cdflib.open('example.cdf');

% Get name of the first attribute in the file.
attrName = cdflib.getAttrName(cdfId,0)

attrName =

SampleAttribute

% Clean up
cdflib.close(cdfid);

clear cdfid

1-766

cdflib.getAttrName

References This function corresponds to the CDF library C API routine
CDFgetAttrName.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.createAttr

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-767

http://cdf.gsfc.nasa.gov/

cdflib.getAttrNum

Purpose Attribute number, given attribute name

Syntax attrNum = cdflib.getAttrNum(cdfId,attrName)

Description attrNum = cdflib.getAttrNum(cdfId,attrName) returns the number
of an attribute in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrName

Text string specifying the name of an attribute.

Output
Arguments

attrNum

Numeric value that identifies the attribute. Attribute numbers are
zero-based.

Examples Open the example CDF and get the attribute number associated with
the SampleAttribute attribute.

cdfid = cdflib.open('example.cdf');

attrNum = cdflib.getAttrNum(cdfid,'SampleAttribute')

attrNum =

0

% Clean up
cdflib.close(cdfid);

clear cdfid

1-768

cdflib.getAttrNum

References This function corresponds to the CDF library C API routine
CDFgetAttrNum.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.createAttr | cdflib.getAttrName

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-769

http://cdf.gsfc.nasa.gov/

cdflib.getAttrScope

Purpose Scope of attribute

Syntax scope = cdflib.getAttrScope(cdfId,attrNum)

Description scope = cdflib.getAttrScope(cdfId,attrNum) returns the scope of
an attribute in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that specifies the attribute. Attribute numbers are
zero-based.

Output
Arguments

scope

Either of the following text strings, or its numeric equivalent.

Text String Description

'GLOBAL_SCOPE' Attribute applies to the CDF as a
whole.

'VARIABLE_SCOPE' Attribute applies only to the variable.

To get the numeric equivalent of these text string constants, use the
cdflib.getConstantValue function.

Examples Open example CDF and get the scope of the first attribute in the file:

cdfid = cdflib.open('example.cdf');

attrScope = cdflib.getAttrScope(cdfid,0)

attrScope =

1-770

cdflib.getAttrScope

GLOBAL_SCOPE

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetAttrScope.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.createAttr | cdflib.getAttrName |
cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-771

http://cdf.gsfc.nasa.gov/

cdflib.getCacheSize

Purpose Number of cache buffers used

Syntax numBuffers = cdflib.getCacheSize(cdfId)

Description numBuffers = cdflib.getCacheSize(cdfId) returns the number of
cache buffers used for the Common Data Format (CDF) file identified
by cdfId. For a discussion of cache schemes, see the CDF User’s Guide.

Examples Open the example CDF file and get the cache size:

cdfid = cdflib.open('example.cdf');

numBuf = cdflib.getCacheSize(cdfid)

numBuf =

300

% Clean up
cdflib.close(cdfid)
clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setCacheSize

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-772

http://cdf.gsfc.nasa.gov/

cdflib.getChecksum

Purpose Checksum mode

Syntax mode = cdflib.getChecksum(cdfId)

Description mode = cdflib.getChecksum(cdfId) returns the checksum mode of
the Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

Output
Arguments

mode

Either of the following text strings or its numeric equivalent.

'MD5_CHECKSUM' File uses MD5 checksum.

'NO_CHECKSUM' File does not use a checksum.

To get the numeric equivalent of these text strings, use
cdflib.getConstantValue.

Examples Open the example CDF file, and then get the checksum mode of the file:

cdfid = cdflib.open('example.cdf');

checksummode = cdflib.getChecksum(cdfid)

checksummode =

NO_CHECKSUM

% Clean up
cdflib.close(cdfid);
clear cdfid;

1-773

cdflib.getChecksum

References This function corresponds to the CDF library C API routine
CDFgetChecksum.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setChecksum | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-774

http://cdf.gsfc.nasa.gov/

cdflib.getCompression

Purpose Compression settings

Syntax [ctype,cparms,cpercentage] = cdflib.getCompression(cdfId)

Description [ctype,cparms,cpercentage] = cdflib.getCompression(cdfId)
returns information about the compression settings of a Common Data
Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

Output
Arguments

ctype

Text string specifying compression type, such as 'HUFF_COMPRESSION'.
If the CDF does not use compression, the function returns the string
'NO_COMPRESSION'. For a list of supported compression types, see
cdflib.setCompression.

cparms

The value of the parameter associated with the type of compression. For
example, for the 'RLE_COMPRESSION' compression type, the parameter
specifies the style of run-length encoding. For a list of parameters
supported by each compression type, see cdflib.setCompression.

cpercentage

The rate of compression, expressed as a percentage.

Examples Open the example CDF file and check the compression settings in the
file.

cdfId = cdflib.open('example.cdf');

[ctype, cparms, cpercentage] = cdflib.getCompression(cdfId)

1-775

cdflib.getCompression

ctype =

GZIP_COMPRESSION

cparms =

7

cper =

26

% Clean up
cdflib.close(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFgetCompression.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setCompression | cdflib.getVarCompression |
cdflib.setVarCompression

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-776

http://cdf.gsfc.nasa.gov/

cdflib.getCompressionCacheSize

Purpose Number of compression cache buffers

Syntax numBuffers = cdflib.getCompressionCacheSize(cdfId)

Description numBuffers = cdflib.getCompressionCacheSize(cdfId) returns the
number of cache buffers used for the compression scratch Common
Data Format (CDF) file. cdfId identifies the CDF file. For a discussion
of cache schemes, see the CDF User’s Guide.

Examples Open the example CDF file and check the compression cache size of
the file:

cdfId = cdflib.open('example.cdf');

numBuf = cdflib.getCompressionCacheSize(cdfId)

numBuf =

80

% Clean up
cdflib.close(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFgetCompressionCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setCompressionCacheSize

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-777

http://cdf.gsfc.nasa.gov/

cdflib.getConstantNames

Purpose Names of Common Data Format (CDF) library constants

Syntax names = cdflib.getConstantNames()

Description names = cdflib.getConstantNames() returns a cell array of text
strings, where each text string is the name of a constant known to the
Common Data Format (CDF) library.

Examples Get a list of the names of CDF library constants.

names = cdflib.getConstantNames()

names =

'AHUFF_COMPRESSION'
'ALPHAMVSD_ENCODING'
'ALPHAMVSG_ENCODING'
'ALPHAMVSI_ENCODING'
'ALPHAOSF1_ENCODING'
'CDF_BYTE'
'CDF_CHAR'
.
.
.

References For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-778

cdflib.getConstantValue

Purpose Numeric value corresponding to Common Data Format (CDF) library
constant

Syntax value = cdflib.getConstantValue(constantName)

Description value = cdflib.getConstantValue(constantName) returns
the numeric value of the CDF library constant specified by the
text string constantName. To see a list of constant names, use
cdflib.getConstantNames.

Examples View the list of CDF library constants and get the numeric value
corresponding to one of the constants.

% Retrieve a list of library constants
names = cdflib.getConstantNames();

value = cdflib.getConstantValue(names{1})

value =

3

References For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getConstantNames

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-779

cdflib.getCopyright

Purpose Copyright notice in Common Data Format (CDF) file

Syntax copyright = cdflib.getCopyright(cdfId)

Description copyright = cdflib.getCopyright(cdfId) returns the copyright
notice in the CDF file identified by cdfId.

Examples Create a CDF file, and then get the copyright notice in the file. To run
this example, you must be in a writable folder.

cdfId = cdflib.create('your_file.cdf');

copyright = cdflib.getCopyright(cdfId)

copyright =

Common Data Format (CDF)
(C) Copyright 1990-2009 NASA/GSFC
Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA
(Internet -- CDFSUPPORT@LISTSERV.GSFC.NASA.GOV)

% Clean up.
cdflib.delete(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFgetCopyright.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getLibraryCopyright

1-780

http://cdf.gsfc.nasa.gov/

cdflib.getCopyright

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-781

cdflib.getFileBackward

Purpose Return current backward compatibility mode setting

Syntax mode = cdflib.getFileBackward()

Description mode = cdflib.getFileBackward() returns the backward
compatibility mode.

Output
Arguments

mode

One of the following text strings:

BACKWARDFILEon Backward compatibility mode is on.

BACKWARDFILEoff Backward compatibility mode is off.

For more information about backward compatibility mode, see
cdflib.setFileBackward.

Examples mode = cdflib.getFileBackward

mode =

BACKWARDFILEoff

References This function corresponds to the CDF library C API routine
CDFgetFileBackward.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setFileBackward | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-782

http://cdf.gsfc.nasa.gov/

cdflib.getFormat

Purpose Format of Common Data Format (CDF) file

Syntax format = cdflib.setFormat(cdfId)

Description format = cdflib.setFormat(cdfId) returns the format of the CDF
file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

Output
Arguments

format

Either of the following text strings, or its numeric equivalent.

'SINGLE_FILE' The CDF is stored in a single file.

'MULTI_FILE' The CDF is made up of multiple files.

To get the numeric equivalent of these text strings, use
cdflib.getConstantValue.

Examples Open the example CDF file and determine its file format:

cdfId = cdflib.open('example.cdf');

format = cdflib.getFormat(cdfId)

format =

'SINGLE_FILE'

% Clean up.
cdflib.close(cdfId)
clear cdfId

1-783

cdflib.getFormat

References This function corresponds to the CDF library C API routine
CDFgetFormat.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setFormat | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-784

http://cdf.gsfc.nasa.gov/

cdflib.getLibraryCopyright

Purpose Copyright notice of Common Data Format (CDF) library

Syntax copyright = cdflib.getLibraryCopyright()

Description copyright = cdflib.getLibraryCopyright() returns a text string
containing the copyright notice of the CDF library.

Examples Get the copyright of the CDF library.

copyright = cdflib.getLibraryCopyright()

copyright =

Common Data Format (CDF)
(C) Copyright 1990-2008 NASA/GSFC
Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA
(Internet -- CDFSUPPORT@LISTSERV.GSFC.NASA.GOV)

References This function corresponds to the CDF library C API routine
CDFgetLibraryCopyright.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getCopyright

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-785

http://cdf.gsfc.nasa.gov/

cdflib.getLibraryVersion

Purpose Library version and release information

Syntax [version,release,increment] = cdflib.getLibraryVersion()

Description [version,release,increment] = cdflib.getLibraryVersion()
returns information about the Common Data Format (CDF) library.

Output
Arguments

version

Numeric value indicating the version number of the CDF library.

release

Numeric value indicating the release number of the CDF library.

increment

Numeric value indicating the increment number of the CDF library.

Examples Get the version information of the CDF library:

[version, release, increment] = cdflib.getLibraryVersion()

version =

3

release =

3

increment =

0

References This function corresponds to the CDF library C API routine
CDFgetLibraryVersion.

1-786

cdflib.getLibraryVersion

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVersion

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-787

http://cdf.gsfc.nasa.gov/

cdflib.getMajority

Purpose Majority of variables

Syntax majority = cdflib.getMajority(cdfId)

Description majority = cdflib.getMajority(cdfId) returns the majority of
variables in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

Output
Arguments

majority

Either of the following text strings, or its numeric equivalent.

'ROW_MAJOR' C-like array ordering for variable storage. The
first dimension in each variable array varies
the slowest. This is the default.

'COLUMN_MAJOR' Fortran-like array ordering for variable
storage. The first dimension in each variable
array varies the fastest.

To get the numeric equivalent of these values, use
cdflib.getConstantValue.

Examples Open the example CDF file, and then determine the majority of
variables in the file:

cdfId = cdflib.open('example.cdf');

majority = cdflib.getMajority(cdfId)

majority =

ROW_MAJOR

1-788

cdflib.getMajority

% Clean up
cdflib.close(cdfId)

clear cdfId

References This function corresponds to the CDF library C API routine
CDFgetMajority.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setMajority | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-789

http://cdf.gsfc.nasa.gov/

cdflib.getName

Purpose Name of Common Data Format (CDF) file

Syntax name = cdflib.getName(cdfId)

Description name = cdflib.getName(cdfId) returns the name of the CDF file
identified by cdfId.

Examples Open the example CDF file and get the name of the file. The path name
returned for your installation will be different.

cdfId = cdflib.open('example.cdf');

name = cdflib.getName(cdfId)

name =

yourinstallation\matlab\toolbox\matlab\demos\example

% Clean up
cdflib.close(cdfId)

clear cdfId

References This function corresponds to the CDF library C API routine CDFgetName.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.open | cdflib.create

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-790

http://cdf.gsfc.nasa.gov/

cdflib.getNumAttrEntries

Purpose Number of entries for attribute with variable scope

Syntax nentries = cdflib.getNumAttrEntries(cdfId,attrNum)

Description nentries = cdflib.getNumAttrEntries(cdfId,attrNum) returns
the number of entries for the specified attribute in the Common Data
Format (CDF) file.

cdfId identifies the CDF file.

attrNum is a numeric value that specifies the attribute. Attribute
numbers are zero-based. The attribute must have variable scope.

Examples Open the example CDF, find an attribute with variable scope, and
determine how many entries are associated with the attribute:

cdfid = cdflib.open('example.cdf');

% Get the number of an attribute
% with variable scope
attrNum = cdflib.getAttrNum(cdfid,'Description');

% Check that scope of attribute is variable
attrScope = cdflib.getAttrScope(cdfid,attrNum)

VARIABLE_SCOPE

% Detemine the number of entries for the attribute
attrEntries = cdflib.getNumAttrEntries(cdfid,attrNum)

attrEntries =

4

% Clean up
cdflib.close(cdfid);

1-791

cdflib.getNumAttrEntries

References This function corresponds to the CDF library C API routine
CDFgetNumAttrzEntries.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getAttrScope

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-792

http://cdf.gsfc.nasa.gov/

cdflib.getNumAttrgEntries

Purpose Number of entries for attribute with global scope

Syntax nentries = cdflib.getNumAttrgEntries(cdfId,attrNum)

Description nentries = cdflib.getNumAttrgEntries(cdfId,attrNum) returns
the number of entries written for the specified global attribute in the
Common Data Format (CDF) file.

cdfId identifies the CDF file. attrNum is a numeric value that identifies
the attribute. Attribute numbers are zero-based. The attribute must
have global scope.

Examples Open the example CDF and find out how many entries are associated
with a global attribute in the file.

cdfid = cdflib.open('example.cdf');

% The first attribute is a global attribute.
attrgEntries = cdflib.getNumAttrgEntries(cdfid,0)

attrgEntries =

3

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetNumAttrgEntries.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getNumAttrEntries

1-793

http://cdf.gsfc.nasa.gov/

cdflib.getNumAttrgEntries

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-794

cdflib.getNumAttributes

Purpose Number of attributes with variable scope

Syntax numAtts = cdflib.getNumAttributes(cdfId)

Description numAtts = cdflib.getNumAttributes(cdfId) returns the total
number of attributes with variable scope in a Common Data Format
(CDF) file. cdfId identifies the CDF file.

Examples Open the example CDF and find out how many attributes in the file
have variable scope:

cdfid = cdflib.open('example.cdf');

% Determine the number of attributes with variable scope
numAttrs = cdflib.getNumAttributes(cdfid)

numAttrs =

1

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetNumvAttributes.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getNumgAttributes

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-795

http://cdf.gsfc.nasa.gov/

cdflib.getNumgAttributes

Purpose Number of attributes with global scope

Syntax ngatts = cdflib.getNumgAttributes(cdfId)

Description ngatts = cdflib.getNumgAttributes(cdfId) returns the total
number of global attributes in a Common Data Format (CDF) file.
cdfId identifies the CDF file.

Examples Open the example CDF and find out how many global attributes are
in the file:

cdfid = cdflib.open('example.cdf');

% Determine the number of global attributes in the file.
numgAttrs = cdflib.getNumgAttributes(cdfid)

numgAttrs =

3

% Clean up
cdflib.close(cdfid);

References This function corresponds to the CDF library C API routine
CDFgetNumgAttributes.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getNumAttributes

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-796

http://cdf.gsfc.nasa.gov/

cdflib.getReadOnlyMode

Purpose Read-only mode

Syntax mode = cdflib.getReadOnlyMode(cdfId)

Description mode = cdflib.getReadOnlyMode(cdfId) returns the read-only mode
of a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

Output
Arguments

mode

Either of the following text strings or its numeric equivalent.

'READONLYon' CDF is in read-only mode

'READONLYoff' CDF can be modified.

To get the numeric equivalent of these text strings, use
cdflib.getConstantValue.

Examples Open the example CDF file and determine its current read-only status:

cdfId = cdflib.open('example.cdf');

mode = cdflib.getReadOnlyMode(cdfId)

mode =

READONLYoff

% Clean up.
cdflib.close(cdfId);
clear cdfId

1-797

cdflib.getReadOnlyMode

References This function corresponds to the CDF library C API routine
CDFgetReadOnlyMode.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setReadOnlyMode | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-798

http://cdf.gsfc.nasa.gov/

cdflib.getStageCacheSize

Purpose Number of cache buffers for staging

Syntax numBuffers = cdflib.getStageCacheSize(cdfId)

Description numBuffers = cdflib.getStageCacheSize(cdfId) returns the
number of cache buffers used for the staging scratch file of the Common
Data Format (CDF) file. For more information about cache buffers,
see the CDF User’s Guide.

cdfId identifies the CDF file.

Examples Open the example CDF file and determine the number of cache buffers
used for staging:

cdfId = cdflib.open('example.cdf');

numBuf = cdflib.getStageCacheSize(cdfId)

numBuf =

125

% Clean up
cdflib.close(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFgetStageCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setStageCacheSize

Tutorials • “Importing CDF Files”

1-799

http://cdf.gsfc.nasa.gov/

cdflib.getStageCacheSize

• “Exporting to CDF Files”

1-800

cdflib.getValidate

Purpose Library validation mode

Syntax mode = cdflib.getValidate()

Description mode = cdflib.getValidate() returns the validation mode of the
Common Data Format (CDF) library.

Output
Arguments

mode

Either of the following text strings or its numeric equivalent.

'VALIDATEFILEon' Validation mode is on. For information about
validation mode, see cdflib.setValidate.

'VALIDATEFILEoff' Validation mode is off.

To get the numeric equivalent of these text strings, use
cdflib.getConstantValue.

Examples Determine the current validation mode of the CDF library.

mode = cdflib.getValidate()

mode =

'VALIDATEFILEon'

References This function corresponds to the CDF library C API routine
CDFgetValidate.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setValidate | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

1-801

http://cdf.gsfc.nasa.gov/

cdflib.getValidate

• “Exporting to CDF Files”

1-802

cdflib.getVarAllocRecords

Purpose Number of records allocated for variable

Syntax numrecs = cdflib.getVarAllocRecords(cdfId, varNum)

Description numrecs = cdflib.getVarAllocRecords(cdfId, varNum) returns the
number of records allocated for a variable in a Common Data Format
(CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers are zero-based.

Examples Open example CDF and get the number of records allocated for a
variable:

cdfid = cdflib.open('example.cdf');

% Determine the number of records allocated for the
% first variable in the file.
numrecs = cdflib.getVarAllocRecords(cdfid,0)

numrecs =

64

% Clean up
cdflib.close(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarAllocRecords.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

1-803

http://cdf.gsfc.nasa.gov/

cdflib.getVarAllocRecords

See Also cdflib.setVarAllocBlockRecords

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-804

cdflib.getVarBlockingFactor

Purpose Blocking factor for variable

Syntax blockingFactor = cdflib.getVarBlockingFactor(cdfId,varNum)

Description blockingFactor = cdflib.getVarBlockingFactor(cdfId,varNum)
returns the blocking factor for a variable in a Common Data Format
(CDF) file. A variable’s blocking factor specifies the minimum number
of records the library allocates when you write to an unallocated record.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers are zero-based.

Examples Open the example CDF and determine the blocking factor of a variable.

cdfid = cdflib.open('example.cdf');

cdflib.getVarBlockingFactor(cdfid,0)

ans =

0

% Clean up
cdflib.close(cdfid)
clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarBlockingFactor.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setVarBlockingFactor

Tutorials • “Importing CDF Files”

1-805

http://cdf.gsfc.nasa.gov/

cdflib.getVarBlockingFactor

• “Exporting to CDF Files”

1-806

cdflib.getVarCacheSize

Purpose Number of multifile cache buffers

Syntax numBuffers = cdflib.getVarCacheSize(cdfId,varNum)

Description numBuffers = cdflib.getVarCacheSize(cdfId,varNum) returns the
number of cache buffers used for a variable in a Common Data Format
(CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable identifiers are zero-based.

This function applies only to multifile format CDFs. For more
information about caching, see the CDF User’s Guide.

Examples Create a multifile CDF and retrieve the number of buffers being used
for a variable. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf')

% Set the format of the file to be multi-file
cdflib.setFormat(cdfid,'MULTI_FILE');

% Create a variable in the file
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Note how the library creates a separate file for the variable
ls your_file.*

your_file.cdf your_file.z0

% Determine the number of cache buffers used with the variable
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

1

% Clean up

1-807

cdflib.getVarCacheSize

cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setVarCacheSize

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-808

http://cdf.gsfc.nasa.gov/

cdflib.getVarCompression

Purpose Information about compression used by variable

Syntax [ctype,cparams,percent] = cdflib.getVarCompression(cdfId, varNum)

Description [ctype,cparams,percent] = cdflib.getVarCompression(cdfId,
varNum) returns information about the compression used for a variable
in a Common Data Format (CDF) File.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

Output
Arguments

ctype

Text string identifying the type of compression. For a list of compression
types, see cdflib.setCompression.

cparams

Any additional parameter required by the compression type.

percent

Numeric value indicating the level of compression, expressed as a
percentage.

Examples Open the example CDF file and check the compression settings of any
variable.

cdfid = cdflib.open('example.cdf');

% Check the compression setting of any variable in the file
% The example checks the first variable (variable numbers are zero-bas
[ctype params percent] = cdflib.getVarCompression(cdfid,0)

ctype =

1-809

cdflib.getVarCompression

NO_COMPRESSION

params =

[]

percent =

100

% Clean up
cdflib.close(cdfid);
clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarCompression.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setCompression | cdflib.setVarCompression

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-810

http://cdf.gsfc.nasa.gov/

cdflib.getVarData

Purpose Single value from record in variable

Syntax datum = cdflib.getVarData(cdfId,varNum,recNum,indices)
datum = cdflib.getVarData(cdfId,varNum,recNum)

Description datum = cdflib.getVarData(cdfId,varNum,recNum,indices)
returns a single value from a variable in a Common Data Format (CDF)
file.

datum = cdflib.getVarData(cdfId,varNum,recNum) returns a single
value from a variable with no dimensions in a Common Data Format
(CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying the variable containing the datum. Variable
numbers are zero-based.

recNum

Numeric value identifying the location of the datum in the variable. In
CDF terminology, this is called the record number. Record numbers
are zero-based.

indices

Array of dimension indices within the record. Dimension indices
are zero-based. If the variable has no dimensions, you can omit this
parameter.

Output
Arguments

datum

Value of the specified record.

1-811

cdflib.getVarData

Examples Open the example CDF file and retrieve data associated with a variable:

cdfid = cdflib.open('example.cdf');

% Determine how many variables are in the file.
info = cdflib.inquire(cdfid);

info.numVars

ans =

5

% Determine if the first variable has dimensions.
varinfo = cdflib.inquireVar(cdfid,0);
vardims = varinfo.dims
vardims =

[]

% Get data from variable, without specifying dimensions.
datum = cdflib.getVarData(cdfid, varnum, recnum)

datum =

6.3146e+013

% Get dimensions of another variable in file.
varinfo = cdflib.inquireVar(cdfid,3);
vardims = varinfo.dims
vardims =

[4 2 2]

% Retrieve the first datum in the record. Indices are zero-based.
datum = cdflib.getVarData(cdfId,3,0,[0 0 0])

1-812

cdflib.getVarData

info =

30

% Clean up.
cdflib.close(cdfid);
clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarData.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.putVarData | cdflib.getVarRecordData |
cdflib.hyperGetVarData

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-813

http://cdf.gsfc.nasa.gov/

cdflib.getVarMaxAllocRecNum

Purpose Maximum allocated record number for variable

Syntax maxrec = cdflib.getVarMaxAllocRecNum(cdfId,varNum)

Description maxrec = cdflib.getVarMaxAllocRecNum(cdfId,varNum) returns
the record number of the maximum allocated record for a variable in a
Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers and record numbers are zero-based.

Examples Open example CDF and get the maximum allocated record number
for a variable:

cdfid = cdflib.open('example.cdf');

% Determine maximum record number for variable in file.
maxRecNum = cdflib.getVarMaxAllocRecNum(cdfid,0)

maxRecNum =

63

% Clean up
cdflib.close(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarMaxAllocRecNum.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarMaxWrittenRecNum

1-814

http://cdf.gsfc.nasa.gov/

cdflib.getVarMaxAllocRecNum

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-815

cdflib.getVarMaxWrittenRecNum

Purpose Maximum written record number for variable

Syntax maxrec = cdflib.getVarMaxwrittenRecNum(cdfId,varNum)

Description maxrec = cdflib.getVarMaxwrittenRecNum(cdfId,varNum) returns
the record number of the maximum record written for a variable in a
Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers and record numbers are zero-based.

Examples Open the example CDF, and then determine the maximum number
of records written to a variable:

cdfid = cdflib.open('example.cdf');

% Determine the number records written to variable.
numRecs = cdflib.getVarNumRecsWritten(cdfid,0)

numRecs =

24

% Determine the maximum record number of the records written
maxRecNum = cdflib.getVarMaxWrittenRecNum(cdfid,0)

maxRecNum =

23

% Clean up
cdflib.close(cdfid)

clear cdfid

1-816

cdflib.getVarMaxWrittenRecNum

References This function corresponds to the CDF library C API routine
CDFgetzVarMaxWrittenRecNum.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarMaxAllocRecNum | cdflib.getVarNumRecsWritten

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-817

http://cdf.gsfc.nasa.gov/

cdflib.getVarsMaxWrittenRecNum

Purpose Maximum written record number for CDF file

Syntax maxrec = cdflib.getVarsMaxwrittenRecNum(cdfId)

Description maxrec = cdflib.getVarsMaxwrittenRecNum(cdfId) returns the
maximum record number written for all variables in a Common Data
Format (CDF) file.

cdfId identifies the CDF file. Record numbers are zero-based.

Examples Open the example CDF, and then determine the maximum number of
records written to the file:

cdfid = cdflib.open('example.cdf');

% Determine the maximum record number of the records written
maxRecNum = cdflib.getVarsMaxWrittenRecNum(cdfid)

maxRecNum =

23

% Clean up
cdflib.close(cdfid)

References This function corresponds to the CDF library C API routine
CDFgetzVarsMaxWrittenRecNum.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarMaxWrittenRecNum

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-818

http://cdf.gsfc.nasa.gov/

cdflib.getVarName

Purpose Variable name, given variable number

Syntax name = cdflib.getVarName(cdfId,varNum)

Description name = cdflib.getVarName(cdfId,varNum) returns the name of the
variable in a Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers are zero-based.name is a text string
specifying the name.

Examples Open the example CDF, and then get the name of a variable in the file:

cdfid = cdflib.open('example.cdf');

name = cdflib.getVarName(cdfid,1)

name =

Longitude

% Clean up
cdflib.close(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarName.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.inquireVar

Tutorials • “Importing CDF Files”

1-819

http://cdf.gsfc.nasa.gov/

cdflib.getVarName

• “Exporting to CDF Files”

1-820

cdflib.getVarNum

Purpose Variable number, given variable name

Syntax varNum = cdflib.getVarNum(cdfId,varname)

Description varNum = cdflib.getVarNum(cdfId,varname) returns the identifier
(variable number) for a variable in a Common Data Format (CDF) file.

cdfId identifies the CDF file. varname is a text string that identifies
the variable. Variable names are case-sensitive.

Examples Open example CDF, and then get the number of a variable named
Longitude:

cdfid = cdflib.open('example.cdf');

varNum = cdflib.getVarNum(cdfid,'Longitude')

varNum =

1

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarNum.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarName

Tutorials • “Importing CDF Files”

1-821

http://cdf.gsfc.nasa.gov/

cdflib.getVarNum

• “Exporting to CDF Files”

1-822

cdflib.getVarNumRecsWritten

Purpose Number of records written to variable

Syntax numrecs = cdflib.getVarNumRecsWritten(cdfId,varNum)

Description numrecs = cdflib.getVarNumRecsWritten(cdfId,varNum) returns
the total number of records written to a variable in a Common Data
Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers are zero-based.

Examples Open the example CDF, and then determine the number of records
written to a variable:

cdfid = cdflib.open('example.cdf');

% Determine the number of records written to the variable.
numRecs = cdflib.getVarNumRecsWritten(cdfid,0)

numRecs =

24

% Clean up
cdflib.close(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarNumRecsWritten.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarMaxWrittenRecNum

1-823

http://cdf.gsfc.nasa.gov/

cdflib.getVarNumRecsWritten

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-824

cdflib.getVarPadValue

Purpose Pad value for variable

Syntax padvalue = cdflib.getVarPadValue(cdfId,varNum)

Description padvalue = cdflib.getVarPadValue(cdfId,varNum) returns the pad
value used with a variable in a Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers are zero-based.

Examples Open the example CDF, and then determine the pad value for a variable:

cdfid = cdflib.open('example.cdf');

% Check pad value of variable in the file.
padval = cdflib.getVarPadValue(cdfid,0)

padval =

0

% Clean up.
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarPadValue.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setVarPadValue

Tutorials • “Importing CDF Files”

1-825

http://cdf.gsfc.nasa.gov/

cdflib.getVarPadValue

• “Exporting to CDF Files”

1-826

cdflib.getVarRecordData

Purpose Entire record for variable

Syntax data = cdflib.getVarRecordData(cdfId,varNum,recNum)

Description data = cdflib.getVarRecordData(cdfId,varNum,recNum) returns
the data in a record associated with a variable in a Common Data
Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value that identifies the variable in the CDF file. Variable
numbers are zero-based.

recNum

Numeric value that identifies the record in the variable. Record
numbers are zero-based.

Output
Arguments

data

Data in the record.

Examples Open the example CDF, and then get the data associated with a record
in a variable:

cdfid = cdflib.open('example.cdf');

% Get data in first record in first variable in file.
recData = cdflib.getVarRecordData(cdfid,0,0)

recData =

6.3146e+013

1-827

cdflib.getVarRecordData

% Clean up
cdflib.close(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarRecordData.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.putVarRecordData | cdflib.getVarData |
cdflib.hyperGetVarData

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-828

http://cdf.gsfc.nasa.gov/

cdflib.getVarReservePercent

Purpose Compression reserve percentage for variable

Syntax percent = cdflib.getVarReservePercent(cdfId,varNum)

Description percent = cdflib.getVarReservePercent(cdfId,varNum) returns
the compression reserve percentage for a variable in a Common Data
Format (CDF) file. This operation only applies to compressed variables.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers are zero-based.

Definitions reserve percentage

Specifies how much extra space to allocate for a compressed variable.
This extra space allows the variable to expand when you write
additional records to the variable. If you do not specify this room for
growth, the library has to move the variable to the end of the file when
the size expands and the space at the original location of the variable
becomes wasted space.

By default, the reserve percent is 0 (no extra space is reserved). You
can specify any percentage between 1 and 100 and values greater than
100. The value specifies the percentage of the uncompressed size of
the variable.

Examples Open the example CDF file, get the number of a compressed variable,
and then determine the reserve percent for the variable.

cdfid = cdflib.open('example.cdf');
varnum = cdflib.getVarNum(cdfid,'Temperature');
percent = cdflib.getVarReservePercent(cdfid,varnum);
cdflib.close(cdfid);

References This function corresponds to the CDF library C API routine
CDFgetzVarReservePercent.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

1-829

http://cdf.gsfc.nasa.gov/

cdflib.getVarReservePercent

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setVarReservePercent

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-830

cdflib.getVarSparseRecords

Purpose Information about how variable handles sparse records

Syntax stype = cdflib.getVarSparseRecords(cdfId,varNum)

Description stype = cdflib.getVarSparseRecords(cdfId,varNum) returns
information about how a variable in the Common Data Format (CDF)
file handles sparse records.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value that identifies the variable. Variable numbers are
zero-based.

Output
Arguments

stype

One of the following text strings, or its numeric equivalent, that
specifies how the variable handles sparse records.

Text String Description

'NO_SPARSERECORDS' No sparse records.

'PAD_SPARSERECORDS' For sparse records, the library uses
the variable’s pad value when reading
values from a missing record.

'PREV_SPARSERECORDS' For sparse records, the library uses
values from the previous existing record
when reading values from a missing
record. If there is no previous existing
record, the library uses the variable’s
pad value.

1-831

cdflib.getVarSparseRecords

To get the numeric equivalent of these text strings, use
cdflib.getConstantValue.

Examples Open the example CDF, and then get the sparse record type of a
variable in the file:

cdfid = cdflib.open('example.cdf');

stype = cdflib.getVarSparseRecords(cdfid,0)

stype =

NO_SPARSERECORDS

%Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFgetzVarSparseRecords.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setVarSparseRecords

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-832

http://cdf.gsfc.nasa.gov/

cdflib.getVersion

Purpose Common Data Format (CDF) library version and release information

Syntax [version,release,increment] = cdflib.getVersion(cdfId)

Description [version,release,increment] = cdflib.getVersion(cdfId)
returns information about the version of the Common Data Format
(CDF) library used to create a CDF file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

Output
Arguments

version

Numeric value indicating the version number of the CDF library.

release

Numeric value indicating the release number of the CDF library.

increment

Numeric value indicating the increment number of the CDF library.

Examples Open the example CDF file, and then find out the version of the CDF
library used to create it:

cdfId = cdflib.open('example.cdf');

[version, release, increment] = cdflib.getVersion(cdfId)

version =

2

release =

1-833

cdflib.getVersion

7

increment =

8

% Clean up
cdflib.close(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFgetVersion.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getLibraryVersion

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-834

http://cdf.gsfc.nasa.gov/

cdflib.hyperGetVarData

Purpose Read hyperslab of data from variable

Syntax data = cdflib.hyperGetVarData(cdfId,varNum,recSpec,dimSpec)
data = cdflib.hyperGetVarData(cdfId,varNum,recSpec)

Description data = cdflib.hyperGetVarData(cdfId,varNum,recSpec,dimSpec)
reads a hyperslab of data from a variable in the Common Data Format
(CDF) file. Hyper access allows more than one value to be read from or
written to a variable with a single call to the CDF library.

data = cdflib.hyperGetVarData(cdfId,varNum,recSpec) reads a
hyperslab of data for a zero-dimensional variable in the Common Data
Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Number identifying the variable containing the datum.

recSpec

Three-element array, [RSTART RCOUNT RSTRIDE], where RSTART,
RCOUNT, and RSTRIDE are scalar values specifying the starting record,
number of records to read, and the sampling interval or stride between
records. Record numbers are zero-based.

dimSpec

Three-element cell array, {DSTART DCOUNT DSTRIDE}, where DSTART,
DCOUNT, and DSTRIDE are n-element vectors that describe the start,
number of values along each dimension, and sampling interval along
each dimension. If the hyperslab has zero dimensions, you can omit this
parameter. Dimension indices are zero-based.

1-835

cdflib.hyperGetVarData

Examples Open the example CDF file, and then get all the data associated with
a variable:

cdfid = cdflib.open('example.cdf');

% Determine the number of records allocated for the first variable in the
maxRecNum = cdflib.getVarMaxWrittenRecNum(cdfid,0);

% Retrieve all data in records for variable.
data = cdflib.hyperGetVarData(cdfid,0,[0 maxRecNum 1]);

% Clean up
cdflib.close(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFhyperGetzVarData.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.hyperPutVarData

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-836

http://cdf.gsfc.nasa.gov/

cdflib.hyperPutVarData

Purpose Write hyperslab of data to variable

Syntax cdflib.hyperPutVarData(cdfId,varNum,recSpec,dimSpec,data)

Description cdflib.hyperPutVarData(cdfId,varNum,recSpec,dimSpec,data)
writes a hyperslab of data to a variable in a Common Data Format
(CDF) file. Hyper access allows more than one value to be read from or
written to a variable with a single call to the CDF library.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Specifies the variable containing the datum.

recSpec

Three-element array described by [RSTART RCOUNT RSTRIDE], where
RSTART, RCOUNT, and RSTRIDE are scalar values giving the start, number
of records, and sampling interval (or stride) between records. Record
indices are zero-based.

dimSpec

Three-element cell array described by {DSTART DCOUNT DSTRIDE},
where DSTART, DCOUNT, and DSTRIDE are n-element vectors that describe
the start, number of values along each dimension, and sampling
interval along each dimension. If the hyperslab has zero dimensions,
you can omit this parameter. Dimension indices are zero-based.

data

Data to write to the variable.

Examples Create a CDF, create a variable, and then write a slab of data to the
variable. To run this example, you must be in a writable folder.

1-837

cdflib.hyperPutVarData

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Write data to the variable
cdflib.hyperPutVarData(cdfid,varNum,0,[],int8(98))

%Clean up
cdflib.delete(cdfid);
clear cdfid

References This function corresponds to the CDF library C API routine
CDFhyperzPutVarData.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.hyperGetVarData

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-838

http://cdf.gsfc.nasa.gov/

cdflib.inquire

Purpose Basic characteristics of Common Data Format (CDF) file

Syntax info = cdflib.inquire(cdfId)

Description info = cdflib.inquire(cdfId) returns basic information about a
Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

Output
Arguments

info

A structure containing the following fields:

Field Description

encoding Encoding of the variable data and attribute
entry data

majority Majority of the variable data

maxRec Maximum record number written to a CDF
variable

numVars Number of CDF variables

numvAttrs Number of attributes with variable scope

numgAttrs Number of attributes with global scope

Examples Open the example CDF file, and then get basic information about the
file:

cdfId = cdflib.open('example.cdf');

info = cdflib.inquire(cdfId)

info =

1-839

cdflib.inquire

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: 23
numVars: 5

numvAttrs: 1
numgAttrs: 3

References This function corresponds to the CDF library C API routines
CDFinquireCDF and CDFgetNumgAttributes.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.inquireVar

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-840

http://cdf.gsfc.nasa.gov/

cdflib.inquireAttr

Purpose Information about attribute

Syntax info = cdflib.inquireAttr(cdfId,attrNum)

Description info = cdflib.inquireAttr(cdfId,attrNum) returns information
about an attribute in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value that identifies the attribute in the file. Attribute
numbers are zero-based.

Output
Arguments

info

Structure containing the following fields.

Field Description

name Attribute’s name

scope Either 'GLOBAL_SCOPE' or
'VARIABLE_SCOPE'

maxgEntry The maximum entry number used for
global attributes.

maxEntry The maximum entry number used for
attributes with variable scope.

Examples Open the example CDF, and then get information about the first
attribute in the file.

cdfid = cdflib.open('example.cdf');

1-841

cdflib.inquireAttr

% Get information about an attribute
info = cdflib.inquireAttr(cdfid,0)

info =

name: 'SampleAttribute'
scope: 'GLOBAL_SCOPE'

maxgEntry: 4
maxEntry: -1

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFinquireAttr.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.inquireAttrgEntry | cdflib.inquireAttrEntry

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-842

http://cdf.gsfc.nasa.gov/

cdflib.inquireAttrEntry

Purpose Information about entry in attribute with variable scope

Syntax [datatype,numElements] = cdflib.inquireAttrEntry(cdfId,attrNum,
entryNum)

Description [datatype,numElements] =
cdflib.inquireAttrEntry(cdfId,attrNum, entryNum) returns the
data type and the number of elements for an attribute entry in a
Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value identifying an attribute in the file. Attribute numbers
are zero-based. The attribute must have variable scope.

entryNum

Numeric value identifying the entry in the attribute. Entry number
are zero-based.

Output
Arguments

datatype

Text string identifying a CDF data type. For a list of CDF data types,
see cdflib.putAttrEntry

numElements

Numeric value indicating the number of elements in the entry.

Examples Open example CDF, and then get information about entries associated
with an attribute in the file:

cdfid = cdflib.open('example.cdf');

1-843

cdflib.inquireAttrEntry

% The fourth attribute is of variable scope.
attrscope = cdflib.getAttrScope(cdfid,3)

attrscope =

VARIABLE_SCOPE

% Get information about the first entry for this attribute
[dtype numel] = cdflib.inquireAttrEntry(cdfid,3,0)

dtype =

cdf_char

numel =

10

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFinquireAttrzEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.inquireAttr | cdflib.getAttrScope

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-844

http://cdf.gsfc.nasa.gov/

cdflib.inquireAttrgEntry

Purpose Information about entry in attribute with global scope

Syntax [datatype,numElements] = cdflib.inquireAttrgEntry(cdfId,attrNum,
entryNum)

Description [datatype,numElements] =
cdflib.inquireAttrgEntry(cdfId,attrNum, entryNum) returns the
data type and the number of elements for a global attribute entry in a
Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Numeric value identifying an attribute in the file. Attribute numbers
are zero-based. The attribute must have global scope.

entryNum

Numeric value identifying the entry in the attribute. Entry number
are zero-based.

Output
Arguments

datatype

Text string identifying a CDF data type. For a list of CDF data types,
see cdflib.putAttrgEntry

numElements

Numeric value indicating the number of elements in the entry.

Examples Open the example CDF, and then get information about entries
associated with a global attribute in the file.

cdfid = cdflib.open('example.cdf');

1-845

cdflib.inquireAttrgEntry

% Any of the first three attributes have global scope.
attrscope = cdflib.getAttrScope(cdfid,0)

attrscope =

GLOBAL_SCOPE

% Get information about the first entry for this attribute
[dtype numel] = cdflib.inquireAttrgEntry(cdfid,0,0)

dtype =

cdf_char

numel =

23

% Clean up
cdflib.close(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFinquireAttrgEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.inquireAttr | cdflib.inquireAttrEntry

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-846

http://cdf.gsfc.nasa.gov/

cdflib.inquireVar

Purpose Information about variable

Syntax info = cdflib.inquireVar(cdfId,varNum)

Description info = cdflib.inquireVar(cdfId,varNum) returns information
about a variable in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value that identifies the variable. Variable numbers are
zero-based.

Output
Arguments

info

Structure containing the following fields.

Field Description

name Name of the variable

datatype Data type

numElements Number of elements of the datatype

dims Sizes of the dimensions

recVariance Record variance

dimVariance Dimension variances

Record and dimension variances affect how the library physically stores
variable data. For example, if a variable has a record variance of
VARY, the library physically stores each record. If the record variance
is NOVARY, the library only stores one record.

1-847

cdflib.inquireVar

Examples Open the example CDF file and get information about a variable.

cdfid = cdflib.open('example.cdf');

% Determine if the file contains variables
info = cdflib.inquireVar(cdfid,1)

info =

name: 'Longitude'
datatype: 'cdf_int1'

numElements: 1
dims: [2 2]

recVariance: 0
dimVariance: [1 0]

References This function corresponds to the CDF library C API routine
CDFinquirezVar.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.inquire

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-848

http://cdf.gsfc.nasa.gov/

cdflib.open

Purpose Open existing Common Data Format (CDF) file

Syntax cdfId = cdflib.open(filename)

Description cdfId = cdflib.open(filename) opens an existing Common Data
Format (CDF) file. filename is a text string that identifies the file.

This function returns a CDF file identifier, cdfId.

All CDF files opened this way have the zMode set to zModeon2. Refer to
the CDF User’s Guide for information about zModes.

Examples Open the example CDF file:

cdfId = cdflib.open('example.cdf');

% Clean up
cdflib.close(cdfId)

clear cdfId

References This function corresponds to the CDF library C API routine CDFopenCDF.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.close | cdflib.create

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-849

http://cdf.gsfc.nasa.gov/

cdflib.putAttrEntry

Purpose Write value to entry in attribute with variable scope

Syntax cdflib.putAttrEntry(cdfId,attrNum,entryNum,CDFDataType,entryVal)

Description cdflib.putAttrEntry(cdfId,attrNum,entryNum,CDFDataType,entryVal)
writes a value to an attribute entry in a Common Data
Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Number identifying attribute. The attribute must have variable scope.
Attribute numbers are zero-based.

entryNum

Number identifying entry. Entry numbers are zero-based.

CDFdatatype

One of the following text strings, or its numeric equivalent, that specify
the data type of the attribute entry.

CDF Data Type MATLAB Equivalent

CDF_BYTE 1-byte, signed integer

CDF_CHAR 1 byte, signed character data type that maps to
the MATLAB char class

CDF_INT1 1-byte, signed integer.

CDF_UCHAR 1 byte, unsigned character data type that maps
to the MATLAB uint8 class

CDF_UINT1 1-byte, unsigned integer

1-850

cdflib.putAttrEntry

CDF Data Type MATLAB Equivalent

CDF_INT2 2-byte, signed integer

CDF_UINT2 2-byte, unsigned integer.

CDF_INT4 4-byte, signed integer

CDF_UINT4 4-byte, unsigned integer

CDF_FLOAT 4-byte, floating point

CDF_REAL4 4-byte, floating point

CDF_REAL8 8-byte, floating point.

CDF_DOUBLE 8-byte, floating point

CDF_EPOCH 8-byte, floating point

CDF_EPOCH16 two 8-byte, floating point

entryVal

Data to be written to attribute entry.

Examples Create a CDF and create an attribute with variable scope in the file.
Write a value to an entry in the attribute. To run this example, you
must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Initially the file contains no attributes, global or variable.
info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: -1
numVars: 0

numvAttrs: 0

1-851

cdflib.putAttrEntry

numgAttrs: 0

% Create an attribute of variable scope in the file.
attrNum = cdflib.createAttr(cdfid,'Another Attribute','variable_scope');

% Write a value to an entry for the attribute
cdflib.putAttrEntry(cdfid,attrNum,0,'CDF_CHAR','My Variable Attribute Tes

% Get the value of the global attribute entry
value = cdflib.getAttrEntry(cdfid,attrNum,0)

value =

My Variable Attribute Test

% Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFputAttrzEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getAttrEntry | cdflib.putAttrgEntry |
cdflib.getAttrgEntry | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-852

http://cdf.gsfc.nasa.gov/

cdflib.putAttrgEntry

Purpose Write value to entry in attribute with global scope

Syntax cdflib.putAttrgEntry(cdfId,attrNum,entryNum,cdfDataType,entryVal)

Description cdflib.putAttrgEntry(cdfId,attrNum,entryNum,cdfDataType,entryVal)
writes a value to a global attribute entry in a Common Data
Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

attrNum

Number identifying attribute. Attribute numbers are zero-based. The
attribute must have global scope.

entryNum

Number identifying entry. Entry numbers are zero-based.

CDFdatatype

One of the following text strings that specify the data type of the
attribute entry, or its numeric equivalent.

CDF Data Type MATLAB Equivalent

CDF_BYTE 1-byte, signed integer

CDF_CHAR 1 byte, signed character data type that maps to
the MATLAB char class

CDF_INT1 1-byte, signed integer.

CDF_UCHAR 1 byte, unsigned character data type that maps
to the MATLAB uint8 class

CDF_UINT1 1-byte, unsigned integer

1-853

cdflib.putAttrgEntry

CDF Data Type MATLAB Equivalent

CDF_INT2 2-byte, signed integer

CDF_UINT2 2-byte, unsigned integer.

CDF_INT4 4-byte, signed integer

CDF_UINT4 4-byte, unsigned integer

CDF_FLOAT 4-byte, floating point

CDF_REAL4 4-byte, floating point

CDF_REAL8 8-byte, floating point.

CDF_DOUBLE 8-byte, floating point

CDF_EPOCH 8-byte, floating point

CDF_EPOCH16 two 8-byte, floating point

entryVal

Data to be written to global attribute entry.

Examples Create a CDF and create a global attribute in the file. Write a value
to an entry in the attribute. To run this example, you must be in a
writable folder.

cdfid = cdflib.create('your_file.cdf');

% Initially the file contains no attributes, global or variable.
info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: -1
numVars: 0

numvAttrs: 0

1-854

cdflib.putAttrgEntry

numgAttrs: 0

% Create a global attribute in the file.
attrNum = cdflib.createAttr(cdfid,'Purpose','global_scope');

% Write a value to an entry for the global attribute
cdflib.putAttrgEntry(cdfid,attrNum,0,'CDF_CHAR','My Test');

% Get the value of the global attribute entry
value = cdflib.getAttrgEntry(cdfid,attrNum,0)

value =

My Test

% Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFputAttrgEntry.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getAttrgEntry | cdflib.putAttrEntry |
cdflib.getAttrEntry | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-855

http://cdf.gsfc.nasa.gov/

cdflib.putVarData

Purpose Write single value to variable

Syntax cdflib.putVarData(cdfId,varNum,recNum,indices,datum)

Description cdflib.putVarData(cdfId,varNum,recNum,indices,datum) writes a
single value to a variable in a Common Data File (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value that identifies the variable to which you want to write
the datum. Variable numbers are zero-based.

recNum

Numeric value that identifies the record to which you want to write the
datum. Record numbers are zero-based.

dims

Dimension indices within the record. Dimension indices are zero-based.

datum

Data to be written to the variable.

Examples Create a CDF, create a variable in the CDF and write data to the
variable. To run this example, you must have write permission in the
current folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

1-856

cdflib.putVarData

% Write some data to the variable
cdflib.putVarData(cdfid,varNum,0,[],int8(98))

% Read the value from the variable.
datum = cdflib.getVarData(cdfid,varNum,0)

datum =

98

%Clean up
cdflib.delete(cdfid);
clear cdfid

References This function corresponds to the CDF library C API routine
CDFputzVarData.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarData | cdflib.getVarRecordData |
cdflib.hyperGetVarData

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-857

http://cdf.gsfc.nasa.gov/

cdflib.putVarRecordData

Purpose Write entire record to variable

Syntax cdflib.putVarRecordData(cdfId,varNum,recNum,recordData)

Description cdflib.putVarRecordData(cdfId,varNum,recNum,recordData)
writes data to a record in a variable in a Common Data Format (CDF)
file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value that identifies the variable to which you want to write
the datum. Variable numbers are zero-based.

recNum

Numeric value identifying the location of the datum in the variable.
Record numbers are zero-based.

recordData

Data to be written to the variable.

Examples Create a CDF, create a variable, and write an entire record of data to
the variable. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Write some data to the variable
cdflib.putVarRecordData(cdfid,varNum,0,int8(98))

1-858

cdflib.putVarRecordData

% Read the value from the variable.
datum = cdflib.getVarData(cdfid,varNum,0)

datum =

98

%Clean up
cdflib.delete(cdfid);
clear cdfid

References This function corresponds to the CDF library C API routine
CDFputzVarRecordData.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarRecordData | cdflib.putVarData |
cdflib.hyperPutVarData

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-859

http://cdf.gsfc.nasa.gov/

cdflib.renameAttr

Purpose Rename existing attribute

Syntax cdflib.renameAttr(cdfId,attrNum,newName)

Description cdflib.renameAttr(cdfId,attrNum,newName) renames an attribute
in a Common Data Format (CDF) file.

cdfId identifies the CDF file. attrNum is a numeric value that identifies
the attribute. Attribute numbers are zero-based. newName is a text
string that specifies the name you want to assign to the attribute.

Examples Create a CDF, create an attribute in the CDF, and then rename the
attribute. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create an attribute
attrNum = cdflib.createAttr(cdfid,'Purpose','global_scope');

% Rename the attribute
cdflib.renameAttr(cdfid, attrNum, 'NewPurpose');

% Check the name of the attribute
attrName = cdflib.getAttrName(cdfid,anum)

attrName =

NewPurpose

% Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFrenameAttr.

1-860

cdflib.renameAttr

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.createAttr

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-861

http://cdf.gsfc.nasa.gov/

cdflib.renameVar

Purpose Rename existing variable

Syntax cdflib.renameVar(cdfId,varNum,newName)

Description cdflib.renameVar(cdfId,varNum,newName) renames a variable in a
Common Data Format (CDF) file.

cdfId identifies the CDF file. varNum is a numeric value that identifies
the variable. Variable numbers are zero-based. newName is a text string
that specifies the name you want to assign to the variable.

Examples Create a CDF, create a variable in the CDF, and then rename the
variable. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Get the name of the variable.
name = cdflib.getVarName(cdfid,varNum)

name =

Time

% Rename the variable
cdflib.renameVar(cdfid,varNum,'NewName');

% Check the new name.
name = cdflib.getVarName(cdfid,varNum)

name =

NewName

% Clean up

1-862

cdflib.renameVar

cdflib.delete(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFrenamezVar.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.createVar

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-863

http://cdf.gsfc.nasa.gov/

cdflib.setCacheSize

Purpose Specify number of dotCDF cache buffers

Syntax cdflib.setCacheSize(cdfId,numBuffers)

Description cdflib.setCacheSize(cdfId,numBuffers) specifies the number of
cache buffers the CDF library uses for an open dotCDF file. A dotCDF
file is a file with the .cdf file extension.

cdfId identifies an open CDF file. numBuffers is a numeric value that
specifies the number of buffers.

For information about cache schemes, see the CDF User’s Guide.

Examples Create a CDF file and set the cache size. To run this example, you must
have write permission in your current folder.

cdfId = cdflib.create('your_file.cdf');

% Get the default cache size
numBuf = cdflib.getCacheSize(cdfid)

numBuf =

300

% Specify a cache size
cdflib.setCacheSize(cdfid,150)

% Check the cache size again
numBuf = cdflib.getCacheSize(cdfid)

numBuf =

150

% Clean up
cdflib.delete(cdfId)
clear cdfId

1-864

cdflib.setCacheSize

References This function corresponds to the CDF library C API routine
CDFsetCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getCacheSize

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-865

http://cdf.gsfc.nasa.gov/

cdflib.setChecksum

Purpose Specify checksum mode

Syntax cdflib.setChecksum(cdfId,mode)

Description cdflib.setChecksum(cdfId,mode) specifies the checksum mode of a
Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

mode

Either of the following text strings, or its numeric equivalent. To get
the numeric equivalent of these values, use cdflib.getConstantValue.

'MD5_CHECKSUM' Sets file checksum to MD5 checksum.

'NO_CHECKSUM' File does not use a checksum.

Examples Create a CDF file and set the checksum mode. To run this example,
you must be in a writable folder.

cdfid = cdflib.create('mycdf.cdf');

% Check initial value of checksum.
mode = cdflib.getChecksum(cdfid)

NO_CHECKSUM

cdflib.setChecksum(cdfid,'MD5_CHECKSUM')

% Verify the setting
mode = cdflib.getChecksum(cdfid)

MD5_CHECKSUM

1-866

cdflib.setChecksum

References This function corresponds to the CDF library C API routine
CDFsetChecksum.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getChecksum | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-867

http://cdf.gsfc.nasa.gov/

cdflib.setCompression

Purpose Specify compression settings

Syntax cdflib.setCompression(cdfId,ctype,cparms)

Description cdflib.setCompression(cdfId,ctype,cparms) specifies compression
settings of a Common Data Format (CDF) file.

This function sets the compression for the CDF file itself, not that of
any variables in the file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

ctype

One of the following text strings, or its numeric equivalent, specifying
compression type.

Text String Compression Type

'NO_COMPRESSION' No compression

'RLE_COMPRESSION' Run-length encoding compression

'HUFF_COMPRESSION' Huffman compression

'AHUFF_COMPRESSION' Adaptive Huffman compression

'GZIP_COMPRESSION' GNU’s zip compression

To get the numeric equivalent, use cdflib.getConstantValue.

cparms

Optional parameter specifying any additional parameters required by
the compression type. Currently, the only compression type that uses
this parameter is 'GZIP_COMPRESSION'. For this compression type, use
cparms to specify the level of compression as a numeric value between
1 and 9.

1-868

cdflib.setCompression

Examples Create a CDF file and set the compression setting of the file. To run this
example, your current folder must be writable.

cdfId = cdflib.create('your_file.cdf');

% Determine the file's default compression setting
[ctype, cparms, cpercent] = cdflib.getCompression(cdfId)

ctype =

NO_COMPRESSION

cparms =

[]

cpercent =

100

% Specify new compression setting
cdflib.setCompression(cdfId,'HUFF_COMPRESSION');

% Check the file's compression setting.
[ctype, cparms, cpercent] = cdflib.getCompression(cdfId)

ctype =

HUFF_COMPRESSION

cparms =

OPTIMAL_ENCODING_TREES

cpercent =

1-869

cdflib.setCompression

0

% Clean up
cdflib.delete(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFsetCompression.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getCompression | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-870

http://cdf.gsfc.nasa.gov/

cdflib.setCompressionCacheSize

Purpose Specify number of compression cache buffers

Syntax cdflib.setCompressionCacheSize(cdfId,numBuffers)

Description cdflib.setCompressionCacheSize(cdfId,numBuffers) specifies the
number of cache buffers used for the compression scratch CDF file. For
more information about CDF cache schemes, see the CDF User’s Guide.

cdfId identifies the CDF file. numBuffers specifies the number of
buffers.

Examples Create a CDF file and specify the number of compression cache buffers
used. To run this example you must be in a writable folder.

cdfId = cdflib.create('your_file.cdf');

% Get the current number of compression cache buffers
numBuf = cdflib.getCompressionCacheSize(cdfId)

numBuf =

80

% Set a new value
cdflib.setCompressionCacheSize(cdfId,100)

% Check the new value
numBuf = cdflib.getCompressionCacheSize(cdfId)

numBuf =

100

% Clean up
cdflib.delete(cdfId)
clear cdfId

1-871

cdflib.setCompressionCacheSize

References This function corresponds to the CDF library C API routine
CDFsetCompressionCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getCompressionCacheSize

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-872

http://cdf.gsfc.nasa.gov/

cdflib.setFileBackward

Purpose Set backward compatibility mode

Syntax cdflib.getFileBackward(mode)

Description cdflib.getFileBackward(mode) sets the backward compatibility mode
to the value specified by mode.

Tips • Setting backward compatibility mode affects only your current
MATLAB session, or until you call cdflib.setFileBackward again.

Input
Arguments

mode

One of the following text strings:

BACKWARDFILEon Set backward compatibility mode on.

BACKWARDFILEoff Set backward compatibility mode off.

Default: BACKWARDFILEoff

Definitions backward compatibility mode

When specified, ensures that any new CDF file created using CDF
V3.0 (or later) will be readable by clients using version 2.7 of the CDF
library. CDF 3.0 and later releases use a 64-bit file offset to allow for
files greater than 2G bytes in size. CDF library versions released before
CDF 3.0 use a 32-bit file offset.

Examples Set backward compatibility mode and then check the value.

cdflib.setFileBackward('BACKWARDFILEon');

mode = cdflib.getFileBackward

mode =

BACKWARDFILEon

1-873

cdflib.setFileBackward

References This function corresponds to the CDF library C API routine
CDFsetFileBackward.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getFileBackward | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-874

http://cdf.gsfc.nasa.gov/

cdflib.setFormat

Purpose Specify format of Common Data Format (CDF) file

Syntax cdflib.setFormat(cdfId,format)

Description cdflib.setFormat(cdfId,format) specifies the format of a Common
Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

format

Either of the following text strings, or its numeric equivalent.

'SINGLE_FILE' The CDF consists of only one file. This is the
default file format

'MULTI_FILE' The CDF consists of one header file for control
and attribute data and one additional file for each
variable in the CDF.

To get the numeric equivalent of these values, use
cdflib.getConstantValue.

Examples Create a CDF file and specify its format. To run this example, you must
have write permission in your current folder.

cdfId = cdflib.create('mycdffile.cdf');

% Specify multifile format.
cdflib.setFormat(cdfId, 'MULTI_FILE');

% Check format.
format = cdflib.getFormat(cdfId)

format =

1-875

cdflib.setFormat

MULTI_FILE

% Clean up
cdflib.delete(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFsetFormat.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getFormat | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-876

http://cdf.gsfc.nasa.gov/

cdflib.setMajority

Purpose Specify majority of variables

Syntax cdflib.setMajority(cdfId,majority)

Description cdflib.setMajority(cdfId,majority) specifies the majority of
variables in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

majority

Either of the following text strings, or its numeric equivalent.

'ROW_MAJOR' C-like array ordering for variable storage. The first
dimension in each variable array varies the slowest.
This is the default.

'COLUMN_MAJOR' Fortran-like array ordering for variable storage.
The first dimension in each variable array varies
the fastest.

To get the numeric equivalent of these values, use
cdflib.getConstantValue.

Examples Create a CDF file and specify the majority used by variables in the
file. To run this example, you must have write permission in your
current folder.

cdfId = cdflib.create('your_file.cdf')

% Specify the majority used by variables in the file
cdflib.setMajority(cdfId,'COLUMN_MAJOR');

% Check the majority value
majority = cdflib.getMajority(cdfId)

1-877

cdflib.setMajority

majority =

COLUMN_MAJOR

% Clean up
cdflib.delete(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFsetMajority.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getMajority

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-878

http://cdf.gsfc.nasa.gov/

cdflib.setReadOnlyMode

Purpose Specify read-only mode

Syntax cdflib.setReadOnlyMode(cdfId,mode)

Description cdflib.setReadOnlyMode(cdfId,mode) specifies the read-only mode
of a Common Data Format (CDF) file.

After you open a CDF file, you can put the file into read-only mode to
prevent accidental modification.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

mode

Either of the following text strings or its numeric equivalent.

'READONLYon' CDF file is read-only

'READONLYoff' CDF file is modifiable.

To get the numeric equivalent of these mode values, use
cdflib.getConstantValue.

Examples Open the example CDF file and set the file to read-only mode.

cdfId = cdflib.open('example.cdf');

% Set the file to READONLY mode
cdflib.setReadOnlyMode(cdfId,'READONLYon')

% Check read-only status of file again.
mode = cdflib.getReadOnlyMode(cdfId)

mode =

READONLYon

1-879

cdflib.setReadOnlyMode

% Clean up
cdflib.close(cdfId)
clear cdfId

References This function corresponds to the CDF library C API routine
CDFsetReadOnlyMode.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getReadOnlyMode | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-880

http://cdf.gsfc.nasa.gov/

cdflib.setStageCacheSize

Purpose Specify number of staging cache buffers for Common Data Format
(CDF) file

Syntax cdflib.setStageCacheSize(cdfId,numBuffers)

Description cdflib.setStageCacheSize(cdfId,numBuffers) specifies the number
of staging cache buffers for a Common Data Format (CDF) file. For
information about CDF cache schemes, see the CDF User’s Guide.

cdfId identifies the CDF file. numBuffers is a numeric value that
specifies the number of buffers.

Examples Open the example CDF file and specify the number of cache buffers
used.

cdfId = cdflib.open('example.cdf');

% Get current number of staging cache buffers
size = cdflib.getStageCacheSize(cdfId)

size =

125

% Specify new cache size value.
cdflib.setStageCacheSize(cdfId, 200)

% Get size again.
size = cdflib.getStageCacheSize(cdfId)

size =

200

% Clean up
cdflib.close(cdfId)

1-881

cdflib.setStageCacheSize

clear cdfId

References This function corresponds to the CDF library C API routine
CDFsetStageCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getStageCacheSize

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-882

http://cdf.gsfc.nasa.gov/

cdflib.setValidate

Purpose Specify library validation mode

Syntax cdflib.setValidate(mode)

Description cdflib.setValidate(mode) specifies the validation mode of the
Common Data Format (CDF) library. Specify the validation mode
before opening any files.

Input
Arguments

mode

Either of the following text strings, or its numeric equivalent:

'VALIDATEFILEon'Turns validation mode on. With validation mode
on, the library performs sanity checks on the data
fields in the CDF’ file’s internal data structures to
make sure that the values are within valid ranges
and consistent with the defined values/types/entries.
This mode also ensures that variable and attribute
associations within the file are valid. Note, however,
that enabling this mode will, in most cases, slow
down the file opening process, especially for large
or very fragmented files.

'VALIDATEFILEoff'Turns validation mode off.

To get the numeric equivalent of these values, use
cdflib.getConstantValue.

Examples Set the validation mode of the CDF library.

cdflib.setValidate('VALIDATEFILEon');

References This function corresponds to the CDF library C API routine
CDFsetValidate.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

1-883

http://cdf.gsfc.nasa.gov/

cdflib.setValidate

See Also cdflib.getValidate | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-884

cdflib.setVarAllocBlockRecords

Purpose Specify range of records to be allocated for variable

Syntax cdflib.setVarAllocBlockRecords(cdfId,varNum,firstrec,lastrec)

Description cdflib.setVarAllocBlockRecords(cdfId,varNum,firstrec,lastrec)
specifies a range of records you want to allocate (but not write) for a
variable in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers
(variable numbers) are zero-based.

firstRec

Numeric value identifying the record at which to start allocating.
Record numbers are zero-based.

lastRec

Numeric value identifying the record at which to stop allocating. Record
numbers are zero-based.

Examples Create a CDF, create a variable in the CDF, and then specify the
number of records to allocate for the variable. To run this example,
you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Specify the number of records to allocate.

1-885

cdflib.setVarAllocBlockRecords

cdflib.setVarAllocBlockRecords(cdfid,varNum,1,10);

% Clean up
cdflib.delete(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFsetzVarAllocBlockRecords.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarAllocRecords

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-886

http://cdf.gsfc.nasa.gov/

cdflib.setVarBlockingFactor

Purpose Specify blocking factor for variable

Syntax cdflib.setVarBlockingFactor(cdfId,varNum,blockingFactor)

Description cdflib.setVarBlockingFactor(cdfId,varNum,blockingFactor)
specifies the blocking factor for a variable in a Common Data Format
(CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable numbers are
zero-based.

blockingFactor

Numeric value that specifies the number of records to allocate when
writing to an unallocated record.

Definitions blocking factor

A variable’s blocking factor specifies the minimum number of records
the library allocates when you write to an unallocated record. If you
specify a fractional blocking factor, the library rounds the value down.

Examples Create a CDF, create a variable in the CDF, and then set the blocking
factor used with the variable. To run this example, you must be in a
writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

1-887

cdflib.setVarBlockingFactor

% Get the current blocking factor used with the variable
bFactor = cdflib.getVarBlockingFactor(cdfid,varNum)

bFactor =

0

% Change the blocking factor for the variable
cdflib.setVarBlockingFactor(cdfid,varNum,10);

% Check the new blocking factor .
bFactor = cdflib.getVarBlockingFactor(cdfid,varNum)

bFactor =

10

% Clean up
cdflib.delete(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFsetzVarBlockingFactor.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarBlockingFactor

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-888

http://cdf.gsfc.nasa.gov/

cdflib.setVarCacheSize

Purpose Specify number of multi-file cache buffers for variable

Syntax cdflib.setVarCacheSize(cdfId,varNum,numBuffers)

Description cdflib.setVarCacheSize(cdfId,varNum,numBuffers) specifies
the number of cache buffers the CDF library uses for a variable in a
Common Data Format (CDF) file.

This function is only used with multifile format CDF files. It does not
apply to single-file format CDFs. For more information about caching,
see the CDF User’s Guide.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers
(variable numbers) are zero-based.

numBuffers

Numeric value identifying the number of cache buffers to use.

Examples Create a multifile CDF, and then retrieve the number of buffers being
used for a variable:

cdfid = cdflib.create('your_file.cdf')

% Set the format of the file to be multi-file
cdflib.setFormat(cdfid,'MULTI_FILE');

% Create a variable in the file
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Note how the library creates a separate file for the variable

1-889

cdflib.setVarCacheSize

ls your_file.*

your_file.cdf your_file.z0

% Determine the number of cache buffers used with the variable
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

1

% Increase the number of cache buffers used.
cdflib.setVarCacheSize(cdfid,varNum,5)

% Check the number of cache buffers used with the variable.
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

5

% Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFsetzVarCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarCacheSize | cdflib.setVarsCacheSize

Tutorials • “Importing CDF Files”

1-890

http://cdf.gsfc.nasa.gov/

cdflib.setVarCacheSize

• “Exporting to CDF Files”

1-891

cdflib.setVarCompression

Purpose Specify compression settings used with variable

Syntax cdflib.setVarCompression(cdfId,varNum,ctype,cparams)

Description cdflib.setVarCompression(cdfId,varNum,ctype,cparams)
configures the compression setting for a variable in a Common Data
Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers
(variable numbers) are zero-based.

ctype

One of the following text strings, or its numeric equivalent, specifying
the compression type.

Text String Compression Type

'NO_COMPRESSION' No compression.

'RLE_COMPRESSION' Run-length encoding compression

'HUFF_COMPRESSION' Huffman compression

'AHUFF_COMPRESSION' Adaptive Huffman compression

'GZIP_COMPRESSION' GNU’s zip compression

cparams

Optional parameter specifying any additional parameters required by
the compression type. Currently, the only compression type that uses
this parameter is 'GZIP_COMPRESSION'. For this compression type,

1-892

cdflib.setVarCompression

you use cparms to specify the level of compression as a numeric value
between 1 and 9.

Examples Create a CDF, create a variable, and then set the compression used by
the variable. To run this example, you must be in a folder with execute
permission.

cdfid = cdflib.create('mycdf.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Specify the compression used by the variable.
cdflib.setVarCompression(cdfid,0,'GZIP_COMPRESSION',8)

% Check the compression setting of the variable
[ctype params percent] = cdflib.getVarCompression(cdfid,0)

ctype =

GZIP_COMPRESSION

params =

8

percent =

0

% Clean up
cdflib.delete(cdfid);
clear cdfid

References This function corresponds to the CDF library C API routine
CDFsetzVarCompression.

1-893

cdflib.setVarCompression

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.setCompression | cdflib.getVarCompression

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-894

http://cdf.gsfc.nasa.gov/

cdflib.setVarInitialRecs

Purpose Specify initial number of records written to variable

Syntax cdflib.setVarInitialRecs(cdfId,varNum,numrecs)

Description cdflib.setVarInitialRecs(cdfId,varNum,numrecs) specifies the
initial number of records to write to a variable in a Common Data
Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable numbers are
zero-based.

numRecs

Numeric value specifying the number of records to write.

Examples Create a CDF, create a variable, and then specify the number of records
to write for the variable. To run this example, you must be in a writable
folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Grades','cdf_int1',1,[],true,[]);

% Specify the number of records to write for the variable
cdflib.setVarInitialRecs(cdfid,varNum,100);

recsWritten = cdflib.getVarNumRecsWritten(cdfid,varNum)

recsWritten =

1-895

cdflib.setVarInitialRecs

100

% Clean up
cdflib.delete(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFsetzVarInitialRecs.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.createVar

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-896

http://cdf.gsfc.nasa.gov/

cdflib.setVarPadValue

Purpose Specify pad value used with variable

Syntax cdflib.setVarPadValue(cdfId,varNum,padvalue)

Description cdflib.setVarPadValue(cdfId,varNum,padvalue) specifies the pad
value used with a variable in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable numbers are
zero-based.

padValue

Value to use a pad value for the variable. The data type of the pad
value must match the data type of the variable.

Examples Create a CDF, create a variable in the CDF, and then set the pad value
used with the variable. To run this example, you must be in a writable
folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Get the current pad value used with the variable
padval = cdflib.getVarPadValue(cdfid,varNum)

padval =

0

1-897

cdflib.setVarPadValue

% Change the pad value for the variable
cdflib.setVarPadValue(cdfid,varNum,int8(1));

% Check the new pad value.
padval = cdflib.getVarPadValue(cdfid,varNum)

padval =

1

% Clean up
cdflib.delete(cdfid)

clear cdfid

References This function corresponds to the CDF library C API routine
CDFsetzVarPadValue.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarPadValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-898

http://cdf.gsfc.nasa.gov/

cdflib.SetVarReservePercent

Purpose Specify reserve percentage for variable

Syntax cdflib.setVarReservePercent(cdfId,varNum,percent)

Description cdflib.setVarReservePercent(cdfId,varNum,percent) specifies
the compression reserve percentage for a variable in a Common Data
Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers
(variable numbers) are zero-based.

percent

Numeric value specifying the amount of extra space to allocate for a
compressed variable, experssed as a percentage. You can specify values
between0 (no extra space is reserved) and 100, or values greater than
100. The value specifies the percentage of the uncompressed size of the
variable. If you specify a fractional reserve percentages, the library
rounds the value down.

Definitions reserve percentage

Specifies how much extra space to allocate for a compressed variable.
This extra space allows the variable to expand when you write
additional records to the variable. If you do not specify this room for
growth, the library has to move the variable to the end of the file when
the size expands and the space at the original location of the variable
becomes wasted space.

1-899

cdflib.SetVarReservePercent

Examples Create a CDF, create a variable, set the compression of the variable,
and then set the reserve percent for the variable. To run this example,
you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Set the compression of the variable.
cdflib.setVarCompression(cdfid,varNum,'GZIP_COMPRESSION',8);

% Set the compression reserver percentage
cdflib.setVarReservePercent(cdfid,varNum, 80);

cdflib.close(cdfid);

References This function corresponds to the CDF library C API routine
CDFsetzVarReservePercent.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarReservePercent | cdflib.setVarCompression |
cdflib.getVarCompression

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-900

http://cdf.gsfc.nasa.gov/

cdflib.setVarsCacheSize

Purpose Specify number of cache buffers used for all variables

Syntax cdflib.setVarsCacheSize(cdfId,varNum,numBuffers)

Description cdflib.setVarsCacheSize(cdfId,varNum,numBuffers) specifies the
number of cache buffers the CDF library uses for all the variables in the
multifile format Common Data Format (CDF) file.

This function is not applicable to single-file CDFs. For more information
about caching, see the CDF User’s Guide.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Numeric value identifying a variable in the file. Variable identifiers
(variable numbers) are zero-based.

numBuffers

Numeric value specifying the cache buffers.

Examples Create a multifile CDF and specify the number of buffers used for all
variables. To run this example, you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf')

% Set the format of the file to be multi-file
cdflib.setFormat(cdfid,'MULTI_FILE');

% Create a variable in the file
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Note how the library creates a separate file for the variable
ls your_file.*

1-901

cdflib.setVarsCacheSize

your_file.cdf your_file.z0

% Determine the number of cache buffers used with the variable
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

1

% Specify the number of cache buffers used by all variables in CDF.
cdflib.setVarsCacheSize(cdfid,6)

% Check the number of cache buffers used with the variable.
numBuf = cdflib.getVarCacheSize(cdfid,varNum)

numBuf =

6

% Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFsetzVarsCacheSize.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarCacheSize | cdflib.setVarCacheSize

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-902

http://cdf.gsfc.nasa.gov/

cdflib.setVarSparseRecords

Purpose Specify how variable handles sparse records

Syntax cdflib.getVarSparseRecords(cdfId,varNum,stype)

Description cdflib.getVarSparseRecords(cdfId,varNum,stype) specifies the
sparse records type of a variable in a Common Data Format (CDF) file.

Input
Arguments

cdfId

Identifier of a CDF file, returned by a call to cdflib.create or
cdflib.open.

varNum

Number that identifies the variable to be set. Variable numbers are
zero-based.

stype

One of the following text strings, or its numeric equivalent, that
specifies how the variable handles sparse records.

Text String Description

'NO_SPARSERECORDS' No sparse records

'PAD_SPARSERECORDS' For sparse records, the library uses
the variable’s pad value when reading
values from a missing record.

'PREV_SPARSERECORDS' For sparse records, the library uses
values from the previous existing record
when reading values from a missing
record. If there is no previous existing
record, the library uses the variable’s
pad value.

To get the numeric equivalent of these text string constants, use the
cdflib.getConstantValue function.

1-903

cdflib.setVarSparseRecords

Examples Open a multifile CDF and close a variable.

Create a CDF, create a variable, and set the sparse records type of the
variable. To run this example you must be in a writable folder.

cdfid = cdflib.create('your_file.cdf');

% Create a variable in the file.
varNum = cdflib.createVar(cdfid,'Time','cdf_int1',1,[],true,[]);

% Set the sparse records type of the variable
cdflib.setVarSparseRecords(cdfid,varNum,'PAD_SPARSERECORDS');

% Check the sparse records type of the variable
stype = cdflib.getVarSparseRecords(cdfid,varNum)

stype =

PAD_SPARSERECORDS

%Clean up
cdflib.delete(cdfid);

clear cdfid

References This function corresponds to the CDF library C API routine
CDFsetzVarSparseRecords.

To use this function, you must be familiar with the CDF C interface.
Read the CDF documentation at the CDF Web site.

For copyright information, see the cdfcopyright.txt file.

See Also cdflib.getVarSparseRecords | cdflib.getConstantValue

Tutorials • “Importing CDF Files”

• “Exporting to CDF Files”

1-904

http://cdf.gsfc.nasa.gov/

cdfread

Purpose Read data from Common Data Format (CDF) file

Syntax data = cdfread(filename)
data = cdfread(filename, param1, val1, param2, val2, ...)
[data, info] = cdfread(filename, ...)

Description data = cdfread(filename) reads all the data from the Common
Data Format (CDF) file specified in the string filename. CDF data
sets typically contain a set of variables, of a specific data type, each
with an associated set of records. The variable might represent time
values with each record representing a specific time that an observation
was recorded. cdfread returns all the data in a cell array where
each column represents a variable and each row represents a record
associated with a variable. If the variables have varying numbers of
associated records, cdfread pads the rows to create a rectangular cell
array, using pad values defined in the CDF file.

Note Because cdfread creates temporary files, the current working
directory must be writeable.

data = cdfread(filename, param1, val1, param2, val2, ...)
reads data from the file, where param1, param2, and so on, can be any of
the parameters listed in the following table.

[data, info] = cdfread(filename, ...) returns details about the
CDF file in the info structure.

1-905

cdfread

Parameter Value

'Records' A vector specifying which records to read. Record numbers
are zero-based. cdfread returns a cell array with the
same number of rows as the number of records read and
as many columns as there are variables.

'Variables' A 1-by-n or n-by-1 cell array specifying the names of the
variables to read from the file. n must be less than or
equal to the total number of variables in the file. cdfread
returns a cell array with the same number of columns as
the number of variables read, and a row for each record
read.

'Slices' An m-by-3 array, where each row specifies where to start
reading along a particular dimension of a variable, the
skip interval to use on that dimension (every item, every
other item, etc.), and the total number of values to read
on that dimension. m must be less than or equal to the
number of dimensions of the variable. If m is less than the
total number of dimensions, cdfread reads every value
from the unspecified dimensions ([0 1 n], where n is the
total number of elements in the dimension.
Note: Because the 'Slices' parameter describes how to
process a single variable, it must be used in conjunction
with the 'Variables' parameter.

'ConvertEpochToDatenum' A Boolean value that determines whether cdfread
automatically converts CDF epoch data types to MATLAB
serial date numbers. If set to false (the default), cdfread
wraps epoch values in MATLAB cdfepoch objects.

Note: For better performance when reading large data
sets, set this parameter to true.

'CombineRecords' A Boolean value that determines how cdfread returns
the CDF data sets read from the file. If set to false (the
default), cdfread stores the data in an m-by-n cell array,
where m is the number of records and n is the number

1-906

cdfread

Parameter Value

of variables requested. If set to true, cdfread combines
all records for a particular variable into one cell in the
output cell array. In this cell, cdfread stores scalar data
as a column array. cdfread extends the dimensionality
of nonscalar and string data. For example, instead of
creating 1000 elements containing 20-by-30 arrays for
each record, cdfread stores all the records in one cell as a
1000-by-20-by-30 array
Note: If you use the 'Records' parameter to specify which
records to read, you cannot use the 'CombineRecords'
parameter.
Note: When using the 'Variable' parameter to read
one variable, if the 'CombineRecords' parameter is
true, cdfread returns the data as an M-by-N numeric or
character array; it does not put the data into a cell array.

Note To improve performance when working with large data files, use
the 'ConvertEpochToDatenum' and 'CombineRecords' options.

Note To improve performance, turn off the file validation which the
CDF library does by default when opening files. For more information,
see cdflib.setValidate.

Examples Read all the data from a CDF file.

data = cdfread('example.cdf');

Read the data from the variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

1-907

cdfread

Read the first value in the first dimension, the second value in
the second dimension, the first and third values in the third
dimension, and all values in the remaining dimension of the variable
'multidimensional'.

data = cdfread('example.cdf', ...
'Variable', {'multidimensional'}, ...
'Slices', [0 1 1; 1 1 1; 0 2 2]);

This is similar to reading the whole variable into data and then using
matrix indexing, as in the following.

data{1}(1, 2, [1 3], :)

Collapse the records from a data set and convert CDF epoch data types
to MATLAB serial date numbers.

data = cdfread('example.cdf', ...
'CombineRecords', true, ...
'ConvertEpochToDatenum', true);

See Also cdfepoch | cdfinfo | cdflib.setValidate

How To • “Importing CDF Files”

1-908

cdfwrite

Purpose Write data to Common Data Format (CDF) file

Note cdfwrite is not recommended. Use the cdflib low-level
functions instead.

Syntax cdfwrite(filename,variablelist)
cdfwrite(...,'PadValues',padvals)
cdfwrite(...,'GlobalAttributes',gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(...,'WriteMode',mode)
cdfwrite(...,'Format',format)

Description cdfwrite(filename,variablelist) writes out a Common Data
Format (CDF) file, specified in filename. The filename input is a
string enclosed in single quotes. The variablelist argument is a cell
array of ordered pairs, each of which comprises a CDF variable name
(a string) and the corresponding CDF variable value. To write out
multiple records for a variable, put the values in a cell array where each
element in the cell array represents a record.

Note Because cdfwrite creates temporary files, both the destination
directory for the file and the current working directory must be
writeable.

cdfwrite(...,'PadValues',padvals) writes out pad values for given
variable names. padvals is a cell array of ordered pairs, each of which
comprises a variable name (a string) and a corresponding pad value.
Pad values are the default values associated with the variable when
an out-of-bounds record is accessed. Variable names that appear in
padvals must appear in variablelist.

cdfwrite(...,'GlobalAttributes',gattrib) writes the structure
gattrib as global metadata for the CDF file. Each field of the structure

1-909

cdfwrite

is the name of a global attribute. The value of each field contains the
value of the attribute. To write out multiple values for an attribute,
put the values in a cell array where each element in the cell array
represents a record.

Note To specify a global attribute name that is invalid in your
MATLAB application, create a field called 'CDFAttributeRename' in
the attribute structure. The value of this field must have a value that is
a cell array of ordered pairs. The ordered pair consists of the name of
the original attribute, as listed in the GlobalAttributes structure, and
the corresponding name of the attribute to be written to the CDF file.

cdfwrite(..., 'VariableAttributes', vattrib) writes the
structure vattrib as variable metadata for the CDF. Each field of
the struct is the name of a variable attribute. The value of each field
should be an M-by-2 cell array where M is the number of variables with
attributes. The first element in the cell array should be the name of the
variable and the second element should be the value of the attribute
for that variable.

Note To specify a variable attribute name that is illegal in MATLAB,
create a field called 'CDFAttributeRename' in the attribute structure.
The value of this field must have a value that is a cell array of ordered
pairs. The ordered pair consists of the name of the original attribute, as
listed in the VariableAttributes struct, and the corresponding name
of the attribute to be written to the CDF file. If you are specifying a
variable attribute of a CDF variable that you are renaming, the name of
the variable in the VariableAttributes structure must be the same
as the renamed variable.

cdfwrite(...,'WriteMode',mode), where mode is either 'overwrite'
or 'append', indicates whether or not the specified variables should be

1-910

cdfwrite

appended to the CDF file if the file already exists. By default, cdfwrite
overwrites existing variables and attributes.

cdfwrite(...,'Format',format), where format is either 'multifile'
or 'singlefile', indicates whether or not the data is written out as a
multifile CDF. In a multifile CDF, each variable is stored in a separate
file with the name *.vN, where N is the number of the variable that is
written out to the CDF. By default, cdfwrite writes out a single file
CDF. When 'WriteMode' is set to 'Append', the 'Format' option is
ignored, and the format of the preexisting CDF is used.

Examples Write out a file 'example.cdf' containing a variable 'Longitude' with
the value [0:360].

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and
'Latitude' with the variable 'Latitude' having a pad value of 10 for
all out-of-bounds records that are accessed.

cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20}, ...

'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude'
with the value [0:360], and with a variable attribute of 'validmin'
with the value 10.

varAttribStruct.validmin = {'Longitude' [10]};

cdfwrite('example', {'Longitude' 0:360}, 'VariableAttributes', ...

varAttribStruct);

See Also cdfread | cdfinfo | cdfepoch

1-911

ceil

Purpose Round toward positive infinity

Syntax B = ceil(A)

Description B = ceil(A) rounds the elements of A to the nearest integers greater
than or equal to A. For complex A, the imaginary and real parts are
rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6
7.0000 2.4000 + 3.6000i

ceil(a)

ans =
Columns 1 through 4
-1.0000 0 4.0000 6.0000

Columns 5 through 6
7.0000 3.0000 + 4.0000i

See Also fix | floor | round

1-912

cell

Purpose Create cell array

Syntax C = cell(dim)
C = cell(dim1,...,dimN)
D = cell(obj)

Description C = cell(dim) creates a cell array of empty matrices. If dim is a scalar,
C is dim-by-dim. If dim is a vector, C is dim(1)-by-...-dim(N), where N
is the number of elements of dim.

C = cell(dim1,...,dimN) creates cell array C, where C is
dim1-by-...-dimN.

D = cell(obj) converts a Java array or .NET array of System.String
or System.Object into a MATLAB cell array.

Tips Creating an empty array with the cell function, such as

C = cell(3,4,2);

is exactly equivalent to assigning an empty array to the last index of a
new cell array:

C{3,4,2} = [];

Input
Arguments

dim

Scalar integer or vector of integers that specifies the dimensions of
cell array C.

dim1,...,dimN

Scalar integers that specify the dimensions of C.

obj

One of the following:

• Java array or object

• .NET array of type System.String or System.Object

1-913

cell

Output
Arguments

C

Cell array. Each cell contains an empty, 0-by-0 array of type double.

D

Cell array. Each cell contains a MATLAB type closest to the Java or
.NET type. For more information, see:

• “Conversion of Java Return Types”

• “.NET Type to MATLAB Type Mapping”

Examples Create an empty 3-by-4-by-2 cell array.

mycell = cell(3,4,2);

Create a cell array that is the same size as mycell, created in the
previous example.

similar = cell(size(mycell));

Convert an array of java.lang.String objects into a MATLAB cell
array.

strArray = java_array('java.lang.String', 3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) = java.lang.String('three');

cellArray = cell(strArray)

This code returns

cellArray =
'one'
'two'

1-914

cell

'three'

Create a cell array of folders in the c:\work folder, using the .NET
Framework System.IO.Directory class :

myList = cell(System.IO.Directory.GetDirectories('c:\work'));
celldisp(myList)

See Also num2cell | table | ones | rand | randn | zeros

How To • “Access Data in a Cell Array”

1-915

cell2mat

Purpose Convert cell array to numeric array

Syntax A= cell2mat(C)

Description A= cell2mat(C) converts cell array C with contents of the same data
type into a single array, A.

Input
Arguments

C

Cell array, where each cell contains the same type of data. The
cell2mat function accepts numeric or character data within cells of C,
but not structs, objects, or nested cells.

The contents of C must support concatenation into a hyperrectangle.
Otherwise, the results are undefined. For example, the contents of cells
in the same column must have the same number of columns, although
they need not have the same number of rows.

Output
Arguments

A

Array of the same type as the contents of the cells of C. The number of
dimensions of A matches the highest number of dimensions of arrays
within C.

1-916

cell2mat

Examples Combine matrices in the four cells of cell array c into matrix m.

c = {[1], [2, 3, 4];
[5; 9], [6, 7, 8; 10, 11, 12]};

m = cell2mat(c)

m is a 3-by-4 matrix:

m =
1 2 3 4
5 6 7 8
9 10 11 12

See Also mat2cell | num2cell

1-917

cell2struct

Purpose Convert cell array to structure array

Syntax structArray = cell2struct(cellArray, fields, dim)

Description structArray = cell2struct(cellArray, fields, dim) creates a
structure array, structArray, from the information contained within
cell array cellArray.

The fields argument specifies field names for the structure array. This
argument is an array of strings or a cell array of strings.

The dim argument tells MATLAB which axis of the cell array to use in
creating the structure array. Use a numeric double to specify dim.

To create a structure array with fields derived from N rows of a cell
array, specify N field names in the fields argument, and the number 1
in the dim argument. To create a structure array with fields derived
from M columns of a cell array, specify M field names in the fields
argument and the number 2 in the dim argument.

The structArray output is a structure array with N fields, where N
is equal to the number of fields in the fields input argument. The
number of fields in the resulting structure must equal the number of
cells along dimension dim that you want to convert.

Examples Create the following table for use with the examples in this section.
The table lists information about the employees of a small Engineering
company. Reading the table by rows shows the names of employees by
department. Reading the table by columns shows the number of years
each employee has worked at the company.

5 Years 10 Years 15 Years

Development Lee, Reed, Hill Dean, Frye Lane, Fox, King

Sales Howe, Burns Kirby, Ford Hall

Management Price Clark, Shea Sims

1-918

cell2struct

5 Years 10 Years 15 Years

Quality Bates, Gray Nash Kay, Chase

Documentation Lloyd, Young Ryan, Hart, Roy Marsh

Enter the following commands to create the initial cell array employees:

devel = {{'Lee','Reed','Hill'}, {'Dean','Frye'}, ...
{'Lane','Fox','King'}};

sales = {{'Howe','Burns'}, {'Kirby','Ford'}, {'Hall'}};
mgmt = {{'Price'}, {'Clark','Shea'}, {'Sims'}};
qual = {{'Bates','Gray'}, {'Nash'}, {'Kay','Chase'}};
docu = {{'Lloyd','Young'}, {'Ryan','Hart','Roy'}, {'Marsh'}};

employees = [devel; sales; mgmt; qual; docu]
employees =

{1x3 cell} {1x2 cell} {1x3 cell}
{1x2 cell} {1x2 cell} {1x1 cell}
{1x1 cell} {1x2 cell} {1x1 cell}
{1x2 cell} {1x1 cell} {1x2 cell}
{1x2 cell} {1x3 cell} {1x1 cell}

This is the resulting cell array:

1-919

cell2struct

Convert the cell array to a struct along dimension 1:

1 Convert the 5-by-3 cell array along its first dimension to construct a
3-by-1 struct array with 5 fields. Each of the rows along dimension 1
of the cell array becomes a field in the struct array:

1-920

cell2struct

Traversing the first (i.e., vertical) dimension, there are 5 rows with
row headings that read as follows:

rowHeadings = {'development', 'sales', 'management', ...
'quality', 'documentation'};

2 Convert the cell array to a struct array, depts, in reference to this
dimension:

depts = cell2struct(employees, rowHeadings, 1)
depts =
3x1 struct array with fields:

development
sales

1-921

cell2struct

management
quality
documentation

3 Use this row-oriented structure to find the names of the Development
staff who have been with the company for up to 10 years:

depts(1:2).development
ans =

'Lee' 'Reed' 'Hill'
ans =

'Dean' 'Frye'

Convert the same cell array to a struct along dimension 2:

1 Convert the 5-by-3 cell array along its second dimension to construct
a 5-by-1 struct array with 3 fields. Each of the columns along
dimension 2 of the cell array becomes a field in the struct array:

1-922

cell2struct

1-923

cell2struct

2 Traverse the cell array along the second (or horizontal) dimension.
The column headings become fields of the resulting structure:

colHeadings = {'fiveYears' 'tenYears' 'fifteenYears'};

years = cell2struct(employees, colHeadings, 2)
years =
5x1 struct array with fields:

fiveYears
tenYears
fifteenYears

3 Using the column-oriented structure, show how many employees
from the Sales and Documentation departments have worked for
the company for at least 5 years:

[~, sales_5years, ~, ~, docu_5years] = years.fiveYears
sales_5years =

'Howe' 'Burns'
docu_5years =

'Lloyd' 'Young'

Convert only part of the cell array to a struct:

1 Convert only the first and last rows of the cell array. This results in a
3-by-1 struct array with 2 fields:

rowHeadings = {'development', 'documentation'};

depts = cell2struct(employees([1,5],:), rowHeadings, 1)
depts =
3x1 struct array with fields:

development
documentation

1-924

cell2struct

2 Display those employees who belong to these departments for all
three periods of time:

for k=1:3
depts(k,:)

end

ans =
development: {'Lee' 'Reed' 'Hill'}

documentation: {'Lloyd' 'Young'}
ans =

development: {'Dean' 'Frye'}
documentation: {'Ryan' 'Hart' 'Roy'}

ans =
development: {'Lane' 'Fox' 'King'}

1-925

cell2struct

documentation: {'Marsh'}

See Also struct2cell | cell2table | table2struct | cell | iscell | struct
| isstruct | fieldnames

How To • dynamic field names

1-926

cell2table

Purpose Convert cell array to table

Syntax T = cell2table(C)
T = cell2table(C,Name,Value)

Description T = cell2table(C) converts the contents of an m-by-n cell array, C, to
an m-by-n table, T. Each variable in the table, T, is numeric, with a data
type double, or a cell array of strings.

cell2table uses the input array name appended with the column
number for the variable names in the table. If these names are not
valid MATLAB identifiers, cell2table uses strings of the form
'Var1',...,'VarN' where N is the number of columns in C.

T = cell2table(C,Name,Value) creates a table from a cell array, C,
with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify row names or variable names to include
in the table.

Input
Arguments

C - Input cell array
2-D cell array

Input cell array, specified as a 2-D cell array.

If the cell contents have compatible sizes and types, then cell2table
vertically concatenates the contents of the cells in each column of C to
create each variable in T. If the cell contents have different sizes or
incompatible types, then the corresponding variable in the table, T,
is a column of cells.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-927

cell2table

Example: RowNames',{'row1','row2','row3'} uses the row names,
row1, row2, and row3 for the table, T.

’RowNames’ - Row names for T
{} (default) | cell array of nonempty, distinct strings

Row names for T, specified as the comma-separated pair consisting of
'RowNames' and a cell array of nonempty, distinct strings. The number
of strings must equal the number of rows, size(C,1).

’VariableNames’ - Variable names for T
cell array of nonempty, distinct strings

Variable names for T, specified as the comma-separated pair consisting
of 'VariableNames' and a cell array of nonempty, distinct strings. The
number of strings must equal the number of variables, size(C,2).

Furthermore, the strings must be valid MATLAB identifiers. If valid
MATLAB identifiers are not available for use as variable names,
MATLAB uses a cell array of N strings of the form {'Var1' ...
'VarN'}, where N is the number of variables. You can determine valid
MATLAB variable names using the function isvarname.

Output
Arguments

T - Output table
table

Output table, returned as a table. The table can store metadata such as
descriptions, variable units, variable names, and row names. For more
information, see Table Properties.

Examples Convert Cell Array to Table

Create a cell array containing strings and numeric data.

C = {5 'cereal' 110 'C+'; 12 'pizza' 140 'B';...
23 'salmon' 367 'A'; 2 'cookies' 160 'D'}

C =

1-928

cell2table

[5] 'cereal' [110] 'C+'
[12] 'pizza' [140] 'B'
[23] 'salmon' [367] 'A'
[2] 'cookies' [160] 'D'

Convert the cell array, C, to a table and specify variable names.

T = cell2table(C,...
'VariableNames',{'Age' 'FavoriteFood' 'Calories' 'NutritionGrade'}

T =

Age FavoriteFood Calories NutritionGrade
___ ____________ ________ ______________

5 'cereal' 110 'C+'
12 'pizza' 140 'B'
23 'salmon' 367 'A'
2 'cookies' 160 'D'

The variables T.Age and T.Calories are numeric while the variables
T.FavoriteFood and T.NutritionGrade are cell arrays of strings.

Convert Column Headings to Variable Names

Convert a cell array to a table, and then include the first row from the
cell array as variable names for the table.

Create a cell array where the first row contains strings to identify
column headings.

Patients = {'Gender' 'Age' 'Height' 'Weight' 'Smoker';...
'M' 38 71 176 true;...
'M' 43 69 163 false;...
'M' 38 64 131 false;...
'F' 38 64 131 false;...
'F' 40 67 133 false;...
'F' 49 64 119 false}

1-929

cell2table

Patients =

'Gender' 'Age' 'Height' 'Weight' 'Smoker'
'M' [38] [71] [176] [1]
'M' [43] [69] [163] [0]
'M' [38] [64] [131] [0]
'F' [38] [64] [131] [0]
'F' [40] [67] [133] [0]
'F' [49] [64] [119] [0]

Exclude the columns headings and convert the contents of the cell
array to a table.

C = Patients(2:end,:);
T = cell2table(C)

T =

C1 C2 C3 C4 C5
___ __ __ ___ _____

'M' 38 71 176 true
'M' 43 69 163 false
'M' 38 64 131 false
'F' 38 64 131 false
'F' 40 67 133 false
'F' 49 64 119 false

The table, T, has variable names C1,...,C5.

Change the variable names by setting the table property,
T.Properties.VariableNames, to the first row of the cell array.

T.Properties.VariableNames = Patients(1,:)

T =

Gender Age Height Weight Smoker

1-930

cell2table

______ ___ ______ ______ ______

'M' 38 71 176 true
'M' 43 69 163 false
'M' 38 64 131 false
'F' 38 64 131 false
'F' 40 67 133 false
'F' 49 64 119 false

See Also table2cell | array2table | struct2table | table | isvarname

Related
Examples

• “Access Data in a Table”

1-931

celldisp

Purpose Display cell array contents

Syntax celldisp(C)
celldisp(C, name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C, name) uses the string name for the display instead of the
name of the first input (or ans).

Examples Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

C{1,1} =
1 2

C{2,1} =
1 2
3 4

C{1,2} =
Tony

C{2,2} =
-5

C{1,3} =
3.0000+ 4.0000i

C{2,3} =
abc

See Also cellplot

How To • “Export Cell Array to Text File”

1-932

cellfun

Purpose Apply function to each cell in cell array

Syntax [A1,...,Am] = cellfun(func,C1,...,Cn)
[A1,...,Am] = cellfun(func,C1,...,Cn,Name,Value)

Description [A1,...,Am] = cellfun(func,C1,...,Cn) calls the function
specified by function handle func and passes elements from cell
arrays C1,...,Cn, where n is the number of inputs to function func.
Output arrays A1,...,Am, where m is the number of outputs from
function func, contain the combined outputs from the function calls.
The ith iteration corresponds to the syntax [A1(i),...,Am(i)] =
func(C{i},...,Cn{i}). The cellfun function does not perform the
calls to function func in a specific order.

[A1,...,Am] = cellfun(func,C1,...,Cn,Name,Value) calls function
func with additional options specified by one or more Name,Value
pair arguments. Possible values for Name are 'UniformOutput' or
'ErrorHandler'.

Input
Arguments

func

Handle to a function that accepts n input arguments and returns m
output arguments.

If function func corresponds to more than one function file (that is, if
func represents a set of overloaded functions), MATLAB determines
which function to call based on the class of the input arguments.

Backward Compatibility

cellfun accepts function name strings for function func, rather than
a function handle, for these function names: isempty, islogical,
isreal, length, ndims, prodofsize, size, isclass. Enclose the
function name in single quotes.

If you specify a function name string rather than a function handle:

• cellfun does not call any overloaded versions of the function.

1-933

cellfun

• The size and isclass functions require additional inputs to the
cellfun function:

A = cellfun('size', C, k) returns the size along the kth
dimension of each element of C.

A = cellfun('isclass', C, classname) returns logical 1 (true)
for each element of C that matches the classname string. This syntax
returns logical 0 (false) for objects that are a subclass of classname.

C1,...,Cn

Cell arrays that contain the n inputs required for function func. Each
cell array must have the same dimensions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’UniformOutput’

Logical value, as follows:

true (1) Indicates that for all inputs, each output from function
func is a cell array or a scalar value that is always of the
same type and size. The cellfun function combines the
outputs in arrays A1,...,Am, where m is the number of
function outputs. Each output array is of the same type
as the individual function outputs.

false
(0)

Requests that the cellfun function combine the outputs
into cell arrays A1,...,Am. The outputs of function func
can be of any size or type.

Default: true

1-934

cellfun

’ErrorHandler’

Handle to a function that catches any errors that occur when MATLAB
attempts to execute function func. Define this function so that it
rethrows the error or returns valid outputs for function func.

MATLAB calls the specified error-handling function with two input
arguments:

• A structure with these fields:

identifier Error identifier.

message Error message text.

index Linear index corresponding to the element of the
input cell array at the time of the error.

• The set of input arguments to function func at the time of the error.

Output
Arguments

A1,...,Am

Arrays that collect the m outputs from function func. Each array A is
the same size as each of the inputs C1,...,Cn.

Function func can return output arguments of different classes.
However, if UniformOutput is true (the default):

• The individual outputs from function func must be scalar values
(numeric, logical, character, or structure) or cell arrays.

• The class of a particular output argument must be the same for each
set of inputs. The class of the corresponding output array is the same
as the class of the outputs from function func.

Examples Compute the mean of each vector in cell array C.

C = {1:10, [2; 4; 6], []};

averages = cellfun(@mean, C)

1-935

cellfun

This code returns

averages =
5.5000 4.0000 NaN

Compute the size of each array in C, created in the previous example.

[nrows, ncols] = cellfun(@size, C)

This code returns

nrows =
1 3 0

ncols =
10 1 0

Create a cell array that contains strings, and abbreviate those strings
to the first three characters. Because the output strings are nonscalar,
set UniformOutput to false.

days = {'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'};

abbrev = cellfun(@(x) x(1:3), days, 'UniformOutput', false)

The syntax @(x) creates an anonymous function. This code returns

abbrev =
'Mon' 'Tue' 'Wed' 'Thu' 'Fri'

Compute the covariance between arrays in two cell arrays C and D.
Because the covariance output is nonscalar, set UniformOutput to
false.

c1 = rand(5,1); c2 = rand(10,1); c3 = rand(15,1);
d1 = rand(5,1); d2 = rand(10,1); d3 = rand(15,1);

1-936

cellfun

C = {c1, c2, c3};
D = {d1, d2, d3};

covCD = cellfun(@cov, C, D, 'UniformOutput', false)

This code returns

covCD =
[2x2 double] [2x2 double] [2x2 double]

Define and call a custom error handling function.

function result = errorfun(S, varargin)
warning(S.identifier, S.message);
result = NaN;

end

A = {rand(3)};
B = {rand(5)};
AgtB = cellfun(@(x,y) x > y, A, B, 'ErrorHandler', @errorfun, ...

'UniformOutput', false)

See Also arrayfun | spfun | function_handle | cell2mat

1-937

cellplot

Purpose Graphically display structure of cell array

Syntax cellplot(c)
cellplot(c, 'legend')
handles = cellplot(c)

Description cellplot(c) displays a figure window that graphically represents
the contents of c. Filled rectangles represent elements of vectors and
arrays, while scalars and short text strings are displayed as text.

cellplot(c, 'legend') places a colorbar next to the plot labelled to
identify the data types in c.

handles = cellplot(c) displays a figure window and returns a vector
of surface handles.

Limitations The cellplot function can display only two-dimensional cell arrays.

Examples Consider a 2-by-2 cell array containing a matrix, a vector, and two text
strings:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

The command cellplot(c) produces

1-938

cellplot

See Also celldisp

How To • “Export Cell Array to Text File”

1-939

cellstr

Purpose Create cell array of strings from character array

Syntax c = cellstr(S)

Description c = cellstr(S) places each row of the character array S into separate
cells of c. Any trailing spaces in the rows of S are removed.

Use the char function to convert back to a string matrix.

Examples Given the string matrix

S = ['abc '; 'defg'; 'hi ']

S =
abc
defg
hi

whos S
Name Size Bytes Class
S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(S)

c =
'abc'
'defg'
'hi'

whos c
Name Size Bytes Class
c 3x1 198 cell array

See Also iscellstr | strings | char | isstrprop | strsplit

1-940

cgs

Purpose Conjugate gradients squared method

Syntax x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag] = cgs(A,b,...)
[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

Description x = cgs(A,b) attempts to solve the system of linear equations A*x =
b for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. You can
specify A as a function handle, afun, such that afun(x) returns A*x.

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If cgs converges, a message to that effect is displayed. If cgs fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tol is [],
then cgs uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations,
maxit. If maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then cgs applies no
preconditioner. M can be a function handle mfun such that mfun(x)
returns M\x.

1-941

cgs

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is
[], then cgs uses the default, an all-zero vector.

[x,flag] = cgs(A,b,...) returns a solution x and a flag that
describes the convergence of cgs.

Flag Convergence

0 cgs converged to the desired tolerance tol
within maxititerations.

1 cgs iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 cgs stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
cgs became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Examples Using cgs with a Matrix Input

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = cgs(A,b,tol,maxit,M1);

1-942

cgs

displays the message

cgs converged at iteration 13 to a solution with
relative residual 2.4e-016.

Using cgs with a Function Handle

This example replaces the matrix A in the previous example with a
handle to a matrix-vector product function afun, and the preconditioner
M1 with a handle to a backsolve function mfun. The example is contained
in the file run_cgs that

• Calls cgs with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_cgs
are available to afun and myfun.

The following shows the code for run_cgs:

function x1 = run_cgs
n = 21;
b = afun(ones(n,1));
tol = 1e-12; maxit = 15;
x1 = cgs(@afun,b,tol,maxit,@mfun);

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end
end

When you enter

x1 = run_cgs

1-943

cgs

MATLAB software returns

cgs converged at iteration 13 to a solution with
relative residual 2.4e-016.

Using cgs with a Preconditioner.

This example demonstrates the use of a preconditioner.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12; maxit = 20;

Use cgs to find a solution at the requested tolerance and number of
iterations.

[x0,fl0,rr0,it0,rv0] = cgs(A,b,tol,maxit);

fl0 is 1 because cgs does not converge to the requested tolerance 1e-12
within the requested 20 iterations. In fact, the behavior of cgs is so poor
that the initial guess (x0 = zeros(size(A,2),1) is the best solution
and is returned as indicated by it0 = 0. MATLAB stores the residual
history in rv0.

Plot the behavior of cgs.

semilogy(0:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-944

cgs

The plot shows that the solution does not converge. You can use a
preconditioner to improve the outcome.

Create a preconditioner with ilu, since A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing the
drop tolerance or consider using the 'udiag' option.

1-945

cgs

MATLAB cannot construct the incomplete LU as it would result in a
singular factor, which is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the
error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = cgs(A,b,tol,maxit,L,U);

fl1 is 0 because cgs drives the relative residual to 4.3851e-014 (the
value of rr1). The relative residual is less than the prescribed tolerance
of 1e-12 at the third iteration (the value of it1) when preconditioned
by the incomplete LU factorization with a drop tolerance of 1e-6. The
output rv1(1) is norm(b) and the output rv1(14) is norm(b-A*x2).

You can follow the progress of cgs by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0).

semilogy(0:it1,rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-946

cgs

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric
linear systems,” SIAM J. Sci. Stat. Comput., January 1989, Vol. 10,
No. 1, pp. 36–52.

1-947

cgs

See Also bicg | bicgstab | function_handle | gmres | lsqr | ilu | minres |
pcg | qmr | symmlq | mldivide

1-948

char

Purpose Convert to character array (string)

Syntax S = char(X)
S = char(C)
S = char(T1,T2,...,TN)

Description S = char(X) converts array X of nonnegative integer codes into a
character array. Valid codes range from 0 to 65535, where codes 0
through 127 correspond to 7-bit ASCII characters. The characters that
MATLAB can process (other than 7-bit ASCII characters) depend upon
your current locale setting. To convert characters into a numeric array,
use the double function.

S = char(C), when C is a cell array of strings, places each element of C
into the rows of the character array s. Use cellstr to convert back.

S = char(T1,T2,...,TN) forms the character array S containing the
text strings T1, T2, ..., TN as rows, automatically padding each string
with blanks to form a valid matrix. Each text parameter, Ti, can itself
be a character array. This allows the creation of arbitrarily large
character arrays. Empty strings are significant.

Examples Convert Integers to Characters

Create a 3-by-32 array of the printable ASCII characters.

asc = char(reshape(32:127,32,3)')

asc =

!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
`abcdefghijklmnopqrstuvwxyz{|}~

See Also ischar | isletter | isspace | isstrprop | cellstr | iscellstr |
get | set | strings | text

1-949

char

Tutorials • “How the MATLAB Process Uses Locale Settings”

1-950

checkcode

Purpose Check MATLAB code files for possible problems

Alternatives For information on using the graphical user interface for checking code,
see “Check Code for Errors and Warnings”.

Syntax checkcode('filename')
checkcode('filename','-config=settings.txt')
checkcode('filename','-config=factory')
inform=checkcode('filename','-struct')
msg=checkcode('filename','-string')
[inform,filepaths]=checkcode('filename')
inform=checkcode('filename','-id')
inform=checkcode('filename','-fullpath')
inform=checkcode('filename','-notok')
checkcode('filename','-cyc')
checkcode('filename','-codegen')
checkcode('filename','-eml')

Description checkcode('filename') displays messages, sometimes referred to as
Code Analyzer messages, about filename, where the message reports
potential problems and opportunities for code improvement. The line
number in the message is a hyperlink that opens the file in the Editor,
scrolled to that line. If filename is a cell array, information is displayed
for each file. For checkcode(F1,F2,F3,...), where each input is a
character array, MATLAB software displays information about each
input file name. You cannot combine cell arrays and character arrays
of file names. Note that the exact text of the checkcode messages is
subject to some change between versions.

checkcode('filename','-config=settings.txt') overrides the
default active settings file with the settings that enable or suppress
messages as indicated in the specified settings.txt file.

Note If used, you must specify the full path to the settings.txt file
specified with the -config option.

1-951

checkcode

For information about creating a settings.txt file, see “Save and
Reuse Code Analyzer Message Settings”. If you specify an invalid file,
checkcode returns a message indicating that it cannot open or read
the file you specified. In that case, checkcode uses the factory default
settings.

checkcode('filename','-config=factory') ignores all settings files
and uses the factory default preference settings.

inform=checkcode('filename','-struct') returns the information in
a structure array whose length is the number of messages found. The
structure has the fields that follow.

Field Description

message Message describing the suspicious construct
that code analysis caught.

line Vector of file line numbers to which the
message refers.

column Two-column array of file columns (column
extents) to which the message applies. The
first column of the array specifies the column
in the Editor where the message begins.
The second column of the array specifies the
column in the Editor where the message ends.
There is one row in the two-column array for
each occurrence of a message.

If you specify multiple file names as input, or if you specify a cell array
as input, inform contains a cell array of structures.

msg=checkcode('filename','-string') returns the information as a
string to the variable msg. If you specify multiple file names as input,
or if you specify a cell array as input, msg contains a string where each
file’s information is separated by 10 equal sign characters (=), a space,
the file name, a space, and 10 equal sign characters.

If you omit the -struct or -string argument and you specify an output
argument, the default behavior is -struct. If you omit the argument

1-952

checkcode

and there are no output arguments, the default behavior is to display
the information to the command line.

[inform,filepaths]=checkcode('filename') additionally returns
filepaths, the absolute paths to the file names, in the same order as
you specified them.

inform=checkcode('filename','-id') requests the message ID,
where ID is a string of the form ABC.... When returned to a structure,
the output also has the id field, which is the ID associated with the
message.

inform=checkcode('filename','-fullpath') assumes that the
input file names are absolute paths, so that checkcode does not try
to locate them.

inform=checkcode('filename','-notok') runs checkcode for all
lines in filename, even those lines that end with the checkcode
suppression directive, %#ok.

checkcode('filename','-cyc') displays the McCabe complexity
(also referred to as cyclomatic complexity) of each function in the file.
Higher McCabe complexity values indicate higher complexity, and
there is some evidence to suggest that programs with higher complexity
values are more likely to contain errors. Frequently, you can lower the
complexity of a function by dividing it into smaller, simpler functions.
In general, smaller complexity values indicate programs that are easier
to understand and modify. Some people advocate splitting up programs
that have a complexity rating over 10.

checkcode('filename','-codegen') enables code generation messages
for display in the Command Window.

checkcode('filename','-eml') '-eml' is not recommended. Use
'-codegen' instead.

Examples The following examples use lengthofline.m, which is a sample
file with MATLAB code that can be improved. You can find it in
matlabroot/help/techdoc/matlab_env/examples. If you want to run

1-953

checkcode

the examples, save a copy of lengthofline.m to a location on your
MATLAB path.

Running checkcode on a File with No Options

To run checkcode on the example file, lengthofline.m, run

checkcode('lengthofline')

MATLAB displays the Code Analyzer messages for lengthofline.m
in the Command Window:

L 22 (C 1-9): The value assigned here to variable 'nothandle' might never be used.

L 23 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 24 (C 5-11): 'notline' might be growing inside a loop. Consider preallocating for speed.

L 24 (C 44-49): Use STRCMPI(str1,str2) instead of using LOWER in a call to STRCMP.

L 28 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 34 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 34 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD. Type 'doc struct' for more in

L 38 (C 29): Use || instead of | as the OR operator in (scalar) conditional statements.

L 39 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 40 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 42 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 43 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.

L 45 (C 13-15): 'dim' might be growing inside a loop.Consider preallocating for speed.

L 48 (C 52): There may be a parenthesis imbalance around here.

L 48 (C 53): There may be a parenthesis imbalance around here.

L 48 (C 54): There may be a parenthesis imbalance around here.

L 48 (C 55): There may be a parenthesis imbalance around here.

L 49 (C 17): Terminate statement with semicolon to suppress output (in functions).

L 49 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

For details about these messages and how to improve the code, see
“Changing Code Based on Code Analyzer Messages” in the MATLAB
Desktop Tools and Development Environment documentation.

1-954

checkcode

Running checkcode with Options to Show IDs and Return
Results to a Structure

To store the results to a structure and include message IDs, run

inform=checkcode('lengthofline', '-id')

MATLAB returns

inform =

19x1 struct array with fields:
message
line
column
id

To see values for the first message, run

inform(1)

MATLAB displays

ans =

message: 'The value assigned here to variable 'nothandle' might never be used.'

line: 22

column: [1 9]

id: 'NASGU'

Here, the message is for the value that appears on line 22 that extends
from column 1–9 in the file.NASGU is the ID for the message 'The value
assigned here to variable 'nothandle' might never be used.'.

Displaying McCabe Complexity with checkcode

To display the McCabe complexity of a MATLAB code file, run
checkcode with the -cyc option, as shown in the following example
(assuming you have saved lengthofline.m to a local folder).

1-955

checkcode

checkcode lengthofline.m -cyc

Results displayed in the Command Window show the McCabe
complexity of the file, followed by the Code Analyzer messages, as
shown here:

L 1 (C 23-34): The McCabe complexity of 'lengthofline' is 12.

L 22 (C 1-9): The value assigned here to variable 'nothandle' might never be used.

L 23 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 24 (C 5-11): 'notline' might be growing inside a loop. Consider preallocating for speed.

L 24 (C 44-49): Use STRCMPI(str1,str2) instead of using UPPER/LOWER in a call to STRCMP.

L 28 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 34 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 34 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD. Type 'doc struct' for more in

L 38 (C 29): Use || instead of | as the OR operator in (scalar) conditional statements.

L 39 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 40 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 42 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 43 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.

L 45 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.

L 48 (C 52): There may be a parenthesis imbalance around here.

L 48 (C 53): There may be a parenthesis imbalance around here.

L 48 (C 54): There may be a parenthesis imbalance around here.

L 48 (C 55): There may be a parenthesis imbalance around here.

L 49 (C 17): Terminate statement with semicolon to suppress output (in functions).

L 49 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

See Also mlintrpt, profile

How To • For information on the suppression directive, %#ok, and suppressing
messages from within your program, see “Adjust Code Analyzer
Message Indicators and Messages”.

1-956

checkin

Purpose Check files into source control system (UNIX platforms)

Syntax checkin('filename','comments','comment_text')
checkin({'filename1','filename2'},'comments','comment_text')
checkin('filename','comments',
'comment_text','option','value')

Description checkin('filename','comments','comment_text') checks in the file
named filename to the source control system. Use the full path for
filename and include the file extension. You must save the file before
checking it in, but the file can be open or closed. The comment_text is
a MATLAB string containing checkin comments for the source control
system. You must supply comments and comment_text.

checkin({'filename1','filename2'},'comments','comment_text')
checks in the files filename1 through filenamen to the source control
system. Use the full paths for the files and include file extensions.
Comments apply to all files checked in.

checkin('filename','comments',
'comment_text','option','value') provides additional checkin
options. For multiple file names, use an array of strings instead of
filename, that is, {'filename1','filename2',...}. Options apply to
all file names. The option and value arguments are shown in the
following table.

option
Argument

value
Argument Purpose

'force' 'on' filename is checked in even if the file
has not changed since it was checked
out.

'force' 'off'
(default)

filename is not checked in if there
were no changes since checkout.

1-957

checkin

option
Argument

value
Argument Purpose

'lock' 'on' filename is checked in with
comments, and is automatically
checked out.

'lock' 'off'
(default)

filename is checked in with
comments but does not remain
checked out.

Examples Check In a File

Check the file /myserver/myfiles/clock.m into the source control
system, with the comment Adjustment for leapyear:

checkin('/myserver/myfiles/clock.m','comments',...
'Adjustment for leapyear')

Check In Multiple Files

Check two files into the source control system, using the same comment
for each:

checkin({'/myserver/myfiles/clock.m', ...
'/myserver/myfiles/calendar.m'},'comments',...
'Adjustment for leapyear')

Check In a File and Keep It Checked Out

Check the file /myserver/myfiles/clock.m into the source control
system and keep the file checked out:

checkin('/myserver/myfiles/clock.m','comments',...
'Adjustment for leapyear','lock','on')

See Also checkout | cmopts | undocheckout | verctrl

How To • “Check In Files (UNIX Platforms)”

1-958

checkout

Purpose Check files out of source control system (UNIX platforms)

Syntax checkout('filename')
checkout({'filename1','filename2', ...})
checkout('filename','option','value',...)

Description checkout('filename') checks out the file named filename from the
source control system. Use the full path for filename and include the
file extension. The file can be open or closed when you use checkout.

checkout({'filename1','filename2', ...}) checks out the files
named filename1 through filenamen from the source control system.
Use the full paths for the files and include the file extensions.

checkout('filename','option','value',...) provides additional
checkout options. For multiple file names, use an array of strings
instead of filename, that is, {'filename1','filename2', ...}.
Options apply to all file names. The option and value arguments are
shown in the following table.

option Argument value Argument Purpose

'force' 'on' The checkout is
forced, even if you
already have the
file checked out.
This is effectively
an undocheckout
followed by a
checkout.

'force' 'off' (default) Prevents you from
checking out the file
if you already have it
checked out.

1-959

checkout

option Argument value Argument Purpose

'lock' 'on' (default) The checkout gets
the file, allows you to
write to it, and locks
the file so that access
to the file for others is
read only.

'lock' 'off' The checkout gets a
read-only version of
the file, allowing
another user to
check out the file
for updating. You do
not have to check the
file in after checking
it out with this option.

'revision' ’version_num’ Checks out the
specified revision
of the file.

If you end the MATLAB session, the file remains checked out. You
can check in the file from within the MATLAB desktop during a later
session, or directly from your source control system.

Examples Check Out a File

Check out the file /myserver/myfiles/clock.m from the source control
system:

checkout('/myserver/myfiles/clock.m')

Check Out Multiple Files

Check out /matlab/myfiles/clock.m and
/matlab/myfiles/calendar.m from the source control system:

checkout({'/myserver/myfiles/clock.m',...

1-960

checkout

'/myserver/myfiles/calendar.m'})

Force a Checkout, Even If File Is Already Checked Out

Check out /matlab/myfiles/clock.m even if clock.m is already
checked out to you:

checkout('/myserver/myfiles/clock.m','force','on')

Check Out Specified Revision of File

Check out revision 1.1 of clock.m:

checkout('/matlab/myfiles/clock.m','revision','1.1')

See Also checkin | cmopts | undocheckout | customverctrl | verctrl

How To • “Check Out Files (UNIX Platforms)”

1-961

chol

Purpose Cholesky factorization

Syntax R = chol(A)
L = chol(A,'lower')
R = chol(A,'upper')
[R,p] = chol(A)
[L,p] = chol(A,'lower')
[R,p] = chol(A,'upper')
[R,p,S] = chol(A)
[R,p,s] = chol(A,'vector')
[L,p,s] = chol(A,'lower','vector')
[R,p,s] = chol(A,'upper','vector')

Description R = chol(A) produces an upper triangular matrix R from the diagonal
and upper triangle of matrix A, satisfying the equation R'*R=A. The
chol function assumes that A is (complex Hermitian) symmetric. If it is
not, chol uses the (complex conjugate) transpose of the upper triangle
as the lower triangle. Matrix A must be positive definite.

L = chol(A,'lower') produces a lower triangular matrix L from
the diagonal and lower triangle of matrix A, satisfying the equation
L*L'=A. The chol function assumes that A is (complex Hermitian)
symmetric. If it is not, chol uses the (complex conjugate) transpose of
the lower triangle as the upper triangle. When A is sparse, this syntax
of chol is typically faster. Matrix A must be positive definite. R =
chol(A,'upper') is the same as R = chol(A).

[R,p] = chol(A) for positive definite A, produces an upper triangular
matrix R from the diagonal and upper triangle of matrix A, satisfying
the equation R'*R=A and p is zero. If A is not positive definite, then p
is a positive integer and MATLAB does not generate an error. When
A is full, R is an upper triangular matrix of order q=p-1 such that
R'*R=A(1:q,1:q). When A is sparse, R is an upper triangular matrix
of size q-by-n so that the L-shaped region of the first q rows and first q
columns of R'*R agree with those of A.

[L,p] = chol(A,'lower') for positive definite A, produces a lower
triangular matrix L from the diagonal and lower triangle of matrix A,

1-962

chol

satisfying the equation L*L'=A and p is zero. If A is not positive definite,
then p is a positive integer and MATLAB does not generate an error.
When A is full, L is a lower triangular matrix of order q=p-1 such that
L*L'=A(1:q,1:q). When A is sparse, L is a lower triangular matrix
of size q-by-n so that the L-shaped region of the first q rows and first
q columns of L*L' agree with those of A. [R,p] = chol(A,'upper')
is the same as [R,p] = chol(A).

The following three-output syntaxes require sparse input A.

[R,p,S] = chol(A), when A is sparse, returns a permutation matrix
S. Note that the preordering S may differ from that obtained from amd
since chol will slightly change the ordering for increased performance.
When p=0, R is an upper triangular matrix such that R'*R=S'*A*S.
When p is not zero, R is an upper triangular matrix of size q-by-n so
that the L-shaped region of the first q rows and first q columns of R'*R
agree with those of S'*A*S. The factor of S'*A*S tends to be sparser
than the factor of A.

[R,p,s] = chol(A,'vector'), when A is sparse, returns the
permutation information as a vector s such that A(s,s)=R'*R, when
p=0. You can use the 'matrix' option in place of 'vector' to obtain
the default behavior.

[L,p,s] = chol(A,'lower','vector'), when A is sparse, uses only
the diagonal and the lower triangle of A and returns a lower triangular
matrix L and a permutation vector s such that A(s,s)=L*L', when
p=0. As above, you can use the 'matrix' option in place of 'vector' to
obtain a permutation matrix. [R,p,s] = chol(A,'upper','vector')
is the same as [R,p,s] = chol(A,'vector').

Note Using chol is preferable to using eig for determining positive
definiteness.

1-963

chol

Examples Example 1

The gallery function provides several symmetric, positive, definite
matrices.

A=gallery('moler',5)

A =

1 -1 -1 -1 -1
-1 2 0 0 0
-1 0 3 1 1
-1 0 1 4 2
-1 0 1 2 5

C=chol(A)

ans =

1 -1 -1 -1 -1
0 1 -1 -1 -1
0 0 1 -1 -1
0 0 0 1 -1
0 0 0 0 1

isequal(C'*C,A)

ans =

1

For sparse input matrices, chol returns the Cholesky factor.

N = 100;
A = gallery('poisson', N);

N represents the number of grid points in one direction of a square

N-by-N grid. Therefore, A is N2 by N2 .

1-964

chol

L = chol(A, 'lower');
D = norm(A - L*L', 'fro');

The value of D will vary somewhat among different versions of MATLAB

but will be on order of 10 14− .

Example 2

The binomial coefficients arranged in a symmetric array create a
positive definite matrix.

n = 5;
X = pascal(n)
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

This matrix is interesting because its Cholesky factor consists of the
same coefficients, arranged in an upper triangular matrix.

R = chol(X)
R =

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5

1-965

chol

1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization of X fails.

chol(X)
Error using chol
Matrix must be positive definite.

See Also ichol | cholupdate

1-966

cholupdate

Purpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'-')
[R1,p] = cholupdate(R,x,'-')

Description R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A +
x*x', where x is a column vector of appropriate length. cholupdate
uses only the diagonal and upper triangle of R. The lower triangle of R
is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'-') returns the Cholesky factor of A - x*x'.
An error message reports when R is not a valid Cholesky factor or when
the downdated matrix is not positive definite and so does not have
a Cholesky factorization.

[R1,p] = cholupdate(R,x,'-') will not return an error message. If p
is 0, R1 is the Cholesky factor of A - x*x'. If p is greater than 0, R1 is
the Cholesky factor of the original A. If p is 1, cholupdate failed because
the downdated matrix is not positive definite. If p is 2, cholupdate
failed because the upper triangle of R was not a valid Cholesky factor.

Tips cholupdate works only for full matrices.

Examples A = pascal(4)
A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

R = chol(A)
R =

1-967

cholupdate

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'),
we can use cholupdate:

R1 = cholupdate(R,x)
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element of A. The downdated
matrix is:

A - x*x'
ans =

1 1 1 1
1 2 3 4

1-968

cholupdate

1 3 6 10
1 4 10 19

Compare chol with cholupdate:

R1 = chol(A-x*x')
Error using chol
Matrix must be positive definite.
R1 = cholupdate(R,x,'-')
Error using cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky
factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'-')
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 0.7071

Algorithms cholupdate uses the algorithms from the LINPACK subroutines ZCHUD
and ZCHDD. cholupdate is useful since computing the new Cholesky

factor from scratch is an O N()3 algorithm, while simply updating the

existing factor in this way is an O N()2 algorithm.

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart,
LINPACK Users’ Guide, SIAM, Philadelphia, 1979.

See Also chol | qrupdate

1-969

circshift

Purpose Shift array circularly

Compatibility The default behavior of circshift(A,K), where K is a scalar, will
change in a future release. The new default behavior will be to operate
along the first array dimension of A whose size does not equal 1. Use
circshift(A,[K 0]) to retain current behavior.

Syntax Y = circshift(A,K)
Y = circshift(A,K,dim)

Description Y = circshift(A,K) circularly shifts the elements in array A by K
positions. Specify K as an integer to shift the rows of A, or as a vector of
integers to specify the shift amount in each dimension.

Y = circshift(A,K,dim) circularly shifts the values in array A by K
positions along dimension dim. Inputs K and dim must be scalars.

Input
Arguments

A - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char | struct | table
| cell
Complex Number Support: Yes

K - Shift amount
integer scalar | vector of integers

Shift amount, specified as an integer scalar or vector of integers. If the
shift amount is larger than the length of the corresponding dimension
in A, then the shift circularly wraps to the beginning of that dimension.
For example, shifting a 3-element vector by +3 positions will bring its
elements back to their original positions.

1-970

circshift

• If you specify K as an integer and do not specify dim, then circshift
shifts the rows of A down (positive integer) or up (negative integer).

• If you specify K as a vector of integers, each element specifies the
shift amount for the Nth dimension in A. If the Nth element in K is
positive, then the values of A are shifted towards the end (positive
integer) or beginning (negative integer) of the Nth dimension.

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is dim = 1. If you specify dim, then K
must be an integer scalar. Specify dim = 1 to exchange rows, dim = 2
to exchange columns, and so on.

Examples Shift Column Vector Elements

Create a numeric column vector.

A = (1:10)'

A =

1
2
3
4
5
6
7
8
9

10

Use circshift to shift the elements by three positions.

Y = circshift(A,3)

1-971

circshift

Y =

8
9

10
1
2
3
4
5
6
7

The result, Y, has the same elements as A but they are in a different
order.

Move Characters in Array

Create an array of characters.

A = 'racecar'

A =

racecar

Use circshift to shift the characters by three positions in the second
dimension.

Y = circshift(A,3,2)

Y =

carrace

The characters are in a different order in Y.

Move Matrix Elements

Create a numeric array with a cluster of ones in the top left.

1-972

circshift

A = [1 1 0 0; 1 1 0 0; 0 0 0 0; 0 0 0 0]

A =

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

Use circshift to shift the elements of A by one position in each
dimension.

Y = circshift(A,[1 1])

Y =

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

The cluster of ones is now in the center of the matrix.

To move the cluster back to its original position, use circshift on Y
with negative shift values.

X = circshift(Y,[-1 -1])

X =

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

The matrix X is equivalent to A.

See Also fftshift | reshape | shiftdim | permute

1-973

TriRep.circumcenters

Purpose (Will be removed) Circumcenters of specified simplices

Note circumcenters(TriRep) will be removed in a future release.
Use circumcenter(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax CC = circumcenters(TR, SI)
[CC RCC] = circumcenters(TR, SI)

Description CC = circumcenters(TR, SI) returns the coordinates of the
circumcenter of each specified simplex SI. CC is an m-by-n matrix, where
m is of length length(SI), the number of specified simplices, and n is
the dimension of the space where the triangulation resides.

[CC RCC] = circumcenters(TR, SI) returns the circumcenters and
the corresponding radii of the circumscribed circles or spheres.

Input
Arguments

TR Triangulation object.

SI Column vector of simplex indices that index into the
triangulation matrix TR.Triangulation. If SI is not
specified the circumcenter information for the entire
triangulation is returned, where the circumcenter
associated with simplex i is the i’th row of CC.

1-974

TriRep.circumcenters

Output
Arguments

CC m-by-n matrix. m is the number of specified simplices
and n is the dimension of the space where the
triangulation resides. Each row CC(i,:) represents
the coordinates of the circumcenter of simplex SI(i).

RCC Vector of length length(SI), the number of specified
simplices containing radii of the circumscribed circles
or spheres.

Definitions A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

Examples Example 1

Load a 2-D triangulation.

load trimesh2d
trep = TriRep(tri, x,y)

Compute the circumcenters.

cc = circumcenters(trep);
triplot(trep);
axis([-50 350 -50 350]);
axis equal;
hold on;
plot(cc(:,1),cc(:,2),'*r');
hold off;

The circumcenters represent points on the medial axis of the polygon.

1-975

TriRep.circumcenters

Example 2

Query a 3-D triangulation created with DelaunayTri. Compute the
circumcenters of the first five tetrahedra.

X = rand(10,3);
dt = DelaunayTri(X);
cc = circumcenters(dt, [1:5]')

See Also incenter | delaunayTriangulation | triangulation

1-976

cla

Purpose Clear current axes

Syntax cla
cla reset
cla(ax)
cla(ax,'reset')

Description cla deletes from the current axes all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless
of the setting of their HandleVisibility property and resets all axes
properties, except Position and Units, to their default values.

cla(ax) or cla(ax,'reset') clears the single axes with handle ax.

Tips The cla command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, cla deletes only those objects whose
HandleVisibility property is set to on.

See Also clf | hold | newplot | reset

1-977

clabel

Purpose Contour plot elevation labels

Syntax clabel(C)
clabel(C,h)
clabel(C,v)
clabel(C,h,v)
clabel(___ ,Name,Value)

clabel(C,'manual')
clabel(C,h,'manual')

text_handles = clabel(___)

Description clabel(C) labels all contours displayed in the current contour plot.
Labels are upright and displayed with '+' symbols. clabel randomly
selects label positions.

clabel(C,h) rotates the labels and inserts them in the contour lines.
This syntax inserts only those labels that fit within the contour,
depending on the size of the contour.

clabel(C,v) labels only the contour levels specified by the vector, v.

clabel(C,h,v) labels only the contour levels specified by vector v,
rotates the labels, and inserts them in the contour lines.

clabel(___ ,Name,Value) specifies the text object properties and the
'LabelSpacing' contourgroup property, using one or more Name,Value
pair arguments, in addition to any of the input arguments in previous
syntaxes.

clabel(C,'manual') places contour labels at locations you select with
a mouse. Click the mouse or press the space bar to label the contour

1-978

clabel

closest to the center of the crosshair. Press the Return key while the
cursor is within the figure window to terminate labeling.

clabel(C,h,'manual') places contour labels at locations you select
with a mouse. Press the Return key while the cursor is within the
figure window to terminate labeling. The labels are rotated and inserted
in the contour lines.

text_handles = clabel(___) additionally returns an array
containing the handles of the text objects created, using any of the input
arguments in the previous syntaxes. If you call clabel without the h
argument, text_handles also contains the handles of line objects used
to create the '+' symbols.

Input
Arguments

C - Contour matrix
2-by-n matrix

Contour matrix containing the data that defines the contour lines. C is
returned by the contour, contour3, or contourf function.

h - Handle to the contourgroup object
value returned by contour functions

Handle to the contourgroup object specified as the value returned by
the contour, contour3, or contourf function.

v - Contour level values
vector

Contour level values, specified as a row or column vector of individual
values.

Example: [0,10,20]

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

1-979

clabel

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Color','red','Rotation',45 adds red labels to a contour
plot, where each label is rotated 45 degrees.

In addition to the following, you can specify other text object properties
using Name,Value pair arguments. See Text Properties.

’Color’ - Text color
[0 0 0] (black) (default) | 3-element RGB vector | string

Text color, specified as the comma-separated pair consisting of 'Color'
and a 3-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

The following table lists the predefined colors and their RGB
equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

Example: 'Color',[0 1 0]

Example: 'Color','green'

’FontName’ - Font name

1-980

clabel

'Helvetica' (default) | string | 'FixedWidth'

Font name, specified as the comma-separated pair consisting of
'FontName' and a string. The string specifies the name of the font to
use for the text object. To display and print properly, this must be a
font that your system supports.

To use a fixed-width font that looks good in any locale, use the
case-sensitive string 'FixedWidth'. This eliminates the need to
hard-code the name of a fixed-width font, which might not display text
properly on systems that do not use ASCII character encoding.

Example: 'FontName','Courier'

’FontSize’ - Font size
10 points (default) | scalar

Font size, specified as the comma-separated pair consisting of
'FontSize' and a scalar in units determined by the FontUnits
property. The default value for FontUnits is points.

Example: 'FontSize',12.5

’FontUnits’ - Font size units
'points' (default) | 'normalized' | 'inches' | 'centimeters' |
'pixels'

Font size units, specified as the comma-separated pair consisting of
'FontUnits' and one of the following strings:

• 'points'

• 'normalized'

• 'inches'

• 'centimeters'

• 'pixels'

When the value of FontUnits is 'normalized', MATLAB interprets
the value of FontSize as a fraction of the height of the parent axes.
When you resize the axes, MATLAB modifies the screen FontSize

1-981

clabel

accordingly. points, inches, centimeters, and pixels are absolute
units. 1 point = 1/72 inch

Note When setting both the FontSize and the FontUnits, you must set
the FontUnits property first so that MATLAB can correctly interpret
the specified FontSize. For example, to set the font size to 0.3 inches,
call 'FontUnits','inches','FontSize',0.3 in the argument list.

’FontWeight’ - Weight of text characters
'normal' (default) | 'bold' | 'light' | 'demi'

Weight of text characters, specified as the comma-separated pair
consisting of 'FontWeight' and one of the following strings:

• 'normal'

• 'bold'

• 'light'

• 'demi'

MATLAB uses the FontWeight property to select a font from those
available on your particular system. Generally, setting this property to
'bold' or 'demi' causes MATLAB to use a bold font.

Example: 'FontWeight','bold'

’LabelSpacing’ - Spacing between labels
144 (default) | scalar

Spacing between labels on each contour line, specified as the
comma-separated pair consisting of 'LabelSpacing' and a scalar.
Specify the label spacing in points, where 1 point = 1/72 inch.

Example: 'LabelSpacing',72

’Rotation’ - Text orientation
0 (default) | scalar

1-982

clabel

Text orientation, specified as the comma-separated pair consisting of
'Rotation' and a scalar. Specify values of rotation in degrees. Positive
values result in counterclockwise rotation.

Example: 'Rotation',45

Output
Arguments

text_handles - Handles of text objects
handle

Handles of the text objects that clabel creates. The UserData
properties of the text objects contain the contour values displayed.

If you call clabel without the h argument, text_handles also contains
the handles of line objects used to create the '+' symbols.

Examples Label Contour Plot with Vertical Text and ’+’ Symbols

Generate a contour plot and obtain the contour matrix, C.

[x,y,z] = peaks;
figure
C = contour(x,y,z);

1-983

clabel

Label the contour plot.

clabel(C)

1-984

clabel

Label Contour Plot with Rotated Text Inserted in Contour
Lines

Generate a contour plot and obtain the contour matrix, C, and the
handle to the contourgroup object, h.

[x,y,z] = peaks;
figure
[C,h] = contour(x,y,z);

1-985

clabel

Label the contour plot.

clabel(C,h);

1-986

clabel

Label Specific Contour Levels

Label only the contours with contour levels 2 or 6.

[x,y,z] = peaks;
figure
[C,h] = contour(x,y,z);
v = [2,6];
clabel(C,h,v)

1-987

clabel

Set Label Spacing

Set the label spacing to 72 points (1 inch).

[x,y,z] = peaks;
figure
[C,h] = contour(x,y,z);
clabel(C,h,'LabelSpacing',72)

1-988

clabel

Label Contour Plot and Set Text Properties

Use Name,Value arguments to set the font size, font color, and text
orientation of the labels.

[x,y,z] = peaks;
figure
[C,h] = contour(x,y,z);
clabel(C,h,'FontSize',15,'Color','r','Rotation',0)

1-989

clabel

'FontSize',15,'Color','r' adds 15-point red labels to the contour
plot. 'Rotation',0 makes the text upright.

Label Contour Plot and Return Object Handles

Label a contour plot and return the handles of the objects created.

[x,y,z] = peaks;
figure
[C,h] = contour(x,y,z);
text_handles = clabel(C,h);

1-990

clabel

MATLAB® returns an array containing the handles of the text objects
created.

Set the color of the labels to blue, using the handle to the text objects.

set(text_handles,'Color','blue')

1-991

clabel

See Also contour | contourc | contourf | contour3

Related
Examples

• “Drawing Text in a Box”

Concepts Text Properties

1-992

class

Purpose Determine class of object

Syntax ClassName = class(object)
obj = class(s,'class_name')
obj = class(s,'class_name',parent1,parent2,...)
obj = class(struct([]),'class_name',parent1,parent2,...)
obj_struct = class(struct_array,'class_name',parent_array)

Description ClassName = class(object) returns a string specifying the class of
object. See “Fundamental MATLAB Classes” for more information
on MATLAB classes.

Note Before MATLAB 7.6 (classes defined without a classdef
statement), class constructors called the class function to create the
object. The following class function syntaxes apply only within classes
defined before Version 7.6.

obj = class(s,'class_name') creates an array of class class_name
objects using the struct s as a pattern to determine the size of obj.

obj = class(s,'class_name',parent1,parent2,...) inherits the
methods and fields of the parent objects parent1, parent2, and so on.
The size of the parent objects must match the size of s or be a scalar
(1–by-1), in which case, MATLAB performs scalar expansion.

obj = class(struct([]),'class_name',parent1,parent2,...)
constructs object containing only fields that it inherits from the
parent objects. All parents must have the same, nonzero size, which
determines the size of the returned object obj.

obj_struct = class(struct_array,'class_name',parent_array)
maps every element of the parent_array to a corresponding element in
the struct_array to produce the output array of objects, obj_struct.

All arrays must be of the same size. If either the struct_array or
the parent_array is of size 1–by–1, then MATLAB performs scalar
expansion to match the array sizes.

1-993

class

To create an object array of size 0–by-0, set the size of the struct_array
and parent_array to 0–by-0.

Examples Return the class of Java object obj:

import java.lang.*;
obj = String('mystring');
class(obj)

ans =

java.lang.String

Return class of any MATLAB variable:

h = @sin;
class(h)

ans =

function_handle

See Also isa | isobject | metaclass

Tutorials • “Class Syntax Fundamentals”

1-994

classdef

Purpose Class definition keywords

Syntax classdef classname
properties

PropName
end
methods

methodName
end
events

EventName
end
enumeration

EnumName (arg)
end

end

Description classdef classname begins the class definition and an end keyword
terminates the classdef block. Only blank lines and comments can
precede classdef. Enter a class definition in a file having the same
name as the class, with a filename extension of .m. Class definition files
can be in folders on the MATLAB path or in @ folders whose parent
folder is on the MATLAB path. See “Class Files” for more information.
See “Classdef Block” and “Class Definition” for more information on
classes.

properties begins a property definition block, an end keyword
terminates the properties block. Class definitions can contain multiple
property definition blocks, each specifying different attribute settings
that apply to the properties in that particular block. See “Defining
Properties” for more information.

Note Properties cannot have the same name as the class.

1-995

classdef

methods begins a methods definition block, an end keyword terminates
the methods block. This block contains functions that implement class
methods. Class definitions can contain multiple method blocks, each
specifying different attribute settings that apply to the methods in that
particular block. It is possible to define method functions in separate
files. See “How to Use Methods” for more information.

events begins an events definition block, an end keyword terminates
the events block. This block contains event names defined by the class.
Class definitions can contain multiple event blocks, each specifying
different attribute settings that apply to the events in that particular
block. See “Events and Listeners — Syntax and Techniques” for more
information.

enumeration begins an enumeration definition block, an end keyword
terminates the enumeration block. See “Enumerations” for more
information.

properties, methods, events, and enumeration are also the names of
MATLAB functions used to query the respective class members for a
given object or class name.

To see the attributes of all class components in a popup window, click
this link: Attribute Tables

Examples Use these keywords to define classes.

classdef (Attributes) class_name
properties (Attributes)

PropertyName
end
methods (Attributes)

function obj = methodName(obj,arg2,...)
...

end
end
events (Attributes)

EventName
end

1-996

classdef

enumeration
EnumName

end
end

See Also properties | methods | events

Tutorials • “Class Syntax Fundamentals”

1-997

clc

Purpose Clear Command Window

Syntax clc

Description clc clears all input and output from the Command Window display,
giving you a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of
functions, but you still can use the up arrow key, ↑, to recall statements
from the command history.

Examples Use clc in a MATLAB code file to always display output in the same
starting position on the screen.

See Also clear | clf | close | home

1-998

clear

Purpose Remove items from workspace, freeing up system memory

Syntax clear
clear name1 ... nameN
clear -regexp expr1 ... exprN
clear ItemType

Description clear removes all variables from the current workspace, releasing
them from system memory.

clear name1 ... nameN removes the variables, scripts, functions, or
MEX-functions name1 ... nameN from memory.

• If name is a function name, then clear name reinitializes any
persistent variables in the function.

• If function name is locked by mlock, then it remains in memory.

• If variable name is global, then clear removes it from the current
workspace, but it remains in the global workspace.

clear -regexp expr1 ... exprN clears all variables that match any
of the regular expressions listed. This option only clears variables.

clear ItemType clears the types of items indicated by ItemType, such
as all, functions, or classes.

Input
Arguments

name1 ... nameN - Names of variables, scripts, functions, or
MEX-functions to clear
string

Names of variables, scripts, functions, or MEX-functions to clear,
specified as strings.

Use a partial path to distinguish between different overloaded versions
of a function. For example, clear polynom/display clears only the

1-999

clear

displaymethod for polynom objects, leaving any other implementations
in memory.

expr1 ... exprN - Regular expressions matching names of
variables to clear
string

Regular expressions matching names of variables to clear, specified
as strings.

ItemType - Type of items to clear
all | classes | functions | global | import | java | mex |
variables

Type of items to clear, specified as one of the following strings. Click the
linked strings below for additional information.

Items ClearedValue
of
ItemType

Variables
in
scope

Scripts
and
functions

Class
definitions

Persistent
variables

Debugging
breakpoints

MEX
functions

Global
variables

Import
list

Java
classes
on
the
dynamic
path

all From
command
prompt
only

classes

functions

global

import

java

1-1000

clear

Items ClearedValue
of
ItemType

Variables
in
scope

Scripts
and
functions

Class
definitions

Persistent
variables

Debugging
breakpoints

MEX
functions

Global
variables

Import
list

Java
classes
on
the
dynamic
path

mex

variables

The following applies to clearing types of items.

all:

• clear all also removes the import list when issued from the
command prompt.

classes:

• clear classes issues a warning and does not clear a class of objects
if any of those objects still exists after the workspace is cleared. For
example, objects can still exist in persistent variables of functions
or figure windows.

• clear classes does not clear a class if its file is locked using the
mlock command. No warning is issued in this case.

• Call clear classes whenever you change a class definition.

global:

• clear global removes all global variables in the base and global
workspaces. If called from a function, clear global also removes all
global variables in the function workspace.

• Use clear global name1 ... nameN to clear the global variables
with the specified names.

• Use clear global regexp expr1 ... exprN to clear all global
variables that match any of the regular expressions listed.

1-1001

clear

import:

• Call clear import only from the command prompt. Calling clear
import in a function returns an error.

java:

• clear java issues a warning and does not remove the Java class
definition if any Java objects exist outside the workspace (for
example, in user data or persistent variables in a locked code file).

• Issue a clear java command after modifying any files on the
dynamic Java path.

mex:

• clear mex does not clear locked MEX functions or functions that
are currently in use.

If the name of a variable is a value of ItemType, then calling clear
followed by that name deletes the variable with that name. clear does
not interpret the name as a keyword in this context. For example, if the
workspace contains variables a, all, b, and ball, clear all removes
the variable all only.

Tips • The clear function can remove variables that you specify. To remove
all but some specified variables, use clearvars instead.

• You can clear the handle of a figure or graphics object, but the object
itself is not removed. Use delete to remove objects. Deleting an
object does not delete the variable (if any) used for storing its handle.

• The clear function does not clear Simulink® models. Use bdclose
instead.

• On UNIX systems, clear does not affect the amount of memory
allocated to the MATLAB process.

Examples Clear a Single Variable

Define two variables a and b, and then clear a.

1-1002

clear

a = 1;
b = 2;
clear a
whos

Name Size Bytes Class Attributes

b 1x1 8 double

Only variable b remains in the workspace.

Clear Specific Variables by Name

Using regular expressions, clear those variables with names that begin
with Mon, Tue, or Wed.

clear -regexp ^Mon ^Tue ^Wed;

Clear List of Variables

Create a cell array, varlist, that contains the names of variables to
clear. Then, clear those variables.

varlist = {'v1','v2','time'};
clear(varlist{:})

Clear All Compiled Scripts, Functions, and MEX-functions

clear functions

If a function is locked, it will not be cleared from memory.

See Also clc | clearvars | close | delete | import | inmem | load | mlock |
persistent | whos | workspace

Concepts • “Base and Function Workspaces”
• “Strategies for Efficient Use of Memory”
• “Modifying and Reloading Classes”
• “The Java Class Path”
• “Regular Expressions”

1-1003

clearvars

Purpose Clear variables from memory

Syntax clearvars
clearvars variables
clearvars -except keepVariables
clearvars variables -except keepVariables

clearvars -global ___

Description clearvars removes all variables from the currently active workspace.

clearvars variables removes the variables specified by variables. If
any of the variables are global, clearvars removes these variables from
the current workspace only, leaving them accessible to any functions
that declare them as global.

clearvars -except keepVariables removes all variables, except for
those specified by keepVariables. Use this syntax to keep specific
variables and remove all others.

clearvars variables -except keepVariables removes the variables
specified by variables, and does not remove the variables specified by
keepVariables. This syntax allows you to use a combination of variable
names, wild card characters, or regular expressions to specify variables
to remove or keep.

clearvars -global ___ removes the specified global variables from
the workspace, including those made global within functions, using any
of the input arguments in the preceding syntaxes. The -global flag
must be first in the argument list.

1-1004

clearvars

Input
Arguments

variables - Names of variables to remove
strings

Names of variables to remove, specified as one or more strings in one of
the following forms.

Form of Variables Input Variables to Remove

var1 ... varN Named variables, specified as
individual strings.
Use the '*' wildcard to match
patterns. For example, clearvars A*
clears all variables in the workspace
with names that start with A.

-regexp expr1 ... exprN Variables with names that match
the regular expressions, specified
as strings. For example, clearvars
-regexp ^Mon ^Tues clears only
the variables in the workspace with
names that begin with Mon or Tues.

keepVariables - Names of variables to keep
strings

Names of variables to keep, specified as one or more strings in one of
the following forms.

1-1005

clearvars

Form of Variables Input Variables to Keep

var1 ... varN Named variables, specified as
individual strings.
Use the '*' wildcard to match
patterns. For example, clearvars
-except A* clears all variables in the
workspace, except those with names
that start with A.

-regexp expr1 ... exprN Variables with names that match
the regular expressions, specified
as strings. For example, clearvars
-except -regexp ^Mon ^Tues clears
all the variables in the workspace,
except those with names that begin
with Mon or Tues.

Examples Clear Named Variables

Define three variables, a, b, and c. Then, clear a and c.

a = 1;
b = 2;
c = 3;
clearvars a c
whos

Name Size Bytes Class Attributes

b 1x1 8 double

Only variable b remains in the workspace.

Clear All Variables Except Specified

Remove all variables from the workspace except for the variables C
and D.

1-1006

clearvars

clearvars -except C D

Clear Variables Using Regular Expressions and Name
Variables to Exclude

Clear variables with names that start with b and are followed by 3
digits, except for the variable b106.

clearvars -regexp ^b\d{3}$ -except b106

Name Variables to Clear and Preserve Variables Using
Regular Expressions

Clear variables with names that start with a and do not end with a.

clearvars a* -except -regexp a$

Clear Global Variables Except Specified

Clear all global variables, except those with names that start with x.

clearvars -global -except x*

Clear List of Variables

Clear a list of variables used for intermediate calculations.

Create two variables in the workspace.

cashOnHand = 20;
cost = 12.99;

Store a list of the names of all the variables currently in the workspace.

initialVars = who;

Specify or calculate additional variables, taxRate and tax.

taxRate = 0.0625;
tax = round(100*cost*taxRate)/100;

Update the initial variables, cost and cashOnHand.

1-1007

clearvars

cost = cost + tax;
cashOnHand = cashOnHand - cost;

Clear all variables except the initial variables, using the function form
of clearvars. When using the function form of a syntax, enclose input
strings in single quotes, and separate them with commas.

clearvars('-except',initialVars{:})

clearvars clears the variables, initialVars, taxRate, and tax.

See Also clear | exist | global | persistent | save | who | whos

Concepts • “What Is the MATLAB Workspace?”
• “Regular Expressions”
• “Command vs. Function Syntax”

1-1008

clear (serial)

Purpose Remove serial port object from MATLAB workspace

Syntax clear obj

Description clear obj removes obj from the MATLAB workspace, where obj is a
serial port object or an array of serial port objects.

Tips If obj is connected to the device and it is cleared from the workspace,
then obj remains connected to the device. You can restore obj to the
workspace with the instrfind function. A serial port object connected
to the device has a Status property value of open.

To disconnect obj from the device, use the fclose function. To remove
obj from memory, use the delete function. You should remove invalid
serial port objects from the workspace with clear.

Examples This example creates the serial port object s on a Windows platform,
copies s to a new variable scopy, and clears s from the MATLAB
workspace. s is then restored to the workspace with instrfind and
is shown to be identical to scopy.

s = serial('COM1');
scopy = s;
clear s
s = instrfind;
isequal(scopy,s)
ans =

1

See Also delete | fclose | instrfind | isvalid | Status

1-1009

clf

Purpose Clear current figure window

Syntax clf
clf('reset')
clf(fig)
clf(fig,'reset')
figure_handle = clf(...)

Description clf deletes from the current figure all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

clf('reset') deletes from the current figure all graphics objects
regardless of the setting of their HandleVisibility property and resets
all figure properties except Position, Units, PaperPosition, and
PaperUnits to their default values.

clf(fig) or clf(fig,'reset') clears the single figure with handle fig.

figure_handle = clf(...) returns the handle of the figure. This
is useful when the figure IntegerHandle property is off because the
noninteger handle becomes invalid when the reset option is used (i.e.,
IntegerHandle is reset to on, which is the default).

Tips The clf command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, clf deletes only those objects whose
HandleVisibility property is set to on.

Alternatives Use Clear Figure from the figure window’s Edit menu to clear the
contents of a figure. You can also create a desktop shortcut to clear the
current figure with one mouse click. See “Create Shortcuts to Rerun
Commands”.

See Also cla | clc | hold | reset

1-1010

clipboard

Purpose Copy and paste strings to and from system clipboard

Syntax clipboard('copy', data)
str = clipboard('paste')
data = clipboard('pastespecial')

Description clipboard('copy', data) sets the clipboard contents to data. If data
is not a character array, the clipboard uses mat2str to convert data
to a string.

str = clipboard('paste') returns the current contents of the
clipboard as a string or, if MATLAB cannot convert the current
clipboard contents to a string, as an empty string (' ').

data = clipboard('pastespecial') returns the current contents of
the clipboard as an array by using uiimport.

Definitions The clipboard function requires Oracle® Java software.

See Also load | mat2str | uiimport

1-1011

clock

Purpose Current date and time as date vector

Syntax c = clock

Description c = clock returns a six-element date vector containing the current
date and time in decimal form:

“[year month day hour minute seconds]”

Examples Round clock Output to Integer Display

Use clock to return the current date and time.

format shortg
c = clock

c =

2014 1 17 15 46 3

The sixth element of the date vector output (seconds) is accurate to
several digits beyond the decimal point.

Use the fix function to round to integer display format.

fix(c)

ans =

2014 1 17 15 46 37

Tips • To time the duration of an event, use the timeit or tic and toc
functions instead of clock and etime. The clock function is based on

1-1012

clock

the system time, which can be adjusted periodically by the operating
system, and thus might not be reliable in time comparison operations.

See Also date | now | tic | toc | cputime | etime | fix | timeit

1-1013

close

Purpose Remove specified figure

Syntax close
close(h)
close name
close all
close all hidden
close all force
status = close(...)

Description close deletes the current figure or the specified figure(s). It optionally
returns the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix,
close deletes all figures identified by h.

close name deletes the figure with the specified name.

close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden
handles.

close all force deletes all figures, including GUIs for which
CloseRequestFcn has been altered to not close the window.

status = close(...) returns 1 if the specified windows have been
deleted and 0 otherwise.

Algorithms The close function works by evaluating the specified figure’s
CloseRequestFcn property with the statement

eval(get(h,'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure
using delete(get(0,'CurrentFigure')). If you specify multiple figure
handles, close executes each figure’s CloseRequestFcn in turn. If an
error that terminates the execution of a CloseRequestFcn occurs, the

1-1014

close

figure is not deleted. Note that using your computer’s window manager
(i.e., the Close menu item) also calls the figure’s CloseRequestFcn.

If a figure’s handle is hidden (i.e., the figure’s HandleVisibility
property is set to callback or off and the root ShowHiddenHandles
property is set to on), you must specify the hidden option when trying
to access a figure using the all option.

To delete all figures unconditionally, use the statements

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

The figure CloseRequestFcn allows you to either delay or abort the
closing of a figure once the close function has been issued. For
example, you can display a dialog box to see if the user really wants to
delete the figure or save and clean up before closing.

When coding a CloseRequestFcn callback, make sure that it does not
call close, because this sets up a recursion that results in a MATLAB
warning. Instead, the callback should destroy the figure with delete.
The delete function does not execute the figure’s CloseRequestFcn; it
simply deletes the specified figure.

See Also delete | figure | gcf | Figure: HandleVisibility | Root:
ShowHiddenHandles

1-1015

Tiff.close

Purpose Close Tiff object

Syntax tiffobj.close()

Description tiffobj.close() closes a Tiff object.

Examples Close Tiff Object

Open a Tiff object and then close it.

t = Tiff('example.tif','r');
t.close();

References This method corresponds to the TIFFClose function in the LibTIFF
C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTiff
- TIFF Library and Utilities.

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-1016

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

close (avifile)

Purpose Close Audio/Video Interleaved (AVI) file

Syntax aviobj = close(aviobj)

Description aviobj = close(aviobj) finishes writing and closes the AVI file
associated with aviobj, which is an AVI file object created using the
avifile function.

To close all open AVI files, use the clear mex command.

See Also avifile | addframe (avifile) | movie2avi

1-1017

FTP.close

Purpose Close connection to FTP server

Syntax close(ftpobj)

Description close(ftpobj) closes the connection to the FTP server.

Tips • If you do not run close at the end of your session, the connection
either times out automatically or terminates when you exit MATLAB.

• After calling close, calling any other FTP method on the same object
automatically reopens the connection.

• close does not return any output to indicate success or failure.

Input
Arguments

ftpobj

FTP object created by ftp.

Examples Connect to the MathWorks FTP server, and then disconnect:

mw=ftp('ftp.mathworks.com');
close(mw)

See Also ftp

1-1018

VideoWriter.close

Purpose Close file after writing video data

Syntax close(writerObj)

Description close(writerObj) closes the file associated with object writerObj.
The object remains in the workspace. If you call the open method after
closing, open discards any existing contents of the file.

Input
Arguments

writerObj

VideoWriter object created by the VideoWriter function.

Examples AVI File from Animation

Write a sequence of frames to a compressed AVI file, peaks.avi.

Prepare the new file.

writerObj = VideoWriter('peaks.avi');
open(writerObj);

Generate initial data and set axes and figure properties.

Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');
set(gcf,'Renderer','zbuffer');

Setting the Renderer property to zbuffer or Painters works around
limitations of getframe with the OpenGL® renderer on some Windows
systems.

Create a set of frames and write each frame to the file.

for k = 1:20
surf(sin(2*pi*k/20)*Z,Z)
frame = getframe;
writeVideo(writerObj,frame);

1-1019

VideoWriter.close

end

close(writerObj);

See Also writeVideo | VideoWriter | open

1-1020

closereq

Purpose Default figure close request function

Syntax closereq

Description closereq deletes the current figure.

See Also | CloseRequestFcn

1-1021

../ref/figure_props.html#CloseRequestFcn

cmopts

Purpose Name of source control system

Syntax cmopts

Description cmopts returns the name of your version control system.

Output
Arguments

Value Returned
by cmopts

Description Platform
Supported On

clearcase ClearCase® software from
IBM® Rational®

UNIX platforms

customverctrl Custom interface created
using customverctrl
function

UNIX platforms

cvs Concurrent Version
System (CVS)

UNIX platforms

none No source control system
selected

pvcs PVCS® and ChangeMan®

software
UNIX platforms

rcs Revision Control System
(RCS)

UNIX platforms

Any
SCC-compliant
source control
system, for
example,
Microsoft
Visual
SourceSafe

Varies Windows platforms

1-1022

cmopts

Alternatives To view the currently selected source control system, click the
Preferences button on the Home tab, and select General > Source
Control.

See Also checkin | checkout | customverctrl | undocheckout | verctrl

How To • “Source Control Interface on Microsoft Windows”

• “Source Control Interface on UNIX Platforms”

1-1023

cmpermute

Purpose Rearrange colors in colormap

Syntax [Y,newmap] = cmpermute(X,map)
[Y,newmap] = cmpermute(X,map,index)

Description [Y,newmap] = cmpermute(X,map) randomly reorders the colors in
map to produce a new colormap, newmap. The cmpermute function also
modifies the values in X to maintain correspondence between the
indices and the colormap, and returns the result in Y. The image Y and
associated colormap, newmap, produce the same image as X and map.

[Y,newmap] = cmpermute(X,map,index) uses an ordering matrix
(such as the second output of sort) to define the order of colors in the
new colormap.

Class
Support

The input image X can be of class uint8 or double. Y is returned as
an array of the same class as X.

Examples Randomly Reorder Colormap and Display Image

Load the clown data set to get image X and its associated colormap, map.
Display the image.

load clown
figure;
image(X);
colormap(map)

1-1024

cmpermute

Randomly reorder the colormap to get the new colormap, newmap.
Display image X with the new colormap.

[Y, newmap] = cmpermute(X,map);
colormap(newmap)

1-1025

cmpermute

See Also randperm | sort

1-1026

cmunique

Purpose Eliminate duplicate colors in colormap; convert grayscale or truecolor
image to indexed image

Syntax [Y,newmap] = cmunique(X,map)
[Y,newmap] = cmunique(RGB)
[Y,newmap] = cmunique(I)

Description [Y,newmap] = cmunique(X,map) returns the indexed image Y and
associated colormap, newmap, that produce the same image as (X,map)
but with the smallest possible colormap. The cmunique function
removes duplicate rows from the colormap and adjusts the indices in
the image matrix accordingly.

[Y,newmap] = cmunique(RGB) converts the truecolor image RGB to the
indexed image Y and its associated colormap, newmap. The return value
newmap is the smallest possible colormap for the image, containing one
entry for each unique color in RGB.

Note newmap might be very large, because the number of entries can
be as many as the number of pixels in RGB.

[Y,newmap] = cmunique(I) converts the grayscale image I to an
indexed image Y and its associated colormap, newmap. The return value,
newmap, is the smallest possible colormap for the image, containing one
entry for each unique intensity level in I.

Class
Support

The input image can be of class uint8, uint16, or double. The class of
the output image Y is uint8 if the length of newmap is less than or equal
to 256. If the length of newmap is greater than 256, Y is of class double.

Examples Eliminate Duplicate Entries in Colormap

Use the magic function to define X as a 4-by-4 array that uses every
value in the range between 1 and 16.

1-1027

cmunique

X = magic(4);

Use the gray function to create an eight-entry colormap. Then,
concatenate the two eight-entry colormaps to create a colormap with
16 entries, map. In map, entries 9 through 16 are duplicates of entries 1
through 8.

map = [gray(8); gray(8)];
size(map)

ans =

16 3

Use cmunique to eliminate duplicate entries in the colormap.

[Y, newmap] = cmunique(X, map);
size(newmap)

ans =

8 3

cmunique adjusts the values in the original image X so that Y and
newmap produce the same image as X and map.

figure
image(X)
colormap(map)
title('X and map')

figure
image(Y)

1-1028

cmunique

colormap(newmap)
title('Y and newmap')

1-1029

cmunique

See Also rgb2ind

1-1030

colamd

Purpose Column approximate minimum degree permutation

Syntax p = colamd(S)

Description p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix
S, S(:,p) tends to have sparser LU factors than S. The Cholesky
factorization of S(:,p)' * S(:,p) also tends to be sparser than that
of S'*S.

knobs is a two-element vector. If S is m-by-n, then rows with more
than (knobs(1))*n entries are ignored. Columns with more than
(knobs(2))*m entries are removed prior to ordering, and ordered last in
the output permutation p. If the knobs parameter is not present, then
knobs(1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and
the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by
colamd

stats(2) Number of dense or empty columns ignored by
colamd

stats(3) Number of garbage collections performed on the
internal data structure used by colamd (roughly
of size 2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or
contains duplicate entries, or 0 if no such
column exists

1-1031

colamd

stats(6) Last seen duplicate or out-of-order row index in
the column index given by stats(5), or 0 if no
such row index exists

stats(7) Number of duplicate and out-of-order row
indices

Although MATLAB built-in functions generate valid sparse matrices, a
user may construct an invalid sparse matrix using the MATLAB C or
Fortran APIs and pass it to colamd. For this reason, colamd verifies
that S is valid:

• If a row index appears two or more times in the same column, colamd
ignores the duplicate entries, continues processing, and provides
information about the duplicate entries in stats(4:7).

• If row indices in a column are out of order, colamd sorts each column
of its internal copy of the matrix S (but does not repair the input
matrix S), continues processing, and provides information about the
out-of-order entries in stats(4:7).

• If S is invalid in any other way, colamd cannot continue. It prints an
error message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Examples Compare Sparse Matrix and LU Factorization

The Harwell-Boeing collection of sparse matrices and the MATLAB®
demos directory include a test matrix west0479. It is a matrix of order
479 resulting from a model due to Westerberg of an eight-stage chemical
distillation column. The spy plot shows evidence of the eight stages.
The colamd ordering scrambles this structure.

load west0479
A = west0479;
p = colamd(A);

figure();
subplot(1,2,1), spy(A,4), title('A')

1-1032

colamd

subplot(1,2,2), spy(A(:,p),4), title('A(:,p)')

Comparing the spy plot of the LU factorization of the original matrix
with that of the reordered matrix shows that minimum degree reduces
the time and storage requirements by better than a factor of 2.8. The
nonzero counts are 15918 and 5920, respectively.

figure();
subplot(1,2,1), spy(lu(A),4), title('lu(A)')
subplot(1,2,2), spy(lu(A(:,p)),4), title('lu(A(:,p))')

1-1033

colamd

References [1] The authors of the code for “colamd” are Stefan I. Larimore
and Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,
Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

See Also colperm | spparms | symamd | symrcm

1-1034

http://www.cise.ufl.edu/research/sparse/

colorbar

Purpose Colorbar showing color scale

Syntax colorbar
colorbar('off')
colorbar('hide')
colorbar('delete')
colorbar(...,'peer',axes_handle)
colorbar(...,'location')
colorbar(...,'PropertyName',propertyvalue)
cbar_axes = colorbar(...)
colorbar('option')
colorbar(cbar_handle,'option')

Description The colorbar function displays the current colormap in the current
figure and resizes the current axes to accommodate the colorbar.

colorbar adds a new vertical colorbar on the right side of the current
axes. If a colorbar exists in that location, colorbar replaces it with a
new one. If a colorbar exists at a nondefault location, it is retained
along with the new colorbar.

colorbar('off'), colorbar('hide'), and colorbar('delete')
delete all colorbars associated with the current axes.

colorbar(...,'peer',axes_handle) creates a colorbar associated
with the axes axes_handle instead of the current axes.

colorbar(...,'location') adds a colorbar in the specified orientation
with respect to the axes. If a colorbar exists at the location specified,
it is replaced. Any colorbars not occupying the specified location are
retained. Possible values for location are

North Inside plot box near top

South Inside bottom

East Inside right

West Inside left

1-1035

colorbar

NorthOutside Outside plot box near top

SouthOutside Outside bottom

EastOutside Outside right

WestOutside Outside left

Using one of the ...Outside values for location ensures that the
colorbar does not overlap the plot, whereas overlaps can occur when you
specify any of the other four values.

colorbar(...,'PropertyName',propertyvalue) specifies property
names and values for the axes object used to create the colorbar. See
Axes Properties for a description of the properties you can set. The
location property applies only to colorbars and legends, not to axes.

cbar_axes = colorbar(...) returns a handle to a new colorbar
object, which is a child of the current figure. If a colorbar exists, a new
one is still created.

colorbar('option') specifies options for colorbar visibility. ‘option’ is
one of 'off', `hide' or `delete'. All of the options delete the colorbar
in the current axes.

colorbar(cbar_handle,'option') specifies options for colorbar
visibility. 'option' is one of 'off', `hide' or `delete'. All of the
options delete the colorbar specified by the cbar_handle.

You can use colorbar with 2-D and 3-D plots.

Tips To obtain the handle to an existing colorbar, use the command

cbar_handle = findobj(figure_handle,'tag','Colorbar')

where figure_handle is the handle of the figure containing the colorbar
you want to modify. If the figure contains more than one colorbar,
cbar_handle is returned as a vector, and you must choose which of
the handles to specify to colorbar.

1-1036

colorbar

Examples Display a colorbar beside the axes and use descriptive text strings as
y-tick labels. Labels repeat cyclically when the number of y-ticks is
greater than the number of labels, and not all labels will appear if there
are fewer y-ticks than labels you have specified. Also note that when
colorbars are horizontal, their ticks and labels are governed by the
XTick property rather than the YTick property.

surf(peaks(30))
colorbar('YTickLabel',...

{'Freezing','Cold','Cool','Neutral',...
'Warm','Hot','Burning','Nuclear'})

1-1037

colorbar

1-1038

colorbar

Display a horizontal colorbar beneath the axes of a filled contour plot:

contourf(peaks(60))
colormap cool
colorbar('location','southoutside')

Alternatives Add a colorbar to a plot with the colorbar tool on the figure toolbar,
or use Insert > Colorbar from the figure menu. Use the Property
Editor to modify the position, font and other properties of a legend.

1-1039

colorbar

See Also colormap

1-1040

colordef

Purpose Set default property values to display different color schemes

Syntax colordef white
colordef black
colordef none
colordef(fig,color_option)
h = colordef('new',color_option)

Description colordef enables you to select either a white or black background for
graphics display. It sets axis lines and labels so that they contrast with
the background color.

colordef white sets the axis background color to white, the axis lines
and labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines
and labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB
Version 4. The most noticeable difference is that the axis background
is set to 'none', making the axis background and figure background
colors the same. The figure background color is set to black.

colordef(fig,color_option) sets the color scheme of the figure
identified by the handle fig to one of the color options 'white',
'black', or 'none'. When you use this syntax to apply colordef to an
existing figure, the figure must have no graphic content. If it does, you
should first clear it (via clf) before using this form of the command.

h = colordef('new',color_option) returns the handle to a new
figure created with the specified color options (i.e., 'white', 'black', or
'none'). This form of the command is useful for creating GUIs when
you may want to control the default environment. The figure is created
with 'visible','off' to prevent flashing.

Tips colordef affects only subsequently drawn figures, not those currently
on the display. This is because colordef works by setting default
property values (on the root or figure level). You can list the currently
set default values on the root level with the statement

1-1041

colordef

get(0,'Default')

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

See Also whitebg | clf

1-1042

colormap

Purpose Set and get current colormap

Syntax colormap(map)
colormap('default')
cmap = colormap
colormap(ax,...)

Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0.
Each row is an RGB vector that defines one color. The kth row of the
colormap defines the kth color, where map(k,:) = [r(k) g(k) b(k)])
specifies the intensity of red, green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in
map are outside the interval [0 1], you receive the error Colormap must
have values in [0,1].

colormap('default') sets the current colormap to the default
colormap.

cmap = colormap retrieves the current colormap. The values returned
are in the interval [0 1].

colormap(ax,...) uses the figure corresponding to axes ax instead of
the current figure.

Specifying Colormaps

Files in the color folder generate a number of colormaps. Each file
accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, a
colormap the same size as the current colormap is created.

Supported Colormaps

The built-in MATLAB colormaps are illustrated and described below.
In addition to specifying built-in colormaps programmatically, you can
use the Colormap menu in the Figure Properties pane of the Plot
Tools GUI to select one interactively.

1-1043

colormap

The named built-in colormaps are the following:

• autumn varies smoothly from red, through orange, to yellow.

• bone is a grayscale colormap with a higher value for the blue
component. This colormap is useful for adding an “electronic” look
to grayscale images.

• colorcube contains as many regularly spaced colors in RGB color
space as possible, while attempting to provide more steps of gray,
pure red, pure green, and pure blue.

• cool consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

• copper varies smoothly from black to bright copper.

• flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

• gray returns a linear grayscale colormap.

1-1044

colormap

• hot varies smoothly from black through shades of red, orange, and
yellow, to white.

• hsv varies the hue component of the hue-saturation-value color
model. The colors begin with red, pass through yellow, green, cyan,
blue, magenta, and return to red. The colormap is particularly
appropriate for displaying periodic functions. hsv(m) is the same
as hsv2rgb([h ones(m,2)]) where h is the linear ramp, h =
(0:m 1)'/m.

• jet ranges from blue to red, and passes through the colors cyan,
yellow, and orange. It is a variation of the hsv colormap. The jet
colormap is associated with an astrophysical fluid jet simulation
from the National Center for Supercomputer Applications. See
“Examples” on page 1-1045.

• lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

• pink contains pastel shades of pink. The pink colormap provides
sepia tone colorization of grayscale photographs.

• prism repeats the six colors red, orange, yellow, green, blue, and
violet.

• spring consists of colors that are shades of magenta and yellow.

• summer consists of colors that are shades of green and yellow.

• white is an all white monochrome colormap.

• winter consists of colors that are shades of blue and green.

Examples Use Summer Colormap

Create a surface plot of the peaks function.

figure;
surf(peaks);

1-1045

colormap

Change the colormap to the summer colormap.

colormap(summer)

1-1046

colormap

Use Bone Colormap

Load the spine data set to get array X. Use the image function to
display the data in X.

load spine
image(X)

1-1047

colormap

Change the colormap to the bone colormap.

colormap(bone)

1-1048

colormap

Algorithms Each figure has its own colormap property. colormap is a function
that sets and gets this property.

Alternatives Select a built-in colormap with the Property Editor. To modify the
current colormap, use the Colormap Editor, accessible from Edit >
Colormap on the figure menu.

1-1049

colormap

See Also brighten | caxis | colorbar | colormapeditor | contrast | hsv2rgb
| pcolor | rgbplot | rgb2hsv | Colormap

How To • “Coloring Mesh and Surface Plots”

1-1050

colormapeditor

Purpose Open colormap editor

Syntax colormapeditor

Description colormapeditor displays the current figure’s colormap as a strip of
rectangular cells in the colormap editor. Node pointers are colored cells
below the colormap strip that indicate points in the colormap where
the rate of the variation of R, G, and B values changes. You can also
work in the HSV colorspace by setting the Interpolating Colorspace
selector to HSV.

You can also start the colormap editor by selecting Colormap from
the Edit menu.

Node Pointer Operations

You can select and move node pointers to change a range of colors in
the colormap. The color of a node pointer remains constant as you move
it, but the colormap changes by linearly interpolating the RGB values
between nodes.

Change the color at a node by double-clicking the node pointer. A color
picker box appears, from which you can select a new color. After you
select a new color at a node, the colors between nodes are reinterpolated.

You can select a different color map using the Standard Colormaps
submenu of the GUI Tools menu. The Plotting Tools Property Editor
has a dropdown menu that also lets you select from standard colormaps,
but does not help you to modify a colormap.

Operation How to Perform

Select a built-in colormap Tools > Standard Colormaps

Add a node Click below the corresponding cell in
the colormap strip.

Select a node Left-click the node.

1-1051

colormapeditor

Operation How to Perform

Select multiple nodes Adjacent: left-click first node,
Shift+click the last node.

Nonadjacent: left-click first node,
Ctrl+click subsequent nodes.

Move a node Select and drag with the mouse or
select and use the left and right arrow
keys.

Move multiple nodes Select multiple nodes and use the left
and right arrow keys to move nodes as
a group. Movement stops when one of
the selected nodes hits an unselected
node or an end node.

Delete a node Select the node and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Delete multiple nodes Select the nodes and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Display color picker for a
node

Double-click the node pointer.

Current Color Info

When you put the mouse over a color cell or node pointer, the colormap
editor displays the following information about that colormap element:

• The element’s index in the colormap

• The value from the graphics object color data that is mapped to the
node’s color (i.e., data from the CData property of any image, patch,
or surface objects in the figure)

• The color’s RGB and HSV color value

1-1052

colormapeditor

Interpolating Colorspace

The colorspace determines what values are used to calculate the colors
of cells between nodes. For example, in the RGB colorspace, internode
colors are calculated by linearly interpolating the red, green, and blue
intensity values from one node to the next. Switching to the HSV
colorspace causes the colormap editor to recalculate the colors between
nodes using the hue, saturation, and value components of the color
definition.

Note that when you switch from one colorspace to another, the color
editor preserves the number, color, and location of the node pointers,
which can cause the colormap to change.

1-1053

colormapeditor

Interpolating in HSV. Since hue is conceptually mapped about a
color circle, the interpolation between hue values can be ambiguous.
To minimize this ambiguity, the interpolation uses the shortest
distance around the circle. For example, interpolating between
two nodes, one with hue of 2 (slightly orange red) and another
with a hue of 356 (slightly magenta red), does not result in hues
3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).
Taking the shortest distance around the circle gives 357,358,1,2
(orange/red-red-magenta/red).

Color Data Min and Max

The Color Data Min and Color Data Max text fields enable you to
specify values for the axes CLim property. These values change the
mapping of object color data (the CData property of images, patches,
and surfaces) to the colormap. See “Axes Color Limits — the CLim
Property” for discussion and examples of how to use this property.

Examples This example modifies a default MATLAB colormap so that ranges of
data values are displayed in specific ranges of color. The graph is a slice
plane illustrating a cross section of fluid flow through a jet nozzle. See
the slice reference page for more information on this type of graph.

Example Objectives

The objectives are as follows:

• Regions of flow from left to right (positive data) are mapped to colors
from yellow through orange to dark red. Yellow is slowest and dark
red is the fastest moving fluid.

• Regions that have a speed close to zero are colored green.

• Regions where the fluid is actually moving right to left (negative
data) are shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The
colorbar shows the data to color mapping.

1-1054

../ref/axes_props.html#CLim

colormapeditor

Running the Example

Note If you are viewing this documentation in the MATLAB help
browser, you can display the graph used in this example by running this
file from the MATLAB editor (select Run from the Debug menu).

Initially, the default colormap (jet) colored the slice plane, as illustrated
in the following picture. Note that this example uses a colormap that is
48 elements to display wider bands of color (the default is 64 elements).

1-1055

colormapeditor

1 Start the colormap editor using the colormapeditor command. The
color map editor displays the current figure’ s colormap, as shown
in the following picture.

1-1056

colormapeditor

2 Since we want the regions of left-to-right flow (positive speed) to
range from yellow to dark red, we can delete the cyan node pointer.
To do this, first select it by clicking with the left mouse button and
press Delete. The colormap now looks like this.

1-1057

colormapeditor

The Immediate Apply box is checked, so the graph displays the
results of the changes made to the colormap.

1-1058

colormapeditor

3 We want the fluid speed values around zero to stand out, so we need
to find the color cell where the negative-to-positive transition occurs.
Dragging the cursor over the color strip enables you to read the data
values in the Current Color Info panel.

In this case, cell 10 is the first positive value, so we click below that
cell and create a node pointer. Double-clicking the node pointer
displays the color picker. Set the color of this node to green.

1-1059

colormapeditor

The graph continues to update to the modified colormap.

1-1060

colormapeditor

4 In the current state, the colormap colors are interpolated from the
green node to the yellowish node about 20 cells away. We actually
want only the single cell that is centered around zero to be colored
green. To limit the color green to one cell, move the blue and yellow
node pointers next to the green pointer.

1-1061

colormapeditor

5 Before making further adjustments to the colormap, we need to move
the green cell so that it is centered around zero. Use the colorbar to
locate the green cell.

1-1062

colormapeditor

To recenter the green cell around zero, select the blue, green, and
yellow node pointers (left-click blue, Shift+click yellow) and move
them as a group using the left arrow key. Watch the colorbar in the
figure window to see when the green color is centered around zero.

1-1063

colormapeditor

The slice plane now has the desired range of colors for negative, zero,
and positive data.

1-1064

colormapeditor

6 Increase the orange-red coloring in the slice by moving the red node
pointer toward the yellow node.

1-1065

colormapeditor

7 Darken the endpoints to bring out more detail in the extremes of the
data. Double-click the end nodes to display the color picker. Set the
red endpoint to the RGB value [50 0 0] and set the blue endpoint to
the RGB value [0 0 50].

The slice plane coloring now matches the example objectives.

1-1066

colormapeditor

Saving the Modified Colormap

You can save the modified colormap using the colormap function or the
figure Colormap property.

After you have applied your changes, save the current figure colormap
in a variable:

mycmap = get(fig,'Colormap');

To use this colormap in another figure, set that figure’s Colormap
property:

set(new_fig,'Colormap',mycmap)

To save your modified colormap in a MAT-file, use the save command
to save the mycmap workspace variable:

save('MyColormaps','mycmap')

To use your saved colormap in another MATLAB session, load the
variable into the workspace and assign the colormap to the figure:

1-1067

../ref/figure_props.html#Colormap

colormapeditor

load('MyColormaps','mycmap')
set(fig,'Colormap',mycmap)

See Also colormap | get | load | propertyeditor | save | set

How To • “Colormaps”

1-1068

ColorSpec (Color Specification)

Purpose Color specification

Description ColorSpec is not a function; it refers to the three ways in which you
specify color for MATLAB graphics:

• RGB triple

• Short name

• Long name

The short names and long names are MATLAB strings that specify
one of eight predefined colors. The RGB triple is a three-element row
vector whose elements specify the intensities of the red, green, and blue
components of the color; the intensities must be in the range [0 1]. The
following table lists the predefined colors and their RGB equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

Tips The eight predefined colors and any colors you specify as RGB values
are not part of a figure’s colormap, nor are they affected by changes to
the figure’s colormap. They are referred to as fixed colors, as opposed
to colormap colors.

Some high-level functions (for example, scatter) accept a colorspec as
an input argument and use it to set the CData of graphic objects they
create. When using such functions, take care not to specify a colorspec

1-1069

ColorSpec (Color Specification)

in a property/value pair that sets CData; values for CData are always
n-length vectors or n-by-3 matrices, where n is the length of XData and
YData, never strings.

Examples To change the background color of a figure to green, specify the color
with a short name, a long name, or an RGB triple. These statements
generate equivalent results:

whitebg('g')
whitebg('green')
whitebg([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For
example, this statement changes the figure background color to pink:

set(gcf,'Color',[1,0.4,0.6])

See Also bar | bar3 | colordef | colormap | fill | fill3 | whitebg |
uisetcolor

1-1070

colperm

Purpose Sparse column permutation based on nonzero count

Syntax j = colperm(S)

Description j = colperm(S) generates a permutation vector j such that the
columns of S(:,j) are ordered according to increasing count of nonzero
entries. This is sometimes useful as a preordering for LU factorization;
in this case use lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so
that both the rows and columns of S(j,j) are ordered according to
increasing count of nonzero entries. If S is positive definite, this is
sometimes useful as a preordering for Cholesky factorization; in this
case use chol(S(j,j)).

Algorithms The algorithm involves a sort on the counts of nonzeros in each column.

Examples The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, lu(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the
bottom and the rear, and lu(A(j,j)) has the same nonzero structure
as A itself.

On the other hand, the Bucky ball example,

B = bucky

has exactly three nonzero elements in each row and column, so j
= colperm(B) is the identity permutation and is no help at all for
reducing fill-in with subsequent factorizations.

1-1071

colperm

See Also chol | colamd | lu | spparms | symamd | symrcm

1-1072

Combine

Purpose Convenience function for static .NET System.Delegate Combine method

Syntax result = Combine(delegateA,delegateB)

Description result = Combine(delegateA,delegateB) combines two delegates
into a new delegate.

Input
Arguments

delegateA

.NET System.Delegate object. The first delegate in the new delegate.

delegateB

.NET System.Delegate object. The last delegate in the new delegate.

Output
Arguments

result

.NET System.Delegate object. A new delegate that delegates to the
input delegate delegateA, then delegateB

Alternatives Use the static Combine method of the System.Delegate class.

See Also Remove | RemoveAll

How To • “Combine and Remove .NET Delegates”

Related
Links

• MSDN System.Delegate.Combine Method reference page

1-1073

http://msdn.microsoft.com/en-us/library/30cyx32c.aspx

comet

Purpose 2-D comet plot

Syntax comet(y)
comet(x,y)
comet(x,y,p)
comet(axes_handle,...)

Description comet(y) displays a comet graph of the vector y. A comet graph is an
animated graph in which a circle (the comet head) traces the data
points on the screen. The comet body is a trailing segment that follows
the head. The tail is a solid line that traces the entire function.

comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults
to 0.1.

comet(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

Examples Create a simple comet graph:

t = 0:.01:2*pi;
x = cos(2*t).*(cos(t).^2);
y = sin(2*t).*(sin(t).^2);
comet(x,y);

1-1074

comet

See Also comet3

1-1075

comet3

Purpose 3-D comet plot

Syntax comet3(z)
comet3(x,y,z)
comet3(x,y,z,p)
comet3(axes_handle,...)

Description A comet plot is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet3(z) displays a 3-D comet graph of the vector z.

comet3(x,y,z) displays a comet graph of the curve through the points
[x(i),y(i),z(i)].

comet3(x,y,z,p) specifies a comet body of length p*length(y). p must
be between 0 and 1.

comet3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

Tips The trace left by comet3 is created by using an EraseMode of none, which
means you cannot print the graph (you get only the comet head), and it
disappears if you cause a redraw (for example, by resizing the window).

Examples Create a 3-D comet graph.

t = -10*pi:pi/250:10*pi;
comet3((cos(2*t).^2).*sin(t),(sin(2*t).^2).*cos(t),t);

See Also comet

1-1076

commandhistory

Purpose Open Command History window, or select it if already open

Syntax commandhistory

Description commandhistory opens the MATLAB Command History window when
it is closed, and selects the Command History window when it is open.
The Command History window presents a log of the statements most
recently run in the Command Window.

See Also diary | prefdir | startup

How To • “Command History”

1-1077

commandwindow

Purpose Open Command Window, or select it if already open

Syntax commandwindow

Description commandwindow opens the MATLAB Command Window when it is
closed, and selects the Command Window when it is open.

Tips To determine the number of columns and rows that display in the
Command Window, given its current size, use

matlab.desktop.commandwindow.size

The number of columns is based on the width of the Command Window.
With the matrix display width preference set to 80 columns, the number
of columns is always 80.

See Also commandhistory | input | inputdlg

How To • “Optimize Desktop Layout for Limited Screen Space”

• “Set Command Window Preferences”

1-1078

compan

Purpose Companion matrix

Syntax A = compan(u)

Description A = compan(u) returns the corresponding companion matrix whose
first row is -u(2:n)/u(1), where u is a vector of polynomial coefficients.
The eigenvalues of compan(u) are the roots of the polynomial.

Examples The polynomial (x – 1)(x – 2)(x + 3) = x3 – 7x + 6 has a companion matrix
given by

u = [1 0 -7 6]
A = compan(u)
A =

0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))

ans =
-3.0000
2.0000
1.0000

This is also roots(u).

See Also eig | poly | polyval | roots

1-1079

compass

Purpose Plot arrows emanating from origin

Syntax compass(U,V)
compass(Z)
compass(...,LineSpec)
compass(axes_handle,...)
h = compass(...)

Description A compass graph displays the vectors with components (U,V) as arrows
emanating from the origin. U, V, and Z are in Cartesian coordinates and
plotted on a circular grid.

compass(U,V) displays a compass graph having n arrows, where n is
the number of elements in U or V. The location of the base of each arrow
is the origin. The location of the tip of each arrow is a point relative to
the base and determined by [U(i),V(i)].

compass(Z) displays a compass graph having n arrows, where n is the
number of elements in Z. The location of the base of each arrow is the
origin. The location of the tip of each arrow is relative to the base as
determined by the real and imaginary components of Z. This syntax is
equivalent to compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass graph using the line type,
marker symbol, and color specified by LineSpec.

compass(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = compass(...) returns handles to line objects.

Examples Create Compass Graph

Create a compass graph of the eigenvalues of a random matrix.

rng(0,'twister') % initialize random number generator

1-1080

compass

M = randn(20,20);
Z = eig(M);

figure
compass(Z)

See Also feather | polar | LineSpec | quiver | rose

1-1081

complex

Purpose Create complex array

Syntax z = complex(a,b)
z = complex(x)

Description z = complex(a,b) creates a complex output, z, from two real inputs,
such that z = a + bi.

The complex function provides a useful substitute for expressions, such
as a + 1i*b or a + 1j*b, when

• a and b are not double or single

• b is all zeros

z = complex(x) returns the complex equivalent of x, such that
isreal(z) returns logical 0 (false).

• If x is real, then z is x + 0i.

• If x is complex, then z is identical to x.

Input
Arguments

a - Real component
scalar | vector | matrix | multidimensional array

Real component, specified as a scalar, vector, matrix, or
multidimensional array.

The size of a must match the size of b, unless one is a scalar. If either
a or b is a scalar, MATLAB expands the scalar to match the size of
the other input.

a and b must be the same data type with the following exceptions:

• single can combine with double.

• scalar double can combine with an integer data type.

1-1082

complex

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

b - Imaginary component
scalar | vector | matrix | multidimensional array

Imaginary component, specified as a scalar, vector, matrix, or
multidimensional array.

The size of b must match the size of a, unless one is a scalar. If either
a or b is a scalar, MATLAB expands the scalar to match the size of
the other input.

a and b must be the same data type with the following exceptions:

• single can combine with double.

• scalar double can combine with an integer data type.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

x - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

Output
Arguments

z - Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a scalar, vector, matrix, or multidimensional
array.

The size of z is the same as the input arguments.

1-1083

complex

The following describes the data type of z, when a and b have different
data types.

• If either a or b is single, then z is single.

• If either a or b is an integer data type, then z is the same integer
data type.

Examples Complex Scalar from Two Real Scalars

Use the complex function to create the complex scalar, 3 + 4i.

z = complex(3,4)

z =

3.0000 + 4.0000i

Complex Vector from Two Complex Vectors

Create a complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4]);
b = uint8([2;2;7;7]);

z = complex(a,b)

z =

1 + 2i
2 + 2i
3 + 7i
4 + 7i

The size of z, 4-by-1, is the same as the size of the input arguments.

Complex Scalar from One Real Scalar

Create a complex scalar with zero imaginary part.

z = complex(12)

1-1084

complex

z =

12.0000 + 0.0000i

Verify that z is complex.

isreal(z)

ans =

0

Tips • If b contains only zeros, then z is complex and the value of all its
imaginary components is 0. In contrast, the addition a + 0i returns
a strictly real result.

See Also abs | angle | conj | i | imag | isreal | j | real

Concepts • “Complex Numbers”

1-1085

Tiff.computeStrip

Purpose Index number of strip containing specified coordinate

Syntax stripNumber = tiffobj.computeStrip(row)
stripNumber = tiffobj.computeStrip(row,plane)

Description stripNumber = tiffobj.computeStrip(row) returns the index
number of the strip containing the given row. The value of row must be
one-based.

stripNumber = tiffobj.computeStrip(row,plane) returns
the index number of the strip containing the given row in the
specified plane, if the value of the PlanarConfiguration tag is
Tiff.PlanarConfiguration.Separate. The values of row and plane
must be one-based.

computeStrip clamps out-of-range coordinate values to the bounds of
the image.

Examples Determine Index Number of Strip

Determine the index number of the strip containing a row in the second
image of a file.

Create a Tiff object associated with the example file, example.tif, and
make the second image the current directory.

t = Tiff('example.tif','r');
t.setDirectory(2);

Get the number of rows in the image. Then, get the index of the strip
containing the middle row.

numRows = t.getTag('ImageLength');
stripNumber = t.computeStrip(numRows/2)

stripNumber =

4

1-1086

Tiff.computeStrip

Close the Tiff object.

t.close();

References This method corresponds to the TIFFComputeStrip function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.computeTile

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-1087

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

Tiff.computeTile

Purpose Index number of tile containing specified coordinates

Syntax tileNumber = tiffobj.computeTile([row col])
tileNumber = tiffobj.computeTile([row col],plane)

Description tileNumber = tiffobj.computeTile([row col]) returns the index
number of the tile containing the pixel specified by the one-based
indices, row and col.

tileNumber = tiffobj.computeTile([row col],plane) returns the
index number of the tile containing the pixel specified by the indices
in the specified plane, if the value of the PlanarConfiguration tag is
Tiff.PlanarConfiguration.Separate. The row, column, and plane
coordinate values are one-based.

computeTile clamps out-of-range coordinate values to the bounds of
the image.

Examples Get Index Number of Tile Containing Last Pixel

Open a Tiff object and get the dimensions of the image to calculate
coordinates.

t = Tiff('example.tif','r');
numRows = t.getTag('ImageLength');
numCols = t.getTag('ImageWidth');

Get the ID number of the tile containing the coordinates.

tileNum = t.computeTile([numRows numCols])

tileNum =

110

Close the Tiff object.

t.close();

1-1088

Tiff.computeTile

References This method corresponds to the TIFFComputeTile function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTiff
- TIFF Library and Utilities.

See Also Tiff.computeStrip

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-1089

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

computer

Purpose Information about computer on which MATLAB software is running

Syntax str = computer
archstr = computer('arch')
[str,maxsize] = computer
[str,maxsize,endian] = computer

Description str = computer returns the string str with the computer type on
which MATLAB is running.

archstr = computer('arch') returns the string archstr which is used
by the mex command -arch switch.

[str,maxsize] = computer returns the integer maxsize, the maximum
number of elements allowed in an array with this version of MATLAB.

[str,maxsize,endian] = computer returns either ’L’ for little-endian
byte ordering or ’B’ for big-endian byte ordering.

Platform Word
Size

str archstr maxsizeendian ispc isunixismac

32-bitPCWIN win32 2^31
- 1

L 1 0 0Microsoft
Windows

64-bitPCWIN64 win64 2^48
- 1

L 1 0 0

Linux 64-bitGLNXA64 glnxa64 2^48
- 1

L 0 1 0

Apple
Macintosh

64-bitMACI64 maci64 2^48
- 1

L 0 1 1

Tips In some cases, both 32-bit and 64-bit versions of MATLAB can run
on the same platform. In this case, the value returned by computer
reflects which of these are running. For example, if you run a 32-bit
version of MATLAB on a Windows x64 platform, computer returns
PCWIN, indicating that the 32-bit version is running. You can get this

1-1090

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/linux.html

computer

information and the value of archstr from the Help menu, as described
in “Information About your Installation”.

See Also getenv | setenv | ispc | isunix | ismac

1-1091

cond

Purpose Condition number with respect to inversion

Syntax c = cond(X)
c = cond(X,p)

Description The condition number of a matrix measures the sensitivity of the
solution of a system of linear equations to errors in the data. It gives
an indication of the accuracy of the results from matrix inversion and
the linear equation solution. Values of cond(X) and cond(X,p) near 1
indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the
largest singular value of X to the smallest.

c = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p)

If p is... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

’fro’ Frobenius norm condition number

inf Infinity norm condition number

Algorithms The algorithm for cond (when p = 2) uses the singular value
decomposition, svd. When the input matrix is sparse, cond ignores any
specified p value and calls condest.

See Also condeig | condest | norm | normest | rank | rcond | svd

1-1092

condeig

Purpose Condition number with respect to eigenvalues

Syntax c = condeig(A)
[V,D,s] = condeig(A)

Description c = condeig(A) returns a vector of condition numbers for the
eigenvalues of A. These condition numbers are the reciprocals of the
cosines of the angles between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance | cond | eig

1-1093

condest

Purpose 1-norm condition number estimate

Syntax c = condest(A)
c = condest(A,t)
[c,v] = condest(A)

Description c = condest(A) computes a lower bound c for the 1-norm condition
number of a square matrix A.

c = condest(A,t) changes t, a positive integer parameter equal to
the number of columns in an underlying iteration matrix. Increasing
the number of columns usually gives a better condition estimate but
increases the cost. The default is t = 2, which almost always gives an
estimate correct to within a factor 2.

[c,v] = condest(A) also computes a vector v which is an
approximate null vector if c is large. v satisfies norm(A*v,1) =
norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then
use rng to set the random number generator to its startup settings
before using condest.

rng('default')

Tips This function is particularly useful for sparse matrices.

Algorithms condest is based on the 1-norm condition estimator of Hager [1] and a
block-oriented generalization of Hager’s estimator given by Higham and
Tisseur [2]. The heart of the algorithm involves an iterative search to

estimate A1
1
without computing A−1. This is posed as the convex but

nondifferentiable optimization problem max A1
1

x subject to x 1 1

1-1094

condest

References [1] William W. Hager, “Condition Estimates,” SIAM J. Sci. Stat.
Comput. 5, 1984, 311-316, 1984.

[2] Nicholas J. Higham and Françoise Tisseur, “A Block Algorithm
for Matrix 1-Norm Estimation with an Application to 1-Norm
Pseudospectra, “SIAM J. Matrix Anal. Appl., Vol. 21, 1185-1201, 2000.

See Also cond | norm | normest

1-1095

coneplot

Purpose Plot velocity vectors as cones in 3-D vector field

Syntax coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,W,Cx,Cy,Cz)
coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(...,'method')
coneplot(X,Y,Z,U,V,W,'nointerp')
coneplot(axes_handle,...)
h = coneplot(...)

Description coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones
pointing in the direction of the velocity vector and having a length
proportional to the magnitude of the velocity vector. X, Y, Z define
the coordinates for the vector field. U, V, W define the vector field.
These arrays must be the same size, monotonic, and represent a
Cartesian, axis-aligned grid (such as the data produced by meshgrid).
Cx, Cy, Cz define the location of the cones in the vector field. The
section “Specifying Starting Points for Stream Plots” in Visualization
Techniques provides more information on defining starting points.

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments)
assumes [X,Y,Z] = meshgrid(1:n,1:m,1:p), where [m,n,p]=
size(U).

coneplot(...,s) automatically scales the cones to fit the graph and
then stretches them by the scale factor s. If you do not specify a value
for s, coneplot uses a value of 1. Use s = 0 to plot the cones without
automatic scaling.

coneplot(...,color) interpolates the array color onto the vector
field and then colors the cones according to the interpolated values. The
size of the color array must be the same size as the U, V, W arrays. This
option works only with cones (that is, not with the quiver option).

coneplot(...,'quiver') draws arrows instead of cones (see quiver3
for an illustration of a quiver plot).

1-1096

coneplot

coneplot(...,'method') specifies the interpolation method to use.
method can be linear, cubic, or nearest. linear is the default. (See
interp3 for a discussion of these interpolation methods.)

coneplot(X,Y,Z,U,V,W,'nointerp') does not interpolate the positions
of the cones into the volume. The cones are drawn at positions defined
by X, Y, Z and are oriented according to U, V, W. Arrays X, Y, Z, U, V, W
must all be the same size.

coneplot(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = coneplot(...) returns the handle to the patch object used to
draw the cones. You can use the set command to change the properties
of the cones.

coneplot automatically scales the cones to fit the graph, while keeping
them in proportion to the respective velocity vectors.

Examples Plot the velocity vector cones for vector volume data representing the
motion of air through a rectangular region of space:

Load the data. The winds data set contains six 3-D arrays: u, v, and
w specify the vector components at each of the coordinates specified in
x, y, and z. The coordinates define a lattice grid structure where the
data is sampled within the volume. load wind.

load wind

Now establish the range of the data to place the slice planes and to
specify where you want the cone plots (min, max):

xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));

Use daspect to set the data aspect ratio of the axes before calling
coneplot.

1-1097

coneplot

daspect([2,2,1])

Decide where in data space you want to plot cones. This example selects
the full range of x and y in eight steps and the range 3 to 15 in four
steps in z using linspace and meshgrid.

xrange = linspace(xmin,xmax,8);
yrange = linspace(ymin,ymax,8);
zrange = 3:4:15;
[cx cy cz] = meshgrid(xrange,yrange,zrange);

Draw the cones, setting the scale factor to 5 to make the cones larger
than the default size:

hcones = coneplot(x,y,z,u,v,w,cx,cy,cz,5);

Use the jet colormap:

colormap jet

Set the coloring of each cone using FaceColor and EdgeColor:

set(hcones,'FaceColor','red','EdgeColor','none')

Calculate the magnitude of the vector field (which represents wind
speed) to generate scalar data for the slice command:

hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

Create slice planes along the x-axis at xmin and xmax, along the y-axis
at ymax, and along the z-axis at zmin:

hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);

Specify interpolated face color so the slice coloring indicates wind speed,
and do not draw edges (hold, slice, FaceColor, EdgeColor):

set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hold off

1-1098

../ref/patch_props.html#FaceColor
../ref/patch_props.html#EdgeColor
../ref/patch_props.html#FaceColor
../ref/patch_props.html#EdgeColor

coneplot

Use the axis command to set the axis limits equal to the range of the
data. axis tight. Orient the view to azimuth = 30 and elevation = 40.
(rotate3d is a useful command for selecting the best view.)

view(30,40);axis off

Select perspective projection to provide a more realistic looking volume
using camproj:

camproj perspective;

Zoom in on the scene a little to make the plot as large as possible using
camzoom:

camzoom(1.5)

The light source affects both the slice planes (surfaces) and the cone
plots (patches). However, you can set the lighting characteristics of
each independently.

Add a light source to the right of the camera and use Gouraud lighting to
give the cones and slice planes a smooth, three-dimensional appearance
using camlight and lighting:

camlight right; lighting gouraud

Increase the value of the AmbientStrength property for each slice plane
to improve the visibility of the dark blue colors:

set(hsurfaces,'AmbientStrength',0.6)

Increase the value of the DiffuseStrength property of the cones to
brighten particularly those cones not showing specular reflections:

set(hcones,'DiffuseStrength',0.8)

1-1099

../ref/surface_props.html#AmbientStrength
../ref/patch_props.html#DiffuseStrength

coneplot

See Also isosurface | patch | reducevolume | smooth3 | streamline |
stream2 | stream3 | subvolume

Tutorials • “Overview of Volume Visualization”

1-1100

conj

Purpose Complex conjugate

Syntax ZC = conj(Z)

Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithms If Z is a complex array:

conj(Z) = real(Z) - i*imag(Z)

See Also i | j | imag | real

1-1101

continue

Purpose Pass control to next iteration of for or while loop

Syntax continue

Description continue temporarily interrupts the execution of a program loop,
skipping any remaining statements in the body of the loop for the
current pass. The continue statement does not cause an immediate
exit from the loop as a break or return statement would do, but
instead continues within the loop for as long as the stated for or while
condition holds true.

A continue statement in a nested loop behaves in the same manner.
Execution resumes at the for or while statement of the loop in which
the continue statement was encountered, and reenters the loop if the
stated condition evaluates to true.

Examples Count the number of lines of code in the file magic.m, skipping all blank
lines and comments.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) || strncmp(line,'%',1) || ~ischar(line)

continue
end
count = count + 1;

end
fprintf('%d lines\n',count);
fclose(fid);

See Also for | while | end | break | return

1-1102

contour

Purpose Contour plot of matrix

Syntax contour(Z)
contour(Z,n)
contour(Z,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
contour(axes_handle,...)
[C,h] = contour(...)

Description A contour plot displays isolines of matrix Z. Label the contour lines
using clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to the x-y plane. Z must be at least a 2-by-2 matrix
that contains at least two different values. The number of contour lines
and the values of the contour lines are chosen automatically based on
the minimum and maximum values of Z. The ranges of the x- and y-axis
are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels
where n is a scalar.

contour(Z,v) draws a contour plot of matrix Z with contour lines at
the data values specified in the monotonically increasing vector v.
The number of contour levels is equal to length(v). Specifying the
vector v sets the LevelListMode to manual to allow user control over
contour levels. To display a single contour line at a particular value,
define v as a two-element vector with both elements equal to the desired
contour level. For example, to draw a single contour of level i, use
contour(Z,[i i]).

1-1103

contour

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw
contour plots of Z using X and Y to determine the x- and y-axis limits.

• If X and Y are vectors, then the length of X must equal the number of
columns in Z and the length of Y must equal the number of rows in Z.

• If X and Y are matrices, then their sizes must equal the size of Z.
If X or Y is irregularly spaced, then contour calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

contour(...,LineSpec) draws the contours using the line type and
color specified by LineSpec. contour ignores marker symbols.

contour(axes_handle,...) plots into axes axes_handle instead of
gca.

[C,h] = contour(...) returns a contour matrix, C, that contains the
data that defines the contour lines, and a handle, h, to a contourgroup
object. The clabel function uses contour matrix C to label the contour
lines. ContourMatrix is also a read-only contourgroup property that
you can obtain from the returned handle.

Use contour object properties to control the contour plot appearance.

Tips • The contour function cannot determine if there are discontinuities
in the input data. You can add NaN values to the data to prevent
drawing the contour lines in those regions.

Examples Create Contour Plot

Use the meshgrid function to generate matrices X and Y. Create a third
matrix, Z, and plot its contours.

x = linspace(-2*pi,2*pi);
y = linspace(0,4*pi);
[X,Y] = meshgrid(x,y);
Z = sin(X)+cos(Y);

figure
contour(X,Y,Z)

1-1104

contour

Specify Number of Contour Lines

Store the data from the peaks function in matrices X, Y, and Z. Plot 20
contours of the data in Z.

[X,Y,Z] = peaks;
figure
contour(X,Y,Z,20)

1-1105

contour

Display Contour Labels

Set up matrices X, Y, and Z. Create a contour plot and display the
contour labels by setting the ShowText property to on.

x = -2:0.2:2;
y = -2:0.2:3;
[X,Y] = meshgrid(x,y);
Z = X.*exp(-X.^2-Y.^2);

1-1106

contour

figure
contour(X,Y,Z,'ShowText','on')

Display Single Contour Line

Create a contour plot of the peaks function and display only one contour
level at Z = 1.

x = -3:0.125:3;
y = -3:0.125:3;

1-1107

contour

[X,Y] = meshgrid(x,y);
Z = peaks(X,Y);
v = [1,1];

figure
contour(X,Y,Z,v);

See Also clabel | contourf | contour3 | contourc | quiver | contourgroup
properties | text properties

1-1108

contour

How To • “Label Contour Plot Levels”

• “Highlight Specific Contour Levels”

1-1109

contour3

Purpose 3-D contour plot

Syntax contour3(Z)
contour3(Z,n)
contour3(Z,v)
contour3(X,Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(...,LineSpec)
contour3(axes_handle,...)
[C,h] = contour3(...)

Description contour3 creates a 3-D contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a 3-D view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a
2-by-2 matrix that contains at least two different values. The number of
contour levels and the values of contour levels are chosen automatically
based on the minimum and maximum values of Z. The ranges of the x-
and y-axis are [1:n] and [1:m], where [m,n] = size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels
in a 3-D view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at
the values specified in vector v. The number of contour levels is equal to
length(v). Specifying the vector v sets the LevelListMode to manual
to allow user control over contour levels. To display a single contour
line at a particular value, define v as a two-element vector with both
elements equal to the desired contour level. For example, to draw a
single contour of level i, use contour3(Z,[i i]).

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) draw
contour plots of Z using X and Y to determine the x- and y-axis limits.

1-1110

contour3

• If X and Y are vectors, then the length of X must equal the number of
columns in Z and the length of Y must equal the number of rows in Z.

• If X and Y are matrices, then their sizes must equal the size of Z.
If X or Y is irregularly spaced, then contour3 calculates contours using
a regularly spaced contour grid, and then transforms the data to X or Y.

contour3(...,LineSpec) draws the contour lines using the line type
and color specified by LineSpec. contour3 ignores marker symbols.

contour3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

[C,h] = contour3(...) returns a contour matrix, C, that contains
the data that defines the contour lines, and a handle, h, to an array of
handles to graphics objects. The clabel function uses contour matrix C
to label the contour lines. The graphic objects that contour3 creates are
patch objects, or if you specify a LineSpec argument, line objects.

Tips If you do not specify LineSpec, the functions colormap and caxis
control the color.

Label the contour lines using clabel.

contour3(...) works the same as contour(...) with these
exceptions:

• The contours are drawn at their corresponding Z level.

• Multiple patch or line objects are created instead of a contourgroup.

• Calling contour3 with trailing property-value pairs is not allowed.

Examples Create 3-D Contour Plot

Set up matrices X and Y using the meshgrid function. Plot 30 contours
of matrix Z.

x = -2:0.25:2;
[X,Y] = meshgrid(x);
Z = X.*exp(-X.^2-Y.^2);

1-1111

contour3

contour3(X,Y,Z,30)

See Also contour | contourc | contourf | meshc | meshgrid | surfc |
contourgroup properties

1-1112

contourc

Purpose Low-level contour plot computation

Syntax C = contourc(Z)
C = contourc(Z,n)
C = contourc(Z,v)
C = contourc(x,y,Z)
C = contourc(x,y,Z,n)
C = contourc(x,y,Z,v)

Description contourc calculates the contour matrix C used by contour, contour3,
and contourf. The values in Z determine the heights of the contour
lines with respect to a plane. The contour calculations use a regularly
spaced grid determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z,
where Z must be at least a 2-by-2 matrix. The contours are isolines
in the units of Z. The number of contour lines and the corresponding
values of the contour lines are chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour
levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines
at the values specified in vector v. The length of v determines the
number of contour levels. To compute a single contour of level i, use
contourc(Z,[i i]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C =
contourc(x,y,Z,v) compute contours of Z using vectors x and y to
determine the x- and y-axis limits. x and y must be monotonically
increasing.

Tips C is a two-row matrix specifying all the contour lines. Each contour
line defined in matrix C begins with a column that contains the value
of the contour (specified by v and used by clabel), and the number of
(x,y) vertices in the contour line. The remaining columns contain the
data for the (x,y) pairs.

C = [value1 xdata(1) xdata(2) ...

1-1113

contourc

xdata(dim1) value2 xdata(1) xdata(2) ... xdata(dim2)...
dim1 ydata(1) ydata(2) ...
ydata(dim1) dim2 ydata(1) ydata(2) ...
ydata(dim2)];

Specifying irregularly spaced x and y vectors is not the same as
contouring irregularly spaced data. If x or y is irregularly spaced,
contourc calculates contours using a regularly spaced contour grid,
then transforms the data to x or y.

See Also clabel | contour | contour3 | contourf

How To • “The Contouring Algorithm”

1-1114

contourf

Purpose Filled 2-D contour plot

Syntax contourf(Z)
contourf(Z,n)
contourf(Z,v)
contourf(X,Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
contourf(...,LineSpec)
contourf(axes_handle,...)
contour(axes_handle,...)
[C,h] = contourf(...)

Description A filled contour plot displays isolines calculated from matrix Z and
fills the areas between the isolines using constant colors corresponding
to the current figure’s colormap.

contourf(Z) draws a filled contour plot of matrix Z, where Z is
interpreted as heights with respect to the x-y plane. Z must be at
least a 2-by-2 matrix that contains at least two different values. The
number of contour lines and the values of the contour lines are chosen
automatically based on the minimum and maximum values of Z. The
ranges of the x- and y-axis are [1:n] and [1:m], where [m,n] =
size(Z).

contourf(Z,n) draws a filled contour plot of matrix Z with n contour
levels.

contourf(Z,v) draws a filled contour plot of matrix Z with contour
lines at the data values specified in the monotonically increasing vector
v. Specifying the vector v sets the LevelListMode to manual to allow
user control over contour levels. To display a single contour line at a
particular value, define v as a two-element vector with both elements
equal to the desired contour level. For example, to draw a single contour
of level i, use contourf(Z,[i i]).

1-1115

contourf

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v) draw
filled contour plots of Z using X and Y to determine the x- and y-axis
limits.

• If X and Y are vectors, then the length of X must equal the number of
columns in Z and the length of Y must equal the number of rows in Z.

• If X and Y are matrices, then their sizes must equal the size of Z.
If X or Y is irregularly spaced, then contourf calculates contours using
a regularly spaced contour grid, and then transforms the data to X or Y.

contourf(...,LineSpec) draws the contour lines using the line type
and color specified by LineSpec. contourf ignores marker symbols.

contourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

contour(axes_handle,...) plots into axes axes_handle instead of
gca.

[C,h] = contourf(...) returns a contour matrix, C, that contains the
data that defines the contour lines, and a handle, h, to a contourgroup
object containing the filled contours. The clabel function uses contour
matrix C to label the contour lines. ContourMatrix is also a read-only
Contourgroup property that you can obtain from the returned handle.

Tips Label the contour lines using clabel.

NaNs in the Z-data leave white holes with black borders in the contour
plot.

Examples Create Filled Contour Plot

Use the peaks function to define z as a 20-by-20 matrix. Create a filled
contour plot of z with 10 contour lines.

Z = peaks(20);
contourf(Z,10);

1-1116

contourf

See Also clabel | contour | contour3 | contourc | quiver | contourgroup
properties

How To • “Change Fill Colors for Contour Plot”

1-1117

Contourgroup Properties

Purpose Define contourgroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for contourgroup objects.

See “Plot Objects” for more information on contourgroup objects.

Contourgroup
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of contourgroup objects in legends. Specifies
whether this contourgroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
contourgroup object is displayed in a figure legend.

IconDisplayStyle
Value

Purpose

on Include the contourgroup object in a legend
as one entry, but not its children objects

off Do not include the contourgroup or its
children in a legend (default)

children Include only the children of the contourgroup
as separate entries in the legend

1-1118

Contourgroup Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the

1-1119

Contourgroup Properties

running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press
a mouse button while the pointer is over this object, but not
over another graphics object. See the HitTestArea property for
information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

1-1120

Contourgroup Properties

Children
array of graphics object handles

Children of the contourgroup object. An array containing the
handles of all line objects parented to the contourgroup object
(whether visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

ContourMatrix
2-by-n matrix (read-only)

Two-row matrix specifying all contour lines. Each contour line
defined in the ContourMatrix begins with a column that contains
the value of the contour (specified by the LevelList property
and is used by clabel), and the number of (x,y) vertices in the
contour line. The remaining columns contain the data for the
(x,y) pairs.

For example:

C = [value1 xdata(1) xdata(2)...
value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)...

1-1121

Contourgroup Properties

dim2 ydata(1) ydata(2)...]

That is:

C = [C(1) C(2)...C(I)...C(N)]

where N is the number of contour levels, and:

C(i) = [level(i) x(1) x(2)...x(numel(i));
numel(i) y(1) y(2)...y(numel(i))];

For further information, see contour and “The Contouring
Algorithm”.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

1-1122

Contourgroup Properties

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the contourgroup object in the legend. The
default is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

1-1123

Contourgroup Properties

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes

1-1124

Contourgroup Properties

Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

Fill
{off} | on

Color spaces between contour lines.

• on— Default when using contourf or ezcontourf.

• off— Default when using contour or ezcontour.

By default, contour draws only the contour lines of the surface.
If you set Fill to on, contour colors the regions in between the
contour lines according to the Z-value of the region and changes
the contour lines to black.

HandleVisibility
{on} | callback | off

1-1125

Contourgroup Properties

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility

1-1126

Contourgroup Properties

settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on
the line objects that compose the contour plot. If HitTest is off,
clicking this object selects the object below it (which is usually
the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. Select plot
objects by:

• Clicking contour lines(default).

• Clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the contour lines
(excluding the baseline) to select the object. When HitTestArea

1-1127

Contourgroup Properties

is on, you can select this object by clicking anywhere within the
extent of the plot (that is, anywhere within a rectangle that
encloses all the contour lines).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

1-1128

Contourgroup Properties

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LabelSpacing
distance in points (default = 144)

Spacing between labels on each contour line. When you display
contour line labels using either the ShowText property or the
clabel command, the labels are spaced 144 points (2 inches)
apart on each line. You can specify the spacing by setting the
LabelSpacing property to a value in points. If the length of an
individual contour line is less than the specified value, MATLAB
displays only one contour label on that line.

LevelList
vector of ZData-values

Values at which contour lines are drawn. When the
LevelListMode property is auto, the contour function
automatically chooses contour values that span the range of
values in ZData (the input argument Z). You can set this property
to the values at which you want contour lines drawn.

To specify the contour interval (space between contour lines) use
the LevelStep property.

1-1129

Contourgroup Properties

LevelListMode
{auto} | manual

User-specified or autogenerated LevelList values. By default, the
contour function automatically generates the values at which
contours are drawn. If you set this property to manual, contour
does not change the values in LevelList as you change the values
of ZData.

LevelStep
scalar

Spacing of contour lines. The contour function draws contour
lines at regular intervals determined by the value of LevelStep.
When the LevelStepMode property is auto, contour determines
the contour interval automatically based on the ZData.

LevelStepMode
{auto} | manual

User-specified or autogenerated LevelStep values. By default,
the contour function automatically determines a value for the
LevelStep property. If you set this property to manual, contour
does not change the value of LevelStep as you change the values
of ZData.

LineColor
{auto} | ColorSpec | none

Color of the contour lines. This property determines how MATLAB
colors the contour lines.

• auto — Each contour line is a single color determined by its
contour value, the figure colormap, and the color axis (caxis).

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for edges.
The default value is [0 0 0] (black). See ColorSpec for more
information on specifying color.

1-1130

Contourgroup Properties

• none — No contour lines are drawn.

LineStyle
{-} | -- | : | -. | none

Line style of contourgroup object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this

1-1131

Contourgroup Properties

property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

ShowText
on | {off}

Display labels on contour lines. When you set this property to
on, MATLAB displays text labels on each contour line indicating
the contour value. See also LevelList, clabel, and the example
“Display Contour Labels” on page 1-1106.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, use findobj to
find the object’s handle. The following statement changes the
FaceColor property of the object whose Tag is area1.

1-1132

Contourgroup Properties

set(findobj('Tag','area1'),'FaceColor','red')

TextList
vector

Contour values to label. This property contains the contour values
where text labels are placed. By default, these values are the
same as those contained in the LevelList property, which define
where the contour lines are drawn. Note that there must be an
equivalent contour line to display a text label.

For example, the following statements create and label a contour
plot:

[c,h]=contour(peaks);
clabel(c,h)

You can get the LevelList property to see the contour line values:

get(h,'LevelList')

Suppose you want to view the contour value 4.375 instead of the
value of 4 that the contour function used. To do this, you need to
set both the LevelList and TextList properties:

set(h,'LevelList',[-6 -4 -2 0 2 4.375 6 8],...
'TextList',[-6 -4 -2 0 2 4.375 6 8])

TextListMode
{auto} | manual

User-specified or auto TextList values. When this property is
auto, MATLAB sets the TextList property equal to the values of
the LevelList property (i.e., a text label for each contour line).
When this property is manual, MATLAB does not set the values
of the TextList property. Note that specifying values for the
TextList property causes the TextListMode property to be set
to manual.

1-1133

Contourgroup Properties

TextStep
scalar

Determines which contour line have numeric labels. The contour
function labels contour lines at regular intervals which are
determined by the value of the TextStep property. When the
TextStepMode property is auto, contour labels every contour line
when the ShowText property is on.

TextStepMode
{auto} | manual

User-specified or autogenerated TextStep values. By default,
the contour function automatically determines a value for the
TextStep property. If you set this property to manual, contour
does not change the value of TextStep as you change the values of
ZData.

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For contourgroup objects, Type
is ’hggroup’. This statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

1-1134

Contourgroup Properties

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
vector | matrix

x-axis values for graph. The x-axis values for graphs are specified
by the X input argument. If XData is a vector, length(XData)
must equal length(YData) and must be monotonic. If XData is a
matrix, size(XData) must equal size(YData) and each column
must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the X input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

1-1135

Contourgroup Properties

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to the column indices of the
ZData, overwriting any previous values for XData.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

set(h,'XDataSource','xdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar | vector | matrix

Y-axis limits. This property determines the y-axis limits used in
the contour plot. If you do not specify a Y argument, the contour
function calculates y-axis limits based on the size of the input
argument Z.

YData can be either a matrix equal in size to ZData or a vector
equal in length to the number of columns in ZData.

1-1136

Contourgroup Properties

Use YData to define meaningful coordinates for the underlying
surface whose topography is being mapped.

YDataMode
{auto} | manual

Use automatic or user-specified y-axis values. In auto mode (the
default) the contour function automatically determines the y-axis
limits. If you set this property to manual, specify a value for
YData, or specify a Y argument, then contour sets this property to
manual and does not change the axis limits.

If you set YDataMode to auto after having specified YData,
MATLAB resets the y-axis ticks to the row indices of the ZData,
overwriting any previous values for YData.

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

set(h,'YDataSource','Ydatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

1-1137

Contourgroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
matrix

Contour data. This property contains the data from which the
contour lines are generated (specified as the input argument
Z). ZData must be at least a 2-by-2 matrix. The number of
contour levels and the values of the contour levels are chosen
automatically based on the minimum and maximum values of
ZData. The limits of the x- and y-axis are [1:n] and [1:m], where
[m,n] = size(ZData).

ZDataSource
MATLAB variable, as a string

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData. The default value is an empty array.

set(h,'ZDataSource','zdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
ZDataSource does not change the object’s ZData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

1-1138

Contourgroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

How To • “Core Graphics Objects”

• “Setting Default Property Values”

• “Customize Objects in Graph”

1-1139

contourslice

Purpose Draw contours in volume slice planes

Syntax contourslice(X,Y,Z,V,Sx,Sy,Sz)
contourslice(X,Y,Z,V,Xi,Yi,Zi)
contourslice(V,Sx,Sy,Sz)
contourslice(V,Xi,Yi,Zi)
contourslice(...,n)
contourslice(...,cvals)
contourslice(...,[cv cv])
contourslice(...,'method')
contourslice(axes_handle,...)
h = contourslice(...)

Description contourslice(X,Y,Z,V,Sx,Sy,Sz) draws contours in the x-, y-, and
z-axis aligned planes at the points in the vectors Sx, Sy, Sz. The
arrays X, Y, and Z define the coordinates for the volume V and must be
monotonic and represent a Cartesian, axis-aligned grid (such as the
data produced by meshgrid). The color at each contour is determined by
the volume V, which must be an m-by-n-by-p volume array.

contourslice(X,Y,Z,V,Xi,Yi,Zi) draws contours through the volume
V along the surface defined by the 2-D arrays Xi,Yi,Zi. The surface
should lie within the bounds of the volume.

contourslice(V,Sx,Sy,Sz) and contourslice(V,Xi,Yi,Zi)
(omitting the X, Y, and Z arguments) assume [X,Y,Z] =
meshgrid(1:n,1:m,1:p), where [m,n,p]= size(v).

contourslice(...,n) draws n contour lines per plane, overriding the
automatic value.

contourslice(...,cvals) draws length(cval) contour lines per
plane at the values specified in vector cvals.

contourslice(...,[cv cv]) computes a single contour per plane at
the level cv.

1-1140

contourslice

contourslice(...,'method') specifies the interpolation method to
use. method can be linear, cubic, or nearest. nearest is the default
except when the contours are being drawn along the surface defined
by Xi, Yi, Zi, in which case linear is the default. (See interp3 for a
discussion of these interpolation methods.)

contourslice(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = contourslice(...) returns a vector of handles to patch objects
that are used to implement the contour lines.

Examples Contour Slices of Fluid Flow

Store the matrices X, Y, Z, and V from the flow data set.

[X,Y,Z,V] = flow;

Create nine contour plots in the y-z plane, no plots in the x-z plane, and
one plot in the x-y plane by specifying Sx as a vector of nine elements,
Sy as an empty vector, and Sz as a scalar.

Sx = 1:9;
Sy = [];
Sz = 0;

Draw 10 contour lines between -8 and 2 by specifying cvals as a
10-element vector of linearly spaced values between -8 and 2.

cvals = linspace(-8,2,10);

Create the contour slice plots and set the axis limits. Set the data aspect
ratio, change the camera position, and display the black box outline.

figure
contourslice(X,Y,Z,V,Sx,Sy,Sz,cvals);

axis([0,10,-3,3,-3,3]);
daspect([1,1,1]);

1-1141

contourslice

campos([0,-20,7]);
box on

Contour Slices Along Spherical Surface

Set up matrices X, Y, and Z using the meshgrid function.

x = -2:0.2:2;
y = -2:0.25:2;
z = -2:0.16:2;

1-1142

contourslice

[X,Y,Z] = meshgrid(x,y,z);

Use X, Y, and Z to define V as a matrix of volume data.

V = X.*exp(-X.^2-Y.^2-Z.^2);

Return matrices Xi, Yi, and Zi from the sphere function.

[Xi,Yi,Zi] = sphere;

Draw contours through the volume V along the surface defined by Xi,
Yi, and Zi. Change the plot view to a 3-D view.

contourslice(X,Y,Z,V,Xi,Yi,Zi)
view(3)

1-1143

contourslice

See Also isosurface | slice | smooth3 | subvolume | reducevolume

1-1144

matlab.unittest.constraints

Purpose Summary of classes in MATLAB Constraints Interface

Description Constraints specify business rules against which to qualify
a calculated value. Use constraints in conjunction with the
matlab.unittest.qualifications qualification methods assertThat,
assumeThat, fatalAssertThat, or verifyThat. Constraints
determine whether or not a calculated (actual) value satisfies
the constraint. Constraints also provide diagnostics. The
matlab.unittest.constraints package consists of the following
classes.

• “Constraint Implementations” on page 1-1145

• “Actual Value Proxies” on page 1-1148

• “Tolerances” on page 1-1148

• “Comparators” on page 1-1148

Constraint Implementations
Fundamental Constraint-Related Interfaces
matlab.unittest.constraints.BooleanConstraintInterface class for boolean

combinations of constraints

matlab.unittest.constraints.ConstraintFundamental interface class for
comparisons

General Purpose
matlab.unittest.constraints.EventuallyPoll for value to asynchronously

satisfy constraint

matlab.unittest.constraints.HasFieldConstraint specifying structure
containing particular field

matlab.unittest.constraints.IsAnythingConstraint specifying any value

matlab.unittest.constraints.IsEqualToGeneral constraint to compare for
equality

matlab.unittest.constraints.IsFalse Constraint specifying false value

1-1145

matlab.unittest.constraints

matlab.unittest.constraints.IsSameHandleAsConstraint specifying handle
instance same as another

matlab.unittest.constraints.IsTrue Constraint specifying true value

matlab.unittest.constraints.ReturnsTrueConstraint specifying function
handle that returns true

Errors and Warnings
matlab.unittest.constraints.IssuesNoWarningsConstraint specifying function

that issues no warnings

matlab.unittest.constraints.IssuesWarningsConstraint specifying function
that issues expected warning
profile

matlab.unittest.constraints.Throws Constraint specifying function
handle that throws MException

Inequalities
matlab.unittest.constraints.IsGreaterThanConstraint specifying value

greater than another value

matlab.unittest.constraints.IsGreaterThanOrEqualToConstraint specifying value
greater than or equal to another
value

matlab.unittest.constraints.IsLessThanConstraint specifying value less
than another value

matlab.unittest.constraints.IsLessThanOrEqualToConstraint specifying value less
than or equal to another value

Array Size
matlab.unittest.constraints.HasElementCountConstraint specifying expected

number of elements

matlab.unittest.constraints.HasLengthConstraint specifying expected
length of array

1-1146

matlab.unittest.constraints

matlab.unittest.constraints.HasSizeConstraint specifying expected
size of array

matlab.unittest.constraints.IsEmptyConstraint specifying empty
value

Type
matlab.unittest.constraints.IsInstanceOfConstraint specifying inclusion in

given class hierarchy

matlab.unittest.constraints.IsOfClassConstraint specifying class type

Strings
matlab.unittest.constraints.ContainsSubstringConstraint specifying string

containing substring

matlab.unittest.constraints.EndsWithSubstringConstraint specifying string
ending with substring

matlab.unittest.constraints.IsSubstringOfConstraint specifying substring
of another string

matlab.unittest.constraints.MatchesConstraint specifying string
matches regular expression

matlab.unittest.constraints.StartsWithSubstringConstraint specifying string
starting with substring

Finiteness
matlab.unittest.constraints.HasInf Constraint specifying array

containing any infinite value

matlab.unittest.constraints.HasNaNConstraint specifying array
containing NaN value

matlab.unittest.constraints.IsFiniteConstraint specifying finite value

1-1147

matlab.unittest.constraints

Numeric Attributes
matlab.unittest.constraints.IsReal Constraint specifying real valued

array

matlab.unittest.constraints.IsSparseConstraint specifying sparse
array

Actual Value Proxies

matlab.unittest.constraints.AnyCellOfTest if any element of cell array
meets constraint

matlab.unittest.constraints.AnyElementOfTest if any element of array meets
constraint

matlab.unittest.constraints.EveryCellOfTest if all elements of cell array
meet constraint

matlab.unittest.constraints.EveryElementOfTest if all elements of array meet
constraint

Tolerances

matlab.unittest.constraints.AbsoluteToleranceAbsolute numeric tolerance

matlab.unittest.constraints.RelativeToleranceRelative numeric tolerance

matlab.unittest.constraints.ToleranceAbstract interface class for
tolerances

Comparators

matlab.unittest.constraints.CellComparatorComparator for cell arrays

matlab.unittest.constraints.LogicalComparatorComparator for two logical values

matlab.unittest.constraints.NumericComparatorComparator for numeric data
types

1-1148

matlab.unittest.constraints

matlab.unittest.constraints.ObjectComparatorComparator for MATLAB or Java
objects

matlab.unittest.constraints.PublicPropertyComparatorComparator for public properties
of MATLAB objects

matlab.unittest.constraints.StringComparatorComparator for two strings

matlab.unittest.constraints.StructComparatorComparator for MATLAB
structure arrays

1-1149

matlab.unittest.constraints.AbsoluteTolerance

Superclasses Tolerance

Purpose Absolute numeric tolerance

Description This numeric Tolerance assesses the magnitude of the difference
between actual and expected values. For the tolerance to be satisfied,
abs(expVal - actVal) <= absTol must be true.

Construction AbsoluteTolerance(tolVals) creates an absolute tolerance object
that assesses the magnitude of the difference between the actual and
expected values.

The data types of the inputs to the AbsoluteTolerance constructor
determine the data types to which the tolerance is applied.
For example, AbsoluteTolerance(10*eps) constructs an
AbsoluteTolerance for comparing double-precision numeric arrays while
AbsoluteTolerance(int8(2)) constructs an AbsoluteTolerance for
comparing numeric arrays of type int8. If the actual and expected
values being compared contain more than one numeric data type, the
tolerance only applies to the data types specified by the values passed
into the constructor.

Different tolerance values can be specified for different data types by
passing multiple tolerance values to the constructor. For example,
AbsoluteTolerance(10*eps, 10*eps('single'), int8(1))
constructs an AbsoluteTolerance that would apply the following
absolute tolerances.

• 10*eps applies an absolute tolerance of 10*eps for double-precision
numeric arrays.

• 10*eps('single') applies an absolute tolerance of 10*eps for
single-precision numeric arrays.

• int8(1) applies an absolute tolerance of 1 for numeric arrays of
type int8.

1-1150

matlab.unittest.constraints.AbsoluteTolerance

You can specify more than one tolerance for a particular data type
by combining tolerances with the & and | operators. To combine two
tolerances, the sizes of the tolerance values for each data type must
be compatible.

Input Arguments

tolVals

Numeric tolerances, specified as a cell array of numeric arrays.
Each input argument contains the tolerance specification for a
particular data type. Each numeric array can be a scalar or array
with the same number of dimensions as the actual and expected
values.

Properties Values

Numeric tolerances, specified by the tolVals input argument.

Methods
and Form logical element-wise

conjunction of tolerances

or Form logical element-wise
disjunction of tolerances

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test with Absolute Tolerance

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;

testCase = TestCase.forInteractiveUse;

1-1151

matlab.unittest.constraints.AbsoluteTolerance

Assert that the difference between and actual value, 4.1, and an
expected value, 4.5, is less than 0.5.

testCase.assertThat(4.1, IsEqualTo(4.5, ...
'Within', AbsoluteTolerance(0.5)));

Interactive assertion passed.

Specify Absolute Tolerance for Different Data Types

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;

testCase = TestCase.forInteractiveUse;

Create the following actual and expected cell arrays.

act = {'abc', 123, single(106), int8([1, 2, 3])};
exp = {'abc', 122, single(105), int8([2, 4, 6])};

Test whether the arrays satisfy the AbsoluteTolerance constraint
within a value of 2.

testCase.verifyThat(act, IsEqualTo(exp, ...
'Within', AbsoluteTolerance(2)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

Path to failure: <Value>{3}
--> The values are not equal using "isequaln".
--> The tolerance does not support single values so it was not used.

1-1152

matlab.unittest.constraints.AbsoluteTolerance

Actual Value:
106

Expected Value:
105

Actual cell:
'abc' [123] [106] [1x3 int8]

Expected cell:
'abc' [122] [105] [1x3 int8]

The test fails because the tolerance is only applied to the double data
type.

Create a tolerance object that specifies different tolerances for different
data types.

tolObj = AbsoluteTolerance(2, single(3), int8([2, 3, 5]));

A tolerance of 2 is a applied to double valued data. A tolerance of 3 is
applied to single valued data. A tolerance of [2 3 5] is applied to
corresponding array elements of int8 valued data.

Verify that the expected and actual values satisfy the
AbsoluteTolerance constraint.

testCase.verifyThat(act, IsEqualTo(exp, 'Within', tolObj));

Interactive verification passed.

Combine Absolute and Relative Tolerances

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

1-1153

matlab.unittest.constraints.AbsoluteTolerance

testCase = TestCase.forInteractiveUse;

Define an actual value approximation for pi.

act = 3.14;

Construct a tolerance object to test that difference between the actual
and expected values is within 0.001 and within 0.25%.

tolObj = AbsoluteTolerance(0.001) & RelativeTolerance(0.0025);

Verify that the actual value is within the tolerance of the expected
value of pi.

testCase.verifyThat(act, IsEqualTo(pi, 'Within', tolObj));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".
--> AndTolerance failed.

--> AbsoluteTolerance failed.
--> The value was not within absolute tolerance.

Tolerance Value:
1.000000000000000e-03

--> RelativeTolerance passed.

Actual Value:
3.140000000000000

Expected Value:
3.141592653589793

The actual value does not satisfy the AbsoluteTolerance constraint.

1-1154

matlab.unittest.constraints.AbsoluteTolerance

Construct a constraint that is satisfied if the values are within 0.001 or
0.25%, and retest the actual value.

tolObj = AbsoluteTolerance(0.001) | RelativeTolerance(0.0025);
testCase.verifyThat(act, IsEqualTo(pi, 'Within', tolObj));

Interactive verification passed.

Combine Absolute and Relative Tolerances to Test Small and
Large Values

Typically when testing equality of values, an absolute (floor) tolerance
dominates when the values are near zero, and a relative tolerance
dominates for larger values.

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

testCase = TestCase.forInteractiveUse;

Define two structures containing electromagnetic properties of a
vacuum. One structure, approxVacuumProps, contains approximate
values for the permeability and speed of light in a vacuum.

approxVacuumProps.Permeability = 1.2566e-06; % Approximate
approxVacuumProps.Permitivity = 8.854187817*10^-12;
approxVacuumProps.LightSpeed = 2.9979e+08; % Approximate

baselineVacuumProps.Permeability = 4*pi*10^-7;
baselineVacuumProps.Permitivity = 8.854187817*10^-12;
baselineVacuumProps.LightSpeed = 1/sqrt(...

baselineVacuumProps.Permeability*baselineVacuumProps.Permitivity);

Test that the relative difference between the approximate and baseline
values is within eps*1e11.

1-1155

matlab.unittest.constraints.AbsoluteTolerance

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
'Within', RelativeTolerance(eps*1e11)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

Path to failure: <Value>.Permeability
--> The values are not equal using "isequaln".
--> RelativeTolerance failed.

--> The value was not within relative tolerance.

Tolerance Value:
2.220446049250313e-05

Actual Value:
1.256600000000000e-06

Expected Value:
1.256637061435917e-06

Actual struct:
Permeability: 1.256600000000000e-06
Permitivity: 8.854187816999999e-12
LightSpeed: 299790000

Expected struct:
Permeability: 1.256637061435917e-06
Permitivity: 8.854187816999999e-12
LightSpeed: 2.997924580105029e+08

The test fails because the relative difference in the permeabilities is not
within the tolerance. The difference between the two values is small,
but the numbers are close to zero, so the difference relative to their size
isn’t small enough to satisfy the tolerance.

1-1156

matlab.unittest.constraints.AbsoluteTolerance

Construct a tolerance object to test that the absolute difference between
the approximate and baseline values is within 1e-4.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps,
'Within', AbsoluteTolerance(1e-4)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

Path to failure: <Value>.LightSpeed
--> The values are not equal using "isequaln".
--> AbsoluteTolerance failed.

--> The value was not within absolute tolerance.

Tolerance Value:
1.000000000000000e-04

Actual Value:
299790000

Expected Value:
2.997924580105029e+08

Actual struct:
Permeability: 1.256600000000000e-06
Permitivity: 8.854187816999999e-12
LightSpeed: 299790000

Expected struct:
Permeability: 1.256637061435917e-06
Permitivity: 8.854187816999999e-12
LightSpeed: 2.997924580105029e+08

1-1157

matlab.unittest.constraints.AbsoluteTolerance

The test fails because the absolute difference in the speed of light is not
within the tolerance. The difference between the two values is small
relative to their size, but too large to satisfy the tolerance.

Construct a logical disjunction of tolerance objects to test that the
absolute difference between the approximate and baseline values
is within 1e-4 or the relative difference is within eps*1e11. This
tolerance is used so permeability values, which are close to zero, satisfy
the absolute (floor) tolerance, and speed of light values, which are large,
satisfy the relative tolerance.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
'Within', RelativeTolerance(eps*1e11)| AbsoluteTolerance(1e-4)));

Interactive verification passed.

See Also matlab.unittest.constraints.RelativeTolerance |
matlab.unittest.constraints.IsEqualTo

Concepts

1-1158

matlab.unittest.constraints.AbsoluteTolerance.and

Purpose Form logical element-wise conjunction of tolerances

Syntax outTolObj = and(tolObj1,tolObj2)

Description outTolObj = and(tolObj1,tolObj2) forms the logical element-wise
conjunction of tolerances and returns a single tolerance, outTolObj.
This is a means to specify that every element of the actual value should
be equal to the expected value to within the tolerance specified by
both tolObj1 and tolObj2. A qualification failure occurs when either
tolObj1 or tolObj2 is not satisfied for one or more elements of the
comparison values.

Typically, the and method is not called directly, but the and operator, &,
is used to denote the conjunction of any two tolerance objects.

Input
Arguments

tolObj

Tolerance instance

Examples Form Logical and of Tolerances

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

% Create a TestCase for interactive use
testCase = TestCase.forInteractiveUse;

% Passing qualifications
testCase.verifyThat(101, IsEqualTo(100, 'Within', ...

AbsoluteTolerance(2) & RelativeTolerance(0.02)));
testCase.verifyThat([101, 105], IsEqualTo([100, 100], 'Within', ...

AbsoluteTolerance([2, 10]) & RelativeTolerance([0.02, 0.1])));

% Failing qualifications
testCase.verifyThat(101, IsEqualTo(100, 'Within', ...

1-1159

matlab.unittest.constraints.AbsoluteTolerance.and

AbsoluteTolerance(2) & RelativeTolerance(0.02)));
testCase.verifyThat([101, 105], IsEqualTo([100, 100], 'Within', ...

AbsoluteTolerance(2) & RelativeTolerance(0.02)));

See Also or

1-1160

matlab.unittest.constraints.AbsoluteTolerance.or

Purpose Form logical element-wise disjunction of tolerances

Syntax outTolObj = or(tolObj1,tolObj2)

Description outTolObj = or(tolObj1,tolObj2) forms the logical element-wise
disjunction of tolerances and returns a single tolerance, outTolObj.
This is a means to specify that every element of the actual value should
be equal to the expected value to within the tolerance specified by
either tolObj1 or tolObj2. A qualification failure occurs when both
tolObj1 and tolObj2 are not satisfied for one or more elements of the
comparison values.

Forming the logical disjunction of tolerances is particularly useful when
relative tolerance is used in general, but absolute tolerance is used
when values are small.

Typically, the or method is not called directly, but the or operator, |, is
used to denote the disjunction of any two tolerance objects.

Input
Arguments

tolObj

Tolerance instance

Examples Form Logical or of Tolerances

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

% Create a TestCase for interactive use
testCase = TestCase.forInteractiveUse;

% Simple passing qualification
testCase.verifyThat(105, IsEqualTo(100, 'Within', ...

AbsoluteTolerance(3) | RelativeTolerance(0.1)));

% The following qualification passes because the or

1-1161

matlab.unittest.constraints.AbsoluteTolerance.or

% operation is performed element-wise between the
% actual and expected values being compared:
testCase.verifyThat([8, 104], IsEqualTo([10, 100], 'Within', ...

AbsoluteTolerance(3) | RelativeTolerance(0.05)));
% Note that the following would fail:
testCase.verifyThat([8, 104], ...

IsEqualTo([10, 100], 'Within', AbsoluteTolerance(3)) | ...
IsEqualTo([10, 100], 'Within', RelativeTolerance(0.05)));

% Failing qualifications
testCase.verifyThat(101, IsEqualTo(100, 'Within', ...

AbsoluteTolerance(0.5) | RelativeTolerance(0)));
testCase.verifyThat([101, 101], IsEqualTo([100, 100], 'Within', ...

AbsoluteTolerance([2, 0.5]) | RelativeTolerance([0.02, 0.001])));

See Also and

1-1162

matlab.unittest.constraints.AnyCellOf

Purpose Test if any element of cell array meets constraint

Description The AnyCellOf class creates a proxy of the actual value to the
framework. The proxy enables a test writer to apply a constraint
against each element of a cell array, which ensures that a passing result
occurs if at least one element of the cell array satisfies the constraint.

It is intended that you use this class through matlab.unittest
qualifications as shown in the examples. The class does not modify
the provided actual value, but serves as a wrapper to perform the
constraint analysis. The testing framework analyzes the constraint
on an element-by-element basis.

Construction AnyCellOf(actVal) creates a proxy instance that tests if any element
of a provided cell array, actVal, meets a constraint. The test passes if
at least one element individually satisfies the constraint.

Input Arguments

actVal

Actual value to test against constraint

Properties ActualValue

Actual value to test against constraint. Set this property through
the constructor via the actVal input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Any Cell Satisfies Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.AnyCellOf;

1-1163

matlab.unittest.constraints.AnyCellOf

testCase = TestCase.forInteractiveUse;

Test that at least one cell of actVal is finite.

import matlab.unittest.constraints.IsFinite;
actVal = {NaN, Inf, 5};
testCase.verifyThat(AnyCellOf(actVal), IsFinite);

Interactive verification passed.

Test that at least one cell of the actual value contains five elements.

import matlab.unittest.constraints.HasElementCount
testCase.verifyThat(AnyCellOf({42, [11 38], 1:5}), HasElementCount(5));

Interactive verification passed.

Test that at least one cell of the actual value matches the string 'tea'
regardless of case.

import matlab.unittest.constraints.Matches
testCase.verifyThat(AnyCellOf({'Coffee','Tea','Water'}), ...

Matches('tea','IgnoringCase',true));

Interactive verification passed.

Test that at least one cell of the actual value is less than zero.

import matlab.unittest.constraints.IsLessThan;
testCase.verifyThat(AnyCellOf({1, 5}), IsLessThan(0));

Interactive verification failed.

Framework Diagnostic:

All cells failed. The first cell failed because:
--> IsLessThan failed.

--> The value must be less than the maximum value.

1-1164

matlab.unittest.constraints.AnyCellOf

Actual Value:
1

Maximum Value (Exclusive):
0

Actual Value Cell Array:
[1] [5]

Neither actual value element is less than zero.

Test that neither cell of the actual value is empty.

import matlab.unittest.constraints.IsEmpty
testCase.verifyThat(AnyCellOf({inputParser.empty,''}), ~IsEmpty)

Interactive verification failed.

Framework Diagnostic:

All cells failed. The first cell failed because:
--> Negated IsEmpty failed.

--> The value must not be empty.
--> The value has a size of [0 0].

Actual Value:
0x0 inputParser array with properties:

FunctionName
CaseSensitive
KeepUnmatched
PartialMatching
StructExpand
Parameters
Results
Unmatched
UsingDefaults

1-1165

matlab.unittest.constraints.AnyCellOf

Actual Value Cell Array:
[] ''

Both actual value elements are empty.

See Also matlab.unittest.qualifications | EveryElementOf | AnyElementOf
| EveryCellOf

Concepts

1-1166

matlab.unittest.constraints.AnyElementOf

Purpose Test if any element of array meets constraint

Description The AnyElementOf class creates a proxy of the actual value to the
framework. The proxy enables a test writer to apply a constraint
against each element of an array, which ensures that a passing result
occurs when at least one element of the array satisfies the constraint.

It is intended that you use this class through matlab.unittest
qualifications as shown in the examples. The class does not modify
the provided actual value, but serves as a wrapper to perform the
constraint analysis. The testing framework analyzes the constraint
on an element-by-element basis.

Construction AnyElementOf(actVal) creates a proxy instance that tests if any
element of a provided array, actVal, meets a constraint. The test
passes if at least one element individually satisfies the constraint.

Tips

• AnyElementOf checks if any element in the provided array satisfies
an associated constraint. However, there are some constraints, such
as HasNaN and HasInf, that natively validate if any of the elements
satisfy a condition. In these situations, use of AnyElementOf is
unnecessary and impedes qualification performance.

Input Arguments

actVal

Actual value to test against constraint

Properties ActualValue

Actual value to test against constraint. Set this property through
the constructor via the actVal input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-1167

matlab.unittest.constraints.AnyElementOf

Examples Test That Any Element Satisfies Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.AnyElementOf;

testCase = TestCase.forInteractiveUse;

Test that at least one element of actVal is finite.

import matlab.unittest.constraints.IsFinite;
actVal = [NaN, Inf, 5];
testCase.verifyThat(AnyElementOf(actVal), IsFinite);

Interactive verification passed.

Test that at least one element of the actual value is complex.

import matlab.unittest.constraints.IsReal
testCase.verifyThat(AnyElementOf([1+0i 4i]), ~IsReal);

Interactive verification passed.

Test that at least one element of the actual value array is less than zero.

import matlab.unittest.constraints.IsLessThan;
testCase.verifyThat(AnyElementOf([1 5]), IsLessThan(0));

Interactive verification failed.

Framework Diagnostic:

All elements failed. The first element failed because:
--> IsLessThan failed.

--> The value must be less than the maximum value.

Actual Value:

1-1168

matlab.unittest.constraints.AnyElementOf

1
Maximum Value (Exclusive):

0

Actual Value Array:
1 5

Neither actual value element is less than zero.

See Also matlab.unittest.qualifications | EveryElementOf | AnyCellOf
| EveryCellOf

Concepts

1-1169

matlab.unittest.constraints.BooleanConstraint

Superclasses Constraint

Purpose Interface class for boolean combinations of constraints

Description The BooleanConstraint interface class provides an interface for
boolean combinations of Constraints. Any constraint that derives from
BooleanConstraint can be combined and negated using the and (&), or
(|), and not (~) operators.

Classes that derive from the BooleanConstraint interface class must
implement everything required by the standard Constraint interface.
When a given constraint is negated, the diagnostics must be written in
a different form than for a standard (non-negated) failure. Therefore,
classes deriving from the BooleanConstraint class must implement a
method to provide a Diagnostic object for the negated case, in addition
to the non-negated case.

In exchange for meeting these requirements, all BooleanConstraint
implementations inherit the appropriate MATLAB overloads for and,
or, and not so that they can be combined with other BooleanConstraints
objects or negated.

Methods
and Form logical conjunction of

constraints

getNegativeDiagnosticFor Produce negated diagnostic for
value

not Form logical negation of
constraint

or Form logical disjunction of
constraints

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-1170

matlab.unittest.constraints.BooleanConstraint

Examples Create Boolean HasSameSizeAs Constraint

Create a custom constraint that determines if a given value is the same
size as an expected value.

In a file in your working folder, create a file HasSameSizeAs.m. The
constructor accepts a value to compare to the actual size. This value is
stored within the ValueWithExpectedSize property. It is recommended
that BooleanConstraint implementations be immutable, so set the
property SetAccess=immutable.

classdef HasSameSizeAs < matlab.unittest.constraints.BooleanConstraint

properties(SetAccess=immutable)
ValueWithExpectedSize

end

methods
function constraint = HasSameSizeAs(value)

constraint.ValueWithExpectedSize = value;
end

end
end

Include these methods in the methods block in HasSameSizeAs.m.
Since the BooleanConstraint class is a subclass of Constraint,
classes that derive from it must implement the satisfiedBy and
getDiagnosticFor methods. For more information about these
methods, see matlab.unittest.constraints.Constraint.

methods
function bool = satisfiedBy(constraint, actual)

bool = isequal(size(actual), size(constraint.ValueWithExpe
end
function diag = getDiagnosticFor(constraint, actual)

import matlab.unittest.diagnostics.StringDiagnostic;

if constraint.satisfiedBy(actual)

1-1171

matlab.unittest.constraints.BooleanConstraint

diag = StringDiagnostic('HasSameSizeAs passed.');
else

diag = StringDiagnostic(sprintf(...
'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSi
int2str(size(actual)), int2str(size(constraint.ValueW

end
end

end

Include the getNegativeDiagnosticFor method in the a methods block
with protected access in HasSameSizeAs.m. Classes that derive from
BooleanConstraint must implement the getNegativeDiagnosticFor
method. This method must provide a Diagnostic object that is
expressed in the negative sense of the constraint.

methods(Access=protected)
function diag = getNegativeDiagnosticFor(constraint, actual)

import matlab.unittest.diagnostics.StringDiagnostic;

if constraint.satisfiedBy(actual)
diag = StringDiagnostic(sprintf(...

['Negated HasSameSizeAs failed.\nSize [%s] of ' ...
'Actual Value and Expected Value were the same ' ...
'but should not have been.'], int2str(size(actual))))

else
diag = StringDiagnostic('Negated HasSameSizeAs passed.');

end
end

end

In exchange for implementing the required methods, the constraint
inherits the appropriate and, or, and not overloads so it can be
combined with other BooleanConstraint objects or negated.

HasSameSizeAs Class Definition Summary

classdef HasSameSizeAs < matlab.unittest.constraints.BooleanConstraint
properties(SetAccess=immutable)

1-1172

matlab.unittest.constraints.BooleanConstraint

ValueWithExpectedSize
end
methods

function constraint = HasSameSizeAs(value)
constraint.ValueWithExpectedSize = value;

end
function bool = satisfiedBy(constraint, actual)

bool = isequal(size(actual), size(constraint.ValueWithExpe
end
function diag = getDiagnosticFor(constraint, actual)

import matlab.unittest.diagnostics.StringDiagnostic;

if constraint.satisfiedBy(actual)
diag = StringDiagnostic('HasSameSizeAs passed.');

else
diag = StringDiagnostic(sprintf(...

'HasSameSizeAs failed.\nActual Size: [%s]\nExpecte
int2str(size(actual)), ...
int2str(size(constraint.ValueWithExpectedSize))));

end
end

end
methods(Access=protected)

function diag = getNegativeDiagnosticFor(constraint, actual)
import matlab.unittest.diagnostics.StringDiagnostic;
if constraint.satisfiedBy(actual)

diag = StringDiagnostic(sprintf(...
['Negated HasSameSizeAs failed.\nSize [%s] of ' .
'Actual Value and Expected Value were the same '
'but should not have been.'], int2str(size(actual)

else
diag = StringDiagnostic('Negated HasSameSizeAs passed.

end
end

end
end

1-1173

matlab.unittest.constraints.BooleanConstraint

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasLength;

testCase = TestCase.forInteractiveUse;

Test a passing case.

testCase.verifyThat(zeros(5), HasLength(5) | ~HasSameSizeAs(repmat(1,5)))

Interactive verification passed.

The test passes because one of the or conditions, HasLength(5), is true.

Test a failing case.

testCase.verifyThat(zeros(5), HasLength(5) & ~HasSameSizeAs(repmat(1,5)))

Interactive verification failed.

Framework Diagnostic:

AndConstraint failed.
--> + [First Condition]:

| HasLength passed.
--> AND

+ [Second Condition]:
| Negated HasSameSizeAs failed.
| Size [5 5] of Actual Value and Expected Value were the same but

-+---------------------

The test fails because one of the and conditions,
~HasSameSizeAs(repmat(1,5)), is false.

See Also Diagnostic | matlab.unittest.constraints

1-1174

matlab.unittest.constraints.BooleanConstraint

Concepts

1-1175

matlab.unittest.constraints.BooleanConstraint.and

Purpose Form logical conjunction of constraints

Syntax outConstObj = and(constObj1, constObj2)

Description outConstObj = and(constObj1, constObj2) forms the logical
conjunction of combinable constraints. The and method returns a
constraint, outConstObj, that is the boolean conjunction of constObj1
and constObj2. If constObj1 and constObj2 are not satisfied by the
actual value provided, the comparison results in a qualification failure.

Typically, the and method is not called directly, but the and operator, &,
is used to denote the conjunction of any two combinable constraints.

Input
Arguments

constObj

BooleanConstraint instance

Examples Implement and method

import matlab.unittest.TestCase;
import matlab.unittest.constraints.ContainsSubstring;
import matlab.unittest.constraints.HasElementCount;
import matlab.unittest.constraints.HasSize;
import matlab.unittest.constraints.IsEmpty;
import matlab.unittest.constraints.IsInstanceOf;
import matlab.unittest.constraints.IsGreaterThan;
import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
import matlab.unittest.constraints.IsOfClass;
import matlab.unittest.constraints.IsReal;

% Create a TestCase for interactive use
testCase = TestCase.forInteractiveUse;

% Passing qualifications
testCase.verifyThat(3, IsReal & IsGreaterThanOrEqualTo(3));
testCase.verifyThat('Some char', IsOfClass(?char) & ~IsEmpty);
testCase.verifyThat([1 2 3; 4 5 6], HasLength(3) & HasElementCount(6));

1-1176

matlab.unittest.constraints.BooleanConstraint.and

% Failing qualifications
testCase.verifyThat(3+i, IsGreaterThan(4), & IsReal);
testCase.verifyThat({1, 2}, IsInstanceOf(?cell) & HasSize([1 2]));
testCase.verifyThat('', ContainsSubstring('string') & IsEmpty);

See Also or | not |

1-1177

matlab.unittest.constraints.BooleanConstraint.getNegativeDiag

Purpose Produce negated diagnostic for value

Syntax diag = getNegativeDiagnosticFor(constObj, actVal)

Description diag = getNegativeDiagnosticFor(constObj, actVal) produces a
negated diagnostic for a value. The getNegativeDiagnosticFor method
analyzes the provided value, actVal, against the constraint, constObj,
and produces a matlab.unittest.diagnostics.Diagnostic object, diag,
which corresponds to the negation of the constraint, constObj. This
method is a protected method.

The diagnostics that this method produces are expressed in the negative
sense of the constraint. For example, a hypothetical IsTasty constraint,
when negated, should express that the actual value was "tasty", when
it should not have been, and it should describe the details on why it
was found to be tasty.

Like the getDiagnosticFor method of Constraint, the
getNegativeDiagnosticFor is only called upon failures, and thus can
afford a more detailed analysis than the satisfiedBy method.

Input
Arguments

constObj

BooleanConstraint instance

actVal

Value for comparison

Examples Implement getNegativeDiagnosticFor method

function diag = getNegativeDiagnosticFor(constraint, actual)
% getNegativeDiagnosticFor - produce a diagnostic when the constraint is
%
% This method is called by the testing framework when the constraint ha
% been met but should not have been met because it was negated in a
% boolean expression. It should produce a Diagnostic result that
% describes the failure in the correct terms which express the
% requirement that the constraint actually should not have been met.

1-1178

matlab.unittest.constraints.BooleanConstraint.getNegative

import matlab.unittest.diagnostics.StringDiagnostic;

if constraint.satisfiedBy(actual)
% Create the negative diagnostic. This will show information such
% constraint class name and display the raw actual and expected va
% Using the DiagnosticSense.NegativeDiagnostic enumeration also
% produces language more appropriate for the negated case.
diag = StringDiagnostic(sprintf(...

'Negated HasSameSizeAs failed.\nSize [%s] of Actual Value and
int2str(size(actual))));

else
% Produce a passing diagnostic, with language appropriate for the
diag = StringDiagnostic('Negated HasSameSizeAs passed.');

end %if

end %function

See Also getDiagnosticFor | satisfiedBy | Diagnostic | not

1-1179

matlab.unittest.constraints.BooleanConstraint.not

Purpose Form logical negation of constraint

Syntax negConstObj = not(constObj)

Description negConstObj = not(constObj) forms the logical negation of
a negatable constraint. The not method returns a constraint,
negConstObj, that is the boolean complement of the constraint object,
constObj. This is a means to specify that the constraint should not be
satisfied by the actual value provided, and that a qualification failure
should be produced when the constraint is satisfied.

Typically, the not method is not called directly, but the tilde operator, ~,
is used to denote the negation of any given negatable constraint. Upon
encountering a failure, the getNegativeDiagnosticFor method provides
the resulting constraint diagnostics.

Input
Arguments

constObj

BooleanConstraint instance

Examples Implement not method

import matlab.unittest.TestCase;
import matlab.unittest.constraints.HasNaN;
import matlab.unittest.constraints.IsEmpty;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.IsInstanceOf;
import matlab.unittest.constraints.IsReal;
import matlab.unittest.constraints.IsOfClass;

% Create a TestCase for interactive use
testCase = TestCase.forInteractiveUse;

% Passing qualifications
testCase.verifyThat(3, ~IsEqualTo(4));
testCase.verifyThat('Some char', ~IsInstanceOf(?double));
testCase.verifyThat(3, ~HasNaN);

1-1180

matlab.unittest.constraints.BooleanConstraint.not

% Failing qualifications
testCase.verifyThat(3, ~IsReal);
testCase.verifyThat('Some char', ~IsOfClass('char'));
testCase.verifyThat([], ~IsEmpty);

See Also getNegativeDiagnosticFor |
matlab.unittest.constraints.BooleanConstraint | and | or

1-1181

matlab.unittest.constraints.BooleanConstraint.or

Purpose Form logical disjunction of constraints

Syntax outConstObj = or(constObj1, constObj2)

Description outConstObj = or(constObj1, constObj2) forms the logical
disjunction of combinable constraints. The or method returns a
constraint, outConstObj, that is the boolean disjunction of constObj1
and constObj2. The comparison only results in a qualification failure
if both constObj1 and constObj2 are not satisfied by the provided
actual value.

Typically, the or method is not called directly, but the or operator, |, is
used to denote the disjunction of any two combinable constraints.

Input
Arguments

constObj

BooleanConstraint instance

Examples Implement or method

import matlab.unittest.TestCase;
import matlab.unittest.constraints.HasInf;
import matlab.unittest.constraints.HasNaN;
import matlab.unittest.constraints.EndsWithSubstring;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.IsGreaterThan;
import matlab.unittest.constraints.IsLessThan;
import matlab.unittest.constraints.IsOfClass;
import matlab.unittest.constraints.IsReal;
import matlab.unittest.constraints.StartsWithSubstring;

% Create a TestCase for interactive use
testCase = TestCase.forInteractiveUse;

% Passing qualifications
testCase.verifyThat([3 NaN 5], HasNaN | HasInf);
testCase.verifyThat(5, IsEqualTo(5) | IsLessThan(0));

1-1182

matlab.unittest.constraints.BooleanConstraint.or

testCase.verifyThat(-3, IsEqualTo(5) | IsLessThan(0));

% Failing qualifications
testCase.verifyThat(3+i, IsGreaterThan(4), | IsReal);
testCase.verifyThat(true, IsOfClass(?char) | IsOfClass(?cell));
testCase.verifyThat('Some long string', StartsWithSubstring('long') |

See Also and | not

1-1183

matlab.unittest.constraints.CellComparator

Purpose Comparator for cell arrays

Description The CellComparator compares cell arrays.

Construction CellComparator creates a comparator for cell arrays.

CellComparator(compObj) indicates a comparator, compObj, that
defines the comparator used to compare values contained in the cell
array. By default, a cell comparator only supports empty cell arrays.

CellComparator(___ ,Name,Value) provides a comparator with
additional options specified by one or more Name,Value pair
arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input
Arguments

compObj

Comparator object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’IgnoringCase’

Indicator whether the comparator is insensitive to case, specified
as false or true (logical 0 or 1). When it is false, the
comparator is sensitive to case. The comparator only utilizes this
name-value pair if the contents being compared are strings.

Default: false

’IgnoringWhitespace’

1-1184

matlab.unittest.constraints.CellComparator

Indicator whether the comparator is insensitive to whitespace,
specified as false or true (logical 0 or 1). When it is false, the
comparator is sensitive to whitespace. Whitespace characters are
space, form feed, new line, carriage return, horizontal tab, and
vertical tab. The comparator only utilizes this name-value pair if
the contents being compared are strings.

Default: false

’Recursively’

Indicator of whether comparator operates recursively, specified
as false or true (logical 0 or 1). When this value is false, the
comparator does not operate recursively on its data.

When the value is true, the data types the cell comparator
supports are fully supported in recursion. For example:

comp1 = CellComparator(StringComparator)
comp2 = CellComparator(StringComparator,'Recursively', true)

Both comp1 and comp2 support a cell arrays of strings. However,
only comp2 supports cell arrays that recursively contain either cell
arrays or strings as their elements.

Default: false

’Within’

Tolerance to use for numerical comparison, specified as a
matlab.unittest.constraints.Tolerance object. The
comparator only utilizes this name-value pair if the contents
being compared are a numeric type.

Default: (empty)

1-1185

matlab.unittest.constraints.CellComparator

Properties IgnoreCase

Indicator whether the comparator is insensitive to case, specified
in the name-value pair argument, 'IgnoringCase'.

IgnoreWhitespace

Indicator whether the comparator is insensitive to
whitespace, specified in the name-value pair argument,
'IgnoringWhitespace'.

Recursive

Indicator of whether comparator operates recursively, specified in
the name-value pair argument, 'Recursively'.

Tolerance

Specific tolerance used in construction of the comparator, specified
as a matlab.unittest.constraints.Tolerance object in the
name-value pair argument, 'Within'.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Compare Cell Arrays

Create a test case for interactive testing.

import matlab.unittest.constraints.CellComparator;
import matlab.unittest.constraints.StringComparator;
import matlab.unittest.constraints.IsEqualTo;

testCase = matlab.unittest.TestCase;

Use a CellComparator to test that two cell arrays are equal to each
other.

actual = {'abc','def'};
expected = {'abc','def'};
testCase.verifyThat(actual, IsEqualTo(expected,...

1-1186

matlab.unittest.constraints.CellComparator

'Using', CellComparator(StringComparator)));

Interactive verification passed.

By default, the CellComparator only supports comparison empty cell
arrays, it is necessary to pass it a StringComparator.

Change the actual value and compare it to the expected value. For
the constraint to be satisfied, it is necessary that you construct the
constraint to ignore case and whitespace.

actual = {'ABC','D E F'};
testCase.verifyThat(actual, IsEqualTo(expected, 'Using', ...

CellComparator(StringComparator, ...
'IgnoringWhitespace', true, 'IgnoringCase',true)));

Interactive verification passed.

Test nested cell arrays of strings by constructing the comparator to
operate recursively.

actual = {'abc',{'def','ghi'}};
expected = {'abc',{'def','ghi'}};

testCase.verifyThat(actual, IsEqualTo(expected, 'Using', ...
CellComparator(StringComparator, 'Recursively', true)));

Interactive verification passed.

See Also matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.Tolerance

Concepts

1-1187

matlab.unittest.constraints.Constraint

Purpose Fundamental interface class for comparisons

Description The Constraint interface class is the means by which matlab.unittest
constraints encode comparison logic and the corresponding diagnostic
information. Every comparison that conditionally can produce a failure
inherits from the Constraint interface class.

Classes deriving from the Constraint interface class must provide a
means to determine if a given value satisfies the constraint. To do this,
implement the satisfiedBy method, which includes the definition of the
underlying comparison logic. Classes deriving from the Constraint class
also must provide a diagnostic for any given actual value. The testing
framework uses the diagnostic when it encounters a qualification
failure. To do this, implement the getDiagnosticFor method.

In exchange for meeting these requirements, all Constraint
implementations are easily used with all qualification types through
the verifyThat, assertThat, assumeThat, or fatalAssertThat
methods. The qualifications use the comparison and diagnostic
knowledge contained within the constraints. Also, the constraints
can be used in situations where a test failure is not wanted, but the
testing framework needs to reuse the comparison logic. For example,
a constraint implementation may want to use the logic defined inside
of another constraint. Since the constraint can interact with the other
constraint directly, it can use the logic without the potential of causing
a qualification failure.

Methods
getDiagnosticFor Produce diagnostic for compared

value

satisfiedBy Determine whether value
satisfies constraint

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-1188

matlab.unittest.constraints.Constraint

Examples Create HasSameSizeAs Constraint

Create a custom constraint that determines if a given value is the same
size as an expected value.

In a file in your working folder, create a HasSameSizeAs.m. The
constructor accepts a value to compare to the actual size. This value
is stored within the ValueWithExpectedSize property. Since, it is
recommended that Constraint implementations are immutable, set the
property SetAccess=immutable.

classdef HasSameSizeAs < matlab.unittest.constraints.Constraint

properties(SetAccess=immutable)
ValueWithExpectedSize

end

methods
function constraint = HasSameSizeAs(value)

constraint.ValueWithExpectedSize = value;
end

end
end

Classes that derive from Constraint must implement the satisfiedBy
method. This method must contain the comparison logic and return a
boolean value.

Include the satisfiedBy method in the methods block in
HasSameSizeAs.m.

function bool = satisfiedBy(constraint, actual)
bool = isequal(size(actual), size(constraint.ValueWithExpe

end

This method returns true if the actual size and expected size are equal.

Classes deriving from Constraint must implement the
getDiagnosticFor method. This method must evaluate the actual

1-1189

matlab.unittest.constraints.Constraint

value against the constraint and provide a Diagnostic object. In this
example, getDiagnosticFor returns a StringDiagnostic. Include the
getDiagnosticFor method in the methods block in HasSameSizeAs.m.

function diag = getDiagnosticFor(constraint, actual)
import matlab.unittest.diagnostics.StringDiagnostic;

if constraint.satisfiedBy(actual)
diag = StringDiagnostic('HasSameSizeAs passed.');

else
diag = StringDiagnostic(sprintf(...

'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSi
int2str(size(actual)), int2str(size(constraint.ValueW

end
end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase

testCase = TestCase.forInteractiveUse;

Test a passing case.

testCase.verifyThat(zeros(5), HasSameSizeAs(repmat(1,5)));

Interactive verification passed.

Test a failing case.

testCase.verifyThat(zeros(5), HasSameSizeAs(ones(1,5)));

Interactive verification failed.

Framework Diagnostic:

HasSameSizeAs failed.
Actual Size: [5 5]

1-1190

matlab.unittest.constraints.Constraint

ExpectedSize: [1 5]

See Also Diagnostic | ConstraintDiagnostic | assertThat | assumeThat |
fatalAssertThat | verifyThat | matlab.unittest.constraints

Concepts

1-1191

matlab.unittest.constraints.Constraint.getDiagnosticFor

Purpose Produce diagnostic for compared value

Syntax diag = getDiagnosticFor(constObj,actVal)

Description diag = getDiagnosticFor(constObj,actVal) produces a diagnostic,
diag, for a compared value, actVal. When creating a custom constraint,
the class author must implement the getDiagnosticFor method so
that it analyzes the value, actVal, against the constraint, constObj,
and instantiates and returns a matlab.unittest.diagnostics.Diagnostic
object.

Typically, the testing framework calls this method when it encounters
a qualification failure. Therefore, the constraint author can afford to
undertake a more detailed analysis in the getDiagnosticFor method
than the satisfiedBy method.

Input
Arguments

actVal

Value for comparison

constObj

Constraint instance

Output
Arguments

diag

Diagnostic instance

Examples See example for matlab.unittest.constraints.Constraint.

See Also satisfiedBy | Diagnostic | ConstraintDiagnostic

1-1192

matlab.unittest.constraints.Constraint.satisfiedBy

Purpose Determine whether value satisfies constraint

Syntax TF = satisfiedBy(constObj,actVal)

Description TF = satisfiedBy(constObj,actVal) determines whether a value,
actVal, satisfies a constraint, constObj. The satisfiedBy method is
used to determine qualification success or failure. It returns true or
false (logical 0 or 1). When creating a custom constraint, a class
author must place comparison logic in this method.

Since the most common usage is for the passing case, the constraint
author should optimize for speed in that case. It is only in the failing
case that more expensive detailed analysis is helpful.

Input
Arguments

actVal

Value to evaluate against the constraint

constObj

Constraint instance

Examples See example for matlab.unittest.constraints.Constraint.

See Also getDiagnosticFor

1-1193

matlab.unittest.constraints.ContainsSubstring

Superclasses BooleanConstraint

Purpose Constraint specifying string containing substring

Construction ContainsSubstring(substring) creates a constraint that specifies a
string containing a substring, substring. The constraint is satisfied
only if the actual value contains an expected string.

ContainsSubstring(substring,Name,Value) provides a constraint
with additional options specified by one or more Name,Value
pair arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

substring

Text that must be contained within the actual value, specified as
a string. substring can include newline characters.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false
or true (logical 0 or 1)

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified
as false or true (logical 0 or 1)

1-1194

matlab.unittest.constraints.ContainsSubstring

Default: false

Properties IgnoreCase

Indicator if the constraint is insensitive to case, specified in the
name-value pair argument, 'IgnoringCase'. This property
applies at all levels of recursion, such as nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified
in the name-value pair argument, 'IgnoringWhitespace'.
This property applies at all levels of recursion, such as nested
structures.

Substring

String that must be included in the actual value, specified in the
input argument, substring.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Contains Specified Substring

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.ContainsSubstring;

testCase = TestCase.forInteractiveUse;

Define the actual value string.

actVal = 'This Is One Long String';

Test the actVal contains the substring 'One'.

testCase.verifyThat(actVal, ContainsSubstring('One'));

1-1195

matlab.unittest.constraints.ContainsSubstring

Interactive verification passed.

Test the actVal contains the substring 'long'.

testCase.verifyThat(actVal, ContainsSubstring('long'));

Interactive verification failed.

Framework Diagnostic:

ContainsSubstring failed.
--> The string must contain the substring.

Actual String:
This Is One Long String

Expected Substring:
long

By default, the ContainsSubstring constraint is case sensitive.

Repeat the test ignoring case.

testCase.verifyThat(actVal, ContainsSubstring('long',...
'IgnoringCase', true));

Interactive verification passed.

Test actVal contains the substring 'thisisone'. For the test to pass,
configure the constraint to ignore whitespace and case.

testCase.verifyThat(actVal, ContainsSubstring('thisisone', ...
'IgnoringCase', true, 'IgnoringWhitespace', true));

Interactive verification passed.

Assert that actVal does not contain the substring 'longer'.

testCase.assertThat(actVal, ~ContainsSubstring('longer',...

1-1196

matlab.unittest.constraints.ContainsSubstring

'IgnoringCase', true));

Interactive verification passed.

See Also IsSubstringOf | EndsWithSubstring | StartsWithSubstring |
Matches

Concepts

1-1197

matlab.unittest.constraints.EndsWithSubstring

Superclasses BooleanConstraint

Purpose Constraint specifying string ending with substring

Construction EndsWithSubstring(suffix) creates a constraint specifying a string
ending with a substring. The constraint is satisfied only if the actual
value ends with an expected string, suffix.

EndsWithSubstring(suffix,Name,Value) provides a constraint
with additional options specified by one or more Name,Value
pair arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

suffix

Text that occurs at the end of the actual value, specified as a
string. suffix can include newline characters.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false
or true (logical 0 or 1)

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified
as false or true (logical 0 or 1)

1-1198

matlab.unittest.constraints.EndsWithSubstring

Default: false

Properties IgnoreCase

Indicator if the constraint is insensitive to case, specified in the
name-value pair argument, 'IgnoringCase'. This property
applies at all levels of recursion, such as nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified
in the name-value pair argument, 'IgnoringWhitespace'.
This property applies at all levels of recursion, such as nested
structures.

Suffix

Text that occurs at the end of the actual value, specified in the
input argument, suffix.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Ends with Specified Substring

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.EndsWithSubstring;

testCase = TestCase.forInteractiveUse;

Define the actual value string.

actVal = 'This Is One Long String';

Test the actVal ends with the substring 'String'.

testCase.verifyThat(actVal, EndsWithSubstring('String'));

1-1199

matlab.unittest.constraints.EndsWithSubstring

Interactive verification passed.

Test the actVal ends with the substring 'InG'.

testCase.verifyThat(actVal, EndsWithSubstring('InG'));

Interactive verification failed.

Framework Diagnostic:

EndsWithSubstring failed.
--> The string has an incorrect suffix.

Actual String:
This Is One Long String

Expected Suffix:
InG

By default, the EndsWithSubstring constraint is case sensitive.

Repeat the test ignoring case.

testCase.verifyThat(actVal, EndsWithSubstring('InG',...
'IgnoringCase', true));

Interactive verification passed

Test the actVal ends with the substring 'longstring'. For the test to
pass, configure the constraint to ignore whitespace and case.

testCase.verifyThat(actVal, EndsWithSubstring('longstring', ...
'IgnoringCase', true, 'IgnoringWhitespace', true));

Interactive verification passed.

Assert that actVal does not end with the substring 'long'.

testCase.assertThat(actVal, ~EndsWithSubstring('long'));

1-1200

matlab.unittest.constraints.EndsWithSubstring

Interactive verification passed.

See Also ContainsSubstring | IsSubstringOf | StartsWithSubstring |
Matches

Concepts

1-1201

matlab.unittest.constraints.Eventually

Superclasses Constraint

Purpose Poll for value to asynchronously satisfy constraint

Construction outConstObj = Eventually(constObj) creates a constraint,
outConstObj, that polls for an actual value function handle to
asynchronously satisfy the constraint specified in the constObj
constraint. It is not satisfied if evaluation of the function handle does
not produce a value that satisfies the constraint within 20 seconds. The
testing framework invokes the drawnow function while the Eventually
constraint waits for specified function to satisfy the constraint.

outConstObj =
Eventually(constObj,'WithTimeoutOf',timeOutVal) creates a
constraint that polls for the constraint to be satisfied within the
timer period specified in timeOutVal.

Input Arguments

constObj

Constraint instance

timeOutVal

Maximum time to wait for passing behavior, specified in seconds

Default: 20 seconds

Properties TimeOut

Maximum time to wait for passing behavior, specified by the
timeOutVal input argument

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-1202

matlab.unittest.constraints.Eventually

Examples Verify Test Passes Eventually

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.Eventually
import matlab.unittest.constraints.IsGreaterThan
import matlab.unittest.constraints.IsLessThan

testCase = TestCase.forInteractiveUse;

Verify that, within the timeout period, a call to toc results in a value
greater than 10 (seconds). The Eventually constraint repeatedly calls
toc until either the constraint is satisfied or the elapsed time exceeds
the timeout period. Repeated calls to toc result in the elapsed time
since the last call to tic.

tic;
testCase.verifyThat(@toc, Eventually(IsGreaterThan(10)));

Interactive verification passed.

The verification may take as long as 10 seconds for toc to reach a
passing value. If you issue the call to tic and wait more than 10
seconds before issuing the verifyThat command, the verification
returns immediately since toc already returns a value greater than 10.

Verify that, within the timeout period, toc does not return a negative
value.

testCase.verifyThat(@toc, Eventually(IsLessThan(0)));

Interactive verification failed.

Framework Diagnostic:

Eventually failed.
--> The function did not pass after 20 seconds.

1-1203

matlab.unittest.constraints.Eventually

--> IsLessThan failed.
--> The value must be less than the maximum value.

Actual Value:
20.286452356691139

Maximum Value (Exclusive):
0

Evaluated Function:
@toc

This failure is expected since elapsed time is not going to be less than
zero. However, Eventually polls toc for the duration of the timeout
period.

Adjust the timeout period so Eventually polls for 5 seconds.

tic;
testCase.verifyThat(@toc, Eventually(IsGreaterThan(10), ...

'WithTimeoutOf', 5));

Interactive verification failed.

Framework Diagnostic:

Eventually failed.
--> The function did not pass after 5 seconds.
--> IsGreaterThan failed.

--> The value must be greater than the minimum value.

Actual Value:
5.076293030150061

Minimum Value (Exclusive):
10

Evaluated Function:
@toc

1-1204

matlab.unittest.constraints.Eventually

If you didn’t wait more than 5 seconds between calls to tic and
verifyThat, the test fails because the elapsed time is not greater than
10 seconds within the modified timeout period.

See Also drawnow | matlab.unittest.constraints.Constraint

Concepts

1-1205

matlab.unittest.constraints.EveryCellOf

Purpose Test if all elements of cell array meet constraint

Description The EveryCellOf class creates a proxy of the actual value to the
framework. The proxy enables a test writer to apply a constraint
against each element of a cell array, which ensures that a passing result
occurs when every element of the cell array satisfies the constraint.

It is intended that you use this class through matlab.unittest
qualifications as shown in the examples. The class does not modify
the provided actual value, but serves as a wrapper to perform the
constraint analysis. The testing framework analyzes the constraint
on an element-by-element basis.

Construction EveryCellOf(actVal) creates a proxy instance that tests if every
element of a provided cell array, actVal, meets a constraint. The test
passes if all elements satisfy the constraint.

Tips

• EveryCellOf checks if every element in the provided cell array
satisfies an associated constraint. However, there are some
constraints, a prominent one being IsEqualTo, that natively validate
if all elements in cell arrays satisfy a condition. In these situations,
use of EveryCellOf is unnecessary and impedes qualification
performance.

Input Arguments

actVal

Actual value to test against constraint

Properties ActualValue

Actual value to test against constraint. Set this property through
the constructor via the actVal input argument.

1-1206

matlab.unittest.constraints.EveryCellOf

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Every Cell Satisfies Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.EveryCellOf;

testCase = TestCase.forInteractiveUse;

Test that every cell of actVal contains the substring 'ain'.

import matlab.unittest.constraints.ContainsSubstring
actVal = {'Rain','Main','Plain'};
testCase.verifyThat(EveryCellOf(actVal), ContainsSubstring('ain'));

Interactive verification passed.

Test that every cell of the actual value array has two elements.

import matlab.unittest.constraints.HasElementCount
testCase.verifyThat(EveryCellOf({{'hello','world'}, {11 38}}), HasElem

Interactive verification passed.

Test that every cell of the actual value array is empty.

import matlab.unittest.constraints.IsEmpty
testCase.verifyThat(EveryCellOf({inputParser.empty,''}), IsEmpty)

Interactive verification passed.

Test that every cell of the actual value array is finite.

import matlab.unittest.constraints.IsFinite;
testCase.verifyThat(EveryCellOf({NaN, Inf, 5}), IsFinite);

1-1207

matlab.unittest.constraints.EveryCellOf

Interactive verification failed.

Framework Diagnostic:

At least one cell failed.

Failing indices:
1 2

The first failing cell failed because:
--> IsFinite failed.

--> The value must be finite.

Actual Value:
NaN

Actual Value Cell Array:
[NaN] [Inf] [5]

Only the third element has a finite value.

Test that every cell of the actual value array is real.

import matlab.unittest.constraints.IsReal
testCase.verifyThat(EveryCellOf({1 4i}), IsReal);

Interactive verification failed.

Framework Diagnostic:

At least one cell failed.

Failing indices:
2

The first failing cell failed because:
--> IsReal failed.

--> The value must be real.

1-1208

matlab.unittest.constraints.EveryCellOf

Actual Value:
0.000000000000000 + 4.000000000000000i

Actual Value Cell Array:
[1] [0.000000000000000 + 4.000000000000000i]

The second element has an imaginary value.

See Also matlab.unittest.qualifications | AnyElementOf | AnyCellOf |
EveryElementOf

Concepts

1-1209

matlab.unittest.constraints.EveryElementOf

Purpose Test if all elements of array meet constraint

Description The EveryElementOf class creates a proxy of the actual value to the
framework. The proxy enables a test writer to apply a constraint
against each element of an array, which ensures that a passing result
occurs when every element of the array that satisfies the constraint.

It is intended that you use this class through matlab.unittest
qualifications as shown in the examples. The class does not modify
the provided actual value, but serves as a wrapper to perform the
constraint analysis. The testing framework analyzes the constraint
on an element-by-element basis.

Construction EveryElementOf(actVal) creates a proxy instance that tests if every
element of a provided array, actVal, meets a constraint. The test
passes if all elements satisfy the constraint.

Tips

• EveryElementOf checks if every element in the provided array
satisfies an associated constraint. However, there are some
constraints, such as IsEqualTo and IsGreaterThan, IsLessThan, that
natively validate if all elements in the array satisfy a condition. In
these situations, use of EveryElementOf is unnecessary and impedes
qualification performance.

Input Arguments

actVal

Actual value to test against constraint

Properties ActualValue

Actual value to test against constraint. Set this property through
the constructor via the actVal input argument.

1-1210

matlab.unittest.constraints.EveryElementOf

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Every Element Satisfies Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.EveryElementOf;

testCase = TestCase.forInteractiveUse;

Test that every element of actVal is less than 55.

import matlab.unittest.constraints.IsLessThan;
actVal = [1 1 2 3 5 8 13 21 34];
testCase.verifyThat(EveryElementOf(actVal), IsLessThan(55));

Interactive verification passed.

Test that every element of the actual value array is complex.

import matlab.unittest.constraints.IsReal
testCase.verifyThat(EveryElementOf([1+2i 4i]), ~IsReal);

Interactive verification passed.

Test that every element of the actual value array is less than zero.

import matlab.unittest.constraints.IsLessThan;
testCase.verifyThat(EveryElementOf([1 -5]), IsLessThan(0));

Interactive verification failed.

Framework Diagnostic:

At least one element failed.

1-1211

matlab.unittest.constraints.EveryElementOf

Failing indices:
1

The first failing element failed because:
--> IsLessThan failed.

--> The value must be less than the maximum value.

Actual Value:
1

Maximum Value (Exclusive):
0

Actual Value Array:
1 -5

Only the second element is less than zero.

Test that every element of the actual value array has a NaN value.

import matlab.unittest.constraints.HasNaN;
testCase.verifyThat(EveryElementOf([NaN 0/0 5]), HasNaN);

Interactive verification failed.

Framework Diagnostic:

At least one element failed.

Failing indices:
3

The first failing element failed because:
--> HasNaN failed.

--> The value must be NaN.

Actual Value:
5

Actual Value Array:

1-1212

matlab.unittest.constraints.EveryElementOf

NaN NaN 5

Only the third element has a NaN value.

See Also matlab.unittest.qualifications | AnyElementOf | AnyCellOf |
EveryCellOf

Concepts

1-1213

matlab.unittest.constraints.HasElementCount

Superclasses BooleanConstraint

Purpose Constraint specifying expected number of elements

Construction HasElementCount(countVal) provides a constraint that specifies an
expected number of elements. The constraint is satisfied if the actual
value array has the same number of elements specified as by countVal.

Input Arguments

countVal

Number of elements a value must have to satisfy the constraint.

Properties Count

Number of elements a value must have to satisfy the constraint.
Set this property through the constructor via the countVal input
argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test for Expected Number of Elements

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasElementCount;

testCase = TestCase.forInteractiveUse;

Verify a scalar has an element count of one.

testCase.verifyThat(3, HasElementCount(1));

Interactive verification passed.

1-1214

matlab.unittest.constraints.HasElementCount

Test the element count of the vector.

testCase.assertThat([42 7 13], HasElementCount(3));

Interactive assertion passed.

Test the element count of the matrix.

testCase.assertThat([1 2 3; 4 5 6], HasElementCount(5));

Interactive assertion failed.

Framework Diagnostic:

HasElementCount failed.
--> The value did not have the correct number of elements.

Actual Number of Elements:
6

Expected Number of Elements:
5

Actual Value:
1 2 3
4 5 6

Assertion failed.

The matrix has six elements.

Test that a square identity matrix has the correct number of elements.

n = 7;
testCase.assumeThat(eye(n), HasElementCount(n^2));

Interactive assumption passed.

Verify the element count of a cell array of strings.

1-1215

matlab.unittest.constraints.HasElementCount

testCase.verifyThat({'aString', 'anotherString'}, HasElementCount(2));

Interactive verification passed.

Test the element count of a structure.

s.Field1 = 1;
s.Field2 = 2;
testCase.verifyThat(s, HasElementCount(2));

Interactive verification failed.

Framework Diagnostic:

HasElementCount failed.
--> The value did not have the correct number of elements.

Actual Number of Elements:
1

Expected Number of Elements:
2

Actual Value:
Field1: 1
Field2: 2

The structure has two fields, but it only has one element.

testCase.verifyThat(s, HasElementCount(1));

Interactive verification passed.

See Also numel | IsEmpty | HasLength | HasSize

Concepts

1-1216

matlab.unittest.constraints.HasField

Superclasses BooleanConstraint

Purpose Constraint specifying structure containing particular field

Construction HasField(fieldname) provides a constraint specifying structure
containing particular field, fieldname. The constraint is satisfied if the
actual value is a structure and that structure contains a field named
fieldname.

Input Arguments

fieldname

Name of the field that a structure must contain to satisfy the
constraint, specified as a string.

Properties Field

Name of the field that a structure must contain to satisfy the
constraint. Set this property through the constructor via the
fieldname input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Structure Has Particular Field

Create at TestCase for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.HasField;

testCase = TestCase.forInteractiveUse;

Define the following structure, S, with two fields.

S = struct('Tag', 123, 'Serial', 345);

1-1217

matlab.unittest.constraints.HasField

Verify that the structure has a 'Tag' field.

testCase.verifyThat(S, HasField('Tag'));

Interactive verification passed.

Verify that the structure has a 'tag' field.

testCase.verifyThat(S, HasField('tag'));

Interactive verification failed.

Framework Diagnostic:

HasField failed.
--> The value did not have the expected field.

Actual Fieldnames:
'Tag'
'Serial'

Expected Fieldname:
'tag'

Actual Value:
Tag: 123

Serial: 345

The verification fails because the field name comparison is case
sensitive.

Verify that the structure has a 'Tag' field.

testCase.verifyThat(S, HasField('Tag'));

Interactive verification passed.

Verify that the structure has both a 'Tag' and a 'Serial' field.

1-1218

matlab.unittest.constraints.HasField

testCase.verifyThat(S, HasField('Tag') & HasField('Serial'));

Interactive verification passed.

Verify that the structure does not have a 'Name' field.

testCase.verifyThat(S, ~HasField('Name'));

Interactive verification passed.

Concepts

1-1219

matlab.unittest.constraints.HasInf

Superclasses BooleanConstraint

Purpose Constraint specifying array containing any infinite value

Construction HasInf creates a constraint that is able to determine if any value of an
actual value array is an infinite value. This constraint is satisfied only
if the actual value array contains at least one infinite value.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Array Contains Infinite Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasInf;

testCase = TestCase.forInteractiveUse;

Test that the value Inf satisfies the constraint.

testCase.verifyThat(Inf, HasInf);

Interactive verification passed.

Assert that an array contains an infinite value.

testCase.assertThat([0 1 1 2 3 5 8 13], HasInf);

Interactive assertion failed.

Framework Diagnostic:

HasInf failed.
--> At least one element must be Inf or -Inf.

1-1220

matlab.unittest.constraints.HasInf

Actual Value:
0 1 1 2 3 5 8 13

Assertion failed.

The array does not contain any infinite values.

Verify that an array contains an infinite value.

testCase.verifyThat([-Inf 5 NaN], HasInf);

Interactive verification passed.

Assert that a complex number that is infinite in the imaginary part
satisfies the constraint.

testCase.assertThat(42+Inf*1i, HasInf);

Interactive verification passed.

Verify that an array does not contain any infinite values.

testCase.verifyThat([NaN -7+NaN*1i], ~HasInf);

Interactive verification passed.

Negating the HasInf constraint does not ensure the value is finite, only
that it does not contain any infinite values.

See Also IsFinite | HasNaN | isinf

Concepts

1-1221

matlab.unittest.constraints.HasLength

Superclasses BooleanConstraint

Purpose Constraint specifying expected length of array

Construction HasLength(lengthVal) provides a constraint that specifies an expected
length of an array. The constraint is satisfied if the largest dimension
length of the actual value array has the same number of elements
specified as by lengthVal.

Input Arguments

lengthVal

Length a value must have to satisfy the constraint.

Properties Count

Length a value must have to satisfy the constraint. Set this
property through the constructor via the lengthVal input
argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test for Expected Array Length

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasLength;

testCase = TestCase.forInteractiveUse;

Assert that a 2x5x3 array has an expected length.

testCase.assertThat(rand(2, 5, 3), HasLength(5));

Interactive assertion passed.

1-1222

matlab.unittest.constraints.HasLength

Verify that a cell array of strings has an expected length.

testCase.verifyThat({'SomeString', 'SomeOtherString'}, HasLength(2));

Interactive verification passed.

Verify that an identity matrix has an expected length.

testCase.verifyThat(eye(2), HasLength(4));

Interactive verification failed.

Framework Diagnostic:

HasLength failed.
--> The array has an incorrect length.

Actual Length:
2

Expected Length:
4

Actual Array:
1 0
0 1

The matrix has a length of 2.

See Also IsEmpty | HasElementCount | HasSize | length

Concepts

1-1223

matlab.unittest.constraints.HasNaN

Superclasses BooleanConstraint

Purpose Constraint specifying array containing NaN value

Construction HasNaN creates a constraint that is able to determine if any value of an
actual value array is NaN. This constraint is satisfied only if the actual
value array contains at least one NaN value.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Array Contains NaN Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasNaN;

testCase = TestCase.forInteractiveUse;

Test that the value NaN satisfies the constraint.

testCase.verifyThat(NaN, HasNaN);

Interactive verification passed.

Assert that an array contains a NaN value.

testCase.assertThat([0 1 1 2 3 5 8 13], HasNaN);

Interactive assertion failed.

Framework Diagnostic:

HasNaN failed.
--> At least one element must be NaN.

1-1224

matlab.unittest.constraints.HasNaN

Actual Value:
0 1 1 2 3 5 8 13

Assertion failed.

The array does not contain a NaN value.

Verify that an array contains a NaN value.

testCase.verifyThat([-Inf 5 NaN], HasNaN);

Interactive verification passed.

Assert that a complex number satisfies the constraint.

testCase.assertThat(42+NaN*1i, HasNaN);

Interactive assertion passed.

Verify that an array does not contain any NaN values.

testCase.verifyThat([Inf -7+Inf*1i], ~HasNaN);

Interactive verification passed.

Negating the HasNaN constraint does not ensure the value is finite, only
that it does not contain any NaN values.

See Also IsFinite | HasInf | isnan

Concepts

1-1225

matlab.unittest.constraints.HasSize

Superclasses BooleanConstraint

Purpose Constraint specifying expected size of array

Construction HasSize(sizeVal) provides a constraint that specifies an expected size
of an array. The constraint is satisfied if the actual value array size is
equal to the size specified by sizeVal.

Input Arguments

sizeVal

Size a value must have to satisfy the constraint.

Properties Count

Size a value must have to satisfy the constraint. Set this property
through the constructor via the sizeVal input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test for Expected Array Size

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasSize;

testCase = TestCase.forInteractiveUse;

Assert that a 2x5x3 array has an expected size.

testCase.assertThat(rand(2, 5, 3), HasSize([2 5 3]));

Interactive assertion passed.

Verify that a cell array of strings has an expected size.

1-1226

matlab.unittest.constraints.HasSize

testCase.verifyThat({'SomeString', 'SomeOtherString'}, HasSize([1 2]))

Interactive verification passed.

Verify that an identity matrix has an expected size.

testCase.verifyThat(eye(2), HasSize([4 1]));

Interactive verification failed.

Framework Diagnostic:

HasSize failed.
--> The value had an incorrect size.

Actual Size:
2 2

Expected Size:
4 1

Actual Value:
1 0
0 1

The matrix has a size of 2x2.

See Also IsEmpty | HasElementCount | HasLength | size

Concepts

1-1227

matlab.unittest.constraints.IsAnything

Superclasses Constraint

Purpose Constraint specifying any value

Construction IsAnything provides a constraint specifying any value. The constraint
is satisfied by any value. It is the default constraint for selectors that do
not require an input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Instantiate IsAnything Object

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsAnything;

testCase = TestCase.forInteractiveUse;

Verify that the following values satisfy the IsAnything constraint: NaN,
an inputParser object, a numeric array, and a complex number.

testCase.verifyThat(NaN, IsAnything);
testCase.verifyThat(inputParser, IsAnything);
testCase.verifyThat(1:10, IsAnything);
testCase.verifyThat(-Inf+5j, IsAnything);

Interactive verification passed.
Interactive verification passed.
Interactive verification passed.
Interactive verification passed.

Test that empty cells, arrays, and strings satisfy the IsAnything
constraint.

testCase.verifyThat({}, IsAnything);
testCase.verifyThat([], IsAnything);

1-1228

matlab.unittest.constraints.IsAnything

testCase.verifyThat('', IsAnything);

Interactive verification passed.
Interactive verification passed.
Interactive verification passed.

The constraint is satisfied even though the data are empty.

See Also matlab.unittest.selectors

Concepts

1-1229

matlab.unittest.constraints.IsEmpty

Superclasses BooleanConstraint

Purpose Constraint specifying empty value

Construction IsEmpty provides a constraint that specifies an empty value. The
constraint is satisfied if the actual value array is empty.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Is Empty

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsEmpty;

testCase = TestCase.forInteractiveUse;

Verify that an empty string satisfies the IsEmpty constraint.

testCase.verifyThat('', IsEmpty);

Interactive verification passed.

Assert that a vector is not empty.

testCase.assertThat([13 42], ~IsEmpty);

Interactive verification passed.

Verify that a matrix with a dimension of length zero is empty.

testCase.verifyThat(rand(2, 5, 0, 3), IsEmpty);

Interactive verification passed.

Assert that an empty object satisfies the IsEmpty constraint.

1-1230

matlab.unittest.constraints.IsEmpty

testCase.assertThat(MException.empty, IsEmpty);

Interactive assertion passed.

Verify that a cell array containing an empty numeric array is empty.

testCase.verifyThat({[]}, IsEmpty);

Interactive verification failed.

Framework Diagnostic:

IsEmpty failed.
--> The value must be empty.
--> The value has a size of [1 1].

Actual Value:
{[]}

The cell array is not empty, even though the only thing it contains is
an empty array.

See Also HasCount | HasLength | HasSize | isempty

Concepts

1-1231

matlab.unittest.constraints.IsFalse

Superclasses Constraint

Purpose Constraint specifying false value

Construction IsFalse provides a constraint specifying a false value. This constraint
is satisfied only by a scalar logical with a value of false.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test Actual Value Is False

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsFalse;

testCase = TestCase.forInteractiveUse;

Test that false satisfies the IsFalse constraint.

testCase.verifyThat(false, IsFalse);

Interactive verification passed.

Test that the IsFalse constraint is not satisfied by true.

testCase.verifyThat(true, IsFalse);

Interactive verification failed.

Framework Diagnostic:

IsFalse failed.
--> The value must evaluate to "false".

1-1232

matlab.unittest.constraints.IsFalse

Actual Value:
1

The test fails because true returns logical(1).

Test that the IsFalse constraint is not satisfied by the double 0.

testCase.verifyThat(0, IsFalse);

Interactive verification failed.

Framework Diagnostic:

IsFalse failed.
--> The value must be logical. It is of type "double".

Actual Value:
0

The IsFalse constraint is satisfied only by logical(0).

Test that the IsFalse constraint is not satisfied by a logical array of
zeros.

testCase.verifyThat([false false false], IsFalse);

Interactive verification failed.

Framework Diagnostic:

IsFalse failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
0 0 0

1-1233

matlab.unittest.constraints.IsFalse

The IsFalse constraint is only satisfied if the value is scalar and
logical(0).

See Also IsTrue

Concepts

1-1234

matlab.unittest.constraints.IsFinite

Superclasses BooleanConstraint

Purpose Constraint specifying finite value

Construction IsFinite creates a constraint that is able to determine if all values of
an actual value array are finite. This constraint is satisfied only if the
actual value array does not contain any infinite or NaN values.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Array Contains Only Finite Values

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsFinite;

testCase = TestCase.forInteractiveUse;

Test that the value 17 satisfies the constraint.

testCase.verifyThat(17, IsFinite);

Interactive verification passed.

Assert that an array is completely finite.

testCase.assertThat([0 1 1 2 3 5 8 13], IsFinite);

Interactive assertion passed.

Verify that an array is completely finite.

testCase.verifyThat([-Inf 5 NaN], IsFinite);

Interactive verification failed.

1-1235

matlab.unittest.constraints.IsFinite

Framework Diagnostic:

IsFinite failed.
--> All elements must be finite-valued.

Failing indices:
1 3

Actual Value:
-Inf 5 NaN

The array contains an infinite value.

Test if a complex number that is infinite in the imaginary part satisfies
the constraint.

testCase.assertThat(42+Inf*1i, IsFinite);

Interactive assertion failed.

Framework Diagnostic:

IsFinite failed.
--> The value must be finite.

Actual Value:
42.000000000000000 + Infi

Assertion failed.

Verify that an array does not contain all finite values.

testCase.verifyThat([NaN -7+NaN*1i], ~IsFinite);

Interactive verification passed.

See Also HasInf | HasNaN | isfinite

1-1236

matlab.unittest.constraints.IsFinite

Concepts

1-1237

matlab.unittest.constraints.IsGreaterThan

Superclasses Constraint

Purpose Constraint specifying value greater than another value

Construction IsGreaterThan(floorVal) creates a constraint specifying that an
actual value is greater than another value. The constraint is satisfied
if the actual value array is greater than the specified floor value,
floorVal. The actual value is greater than floorVal only if the result of
the expression actual > floorVal is nonempty and all values are true.

Input Arguments

floorVal

Largest value that fails the constraint.

Properties FloorValue

Largest value that fails the constraint. Set this property through
the constructor via the floorVal input argument.

Methods
and Form logical conjunction of

constraints

or Form logical disjunction of
constraints

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Is Greater Than Provided Floor Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsGreaterThan;

1-1238

matlab.unittest.constraints.IsGreaterThan

testCase = TestCase.forInteractiveUse;

Test that the actual value is greater than two.

actVal = 3;
testCase.verifyThat(actVal, IsGreaterThan(2));

Interactive verification passed.

Test that the actual value is greater than three.

testCase.verifyThat(actVal, IsGreaterThan(3));

Interactive verification failed.

Framework Diagnostic:

IsGreaterThan failed.
--> The value must be greater than the minimum value.

Actual Value:
3

Minimum Value (Exclusive):
3

The actual value is equal to, not greater than, three.

Test that each element in the actual value array is greater than four.

actVal = [5 6 7];
testCase.verifyThat(actVal, IsGreaterThan(4));

Interactive verification passed.

Test that each element in the actual value matrix is greater than four.

actVal = [1 2 3; 4 5 6];

1-1239

matlab.unittest.constraints.IsGreaterThan

testCase.verifyThat(actVal, IsGreaterThan(4));

testCase.verifyThat(actVal, IsGreaterThan(4));
Interactive verification failed.

Framework Diagnostic:

IsGreaterThan failed.
--> Each element must be greater than the minimum value.

Failing Indices:
1 2 3 5

Actual Value:
1 2 3
4 5 6

Minimum Value (Exclusive):
4

The matrix contains four elements with a value less than or equal to
four.

Test that the actual value, 5, is greater than every element in an array.

testCase.verifyThat(5, IsGreaterThan([1 2 3]));

Interactive verification passed.

Test that elements in the actual value array are greater than the
corresponding floor values.

testCase.verifyThat([5 -3 2], IsGreaterThan([4 -9 0]));

Interactive verification passed.

Repeat the test, this time negating the first actual value element.

testCase.verifyThat([-5 -3 2], IsGreaterThan([4 -9 0]));

1-1240

matlab.unittest.constraints.IsGreaterThan

Interactive verification failed.

Framework Diagnostic:

IsGreaterThan failed.
--> Each element must be greater than each corresponding element of th

Failing Indices:
1

Actual Value:
-5 -3 2

Minimum Value (Exclusive):
4 -9 0

The negated element is less than four.

See Also gt | IsGreaterThanOrEqualTo | IsLessThanOrEqualTo | IsLessThan

Concepts

1-1241

matlab.unittest.constraints.IsGreaterThanOrEqualTo

Superclasses Constraint

Purpose Constraint specifying value greater than or equal to another value

Construction IsGreaterThanOrEqualTo(floorVal) creates a constraint specifying
that an actual value is greater than or equal to another value. The
constraint is satisfied if the actual value array is greater than or equal
to the specified floor value, floorVal. The actual value is greater than
or equal to floorVal only if the result of the expression actual >=
floorVal is nonempty and all values are true.

Input Arguments

floorVal

Minimum value to satisfy the constraint.

Properties FloorValue

Minimum value to satisfy the constraint. Set this property
through the constructor via the floorVal input argument.

Methods
and Form logical conjunction of

constraints

or Form logical disjunction of
constraints

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Is Greater Than or Equal to Provided
Floor Value

Create a test case for interactive testing.

import matlab.unittest.TestCase

1-1242

matlab.unittest.constraints.IsGreaterThanOrEqualTo

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;

testCase = TestCase.forInteractiveUse;

Test that the actual value is greater than or equal to two.

actVal = 3;
testCase.verifyThat(actVal, IsGreaterThanOrEqualTo(2));

Test that the actual value is greater than or equal to three.

testCase.verifyThat(actVal, IsGreaterThanOrEqualTo(3));

Interactive verification passed.

Test that each element in the actual value array is greater than or
equal to four.

actVal = [5 6 7];
testCase.verifyThat(actVal, IsGreaterThanOrEqualTo(4));

Interactive verification passed.

Test that each element in the actual value matrix is greater than or
equal to four.

actVal = [1 2 3; 4 5 6];
testCase.verifyThat(actVal, IsGreaterThanOrEqualTo(4));

Interactive verification failed.

Framework Diagnostic:

IsGreaterThanOrEqualTo failed.
--> Each element must be greater than or equal to the minimum value.

Failing Indices:
1 3 5

1-1243

matlab.unittest.constraints.IsGreaterThanOrEqualTo

Actual Value:
1 2 3
4 5 6

Minimum Value (Inclusive):
4

The matrix contains three elements that are greater than or equal to
four.

Test that the actual value, 5, is greater than or equal to every element
in an array.

testCase.verifyThat(5, IsGreaterThanOrEqualTo([1 2 3 5]));

Interactive verification passed.

Test that elements in the actual value array are greater than or equal
to the corresponding floor values.

testCase.verifyThat([5 -3 0], IsGreaterThanOrEqualTo([4 -9 0]));

Interactive verification passed.

Repeat the test, this time negating the first actual value element.

testCase.verifyThat([-5 -3 0], IsGreaterThanOrEqualTo([4 -9 0]));

Interactive verification failed.

Framework Diagnostic:

IsGreaterThanOrEqualTo failed.
--> Each element must be greater than or equal to each corresponding elem

Failing Indices:
1

1-1244

matlab.unittest.constraints.IsGreaterThanOrEqualTo

Actual Value:
-5 -3 0

Minimum Value (Inclusive):
4 -9 0

The negated element is less than or equal to four.

See Also ge | IsGreaterThan | IsLessThanOrEqualTo | IsLessThan

Concepts

1-1245

matlab.unittest.constraints.IsEqualTo

Superclasses BooleanConstraint

Purpose General constraint to compare for equality

Description The IsEqualTo class creates a constraint that compares data for
equality. The type of comparison it uses is governed by the data type of
the expected value. First, the testing framework checks if the expected
value is an object. This check is performed first because it is possible
for the object to have overridden methods that are used in subsequent
checks (e.g. islogical). The following list categorizes and describes
the various tests.

Data Type Equality Comparison Method

MATLAB
& Java
Objects

If the expected value is a MATLAB or Java object, the
IsEqualTo constraint calls the isequal method on the
expected value object. If isequal returns false and a
supported tolerance is specified, the constraint checks
the actual and expected values for equivalent class, size,
and sparsity. If these checks fail, the constraint is not
satisfied. If these checks pass, the constraint uses the
tolerance in the comparison.

Logicals If the expected value is a logical, the constraint checks
the actual and expected values for equivalent sparsity.
If the sparsity matches, the constraint compares
the values with the isequal method. Otherwise, the
constraint is not satisfied.

Numerics If the expected value is numeric, the constraint checks
the actual and expected values for equivalent class,
size, and sparsity. If the all these checks match, the
constraint uses the isequaln method for comparison. If
isequaln returns true, the constraint is satisfied. If the
complexity does not match or isequaln returns false,
and a supported tolerance is supplied, the constraint
uses the tolerance in the comparison. Otherwise, the
constraint is not satisfied.

1-1246

matlab.unittest.constraints.IsEqualTo

Data Type Equality Comparison Method

Strings If the expected value is a string, the constraint uses the
strcmp function to check the actual and expected values
for equality. However, if the IgnoreCase property is
true, the strings are compared using strcmpi. If the
IgnoreWhitespace is true, all whitespace characters
are removed from the actual and expected strings before
passing them to strcmp or strcmpi.

Structures If the expected value is a struct, the constraint
compares the field count of the actual and expected
values. If not equal, the constraint is not satisfied.
Otherwise, each field of the expected value struct must
exist on the actual value struct. If any field names
are different, the constraint is not satisfied. Then, the
constraint recursively compares the fields in a depth
first examination. The recursion continues until a
fundamental data type is encountered (i.e. logical,
numeric, string, or object), and then the values are
compared as described above.

Cell
Arrays

If the expected value is a cell array, the constraint
checks the actual and expected values for size equality.
If they are not equal in size, the constraint is not
satisfied. Otherwise, each element of the array is
recursively compared in a manner identical to fields in a
structure, described above.

Construction IsEqualTo(expVal) provides a general constraint to compare for
equality.

IsEqualTo(expVal,Name,Value) provides a constraint with
additional options specified by one or more Name,Value pair
arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-1247

matlab.unittest.constraints.IsEqualTo

Input Arguments

expVal

The expected value that will be compared to the actual value.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false
or true (logical 0 or 1)

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified
as false or true (logical 0 or 1)

Default: false

Using

Particular comparator to use for constraint construction, specified
as a matlab.unittest.constraints.Comparator object

Default: (empty)

Within

Tolerance to use in constraint construction, specified as a
matlab.unittest.constraints.Tolerance object

1-1248

matlab.unittest.constraints.IsEqualTo

Default: (empty)

Properties Comparator

Specific comparator used in construction of the constraint,
specified as a matlab.unittest.constraints.Comparator object
in the name-value pair argument, 'Using'.

Expected

The expected value that will be compared to the actual value
specified in the expVal input argument.

IgnoreCase

Indicator if the constraint is insensitive to case, specified in the
name-value pair argument, 'IgnoringCase'. This property
applies at all levels of recursion, such as nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified
in the name-value pair argument, 'IgnoringWhitespace'.
This property applies at all levels of recursion, such as nested
structures.

Tolerance

Specific tolerance used in construction of the constraint, specified
as a matlab.unittest.constraints.Tolerance object in the
name-value pair argument, 'Within'. This property applies at all
levels of recursion, such as nested structures.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test Numerics for Equality

Create a TestCase for interactive testing.

import matlab.unittest.TestCase;

1-1249

matlab.unittest.constraints.IsEqualTo

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

testCase = TestCase.forInteractiveUse;

Verify that an actual value of 5 is equal to the expected value.

expVal = 5;
testCase.verifyThat(expVal, IsEqualTo(5));

Interactive verification passed.

Assume that the actual value is 4.95. Verify that the difference between
the actual value and expected value is less than 0.09.

testCase.verifyThat(expVal, IsEqualTo(4.95, 'Within', AbsoluteTolerance(0

Interactive verification passed.

Assume that the actual value is 4.9. Verify that the difference between
the actual and expected value is less than 1%.

testCase.verifyThat(expVal, IsEqualTo(4.9, 'Within', RelativeTolerance(0.

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".
--> RelativeTolerance failed.

--> The value was not within relative tolerance.

Tolerance Value:
0.010000000000000

1-1250

matlab.unittest.constraints.IsEqualTo

Actual Value:
5

Expected Value:
4.900000000000000

The two values differ by more than 1%.

Test Floating Point Calculation with Tolerance

Create a TestCase for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;

testCase = TestCase.forInteractiveUse;

Test that 0.1*3 = 0.3.

act = 0.1*3;
exp = 0.3;
testCase.verifyThat(act, IsEqualTo(exp))

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
0.300000000000000

Expected Value:
0.300000000000000

This test fails due to round off error in floating point arithmetic.

1-1251

matlab.unittest.constraints.IsEqualTo

Perform the comparison of floating point numbers using a tolerance.
Test that 0.1*3 = 0.3 within a relative tolerance of 2*eps.

testCase.verifyThat(act, IsEqualTo(exp, ...
'Within', RelativeTolerance(2*eps)));

Interactive verification passed.

Test Strings for Equality

Create a TestCase for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;

testCase = TestCase.forInteractiveUse;

Verify that two strings are equal.

expVal = 'Hello';
testCase.verifyThat(expVal, IsEqualTo('Hello'));

Interactive verification passed.

Change the case of the actual string and test for equality.

testCase.verifyThat(expVal, IsEqualTo('hello'));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> StringComparator failed.

--> The strings are not equal

Actual String:
Hello

1-1252

matlab.unittest.constraints.IsEqualTo

Expected String:
hello

Ignore case and test again.

testCase.verifyThat(expVal, IsEqualTo('hello', 'IgnoringCase', true));

Interactive verification passed.

Ignore whitespace and test two strings.

expVal = 'a bc';
testCase.verifyThat(expVal, IsEqualTo('abc', 'IgnoringWhitespace', tru
testCase.verifyThat(expVal, IsEqualTo('ab c', 'IgnoringWhitespace', tr

Interactive verification passed.
Interactive verification passed.

Test Objects for Equality Using Comparator

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
import matlab.unittest.constraints.PublicPropertyComparator;

testCase = TestCase.forInteractiveUse;

Define actual and expected timeseries objects. Perturb one of the
actual data points by 1%.

expected = timeseries(1:10);
actual = expected;
actual.Data(7) = 1.01*actual.Data(7);

Test that the actual and expected values are equal within a relative
tolerance of 2%.

testCase.verifyThat(actual, IsEqualTo(expected,...

1-1253

matlab.unittest.constraints.IsEqualTo

'Within', RelativeTolerance(.02)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> ObjectComparator failed.

--> The objects are not equal using "isequal".
--> The tolerance does not support timeseries values so it was not us

Actual Object:
timeseries

Common Properties:
Name: 'unnamed'
Time: [10x1 double]

TimeInfo: [1x1 tsdata.timemetadata]
Data: [1x1x10 double]

DataInfo: [1x1 tsdata.datametadata]

More properties, Methods
Expected Object:

timeseries

Common Properties:
Name: 'unnamed'
Time: [10x1 double]

TimeInfo: [1x1 tsdata.timemetadata]
Data: [1x1x10 double]

DataInfo: [1x1 tsdata.datametadata]

More properties, Methods

Use the PublicPropertyComparator in the construction of the
constraint.

1-1254

matlab.unittest.constraints.IsEqualTo

testCase.verifyThat(actual, IsEqualTo(expected,...
'Within', RelativeTolerance(.02),...
'Using', PublicPropertyComparator.supportingAllValues));

Interactive verification passed.

The test passes because the PublicPropertyComparator compares each
public property individually instead of comparing the object all at once.
In the former test, the ObjectComparator is used on the timeseries
object, and therefore relies on the isequal method of the timeseries
class. Due to the perturbation in the actual timeseries, isequal
returns false. The comparator does not apply the tolerance because
the double-valued tolerance cannot apply directly to the timeseries
object. In the latter test, the comparator applies the tolerance to each
public property that contains double-valued data.

See Also matlab.unittest.constraints.Constraint |
matlab.unittest.constraints.Tolerance

Concepts

1-1255

matlab.unittest.constraints.IsInstanceOf

Superclasses BooleanConstraint

Purpose Constraint specifying inclusion in given class hierarchy

Construction IsInstanceOf(class) provides a constraint specifying inclusion in a
given class hierarchy. The constraint is satisfied if the actual value
instance passes the “isa” relationship with class .

Input Arguments

class

Class name that the actual value must derive from or be an
instance of to satisfy the constraint, specified as a fully qualified
class name string or a meta.class instance.

Properties Class

Class name that the actual value must derive from or be an
instance of to satisfy the constraint. Set this property through the
constructor via the class input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Is Instance of Specified Class

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsInstanceOf;

testCase = TestCase.forInteractiveUse;

Verify that the actual value, 5, is an instance of the double class.

testCase.verifyThat(5, IsInstanceOf('double'));

1-1256

matlab.unittest.constraints.IsInstanceOf

Interactive verification passed.

Repeat the test using an instance of meta.class instead of a string.

testCase.verifyThat(5, IsInstanceOf(?double));

Interactive verification passed.

Assert that zero is an instance of the logical class.

testCase.assertThat(0, IsInstanceOf('logical'));

Interactive assertion failed.

Framework Diagnostic:

IsInstanceOf failed.
--> The value must be an instance of the expected type.

Actual Class:
double

Expected Type:
logical

Actual Value:
0

Assertion failed.

Verify that @sin is a function handle.

testCase.verifyThat(@sin, IsInstanceOf(?function_handle));

Interactive verification passed.

Verify that name is an instance of the char class.

name = 42;
testCase.verifyThat(name, IsInstanceOf('char'));

1-1257

matlab.unittest.constraints.IsInstanceOf

Interactive verification failed.

Framework Diagnostic:

IsInstanceOf failed.
--> The value must be an instance of the expected type.

Actual Class:
double

Expected Type:
char

Actual Value:
42

Test That Derived Class Is Instance of Specified Class

In a file in your working folder, create a class, DerivedExample, that
inherits from the handle class.

classdef DerivedExample < handle
end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsInstanceOf;

testCase = TestCase.forInteractiveUse;

Verify that an instance of the DerivedExample class is an instance
of a handle.

exObj = DerivedExample;
testCase.verifyThat(exObj, IsInstanceOf(?handle));

Interactive verification passed.

1-1258

matlab.unittest.constraints.IsInstanceOf

Even though exObj is not an instance of the handle class, the
verification passes because it derives from the handle class.

See Also IsOfClass | isa

Concepts

1-1259

matlab.unittest.constraints.IsLessThan

Superclasses Constraint

Purpose Constraint specifying value less than another value

Construction IsLessThan(ceilVal) creates a constraint specifying that an actual
value less is than another value. The constraint is satisfied if the actual
value array is less than the specified ceiling value, ceilVal. The actual
value is less than ceilVal only if the result of the expression actual <
ceilVal is nonempty and all values are true.

Input Arguments

ceilVal

Smallest value that fails the constraint.

Properties CeilingValue

Smallest value that fails the constraint. Set this property through
the constructor via the ceilVal input argument.

Methods
and Form logical conjunction of

constraints

or Form logical disjunction of
constraints

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Is Less Than Provided Ceiling Value

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsLessThan;

1-1260

matlab.unittest.constraints.IsLessThan

testCase = TestCase.forInteractiveUse;

Test that the actual value is less than four.

actVal = 3;
testCase.verifyThat(actVal, IsLessThan(4));

Interactive verification passed.

Test that the actual value is less than three.

testCase.verifyThat(actVal, IsLessThan(3));

Interactive verification failed.

Framework Diagnostic:

IsLessThan failed.
--> The value must be less than the maximum value.

Actual Value:
3

Maximum Value (Exclusive):
3

The actual value is equal to, not less than, three.

Test that each element in the actual value array is less than four.

actVal = [1 2 3];
testCase.verifyThat(actVal, IsLessThan(4));

Interactive verification passed.

Test that each element in the actual value matrix is less than four.

actVal = [1 2 3; 4 5 6];
testCase.verifyThat(actVal, IsLessThan(4));

1-1261

matlab.unittest.constraints.IsLessThan

Interactive verification failed.

Framework Diagnostic:

IsLessThan failed.
--> Each element must be less than the maximum value.

Failing Indices:
2 4 6

Actual Value:
1 2 3
4 5 6

Maximum Value (Exclusive):
4

The matrix contains three elements that are greater than or equal to
four.

Test that the actual value, 0, is less than every element in an array.

testCase.verifyThat(0, IsLessThan([1 2 3]));

Interactive verification passed.

Test that elements in the actual value array are less than the
corresponding ceiling values.

testCase.verifyThat([4 -9 0], IsLessThan([5 -3 2]));

Interactive verification passed.

Repeat the test, this time negating the second actual value element.

testCase.verifyThat([4 9 0], IsLessThan([5 -3 2]));

Interactive verification failed.

1-1262

matlab.unittest.constraints.IsLessThan

Framework Diagnostic:

IsLessThan failed.
--> Each element must be less than each corresponding element of the m

Failing Indices:
2

Actual Value:
4 9 0

Maximum Value (Exclusive):
5 -3 2

The negated element is greater than -3.

See Also lt | IsGreaterThanOrEqualTo | IsLessThanOrEqualTo |
IsGreaterThan

Concepts

1-1263

matlab.unittest.constraints.IsLessThanOrEqualTo

Superclasses Constraint

Purpose Constraint specifying value less than or equal to another value

Construction IsLessThanOrEqualTo(ceilVal) creates a constraint specifying that
an actual value is less than or equal to another value. The constraint is
satisfied if the actual value array is less than or equal to the specified
ceiling value, ceilVal. The actual value is less than or equal to ceilVal
only if the result of the expression actual <= ceilVal is nonempty and
all values are true.

Input Arguments

ceilVal

Maximum value to satisfy the constraint.

Properties CeilingValue

Maximum value to satisfy the constraint. Set this property
through the constructor via the ceilVal input argument.

Methods
and Form logical conjunction of

constraints

or Form logical disjunction of
constraints

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Is Less Than or Equal to Provided
Ceiling Value

Create a test case for interactive testing.

import matlab.unittest.TestCase

1-1264

matlab.unittest.constraints.IsLessThanOrEqualTo

import matlab.unittest.constraints.IsLessThanOrEqualTo;

testCase = TestCase.forInteractiveUse;

Test that the actual value is less than or equal to four.

actVal = 3;
testCase.verifyThat(actVal, IsLessThanOrEqualTo(4));

Interactive verification passed.

Test that the actual value is less than or equal to three.

testCase.verifyThat(actVal, IsLessThanOrEqualTo(3));

Interactive verification passed.

Test that each element in the actual value array is less than or equal
to four.

actVal = [1 2 3 4];
testCase.verifyThat(actVal, IsLessThanOrEqualTo(4));

Interactive verification passed.

Test that each element in the actual value matrix is less than or equal
to four.

actVal = [1 2 3; 4 5 6];
testCase.verifyThat(actVal, IsLessThanOrEqualTo(4));

Interactive verification failed.

Framework Diagnostic:

IsLessThanOrEqualTo failed.
--> Each element must be less than or equal to the maximum value.

1-1265

matlab.unittest.constraints.IsLessThanOrEqualTo

Failing Indices:
4 6

Actual Value:
1 2 3
4 5 6

Maximum Value (Inclusive):
4

The matrix contains two elements that are greater than four.

Test that the actual value, 1, is less than or equal to every element
in an array.

testCase.verifyThat(1, IsLessThanOrEqualTo([1 2 3]));

Interactive verification passed.

Test that elements in the actual value array are less than the
corresponding ceiling values.

testCase.verifyThat([4 -9 2], IsLessThanOrEqualTo([5 -3 2]));

Interactive verification passed.

Repeat the test, this time negating the second actual value element.

testCase.verifyThat([4 9 2], IsLessThanOrEqualTo([5 -3 2]));

Interactive verification failed.

Framework Diagnostic:

IsLessThanOrEqualTo failed.
--> Each element must be less than or equal to each corresponding element

Failing Indices:
2

1-1266

matlab.unittest.constraints.IsLessThanOrEqualTo

Actual Value:
4 9 2

Maximum Value (Inclusive):
5 -3 2

The negated element is greater than -3.

See Also le | IsGreaterThanOrEqualTo | IsLessThan | IsGreaterThan

Concepts

1-1267

matlab.unittest.constraints.IsOfClass

Superclasses BooleanConstraint

Purpose Constraint specifying class type

Construction IsOfClass(class) provides a constraint specifying the class type. The
constraint is satisfied if the actual value is the same class as class .
The constraint is not satisfied if the actual value derives from class.

Input Arguments

class

Class name that must be matched by the actual value to satisfy
the constraint, specified as a fully qualified class name string or
a meta.class instance.

Properties Class

Class name that must be matched by the actual value to satisfy
the constraint. Set this property through the constructor via the
class input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Class Is Specified Class

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsOfClass;

testCase = TestCase.forInteractiveUse;

Verify that the actual value, 5, is a double.

testCase.verifyThat(5, IsOfClass('double'));

1-1268

matlab.unittest.constraints.IsOfClass

Interactive verification passed.

Repeat the test using an instance of meta.class instead of a string.

testCase.verifyThat(5, IsOfClass(?double));

Interactive verification passed.

Assert that zero is an instance of the logical class.

testCase.assertThat(0, IsOfClass('logical'));

Interactive assertion failed.

Framework Diagnostic:

IsOfClass failed.
--> The value's class is incorrect.

Actual Class:
double

Expected Class:
logical

Actual Value:
0

Assertion failed.

Verify that @sin is a function handle.

testCase.verifyThat(@sin, IsOfClass(?function_handle));

Interactive verification passed.

Verify that name is an instance of the char class.

name = 42;
testCase.verifyThat(name, IsOfClass('char'));

1-1269

matlab.unittest.constraints.IsOfClass

Interactive verification failed.

Framework Diagnostic:

IsOfClass failed.
--> The value's class is incorrect.

Actual Class:
double

Expected Class:
char

Actual Value:
42

Test That Derived Class Is Instance of Specified Class

In a file in your working folder, create a class, DerivedExample, that
inherits from the handle class.

classdef DerivedExample < handle
end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsOfClass;

testCase = TestCase.forInteractiveUse;

Verify that an instance of the DerivedExample class is an instance
of a handle.

exObj = DerivedExample;
testCase.verifyThat(exObj, IsOfClass(?handle));

Interactive verification failed.

1-1270

matlab.unittest.constraints.IsOfClass

Framework Diagnostic:

IsOfClass failed.
--> The value's class is incorrect.

Actual Class:
DerivedExample

Expected Class:
handle

Actual Value:
DerivedExample with no properties.

Even though exObj derives from the handle class, it is not an instance
of the handle class.

Verify that an instance of the DerivedExample class is an instance of
a DerivedExample.

testCase.verifyThat(exObj, IsOfClass(?DerivedExample));

Interactive verification passed.

See Also IsInstanceOf | class

Concepts

1-1271

matlab.unittest.constraints.IsReal

Superclasses BooleanConstraint

Purpose Constraint specifying real valued array

Construction IsReal provides a constraint specifying a real valued array. This
constraint is satisfied only if the actual value contains only real values.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Array Is Real Valued

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsReal;

testCase = TestCase.forInteractiveUse;

Verify that the values 5 and 5+0i are real.

testCase.verifyThat(5, IsReal);
testCase.verifyThat(5+0i, IsReal);

Interactive verification passed.
Interactive verification passed.

Test if the imaginary number is real.

testCase.verifyThat(sqrt(-1), IsReal);

Interactive verification failed.

Framework Diagnostic:

IsReal failed.
--> The value must be real.

1-1272

matlab.unittest.constraints.IsReal

Actual Value:
0.000000000000000 + 1.000000000000000i

The actual value is imaginary.

Assert that an array contains only real values.

testCase.assertThat([0 1 1 2 3 5 8 13], IsReal);

Interactive assertion passed.

Test that the array, arr, is real.

arr = [NaN -Inf];
testCase.verifyThat(arr, IsReal);

Interactive verification passed.

Multiply the array by a complex number and test that the values are
not real.

testCase.verifyThat(42i*arr, ~IsReal);

Interactive verification passed.

See Also isreal

Concepts

1-1273

matlab.unittest.constraints.IsSameHandleAs

Superclasses BooleanConstraint

Purpose Constraint specifying handle instance same as another

Construction IsSameHandle(h) provides a constraint specifying a handle instance or
group of instances is same as another.

The constraint is satisfied only if each element of the actual value is the
same instance as each corresponding element of h.

Input
Arguments

h

handle object or array of handle objects. The actual value array
passed to the qualification must be the same size as h.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test Handles for Equality

In a file in your working folder, create the following handle class for
interactive testing.

classdef ExampleHandle < handle
end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsSameHandleAs;

testCase = TestCase.forInteractiveUse;

Instantiate two handles.

h1 = ExampleHandle;
h2 = ExampleHandle;

1-1274

matlab.unittest.constraints.IsSameHandleAs

Verify that the handle, h1, is the same as h1.

testCase.verifyThat(h1, IsSameHandleAs(h1));

Interactive verification passed.

Test that h1 is the same handle instance as h2.

testCase.verifyThat(h1, IsSameHandleAs(h2));

Interactive verification failed.

Framework Diagnostic:

IsSameHandleAs failed.
--> Values do not refer to the same handle.

Actual Value:
ExampleHandle with no properties.

Expected Handle Object:
ExampleHandle with no properties.

Test that two arrays of handles are the same instances.

expArr = [h1 h2 h1];
actArr = [h1 h2 h1];

testCase.verifyThat(expArr, IsSameHandleAs(actArr));

Interactive verification passed.

The arrays satisfy the constraint even though the elements within a
particular array are not the same instance as each other.

Verify that the constraint is not satisfied if it expects a single handle
and the actual value is an array of the same instances.

testCase.verifyThat([h1 h1], IsSameHandleAs(h1));

1-1275

matlab.unittest.constraints.IsSameHandleAs

Interactive verification failed.

Framework Diagnostic:

IsSameHandleAs failed.
--> Sizes do not match.

Actual Value Size : [1 2]
Expected Handle Object Size : [1 1]

Actual Value:
1x2 ExampleHandle array with no properties.

Expected Handle Object:
ExampleHandle with no properties.

Similarly, the constraint is not satisfied a single handle instance if it
expects an array of handles.

testCase.verifyThat(h2, IsSameHandleAs([h2 h2]));

Interactive verification failed.

Framework Diagnostic:

IsSameHandleAs failed.
--> Sizes do not match.

Actual Value Size : [1 1]
Expected Handle Object Size : [1 2]

Actual Value:
ExampleHandle with no properties.

Expected Handle Object:
1x2 ExampleHandle array with no properties.

See Also eq | handle | IsEqualTo

1-1276

matlab.unittest.constraints.IsSameHandleAs

Concepts

1-1277

matlab.unittest.constraints.IsSparse

Superclasses BooleanConstraint

Purpose Constraint specifying sparse array

Construction IsSparse creates a constraint specifying a sparse array. This constraint
is satisfied only when the actual value is sparse.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Array Is Sparse

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsSparse;

testCase = TestCase.forInteractiveUse;

Create an identity matrix, and test if it is sparse.

F = eye(7);
testCase.verifyThat(F, IsSparse);

testCase.verifyThat(F, IsSparse);
Interactive verification failed.

Framework Diagnostic:

IsSparse failed.
--> The value must be sparse.

Actual Value:
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

1-1278

matlab.unittest.constraints.IsSparse

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

The matrix, F, is a full matrix.

Convert F to a sparse matrix and retest for sparsity.

S = sparse(F);
testCase.verifyThat(S, IsSparse);

Interactive verification passed.

See Also issparse

Concepts

1-1279

matlab.unittest.constraints.IsSubstringOf

Superclasses BooleanConstraint

Purpose Constraint specifying substring of another string

Construction IsSubstringOf(superstring) creates a constraint specifying a
substring of another string. The constraint is satisfied only if the actual
value is contained within an expected string, superstring.

IsSubstringOf(superstring,Name,Value) provides a constraint
with additional options specified by one or more Name,Value
pair arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

superstring

Text that contains the actual value, specified as a string.
superstring can include newline characters.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false
or true (logical 0 or 1)

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified
as false or true (logical 0 or 1)

1-1280

matlab.unittest.constraints.IsSubstringOf

Default: false

Properties IgnoreCase

Indicator if the constraint is insensitive to case, specified in the
name-value pair argument, 'IgnoringCase'. This property
applies at all levels of recursion, such as nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified
in the name-value pair argument, 'IgnoringWhitespace'.
This property applies at all levels of recursion, such as nested
structures.

Superstring

String that includes the actual value, specified in the input
argument, superstring.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Is Substring of Specified String

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.IsSubstringOf;

testCase = TestCase.forInteractiveUse;

Define the actual value string.

S = 'This Is One Long String';

Test that the actual value string, 'One', is contained in S.

testCase.verifyThat('One', IsSubstringOf(S));

1-1281

matlab.unittest.constraints.IsSubstringOf

Interactive verification passed.

Test that the actual value string, 'long', is contained in S.

testCase.verifyThat('long', IsSubstringOf(S));

Interactive verification failed.

Framework Diagnostic:

IsSubstringOf failed.
--> The string must be found within the superstring.

Actual String:
long

Expected Superstring:
This Is One Long String

By default, the IsSubstringOf constraint is case sensitive.

Repeat the test ignoring case.

testCase.verifyThat('long', IsSubstringOf(S,...
'IgnoringCase', true));

Interactive verification passed.

Test that the actual value string, 'thisisone', is contained in S. For
the test to pass, configure the constraint to ignore whitespace and case.

testCase.verifyThat('thisisone', IsSubstringOf(S, ...
'IgnoringCase', true, 'IgnoringWhitespace', true));

Interactive verification passed.

Assert that the actual value string, 'longer', is not contained in S.

testCase.assertThat('Longer', ~IsSubstringOf(S));

1-1282

matlab.unittest.constraints.IsSubstringOf

Interactive assertion passed.

See Also ContainsSubstring | EndsWithSubstring | StartsWithSubstring
| Matches

Concepts

1-1283

matlab.unittest.constraints.IssuesNoWarnings

Superclasses Constraint

Purpose Constraint specifying function that issues no warnings

Construction outConstObj = IssuesNoWarnings creates a constraint, outConstObj,
specifying a function that issues no warnings when the testing
framework invokes it. The constraint is satisfied if no warnings are
issued when the testing framework invokes the function.

outConstObj = IssuesNoWarnings('WhenNargoutIs', numOutputs)
creates a constraint that can determine if the actual value is a function
handle that issues no warnings when the testing framework invokes it
with a particular number of output arguments, numOutputs.

Input Arguments

numOutputs

Number of outputs the constraint requests when invoking the
function handle, specified as a non-negative, real, scalar integer.

Default: 0

Properties FunctionOutputs

Output arguments produced at invocation of the supplied function
handle, specified as a cell array. This property provides access to
output arguments. It is read only and the testing framework sets
it when it invokes the function handle. The number of outputs is
determined by the Nargout property.

Nargout

Number of output arguments the instance uses when executing
functions. Set this property through the constructor via the
numOutputs input argument.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-1284

matlab.unittest.constraints.IssuesNoWarnings

Examples Instantiate IssuesNoWarnings Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IssuesNoWarnings;

testCase = TestCase.forInteractiveUse;

Verify that a call to true does not result in any warning.

testCase.verifyThat(@true, IssuesNoWarnings);

Interactive verification passed.

Verify that a call to size with an empty array does not result in any
warning. Examine the output arguments.

issuesNoWarningsConstraint = IssuesNoWarnings('WhenNargoutIs', 2);
testCase.verifyThat(@() size([]), issuesNoWarningsConstraint);
[actualOut1, actualOut2] = issuesNoWarningsConstraint.FunctionOutputs{

Interactive verification passed.

Verify that the constraint is not satisfied if the actual value is not a
function handle.

testCase.verifyThat(5, IssuesNoWarnings);

Interactive verification failed.

Framework Diagnostic:

IssuesNoWarnings failed.
--> The value must be an instance of the expected type.

Actual Class:
double

1-1285

matlab.unittest.constraints.IssuesNoWarnings

Expected Type:
function_handle

Actual Value:
5

Verify that the constraint is not satisfied if the actual value results in
a warning.

testCase.verifyThat(@() warning('some:id', 'Message'), IssuesNoWarnings);

Warning: Message
> In @()warning('some:id','Message')

In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 39
In WarningQualificationConstraint>WarningQualificationConstraint.invoke
In IssuesNoWarnings>IssuesNoWarnings.issuesNoWarnings at 132
In IssuesNoWarnings>IssuesNoWarnings.satisfiedBy at 83
In QualificationDelegate>QualificationDelegate.qualifyThat at 58
In Verifiable>Verifiable.verifyThat at 228

Interactive verification failed.

Framework Diagnostic:

IssuesNoWarnings failed.
--> The function issued warnings.

Warnings Issued:
some:id

Evaluated Function:
@()warning('some:id','Message')

See Also matlab.unittest.constraints.Constraint |
matlab.unittest.constraints.IssuesWarnings |
matlab.unittest.constraints.Throws | warning

1-1286

matlab.unittest.constraints.IssuesNoWarnings

Concepts

1-1287

matlab.unittest.constraints.IssuesWarnings

Superclasses Constraint

Purpose Constraint specifying function that issues expected warning profile

Description The IssuesWarnings class creates a constraint that issues an expected
warning profile. The constraint is satisfied only if the actual value is
a function handle that issues a specific set of warnings. You specify
warnings using warning identifiers.

By default, the constraint only confirms that when the testing
framework invokes the function handle, MATLAB issues the specified
set of warnings. It ignores the number of times the warnings are issued,
in what order they are issued, and whether or not any unspecified
warnings are issued. However, you can set parameters to respect the
order, the count, and the warning set. Alternatively, you can specify the
exact warning profile for comparison.

Construction outConstObj = IssuesWarnings(warnArr) creates a constraint,
outConstObj, specifying a function that issues expected warnings,
warnArr.

outConstObj = IssuesWarnings(expVal,Name,Value) creates a
constraint with additional options specified by one or more Name,Value
pair arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

warnArr

Warning identifiers expected when the testing framework invokes
the function handle, specified as a cell array of warning identifiers.
If warnArr is empty, the constructor throws an MException.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

1-1288

matlab.unittest.constraints.IssuesWarnings

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Exactly

Indicator if the value is a function handle that must issue a
warning profile that is an exact match, specified as false or true
(logical 0 or 1). When this value is false, the instance relies on
specification of other parameters and default instance behavior to
determine the strictness of its comparison. When set to true, the
instance requires the warning profile to be exactly the same as
the specified warning profile.

Default: false

RespectingCount

Indicator whether to respect element counts, specified as false or
true (logical 0 or 1). When this value is false, the instance is
insensitive to the number of occurrences of members and ignores
their frequency. When set to true, the instance is sensitive to
the total number of set members. This means that, in addition
to ensuring that all of the specified warnings are issued, this
instance is not satisfied if the number of times that a particular
warning issues differs from the number of times that warning
is specified in warnArr.

Default: false

RespectingOrder

Indicator whether to respect the order of elements, specified as
false or true (logical 0 or 1). When this value is false, the
instance is insensitive to the order of the set members. When set
to true, the instance is sensitive to the order of the set members.
This means that this instance is not satisfied if the order of the

1-1289

matlab.unittest.constraints.IssuesWarnings

issued warnings differs from the order the warnings are specified
in warnArr.

The order of a given set of warnings is determined by trimming
the warning profiles to a profile with no repeated adjacent
warnings. For example, the warning profile {id:A, id:A, id:B,
id:C, id:C, id:C, id:A, id:A, id:A} is trimmed to {id:A,
id:B, id:C, id:A}.

When this constraint respects order, the order of the warnings
that are issued and expected must match the order of the expected
warning profile. Warnings issued that are not listed in warnArr
are ignored when determining order.

Default: false

RespectingSet

Indicator whether to respect set elements, specified as false or
true (logical 0 or 1). When this value is false, the instance
ignores additional set members. When set to true, the instance is
sensitive to additional set members. This means that, in addition
to ensuring that all of the specified warnings are issued, this
instance is not satisfied if any extra, unspecified warnings are
issued.

Default: false

WhenNargoutIs

Number of outputs the constraint should request when invoking
the function handle, specified as a non-negative, real, scalar
integer.

Default: 0

1-1290

matlab.unittest.constraints.IssuesWarnings

Properties Exact

Indicator of whether the constraint performs exact comparisons.
Set this property through the constructor via the name-value pair
argument, 'Exactly'.

ExpectedWarnings

Expected warning identifiers. Set this read-only property through
the constructor via the warnArr input argument.

FunctionOutputs

Output arguments produced at invocation of the supplied function
handle, specified as a cell array. This property provides access to
output arguments. It is read only and the testing framework sets
it when it invokes the function handle. The number of outputs is
determined by the Nargout property.

Nargout

Number of output arguments the instance uses when it executes
functions. Set this property through the constructor via the
name-value pair argument, 'WhenNargoutIs'.

RespectCount

Indicator if the constraint respects the element counts, specified
through the constructor via the name-value pair argument,
'RespectingCount'.

RespectOrder

Indicator if the constraint respects the order of elements, specified
through the constructor via the name-value pair argument,
'RespectingOrder'.

RespectSet

Indicator if the constraint respects set elements, specified
through the constructor via the name-value pair argument,
'RespectingSet'.

1-1291

matlab.unittest.constraints.IssuesWarnings

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Instantiate IssuesWarnings Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IssuesWarnings;

testCase = TestCase.forInteractiveUse;

Create a helper anonymous function for use in this example. Create
several warning identifiers.

issueWarnings = @(idCell) cellfun(@(id) warning(id,'Message'), idCell);
firstID = 'first:id';
secondID = 'second:id';
thirdID = 'third:id';

Verify that the helper function issues a particular warning.

testCase.verifyThat(@() issueWarnings({firstID}),...
IssuesWarnings({firstID}));

Interactive verification passed.

Verify the function issues a warning ignoring count, warning set, and
order.

testCase.verifyThat(@() issueWarnings({firstID, thirdID, secondID,...
firstID}), IssuesWarnings({secondID, firstID}));

Interactive verification passed.

Verify the function issues a warning while respecting the warning set.

testCase.verifyThat(@() issueWarnings({firstID, thirdID, secondID,...
firstID}), IssuesWarnings({firstID, secondID, thirdID}, ...

1-1292

matlab.unittest.constraints.IssuesWarnings

'RespectingSet', true));

Interactive verification passed.

Verify the function issues a warning while respecting the warning count.

testCase.verifyThat(@() issueWarnings({secondID, firstID, thirdID,...
secondID}), IssuesWarnings({firstID, secondID, secondID}, ...
'RespectingCount', true));

Interactive verification passed.

Verify the function issues a warning while respecting the warning order.

testCase.verifyThat(@() issueWarnings({firstID, secondID, secondID,...
thirdID}), IssuesWarnings({firstID, secondID}, 'RespectingOrder',

Interactive verification passed.

Verify the function issues an exact match to the expected warning
profile.

testCase.verifyThat(@() issueWarnings({firstID, secondID, secondID,...
thirdID}), IssuesWarnings({firstID, secondID, secondID, thirdID},
'Exactly', true));

Interactive verification passed.

Verify that the constraint is not satisfied if the actual value is not a
function handle.

testCase.verifyThat(5, IssuesWarnings({firstID}));

Interactive verification failed.

Framework Diagnostic:

IssuesWarnings failed.

1-1293

matlab.unittest.constraints.IssuesWarnings

--> The value must be an instance of the expected type.

Actual Class:
double

Expected Type:
function_handle

Actual Value:
5

Verify that the constraint is not satisfied if the function does not issue
a warning.

testCase.verifyThat(@rand, IssuesWarnings({firstID}));

Interactive verification failed.

Framework Diagnostic:

IssuesWarnings failed.
--> The function handle did not issue a correct warning profile.

The expected warning profile ignores:
Set
Count
Order

--> The function handle did not issue any warnings.

Expected Warning Profile:
first:id

Evaluated Function:
@rand

Verify that the constraint is not satisfied if the function issues a
non-specified warning identifier.

testCase.verifyThat(@() issueWarnings({firstID}), IssuesWarnings({secondI

1-1294

matlab.unittest.constraints.IssuesWarnings

Warning: Message
> In @(id)warning(id,'Message')

In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
In @()issueWarnings({firstID})
In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 39
In WarningQualificationConstraint>WarningQualificationConstraint.inv
In IssuesWarnings>IssuesWarnings.invoke at 409
In IssuesWarnings>IssuesWarnings.issuesExpectedWarnings at 456
In IssuesWarnings>IssuesWarnings.satisfiedBy at 242
In QualificationDelegate>QualificationDelegate.qualifyThat at 58
In Verifiable>Verifiable.verifyThat at 228

Interactive verification failed.

Framework Diagnostic:

IssuesWarnings failed.
--> The function handle did not issue a correct warning profile.

The expected warning profile ignores:
Set
Count
Order

--> The function handle did not issue the correct warnings.

Missing Warnings:
second:id

Actual Warning Profile:
first:id

Expected Warning Profile:
second:id

Evaluated Function:
@()issueWarnings({firstID})

Consider the following actual value and warning array.

1-1295

matlab.unittest.constraints.IssuesWarnings

actVal = @() issueWarnings({firstID, firstID, secondID, firstID});
warnArr = {firstID, secondID, firstID, firstID};

Test whether the warning array is exactly the same as the expected
array.

testCase.verifyThat(actVal, IssuesWarnings(warnArr, 'Exactly', true));

Warning: Message
> In @(id)warning(id,'Message')

In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
In @()issueWarnings({firstID,firstID,secondID,firstID})
In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 39
In WarningQualificationConstraint>WarningQualificationConstraint.invoke
In IssuesWarnings>IssuesWarnings.invoke at 409
In IssuesWarnings>IssuesWarnings.issuesExpectedWarnings at 456
In IssuesWarnings>IssuesWarnings.satisfiedBy at 242
In QualificationDelegate>QualificationDelegate.qualifyThat at 58
In Verifiable>Verifiable.verifyThat at 228

Warning: Message
> In @(id)warning(id,'Message')

In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
In @()issueWarnings({firstID,firstID,secondID,firstID})
In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 39
In WarningQualificationConstraint>WarningQualificationConstraint.invoke
In IssuesWarnings>IssuesWarnings.invoke at 409
In IssuesWarnings>IssuesWarnings.issuesExpectedWarnings at 456
In IssuesWarnings>IssuesWarnings.satisfiedBy at 242
In QualificationDelegate>QualificationDelegate.qualifyThat at 58
In Verifiable>Verifiable.verifyThat at 228

Warning: Message
> In @(id)warning(id,'Message')

In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
In @()issueWarnings({firstID,firstID,secondID,firstID})
In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 39
In WarningQualificationConstraint>WarningQualificationConstraint.invoke
In IssuesWarnings>IssuesWarnings.invoke at 409

1-1296

matlab.unittest.constraints.IssuesWarnings

In IssuesWarnings>IssuesWarnings.issuesExpectedWarnings at 456
In IssuesWarnings>IssuesWarnings.satisfiedBy at 242
In QualificationDelegate>QualificationDelegate.qualifyThat at 58
In Verifiable>Verifiable.verifyThat at 228

Warning: Message
> In @(id)warning(id,'Message')

In @(idCell)cellfun(@(id)warning(id,'Message'),idCell)
In @()issueWarnings({firstID,firstID,secondID,firstID})
In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 39
In WarningQualificationConstraint>WarningQualificationConstraint.inv
In IssuesWarnings>IssuesWarnings.invoke at 409
In IssuesWarnings>IssuesWarnings.issuesExpectedWarnings at 456
In IssuesWarnings>IssuesWarnings.satisfiedBy at 242
In QualificationDelegate>QualificationDelegate.qualifyThat at 58
In Verifiable>Verifiable.verifyThat at 228

Interactive verification failed.

Framework Diagnostic:

IssuesWarnings failed.
--> The function handle did not issue a correct warning profile.

The expected warning profile must match exactly.
--> The function handle did not issue the exact warning profile ex

Actual Warning Profile:
first:id
first:id
second:id
first:id

Expected Warning Profile:
first:id
second:id
first:id
first:id

Evaluated Function:

1-1297

matlab.unittest.constraints.IssuesWarnings

@()issueWarnings({firstID,firstID,secondID,firstID})

Test whether the warning array is the same as the expected array when
respecting set, order and count.

testCase.verifyThat(actVal, IssuesWarnings(warnArr,...
'RespectingSet',true,'RespectingOrder',true,'RespectingCount',true));

Interactive verification passed.

In this example, a constraint that specifies a warning profile that
respects set, order and count is not the same as one that specifies an
exact warning profile.

See Also matlab.unittest.constraints.IssuesNoWarnings |
matlab.unittest.constraints.Throws | warning

Concepts • “Message Identifiers”

1-1298

matlab.unittest.constraints.IsTrue

Superclasses Constraint

Purpose Constraint specifying true value

Construction IsTrue provides a constraint specifying a true value. This constraint is
satisfied only by a scalar logical with a value of true.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Tips • For faster test execution, use verifyTrue, assertTrue, assumeTrue,
or fatalAssertTrue instead of IsTrue.

• To display custom comparisons in the form of a function handle, use
ReturnsTrue instead of IsTrue.

Examples Test Actual Value Is True

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsTrue;

testCase = TestCase.forInteractiveUse;

Test that true satisfies the IsTrue constraint.

testCase.verifyThat(true, IsTrue);

Interactive verification passed.

Test that the IsTrue constraint is not satisfied by false.

testCase.verifyThat(false, IsTrue);

Interactive verification failed.

1-1299

matlab.unittest.constraints.IsTrue

Framework Diagnostic:

IsTrue failed.
--> The value must evaluate to "true".

Actual Value:
0

The test fails because false returns logical(0).

Test that the IsTrue constraint is not satisfied by the double 1.

testCase.verifyThat(1, IsTrue);

Interactive verification failed.

Framework Diagnostic:

IsTrue failed.
--> The value must be logical. It is of type "double".

Actual Value:
1

The IsTrue constraint is satisfied only by logical(1).

Test that the IsTrue constraint is not satisfied by a logical array of ones.

testCase.verifyThat([true true true], IsTrue);

Interactive verification failed.

Framework Diagnostic:

IsTrue failed.
--> The value must be scalar. It has a size of [1 3].

1-1300

matlab.unittest.constraints.IsTrue

Actual Value:
1 1 1

The IsTrue constraint is satisfied only if the value is scalar and
logical(1).

See Also IsFalse | ReturnsTrue

Concepts

1-1301

matlab.unittest.constraints.LogicalComparator

Purpose Comparator for two logical values

Construction LogicalComparator creates a comparator for two logical values. The
comparator is satisfied if the actual and expected values have the same
sparsity and the logical values are equivalent.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Compare Logical Values

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.LogicalComparator;
import matlab.unittest.constraints.IsEqualTo;

testCase = TestCase.forInteractiveUse;

Test that the value of true.

testCase.assertThat(true, IsEqualTo(true, ...
'Using', LogicalComparator));

Interactive assertion passed.

Test an array of true values.

testCase.assertThat([true true true], IsEqualTo(true, ...
'Using', LogicalComparator));

Interactive assertion failed.

Framework Diagnostic:

IsEqualTo failed.
--> LogicalComparator failed.

1-1302

matlab.unittest.constraints.LogicalComparator

--> The logical values are not equal

Actual Logical Value:
1 1 1

Expected Logical Value:
1

Assertion failed.

The actual value must be a scalar logical to satisfy the constraint.

Compare the value of 1 to true.

testCase.verifyThat(1, IsEqualTo(true, 'Using', LogicalComparator));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> LogicalComparator failed.

--> The logical values are not equal

Actual Logical Value:
1

Expected Logical Value:
1

Compare the value of false to true.

testCase.assertThat(false, IsEqualTo(true, 'Using', LogicalComparator)

Interactive assertion failed.

Framework Diagnostic:

IsEqualTo failed.

1-1303

matlab.unittest.constraints.LogicalComparator

--> LogicalComparator failed.
--> The logical values are not equal

Actual Logical Value:
0

Expected Logical Value:
1

Assertion failed.

See Also matlab.unittest.constraints.IsEqualTo

Concepts

1-1304

matlab.unittest.constraints.Matches

Superclasses BooleanConstraint

Purpose Constraint specifying string matches regular expression

Construction Matches(expr) creates a constraint that specifies that a string matches
a regular expression. The constraint is satisfied only if the actual value
matches the given regular expression, expr.

Matches(expr,'IgnoringCase',caseInsensitive) creates a
constraint indicating whether to ignore case difference.

Input Arguments

expr

Regular expression that the actual value must match to satisfy
the constraint, specified as a string. expr can include newline
characters.

caseInsensitive

Indicator if the constraint is insensitive to case, specified as false
or true (logical 0 or 1)

Default: false

Properties Expression

Regular expression that the actual value must match, specified
in the input argument, expr.

IgnoreCase

Indicator if the constraint is insensitive to case, specified in the
input argument, ignoreCase. This property applies at all levels
of recursion, such as nested structures.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-1305

matlab.unittest.constraints.Matches

Examples Test That Actual Value Matches Regular Expression

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.Matches;

testCase = TestCase.forInteractiveUse;

Test that the actual value string, 'Epsilon Eridani', matches 'eps'.

testCase.verifyThat('Epsilon Eridani', Matches('^eps'));

Interactive verification failed.

Framework Diagnostic:

Matches failed.
--> The string did not match the regular expression.

Actual String:
Epsilon Eridani

Regular Expression:
^eps

To satisfy the constraint, configure it to be case insensitive.

testCase.verifyThat('Epsilon Eridani', Matches('^eps', ...
'IgnoringCase', true));

Interactive verification passed.

Define the regular expression that the actual value must match.

expr = 'Some[Ss]?tring';

The [Ss]? contained in the regular expression indicates that either 'S'
or 's' matches at that location 0 or 1 times.

1-1306

matlab.unittest.constraints.Matches

Test that the actual values, 'SomeString' and 'Somestring', satisfy
the constraint.

testCase.verifyThat('SomeString', Matches(expr));
testCase.verifyThat('Somestring', Matches(expr));

Interactive verification passed.
Interactive verification passed.

Test that the actual value 'Sometring' satisfies the constraint.

testCase.verifyThat('Sometring', Matches(expr));

Interactive verification passed.

Test that the actual value 'somestring' satisfies the constraint.

testCase.verifyThat('somestring', Matches(expr));

Interactive verification failed.

Framework Diagnostic:

Matches failed.
--> The string did not match the regular expression.

Actual String:
somestring

Regular Expression:
Some[Ss]?tring

See Also ContainsSubstring | IsSubstringOf | EndsWithSubstring |
StartsWithSubstring | regexp

Concepts • “Regular Expressions”

1-1307

matlab.unittest.constraints.NumericComparator

Purpose Comparator for numeric data types

Construction NumericComparator creates a comparator for numeric data types. The
comparator is satisfied if inputs are of the same class with equivalent
size, complexity, and sparsity and the built-in isequaln function
returns true.

NumericComparator('Within',tolObj) creates a comparator using a
specified tolerance. In this case, NumericComparator first checks for
equivalent class, size, and sparsity of the actual and expected values.
If these checks fail, the comparator is not satisfied. If these checks
pass and the isequaln or complexity check fails, NumericComparator
delegates comparison to the supplied tolerance, tolObj.

Input
Arguments

tolObj

matlab.unittest.constraints.Tolerance instance

Properties Tolerance

Specific tolerance used in construction of the comparator, specified
as a Tolerance object in the tolObj input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Compare Numeric Values

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.NumericComparator;
import matlab.unittest.constraints.IsEqualTo;

testCase = TestCase.forInteractiveUse;

Test 1.618 is equal to 1.618 using a numeric comparator.

1-1308

matlab.unittest.constraints.NumericComparator

testCase.verifyThat(1.618, IsEqualTo(1.618,...
'Using', NumericComparator));

Interactive verification passed.

Verify that (1+sqrt(5))/2 is equal to 1.618.

testCase.verifyThat((1+sqrt(5))/2, IsEqualTo(1.618, ...
'Using', NumericComparator));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
1.618033988749895

Expected Value:
1.618000000000000

Retest using a relative tolerance of 0.25%.

import matlab.unittest.constraints.RelativeTolerance

testCase.verifyThat((1+sqrt(5))/2, IsEqualTo(1.618, ...
'Using', NumericComparator('Within', RelativeTolerance(0.0025))));

Interactive verification passed.

See Also matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.Tolerance | isequaln

Concepts

1-1309

matlab.unittest.constraints.ObjectComparator

Purpose Comparator for MATLAB or Java objects

Construction ObjectComparator creates a comparator for MATLAB or Java objects.
The comparator is satisfied if the built-in isequal function returns
true.

ObjectComparator('Within',tolObj) creates a comparator using a
specified tolerance. In this case, ObjectComparator first checks that a
call to isequal returns true. If the check fails, the ObjectComparator
then checks for equivalent class, size, and sparsity of the actual and
expected values. If these checks pass, ObjectComparator delegates
comparison to the supplied tolerance, tolObj. This value of this
tolerance must be of the same class as the actual and expected values.

Input
Arguments

tolObj

Tolerance instance

Properties Tolerance

Specific tolerance used in construction of the comparator, specified
as a matlab.unittest.constraints.Tolerance object in the
tolObj input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Compare MATLAB Objects

In a file, MyInt.m, in your working folder, create a subclass of int8.

classdef MyInt < int8
methods

function i = MyInt(value)
i@int8(value);

end
end

end

1-1310

matlab.unittest.constraints.ObjectComparator

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.ObjectComparator;
import matlab.unittest.constraints.IsEqualTo;

testCase = TestCase.forInteractiveUse;

Use an ObjectComparator to test that two instances of MyInt are equal
to each other.

testCase.verifyThat(MyInt(10), ...
IsEqualTo(MyInt(10), 'Using', ObjectComparator));

Interactive verification passed.

Test that the equality of two instances of MyInt constructed with
different input values.

testCase.verifyThat(MyInt(11), ...
IsEqualTo(MyInt(10), 'Using', ObjectComparator));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> ObjectComparator failed.

--> The objects are not equal using "isequal".

Actual Object:
MyInt:

int8 data:
11

Expected Object:
MyInt:

1-1311

matlab.unittest.constraints.ObjectComparator

int8 data:
10

One instance of MyInt has a value of 11, and the other has a value of 10.

Repeat the test and specify values must be equal within an absolute
tolerance of 1.

import matlab.unittest.constraints.AbsoluteTolerance;

testCase.verifyThat(MyInt(11), IsEqualTo(MyInt(10), ...
'Using', ObjectComparator('Within', AbsoluteTolerance(MyInt(1)))));

Interactive verification passed.

See Also matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.Tolerance | isequal

Concepts

1-1312

matlab.unittest.constraints.PublicPropertyComparator

Purpose Comparator for public properties of MATLAB objects

Description The PublicPropertyComparator compares public properties of MATLAB
objects.

The PublicPropertyComparator supports MATLAB objects or arrays
of objects and recursively compares data structures contained in the
public properties. The PublicPropertyComparator is different from
the isequal function because it only examines the public properties of
the objects.

Construction PublicPropertyComparator creates a comparator for public properties
of MATLAB objects. This comparator only supports objects with no
public properties.

PublicPropertyComparator(compObj) indicates a comparator,
compObj, that defines the comparator used to compare public properties.
This comparator only supports in recursion the data types supported
by compObj.

PublicPropertyComparator(___ ,Name,Value) provides a comparator
with additional options specified by one or more Name,Value pair
arguments. You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN. You can use this syntax
with any of the input arguments of the previous syntaxes.

PublicPropertyComparator.supportingAllValues creates a
comparator for public properties of MATLAB objects that supports any
value in recursion. supportingAllValues is a Static method of the
PublicPropertyComparator class.

You typically pass this comparator to another constraint, such as
IsEqualTo. You can use the Name,Value pairs of the IsEqualTo
constraint in combination with a comparator constructed with the
PublicPropertyComparator.supportingAllValues syntax.

1-1313

matlab.unittest.constraints.PublicPropertyComparator

Input
Arguments

compObj

Comparator object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’IgnoringCase’

Indicator if the comparator is insensitive to case, specified as
false or true (logical 0 or 1). When it is false, the comparator
is sensitive to case. The comparator only uses this name-value
pair if the contents being compared consists of strings.

Default: false

’IgnoringWhitespace’

Indicator if the comparator is insensitive to whitespace, specified
as false or true (logical 0 or 1). When it is false, the
comparator is sensitive to whitespace. Whitespace characters are
space, form feed, new line, carriage return, horizontal tab, and
vertical tab. The comparator only uses this name-value pair if the
contents being compared consists of strings.

Default: false

’Recursively’

Indicator of whether comparator operates recursively, specified
as false or true (logical 0 or 1). When this value is false, the
comparator does not operate recursively on its data.

When the value is true, the data types the public property
comparator supports are fully supported in recursion.

1-1314

matlab.unittest.constraints.PublicPropertyComparator

Default: false

’Within’

Tolerance to use for numerical comparison, specified as a
matlab.unittest.constraints.Tolerance object. The
comparator only uses this name-value pair if the contents being
compared consists of numeric types.

Default: (empty)

Properties IgnoreCase

Indicator if the comparator is insensitive to case, specified in the
name-value pair argument, 'IgnoringCase'.

IgnoreWhitespace

Indicator if the comparator is insensitive to whitespace, specified
in the name-value pair argument, 'IgnoringWhitespace'.

Recursive

Indicator of whether comparator operates recursively, specified in
the name-value pair argument, 'Recursively'.

Tolerance

Specific tolerance used in construction of the comparator, specified
as a matlab.unittest.constraints.Tolerance object in the
name-value pair argument, 'Within'.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Instantiate PublicPropertyComparator Object

In a file, Employee.m, in your working folder, construct the following
class.

classdef Employee

1-1315

matlab.unittest.constraints.PublicPropertyComparator

properties (SetAccess=immutable)
Name;

end
properties (Access=private)

Location;
end
methods

function obj = Employee(name,location)
obj.Name = name;
obj.Location = location;

end
end

end

At the command prompt, create two instances of the Employee class.

e1 = Employee('sam','Building A');
e2 = Employee('Sam','Building B');

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.PublicPropertyComparator;
import matlab.unittest.constraints.StringComparator;

testCase = TestCase.forInteractiveUse;

Construct a comparator and verify that e1 and e2 are equal.

compObj = PublicPropertyComparator;
testCase.verifyThat(e1, IsEqualTo(e2,'Using',compObj));

Error using matlab.unittest.constraints.ComparatorList/throwUnsupportedTy
No comparator in list supports the char below:

Sam
List contains the following comparators:

<empty>

1-1316

matlab.unittest.constraints.PublicPropertyComparator

Error in matlab.unittest.constraints.ComparatorList/getAndPrepareCompa
list.throwUnsupportedType(expVal);

Error in matlab.unittest.constraints.ComparatorList/satisfiedBy (line
comp = list.getAndPrepareComparatorFor(expVal);

Error in matlab.unittest.internal.constraints.FieldComparator/findFirs
bool = comp.satisfiedBy(actField, expField);

Error in matlab.unittest.internal.constraints.FieldComparator/fieldsHa
bool = comparator.findFirstDifferingField(actVal, expVal);

Error in matlab.unittest.internal.constraints.FieldComparator/satisfie
bool = haveSameClass(actVal, expVal) && ...

Error in matlab.unittest.constraints.IsEqualTo/satisfiedBy (line 165)
bool = comp.supports(actual) && comp.satisfiedBy(actual, c

Error in matlab.unittest.internal.qualifications.QualificationDelegate
result = constraint.satisfiedBy(actual);

Error in matlab.unittest.qualifications.Verifiable/verifyThat (line 20
qualifyThat(verifiable.VerificationDelegate, actual, const

The test fails because, by default, the PublicPropertyComparator does
not support strings.

Construct a comparator that supports strings. Specify that the
comparison is not case-sensitive.

compObj = PublicPropertyComparator(StringComparator, 'IgnoringCase',tr
testCase.verifyThat(e1, IsEqualTo(e2,'Using',compObj));

Interactive verification passed.

1-1317

matlab.unittest.constraints.PublicPropertyComparator

Note that the test passes even though e1.Location and e2.Location
are not the same. Since Location is a private property, the comparator
does not compare its contents.

Instantiate PublicPropertyComparator Object to Support All
Values

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.PublicPropertyComparator;

testCase = TestCase.forInteractiveUse;

Test a passing case.

m1 = MException('Msg:ID','MsgText');
m2 = MException('Msg:ID','MsgText');
testCase.verifyThat(m1, IsEqualTo(m2, 'Using', ...

PublicPropertyComparator.supportingAllValues));

Interactive verification passed.

Test a failing case.

m1 = MException('Msg:ID','MsgText');
m2 = MException('Msg:ID','msgtext');
testCase.verifyThat(m1, IsEqualTo(m2, 'Using', ...

PublicPropertyComparator.supportingAllValues));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> StringComparator failed.

Path to failure: <Value>.message

1-1318

matlab.unittest.constraints.PublicPropertyComparator

--> The strings are not equal

Actual String:
MsgText

Expected String:
msgtext

Actual MException:
MException with properties:

identifier: 'Msg:ID'
message: 'MsgText'

cause: {}
stack: [0x1 struct]

Expected MException:
MException with properties:

identifier: 'Msg:ID'
message: 'msgtext'

cause: {}
stack: [0x1 struct]

Test a case that passes when the comparator ignores differences in case.

m1 = MException('Msg:ID','MsgText');
m2 = MException('Msg:ID','msgtext');
testCase.verifyThat(m1, IsEqualTo(m2, 'IgnoringCase', true,...

'Using', PublicPropertyComparator.supportingAllValues));

Interactive verification passed.

Instantiate PublicPropertyComparator Object with Tolerance

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;

1-1319

matlab.unittest.constraints.PublicPropertyComparator

import matlab.unittest.constraints.PublicPropertyComparator;

testCase = TestCase.forInteractiveUse;

Define actual and expected timeseries objects. Perturb one of the
actual data points by 1%.

expected = timeseries(1:10);
actual = expected;
actual.Data(7) = 1.01*actual.Data(7);

Test that the actual and expected values are equal within a relative
tolerance of 2%.

testCase.verifyThat(actual, IsEqualTo(expected,...
'Within', RelativeTolerance(.02)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> ObjectComparator failed.

--> The objects are not equal using "isequal".
--> The tolerance does not support timeseries values so it was not us

Actual Object:
timeseries

Common Properties:
Name: 'unnamed'
Time: [10x1 double]

TimeInfo: [1x1 tsdata.timemetadata]
Data: [1x1x10 double]

DataInfo: [1x1 tsdata.datametadata]

More properties, Methods

1-1320

matlab.unittest.constraints.PublicPropertyComparator

Expected Object:
timeseries

Common Properties:
Name: 'unnamed'
Time: [10x1 double]

TimeInfo: [1x1 tsdata.timemetadata]
Data: [1x1x10 double]

DataInfo: [1x1 tsdata.datametadata]

More properties, Methods

Use the PublicPropertyComparator in the construction of the
constraint.

testCase.verifyThat(actual, IsEqualTo(expected,...
'Within', RelativeTolerance(.02),...
'Using', PublicPropertyComparator.supportingAllValues));

Interactive verification passed.

The test passes because the PublicPropertyComparator compares each
public property individually instead of comparing the object all at once.
In the former test, the ObjectComparator is used on the timeseries
object, and therefore relies on the isequal method of the timeseries
class. Due to the perturbation in the actual timeseries, isequal
returns false. The comparator does not apply the tolerance because
the double-valued tolerance cannot apply directly to the timeseries
object. In the latter test, the comparator applies the tolerance to each
public property that contains double-valued data.

See Also matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.ObjectComparator

Concepts

1-1321

matlab.unittest.constraints.RelativeTolerance

Superclasses Tolerance

Purpose Relative numeric tolerance

Description This numeric Tolerance assesses the magnitude of the difference
between actual and expected values, relative to the expected
value. For the tolerance to be satisfied, abs(expVal - actVal) <=
relTol.*abs(expVal) must be true.

Construction RelativeTolerance(tolVals) creates a relative tolerance object that
assesses the magnitude of the difference between actual and expected
values, relative to the expected value.

The data types of the inputs to the RelativeTolerance constructor
determine the data types to which the tolerance is applied.
For example, RelativeTolerance(10*eps) constructs a
RelativeTolerance for comparing double-precision numeric arrays
while RelativeTolerance(int8(2)) constructs a RelativeTolerance
for comparing numeric arrays of type int8. If the actual and expected
values being compared contain more than one numeric data type, the
tolerance only applies to the data types specified by the values passed
into the constructor.

You can specify different tolerance values for different data types by
passing multiple tolerance values to the constructor. For example,
RelativeTolerance(10*eps, 10*eps('single'), int8(1))
constructs an RelativeTolerance that would apply the following absolute
tolerances.

• 10*eps applies a relative tolerance of 10*eps for double-precision
numeric arrays.

• 10*eps('single') applies a relative tolerance of 10*eps for
single-precision numeric arrays.

• int8(1) applies a relative tolerance of 1 for numeric arrays of type
int8.

1-1322

matlab.unittest.constraints.RelativeTolerance

More than one tolerance can be specified for a particular data type by
combining tolerances with the & and | operators. In order to combine
two tolerances, the sizes of the tolerance values for each data type must
be compatible.

Input Arguments

tolVals

Numeric tolerances, specified as a cell array of numeric arrays.
Each input argument contains the tolerance specification for a
particular data type. Each numeric array can be a scalar or array
with the same number of dimensions as the actual and expected
values.

Properties Values

Numeric tolerances, specified by the tolVals input argument.

Methods
and Form logical element-wise

conjunction of tolerances

or Form logical element-wise
disjunction of tolerances

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test with Relative Tolerance

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;

1-1323

matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

Assert that the difference between and actual value, 4.1, and an
expected value, 4.5, is less than 10%.

testCase.assertThat(4.1, IsEqualTo(4.5, ...
'Within', RelativeTolerance(0.1)));

Interactive assertion passed.

Specify Relative Tolerance for Different Data Types

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;

testCase = TestCase.forInteractiveUse;

Create the following actual and expected cell arrays.

act = {'abc', 123, single(106)};
exp = {'abc', 122, single(105)};

Test that the arrays satisfy the RelativeTolerance constraint within
2%.

testCase.verifyThat(act, IsEqualTo(exp, ...
'Within', RelativeTolerance(0.02)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

1-1324

matlab.unittest.constraints.RelativeTolerance

Path to failure: <Value>{3}
--> The values are not equal using "isequaln".
--> The tolerance does not support single values so it was not use

Actual Value:
106

Expected Value:
105

Actual cell:
'abc' [123] [106]

Expected cell:
'abc' [122] [105]

The test fails because the tolerance is only applied to the double data
type.

Create a tolerance object that specifies different tolerances for different
data types.

tolObj = RelativeTolerance(0.02, single(0.02));

A tolerance of 2% is a applied to double and single valued data.

Verify that the expected and actual values satisfy the
RelativeTolerance constraint.

testCase.verifyThat(act, IsEqualTo(exp, 'Within', tolObj));

Interactive verification passed.

Combine Relative and Absolute Tolerances

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

1-1325

matlab.unittest.constraints.RelativeTolerance

testCase = TestCase.forInteractiveUse;

Define an actual value approximation for pi.

act = 3.14;

Construct a tolerance object to test that difference between the actual
and expected values is within 0.001 and within 0.25%.

tolObj = AbsoluteTolerance(0.001) & RelativeTolerance(0.0025);

Verify that the actual value is within the tolerance of the expected
value of pi.

testCase.verifyThat(act, IsEqualTo(pi, 'Within', tolObj));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".
--> AndTolerance failed.

--> AbsoluteTolerance failed.
--> The value was not within absolute tolerance.

Tolerance Value:
1.000000000000000e-03

--> RelativeTolerance passed.

Actual Value:
3.140000000000000

Expected Value:
3.141592653589793

1-1326

matlab.unittest.constraints.RelativeTolerance

The actual value does not satisfy the AbsoluteTolerance constraint.

Construct a constraint that is satisfied if the values are within 0.001 or
0.25%, and retest the actual value.

tolObj = AbsoluteTolerance(0.001) | RelativeTolerance(0.0025);
testCase.verifyThat(act, IsEqualTo(pi, 'Within', tolObj));

Interactive verification passed.

Combine Absolute and Relative Tolerances to Test Small and
Large Values

Typically when testing equality of values, an absolute (floor) tolerance
dominates when the values are near zero, and a relative tolerance
dominates for larger values.

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

testCase = TestCase.forInteractiveUse;

Define two structures containing electromagnetic properties of a
vacuum. One structure, approxVacuumProps, contains approximate
values for the permeability and speed of light in a vacuum.

approxVacuumProps.Permeability = 1.2566e-06; % Approximate
approxVacuumProps.Permitivity = 8.854187817*10^-12;
approxVacuumProps.LightSpeed = 2.9979e+08; % Approximate

baselineVacuumProps.Permeability = 4*pi*10^-7;
baselineVacuumProps.Permitivity = 8.854187817*10^-12;
baselineVacuumProps.LightSpeed = 1/sqrt(...

baselineVacuumProps.Permeability*baselineVacuumProps.Permitivity);

1-1327

matlab.unittest.constraints.RelativeTolerance

Test that the relative difference between the approximate and baseline
values is within eps*1e11.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
'Within', RelativeTolerance(eps*1e11)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

Path to failure: <Value>.Permeability
--> The values are not equal using "isequaln".
--> RelativeTolerance failed.

--> The value was not within relative tolerance.

Tolerance Value:
2.220446049250313e-05

Actual Value:
1.256600000000000e-06

Expected Value:
1.256637061435917e-06

Actual struct:
Permeability: 1.256600000000000e-06
Permitivity: 8.854187816999999e-12
LightSpeed: 299790000

Expected struct:
Permeability: 1.256637061435917e-06
Permitivity: 8.854187816999999e-12
LightSpeed: 2.997924580105029e+08

The test fails because the relative difference in the permeabilities is not
within the tolerance. The difference between the two values is small,

1-1328

matlab.unittest.constraints.RelativeTolerance

but the numbers are close to zero, so the difference relative to their size
isn’t small enough to satisfy the tolerance.

Construct a tolerance object to test that the absolute difference between
the approximate and baseline values is within 1e-4.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps,
'Within', AbsoluteTolerance(1e-4)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

Path to failure: <Value>.LightSpeed
--> The values are not equal using "isequaln".
--> AbsoluteTolerance failed.

--> The value was not within absolute tolerance.

Tolerance Value:
1.000000000000000e-04

Actual Value:
299790000

Expected Value:
2.997924580105029e+08

Actual struct:
Permeability: 1.256600000000000e-06
Permitivity: 8.854187816999999e-12
LightSpeed: 299790000

Expected struct:
Permeability: 1.256637061435917e-06
Permitivity: 8.854187816999999e-12
LightSpeed: 2.997924580105029e+08

1-1329

matlab.unittest.constraints.RelativeTolerance

The test fails because the absolute difference in the speed of light is not
within the tolerance. The difference between the two values is small
relative to their size, but too large to satisfy the tolerance.

Construct a logical disjunction of tolerance objects to test that the
absolute difference between the approximate and baseline values
is within 1e-4 or the relative difference is within eps*1e11. This
tolerance is used so permeability values, which are close to zero, satisfy
the absolute (floor) tolerance, and speed of light values, which are large,
satisfy the relative tolerance.

testCase.verifyThat(approxVacuumProps, IsEqualTo(baselineVacuumProps, ...
'Within', RelativeTolerance(eps*1e11)| AbsoluteTolerance(1e-4)));

Interactive verification passed.

See Also matlab.unittest.constraints.AbsoluteTolerance |
matlab.unittest.constraints.IsEqualTo

Concepts

1-1330

matlab.unittest.constraints.RelativeTolerance.and

Purpose Form logical element-wise conjunction of tolerances

Syntax outTolObj = and(tolObj1,tolObj2)

Description outTolObj = and(tolObj1,tolObj2) forms the logical element-wise
conjunction of tolerances and returns a single tolerance, outTolObj.
This is a means to specify that every element of the actual value should
be equal to the expected value to within the tolerance specified by
both tolObj1 and tolObj2. A qualification failure occurs when either
tolObj1 or tolObj2 is not satisfied for one or more elements of the
comparison values.

Typically, the and method is not called directly, but the and operator, &,
is used to denote the conjunction of any two tolerance objects.

Input
Arguments

tolObj

Tolerance instance

Examples Form Logical and of Tolerances

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

% Create a TestCase for interactive use
testCase = TestCase.forInteractiveUse;

% Passing qualifications
testCase.verifyThat(101, IsEqualTo(100, 'Within', ...

AbsoluteTolerance(2) & RelativeTolerance(0.02)));
testCase.verifyThat([101, 105], IsEqualTo([100, 100], 'Within', ...

AbsoluteTolerance([2, 10]) & RelativeTolerance([0.02, 0.1])));

% Failing qualifications
testCase.verifyThat(101, IsEqualTo(100, 'Within', ...

1-1331

matlab.unittest.constraints.RelativeTolerance.and

AbsoluteTolerance(2) & RelativeTolerance(0.02)));
testCase.verifyThat([101, 105], IsEqualTo([100, 100], 'Within', ...

AbsoluteTolerance(2) & RelativeTolerance(0.02)));

See Also or

1-1332

matlab.unittest.constraints.RelativeTolerance.or

Purpose Form logical element-wise disjunction of tolerances

Syntax outTolObj = or(tolObj1,tolObj2)

Description outTolObj = or(tolObj1,tolObj2) forms the logical element-wise
disjunction of tolerances and returns a single tolerance, outTolObj.
This is a means to specify that every element of the actual value should
be equal to the expected value to within the tolerance specified by
either tolObj1 or tolObj2. A qualification failure occurs when both
tolObj1 and tolObj2 are not satisfied for one or more elements of the
comparison values.

Forming the logical disjunction of tolerances is particularly useful when
relative tolerance is used in general, but absolute tolerance is used
when values are small.

Typically, the or method is not called directly, but the or operator, |, is
used to denote the disjunction of any two tolerance objects.

Input
Arguments

tolObj

Tolerance instance

Examples Form Logical or of Tolerances

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;

% Create a TestCase for interactive use
testCase = TestCase.forInteractiveUse;

% Simple passing qualification
testCase.verifyThat(105, IsEqualTo(100, 'Within', ...

AbsoluteTolerance(3) | RelativeTolerance(0.1)));

% The following qualification passes because the or

1-1333

matlab.unittest.constraints.RelativeTolerance.or

% operation is performed element-wise between the
% actual and expected values being compared:
testCase.verifyThat([8, 104], IsEqualTo([10, 100], 'Within', ...

AbsoluteTolerance(3) | RelativeTolerance(0.05)));
% Note that the following would fail:
testCase.verifyThat([8, 104], ...

IsEqualTo([10, 100], 'Within', AbsoluteTolerance(3)) | ...
IsEqualTo([10, 100], 'Within', RelativeTolerance(0.05)));

% Failing qualifications
testCase.verifyThat(101, IsEqualTo(100, 'Within', ...

AbsoluteTolerance(0.5) | RelativeTolerance(0)));
testCase.verifyThat([101, 101], IsEqualTo([100, 100], 'Within', ...

AbsoluteTolerance([2, 0.5]) | RelativeTolerance([0.02, 0.001])));

See Also and

1-1334

matlab.unittest.constraints.ReturnsTrue

Superclasses BooleanConstraint

Purpose Constraint specifying function handle that returns true

Construction ReturnsTrue provides a constraint specifying that a function handle
that returns true. The constraint that is satisfied only by a function
handle that returns a scalar logical with a value of true.

When negated using the tilde operator, ~, this constraint not only
passes when the function handle returns false, but also when the
function handle returns any non-scalar value (such as [true true])
or any non-logical (such as integer valued1).

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Tips • To display custom comparisons in the form of a function handle, use
ReturnsTrue instead of IsTrue.

Examples Test Actual Value Specified by Function Handle Returns True

These comparisons are shown for example only. There are other
constraints that might better handle the particular comparisons.

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.ReturnsTrue;

testCase = TestCase.forInteractiveUse;

Verify that the ReturnsTrue constraint is satisfied by the value
returned by a handle to true.

testCase.verifyThat(@true, ReturnsTrue);

Interactive verification passed.

1-1335

matlab.unittest.constraints.ReturnsTrue

Verify that the ReturnsTrue constraint is not satisfied by a handle to
false.

testCase.verifyThat(@false, ReturnsTrue);

Interactive verification failed.

Framework Diagnostic:

ReturnsTrue failed.
--> The function handle should have evaluated to "true".
--> Returned value:

0

Actual Function Handle:
@false

Verify that a call to isequal returns true.

testCase.verifyThat(@() isequal(1,1), ReturnsTrue);

Interactive verification passed.

Verify that a function that returns a double-valued 1 does not satisfy
the ReturnsTrue constraint.

testCase.verifyThat(@() double(true), ReturnsTrue)

Interactive verification failed.

Framework Diagnostic:

ReturnsTrue failed.
--> The function handle should have returned a logical value. It was of t
--> Returned value:

1

1-1336

matlab.unittest.constraints.ReturnsTrue

Actual Function Handle:
@()double(true)

Verify that the negation of a string comparison of 'a' and 'b' returns
true.

testCase.verifyThat(@() ~strcmp('a','b'), ReturnsTrue);

Interactive verification passed.

Test if a comparison of 'a' to the cell array {'a','a'} returns true.

testCase.verifyThat(@() strcmp('a',{'a','a'}), ReturnsTrue);

Interactive verification failed.

Framework Diagnostic:

ReturnsTrue failed.
--> The function handle should have returned a scalar. The return valu
--> Returned value:

1 1

Actual Function Handle:
@()strcmp('a',{'a','a'})

The constraint is not satisfied because the call to strcmp results a
logical array, not a logical scalar.

See Also IsTrue | Constraint

Concepts

1-1337

matlab.unittest.constraints.StartsWithSubstring

Superclasses BooleanConstraint

Purpose Constraint specifying string starting with substring

Construction StartsWithSubstring(prefix) creates a constraint specifying a string
starting with a substring. The constraint is satisfied only if the actual
value starts with an expected string, prefix.

StartsWithSubstring(prefix,Name,Value) provides a constraint
with additional options specified by one or more Name,Value
pair arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

prefix

Text at the start of the actual value, specified as a string. prefix
can include newline characters.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoringCase

Indicator if the constraint is insensitive to case, specified as false
or true (logical 0 or 1)

Default: false

IgnoringWhitespace

Indicator if the constraint is insensitive to whitespace, specified
as false or true (logical 0 or 1)

1-1338

matlab.unittest.constraints.StartsWithSubstring

Default: false

Properties IgnoreCase

Indicator if the constraint is insensitive to case, specified in the
name-value pair argument, 'IgnoringCase'. This property
applies at all levels of recursion, such as nested structures.

IgnoreWhitespace

Indicator if the constraint is insensitive to whitespace, specified
in the name-value pair argument, 'IgnoringWhitespace'.
This property applies at all levels of recursion, such as nested
structures.

Prefix

Text at the start of the actual value, specified in the input
argument, prefix.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test That Actual Value Starts with Specified Substring

Create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.StartsWithSubstring;

testCase = TestCase.forInteractiveUse;

Define the actual value string.

actVal = 'This Is One Long String';

Test that actVal starts with the substring 'This'.

testCase.verifyThat(actVal, StartsWithSubstring('This'));

1-1339

matlab.unittest.constraints.StartsWithSubstring

Interactive verification passed.

Test that actVal starts with the substring 'this is'.

testCase.verifyThat(actVal, StartsWithSubstring('this is'));

Interactive verification failed.

Framework Diagnostic:

StartsWithSubstring failed.
--> The string has an incorrect prefix.

Actual String:
This Is One Long String

Expected Prefix:
this is

By default, the StartsWithSubstring constraint is case sensitive.

Repeat the test, this time ignoring case.

testCase.verifyThat(actVal, StartsWithSubstring('this is',...
'IgnoringCase', true));

Interactive verification passed.

Test that actVal starts with the substring 'thisisone'. For the test to
pass, configure the constraint to ignore whitespace and case.

testCase.verifyThat(actVal, StartsWithSubstring('thisisone', ...
'IgnoringCase', true, 'IgnoringWhitespace', true));

Interactive verification passed.

Assert that actVal does not start with the substring 'long'.

testCase.assertThat(actVal, ~StartsWithSubstring('Long'));

1-1340

matlab.unittest.constraints.StartsWithSubstring

Interactive assertion passed.

See Also ContainsSubstring | IsSubstringOf | EndsWithSubstring | Matches

Concepts

1-1341

matlab.unittest.constraints.StringComparator

Purpose Comparator for two strings

Construction StringComparator creates a comparator for two strings. The
comparator is satisfied if the two strings are equal.

StringComparator(,Name,Value) creates a comparator with
additional options specified by one or more Name,Value pair
arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’IgnoringCase’

Indicator if the comparator is insensitive to case, specified as
false or true (logical 0 or 1). When it is false, the comparator
is sensitive to case.

Default: false

’IgnoringWhitespace’

Indicator if the comparator is insensitive to whitespace, specified
as false or true (logical 0 or 1). When it is false, the
comparator is sensitive to whitespace. Whitespace characters
are space, form feed, new line, carriage return, horizontal tab,
and vertical tab.

Default: false

1-1342

matlab.unittest.constraints.StringComparator

Properties IgnoreCase

Indicator if the comparator is insensitive to case, specified in the
name-value pair argument, 'IgnoringCase'.

IgnoreWhitespace

Indicator if the comparator is insensitive to whitespace, specified
in the name-value pair argument, 'IgnoringWhitespace'.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Compare Cell Arrays

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.StringComparator;
import matlab.unittest.constraints.IsEqualTo;

testCase = TestCase.forInteractiveUse;

Verify that the actual and expected strings are equal using a string
comparator.

expected = 'coffee';
actual = 'coffee';
testCase.verifyThat(actual,IsEqualTo(expected, ...

'Using', StringComparator));

Interactive verification passed.

Change the actual string and repeat the comparison.

expected = 'coF Fee';
testCase.verifyThat(actual,IsEqualTo(expected, ...

'Using', StringComparator));

Interactive verification failed.

1-1343

matlab.unittest.constraints.StringComparator

Framework Diagnostic:

IsEqualTo failed.
--> StringComparator failed.

--> The strings are not equal

Actual String:
coffee

Expected String:
coF Fee

For the test to pass, construct a comparator that ignores case and
whitespace.

testCase.verifyThat(actual,IsEqualTo(expected, ...
'Using', StringComparator('IgnoringCase', true, ...
'IgnoringWhitespace', true)));

Interactive verification passed.

See Also matlab.unittest.constraints.IsEqualTo | strcmp

Concepts

1-1344

matlab.unittest.constraints.StructComparator

Purpose Comparator for MATLAB structure arrays

Construction StructComparator creates a comparator for MATLAB structure arrays.

StructComparator(compObj) indicates a comparator, compObj, that
defines the comparator used to compare values contained in the
structure. By default, a StructComparator only supports empty
structure arrays.

StructComparator(___ ,Name,Value) provides a comparator
with additional options specified by one or more Name,Value
pair arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input
Arguments

compObj

Comparator object

A comparator is passed into the StructComparator to provide
support for data types during recursion. By default, the
StructComparator only supports empty structure arrays.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’IgnoringCase’

Indicator if the comparator is insensitive to case, specified as
false or true (logical 0 or 1). When it is false, the comparator
is sensitive to case. The comparator only uses this name-value
pair if the contents being compared are strings.

Default: false

1-1345

matlab.unittest.constraints.StructComparator

’IgnoringWhitespace’

Indicator if the comparator is insensitive to whitespace, specified
as false or true (logical 0 or 1). When it is false, the
comparator is sensitive to whitespace. Whitespace characters are
space, form feed, new line, carriage return, horizontal tab, and
vertical tab. The comparator only uses this name-value pair if the
contents being compared are strings.

Default: false

’Recursively’

Indicator of whether comparator operates recursively, specified
as false or true (logical 0 or 1). When this value is false, the
comparator does not operate recursively on its data.

When the value is true, the data types the StructComparator
supports are fully supported in recursion. For example:

comp1 = StructComparator(NumericComparator);
comp2 = StructComparator(NumericComparator, 'Recursively', true);

Both comp1 and comp2 support structures that contain numeric
values as their fields. However, only comp2 supports a structures
that recursively contain either structures or numeric values as
their fields.

Default: false

’Within’

Tolerance to use for numerical comparison, specified as a
matlab.unittest.constraints.Tolerance object. This
name-value pair is applicable to contents that are a numeric type.

Default: (empty)

1-1346

matlab.unittest.constraints.StructComparator

Properties IgnoreCase

Indicator if the comparator is insensitive to case, specified in the
name-value pair argument, 'IgnoringCase'.

IgnoreWhitespace

Indicator if the comparator is insensitive to whitespace, specified
in the name-value pair argument, 'IgnoringWhitespace'.

Recursive

Indicator of whether comparator operates recursively, specified in
the name-value pair argument, 'Recursively'.

Tolerance

Specific tolerance used in construction of the comparator, specified
as a matlab.unittest.constraints.Tolerance object in the
name-value pair argument, 'Within'.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Compare Numeric Structures

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.StructComparator;
import matlab.unittest.constraints.NumericComparator;

testCase = TestCase.forInteractiveUse;

Create two equal structures.

s1 = struct('id',7,'score',7.3);
s2 = s1;

1-1347

matlab.unittest.constraints.StructComparator

Test that the structures are equal. By default, the StructComparator
only supports empty structures, so you need to configure the comparator
with a NumericComparator.

testCase.verifyThat(s1, IsEqualTo(s2, 'Using', ...
StructComparator(NumericComparator)));

Interactive verification passed.

Change the score of s2 and compare the structures again.

s2.score = 7.6;
testCase.verifyThat(s1, IsEqualTo(s2, 'Using', ...

StructComparator(NumericComparator)));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

Path to failure: <Value>.score
--> The values are not equal using "isequaln".

Actual Value:
7.300000000000000

Expected Value:
7.600000000000000

Actual struct:
id: 7

score: 7.300000000000000
Expected struct:

id: 7
score: 7.600000000000000

Specify an absolute tolerance for the comparison.

1-1348

matlab.unittest.constraints.StructComparator

testCase.verifyThat(s1, IsEqualTo(s2, 'Using', ...
StructComparator(NumericComparator, 'Within', ...
AbsoluteTolerance(0.5))));

Interactive verification passed.

Compare Character Structures

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.StructComparator;
import matlab.unittest.constraints.StringComparator;

testCase = TestCase.forInteractiveUse;

Create two structures. One of the fields is a nested structure.

e1 = struct('name', struct('first','sam','last','smith'), ...
'location','Building A');

e2 = e1;

Verify that the two structures are equal. Since the struct contains a
nested struct, configure the constraint to operate recursively.

testCase.verifyThat(e1, IsEqualTo(e2, 'Using', ...
StructComparator(StringComparator, 'Recursively', true)));

Interactive verification passed.

Change the first name field of the e2 structure and repeat the
comparison.

e2.name.first = ' SAM';
testCase.verifyThat(e1, IsEqualTo(e2, 'Using', ...

StructComparator(StringComparator, 'Recursively', true)));

Interactive verification failed.

1-1349

matlab.unittest.constraints.StructComparator

Framework Diagnostic:

IsEqualTo failed.
--> StringComparator failed.

Path to failure: <Value>.name.first
--> The strings are not equal

Actual String:
sam

Expected String:
SAM

Actual struct:
name: [1x1 struct]

location: 'Building A'
Expected struct:

name: [1x1 struct]
location: 'Building A'

Configure the comparator to ignore case and whitespace.

testCase.verifyThat(e1, IsEqualTo(e2, 'Using', ...
StructComparator(StringComparator, 'Recursively', true, ...
'IgnoringCase', true, 'IgnoringWhitespace', true)));

Interactive verification passed.

See Also matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.Tolerance

Concepts

1-1350

matlab.unittest.constraints.Throws

Superclasses Constraint

Purpose Constraint specifying function handle that throws MException

Description The Throws class creates a constraint that is satisfied only if the actual
value is a function handle that throws a specific exception.

If the function throws an MException and the constraint’s
ExpectedException property is an error identifier, a qualification
failure occurs if the actual MException thrown has a different identifier.
Alternately, if the ExpectedException property is a meta.class, the
constraint is not satisfied if the actual MException thrown does not
derive from the ExpectedException.

Construction outConstObj = Throws(excep) provides a constraint, outConstObj,
specifying a function handle that throws a particular MException,
excep.

outConstObj = Throws(excep,Name,Value) provides a constraint
with additional options specified by one or more Name,Value
pair arguments. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

excep

Error identifier or meta.class representing the specific type
of expected exception. The Throws constructor throws an
MException if excep is a meta.class but does not derive from
MException.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

1-1351

matlab.unittest.constraints.Throws

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CausedBy

Expected causes, specified as a cell array of strings and/or
meta.class instances.

The testing results in a qualification failure if any causes specified
in CausedBy are not found within the cause tree.

Default: {}

WhenNargoutIs

Number of outputs the constraint should request when invoking
the function handle, specified as a non-negative, real, scalar
integer.

Default: 0

Properties ExpectedException

Expected MException identifier or class. Set this read only
property through the constructor via the excep input argument.

Nargout

Number of output arguments the instance uses when executing
functions. Set this property through the constructor via the
name-value pair argument, 'WhenNargoutIs'.

RequiredCauses

Expected causes for the function handle throwing an MException.
Set this property through the constructor via the name-value pair
argument, 'CausedBy'.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-1352

matlab.unittest.constraints.Throws

Examples Instantiate Throws Constraint

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.Throws;

testCase = TestCase.forInteractiveUse;

Verify that a function throws a specified error id.

testCase.verifyThat(@() error('SOME:error:id','Error!'), ...
Throws('SOME:error:id'));

Interactive verification passed.

Verify that a function throws a specified exception class.

testCase.verifyThat(@() error('SOME:error:id','Error!'), ...
Throws(?MException));

Interactive verification passed.

Verify that a function, when called with a specified number of outputs,
throws a specified error.

testCase.verifyThat(@() disp('hi'), Throws('MATLAB:maxlhs', ...
'WhenNargoutIs', 1));

Interactive verification passed.

Check causes by identifier.

me = MException('TOP:error:id','TopLevelError!');
causeBy = MException('causedBy:someOtherError:id','CausedByError!');
me = me.addCause(causeBy);
testCase.verifyThat(@() me.throw, Throws('TOP:error:id','CausedBy', ..

{'causedBy:someOtherError:id'}));

1-1353

matlab.unittest.constraints.Throws

Interactive verification passed.

Check causes by class.

me = MException('TOP:error:id','TopLevelError!');
causeBy = MException('causedBy:someOtherError:id','CausedByError!');
me = me.addCause(causeBy);
testCase.verifyThat(@() me.throw, Throws('TOP:error:id','CausedBy', ...

{?MException}));

Interactive verification passed.

Verify that the constraint is not satisfied if the actual value is not a
function handle.

testCase.fatalAssertThat(5, Throws('some:id'));

Interactive fatal assertion failed.

Framework Diagnostic:

Throws failed.
--> The value must be an instance of the expected type.

Actual Class:
double

Expected Type:
function_handle

Actual Value:
5

Fatal assertion failed.

Verify that the constraint is not satisfied if the function does not throw
an exception.

testCase.assumeThat(@rand, Throws(?MException));

1-1354

matlab.unittest.constraints.Throws

Interactive assumption failed.

Framework Diagnostic:

Throws failed.
--> The function did not throw any exception.

Expected Exception Type:
MException

Evaluated Function:
@rand

Assumption failed.

Verify that the constraint is not satisfied if the function issues a
non-specified error identifier.

testCase.verifyThat(@() error('SOME:id'), Throws('OTHER:id'));

Interactive verification failed.

Framework Diagnostic:

Throws failed.
--> The function threw an exception with the wrong identifier.

Actual Identifier:
MATLAB:error:missingMessageArgument

Expected Identifier:
OTHER:id

Evaluated Function:
@()error('SOME:id')

Verify that the constraint is not satisfied if the function throws an
exception and the cause does not match the specified identifier.

1-1355

matlab.unittest.constraints.Throws

testCase.verifyThat(@() error('TOP:error:id','TopLevelError!'), ...
Throws('TOP:error:id','CausedBy',{'causedBy:someOtherError:id'}));

Interactive verification failed.

Framework Diagnostic:

Throws failed.
--> The following causes were not found in the exception tree:

--> Identifier:
causedBy:someOtherError:id

Evaluated Function:
@()error('TOP:error:id','TopLevelError!')

See Also MException | error |
matlab.unittest.constraints.IssuesWarnings
| matlab.unittest.constraints

Concepts • “Message Identifiers”

1-1356

matlab.unittest.constraints.Tolerance

Purpose Abstract interface class for tolerances

Description Tolerances define a notion of fuzzy equality for a set of data types and
can be plugged in to the IsEqualTo constraint through the `Within'
name-value pair argument.

Classes that derive from the Tolerance interface class must provide
a tolerance definition. Implement this via the satisfiedBy method.
Classes that derive from the Tolerance class also must provide a
diagnostic for two compared values. The testing framework uses the
diagnostic when the compared values are outside of the allowable
tolerance. Implement this via the getDiagnosticFor method. Finally,
classes that derive from the Tolerance class must provide a means
to determine which data types the tolerance supports. Define the
supported data types by implementing the supports method.

Methods
getDiagnosticFor Produce diagnostic for two values

specified to be within tolerance

satisfiedBy Determine whether two values
are within tolerance

supports Determine whether tolerance
supports specified data type

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create Custom Tolerance Class

Determine if two DNA sequences have a Hamming distance within
a specified tolerance. For two DNA sequences (strings) of the same
length, the Hamming distance is the number of positions in which the
nucleotides (letters) of one sequence differ from the other.

In a file, DNA.m, in your working folder, create a simple class for a
DNA sequence.

1-1357

matlab.unittest.constraints.Tolerance

classdef DNA
properties(SetAccess=immutable)

Sequence
end

methods
function dna = DNA(sequence)

validLetters = ...
sequence == 'A' | ...
sequence == 'C' | ...
sequence == 'T' | ...
sequence == 'G';

if ~all(validLetters(:))
error('Sequence contained a letter not found in DNA.');

end
dna.Sequence = sequence;

end
end

end

In a file in your working folder, create a tolerance class so that you can
test that DNA sequences are within a specified Hamming distance.
The constructor requires a Value property that defines the maximum
Hamming distance.

classdef HammingDistance < matlab.unittest.constraints.Tolerance
properties

Value
end

methods
function tolerance = HammingDistance(value)

tolerance.Value = value;
end

end
end

1-1358

matlab.unittest.constraints.Tolerance

Tolerance classes must implement a supports method. In a methods
block with the HammingDistance class definition, include the following
method so that the tolerance supports DNA objects.

methods
function tf = supports(~, value)

tf = isa(value, 'DNA');
end

end

Tolerance classes must implement a satisfiedBy method. The testing
framework uses this method to determine if two values are within
the tolerance. In a methods block with the HammingDistance class
definition, include the following method that returns true or false.

methods
function tf = satisfiedBy(tolerance, actual, expected)

if ~isSameSize(actual.Sequence, expected.Sequence)
tf = false;
return

end
tf = hammingDistance(actual.Sequence, expected.Sequence) <

end
end

In the HammingDistance.m file, define the following helper functions
outside of the classdef block. The isSameSize function returns true
if two DNA sequences are the same size, and the hammingDistance
function returns the Hamming distance between two sequences.

function tf = isSameSize(str1, str2)
tf = isequal(size(str1), size(str2));
end

function distance = hammingDistance(str1, str2)
distance = nnz(str1 ~= str2);
end

1-1359

matlab.unittest.constraints.Tolerance

Tolerance classes must implement a getDiagosticFor method.
The function returns a Diagnostic object with information about
the comparison. In a methods block with the HammingDistance
class definition, include the following method that returns a
StringDiagnostic.

methods
function diag = getDiagnosticFor(tolerance, actual, expected)

import matlab.unittest.diagnostics.StringDiagnostic;

if ~isSameSize(actual.Sequence, expected.Sequence)
str = 'The DNA sequences must be the same length.';

else
str = sprintf('%s%d.\n%s%d.', ...

'The DNA sequences have a Hamming distance of ', ...
hammingDistance(actual.Sequence, expected.Sequence),
'The allowable distance is ', ...
tolerance.Value);

end
diag = StringDiagnostic(str);

end
end

HammingDistance Class Definition Summary

classdef HammingDistance < matlab.unittest.constraints.Tolerance
properties

Value
end

methods
function tolerance = HammingDistance(value)

tolerance.Value = value;
end

function tf = supports(~, value)
tf = isa(value, 'DNA');

end

1-1360

matlab.unittest.constraints.Tolerance

function tf = satisfiedBy(tolerance, actual, expected)
if ~isSameSize(actual.Sequence, expected.Sequence)

tf = false;
return

end
tf = hammingDistance(actual.Sequence, expected.Sequence) <

end

function diag = getDiagnosticFor(tolerance, actual, expected)
import matlab.unittest.diagnostics.StringDiagnostic;

if ~isSameSize(actual.Sequence, expected.Sequence)
str = 'The DNA sequences must be the same length.';

else
str = sprintf('%s%d.\n%s%d.', ...

'The DNA sequences have a Hamming distance of ',
hammingDistance(actual.Sequence, expected.Sequence
'The allowable distance is ', ...
tolerance.Value);

end
diag = StringDiagnostic(str);

end
end

end

function tf = isSameSize(str1, str2)
tf = isequal(size(str1), size(str2));
end

function distance = hammingDistance(str1, str2)
distance = nnz(str1 ~= str2);
end

At the command prompt, create a TestCase for interactive testing.

import matlab.unittest.TestCase;

1-1361

matlab.unittest.constraints.Tolerance

import matlab.unittest.constraints.IsEqualTo;

testCase = TestCase.forInteractiveUse;

Create two DNA objects.

sampleA = DNA('ACCTGAGTA');
sampleB = DNA('ACCACAGTA');

Verify that the DNA sequences are equal to each other.

testCase.verifyThat(sampleA, IsEqualTo(sampleB));

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.
--> ObjectComparator failed.

--> The objects are not equal using "isequal".

Actual Object:
DNA with properties:

Sequence: 'ACCTGAGTA'
Expected Object:

DNA with properties:

Sequence: 'ACCACAGTA'

Verify that the DNA sequences are equal to each other, within a
Hamming distance of 1.

testCase.verifyThat(sampleA, IsEqualTo(sampleB,...
'Within', HammingDistance(1)));

Interactive verification failed.

1-1362

matlab.unittest.constraints.Tolerance

Framework Diagnostic:

IsEqualTo failed.
--> ObjectComparator failed.

--> The objects are not equal using "isequal".
--> The DNA sequences have a Hamming distance of 2.

The allowable distance is 1.

Actual Object:
DNA with properties:

Sequence: 'ACCTGAGTA'
Expected Object:

DNA with properties:

Sequence: 'ACCACAGTA'

The sequences are not equal to each other within a tolerance of
1. The testing framework displays additional diagnostics from the
getDiagnosticFor method.

Verify that the DNA sequences are equal to each other, within a
Hamming distance of 2.

testCase.verifyThat(sampleA, IsEqualTo(sampleB,...
'Within', HammingDistance(2)));

Interactive verification passed.

Concepts

1-1363

matlab.unittest.constraints.Tolerance.getDiagnosticFor

Purpose Produce diagnostic for two values specified to be within tolerance

Syntax diag = getDiagnosticFor(tolObj,actVal,expVal)

Description diag = getDiagnosticFor(tolObj,actVal,expVal) produces a
diagnostic, diag, for a value, actVal, evaluated against another
value, expVal, within the tolerance defined by tolObj. When
creating a custom tolerance, the class author must implement the
getDiagnosticFor method so that it analyzes the two values, actVal
and expVal, against the tolerance, tolObj, and instantiates and returns
a matlab.unittest.diagnostics.Diagnostic object.

Typically, this diagnostic is used when the getDiagnosticFor method of
IsEqualTo is invoked, and the result is incorporated into the diagnostic
output of the IsEqualTo constraint.

Input
Arguments

actVal

Value to determine if is within tolerance of expVal

tolObj

Tolerance instance

expVal

Expected value

See Also supports | satisfiedBy | Diagnostic | ConstraintDiagnostic

1-1364

matlab.unittest.constraints.Tolerance.satisfiedBy

Purpose Determine whether two values are within tolerance

Syntax TF = satisfiedBy(tolObj,actVal,expVal)

Description TF = satisfiedBy(tolObj,actVal,expVal) determines whether two
values, actVal and expVal, are within the tolerance defined by tolObj.
The satisfiedBy method is used to determine whether the tolerance is
met. It returns true or false (logical 0 or 1). When creating a custom
tolerance, a class author uses this method to contain the tolerance
definition.

Input
Arguments

actVal

Value to determine if is within tolerance of expVal

tolObj

Tolerance instance

expVal

Expected value

See Also getDiagnosticFor | supports

1-1365

matlab.unittest.constraints.Tolerance.supports

Purpose Determine whether tolerance supports specified data type

Syntax TF = supports(tolObj,typeVal)

Description TF = supports(tolObj,typeVal) determines whether the tolerance
supports a specific data type. It returns true or false (logical 0 or 1).

The supports method provides the ability for a tolerance author to
specify support for data types. Generally, the method operates by
examining the type of typeVal to determine whether it is supported.

Input
Arguments

tolObj

Tolerance instance

typeVal

Value used to determine tolerance support

See Also getDiagnosticFor | satisfiedBy

1-1366

contrast

Purpose Grayscale colormap for contrast enhancement

Syntax cmap = contrast(X)
cmap = contrast(X,m)

Description The contrast function enhances the contrast of an image. It creates a
new gray colormap, cmap, that has an approximately equal intensity
distribution. All three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length
as the current colormap. If there are NaN or Inf elements in X the length
of the colormap increases.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Examples Display Image with Gray Colormap

Load clown to get image X and its associated colormap, map. Display
the image produced by X and map.

load clown
figure
image(X)
colormap(map)

1-1367

contrast

Use contrast to return a gray colormap that is the same length as the
current colormap, map. Display the image with the new colormap, cmap.

cmap = contrast(X);
colormap(cmap)

1-1368

contrast

See Also brighten | colormap | image

1-1369

conv

Purpose Convolution and polynomial multiplication

Syntax w = conv(u,v)
w = conv(...,'shape')

Description w = conv(u,v) convolves vectors u and v. Algebraically, convolution is
the same operation as multiplying the polynomials whose coefficients
are the elements of u and v.

w = conv(...,'shape') returns a subsection of the convolution, as
specified by the shape parameter:

full Returns the full convolution (default).

same Returns the central part of the convolution of the
same size as u.

valid Returns only those parts of the convolution
that are computed without the zero-padded
edges. Using this option, length(w) is
max(length(u)-max(0,length(v)-1),0).

Definitions Let m = length(u) and n = length(v) . Then w is the vector of length
m+n-1 whose kth element is

w k u j v k j
j

() () ()= − +∑ 1

The sum is over all the values of j which lead to legal subscripts for
u(j) and v(k+1-j), specifically j = max(1,k+1-n): min(k,m). When
m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...

1-1370

conv

w(2*n-1) = u(n)*v(n)

See Also conv2 | convn | deconv | filter | convmtx | xcorr

1-1371

conv2

Purpose 2-D convolution

Syntax C = conv2(A,B)
C = conv2(h1,h2,A)
C = conv2(...,shape)

Description C = conv2(A,B) computes the two-dimensional convolution of matrices
A and B. If one of these matrices describes a two-dimensional finite
impulse response (FIR) filter, the other matrix is filtered in two
dimensions. The size of C is determined as follows: if [ma,na] =
size(A), [mb,nb] = size(B), and [mc,nc] = size(C), then mc =
max([ma+mb-1,ma,mb]) and nc = max([na+nb-1,na,nb]).

C = conv2(h1,h2,A) first convolves A with the vector h1 along the
rows and then with the vector h2 along the columns. The size of C is
determined as follows: if n1 = length(h1) and n2 = length(h2), then
mc = max([ma+n1-1,ma,n1]) and nc = max([na+n2-1,na,n2]).

C = conv2(...,shape) returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

'full' Returns the full two-dimensional convolution
(default).

'same' Returns the central part of the convolution of the
same size as A.

'valid' Returns only those parts of the convolution
that are computed without the zero-padded
edges. Using this option, size(C) =
max([ma-max(0,mb-1),na-max(0,nb-1)],0).

Note All numeric inputs to conv2 must be of type double or single.

Algorithms conv2 uses a straightforward formal implementation of the
two-dimensional convolution equation in spatial form. If a and b are

1-1372

conv2

functions of two discrete variables, n1 and n2, then the formula for the
two-dimensional convolution of a and b is

c n n a k k b n k n k
kk

(,) (,) (,)1 2 1 2 1 1 2 2
21

In practice however, conv2 computes the convolution for finite intervals.

Note that matrix indices in MATLAB software always start at 1 rather
than 0. Therefore, matrix elements A(1,1), B(1,1), and C(1,1)
correspond to mathematical quantities a(0,0), b(0,0), and c(0,0).

Examples Shape for Subsection of 2-D Convolution

For the 'same' case, conv2 returns the central part of the convolution.
If there are an odd number of rows or columns, the “center” leaves one
more at the beginning than the end.

This example first computes the convolution of A using the default
('full') shape, then computes the convolution using the 'same' shape.
Note that the array returned using 'same' corresponds to the red
highlighted elements of the array returned using the default shape.

A = rand(3);
B = rand(4);
C = conv2(A,B) % C is 6-by-6

C =
0.1838 0.2374 0.9727 1.2644 0.7890 0.3750
0.6929 1.2019 1.5499 2.1733 1.3325 0.3096
0.5627 1.5150 2.3576 3.1553 2.5373 1.0602
0.9986 2.3811 3.4302 3.5128 2.4489 0.8462
0.3089 1.1419 1.8229 2.1561 1.6364 0.6841
0.3287 0.9347 1.6464 1.7928 1.2422 0.5423

Cs = conv2(A,B,'same') % Cs is the same size as A: 3-by-3
Cs =

2.3576 3.1553 2.5373

1-1373

conv2

3.4302 3.5128 2.4489
1.8229 2.1561 1.6364

Extract Edges from Raised Pedestal

In image processing, the Sobel edge finding operation is a
two-dimensional convolution of an input array with the special matrix:

s = [1 2 1; 0 0 0; -1 -2 -1];

These commands extract the horizontal edges from a raised pedestal.

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
figure, mesh(H)

1-1374

conv2

Transposing the filter s extracts the vertical edges of A.

V = conv2(A,s');
figure, mesh(V)

1-1375

conv2

This figure combines both horizontal and vertical edges.

figure
mesh(sqrt(H.^2 + V.^2))

1-1376

conv2

See Also conv | convn | filter2 | xcorr2

1-1377

convhull

Purpose Convex hull

Note Qhull-specific options are no longer supported. Remove the
OPTIONS argument from all instances in your code that pass it to
convhull.

Syntax K = convhull(X,Y)
K = convhull(X,Y,Z)
K = convhull(X)
K = convhull(...,'simplify', logicalvar)
[K,V] = convhull(...)

Definitions convhull returns the convex hull of a set of points in 2-D or 3-D space.

Description K = convhull(X,Y) returns the 2-D convex hull of the points (X,Y),
where X and Y are column vectors. The convex hull K is expressed in
terms of a vector of point indices arranged in a counterclockwise cycle
around the hull.

K = convhull(X,Y,Z) returns the 3-D convex hull of the points (X,Y,Z),
where X, Y, and Z are column vectors. K is a triangulation representing
the boundary of the convex hull. K is of size mtri-by-3, where mtri is
the number of triangular facets. That is, each row of K is a triangle
defined in terms of the point indices.

K = convhull(X) returns the 2-D or 3-D convex hull of the points X.
This variant supports the definition of points in matrix format. X is
of size mpts-by-ndim, where mpts is the number of points and ndim
is the dimension of the space where the points reside, 2 ndim 3.
The output facets are equivalent to those generated by the 2-input or
3-input calling syntax.

K = convhull(...,'simplify', logicalvar) provides the option
of removing vertices that do not contribute to the area/volume of the
convex hull, the default is false. Setting 'simplify' to true returns the
topology in a more concise form.

1-1378

convhull

[K,V] = convhull(...) returns the convex hull K and the
corresponding area/volume V bounded by K.

Visualization Use plot to plot the output of convhull in 2-D. Use trisurf or trimesh
to plot the output of convhull in 3-D.

Examples Plot 2-D Convex Hull

xx = -1:.05:1; yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'b+')

1-1379

convhull

See Also convexHull | voronoiDiagram | convhulln | delaunay | polyarea
| voronoi

1-1380

convhulln

Purpose N-D convex hull

Syntax K = convhulln(X)
K = convhulln(X, options)
[K, v] = convhulln(...)

Description K = convhulln(X) returns the indices K of the points in X that comprise
the facets of the convex hull of X. X is an m-by-n array representing m
points in N-dimensional space. If the convex hull has p facets then
K is p-by-n.

convhulln uses Qhull.

K = convhulln(X, options) specifies a cell array of strings options
to be used as options in Qhull. The default options are:

• {'Qt'} for 2-, 3-. and 4-dimensional input

• {'Qt','Qx'} for 5-dimensional input and higher.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org/.

[K, v] = convhulln(...) also returns the volume v of the convex
hull.

Visualization Plotting the output of convhulln depends on the value of n:

• For n = 2, use plot as you would for convhull.

• For n = 3, you can use trisurf to plot the output. The calling
sequence is

K = convhulln(X);
trisurf(K,X(:,1),X(:,2),X(:,3))

• You cannot plot convhulln output for n > 3.

Examples The following example illustrates the options input for convhulln.
The following commands

1-1381

http://www.qhull.org/

convhulln

X = [0 0; 0 1e-10; 0 0; 1 1];
K = convhulln(X)

return a warning.

Warning: qhull precision warning:
The initial hull is narrow
(cosine of min. angle is 0.9999999999999998).
A coplanar point may lead to a wide facet.
Options 'QbB' (scale to unit box) or 'Qbb'
(scale last coordinate) may remove this warning.
Use 'Pp' to skip this warning.

To suppress the warning, use the option 'Pp'. The following command
passes the option 'Pp', along with the default 'Qt', to convhulln.

K = convhulln(X,{'Qt','Pp'})

K =

1 4
1 2
4 2

Algorithms convhulln is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

See Also convexHull | convhull | delaunayn | dsearchn | tsearchn |
voronoin

1-1382

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

convn

Purpose N-D convolution

Syntax C = convn(A,B)
C = convn(A,B,'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays
A and B. The size of the result is size(A)+size(B)-1.

C = convn(A,B,'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

'full' Returns the full N-dimensional convolution
(default).

'same' Returns the central part of the result that is the
same size as A.

'valid' Returns only those parts of the convolution that
can be computed without assuming that the array
A is zero-padded. The size of the result is

max(size(A)-size(B) + 1, 0)

See Also conv | conv2

1-1383

matlab.mixin.CustomDisplay

Purpose Display customization interface class

Description This class provides an interface for customizing the MATLAB display of
objects. Derive your class from matlab.mixin.CustomDisplay to add
the custom display functionality to your class.

matlab.mixin.CustomDisplay implements three public sealed
methods. disp and display provide a simple object display. The
details method provides a standard formal display of object
information.

For customizing object display, matlab.mixin.CustomDisplay defines
a number of protected methods that you can override in your subclass.
By overriding specific methods, you can customize specific aspects of
the object display.

Methods convertDimensionsToString Return array dimensions as
string

details Fully detailed formal object
display

disp Simple informal object display

display Print variable name and display
object

displayEmptyObject Display for empty object arrays

displayNonScalarObject Display format for non-scalar
objects

displayPropertyGroups Display titles and property groups
as defined

displayScalarHandleToDeletedObjectDisplay format for deleted scalar
handles

displayScalarObject Display format for scalar objects

getClassNameForHeader Return class name for display

1-1384

matlab.mixin.CustomDisplay

getDeletedHandleText Returns text for handle to deleted
object display

getDetailedFooter Returns default detailed footer
for object display

getDetailedHeader Returns default detailed header
for object display

getFooter Build and return display footer
text

getHandleText Return string 'handle' with link
to documentation

getHeader Build and return display header
text

getPropertyGroups Construct array of property
groups

getSimpleHeader Return simple header for object
display

Attributes Abstract This class defines an interface that
subclasses inherit. You cannot
instantiate this class.

HandleCompatibile You can use this class to derive both
handle and value classes.

See Also matlab.mixin.util.PropertyGroup

Related
Examples

• “Custom Display Interface”

1-1385

matlab.mixin.CustomDisplay.convertDimensionsToString

Purpose Return array dimensions as string

Syntax dimstr =
matlab.mixin.CustomDisplay.convertDimensionsToString(obj)

Description dimstr =
matlab.mixin.CustomDisplay.convertDimensionsToString(obj)
converts a size vector into a properly formatted string of dimensions for
the nonscalar header.

Input
Arguments

obj

MATLAB object

Output
Arguments

dimstr

String representing the object’s dimensions as determined by
calling size.

Attributes Static true

Access Protected

Sealed true

Hidden true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.CustomDisplay.getHeader

Related
Examples

• “Custom Display Interface”

1-1386

matlab.mixin.CustomDisplay.details

Purpose Fully detailed formal object display

Syntax details(obj)

Description details(obj) displays the detailed state of obj. The detailed
display is not affected by customizations made to classes derived from
matlab.mixin.CustomDisplay.

Attributes Access = public You can call details on any
object that is a class derived from
matlab.mixin.CustomDisplay.

Sealed You cannot override the details
method in your sublcass of
matlab.mixin.CustomDisplay

Input
Arguments

obj

Instance of a class derived from matlab.mixin.CustomDisplay.

Default: none

Examples Suppose EmployeeInfo is a subclass of matlab.mixin.CustomDisplay

details(e1)

EmployeeInfo handle with properties:

Name: 'Bill Tork'
JobTitle: 'Software Engineer'

Department: 'Product Development'
Salary: 1000

Password: 'bill123'

Methods, Events, Superclasses

1-1387

matlab.mixin.CustomDisplay.details

See Also disp | display

Related
Examples

• “Custom Display Interface”

1-1388

matlab.mixin.CustomDisplay.disp

Purpose Simple informal object display

Syntax disp(obj)

Description disp(obj) displays the contents of obj in one of four simple formats,
based on the state of obj.

• Handle to deleted object

• Empty object array

• Scalar

• Nonscalar

To customize a display format, override one or more of the four handler
methods.

Input
Arguments

obj

Object of a class derived from matlab.mixin.CustomDisplay

Attributes Access public

Sealed true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also disp | details |
matlab.mixin.CustomDisplay.displayScalarObject |
matlab.mixin.CustomDisplay.displayNonScalarObject |
matlab.mixin.CustomDisplay.displayEmptyObject |
matlab.mixin.CustomDisplay.displayScalarHandleToDeletedObject

Related
Examples

• “Custom Display Interface”

1-1389

matlab.mixin.CustomDisplay.display

Purpose Print variable name and display object

Syntax display(obj)

Description display(obj) prints the name of input argument obj as it appears in
the workspace of the caller. If there is no assignment to a variable,
display uses, ans. display then calls the disp method to print the
object.

Input
Arguments

obj

Object array of a class derived from matlab.mixin.CustomDisplay

Attributes Access public

Sealed true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also disp | details

Related
Examples

• “Custom Display Interface”

1-1390

matlab.mixin.CustomDisplay.displayEmptyObject

Purpose Display for empty object arrays

Syntax displayEmptyObject(obj)

Description displayEmptyObject(obj) is called by disp when the object, obj, is
empty. An object array is empty if one or more of its dimensions are
zero. An empty object array is never scalar.

The default display of an empty object consists of a header and a list
of property names. The header consists of the object’s dimensions
and the properties are shown in the order defined in the class
definition. displayEmptyObject shows only those properties with
public GetAccess and Hidden set to false.

Override this method to customize the appearance of an empty object
array.

Input
Arguments

obj

Object of a class derived from matlab.mixin.CustomDisplay

Attributes
Access protected

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.CustomDisplay.displayScalarObject |
matlab.mixin.CustomDisplay.displayNonScalarObject |
matlab.mixin.CustomDisplay.displayScalarHandleToDeletedObject

Related
Examples

• “Custom Display Interface”

1-1391

matlab.mixin.CustomDisplay.displayNonScalarObject

Purpose Display format for non-scalar objects

Syntax displayNonScalarObject(obj)

Description displayNonScalarObject(obj) is called by the disp method when the
object, obj, is nonscalar (prod(size(obj)) > 1)

The default display of a nonscalar object array consists of a header and
a list of property names. The header consists of the object’s dimensions
and the properties are shown in the order defined in the class definition.
displayNonScalarObject shows only those properties with public
GetAccess and Hidden set to false.

Override this method to customize the display a nonscalar object array.

Input
Arguments

obj

Object array of a class derived from matlab.mixin.CustomDisplay

Attributes
Access protected

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.CustomDisplay.displayScalarObject |
matlab.mixin.CustomDisplay.displayEmptyObject |
matlab.mixin.CustomDisplay.displayScalarHandleToDeletedObject

Related
Examples

• “Custom Display Interface”

1-1392

matlab.mixin.CustomDisplay.displayPropertyGroups

Purpose Display titles and property groups as defined

Syntax matlab.mixin.CustomDisplay.displayPropertyGroups(obj,
propertyGroupArray)

Description matlab.mixin.CustomDisplay.displayPropertyGroups(obj,
propertyGroupArray) displays titles and custom property lists as
defined by the property groups.

Input
Arguments

obj

MATLAB object

propertyGroupArray

Array of matlab.mixin.util.PropertyGroup objects.

Attributes Static true

Access Protected

Sealed true

Hidden true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also PropertyGroup

Related
Examples

• “Custom Display Interface”

1-1393

matlab.mixin.CustomDisplay.displayScalarHandleToDeletedOb

Purpose Display format for deleted scalar handles

Syntax displayScalarHandleToDeletedObject(obj)

Description displayScalarHandleToDeletedObject(obj) is called by the disp
method when obj is:

• An instance of a handle class

• Scalar

• A handle to a deleted object

That is, the following expression is true.

isa(obj,'handle') && isscalar(obj) && ~isvalid(obj)

Override this method to customize the appearance of your object’s
display when it is deleted.

Input
Arguments

obj

Object of a class derived from matlab.mixin.CustomDisplay

Attributes
Access protected

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.CustomDisplay.displayScalarObject |
matlab.mixin.CustomDisplay.displayNonScalarObject |
matlab.mixin.CustomDisplay.displayEmptyObject

Related
Examples

• “Custom Display Interface”

1-1394

matlab.mixin.CustomDisplay.displayScalarObject

Purpose Display format for scalar objects

Syntax displayScalarObject(obj)

Description displayScalarObject(obj) is called by the disp method when the
object, obj, is scalar (prod(size(obj)) == 1).

The default display of a scalar object consists of a header and a list of
properties and their values. Properties are shown in the order they are
defined in the class definition. displayScalarObject shows only those
properties with public GetAccess and Hidden set to false.

Override this method to customize the display of a scalar object.

Input
Arguments

obj

Object of a class derived from matlab.mixin.CustomDisplay

Attributes
Access protected

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.CustomDisplay.displayNonScalarObject |
matlab.mixin.CustomDisplay.displayEmptyObject |
matlab.mixin.CustomDisplay.displayScalarHandleToDeletedObject

Related
Examples

• “Custom Display Interface”

1-1395

matlab.mixin.CustomDisplay.getClassNameForHeader

Purpose Return class name for display

Syntax name =
matlab.mixin.CustomDisplay.getClassNameForHeader(obj)

Description name =
matlab.mixin.CustomDisplay.getClassNameForHeader(obj) returns
the class name of obj. If the display supports hypertext links, the text
is linked to the help for the class of obj.

Use this method when building a custom display that includes the class
name, but differs from the default header.

Input
Arguments

obj

MATLAB object

Output
Arguments

name

The simple class name, linked to the help for the class if the
display supports hypertext links

Attributes Static true

Access Protected

Sealed true

Hidden true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also getHeader

Related
Examples

• “Custom Display Interface”

1-1396

matlab.mixin.CustomDisplay.getDeletedHandleText

Purpose Returns text for handle to deleted object display

Syntax handleText =
matlab.mixin.CustomDisplay.getDeletedHandleText

Description handleText =
matlab.mixin.CustomDisplay.getDeletedHandleText
returns the text:

'handle to deleted'

The text is linked to the documentation on deleted handle objects.

Output
Arguments

handleText

String 'handle to deleted', linked if the display supports
hypertext links

Attributes Static true

Access Protected

Sealed true

Hidden true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also getHeader

Related
Examples

• “Custom Display Interface”

1-1397

matlab.mixin.CustomDisplay.getDetailedFooter

Purpose Returns default detailed footer for object display

Syntax headerText =
matlab.mixin.CustomDisplay.getDetailedFooter(obj)

Description headerText =
matlab.mixin.CustomDisplay.getDetailedFooter(obj) returns the
string containing:

Methods, Events, Superclass

Each link executes the respective command on obj.

Input
Arguments

obj

MATLAB object

Output
Arguments

headerText

String containing the linked phrase 'Methods, Events,
Superclasses' or the empty string if the display does not support
hypertext links

Attributes Static true

Access Protected

Sealed true

Hidden true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also methods | events | superclasses | getFooter

Related
Examples

• “Custom Display Interface”

1-1398

matlab.mixin.CustomDisplay.getDetailedHeader

Purpose Returns default detailed header for object display

Syntax header = matlab.mixin.CustomDisplay.getDetailedHeader(obj)

Description header = matlab.mixin.CustomDisplay.getDetailedHeader(obj)
returns a string containing:

• Linked class name of obj

• Link to handle documentation if obj is a handle class

• The string 'with properties:'

Input
Arguments

obj

MATLAB object

Output
Arguments

header

String containing the full detailed header, with properly inserted
links if the display supports hypertext linking

Attributes Static true

Access Protected

Sealed true

Hidden true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also handle | details

Related
Examples

• “Custom Display Interface”

1-1399

matlab.mixin.CustomDisplay.getFooter

Purpose Build and return display footer text

Syntax s = getFooter(obj)

Description s = getFooter(obj) returns the text used as the footer when
displaying obj. This method is called once for the entire object array.

Override this method to create a custom footer. The overriding
implementation must support all states of the object, including scalar,
nonscalar, empty, and deleted (if obj is an instance of a handle class).

Input
Arguments

obj

Object array of a class derived from matlab.mixin.CustomDisplay

Output
Arguments

s

Footer text, returned as a string.

The default implementation returns an empty string

Attributes
Access protected

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.CustomDisplay.getHeader |
matlab.mixin.CustomDisplay.getPropertyGroups

Related
Examples

• “Custom Display Interface”

1-1400

matlab.mixin.CustomDisplay.getHandleText

Purpose Return string 'handle' with link to documentation

Syntax handleText = matlab.mixin.CustomDisplay.getHandleText

Description handleText = matlab.mixin.CustomDisplay.getHandleText returns
the string 'handle'. If the display supports hypertext linking, the text
is linked to documentation describing handle classes.

Output
Arguments

handleText

String 'handle', linked to the handle documentation.

Attributes Static true

Access Protected

Sealed true

Hidden true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also getHeader

Related
Examples

• “Custom Display Interface”

1-1401

matlab.mixin.CustomDisplay.getHeader

Purpose Build and return display header text

Syntax s = getHeader(obj)

Description s = getHeader(obj) returns the text used as the header when
displaying obj. This method is called once for the entire object array.

Override this method to create a custom header. The overriding
implementation must support all states of the object, including scalar,
nonscalar, empty, and deleted (if obj is an instance of a handle class).

Input
Arguments

obj

Object array of a class derived from matlab.mixin.CustomDisplay

Output
Arguments

s

Header string, returned as a char array

The default implementation returns the following:

• If obj is scalar, returns classname, which is the simple name
of the class (the nonpackage-qualified name).

• If obj is nonscalar, returns classname and dimensions.

• If obj is empty, returns an empty string.

• If obj is a deleted handle, returns the string deleted
classname handle

classname is linked to MATLAB documentation for the class.
Selecting the link displays the helpPopup window.

If you override this method, you might need to terminate s with a
newline (\n) character.

Examples Append Text to Default Header

Append the string, 'with Customized Display', to the header text.

1-1402

matlab.mixin.CustomDisplay.getHeader

Write a getHeader method.

methods (Access = protected)

function header = getHeader(obj)

if ~isscalar(obj)

header = getHeader@matlab.mixin.CustomDisplay(obj);

else

headerStr = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);

headerStr = [headerStr,' with Customized Display'];

header = sprintf('%s\n',headerStr);

end

end

end

Add getHeader method to class definition.

Attributes
Access protected

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.CustomDisplay.getFooter |
matlab.mixin.CustomDisplay.getPropertyGroups

Related
Examples

• “Custom Display Interface”

1-1403

matlab.mixin.CustomDisplay.getPropertyGroups

Purpose Construct array of property groups

Syntax groups = getPropertyGroups(obj)

Description groups = getPropertyGroups(obj) returns an array of
matlab.mixin.util.PropertyGroup objects. MATLAB displays property
groups separated by blank spaces.

Each default display state handler method calls this method once. The
default implementation returns the properties in one group. These
properties must have public GetAccess and not be defined as Hidden. If
the object is scalar, MATLAB includes dynamic properties.

Override this method to construct one or more customized groups of
properties to display.

Each group object array has the following fields:

• Title — String used as the header for the property group or an
empty string if no title is used.

• PropertyList — The property list can be either:

- A 1-by-1 struct of property name-property value pairs

- A cell array of string property names.

Use the struct of name-value pairs if the object is scalar and you want
to assign custom property values. Otherwise, use a cell array of string
property names. If the object is scalar MATLAB adds the property
values retrieved from the object.

Input
Arguments

obj

Object array of a class derived from matlab.mixin.CustomDisplay

Output
Arguments

groups

1xN array of matlab.mixin.util.PropertyGroup objects, where
N is the number of groups

1-1404

matlab.mixin.CustomDisplay.getPropertyGroups

Examples Custom Property Group

Customize the values returned by some properties.

Write a getPropertyGroups method.

methods (Access = protected)

function propgrp = getPropertyGroups(obj)

if ~isscalar(obj)

propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);

else

pd(1:length(obj.Password)) = '*';

propList = struct('Department',obj.Department,...

'JobTitle',obj.JobTitle,...

'Name',obj.Name,...

'Salary','Not avalable',...

'Password',pd);

propgrp = matlab.mixin.util.PropertyGroup(propList);

end

end

end

Add function to class definition.

Attributes
Access protected

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.util.PropertyGroup |
matlab.mixin.CustomDisplay.getHeader |
matlab.mixin.CustomDisplay.getFooter

Related
Examples

• “Custom Display Interface”
• “Customize Property Display”

1-1405

matlab.mixin.CustomDisplay.getSimpleHeader

Purpose Return simple header for object display

Syntax header = matlab.mixin.CustomDisplay.getSimpleHeader(obj)

Description header = matlab.mixin.CustomDisplay.getSimpleHeader(obj)
returns the default simple header for obj.

Input
Arguments

obj

MATLAB object.

Output
Arguments

header

String containing the linked class name and the phrase 'with
properties'

Attributes Static true

Access Protected

Sealed true

Hidden true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.CustomDisplay.getHeader

Related
Examples

• “Custom Display Interface”

1-1406

matlab.mixin.Copyable

Purpose Superclass providing copy functionality for handle objects

Description The matlab.mixin.Copyable class is an abstract handle class that
provides a copy method for copying handle objects. The copy method
makes a shallow copy of the object (that is, it shallow copies all
non-dependent properties from the source to the destination object). In
making a shallow copy, MATLAB does not call copy recursively on any
handles contained in property values.

Subclass matlab.mixin.Copyable when you want to define handles
classes that inherit a copy method. The copy method:

• Copies data without calling class constructors or property set
functions and therefore produces no side effects.

• Enables subclasses to customize the copy behavior

Customizing Subclass Copy Behavior

The copy method provides the public, non-overrideable interface to copy
behavior. copy takes an array of objects as input and returns an array
of the same shape and dimensions.

copyElement is a protected method that the copy method uses
to perform the copy operation on each object in the input array.
copyElement is not Sealed so you can override it in your subclass to
customize the behavior of the inherited copy method.

Implementing a Selective Deep Copy
This example overrides the copyElement method in a subclass of
matlab.mixin.Copyable to implement a deep copy of a specific class of
handle objects.

Consider the following classes:

• ContainsHandles — subclass of matlab.mixin.Copyable that
contains handle objects in two properties

• DeepCp — subclass of matlab.mixin.Copyable

• ShallowCp — subclass of handle

1-1407

matlab.mixin.Copyable

Here are the simplified class definitions:

classdef ContainsHandles < matlab.mixin.Copyable
properties

Prop1
Prop2
DeepObj % Contains a DeepCp object
ShallowObj % Contains a ShallowCp object

end
methods

function obj = ContainsHandles(val1,val2,deepobj,shallowobj)
if nargin > 0

obj.Prop1 = val1;
obj.Prop2 = val2;
obj.DeepObj = deepobj;
obj.ShallowObj = shallowobj;

end
end

end
methods(Access = protected)
% Override copyElement method:

function cpObj = copyElement(obj)
% Make a shallow copy of all four properties
cpObj = copyElement@matlab.mixin.Copyable(obj);
% Make a deep copy of the DeepCp object
cpObj.DeepObj = copy(obj.DeepObj);

end
end

end

The DeepCp class derives from matlab.mixin.Copyable:

classdef DeepCp < matlab.mixin.Copyable
properties

DpProp
end
methods

function obj = DeepCp(val)

1-1408

matlab.mixin.Copyable

...
end

end
end

The handle class ShallowCp does not derive from
matlab.mixin.Copyable and, therefore, has no copy method:

classdef ShallowCp < handle
properties

ShProp
end
methods

function obj = ShallowCp(val)
...

end
end

end

Create a ContainsHandles object, which contains the two handle
objects in its DpProp and ShProp properties:

>> sc = ShallowCp(7);
>> dc = DeepCp(7);
>> a = ContainsHandles(4,5,dc,sc);
>> a.DeepObj
ans =

DeepCp with properties:

DpProp: 7
>> a.ShallowObj.ShProp
ans =

ShallowCp with properties:

ShProp: 7

1-1409

matlab.mixin.Copyable

Make a copy of the ContainsHandles object:

>> b = copy(a);

The returned copy b contains a shallow copy of object sc, and a deep
copy of object dc. That is, the dc object passed to ContainsHandles
constructor is now a new, independent objects as a result of the copy
operation. You can now change the dc object without affecting the copy.
This is not the case for the shallow copied object, sc:

% Change the property values of the handle objects:
>> sc.ShProp = 5;
>> dc.DpProp = 5;
% Note that the deep copied object is not affected:
>> b.DeepObj

ans =

DeepCp with properties:

DpProp: 7
% The shallow copied object is still referencing the same data:
>> b.ShallowObj

ans =

ShallowCp with properties:

ShProp: 5

Overriding Copy Behavior in Hierarchies
The copyElement method in a superclass cannot access the private
data in a subclass.

If you override copyElement in a subclass of matlab.mixin.Copyable,
and then use this subclass as a superclass, you need to override
copyElement in all subclasses that contain private properties. The

1-1410

matlab.mixin.Copyable

override of copyElement in subclasses should call the copyElement in
the respective superclass, as in the previous example.

The following simplified code demonstrates this approach:

classdef SuperClass < matlab.mixin.Copyable
properties(Access = private)

super_prop
end
methods

...

function cpObj = copyElement(obj)
...

cpObj = copyElement@mixin.matlab.Copyable(obj);
...

end
end

end

classdef SubClass1 < SuperClass
properties(Access=private)

sub_prop1
end
methods

function cpObj = copyElement(obj)
% Copy super_prop
cpObj = copyElement@SuperClass(obj);
% Copy sub_prop1 in subclass
% Assignment can introduce side effects
cpObj.sub_prop1 = obj.sub_prop1;

end
end

end

1-1411

matlab.mixin.Copyable

The override of copyElement in SubClass1 copies the private subclass
property because the superclass cannot access private data in the
subclass.

Note The assignment of sub_prop1 in the override of copyElement
in SubClass1 calls the property set method, if one exists, possibly
introducing side effects to the copy operation.

Copy Behaviors for Specific Inputs
Given a call to the matlab.mixin.Copyable copy method of the form:

B = copy(A);

Under the following conditions, produces the described results:

• A has dynamic properties — copy does not copy dynamic properties.
You can implement dynamic-property copying in the subclass if
needed.

• A has no non-Dependent properties — copy creates a new object with
no property values without calling the class constructor to avoid
introducing side effects.

• A contains deleted handles — copy creates deleted handles of the
same class in the output array.

• A has attached listeners — copy does not copy listeners.

• A contains objects of enumeration classes — Enumeration classes
cannot subclass matlab.mixin.Copyable.

• A delete method calls copy — copy creates a legitimate copy,
obeying all the behaviors that apply in any other usage.

1-1412

matlab.mixin.Copyable

Note You cannot derive an enumeration class from
matlab.mixin.Copyable because the number of instances you can
create are limited to the ones defined inside the enumeration block. See
“Working with Enumerations” for more information about enumeration
classes.

Methods
copy Copy array of handle objects

Definitions Deep Copy

Copy each property value and assign it to the new (copied) property.
Recursively copy property values that reference handle objects to copy
all of the underlying data.

Shallow Copy

Copy each property value and assign it to the new (copied) property. If a
property value is a handle, copy the handle but not the underlying data.

Attributes
ConstructOnLoad true

To learn about attributes of classes, see Class Attributes in the
MATLAB Object-Oriented Programming documentation.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also handle

How To • Class Attributes

1-1413

matlab.mixin.Copyable.copy

Purpose Copy array of handle objects

Syntax B = copy(A)

Description B = copy(A) copies each element in the array of handles A to the new
array of handles B.

The copy method performs a copy according to the following rules:

• The copy method does not copy Dependent properties

• MATLAB does not call the copy method recursively on any handles
contained in property values

• MATLAB does not call the class constructor or property set methods
during the copy operation.

• B has the same number of elements and same size as A.

• B is the same class as A.

• If A is empty, B is also empty.

• If A is heterogeneous, B is also heterogeneous.

• If A contains deleted handle objects, copy creates deleted handles of
the same class in B.

• Dynamic properties and listeners associated with objects in A are
not copied to objects in B.

• You can call copy inside your class delete method.

Input
Arguments

A

Handle object array

Output
Arguments

B

Handle object array containing copies of the objects in A.

1-1414

matlab.mixin.Copyable.copy

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.Copyable | handle | copyElement

1-1415

copyfile

Purpose Copy file or folder

Syntax copyfile('source','destination')
copyfile('source','destination','f')
[status] = copyfile(___)
[status, message] = copyfile(___)
[status,message,messageid] = copyfile(___)

Description copyfile('source','destination') copies the file or folder named
source to the file or folder destination. The values for source and
destination are 1 x n strings. Use full path names or path names
relative to the current folder. To copy multiple files or folders, use one
or more wildcard characters (*) after the last file separator in source.
You cannot use a wildcard character in destination.

copyfile('source','destination','f') copies source to
destination, even when destination is not writable. The state of the
read-write attribute for destination does not change. You can use
f with any syntax for copyfile.

[status] = copyfile(___) reports the outcome as a logical scalar,
status. The value is 1 for success and 0 for failure.

[status, message] = copyfile(___) returns any warning or error
message as a string to message. When copyfile succeeds, message
is an empty string.

[status,message,messageid] = copyfile(___) returns any
warning or error identifier as a string to messageId. When copyfile
succeeds, messageId is an empty string.

Tips • The timestamp for destination is the same as the timestamp for
source.

• When source is a folder, destination must be a folder.

- When source is a folder and destination does not exist, copyfile
creates destination and copies the contents of source into
destination.

1-1416

copyfile

- When source is a folder and destination is an existing folder,
copyfile copies the contents of source into destination.

- When source is multiple files and destination does not exist,
copyfile creates destination.

Examples Copy File to Another Folder

Copy myFun.m from the current folder to d:/work/Projects/.

copyfile('myFun.m','d:/work/Projects/')

Copy File to Its Current Folder

Copy myFun.m in the current folder, assigning it the name myFun2.m.

copyfile('myFun.m','myFun2.m')

Copy Files and Folders to a New Folder Using Wildcards

Copy files and subfolders whose names begin with my, from the
Projects subfolder within the current folder to the folder newProjects,
which is at the same level as the current folder:

copyfile('Projects/my*','../newProjects/')

Copy Files to a New, Nonexistent Folder

Copy the contents of the Projects subfolder within the current folder to
the I:/work/newProjects folder, where newProjects does not exist.

copyfile('Projects','I:/work/newProjects')

Copy File that Overwrites a Read-Only File

Copy the contents of myFun.m from the current folder to
d:/work/restricted/myFun2.m, where myFun2.m is read-only.

[status,message,messageId]=copyfile('myFun.m', ...
'd:/work/restricted/myFun2.m','f')

status =
1

1-1417

copyfile

message =
''

messageId =
''

The status of 1 and empty message and messageId strings confirm the
copy was successful.

See Also cd | delete | dir | fileattrib | filebrowser | fileparts | mkdir
| movefile | rmdir

How To • “Specify File Names”

• “Manage Files and Folders”

1-1418

copyobj

Purpose Copy graphics objects and their descendants

Syntax new_handle = copyobj(h,p)

Description copyobj creates copies of graphics objects. The copies are identical
to the original objects except the copies have different values for
their Parent property and a new handle. The new parent must be
appropriate for the copied object (e.g., you can copy a line object only to
another axes object).

new_handle = copyobj(h,p) copies one or more graphics objects
identified by h and returns the handle of the new object or a vector
of handles to new objects. The new graphics objects are children of
the graphics objects specified by p.

Tips h and p can be scalars or vectors. When both are vectors, they must be
the same length, and the output argument, new_handle, is a vector of
the same length. In this case, new_handle(i) is a copy of h(i) with
its Parent property set to p(i).

When h is a scalar and p is a vector, h is copied once to each of the
parents in p. Each new_handle(i) is a copy of h with its Parent
property set to p(i), and length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle(i) is a copy
of h(i) with its Parent property set to p. The length of new_handle
equals length(h).

When programming a GUI, do not call copyobj or textwrap (which
calls copyobj) inside a CreateFcn. The act of copying the uicontrol
object fires the CreateFcn repeatedly, which raises a series of error
messages after exceeding the root object’s RecursionLimit property.

Examples Copy a surface to a new axes within a different figure.

h = surf(peaks);
colormap hot
figure % Create a new figure

1-1419

../ref/rootobject_props.html#RecursionLimit

copyobj

axes % Create an axes object in the figure
new_handle = copyobj(h,gca);
colormap hot
view(3)
grid on

Note that while the surface is copied, the colormap (figure property),
view, and grid (axes properties) are not copied.

See Also findobj | gcf | gca | gco | get | set

1-1420

corrcoef

Purpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'param1',val1,'param2',val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients
calculated from an input matrix X whose rows are observations and
whose columns are variables. The matrix R = corrcoef(X) is related
to the covariance matrix C = cov(X) by

R i j
C i j

C i i C j j
(,)

(,)

(,) (,)
.

corrcoef(X) is the zeroth lag of the normalized covariance function,
that is, the zeroth lag of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]). If x and y are not column vectors, corrcoef converts
them to column vectors. For example, in this case R=corrcoef(x,y)
is equivalent to R=corrcoef([x(:) y(:)]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing
the hypothesis of no correlation. Each p-value is the probability of
getting a correlation as large as the observed value by random chance,
when the true correlation is zero. If P(i,j) is small, say less than 0.05,
then the correlation R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP,
of the same size as R, containing lower and upper bounds for a 95%
confidence interval for each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...) specifies
additional parameters and their values. Valid parameters are the
following.

1-1421

corrcoef

'alpha' A number between 0 and 1 to specify a confidence
level of 100*(1 – alpha)%. Default is 0.05 for
95% confidence intervals.

'rows' Either 'all' (default) to use all rows,
'complete' to use rows with no NaN values, or
'pairwise' to compute R(i,j) using rows with
no NaN values in either column i or j.

The p-value is computed by transforming the correlation to create a
t statistic having n-2 degrees of freedom, where n is the number of
rows of X. The confidence bounds are based on an asymptotic normal
distribution of 0.5*log((1+R)/(1-R)), with an approximate variance
equal to 1/(n-3). These bounds are accurate for large samples when
X has a multivariate normal distribution. The 'pairwise' option can
produce an R matrix that is not positive definite.

Examples Generate random data having correlation between column 4 and the
other columns.

x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j] % Display their (row,col) indices.

r =
1.0000 -0.3566 0.1929 0.3457

-0.3566 1.0000 -0.1429 0.4461
0.1929 -0.1429 1.0000 0.5183
0.3457 0.4461 0.5183 1.0000

p =
1.0000 0.0531 0.3072 0.0613
0.0531 1.0000 0.4511 0.0135
0.3072 0.4511 1.0000 0.0033
0.0613 0.0135 0.0033 1.0000

1-1422

corrcoef

ans =
4 2
4 3
2 4
3 4

See Also cov | mean | median | std | var | xcorr | xcov

1-1423

cos

Purpose Cosine of argument in radians

Syntax Y = cos(X)

Description Y = cos(X) returns the cosine for each element of X. The cos function
operates element-wise on arrays. The function accepts both real and
complex inputs. For purely real values or imaginary values of X, cos
returns real values in the interval [-1 ,1]. For complex values of X, cos
returns complex values. All angles are in radians.

Input
Arguments

X - Input angle in radians
scalar value | vector | matrix | N-D array

Input angle in radians, specified as a real-valued or complex-valued
scalar, vector, matrix or N-D array. The cos operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Cosine of input angle
scalar value | vector | matrix | N-D array

Cosine of input angle, returned as a real-valued or complex-valued
scalar, vector, matrix or N-D array.

Examples Plot Cosine Function

Plot the cosine function over the domain .

x = -pi:0.01:pi;
plot(x,cos(x)), grid on

1-1424

cos

Cosine of Vector of Complex Angles

Calculate the cosine of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = cos(x)

y =

1-1425

cos

1.5431 + 0.0000i -2.5092 - 0.0000i 14.7547 +22.9637i

Definitions Cosine Function

The cosine of an angle, α, defined with reference to a right angled
triangle is

cosine
adjacent side
hypotenuse

() .
b
h

1-1426

cos

The cosine of a complex angle, α, is

cosine() .

 e ei i

2

See Also cosd | acos | acosd | cosh

1-1427

cosd

Purpose Cosine of argument in degrees

Syntax Y = cosd(X)

Description Y = cosd(X) returns the cosine of the elements of X, which are
expressed in degrees.

Input
Arguments

X - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The cosd operation is element-wise when
X is nonscalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Cosine of angle
scalar value | vector | matrix | N-D array

Cosine of angle, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Cosine of 90 degrees compared to cosine of /2 radians

cosd(90)

ans =

0

cos(pi/2)

ans =

6.1232e-17

1-1428

cosd

Cosine of complex angles specified in degrees

Create an array of three complex angles and compute the cosine.

z = [180+i 45+2i 10+3i];
y = cosd(z)

y =

-1.0002 0.7075 - 0.0247i 0.9862 - 0.0091i

See Also cos | acos | acosd

1-1429

cosh

Purpose Hyperbolic cosine

Syntax Y = cosh(X)

Description The cosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph of Hyperbolic Cosine

Graph the hyperbolic cosine function over the domain

x = -5:0.01:5;
plot(x,cosh(x)), grid on

1-1430

cosh

Hyperbolic
Cosine

The hyperbolic cosine of z is

cosh() .z
e ez z

2

See Also acosh | cos | sinh | tanh

1-1431

cot

Purpose Cotangent of angle in radians

Syntax Y = cot(X)

Description Y = cot(X) returns the cotangent of elements of X. The cot function
operates element-wise on arrays. The function accepts both real and
complex inputs. For real values of X in the interval [-Inf,Inf], cot
returns real values in the interval [-Inf,Inf].. For complex values of X,
cot returns complex values. All angles are in radians.

Input
Arguments

X - Input angle in radians
scalar value | vector | matrix | N-D array

Input angle in radians, specified as real-valued or complex-valued
scalar, vector, matrix or N-D array. The cot operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Cotangent of input angle
scalar value | vector | matrix | N-D array

Cotangent of input angle, returned as a real-valued or complex-valued
scalar, vector, matrix or N-D array.

Examples Plot Cotangent Function

Plot the cotangent function over the domain and .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

1-1432

cot

Cotangent of Vector of Complex Angles

Calculate the cotangent of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = cot(x)

y =

1-1433

cot

0.0000 + 1.3130i -0.0000 - 1.0903i -0.0006 - 0.9997i

Definitions Cotangent Function

The cotangent of an angle, α, defined with reference to a right angled
triangle is

cotangent
adjacent side
opposite side

1
tangent

.
b
a

.

1-1434

cot

The cotangent of a complex angle α is

cotangent

i e e

e e

i i

i i
.

.

See Also cotd | coth | acot | acotd | acoth

1-1435

cotd

Purpose Cotangent of argument in degrees

Syntax Y = cotd(X)

Description Y = cotd(X) returns the cotangent of the elements of X, which are
expressed in degrees.

Input
Arguments

X - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The cotd operation is element-wise when
X is nonscalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Cotangent of angle
scalar value | vector | matrix | N-D array

Cotangent of angle, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Cotangent of angles approaching 90 and 180 degrees

Create a vector of input angles consisting of 90° and the next smaller
and larger double precision numbers. Then compute the cotangent.

x1 = [90-eps(90) 90 90+eps(90)];
y1 = cotd(x1)

y1 =

1.0e-15 *

0.2480 0 -0.2480

1-1436

cotd

cotd returns zero when the input angle is exactly 90°. Evaluation at the
next smaller double-precision angle returns a slightly positive result.
Likewise, the cotangent is slightly negative when the input angle is the
next double-precision number larger than 90.

The behavior is similar for input angles near 180°.

x2 = [180-eps(180) 180 180+eps(180)];
y2 = cotd(x2)

y2 =

1.0e+15 *

-2.0159 Inf 2.0159

Cotangent of complex angle, specified in degrees

x = 35+5i;
y = cotd(x)

y =

1.3958 - 0.2606i

See Also acotd | cot | acot

1-1437

coth

Purpose Hyperbolic cotangent

Syntax Y = coth(X)

Description The coth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph of Hyperbolic Cotangent

Plot the hyperbolic cotangent over the domain and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,coth(x1),x2,coth(x2)), grid on

1-1438

coth

Definitions Hyperbolic Cotangent

The hyperbolic cotangent of z is

coth()
tanh()

.z
z

1

See Also acoth | cot | sinh | cosh | tanh

1-1439

countcats

Purpose Count occurrences of categorical array elements by category

Syntax B = countcats(A)
B = countcats(A,dim)

Description B = countcats(A) returns the number of elements in each category
of the categorical array, A.

• If A is a vector, then countcats returns the number of elements in
each category.

• If A is a matrix, then countcats treats the columns of A as vectors
and returns the category counts for each column of A.

• If A is a multidimensional array, then countcats acts along the first
array dimension whose size does not equal 1.

B = countcats(A,dim) returns the category counts along dimension
dim.

For example, you can return the category counts of each row in a
categorical array using countcats(A,2).

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider a two-dimensional categorical array, A.

If dim = 1, then countcats(A,1) returns the category counts for each
column of A.

1-1440

countcats

If dim = 2, then countcats(A,2) returns the category counts of each
row of A.

If dim is greater than ndims(A), then countcats(A) returns an array
the same size as A for each category. countcats returns 1 for elements
in the corresponding category and 0 otherwise.

Examples Category Counts of Categorical Vector

Create a 1-by-5 categorical vector.

A = categorical({'plane' 'car' 'train' 'car' 'plane'})

A =

plane car train car plane

A has three categories, car, plane, and train.

1-1441

countcats

Find the number of elements in each category of A.

B = countcats(A)

B =

2 2 1

The first element in B corresponds to the first category of A, which is
car. The second element in B corresponds to the second category of A,
which is plane. The third element of B corresponds to the third category
of A, which is train.

Since A is a row vector, countcats returns a row vector.

Category Counts of Each Column in Array

Create a 3-by-2 categorical array, A, from a numeric array.

valueset = 1:3;
catnames = {'red' 'green' 'blue'};

A = categorical([1 3; 2 1; 3 1],valueset,catnames)

A =

red blue
green red
blue red

A has three categories, red, green, and blue.

Find the category counts of each column in A.

B = countcats(A)

B =

1 2
1 0

1-1442

countcats

1 1

The first row of B corresponds to the first category of A. The value, red,
occurs once in the first column of A and twice in the second column.

The second row of B corresponds to the second category of A. The value,
green, occurs once in the first column of A, and it does not occur in
the second column.

The third row of B corresponds to the third category of A. The value,
blue, occurs once in the first column of A and once in the second column.

Category Counts of Each Row in Array

Create a 3-by-2 categorical array, A, from a numeric array.

valueset = 1:3;
catnames = {'red' 'green' 'blue'};

A = categorical([1 3; 2 1; 3 1],valueset,catnames)

A =

red blue
green red
blue red

A has three categories, red, green, and blue.

Find the category counts of A along the second dimension.

B = countcats(A,2)

B =

1 0 1
1 1 0
1 0 1

1-1443

countcats

The first column of B corresponds to the first category of A. The value,
red, occurs once in the first row of A, once in the second row, and once
in the third row.

The second column of B corresponds to the second category of A. The
value, green, occurs in only one element. It occurs in the second row
of A.

The third column of B corresponds to the third category of A. The value,
blue, occurs once in the first row of A and once in the third row.

Category Counts of Array Containing Undefined Elements

Create a 6-by-1 categorical array, A, from a numeric array.

valueset = 1:3;
catnames = {'red' 'green' 'blue'};

A = categorical([1;3;2;1;3;1],valueset,catnames)

A =

red
blue
green
red
blue
red

Remove the blue category.

A = removecats(A,'blue')

A =

red
<undefined>
green
red
<undefined>

1-1444

countcats

red

A has two categories, red and green. Elements of A that were from the
blue category are now undefined.

Find the number of elements in each category of A.

B = countcats(A)

B =

3
1

The first element in B corresponds to the first category of A. The value,
red, occurs three times in A.

The second element in B corresponds to the second category of A. The
value, green, occurs once in A.

countcats does not return any information on undefined elements.

Use the summary function to view the number of undefined elements in
addition to the number of elements in each category of A.

summary(A)

red 3
green 1
<undefined> 2

Tips • To find the number of undefined elements in a categorical array, A,
you must use summary or isundefined.

See Also iscategory | ismember | summary | isundefined | categories

1-1445

cov

Purpose Covariance matrix

Syntax C = cov(x)
C = cov(x,y)
C = cov(x,1)
C = cov(x,y,1)

Description C = cov(x), if x is a vector, returns the variance of x. For matrix input
X, where each row is an observation, and each column is a variable,
cov(X) is the covariance matrix. diag(cov(X)) is a vector of variances
for each column, and sqrt(diag(cov(X))) is a vector of standard
deviations. cov(X,Y), where X and Y are matrices with the same
number of elements, is equivalent to cov([X(:) Y(:)]).

C = cov(x) or C = cov(x,y) normalizes by N – 1, if N > 1, where N
is the number of observations. This makes cov(X) the best unbiased
estimate of the covariance matrix if the observations are from a normal
distribution. For N = 1, cov normalizes by N.

C = cov(x,1) or C = cov(x,y,1) normalizes by N and produces
the second moment matrix of the observations about their mean.
cov(X,Y,0) is the same as cov(X,Y) and cov(X,0) is the same as
cov(X).

Tips cov removes the mean from each column before calculating the result.

The covariance between two random variables is:

cov(,) () ()*x x E x x1 2 1 1 2 2

where E is the mathematical expectation and μi = Exi.

Examples Consider A = [-1 1 2 ; -2 3 1 ; 4 0 3]. To obtain a vector of
variances for each column of A:

v = diag(cov(A))'
v =

10.3333 2.3333 1.0000

1-1446

cov

Compare vector v with covariance matrix C of A:

C = cov(A)
C =

10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns
of A. The off-diagonal elements C(i,j) represent the covariances of
columns i and j.

See Also corrcoef | mean | median | std | var | xcorr | xcov

1-1447

cplxpair

Purpose Sort complex numbers into complex conjugate pairs

Syntax B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description B = cplxpair(A) sorts the elements along different dimensions of a
complex array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair,
the element with negative imaginary part comes first. The purely
real values are returned following all the complex pairs. The complex
conjugate pairs are forced to be exact complex conjugates. A default
tolerance of 100*eps relative to abs(A(i)) determines which numbers
are real and which elements are paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs
grouped together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and
complex conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along
the first non-singleton dimension as vectors, returning an array of
sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by
scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and
overrides the default tolerance.

Diagnostics If there are an odd number of complex numbers, or if the complex
numbers cannot be grouped into complex conjugate pairs within the
tolerance, cplxpair generates the error message

Complex numbers can't be paired.

1-1448

cputime

Purpose Elapsed CPU time

Syntax cputime

Description cputime returns the total CPU time (in seconds) used by your MATLAB
application from the time it was started. This number can overflow the
internal representation and wrap around.

Tips Although it is possible to measure performance using the cputime
function, it is recommended that you use the timeit or tic and toc
functions for this purpose exclusively. See Using tic and toc Versus
the cputime Function in the MATLAB Programming Fundamentals
documentation for more information.

Examples The following code returns the CPU time used to run surf(peaks(40)).

t = cputime; surf(peaks(40)); e = cputime-t

e =
0.4667

See Also clock | etime | tic | timeit | toc

1-1449

RandStream.create

Purpose Create random number streams

Class RandStream

Syntax [s1,s2,...] = RandStream.create('gentype','NumStreams',n)
s = RandStream.create('gentype')
[...] = RandStream.create('gentype', Name, Value,...)

Description [s1,s2,...] = RandStream.create('gentype','NumStreams',n)
creates n random number streams that use the uniform pseudorandom
number generator algorithm specified by gentype. The streams are
independent in a pseudorandom sense. The streams are not necessarily
independent from streams created at other times. RandStream.list
returns all possible values for gentype or see “Choosing a Random
Number Generator” in the MATLAB Mathematics documentation for
details on generator algorithms.

Note Multiple streams are not supported by all generator types. Use
either the multiplicative lagged Fibonacci generator (mlfg6331_64)
or the combined multiple recursive generator (mrg32k3a) to create
multiple streams.

s = RandStream.create('gentype') creates a single random stream.
The RandStream constructor is a more concise alternative when you
need to create a single stream.

[...] = RandStream.create('gentype', Name, Value,...)
allows you to specify optional Name, Value pairs to control creation of
the stream. The parameters are:

1-1450

RandStream.create

NumStreams Total number of streams of this
type that will be created across
sessions or labs. Default is 1.

StreamIndices Stream indices that should be
created in this call. Default is 1:N,
where N is the value given with
the 'NumStreams' parameter.

Seed Nonnegative scalar integer with
which to initialize all streams.
Default is 0. Seeds must be an
integer between 0 and 232 − 1 or
'shuffle' to create a seed based
on the current time.

NormalTransform Transformation algorithm
used by randn(S, ...) to
generate normal pseudorandom
values. Options are 'Ziggurat',
'Polar', or 'Inversion'.

CellOutput Logical flag indicating whether or
not to return the stream objects as
elements of a cell array. Default
is false.

Typically, you call RandStream.create once to create multiple
independent streams in a single pass. Alternatively, you can create
each stream from separate calls to RandStream.create, but you must
specify the appropriate values for gentype, 'NumStreams', 'Seed', and
'StreamIndices' to ensure their independence:

• Specify the same set of values for gentype, 'NumStreams', and
'Seed' in each case.

• Specify a different value for 'StreamIndices' that is between 1 and
the 'NumStreams' value in each case.

1-1451

RandStream.create

Examples Create three independent streams.

[s1,s2,s3] = RandStream.create('mrg32k3a','NumStreams',3);
r1 = rand(s1,100000,1);
r2 = rand(s2,100000,1);
r3 = rand(s3,100000,1);
corrcoef([r1,r2,r3])

Create one stream from a set of three independent streams and
designate it as the global stream.

s2 = RandStream.create('mrg32k3a','NumStreams',3,'StreamIndices',2);
RandStream.setGlobalStream(s2);

See Also RandStream | RandStream.list

1-1452

createClassFromWsdl

Purpose Create MATLAB class based on WSDL document

Syntax createClassFromWsdl(source)

Description createClassFromWsdl(source) creates a MATLAB class,
servicename, based on a service name defined in source. The source
argument is a string that specifies a URL, full path, or relative path to
a Web Services Description Language (WSDL) document located on a
server. createClassFromWsdl creates a class folder, @servicename, in
the current folder. The class folder contains a method file for each Web
service operation, and the display method (display.m) and constructor
(servicename.m) for the class.

Examples Get the methods from the myWebService WSDL document, which
specifies two methods. The example does not use an actual WSDL
document; therefore, you cannot run it. The example only illustrates
how to use the function.

Create the class:

createClassFromWsdl('pathto_myWebService')

MATLAB creates the following in the current folder:

@myWebService
@myWebService/method1.m
@myWebService/method2.m
@myWebService/display.m
@myWebService/myWebService.m

Retrieve a student name, given the WSDL
document for TestScoreWebService, at
http://examplestandardtests.com/scoreswebservice?WSDL. The
example does not use an actual WSDL document; therefore, you cannot
run it. The example only illustrates how to use the function.

url = 'http://examplestandardtests.com/scoreswebservice?WSDL';

1-1453

createClassFromWsdl

createClassFromWsdl(url);
obj = TestScoreWebService;
% Show the methods
methods(obj)
% Retrieve the first student name
students = StudentNames(obj);
students.StudentInfo(1)

MATLAB returns

StudentNameLast: 'Benjamin'
StudentNameFirst: 'Ali'

Display the endpoint and WSDL document location:

display('TestScoreWebService')

MATLAB returns

endpoint: 'http://examplestandardtests.com/scoreswebservice'
wsdl: 'http://examplestandardtests.com/scoreswebservice?WSDL'

See Also callSoapService | createSoapMessage | parseSoapResponse |
xmlread

How To • “Access Web Services That Use WSDL Documents”

• “Specify Proxy Server Settings for Connecting to the Internet”

1-1454

inputParser.createCopy

Purpose Create copy of inputParser object (to be removed)

Compatibility The createCopy method will be removed in a future release. Use copy
instead.

Syntax pNew = createCopy(p)

Description pNew = createCopy(p) creates a copy of inputParser object p.

Tips • Using createCopy is not the same as copying by assignment, such as
pNew = p, which creates a new handle to the same object p.

Input
Arguments

p

Object of class inputParser.

Output
Arguments

pNew

inputParser object with the same properties as object p.

Examples Copy Input Parser Scheme

Create a copy of an existing inputParser object, and add an optional
input to the copy.

p = inputParser;
default = 0;

addRequired(p,'first');
addOptional(p,'second',default);

pNew = createCopy(p);
addOptional(pNew,'third',default);

Object p has two inputs in the scheme, first and second. Object pNew
has an additional input, third.

Parse each object.

1-1455

inputParser.createCopy

input1 = 1; input2 = 2; input3 = 3;

parse(p,input1);
p.Results

ans =
first: 1

second: 0

parse(pNew,input1,input2,input3);
pNew.Results

ans =
first: 1

second: 2
third: 3

See Also inputParser

1-1456

createSoapMessage

Purpose Create SOAP message to send to server

Syntax message = createSoapMessage(namespace,method,values,names,types,
style)

Description message =
createSoapMessage(namespace,method,values,names,types,
style) creates a SOAP message based on the values you provide for the
arguments. message is a Java document object model (DOM). To send
message to the Web service, use it with callSoapService.

Argument Description

namespace Location of the Web service in the form of a valid
Uniform Resource Identifier (URI).

method Name of the Web service operation you want to
run.

values Cell array of input you need to provide for the
method.

names Cell array of parameters for method.

types Cell array defining the XML data types for
values. Specifying style is optional; when you
do not include the argument, MATLAB uses
unspecified.

style Style for structuring the SOAP message, either
'document' or 'rpc'. Specifying style is
optional; when you do not include the argument,
MATLAB uses rpc. Use a style supported by the
service you specified in namespace.

Examples This example uses createSoapMessage in conjunction with other SOAP
functions to retrieve information about books from a library database,
specifically, the author’s name for a given book title.

1-1457

createSoapMessage

Note The example is not based on an actual endpoint; therefore, you
cannot run it. The example only illustrates how to use the SOAP
functions.

% Create the message:
message = createSoapMessage(...
'urn:LibraryCatalog',...
'getAuthor',...
{'In the Fall'},...
{'nameToLookUp'},...
{'{http://www.w3.org/2001/XMLSchema}string'},...
'rpc');
%
% Send the message to the service and get the response:
response = callSoapService(...
'http://test/soap/services/LibraryCatalog',...
'urn:LibraryCatalog#getAuthor',...
message)
%
% Extract MATLAB data from the response
author = parseSoapResponse(response)

MATLAB returns:

author = Kate Alvin

where author is a char class (type).

See Also callSoapService | createClassFromWsdl | parseSoapResponse |
urlread | xmlread

How To • “Access Web Services Using MATLAB SOAP Functions”

1-1458

cross

Purpose Cross product

Syntax C = cross(A,B)
C = cross(A,B,dim)

Description C = cross(A,B) returns the cross product of A and B.

• If A and B are vectors, then they must have a length of 3.

• If A and B are matrices or multidimensional arrays, then they must
have the same size. In this case, the cross function treats A and B as
collections of three-element vectors. The function calculates the cross
product of corresponding vectors along the first array dimension
whose size equals 3.

C = cross(A,B,dim) evaluates the cross product of arrays A and B
along dimension, dim. A and B must have the same size, and both
size(A,dim) and size(B,dim) must be 3. The dim input is a positive
integer scalar.

Input
Arguments

A,B - Input arrays
numeric arrays

Input arrays, specified as numeric arrays.

Data Types
single | double
Complex Number Support: Yes

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. The
size of dimension dim must be 3. If no value is specified, the default is
the first array dimension whose size equals 3.

Consider two 2-D input arrays, A and B:

1-1459

cross

• cross(A,B,1) treats the columns of A and B as vectors and returns
the cross products of corresponding columns.

• cross(A,B,2) treats the rows of A and B as vectors and returns the
cross products of corresponding rows.

cross returns an error if dim is greater than ndims(A).

Examples Cross Product of Vectors

Create two 3-D vectors.

A = [4 -2 1];
B = [1 -1 3];

Find the cross product of A and B.

C = cross(A,B)

C =

-5 -11 -2

The result, C, is a vector that is perpendicular to both A and B.

Use dot products to verify that C is perpendicular to A and B.

dot(C,A)==0 & dot(C,B)==0

ans =

1-1460

cross

1

The result is logical 1 (true).

Cross Product of Matrices

Create two matrices containing random integers.

rng(0)
A = randi(15,3,5)
B = randi(25,3,5)

A =

13 14 5 15 15
14 10 9 3 8
2 2 15 15 13

B =

4 20 1 17 10
11 24 22 19 17
23 17 24 19 5

Find the cross product of A and B.

C = cross(A,B)

C =

300 122 -114 -228 -181
-291 -198 -105 -30 55

87 136 101 234 175

The result, C, contains five independent cross products between the
columns of A and B. For example, C(:,1) is equal to the cross product of
A(:,1) with B(:,1).

1-1461

cross

Cross Product of Multidimensional Arrays

Create two 3-by-3-by-3 multidimensional arrays of random integers.

rng(0)
A = randi(10,3,3,3);
B = randi(25,3,3,3);

Find the cross product of A and B, treating the rows as vectors.

C = cross(A,B,2)

C(:,:,1) =

-34 12 62
15 72 -109

-49 8 9

C(:,:,2) =

198 -164 -170
45 0 -18

-55 190 -116

C(:,:,3) =

-109 -45 131
1 -74 82

-6 101 -121

The result is a collection of row vectors. For example, C(1,:,1) is equal
to the cross product of A(1,:,1) with B(1,:,1).

Find the cross product of A and B along the third dimension (dim = 3).

D = cross(A,B,3)

1-1462

cross

D(:,:,1) =

-14 179 -106
-56 -4 -75

2 -37 10

D(:,:,2) =

-37 -162 -37
50 -124 -78
1 63 118

D(:,:,3) =

62 -170 56
46 72 105
-2 -53 -160

The result is a collection of vectors oriented in the third dimension.
For example, C(1,1,:) is equal to the cross product of A(1,1,:) with
B(1,1,:).

Definitions Cross Product

The cross product between two 3-D vectors produces a new vector that
is perpendicular to both.

Consider the two vectors

A a i a j a k

B b i b j b k

1 2 3

1 2 3

ˆ ˆ ˆ ,
ˆ ˆ ˆ .

In terms of a matrix determinant involving the basis vectors î , ĵ , and

k̂ , the cross product of A and B is

1-1463

cross

C A B
i j k
a
b

a
b

a
b

a b a b i a b a b j a b

ˆ ˆ ˆ

()ˆ () ˆ (

1

1

2

2

3

3

2 3 3 2 3 1 1 3 1 2 a b k2 1) ˆ .

Geometrically, A B is perpendicular to both A and B. The magnitude

of the cross product, A B , is equal to the area of the parallelogram
formed using A and B as sides. This area is related to the magnitudes of
A and B as well as the angle between the vectors by

A B A B sin .

Thus, if A and B are parallel, then the cross product is zero.

See Also dot | kron

1-1464

csc

Purpose Cosecant of input angle in radians

Syntax Y = csc(X)

Description Y = csc(X) returns the cosecant of the elements of X. The csc function
operates element-wise on arrays. The function accepts both real and
complex inputs. For real values of X in the interval [-Inf, Inf], csc
returns real values in the interval [-Inf ,-1] and [1,Inf]. For complex
values of X, csc returns complex values. All angles are in radians.

Input
Arguments

X - Input angle in radians
scalar value | vector | matrix | N-D array

Input angle in radians, specified as a real-valued or complex-valued
scalar, vector, matrix or N-D array. The csc operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Cosecant of input angle
scalar value | vector | matrix | N-D array

Cosecant of input angle, returned as a real-valued or complex-valued
scalar, vector, matrix or N-D array.

Examples Plot Cosecant Function

Plot the cosecant function over the domain and
as shown.

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2)), grid on

1-1465

csc

Cosecant of Vector of Complex Angles

Calculate the cosecant of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = csc(x)

y =

1-1466

csc

0.0000 + 0.8509i 0.0000 + 0.4345i -0.0308 - 0.0198i

Definitions Cosecant Function

The cosecant of an angle, α, defined with reference to a right angled
triangle is

cosecant
hypotenuse

opposite side
()

sine
.

1 h
a

1-1467

csc

The cosecant of a complex angle, α, is

cosecant

2i

e ei i
.

See Also cscd | csch | acsc | acscd | acsch

1-1468

cscd

Purpose Cosecant of argument in degrees

Syntax Y = cscd(X)

Description Y = cscd(X) returns the cosecant of the elements of X, which are
expressed in degrees.

Input
Arguments

X - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The cscd operation is element-wise when
X is nonscalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Cosecant of angle
scalar value | vector | matrix | N-D array

Cosecant of angle, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Cosecant of 180 degrees compared to cosecant of radians

cscd(180) is infinite, whereas csc(pi) is large but finite.

cscd(180)

ans =

Inf

csc(pi)

ans =

1-1469

cscd

8.1656e+15

Cosecant of vector of complex angles, specified in degrees

z = [35+i 15+2i 10+3i];
y = cscd(z)

y =

1.7421 - 0.0434i 3.7970 - 0.4944i 5.2857 - 1.5681i

See Also acscd | csc | acsc

1-1470

csch

Purpose Hyperbolic cosecant

Syntax Y = csch(x)

Description The csch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph of Hyperbolic Cosecant

Plot the hyperbolic cosecant over the domain and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csch(x1),x2,csch(x2)), grid on

1-1471

csch

Definitions Hyperbolic Cosecant

The hyperbolic cosecant of z is

csch()
sinh()

.z
z

1

See Also acsch | csc | sinh | cosh

1-1472

csvread

Purpose Read comma-separated value file

Syntax M = csvread(filename)
M = csvread(filename,row,col)
M = csvread(filename,row,col,csvRange)

Description M = csvread(filename) reads a comma-separated value formatted
file, filename. The file can only contain numeric values.

M = csvread(filename,row,col) reads data from the file starting at
the specified row and column. The row and column arguments are zero
based, so that row = 0 and col = 0 specify the first value in the file.

M = csvread(filename,row,col,csvRange) reads only the range
specified by csvRange.

Input
Arguments

filename - Name of file to read
string

Name of the file to read, specified as a string.

Example: 'myFile.dat'

Data Types
char

row - Row of first value to read
0 (default) | positive integer

Row of the first value to read, specified as a positive integer. row is zero
based, so that row = 0 specifies the first row of data.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

col - Column of first value to read
0 (default) | positive integer

1-1473

csvread

Column of the first value to read, specified as a positive integer. col is
zero based, so that col = 0 specifies the first column of data.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

csvRange - Range of data to read
4-element vector | string

Range of the data to read, specified as a 4-element vector or a string.

• If csvRange is a 4-element vector, then it must have the form
[R1,C1,R2,C2], where (R1,C1) is the upper left corner of the data to
be read and (R2,C2) is the lower right corner. The range is zero based,
so that R1 = 0 specifies the first row of data, and C1 = 0 specifies
the first column of data.

• If csvRange is a string, then it should be specified using spreadsheet
notation, as in csvRange = 'A1..B7'.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | char

Output
Arguments

M - Numeric data
matrix

Numeric data, returned as a matrix of double values.

Examples Read File Containing Comma-Separated Values

Create a file, csvlist.dat, that contains these comma-separated
values.

02, 04, 06, 08
03, 06, 09, 12
05, 10, 15, 20
07, 14, 21, 28

1-1474

csvread

Read the entire file.

filename = 'csvlist.dat';
M = csvread(filename)

M =

2 4 6 8
3 6 9 12
5 10 15 20
7 14 21 28

csvread returns the numeric data in M.

Read Data Starting at Specific Row and Column

Read data from the file, csvlist.dat, of the previous example, starting
at zero-based row 2, column 0.

M = csvread('csvlist.dat',2,0)

M =

5 10 15 20
7 14 21 28

Read a Specific Range of Data

Read a specific range of data from the file, csvlist.dat, of the first
example.

Read the matrix bounded by zero-based (1,0) and (2,2).

M = csvread('csvlist.dat',1,0,[1,0,2,2])

M =

3 6 9
5 10 15

1-1475

csvread

Algorithms csvread fills empty delimited fields with zero. When csvread reads
data files with lines that end with a nonspace delimiter, such as a
semicolon, it returns a matrix, M, that has an additional last column
of zeros.

csvread imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type. The table shows valid forms for a complex number.

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

Embedded white-space in a complex number is invalid and is regarded
as a field delimiter.

See Also csvwrite | dlmread | textscan | readtable | uiimport

1-1476

ctranspose

Purpose Complex conjugate transpose

Syntax b = a'
b = ctranspose(a)

Description b = a' computes the complex conjugate transpose of matrix a and
returns the result in b.

b = ctranspose(a) is called for the syntax a' (complex conjugate
transpose) when a is an object.

See Also transpose

1-1477

csvwrite

Purpose Write comma-separated value file

Syntax csvwrite(filename,M)
csvwrite(filename,M,row,col)

Description csvwrite(filename,M) writes matrix M into filename as
comma-separated values. The filename input is a string enclosed in
single quotes.

csvwrite(filename,M,row,col) writes matrix M into filename
starting at the specified row and column offset. The row and column
arguments are zero based, so that row=0 and C=0 specify the first value
in the file.

Tips • csvwrite terminates each line with a line feed character and no
carriage return.

• csvwrite writes a maximum of five significant digits. If you need
greater precision, use dlmwrite with a precision argument.

• csvwrite does not accept cell arrays for the input matrix M. To export
a cell array that contains only numeric data, use cell2mat to convert
the cell array to a numeric matrix before calling csvwrite. To export
cell arrays with mixed alphabetic and numeric data, where each cell
contains a single element, you can create an Excel spreadsheet (if
your system has Excel installed) using xlswrite. For all other cases,
you must use low-level export functions to write your data. For more
information, see “Export Cell Array to Text File” in the MATLAB
Data Import and Export documentation.

Examples The following example creates a comma-separated value file from the
matrix m.

m = [3 6 9 12 15; 5 10 15 20 25; ...
7 14 21 28 35; 11 22 33 44 55];

csvwrite('csvlist.dat',m)
type csvlist.dat

1-1478

csvwrite

3,6,9,12,15
5,10,15,20,25
7,14,21,28,35
11,22,33,44,55

The next example writes the matrix to the file, starting at a column
offset of 2.

csvwrite('csvlist.dat',m,0,2)
type csvlist.dat

,,3,6,9,12,15
,,5,10,15,20,25
,,7,14,21,28,35
,,11,22,33,44,55

See Also csvread | dlmwrite | xlswrite | writetable | uiimport

1-1479

cumprod

Purpose Cumulative product

Syntax B = cumprod(A)
B = cumprod(A,dim)

Description B = cumprod(A) returns an array the same size as the array A
containing the cumulative product.

• If A is a vector, then cumprod(A) returns a vector containing the
cumulative product of the elements of A.

• If A is a matrix, then cumprod(A) returns a matrix containing the
cumulative products for each column of A.

• If A is a multidimensional array, then cumprod(A) acts along the first
nonsingleton dimension.

B = cumprod(A,dim) returns the cumulative product along dimension
dim. For example, if A is a matrix, then cumprod(A,2) returns the
cumulative product of each row.

Input
Arguments

A - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical
Complex Number Support: Yes

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider a two-dimensional input array, A.

1-1480

cumprod

• cumprod(A,1) works along the rows of A and returns the cumulative
product of each column.

• cumprod(A,2) works along the columns of A and returns the
cumulative product of each row.

cumprod returns A if dim is greater than ndims(A).

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output
Arguments

B - Cumulative product array
vector | matrix | multidimensional array

Cumulative product array, returned as a vector, matrix, or
multidimensional array of the same size as the input array A.

The class of B is the same as the class of A except if A is logical, in
which case B is double.

Definitions First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array
whose size is not equal to 1.

For example:

• If X is a 1-by-n row vector, then the second dimension is the first
nonsingleton dimension of X.

• If X is a 1-by-0-by-n empty array, then the second dimension is the
first nonsingleton dimension of X.

1-1481

cumprod

• If X is a 1-by-1-by-3 array, then the third dimension is the first
nonsingleton dimension of X.

Examples Cumulative Product of Vector

Find the cumulative product of the integers from 1 to 5.

A = [1:5];
B = cumprod(A)

B =

1 2 6 24 120

B(2) is the product of A(1) and A(2), while B(5) is the product of
elements A(1) through A(5).

Cumulative Product of Each Column in Matrix

Define a 3-by-3 matrix whose elements correspond to their linear
indices.

A = [1 4 7; 2 5 8; 3 6 9]

A =

1 4 7
2 5 8
3 6 9

Find the cumulative product of the columns of A.

B = cumprod(A)

B =

1 4 7
2 20 56
6 120 504

1-1482

cumprod

B(5) is the product of A(4) and A(5), while B(9) is the product of A(7) ,
A(8), and A(9).

Cumulative Product of Each Row in Matrix

Define a 2-by-3 matrix whose elements correspond to their linear
indices.

A = [1 3 5; 2 4 6]

A =

1 3 5
2 4 6

Find the cumulative product of the rows of A.

B = cumprod(A,2)

B =

1 3 15
2 8 48

B(3) is the product of A(1) and A(3), while B(5) is the product of A(1),
A(3), and A(5) .

Logical Input with Double Output

Create an array of logical values.

A = [true false true; true true false]

A =

1 0 1
1 1 0

Find the cumulative product of the rows of A.

1-1483

cumprod

B = cumprod(A,2)

B =

1 0 0
1 1 0

The output is double.

class(B)

ans =

double

See Also cumsum | prod | sum

1-1484

cumsum

Purpose Cumulative sum

Syntax B = cumsum(A)
B = cumsum(A,dim)

Description B = cumsum(A) returns an array of the same size as the array A
containing the cumulative sum.

• If A is a vector, then cumsum(A) returns a vector containing the
cumulative sum of the elements of A.

• If A is a matrix, then cumsum(A) returns a matrix containing the
cumulative sums for each column of A.

• If A is a multidimensional array, then cumsum(A) acts along the first
nonsingleton dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along
dimension dim. For example, if A is a matrix, then cumsum(A,2) returns
the cumulative sum of each row.

Input
Arguments

A - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical
Complex Number Support: Yes

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider a two-dimensional input array, A:

1-1485

cumsum

• cumsum(A,1) works along the rows of A and returns the cumulative
sum of each column.

• cumsum(A,2) works along the columns of A and returns the
cumulative sum of each row.

cumsum returns A if dim is greater than ndims(A).

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output
Arguments

B - Cumulative sum array
vector | matrix | multidimensional array

Cumulative sum array, returned as a vector, matrix, or
multidimensional array of the same size as the input array A.

The class of B is the same as the class of A except if A is logical, in
which case B is double.

Definitions First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array
whose size is not equal to 1.

For example:

• If X is a 1-by-n row vector, then the second dimension is the first
nonsingleton dimension of X.

• If X is a 1-by-0-by-n empty array, then the second dimension is the
first nonsingleton dimension of X.

1-1486

cumsum

• If X is a 1-by-1-by-3 array, then the third dimension is the first
nonsingleton dimension of X.

Examples Cumulative Sum of Vector

Find the cumulative sum of the integers from 1 to 5.

A = [1:5];
B = cumsum(A)

B =

1 3 6 10 15

B(2) is the sum of A(1) and A(2), while B(5) is the sum of elements
A(1) through A(5).

Cumulative Sum of Each Column in Matrix

Define a 3-by-3 matrix whose elements correspond to their linear
indices.

A = [1 4 7; 2 5 8; 3 6 9]

A =

1 4 7
2 5 8
3 6 9

Find the cumulative sum of the columns of A.

B = cumsum(A)

B =

1 4 7
3 9 15
6 15 24

1-1487

cumsum

B(5) is the sum of A(4) and A(5), while B(9) is the sum of A(7) ,
A(8), and A(9).

Cumulative Sum of Each Row in Matrix

Define a 2-by-3 matrix whose elements correspond to their linear
indices.

A = [1 3 5; 2 4 6]

A =

1 3 5
2 4 6

Find the cumulative sum of the rows of A.

B = cumsum(A,2)

B =

1 4 9
2 6 12

B(3) is the sum of A(1) and A(3), while B(5) is the sum of A(1), A(3),
and A(5) .

Logical Input with Double Output

Create an array of logical values.

A = [true false true; true true false]

A =

1 0 1
1 1 0

Find the cumulative sum of the rows of A.

1-1488

cumsum

B = cumsum(A,2)

B =

1 1 2
1 2 2

The output is double.

class(B)

ans =

double

See Also cumprod | prod | sum | diff

1-1489

cumtrapz

Purpose Cumulative trapezoidal numerical integration

Syntax Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(___ ,dim)

Description Z = cumtrapz(Y) computes an approximation of the cumulative
integral of Y via the trapezoidal method with unit spacing. To compute
the integral with other than unit spacing, multiply Z by the spacing
increment. Input Y can be complex.

For vectors, cumtrapz(Y) is a vector containing the cumulative integral
of Y.

For matrices, cumtrapz(Y) is a matrix the same size as Y with the
cumulative integral over each column.

For multidimensional arrays, cumtrapz(Y) works across the first
nonsingleton dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect
to X using trapezoidal integration. X and Y must be vectors of the
same length, or X must be a column vector and Y an array whose first
nonsingleton dimension is length(X). cumtrapz operates across this
dimension. Inputs X and Y can be complex.

If X is a column vector and Y an array whose first nonsingleton dimension
is length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(___ ,dim) integrates across the dimension of Y specified
by scalar dim, using any of the input arguments in the previous
syntaxes. The length of X must be the same as size(Y,dim).

Examples Example 1

Y = [0 1 2; 3 4 5];

cumtrapz(Y,1)
ans =
0 0 0

1-1490

cumtrapz

1.5000 2.5000 3.5000

cumtrapz(Y,2)
ans =
0 0.5000 2.0000

0 3.5000 8.0000

Example 2

This example uses two complex inputs:

z = exp(1i*pi*(0:100)/100);

ct = cumtrapz(z,1./z);
ct(end)
ans =

0.0000 + 3.1411i

See Also cumsum | trapz

1-1491

curl

Purpose Compute curl and angular velocity of vector field

Syntax [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W)
[curlx,curly,curlz,cav] = curl(U,V,W)
[curlz,cav]= curl(X,Y,U,V)
[curlz,cav]= curl(U,V)
[curlx,curly,curlz] = curl(...), [curlx,curly] = curl(...)
cav = curl(...)

Description [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl
(curlx, curly, curlz) and angular velocity (cav) perpendicular to the
flow (in radians per time unit) of a 3-D vector field U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must
be monotonic, but do not need to be uniformly spaced. X, Y, and Z must
have the same number of elements, as if produced by meshgrid.

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and
the angular velocity perpendicular to z (in radians per time unit) of a
2-D vector field U, and V.

The arrays X and Y, which define the coordinates for U and V, must be
monotonic, but do not need to be uniformly spaced. X and Y must have
the same number of elements, as if produced by meshgrid.

[curlz,cav]= curl(U,V) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

1-1492

curl

[curlx,curly,curlz] = curl(...), [curlx,curly] = curl(...)
returns only the curl.

cav = curl(...) returns only the curl angular velocity.

Examples This example uses colored slice planes to display the curl angular
velocity at specified locations in the vector field.

figure
load wind
cav = curl(x,y,z,u,v,w);
h = slice(x,y,z,cav,[90 134],59,0);
shading interp
daspect([1 1 1]);
axis tight
colormap hot(16)
camlight
set([h(1),h(2)],'ambientstrength',.6)

1-1493

curl

This example views the curl angular velocity in one plane of the volume
and plots the velocity vectors (quiver) in the same plane.

load wind
k = 4;
x = x(:,:,k); y = y(:,:,k); u = u(:,:,k); v = v(:,:,k);
cav = curl(x,y,u,v);
pcolor(x,y,cav); shading interp
hold on;
quiver(x,y,u,v,'y')
hold off
colormap copper

See Also streamribbon | divergence

How To • “Displaying Curl with Stream Ribbons”

1-1494

Tiff.currentDirectory

Purpose Index of current IFD

Syntax dirNum = tiffobj.currentDirectory()

Description dirNum = tiffobj.currentDirectory() returns the index of the
current image file directory (IFD). Index values are one-based. Use this
index value with the setDirectory member function.

Examples Determine Current IFD

Open a Tiff object and determine which IFD is the current IFD.

t = Tiff('example.tif','r');
dnum = t.currentDirectory()

dnum =

1

Close the Tiff object.

t.close();

References This method corresponds to the TIFFCurrentDirectory function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTiff
- TIFF Library and Utilities.

See Also Tiff.setDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-1495

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

customverctrl

Purpose Allow custom source control system (UNIX platforms)

Syntax customverctrl

Description customverctrl function is for customers who want to integrate a
source control system that is not supported for use with MATLAB
software. When using this function, conform to the structure of one
of the supported version control systems, for example, RCS. For
examples, see the files clearcase.m, cvs.m, pvcs.m, and rcs.m in
matlabroot\toolbox\matlab\verctrl.

See Also checkin | checkout | cmopts | undocheckout | verctrl

1-1496

cylinder

Purpose Generate cylinder

Syntax [X,Y,Z] = cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(axes_handle,...)
cylinder(...)

Description cylinder generates x-, y-, and z-coordinates of a unit cylinder. You can
draw the cylindrical object using surf or mesh, or draw it immediately
by not providing output arguments.

[X,Y,Z] = cylinder returns the x-, y-, and z-coordinates of a cylinder
with a radius equal to 1. The cylinder has 20 equally spaced points
around its circumference.

[X,Y,Z] = cylinder(r) returns the x-, y-, and z-coordinates of a
cylinder using r to define a profile curve. cylinder treats each element
in r as a radius at equally spaced heights along the unit height of
the cylinder. The cylinder has 20 equally spaced points around its
circumference.

[X,Y,Z] = cylinder(r,n) returns the x-, y-, and z-coordinates of a
cylinder based on the profile curve defined by vector r. The cylinder has
n equally spaced points around its circumference.

cylinder(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

cylinder(...), with no output arguments, plots the cylinder using
surf.

1-1497

cylinder

Tips cylinder treats its first argument as a profile curve. The resulting
surface graphics object is generated by rotating the curve about the
x-axis, and then aligning it with the z-axis.

Examples Create a cylinder with randomly colored faces.

cylinder
axis square
h = findobj('Type','surface');
set(h,'CData',rand(size(get(h,'CData'))))

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;

1-1498

cylinder

[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)
axis square

See Also sphere | surf

1-1499

daqread

Purpose Read Data Acquisition Toolbox (.daq) file

Syntax data = daqread('filename')
[data, time] = daqread(...)
[data, time, abstime] = daqread(...)
[data, time, abstime, events] = daqread(...)
[data, time, abstime, events, daqinfo] = daqread(...)
data = daqread(...,'Param1', Val1,...)
daqinfo = daqread('filename','info')

Description data = daqread('filename') reads all the data from the Data
Acquisition Toolbox™ (.daq) file specified by filename. daqread
returns data, an m-by-n data matrix, where m is the number of samples
and n is the number of channels. If data includes data from multiple
triggers, the data from each trigger is separated by a NaN. If you set the
OutputFormat property to tscollection, daqread returns a time series
collection object. See below for more information.

[data, time] = daqread(...) returns time/value pairs. time is an
m-by-1 vector, the same length as data, that contains the relative time
for each sample. Relative time is measured with respect to the first
trigger that occurs.

[data, time, abstime] = daqread(...) returns the absolute time of
the first trigger. abstime is returned as a clock vector.

[data, time, abstime, events] = daqread(...) returns a log of
events. events is a structure containing event information. If you
specify either theSamples, Time, or Triggers parameters (see below),
the events structure contains only the specified events.

[data, time, abstime, events, daqinfo] = daqread(...) returns a
structure, daqinfo, that contains two fields: ObjInfo and HwInfo.
ObjInfo is a structure containing property name/property value pairs
and HwInfo is a structure containing hardware information. The entire
event log is returned to daqinfo.ObjInfo.EventLog.

1-1500

daqread

data = daqread(...,'Param1', Val1,...) specifies the amount
of data returned and the format of the data, using the following
parameters.

Parameter Description

Samples Specify the sample range.

Time Specify the relative time range.

Triggers Specify the trigger range.

Channels Specify the channel range. Channel names can be
specified as a cell array.

DataFormat Specify the data format as doubles (default) or
native.

TimeFormat Specify the time format as vector (default) or
matrix.

OutputFormat Specify the output format as matrix (the default)
or tscollection. When you specify tscollection,
daqread only returns data.

The Samples, Time, and Triggers properties are mutually exclusive;
that is, either Samples, Triggers or Time can be defined at once.

daqinfo = daqread('filename','info') returns metadata from the file
in the daqinfo structure, without incurring the overhead of reading the
data from the file as well. The daqinfo structure contains two fields:

daqinfo.ObjInfo
a structure containing parameter/value pairs for the data
acquisition object used to create the file, filename. Note: The
UserData property value is not restored.

daqinfo.HwInfo
a structure containing hardware information. The entire event
log is returned to daqinfo.ObjInfo.EventLog.

1-1501

daqread

Tips More About .daq Files

• The format used by daqread to return data, relative time, absolute
time, and event information is identical to the format used by the
getdata function that is part of Data Acquisition Toolbox. For more
information, see the Data Acquisition Toolbox documentation.

• If data from multiple triggers is read, then the size of the resulting
data array is increased by the number of triggers issued because
each trigger is separated by a NaN.

• ObjInfo.EventLog always contains the entire event log regardless of
the value specified by Samples, Time, or Triggers.

• The UserData property value is not restored when you return device
object (ObjInfo) information.

• When reading a .daq file, the daqread function does not return
property values that were specified as a cell array.

• Data Acquisition Toolbox (.daq) files are created by specifying a value
for the LogFileName property (or accepting the default value), and
configuring the LoggingMode property to Disk or Disk&Memory.

More About Time Series Collection Object Returned

When OutputFormat is set to tscollection, daqread returns a time
series collection object. This times series collection object contains an
absolute time series object for each channel in the file. The following
describes how daqread sets some of the properties of the times series
collection object and the time series objects.

• The time property of the time series collection object is set to the
value of the InitialTriggerTime property specified in the file.

• The name property of each time series object is set to the value of the
Name property of a channel in the file. If this name cannot be used as
a time series object name, daqread sets the name to 'Channel' with
the HwChannel property of the channel appended.

• The value of the Units property of the time series object depends on
the value of the DataFormat parameter. If the DataFormat parameter

1-1502

daqread

is set to 'double', daqread sets the DataInfo property of each time
series object in the collection to the value of the Units property of the
corresponding channel in the file. If the DataFormat parameter is
set to 'native', daqread sets the Units property to 'native’. See
the Data Acquisition Toolbox documentation for more information
on these properties.

• Each time series object will have tsdata.event objects attached
corresponding to the log of events associated with the channel.

If daqread returns data from multiple triggers, the data from each
trigger is separated by a NaN in the time series data. This increases the
length of data and time vectors in the time series object by the number
of triggers.

Examples Use Data Acquisition Toolbox to acquire data. The analog input object,
ai, acquires one second of data for four channels, and saves the data to
the output file data.daq.

ai = analoginput('nidaq','Dev1');
chans = addchannel(ai,0:3);
set(ai,'SampleRate',1000)
ActualRate = get(ai,'SampleRate');
set(ai,'SamplesPerTrigger, ActualRate)
set(ai,'LoggingMode','Disk&Memory')
set(ai,'LogFileName','data.daq')
start(ai)

After the data has been collected and saved to a disk file, you can
retrieve the data and other acquisition-related information using
daqread. To read all the sample-time pairs from data.daq:

[data,time] = daqread('data.daq');

To read samples 500 to 1000 for all channels from data.daq:

data = daqread('data.daq','Samples',[500 1000]);

1-1503

daqread

To read only samples 1000 to 2000 of channel indices 2, 4 and 7 in
native format from the file, data.daq:

data = daqread('data.daq', 'Samples', [1000 2000],...
'Channels', [2 4 7], 'DataFormat', 'native');

To read only the data which represents the first and second triggers on
all channels from the file, data.daq:

[data, time] = daqread('data.daq', 'Triggers', [1 2]);

To obtain the channel property information from data.daq:

daqinfo = daqread('data.daq','info');
chaninfo = daqinfo.ObjInfo.Channel;

To obtain a list of event types and event data contained by data.daq:

daqinfo = daqread('data.daq','info');
events = daqinfo.ObjInfo.EventLog;
event_type = {events.Type};
event_data = {events.Data};

To read all the data from the file data.daq and return it as a time
series collection object:

data = daqread('data.daq','OutputFormat','tscollection');

See Also timeseries | tscollection

1-1504

daspect

Purpose Set or query axes data aspect ratio

Syntax daspect
daspect([aspect_ratio])
daspect('mode')
daspect('auto')
daspect('manual')
daspect(axes_handle,...)

Description The data aspect ratio determines the relative scaling of the data units
along the x-, y-, and z-axes.

daspect with no arguments returns the data aspect ratio of the current
axes.

daspect([aspect_ratio]) sets the data aspect ratio in the current
axes to the specified value. Specify the aspect ratio as three relative
values representing the ratio of the x-, y-, and z-axis scaling (e.g., [1 1
3] means one unit in x is equal in length to one unit in y and three
units in z).

daspect('mode') returns the current value of the data aspect ratio
mode, which can be either auto (the default) or manual. See Tips.

daspect('auto') sets the data aspect ratio mode to auto.

daspect('manual') sets the data aspect ratio mode to manual.

daspect(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, daspect operates on the current axes.

Tips daspect sets or queries values of the axes object DataAspectRatio and
DataAspectRatioMode properties.

When the data aspect ratio mode is auto, the data aspect ratio adjusts
so that each axis spans the space available in the figure window. If you
are displaying a representation of a real-life object, you should set the
data aspect ratio to [1 1 1] to produce the correct proportions.

1-1505

daspect

Setting a value for data aspect ratio or setting the data aspect ratio
mode to manual disables the MATLAB stretch-to-fill feature (stretching
of the axes to fit the window). This means setting the data aspect ratio
to a value, including its current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Stretch-to-Fill
section of the axes description for more information.

Examples Equal Scaling Along Each Axis

Plot the function over the range and
.

[x,y] = meshgrid(-2:.2:2);
z = x.*exp(-x.^2 - y.^2);

figure
surf(x,y,z)

1-1506

daspect

Query the data aspect ratio to show the axis scaling.

daspect

ans =

4 4 1

1-1507

daspect

Use equal scaling along each axis by setting the data aspect ratio to
[1,1,1].

daspect([1,1,1])

See Also axis | pbaspect | xlim | ylim | zlim

How To • DataAspectRatio

1-1508

daspect

• PlotBoxAspectRatio

• XLim

• YLim

• ZLim

• “Understanding Axes Aspect Ratio”

1-1509

datacursormode

Purpose Enable, disable, and manage interactive data cursor mode

Syntax datacursormode on
datacursormode off
datacursormode
datacursormode toggle
datacursormode(figure_handle)
dcm_obj = datacursormode(figure_handle)

Description datacursormode on enables data cursor mode on the current figure.

datacursormode off disables data cursor mode on the current figure.

datacursormode or datacursormode toggle toggles data cursor mode
in the current figure.

datacursormode(figure_handle) enables or disables data cursor
mode on the specified figure.

dcm_obj = datacursormode(figure_handle) returns the data cursor
mode object for the figure. The object enables you to customize the data
cursor. For more information on data cursor mode objects, see “Output
Arguments” on page 1-1511. You cannot change the state of data cursor
mode in a call to datacursormode that returns a mode object.

A data cursor is a small black square with a white border that you
interactively position on a graph in data cursor mode. When you click a
graphic object such as a line on a graph, a data tip appears. Data tips
are small text boxes or windows that float within an axes that display
data values at data cursor locations. The default style is a text box.
Data tips list x-, y- and (where appropriate) z-values for one data point
at a time. See “Examples” on page 1-1515 for an illustration of these
two styles.

Tips • Most types of graphs and 3-D plots support data cursor mode, but
several do not (pareto, for example).

• Polar plots support data tips, but display Cartesian rather than polar
coordinates on them.

1-1510

datacursormode

• Histograms created with hist display specialized data tips that
itemize the observation counts, lower and upper limits and center
point for histogram bins.

• You place data tips only by clicking data objects on graphs. You
cannot place them programmatically (by executing code to position
a data cursor).

• When DisplayStyle is datatip, you can place multiple data tips on
a graph. When DisplayStyle is window, it reports only the most
recent data tip.

• datacursormode off exits data cursor mode but does not remove
displayed data tips. However, if the DisplayStyle is window, the
data tip window goes away.

Input
Arguments

figure_handle

Optional handle of figure window

Default: The current figure

state

'', 'toggle', 'on', or 'off'

Default: 'toggle'

Output
Arguments

dcm_obj

Use the object returned by datacursormode to control aspects of data
cursor behavior. You can use the set and get commands to set and
query object property values. You can customize how data cursor mode
presents information by coding callback functions for these objects.

Parameter Name/Value Pairs for Data Cursor Mode Objects

The following parameters apply to objects returned by calls to
datacursormode, not to the function itself.

1-1511

datacursormode

’DisplayStyle’

datatip | window

Determines how the data cursor displays.

• datatip displays data cursor information in a small yellow text box
attached to a black square marker at a data point you interactively
select.

• window displays data cursor information for the data point you
interactively select in a floating window within the figure.

Default: datatip

’Enable’

on | off

Specifies whether data cursor mode is currently enabled for the figure.

Default: off

’Figure’

handle

Handle of the figure associated with the data cursor mode object.

’SnapToDataVertex’

on | off

Specifies whether the data cursor snaps to the nearest data value or is
located at the actual pointer position.

Default: on

’UpdateFcn’

function handle

1-1512

datacursormode

Reference to a function that formats the text appearing in the data
cursor. You can supply your own function to customize data tip display.
Your function must include at least two arguments. The first argument
is unused, and can be a variable name or tilde (~). The second argument
passes the data cursor event object to your update function. The event
object encapsulates the state of the data cursor. The following function
definition illustrates the update function:

function output_txt = myfunction(~,event_obj)
% ~ Currently not used (empty)
% event_obj Object containing event data structure
% output_txt Data cursor text (string or cell array
% of strings)

event_obj is an object that has the following properties.

Target Handle of the object the data cursor is
referencing (the object which you click, for
example, a line or a bar from a series)

Position An array specifying the x, y (and z for 3-D
graphs) coordinates of the cursor

You can query these properties within your function. For example,

pos = get(event_obj,'Position');

returns the coordinates of the cursor. Another way of accessing that
data is to obtain the struct and query its Position field:

eventdata = get(event_obj);
pos = eventdata.Position;

You can also obtain the position directly from the object:

pos = event_obj.Position;

You can redefine the data cursor Updatefcn at run time. For example:

1-1513

datacursormode

set(dcm_obj,'UpdateFcn',@myupdatefcn)

applies the function myupdatefcn to the current data tip or tips. When
you set an update function in this way, the function must be on the
MATLAB path. If instead you select the data cursor mode context menu
item Select text update function, you can interactively select a
function that is not on the path.

Do not redefine figure window callbacks, such as ButtonDownFcn,
KeyPpressFcn, or CloseRequestFcn while in data cursor mode. If you
attempt to change any figure callbacks when you are in an interactive
mode, you receive a warning and the attempt fails. MATLAB interactive
modes are:

• brush

• datacursormode

• pan

• rotate3d

• zoom

This restriction does not apply to changing the figure
WindowButtonMotionFcn callback or uicontrol callbacks.

Querying Data Cursor Mode

Use the getCursorInfo function to query the data cursor mode object
(dcm_obj in the update function syntax) to obtain information about the
data cursor. For example,

info_struct = getCursorInfo(dcm_obj);

returns a vector of structures, one for each data cursor on the graph.
Each structure has the following fields.

1-1514

../ref/figure_props.html#WindowButtonMotionFcn

datacursormode

Target The handle of the graphics object containing the
data point

Position An array specifying the x, y, (and z) coordinates
of the cursor

Line and lineseries objects have an additional field.

DataIndex A scalar index into the data arrays that
correspond to the nearest data point. The value
is the same for each array.

See “Output Arguments” on page 1-1511 for more details on data cursor
mode objects.

Examples This example creates a plot and enables data cursor mode from the
command line.

surf(peaks)
datacursormode on
% Click mouse on surface to display data cursor

Selecting a point on the surface opens a data tip displaying its x-, y-,
and z-coordinates.

1-1515

datacursormode

You change the data tip display style to be a window instead of a text
box using the Tools > Options > Display cursor in window , or use
the context menu Display Style > Window inside figure to view the
data tip in a floating window that you can move around inside the axes.

1-1516

datacursormode

You can position multiple text box data tips on the same graph, the
window style of data tip displays only one value at a time. For more
information on interacting with data cursors, including point selection
options and exporting data tips to the workspace, see “Data Cursor —
Displaying Data Values Interactively”.

This example enables data cursor mode on the current figure and sets
data cursor mode options. The following statements

• Create a graph

• Toggle data cursor mode to on

• Obtain the data cursor mode object, specify data tip options, and get
the handle of the line the data tip occupies:

fig = figure;
z = peaks;
plot(z(:,30:35))

1-1517

datacursormode

dcm_obj = datacursormode(fig);
set(dcm_obj,'DisplayStyle','datatip',...

'SnapToDataVertex','off','Enable','on')

disp('Click line to display a data tip, then press Return.')
% Wait while the user does this.
pause

c_info = getCursorInfo(dcm_obj);
% Make selected line wider
set(c_info.Target,'LineWidth',2)

This example shows you how to customize the text that the data cursor
displays. For example, you can replace the text displayed in the data tip
and data window (x: and y:) with Time: and Amplitude: by creating
a simple update function.

Save the following functions in your current directory or any writable
directory on the MATLAB path before running them. As they are
functions, you cannot highlight them and then evaluate the selection
to make them work.

1-1518

datacursormode

Save this code as doc_datacursormode.m:

function doc_datacursormode
% Plots graph and sets up a custom data tip update function
fig = figure;
a = -16; t = 0:60;
plot(t,sin(a*t))
dcm_obj = datacursormode(fig);
set(dcm_obj,'UpdateFcn',@myupdatefcn)

Save the following code as myupdatefcn.m on the MATLAB path:

function txt = myupdatefcn(empt,event_obj)
% Customizes text of data tips

pos = get(event_obj,'Position');
txt = {['Time: ',num2str(pos(1))],...

['Amplitude: ',num2str(pos(2))]};

To set up and use the update function, type:

doc_datacursormode

When you place a data tip using this update function, it looks like the
one in the following figure.

Alternatives Use the Data Cursor tool to label x, y, and z values on graphs and
surfaces. You can control how data tips display by right-clicking and
selecting items from the context menu.

1-1519

datacursormode

See Also brush | pan | rotate3d | zoom

Tutorials • “Data Cursor — Displaying Data Values Interactively”

How To • “Example — Visually Exploring Demographic Statistics”

• “Data Cursors with Histograms”

1-1520

datatipinfo

Purpose Produce short description of input variable

Syntax datatipinfo(var)

Description datatipinfo(var) displays a short description of a variable, similar to
what is displayed in a datatip in the MATLAB debugger.

Examples Get datatip information for a 5-by-5 matrix:

A = rand(5);

datatipinfo(A)
A: 5x5 double =

0.4445 0.3567 0.7458 0.0767 0.4400
0.7962 0.6575 0.3918 0.8289 0.9746
0.5641 0.9808 0.0265 0.4838 0.6722
0.9099 0.9653 0.2508 0.4859 0.4054
0.2857 0.5198 0.7383 0.9301 0.9604

Get datatip information for a 50-by-50 matrix. For this larger matrix,
datatipinfo displays just the size and data type:

A = rand(50);

datatipinfo(A)
A: 50x50 double

Also for multidimensional matrices, datatipinfo displays just the size
and data type:

A = rand(5);
A(:,:,2) = A(:,:,1);

datatipinfo(A)
A: 5x5x2 double

See Also inputname | narginchk | nargin | varargin | inputParser

1-1521

date

Purpose Current date string

Syntax str = date

Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock | datestr | datenum | now

1-1522

datenum

Purpose Convert date and time to serial date number

Syntax DateNumber = datenum(DateString)
DateNumber = datenum(DateString,formatIn)
DateNumber = datenum(DateString,PivotYear)
DateNumber = datenum(DateString,formatIn,PivotYear)

DateNumber = datenum(DateVector)
DateNumber = datenum(Y,M,D)
DateNumber = datenum(Y,M,D,H,MN,S)

Description DateNumber = datenum(DateString) converts date strings to serial
date numbers. If the date string format is known, use formatIn.
Syntaxes without formatIn are significantly slower than those that
include it.

A serial date number represents the whole and fractional number of
days from a fixed, preset date (January 0, 0000).

DateNumber = datenum(DateString,formatIn) uses formatIn to
interpret each date string.

DateNumber = datenum(DateString,PivotYear) uses PivotYear to
interpret date strings that specify the year as two characters. If the
date string format is known, use formatIn. Syntaxes without formatIn
are significantly slower than those that include it.

DateNumber = datenum(DateString,formatIn,PivotYear) uses
formatIn to interpret each date string, and PivotYear to interpret
date strings that specify the year as two characters. You can specify
formatIn and PivotYear in either order.

DateNumber = datenum(DateVector) converts date vectors to serial
date numbers, and returns a column vector of m date numbers, where m
is the total number of date vectors in DateVector.

1-1523

datenum

DateNumber = datenum(Y,M,D) returns the serial date numbers for
corresponding elements of the Y, M, and D (year, month, day) arrays. The
arrays must be of the same size (or any can be a scalar). You can also
specify the input arguments as a date vector, [Y,M,D].

DateNumber = datenum(Y,M,D,H,MN,S) additionally returns the serial
date numbers for corresponding elements of the H, MN, and S (hour,
minute, and second) arrays. The arrays must be of the same size (or
any can be a scalar). You can also specify the input arguments as a date
vector, [Y,M,D,H,MN,S].

Input
Arguments

DateVector - Date vectors
matrix

Date vectors, specified as an m-by-6 or m-by-3 matrix containing m full or
partial date vectors, respectively. A full date vector has six elements,
specifying year, month, day, hour, minute, and second, in that order.
A partial date vector has three elements, specifying year, month, and
day, in that order. Each element of DateVector should be a positive
or negative integer value with the exception of the seconds element,
which can be fractional. If an element falls outside the conventional
range, MATLAB adjusts both that date vector element and the previous
element. For example, if the minutes element is 70, MATLAB adjusts
the hours element by 1 and sets the minutes element to 10. If the
minutes element is -15, then MATLAB decreases the hours element by
1 and sets the minutes element to 45. Month values are an exception.
MATLAB sets month values less than 1 to 1.

Example: [2003,10,24,12,45,07]

Data Types
double

DateString - Date strings
string | character array | 1–D cell array of strings

1-1524

datenum

Date strings, specified as a character array where each row corresponds
to one date string, or as a one dimensional cell array of strings. All of
the date strings must have the same format.

Example: '24 Oct-2003 12:45:07'

Example: ['19-Sep-2013';'20-Sep-2013';'21-Sep-2013']

Example: {'15-Oct-2010' '20-Nov-2012'}

If the date string format is known, you should also specify formatIn.
If you do not specify formatIn, DateString must be in one of the
following formats.

Date String Format Example

'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17

'dd-mmm-yyyy' 01-Mar-2000

'mm/dd/yyyy' 03/01/2000

'mm/dd/yy' 03/01/00

'mm/dd' 03/01

'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17

'mmm.dd,yyyy' Mar.01,2000

'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

'yyyy-mm-dd' 2000-03-01

'yyyy/mm/dd' 2000/03/01

'HH:MM:SS' 15:45:17

'HH:MM:SS PM' 3:45:17 PM

'HH:MM' 15:45

'HH:MM PM' 3:45 PM

Certain date string formats might not contain enough information to
convert the date string. In those cases, hours, minutes, and seconds
default to 0, days default to 1, months default to January, and years

1-1525

datenum

default to the current year. MATLAB considers two-character date
string years (e.g., '79') to fall within the 100-year range centered
around the current year.

When you do not specify formatIn, note the following:

• For the formats that specify the month as two digits (mm), the month
value must not be greater than 12.

• However, for the format 'mm/dd/yy', if the first entry in the date
string is greater than 12 and the second entry is less than or equal to
12, MATLAB considers the date string to be in 'yy/mm/dd' format.

formatIn - Format of the input date string
string

Format of the input date string, specified as a string of symbolic
identifiers.

Example: 'dddd, mmm dd, yyyy'

The following table shows symbolic identifiers you can use to construct
the formatIn string. You can include characters such as a hyphen,
space, or colon to separate the fields.

Symbolic
Identifier Description Example

yyyy Year in full 1990, 2002

yy Year in two digits 90, 02

QQ Quarter year using letter
Q and one digit

Q1

mmmm Month using full name March, December

mmm Month using first three
letters

Mar, Dec

mm Month in two digits 03, 12

1-1526

datenum

Symbolic
Identifier Description Example

m Month using capitalized
first letter

M, D

dddd Day using full name Monday, Tuesday

ddd Day using first three
letters

Mon, Tue

dd Day in two digits 05, 20

d Day using capitalized
first letter

M, T

HH Hour in two digits
(no leading zeros when
symbolic identifier AM or
PM is used)

05, 5 AM

MM Minute in two digits 12, 02

SS Second in two digits 07, 59

FFF Millisecond in three digits 057

AM or PM AM or PM inserted in date
string

3:45:02 PM

The formatIn string must follow these guidelines:

• You cannot specify any field more than once. For example, you
cannot use 'yy-mmm-dd-m' because it has two month identifiers. The
one exception to this is that you can combine one instance of dd with
one instance of any of the other day identifiers. For example, 'dddd
mmm dd yyyy' is a valid input.

• When you use AM or PM, the HH field is also required.

• You only can use QQ alone or with a year specifier.

PivotYear - Start year of 100-year date range
present minus 50 years (default) | integer

1-1527

datenum

Start year of the 100-year date range in which a two-character year
resides, specified as an integer. Use a pivot year to interpret date
strings that specify the year as two characters.

If formatIn contains the time of day, the pivot year is computed from
the current time of the current day, month, and year. Otherwise it is
computed from midnight of the current day, month, and year.

Example: 2000

Data Types
double

Y,M,D - Year, month, and day arrays
scalar | vector | matrix | array

Year, month, and day arrays specified as a scalar, vector, matrix or
array. These must be the same size, or any one can be a scalar. Y,M,D
should be integer values.

If Y,M,D are all scalars or all column vectors, you can specify the input
arguments as a date vector, [Y,M,D].

Example: 2003,10,24

Data Types
double

Y,M,D,H,MN,S - Year, month, day, hour, minute and second
arrays
scalar | vector | matrix | array

Year, month, day, hour, minute and second arrays specified as a scalar,
vector, matrix or array. These must be the same size, or any one can
be a scalar. datenum does not accept milliseconds as a separate input,
but as a fractional part of the seconds input, S. Y,M,D,H,MN should be
integer values.

If Y,M,D,H,MN,S are all scalars or all column vectors, you can specify
the input arguments as a date vector[Y,M,D,H,MN,S].

Example: 2003,10,24,12,45,07.451

1-1528

datenum

Data Types
double

Output
Arguments

DateNumber - Serial date numbers
scalar | vector

Serial date numbers, returned as a column vector of length m, where m is
the total number of input date vectors or date strings.

Tips • To create arbitrarily shaped output, use thedatenum(Y,M,D) and
datenum(Y,M,D,H,MN,S) syntaxes. The datenum(DateVector)
syntax creates only a column vector of date numbers.

datenum(2013,[1 3; 2 4],ones(2,2))

ans =

735235 735294
735266 735325

Examples Convert Date String to Date Number

DateString = '19-May-2001';
formatIn = 'dd-mmm-yyyy';
datenum(DateString,formatIn)

ans =

730990

datenum returns a date number for the date string with the format
'dd-mmm-yyyy' .

Convert Multiple Date Strings to Date Numbers

Pass multiple date strings in a cell array. All input date strings must
use the same format.

1-1529

datenum

DateString = {'09/16/2007';'05/14/1996';'11/29/2010'};
formatIn = 'mm/dd/yyyy';
datenum(DateString,formatIn)

ans =

733301
729159
734471

Convert Date String to Date Number Using Pivot Year

Convert a date string to a serial date number using the default pivot
year.

n = datenum('12-jun-17','dd-mmm-yy')

n =

736858

The corresponding date string to this date number is 12-Jun-2017.

Convert the same date string to a serial date number using 1400 as
the pivot year.

n = datenum('12-jun-17','dd-mmm-yy',1400)

n =

517712

1-1530

datenum

The corresponding date string to this date number is 12-Jun-1417.

Convert Date Vector to Date Number

datenum([2009,4,2,11,7,18])

ans =

7.3387e+05

Convert Year, Month, and Day to Date Number

Convert a date specified by year, month and day values to a serial date
number.

n = datenum(2001,12,19)

n =

731204

See Also datestr | datevec

Concepts • “Represent Dates and Times in MATLAB”
• “Carryover in Date Vectors and Strings”

1-1531

datestr

Purpose Convert date and time to string format

Syntax DateString = datestr(DateVector)
DateString = datestr(DateNumber)

DateString = datestr(___ ,formatOut)

DateString = datestr(DateStringIn)
DateString = datestr(DateStringIn,formatOut,PivotYear)

DateString = datestr(___ ,'local')

Description DateString = datestr(DateVector) converts date vectors to date
strings. datestr returns a column vector of m date strings, where m
is the total number of date vectors in DateVector. datestr returns
date strings in the default date string format dd-mmm-yyyy HH:MM:SS
(day-month-year hour:minute:second). By default, if HH:MM:SS =
00:00:00 then the date string returned has the format dd-mmm-yyyy.

DateString = datestr(DateNumber) converts serial date numbers to
date strings. datestr returns a column vector of m date strings, where m
is the total number of date numbers in DateNumber.

DateString = datestr(___ ,formatOut) specifies the format of the
output date strings using formatOut. You can use formatOut with any
of the input arguments in the above syntaxes.

DateString = datestr(DateStringIn) converts DateStringIn to
date strings in the default date string format dd-mmm-yyyy HH:MM:SS.
All date strings in DateStringIn must have the same format.

DateString = datestr(DateStringIn,formatOut,PivotYear)
converts DateStringIn to DateString, in the format specified by
formatOut, and using optional PivotYear to interpret date strings that
specify the year as two characters.

1-1532

datestr

DateString = datestr(___ ,'local') returns the date string in the
language of the current locale. This is the language you select by means
of your computer’s operating system. If you leave local out of the
argument list, datestr returns the date string in the default language,
which is US English. Use local with any of the previous syntaxes. The
local argument must be last in the argument sequence.

Input
Arguments

DateVector - Date vectors
matrix

Date vectors, specified as an m-by-6 matrix, where m is the number of
full (six-element) date vectors. Each element of DateVector should be
a positive or negative integer value with the exception of the seconds
element, which can be fractional. If an element falls outside the
conventional range, MATLAB adjusts both that date vector element
and the previous element. For example, if the minutes element is 70,
MATLAB adjusts the hours element by 1 and sets the minutes element
to 10. If the minutes element is -15, then MATLAB decreases the hours
element by 1 and sets the minutes element to 45. Month values are an
exception. MATLAB sets month values less than 1 to 1.

Example: [2003,10,24,12,45,07]

Data Types
double

DateNumber - Serial date numbers
scalar | vector | matrix | array

Serial date numbers, specified as a scalar, vector, matrix, or array of
positive double-precision numbers.

Example: 731878

Data Types
double

formatOut - Format of the date string output
-1 (default) | string | integer

1-1533

datestr

Format of the date string output, specified as a string of symbolic
identifiers or an integer that corresponds to a predefined format. If
you do not specify formatOut, datestr returns a date string in the
default date string format dd-mmm-yyyy HH:MM:SS (day-month-year
hour:minute:second). By default, if HH:MM:SS = 00:00:00 then the
date string returned has the format dd-mmm-yyyy.

The following table shows symbolic identifiers you can use to construct
the formatOut string. You can include characters such as a hyphen,
space, or colon to separate the fields.

Symbolic
Identifier Description Example

yyyy Year in full 1990, 2002

yy Year in two digits 90, 02

QQ Quarter year using letter
Q and one digit

Q1

mmmm Month using full name March, December

mmm Month using first three
letters

Mar, Dec

mm Month in two digits 03, 12

m Month using capitalized
first letter

M, D

dddd Day using full name Monday, Tuesday

ddd Day using first three
letters

Mon, Tue

dd Day in two digits 05, 20

d Day using capitalized
first letter

M, T

1-1534

datestr

Symbolic
Identifier Description Example

HH Hour in two digits
(no leading zeros when
symbolic identifier AM or
PM is used)

05, 5 AM

MM Minute in two digits 12, 02

SS Second in two digits 07, 59

FFF Millisecond in three digits 057

AM or PM AM or PM inserted in date
string

3:45:02 PM

The formatOut string must follow these guidelines:

• You cannot specify any field more than once. For example, you
cannot use 'yy-mmm-dd-m' because it has two month identifiers. The
one exception to this is that you can combine one instance of dd with
one instance of any of the other day identifiers. For example, 'dddd
mmm dd yyyy' is a valid input.

• When you use AM or PM, the HH field is also required.

• You only can use QQ alone or with a year specifier.

The following table lists predefined MATLAB date formats.

Numeric
Identifier

Date String Format Example

-1 (default) 'dd-mmm-yyyy
HH:MM:SS' or
'dd-mmm-yyyy' if
'HH:MM:SS'= 00:00:00

01-Mar-2000 15:45:17
or 01-Mar-2000

0 'dd-mmm-yyyy
HH:MM:SS'

01-Mar-2000 15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

1-1535

datestr

Numeric
Identifier

Date String Format Example

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd,yyyy
HH:MM:SS'

Mar.01,2000 15:45:17

22 'mmm.dd,yyyy' Mar.01,2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

1-1536

datestr

Numeric
Identifier

Date String Format Example

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

29 'yyyy-mm-dd'
(ISO 8601)

2000-03-01

30 'yyyymmddTHHMMSS'
(ISO 8601)

20000301T154517

31 'yyyy-mm-dd
HH:MM:SS'

2000-03-01 15:45:17

DateStringIn - Date strings to convert
string | cell array

Date strings to convert, specified as a single string or a cell array of
strings, where each row corresponds to one date string.

MATLAB considers two-character date string years (for example, '79')
to fall within the 100-year range centered around the current year.

All date strings must have the same date format, and they must be in
one of the following MATLAB date formats.

Date String Format Example

'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17

'dd-mmm-yyyy' 01-Mar-2000

'mm/dd/yyyy' 03/01/2000

'mm/dd/yy' 03/01/00

'mm/dd' 03/01

'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17

'mmm.dd,yyyy' Mar.01,2000

1-1537

datestr

Date String Format Example

'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

'yyyy-mm-dd' 2000-03-01

'yyyy/mm/dd' 2000/03/01

'HH:MM:SS' 15:45:17

'HH:MM:SS PM' 3:45:17 PM

'HH:MM' 15:45

'HH:MM PM' 3:45 PM

Note When converting from one date string format to another, you
should first pass the strings to the datenum function, so that you can
specify the format of the input date strings. This ensures that the
format of the input date strings is correctly interpreted. For example,
see “Convert Date String from Custom Format” on page 1-1541.

PivotYear - Start year of 100-year date range
present minus 50 years (default) | integer

Start year of the 100-year date range in which a two-character year
resides, specified as an integer. Use a pivot year to interpret date
strings that specify the year as two characters.

If formatIn contains the time of day, the pivot year is computed from
the current time of the current day, month, and year. Otherwise it is
computed from midnight of the current day, month, and year.

Example: 2000

Data Types
double

1-1538

datestr

Output
Arguments

DateString - Date strings
string | two-dimensional character array

Date strings, returned as a character array with m rows, where m is the
total number of input date vectors, serial date numbers, or date strings.
The default output date string format is dd-mmm-yyyy HH:MM:SS
(day-month-year hour:minute:second) unless the hours, minutes and
seconds are all 0 in which case HH:MM:SS is suppressed.

Tips • To convert a date string not in a predefined MATLAB date format,
first convert the date string to a date number, using either datenum
or datevec.

Examples Convert Date Vector to Date String

DateVector = [2009,4,2,11,7,18];

datestr(DateVector)

ans =

02-Apr-2009 11:07:18

datestr returns a date string in the default date string format.

Convert Date and Time to Specific Format

Format the current date in the mm/dd/yy format.

You can specify this format using a string of symbolic identifiers.

formatOut = 'mm/dd/yy';
datestr(now,formatOut)

ans =

1-1539

datestr

01/17/14

Alternatively, you can specify this format using a numeric identifier.

formatOut = 2;
datestr(now,formatOut)

ans =

01/17/14

You can reformat the date and time, and also show milliseconds.

dt = datestr(now,'mmmm dd, yyyy HH:MM:SS.FFF AM')

dt =

January 17, 2014 3:51:01.740 PM

Convert 12-Hour Time String to 24-Hour Equivalent

Convert the 12-hour time 05:32 p.m. to its 24-hour equivalent.

datestr('05:32 PM','HH:MM')

ans =

17:32

Convert the 24-hour time 05:32 to its 12-hour equivalent.

1-1540

datestr

datestr('05:32','HH:MM PM')

ans =

5:32 AM

The use of AM or PM in the formatOut string does not influence which
characters actually become part of the date string; they only determine
whether or not to include them in the date string. MATLAB® selects AM
or PM based on the time entered.

Convert Date String from Custom Format

Call datenum inside of datestr to specify the format of the input date
string.

formatOut = 'dd mmm yyyy';
datestr(datenum('16-04-55','dd-mm-yy',1900),formatOut)

ans =

16 Apr 1955

Convert Multiple Date Strings

Convert more than one date string input by passing the multiple date
strings in a cell array.

All input date strings must use the same format. For example, the
following command passes three dates that all use the mm/dd/yyyy
format.

datestr(datenum({'09/16/2007';'05/14/1996';'11/29/2010'}, ...
'mm/dd/yyyy'))

1-1541

datestr

ans =

16-Sep-2007
14-May-1996
29-Nov-2010

datestr returns a character array of converted date strings in the
default date string format.

Convert Date String with Values Outside Normal Range

Call datenum inside of datestr to return the expected value, because
the date below uses a value outside its normal range (month=13).

datestr(datenum('13/24/88','mm/dd/yy'))

ans =

24-Jan-1989

Use a Pivot Year

Change the pivot year to change the year range.

Use a pivot year of 1900.

DateStringIn = '4/16/55';
formatOut = 1;
PivotYear = 1900;
datestr(DateStringIn,formatOut,PivotYear)

ans =

1-1542

datestr

16-Apr-1955

For the same date string, use a pivot year of 2000.

PivotYear = 2000;
datestr(DateStringIn,formatOut,PivotYear)

ans =

16-Apr-2055

Return Date String in Local Language

Convert a date number to a date string in the language of the current
locale.

Use the local argument in a French locale.

DateNumber = 725935;
formatOut = 'mmmm-dd-yyyy';
str = datestr(DateNumber,formatOut,'local')

str =
Juillet-17-1987

You can make the same call without specifying `local'.

str = datestr(DateNumber,formatOut)

str =
July-17-1987

In this case, the output defaults to the English language.

1-1543

datestr

See Also datenum | datevec

Concepts • “Represent Dates and Times in MATLAB”
• “Troubleshooting: Converting Date Vector Returns Unexpected
Output”

1-1544

datetick

Purpose Date formatted tick labels

Syntax datetick(tickaxis)
datetick(tickaxis,dateFormat)

datetick(___ ,'keeplimits')

datetick(___ ,'keepticks')

datetick(axes_handle, ___)

Description datetick(tickaxis) labels the tick lines of the axis specified by
tickaxis using dates, replacing the default numeric labels. datetick
selects a label format based on the minimum and maximum limits of
the specified axis. The axis data values should be serial date numbers,
as returned by the datenum function.

datetick(tickaxis,dateFormat) formats the labels according to the
string dateFormat.

datetick(___ ,'keeplimits') changes the tick labels to date-based
labels while preserving the axis limits. Append 'keeplimits' to any
of the previous syntaxes.

datetick(___ ,'keepticks') changes the tick labels to date-based
labels while preserving their locations. Append 'keepticks' to any
of the previous syntaxes.

datetick(axes_handle, ___) labels the tick lines of an axis on the
axes specified by axes_handle. The axes_handle argument can precede
any of the input argument combinations in the previous syntaxes.

1-1545

datetick

Input
Arguments

tickaxis - Axis to label
'x' (default) | 'y' | 'z'

Axis to label with dates, specified as 'x', 'y', or 'z'.

dateFormat - Format of tick line labels
string | integer

Format of the tick line labels, specified as a string of symbolic identifiers
or an integer that corresponds to a predefined format.

The following table shows symbolic identifiers you can use to construct
the dateFormat string. You can include characters such as a hyphen,
space, or colon to separate the fields. For example, to display the day
of the month followed by the three-letter abbreviation of the day of the
week in parentheses, use dateFormat = 'dd (ddd)'.

Symbolic
Identifier Description Example

yyyy Year in full 1990, 2002

yy Year in two digits 90, 02

QQ Quarter year using letter
Q and one digit

Q1

mmmm Month using full name March, December

mmm Month using first three
letters

Mar, Dec

mm Month in two digits 03, 12

m Month using capitalized
first letter

M, D

dddd Day using full name Monday, Tuesday

ddd Day using first three
letters

Mon, Tue

dd Day in two digits 05, 20

1-1546

datetick

Symbolic
Identifier Description Example

d Day using capitalized
first letter

M, T

HH Hour in two digits
(no leading zeros when
symbolic identifier AM or
PM is used)

05, 5 AM

MM Minute in two digits 12, 02

SS Second in two digits 07, 59

FFF Millisecond in three digits 057

AM or PM AM or PM inserted in date
string

3:45:02 PM

The following table lists predefined MATLAB date formats.

Numeric
Identifier

Date String Format Example

-1 (default) 'dd-mmm-yyyy
HH:MM:SS' or
'dd-mmm-yyyy' if
'HH:MM:SS'= 00:00:00

01-Mar-2000 15:45:17
or 01-Mar-2000

0 'dd-mmm-yyyy
HH:MM:SS'

01-Mar-2000 15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

1-1547

datetick

Numeric
Identifier

Date String Format Example

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd,yyyy
HH:MM:SS'

Mar.01,2000 15:45:17

22 'mmm.dd,yyyy' Mar.01,2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

29 'yyyy-mm-dd'
(ISO 8601)

2000-03-01

1-1548

datetick

Numeric
Identifier

Date String Format Example

30 'yyyymmddTHHMMSS'
(ISO 8601)

20000301T154517

31 'yyyy-mm-dd
HH:MM:SS'

2000-03-01 15:45:17

Examples Label x-Axis Ticks with 2-digit Years

Graph population data for the 20th Century taken from the 1990 US
census and label x-axis ticks with 2-digit years.

Create time data by decade.

t = (1900:10:1990)';

Enter total population counts for the USA.

p = [75.995 91.972 105.711 123.203 131.669 ...
150.697 179.323 203.212 226.505 249.633]';

Convert years to serial date numbers using the datenum function, and
then plot the data.

figure
plot(datenum(t,1,1),p)
grid on

1-1549

datetick

Replace x-axis ticks with 2-digit years. The numeric identifier 11
corresponds to the predefined MATLAB® date format 'yy'.

dateFormat = 11;
datetick('x',dateFormat)

1-1550

datetick

Label x-Axis Ticks with Hours of the Day

Plot traffic count data against date ticks for hours of the day showing
AM and PM.

Get traffic count data.

load count.dat

Create arrays for an arbitrary date, for example, April 18, 1995.

1-1551

datetick

n = length(count);
year = 1990 * ones(1,n);
month = 4 * ones(1,n);
day = 18 * ones(1,n);

Create arrays for each of 24 hours.

hour = 1:n;
minutes = zeros(1,n);

Get the serial date numbers for the date arrays.

xdate = datenum(year,month,day,hour,minutes,minutes);

Plot the traffic data against the serial date numbers.

figure
plot(xdate,count)

1-1552

datetick

Label the tick lines of the graph’s x-axis with the hours of the day.

datetick('x','HHPM')

1-1553

datetick

Label x-Axis and Preserve Axis Limits

Select a starting date.

startDate = datenum('02-01-1962');

Select an ending date.

endDate = datenum('11-15-2012');

1-1554

datetick

Create a variable, xdata, that corresponds to the number of years
between the start and end dates.

xData = linspace(startDate,endDate,50);

Plot random data.

figure
plot(xData,rand(1,50))

1-1555

datetick

Label the x-axis with 4-digit years, preserving the x-axis limits by using
the 'keeplimits' option.

datetick('x','yyyy','keeplimits')

Add Month Labels to Plot and Preserve Number of Ticks

Select a starting date.

startDate = datenum('01-01-2009');

1-1556

datetick

Select an ending date.

endDate = datenum('12-31-2009');

Create a variable, xdata, that corresponds to the number of months
between the start and end dates.

xData = linspace(startDate,endDate,12);

Plot random data.

figure
plot(xData,rand(1,12))

1-1557

datetick

Set the number of XTicks to the number of points in xData.

set(gca,'XTick',xData)

1-1558

datetick

Label the x-axis with month names, preserving the total number of
ticks by using the 'keepticks' option.

datetick('x','mmm','keepticks')

1-1559

datetick

Create Multiple Plots Within Figure and Label Axis with
Month Names

Select a starting date and an ending date.

startDate = datenum('01-01-2009');
endDate = datenum('12-31-2009');

Create a variable, xdata, that corresponds to the number of months
between the start and end dates.

1-1560

datetick

xData = linspace(startDate,endDate,12);

Plot random data.

figure
s(1)=subplot(2,1,1);
plot(xData,rand(1,12))
s(2) = subplot(2,1,2);
plot(xData,rand(1,12))

1-1561

datetick

Set the number of XTicks to the number of points in xData. Label the
x-axis of each subplot with month names, referring to each subplot
using its axes handle. Preserve the total number of ticks by using the
'keepticks' option.

set(s,'XTick',xData)
for i = 1:2
datetick(s(i),'x','mmm','keepticks')

end

1-1562

datetick

Algorithms datetick calls the datestr function to convert date numbers to date
strings.

Tips • To change the tick spacing and locations, set the appropriate axes
property (i.e., XTick, YTick, or ZTick) before calling datetick.

• Calling datetick sets the TickMode of the specified axis to 'manual'.
This means that after zooming, panning or otherwise changing axis
limits, you should call datetick again to update the ticks and labels.

See Also XTick | YTick | ZTick | datenum | datestr

1-1563

datevec

Purpose Convert date and time to vector of components

Syntax DateVector = datevec(DateNumber)

DateVector = datevec(DateString)
DateVector = datevec(DateString,formatIn)
DateVector = datevec(DateString,PivotYear)
DateVector = datevec(DateString,formatIn,PivotYear)

[Y, M, D, H, MN, S] = datevec(___)

Description DateVector = datevec(DateNumber) converts one or more date
numbers to date vectors. datevec returns an m-by-6 matrix containing
m date vectors, where m is the total number of date numbers in
DateNumber.

DateVector = datevec(DateString) converts date strings to date
vectors. If the date string format is known, use formatIn. Syntaxes
without formatIn are significantly slower than those that include it.

DateVector = datevec(DateString,formatIn) uses formatIn to
interpret each date string.

DateVector = datevec(DateString,PivotYear) uses PivotYear to
interpret date strings that specify the year as two characters. If the
date string format is known, use formatIn. Syntaxes without formatIn
are significantly slower than those that include it.

DateVector = datevec(DateString,formatIn,PivotYear) uses
formatIn to interpret each date string, and PivotYear to interpret
date strings that specify the year as two characters. You can specify
formatIn and PivotYear in either order.

1-1564

datevec

[Y, M, D, H, MN, S] = datevec(___) returns the components of the
date vector as individual variables Y, M, D, H, MN, and S (year, month,
day, hour, minutes and seconds). datevec returns milliseconds as a
fractional part of the seconds (S) output.

Input
Arguments

DateNumber - Serial date number
scalar | vector | multidimensional array

Serial date number, specified as a scalar, vector, or multidimensional
array of positive double-precision numbers.

Example: 731878

Data Types
double

DateString - Date strings
string | character array | 1–D cell array of strings

Date strings, specified as a character array where each row corresponds
to one date string, or as a one dimensional cell array of strings. All of
the date strings must have the same format.

Example: '24 Oct-2003 12:45:07'

Example: ['19-Sep-2013';'20-Sep-2013';'21-Sep-2013']

Example: {'15-Oct-2010' '20-Nov-2012'}

If the date string format is known, you should also specify formatIn.
If you do not specify formatIn, DateString must be in one of the
following formats.

Date String Format Example

'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17

'dd-mmm-yyyy' 01-Mar-2000

'mm/dd/yyyy' 03/01/2000

'mm/dd/yy' 03/01/00

1-1565

datevec

Date String Format Example

'mm/dd' 03/01

'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17

'mmm.dd,yyyy' Mar.01,2000

'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

'yyyy-mm-dd' 2000-03-01

'yyyy/mm/dd' 2000/03/01

'HH:MM:SS' 15:45:17

'HH:MM:SS PM' 3:45:17 PM

'HH:MM' 15:45

'HH:MM PM' 3:45 PM

Certain date string formats might not contain enough information to
convert the date string. In those cases, hours, minutes, and seconds
default to 0, days default to 1, months default to January, and years
default to the current year. MATLAB considers two-character date
string years (e.g., '79') to fall within the 100-year range centered
around the current year.

When you do not specify formatIn, note the following:

• For the formats that specify the month as two digits (mm), the month
value must not be greater than 12.

• However, for the format 'mm/dd/yy', if the first entry in the date
string is greater than 12 and the second entry is less than or equal to
12, MATLAB considers the date string to be in 'yy/mm/dd' format.

formatIn - Format of the input date string
string

Format of the input date string, specified as a string of symbolic
identifiers.

1-1566

datevec

The following table shows symbolic identifiers you can use to construct
the formatIn string. You can include characters such as a hyphen,
space, or colon to separate the fields.

Symbolic
Identifier Description Example

yyyy Year in full 1990, 2002

yy Year in two digits 90, 02

QQ Quarter year using letter
Q and one digit

Q1

mmmm Month using full name March, December

mmm Month using first three
letters

Mar, Dec

mm Month in two digits 03, 12

m Month using capitalized
first letter

M, D

dddd Day using full name Monday, Tuesday

ddd Day using first three
letters

Mon, Tue

dd Day in two digits 05, 20

d Day using capitalized
first letter

M, T

HH Hour in two digits
(no leading zeros when
symbolic identifier AM or
PM is used)

05, 5 AM

MM Minute in two digits 12, 02

SS Second in two digits 07, 59

1-1567

datevec

Symbolic
Identifier Description Example

FFF Millisecond in three digits 057

AM or PM AM or PM inserted in date
string

3:45:02 PM

The formatIn string must follow these guidelines:

• You cannot specify any field more than once. For example, you
cannot use 'yy-mmm-dd-m' because it has two month identifiers. The
one exception to this is that you can combine one instance of dd with
one instance of any of the other day identifiers. For example, 'dddd
mmm dd yyyy' is a valid input.

• When you use AM or PM, the HH field is also required.

• datevec does not accept formats that include 'QQ'

PivotYear - Start year of 100-year date range
present minus 50 years (default) | integer

Start year of the 100-year date range in which a two-character year
resides, specified as an integer. Use a pivot year to interpret date
strings that specify the year as two characters.

If formatIn contains the time of day, the pivot year is computed from
the current time of the current day, month, and year. Otherwise it is
computed from midnight of the current day, month, and year.

Example: 2000

Data Types
double

Output
Arguments

DateVector - Date vectors
vector | matrix

Date vectors, returned as an m-by-6 matrix, where each row corresponds
to one date vector, and m is the total number of input date numbers
or date strings.

1-1568

datevec

[Y, M, D, H, MN, S] - Components of the date vector
scalar

Components of the date vector (year, month, day, hour, minute, and
second), returned as individual scalar variables. Milliseconds are a
fractional part of the seconds output.

Examples Convert Date Number to Date Vector

format short g

n = 733779.651;
datevec(n)

ans =

2009 1 6 15 37

Convert Date String to Date Vector

DateString = '28.03.2005';
formatIn = 'dd.mm.yyyy';
datevec(DateString,formatIn)

ans =

2005 3 28 0 0

datevec returns a date vector for the date string with the format
'dd.mm.yyyy'.

1-1569

datevec

Convert Multiple Date Strings to Date Vectors

Pass multiple date strings in a cell array. All input date strings must
use the same format.

DateString = {'09/16/2007';'05/14/1996';'11/29/2010'};
formatIn = 'mm/dd/yyyy';
datevec(DateString,formatIn)

ans =

2007 9 16 0 0 0
1996 5 14 0 0 0
2010 11 29 0 0 0

Convert Date with Milliseconds to Date Vector

datevec('11:21:02.647','HH:MM:SS.FFF')

ans =

1.0e+03 *

2.0140 0.0010 0.0010 0.0110 0.0210 0.0026

In the output date vector, milliseconds are a fractional part of the
seconds field. The date string '11:21:02.647' does not contain enough
information to convert to a full date vector. The days default to 1,
months default to January, and years default to the current year.

Convert Date String to Date Vector Using Pivot Year

Convert a date string to a date vector using the default pivot year.

1-1570

datevec

DateString = '12-jun-17';
formatIn = 'dd-mmm-yy';
DateVector = datevec(DateString,formatIn)

DateVector =

2017 6 12 0 0

Convert the same date string to a date vector using 1800 as the pivot
year.

DateVector = datevec(DateString,formatIn,1800)

DateVector =

1817 6 12 0 0

Assign Elements of Returned Date Vector

Convert a date string to a date vector and return the components of
the date vector.

[y, m, d, h, mn, s] = datevec('01.02.12','dd.mm.yy')

y =

2012

m =

2

1-1571

datevec

d =

1

h =

0

mn =

0

s =

0

Limitations • When computing date vectors, MATLAB sets month values less
than 1 to 1. Day values, D, less than 1 are set to the last day of the
previous month minus |D|. However, if 0 ≤ DateNumber < 1, then
datevec(DateNumber) returns a date vector of the form [0 0 0 H MN
S], where H, MN, and S are hours, minutes, and seconds, respectively.

Tips • The vectorized calling syntax can offer significant performance
improvement for large arrays.

See Also datenum | datestr

Concepts • “Represent Dates and Times in MATLAB”
• “Carryover in Date Vectors and Strings”

1-1572

dbclear

Purpose Clear breakpoints

Syntax dbclear all
dbclear in file ...
dbclear in file ... -completenames
dbclear if error ...
dbclear if warning ...
dbclear if naninf
dbclear if infnan

Description dbclear all removes all breakpoints in all MATLAB code files, as well
as breakpoints set for errors, caught errors, caught error identifiers,
warnings, warning identifiers, and naninf/infnan.

dbclear in file ... and dbclear in file ... -completenames
formats are listed here:

Format Action

dbclear in file Removes all breakpoints in file. file must be the name
of a MATLAB program file, and can include a MATLAB
partial path.

dbclear in file
-completenames

If the command includes the -completenames option,
then file need not be on the path, as long as it is a fully
qualified file name. (On Microsoft Windows platforms,
this is a file name that begins with \\ or with a drive
letter followed by a colon. On UNIX platforms, this is a
file name that begins with / or ~.) file can include a >
to specify the path to a particular local function or to a
nested function within a code file.

dbclear in file at lineno Removes the breakpoint set at line number lineno in
file.

dbclear in file at lineno@ Removes the breakpoint set in the anonymous function at
line number lineno in file.

1-1573

dbclear

Format Action

dbclear in file at lineno@n Removes the breakpoint set in the nth anonymous function
at line number lineno in file.

dbclear in file at locfun Removes all breakpoints in local function locfun in file.

dbclear if error ... formats are listed here:

Format Action

dbclear if error Removes the breakpoints set using the dbstop if error
and dbstop if error identifier statements.

dbclear if error
identifier

Removes the breakpoint set using dbstop if error
identifier for the specified identifier. Running this
produces an error if dbstop if error or dbstop if error
all is set.

dbclear if caught error Removes the breakpoints set using the dbstop if
caught error and dbstop if caught error identifier
statements.

dbclear if caught error
identifier

Removes the breakpoints set using the dbstop if caught
error identifier statement for the specified identifier.
Running this produces an error if dbstop if caught
error or dbstop if caught error all is set.

dbclear if warning ... formats are listed here:

dbclear if warning Removes the breakpoints set using the dbstop if warning
and dbstop if warning identifier statements.

dbclear if warning
identifier

Removes the breakpoint set using dbstop if warning
identifier for the specified identifier. Running this
produces an error if dbstop if warning or dbstop if
warning all is set.

dbclear if naninf removes the breakpoint set by dbstop if naninf
or dbstop if infnan.

1-1574

dbclear

dbclear if infnan removes the breakpoint set by dbstop if infnan
or dbstop if naninf.

Tips The at and in keywords are optional.

In the syntax, file can be a MATLAB program file, or the path to a
function within a file. For example

dbclear in foo>myfun

clears the breakpoint at the myfun function in the file foo.m.

See Also dbcont | dbdown | dbquit | dbstack | dbstatus | dbstop | dbstep |
dbtype | dbup | filemarker

Related
Examples

• “Disable and Clear Breakpoints”

1-1575

dbcont

Purpose Resume execution

Syntax dbcont

Description dbcont resumes execution of a MATLAB code file from a breakpoint.
Execution continues until another breakpoint is encountered, a pause
condition is met, an error occurs, or MATLAB software returns to the
base workspace prompt.

Note If you want to edit a file as a result of debugging, it is best to first
quit debug mode and then edit and save changes to the file. If you edit a
file while paused in debug mode, you can get unexpected results when
you resume execution of the file and the results might not be reliable.

See Also dbclear | dbdown | dbquit | dbstack | dbstatus | dbstop | dbstep |
dbtype | dbup

Related
Examples

• “Step Through a File”

1-1576

dbdown

Purpose Reverse workspace shift performed by dbup, while in debug mode

Syntax dbdown

Description dbdown changes the current workspace context to the workspace of
the called MATLAB code file when a breakpoint is encountered. You
must have issued the dbup function at least once before you issue this
function. dbdown is the opposite of dbup.

Multiple dbdown functions change the workspace context to each
successively executed MATLAB code file on the stack until the current
workspace context is the current breakpoint. It is not necessary,
however, to move back to the current breakpoint to continue execution
or to step to the next line.

See Also dbcont | dbclear | dbquit | dbstack | dbstatus | dbstop | dbstep |
dbtype | dbup

Related
Examples

• “Debugging Process and Features”

1-1577

dblquad

Purpose Numerically evaluate double integral over rectangle

dblquad will be removed in a future release. Use integral2 instead.

Syntax q = dblquad(fun,xmin,xmax,ymin,ymax)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)

Description q = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to
evaluate the double integral fun(x,y) over the rectangle xmin <= x
<= xmax, ymin <= y <= ymax. The input argument, fun, is a function
handle that accepts a vector x, a scalar y, and returns a vector of
integrand values.

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol
instead of the default, which is 1.0e-6.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the
quadrature function specified as method, instead of the default quad.
Valid values for method are @quadl or the function handle of a
user-defined quadrature method that has the same calling sequence
as quad and quadl.

Examples Pass function handle @integrnd to dblquad:

Q = dblquad(@integrnd,pi,2*pi,0,pi);

where the function integrnd.m is:

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);

Pass anonymous function handle F to dblquad:

F = @(x,y)y*sin(x)+x*cos(y);
Q = dblquad(F,pi,2*pi,0,pi);

1-1578

dblquad

The integrnd function integrates y*sin(x)+x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be
evaluated with a vector x and a scalar y.

Nonsquare regions can be handled by setting the integrand to zero
outside of the region. For example, the volume of a hemisphere is:

dblquad(@(x,y)sqrt(max(1-(x.^2+y.^2),0)), -1, 1, -1, 1)

or

dblquad(@(x,y)sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1), -1, 1, -1, 1)

See Also quad2d | quad | quadgk | quadl | triplequad | function_handle |
integral | integral2 | integral3

How To • “Anonymous Functions”

1-1579

dbmex

Purpose Enable MEX-file debugging (on UNIX platforms)

Syntax dbmex on
dbmex off
dbmex stop

Description dbmex on enables MEX-file debugging for UNIX platforms.

To use this option, first start the MATLAB software from a debugger
by typing matlab -Ddebugger, where debugger is the name of the
debugger program. You must invoke dbmex on before calling your
MEX-file. If you have already loaded the MEX-file, remove it from
memory using the clear function.

dbmex off disables MEX-file debugging.

dbmex stop returns to the debugger prompt.

Tips For more information about debugging MEX-files, see “Debug C/C++
Language MEX-Files”.

See Also dbclear | dbcont | dbdown | dbquit | dbstack | dbstatus | dbstep |
dbstop | dbtype | dbup

1-1580

dbquit

Purpose Quit debug mode

Syntax dbquit
dbquit('all')
dbquit all

Description dbquit terminates debug mode. The Command Window then displays
the standard prompt (>>). The file being processed is not completed and
no results are returned. All breakpoints remain in effect, unless your
file contains (and MATLAB has processed) one or more of the following
commands: clear all, clear function, clear classes.

If you debug file1 and step into file2, running dbquit terminates
debugging for both files. However, if you debug file3 and also debug
file4, running dbquit terminates debugging for file4, but file3
remains in debug mode until you run dbquit again.

dbquit('all') or the command form, dbquit all, ends debugging
for all files at once.

Examples This example illustrates the use of dbquit relative to dbquit('all').
Set breakpoints in and run file1 and file2:

>> dbstop in file1
>> dbstop in file2
>> file1
K>> file2
K>> dbstack

MATLAB software returns

K>> dbstack
In file1 at 11
In file2 at 22

If you use the dbquit syntax

K>> dbquit

1-1581

dbquit

MATLAB ends debugging for file2 but file1 is still in debug mode
as shown here

K>> dbstack
in file1 at 11

Run dbquit again to exit debug mode for file1.

Alternatively, dbquit('all') ends debugging for both files at once:

K>> dbstack
In file1 at 11
In file2 at 22

dbquit('all')
dbstack

returns no result.

See Also clear | dbcont | dbclear | dbdown | dbstack | dbstatus | dbstop |
dbstep | dbtype | dbup

Related
Examples

• “Correct Problems and End Debugging”

1-1582

dbstack

Purpose Function call stack

Syntax dbstack
dbstack(n)
dbstack('-completenames')
[ST,I] = dbstack(...)

Description dbstack displays the line numbers and file names of the function calls
that led to the current breakpoint, listed in the order in which they were
executed. The display lists the line number of the most recently executed
function call (at which the current breakpoint occurred) first, followed
by its calling function, which is followed by its calling function, and so
on. This continues until the topmost MATLAB function is reached.
Each line number is a hyperlink you can click to go directly to that line
in the Editor. The notation functionname>localfunctionname is used
to describe the location of the local function.

dbstack(n) omits the first n frames from the display. This is useful
when issuing a dbstack from within an error handler, for example.

dbstack('-completenames') outputs the “complete name“ (the absolute
file name and the entire sequence of functions that nests the function in
the stack frame) of each function in the stack.

Either none, one, or both n and '-completenames' can appear. If both
appear, the order is irrelevant.

[ST,I] = dbstack(...) returns the stack trace information in an
m-by-1 structure, ST, with the fields:

file The file in which the function appears. This field is the
empty string if there is no file.

name Function name within the file.

line Function line number.

The current workspace index is returned in I.

1-1583

dbstack

If you step past the end of a file, dbstack returns a negative line
number value to identify that special case. For example, if the last line
to be executed is line 15, then the dbstack line number is 15 before you
execute that line and -15 afterwards.

Tips In addition to using dbstack while debugging, you can also use dbstack
within a MATLAB code file outside the context of debugging. In this
case, to get and analyze information about the current file stack. For
example, to get the name of the calling file, use dbstack with an output
argument within the file being called. For example:

st=dbstack;

Examples This example shows the information returned when you issue dbstack
while debugging a MATLAB code file:

dbstack

In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2
In test.m at line 3

This example shows the information returned when you issue dbstack
while debugging lengthofline.m to get the complete name of the file,
the function name, and line number in which the function appears:

[ST,I] = dbstack('-completenames')
ST =

file: 'I:\MATLABFiles\mymfiles\lengthofline.m'
name: 'lengthofline'
line: 28

I =
1

See Also dbcont | dbclear | dbdown | dbquit | dbstatus | dbstop | dbstep |
dbtype | dbup | evalin | mfilename | whos

1-1584

dbstack

Related
Examples

• “Examine Values”

1-1585

dbstatus

Purpose List all breakpoints

Syntax dbstatus
dbstatus file
dbstatus('-completenames')
s = dbstatus(...)

Description dbstatus lists all the breakpoints in effect including errors, caught
errors, warnings, and naninfs.

dbstatus file displays a list of the line numbers for which breakpoints
are set in the specified file, where file is a MATLAB code file function
name or a MATLAB relative partial path. Each line number is a
hyperlink you can click to go directly to that line in the Editor.

dbstatus('-completenames') displays, for each breakpoint, the
absolute file name and the sequence of functions that nest the function
containing the breakpoint.

s = dbstatus(...) returns breakpoint information in an m-by-1
structure with the fields listed in the following table. Use this
syntax to save breakpoint status and restore it at a later time using
dbstop(s)—see dbstop for an example.

name Function name.

file Full path for file containing breakpoints.

line Vector of breakpoint line numbers.

anonymous Vector of integers representing the anonymous
functions in the line field. For example, 2 means
the second anonymous function in that line. A
value of 0 means the breakpoint is at the start of
the line, not in an anonymous function.

expression Cell vector of breakpoint conditional expression
strings corresponding to lines in the line field.

1-1586

dbstatus

cond Condition string ('error', 'caught error',
'warning', or 'naninf').

identifier When cond is 'error', 'caught error', or
'warning', a cell vector of MATLAB message
identifier strings for which the particular cond
state is set.

Use dbstatus class/function, dbstatus private/function, or
dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class).

In all forms you can further qualify the function name with a local
function name, as in dbstatus function>localfunction.

Tips In the syntax, file can be a file, or the path to a function within a
file. For example

Breakpoint for foo>myfun is on line 9

means there is a breakpoint at the myfun local function, which is line
9 in the file foo.m.

See Also dbclear | dbcont | dbdown | dbquit | dbstack | dbstop | dbstep |
dbtype | dbup | error | warning

1-1587

dbstep

Purpose Execute one or more lines from current breakpoint

Syntax dbstep
dbstep nlines
dbstep in
dbstep out

Description This function allows you to debug a MATLAB code file by following its
execution from the current breakpoint. At a breakpoint, the dbstep
function steps through execution of the current file one line at a time or
at the rate specified by nlines.

dbstep executes the next executable line of the current file. dbstep
steps over the current line, skipping any breakpoints set in functions
called by that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call
to another MATLAB code file function, execution will step to the first
executable line of the called function. If there is no call to a MATLAB
code file on that line, dbstep in is the same as dbstep.

dbstep out runs the rest of the function and stops just after leaving
the function.

For all forms, MATLAB software also stops execution at any breakpoint
it encounters.

Note If you want to edit a file as a result of debugging, it is best to first
quit debug mode and then edit and save changes to the file. If you edit a
file while paused in debug mode, you can get unexpected results when
you resume execution of the file and the results might not be reliable.

See Also dbclear | dbcont | dbdown | dbquit | dbstack | dbstatus | dbstop |
dbtype | dbup

1-1588

dbstep

Related
Examples

• “Step Through a File”

1-1589

dbstop

Purpose Set breakpoints for debugging

Syntax dbstop in file
dbstop in file at location
dbstop in file if expression
dbstop in file at location if expression
dbstop if condition
dbstop(s)

Description dbstop in file sets a breakpoint at the first executable line in file.
When you run file, MATLAB enters debug mode and pauses execution
at the first executable line.

dbstop in file at location sets a breakpoint at the specified
location. MATLAB execution pauses immediately before that location,
unless the location is an anonymous function. If the location is an
anonymous function, then execution pauses just after the breakpoint.

dbstop in file if expression sets a breakpoint at the first
executable line of the file. Execution pauses only if expression
evaluates to 1 (true).

dbstop in file at location if expression sets a breakpoint at
the specified location. Execution pauses at or just before that location
only if the expression evaluates to true.

dbstop if condition pauses execution at the line that meets the
specified condition.

dbstop(s) restores breakpoints you previously saved to s. The files
containing the saved breakpoints must be on the search path or in
the current folder. MATLAB assigns breakpoints by line number;
therefore, the lines in the file must be the same as when you saved the
breakpoints, or the results are unpredictable.

Tips • Use dbcont or dbstep to resume execution after a breakpoint pauses
execution. Use dbquit to exit debug mode.

1-1590

dbstop

• If you debug a file that MATLAB uses when running and debugging
files, and that file is not a MATLAB code file, then some debugging
features do not operate as expected. For instance, typing help
functionname at the debug (K>>) prompt will not return help.

• MATLAB can become unresponsive when it stops at a breakpoint
while displaying a modal dialog box or figure created by your
program. Use Ctrl+C to exit debug mode and return to the MATLAB
prompt (>>).

• If MATLAB pauses and displays a hyperlinked line number in the
Command Window, click the hyperlink, The file opens in the Editor
at the line where MATLAB paused execution. For an example of
such a link, see the image in “Stop at File That Is Not a MATLAB
Code File” on page 1-1596

• You can set breakpoints only at executable lines in saved files that
are in the current folder or in folders on the search path.

• dbstop if warning has no effect when you disable warnings using
warning off all. Similarly, dbstop if warning identifier has no
effect when you disable warnings for the specified message identifier.
See warning for more information about off, all, and warning off
identifier

Input
Arguments

file

File specification, typically for a MATLAB function, specified as a
string. The file specification can include a partial path, but must be in a
folder on the search path, or in the current folder.

If the command includes the -completenames option, then the file need
not be on the search path, as long as the file specification is a “fully
qualified name” on page 1-1593. In addition, filespec can include a
filemarker (>) to specify the path to a particular local function or to
a nested function within the file.

If file is not a MATLAB code file (for instance, it is a built-in or
MDL-file), then MATLAB issues a warning. MATLAB cannot stop in
the file, so it pauses before executing the file.

1-1591

dbstop

location

Location in file where you want to set a breakpoint, specified as one
of the following:

• lineno

Line number in file specified as a string. The default is 1.

• lineno@n

nth anonymous function on line number, lineno, specified as a
string. The default value of n is 1.

• subfun

Name of a local function in file, specified as a string.

expression

Code that evaluates (as if by eval) to a scalar logical value of 1 or 0,
(true or false, respectively).

condition

Condition that causes execution to pause when that condition evaluates
to true. Specify condition as one of the following:

• error— Run-time error that occurs outside a try/catch block. You
cannot resume execution after an uncaught run-time error.

If you want execution to pause only if a specific error occurs, specify
the message id. For example:

- dbstop if error stops execution at the first run-time error that
occurs outside a try/catch block.

- dbstop if error MATLAB:ls:InputsMustBeStrings pauses
execution at the first run-time error outside a try/catch block
that has a message ID of MATLAB:ls:InputsMustBeStrings.

• caught error— Run-time error that occurs within the try portion
of a try/catch block. If you want execution to stop only if a specific

1-1592

dbstop

error occurs, specify the message id. See the error condition for an
example of specifying a message id.

• warning— Run-time warning occurs. If you want execution to pause
only if a specific warning occurs, specify the message id. See the
error condition for an example of specifying a message id.

This condition has no effect if you disabled warnings with the warning
off all command or if you disabled warnings for the specified id.
For more information about disabling warnings, see warning.

• naninf and infnan

The code returns an infinite value (Inf) or a value that is not a
number (NaN) as a result of an operator, function call, or scalar
assignment. The naninf and infnan conditions have identical effects.

s

Breakpoints previously saved to a structure using s=dbstatus.

Definitions fully qualified name

• On Microsoft Windows platforms, a file name that begins with two
back slashes (\\) or with a drive letter followed by a colon (:).

• On UNIX platforms, a file name that begins with a slash (/) or a
tilde (~).

Examples Stop at First Executable Line

This example shows how to set a breakpoint and pause execution at the
first executable line in buggy.m.

1 Create a file, buggy.m, which contains these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

2 Issue the dbstop command.

1-1593

dbstop

dbstop in buggy

3 Run buggy.

buggy(2:5)

MATLAB displays the line where it pauses and enters debug mode.

2 n = length(x);
K>>

4 Advance to the next line in the file.

dbstep

5 Examine the value of n in the Variable Editor.

openvar('n')

6 Quit debug mode.

dbquit

Stop if Error

This example shows how to set a breakpoint and pause execution if a
run-time error occurs.

1 Create a file, buggy.m, which contains these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

2 Issue these statements in the Command Window:

dbstop if error
buggy(magic(3))

1-1594

dbstop

Because buggy.m works on vectors only, the input in step 2 results in
a run-time error. MATLAB goes into debug mode, paused at line 3
in buggy.m.

Error using ./
Matrix dimensions must agree.

Error in buggy at 3
z = (1:n)./x;
3 z = (1:n)./x;

3 Quit debug mode.

dbquit

Stop if InfNaN

This example shows how to set a breakpoint and pause execution if the
code returns a NaN value.

1 Create a file, buggy.m, containing these statements.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

2 Issue these commands.

dbstop if naninf
buggy(0:2)

If any of the elements of the input, x, is zero, a division by zero occurs
in buggy.m. Therefore, MATLAB returns the following message.

NaN/Inf breakpoint hit for buggy on line 3.

MATLAB is in debug mode, paused at line 3.

1-1595

dbstop

Stop at Function in File

This example shows how to set a breakpoint in the collatzall program
file at the first executable line in the collatzplot_new function.

1 Copy collatzall.m from the MATLAB examples folder to your
current folder.

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','collatzall.m'),'.','f')

2 Open collatzall.m in the Editor.

open collatzall.m

3 Set the breakpoint.

dbstop in collatzall>collatzplot_new

Stop at File That Is Not a MATLAB Code File

This example shows how to set a breakpoint at the built-in function
clear when you run myfile.m.

1 Create a file, myfile.m, in the Editor, containing these statements.

function myfile(x)
n = length(x);
if n < 10

disp('length is less than 10')
else

disp('length is 10 or greater')
end
clear
disp('Value of n is cleared')

2 Issue these commands to set the breakpoint.

x = [1 2 3 4 5 6 7 8 9 10]

1-1596

dbstop

dbstop in clear; myfile(x)

MATLAB issues a warning, and pauses before the call to the clear
function. The warning appears as shown in this image.

Restore Saved Breakpoints

This example shows how to save, and then restore, saved breakpoints.

1 Copy collatzall.m from the MATLAB examples folder to your
current folder.

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env', ...
'examples','collatzall.m'),'.','f')

2 Open collatzall.m in the Editor.

open collatzall.m

3 Set breakpoints from the Command Window.

dbstop at 12 in collatzall
dbstop if error

4 Run dbstatus.

dbstatus

MATLAB describes the breakpoints you set.

1-1597

dbstop

Breakpoint for collatzall>collatzplot_new is on line 12.
Stop if error.

5 Save the breakpoints to the structure, s, and then save s to the
MAT-file, myfilebrkpnts.

s=dbstatus('-completenames');
save myfilebrkpnts s

Using s=dbstatus('-completenames') saves absolute paths and
the breakpoint function nesting sequence.

6 Clear all breakpoints.

dbclear collatzall

7 Restore the breakpoints by loading the MAT-file.

load myfilebrkpnts
dbstop(s)

The file (or files) containing the breakpoints must be on the search
path or in the current folder.

8 Verify the breakpoints.

dbstatus collatzall

See Also dbclear | dbcont | dbdown | dbquit | dbstack | dbstatus | dbstep |
dbtype | dbup

Related
Examples

• “Set Breakpoints”

1-1598

dbtype

Purpose List text file with line numbers

Syntax dbtype filename
dbtype filename start:end

Description The dbtype command is used to list a text file with line numbers, which
is helpful when setting breakpoints in a MATLAB code file with dbstop.

dbtype filename displays the contents of the specified text file, with
the line number preceding each line. filename must be the full path
name of a file, or a MATLAB relative partial path.

dbtype filename start:end displays the portion of the file specified
by a range of line numbers from start to end.

You cannot use dbtype for built-in functions.

Examples To see only the input and output arguments for a function, that is, the
first line of the file, use the syntax

dbtype filename 1

For example,

dbtype addpath 1

returns

1 function oldpath = addpath(varargin)

See Also dbclear | dbcont | dbdown | dbquit | dbstack | dbstatus | dbstep |
dbstop | dbup

1-1599

dbup

Purpose Shift current workspace to workspace of caller, while in debug mode

Syntax dbup

Description This function allows you to examine the calling MATLAB code file
to determine what caused the arguments to be passed to the called
function.

dbup changes the current workspace context, while the user is in the
debug mode, to the workspace of the calling file.

Multiple dbup functions change the workspace context to each previous
calling file on the stack until the base workspace context is reached. (It
is not necessary, however, to move back to the current breakpoint to
continue execution or to step to the next line.)

Tips If your receive an error message such as the following, it means that
the parent workspace is under construction so that the value of x is
unavailable:

??? Reference to a called function result under construction x

See Also dbclear | dbcont | dbdown | dbquit | dbstack | dbstatus | dbstep
| dbstop | dbtype

Concepts • “Problems Viewing Variable Values from the Parent Workspace”

1-1600

dde23

Purpose Solve delay differential equations (DDEs) with constant delays

Syntax sol = dde23(ddefun,lags,history,tspan)
sol = dde23(ddefun,lags,history,tspan,options)

Arguments ddefun Function handle that evaluates the
right side of the differential equations

 y t f t y t y t y t k() , (), (),..., () 1 . The
function must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current t, y is a
column vector that approximates y(t), and
Z(:,j) approximates y(t – τj) for delay τj
= lags(j). The output is a column vector

corresponding to f t y t y t y t k, (), (),..., () 1 .

lags Vector of constant, positive delays τ1, ..., τk.

history Specify history in one of three ways:

• A function of t such that y = history(t)
returns the solution y(t) for t ≤ t0 as a
column vector

• A constant column vector, if y(t) is constant

• The solution sol from a previous
integration, if this call continues that
integration

1-1601

dde23

tspan Interval of integration from t0=tspan(1) to
tf=tspan(end) with t0 < tf.

options Optional integration argument. A structure
you create using the ddeset function. See
ddeset for details.

Description sol = dde23(ddefun,lags,history,tspan) integrates the system
of DDEs

 y t f t y t y t y t k() , (), (),..., () 1

on the interval [t0,tf], where τ1, ..., τk are constant, positive delays and
t0,tf. The input argument, ddefun, is a function handle.

“Parameterizing Functions” explains how to provide additional
parameters to the function ddefun, if necessary.

dde23 returns the solution as a structure sol. Use the auxiliary
function deval and the output sol to evaluate the solution at specific
points tint in the interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol.x Mesh selected by dde23

sol.y Approximation to y(x) at the mesh points in
sol.x.

sol.yp Approximation to y′(x) at the mesh points in
sol.x

sol.solver Solver name, 'dde23'

sol = dde23(ddefun,lags,history,tspan,options) solves as above
with default integration properties replaced by values in options, an
argument created with ddeset. See ddeset and “Types of DDEs” in the
MATLAB documentation for details.

1-1602

dde23

Commonly used options are scalar relative error tolerance 'RelTol'
(1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components are 1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in
the history or solution. Set this option to a vector that contains the
locations of discontinuities in the solution prior to t0 (the history) or in
coefficients of the equations at known values of t after t0.

Use the 'Events' option to specify a function that dde23 calls to find

where functions g t y t y t y t k, (), (),..., () 1 vanish. This function
must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth
event function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a
zero of this event function and 0 otherwise.

• direction(k) = 0 if you want dde23 to compute all zeros of this
event function, +1 if only zeros where the event function increases,
and -1 if only zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

sol.xe Row vector of locations of all events, i.e., times
when an event function vanished

sol.ye Matrix whose columns are the solution values
corresponding to times in sol.xe

sol.ie Vector containing indices that specify which event
occurred at the corresponding time in sol.xe

1-1603

dde23

Examples This example solves a DDE on the interval [0, 5] with lags 1 and 0.2.
The function ddex1de computes the delay differential equations, and
ddex1hist computes the history for t <= 0.

Note The file, ddex1.m, contains the complete code for this example. To
see the code in an editor, type edit ddex1 at the command line. To run
it, type ddex1 at the command line.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the
interval [0,5], then plots the result.

tint = linspace(0,5);
yint = deval(sol,tint);
plot(tint,yint);

ddex1 shows how you can code this problem using local functions. For
more examples see ddex2.

Algorithms dde23 tracks discontinuities and integrates with the explicit
Runge-Kutta (2,3) pair and interpolant of ode23. It uses iteration to
take steps longer than the lags.

References [1] Shampine, L.F. and S. Thompson, “Solving DDEs in MATLAB,”
Applied Numerical Mathematics, Vol. 37, 2001, pp. 441-458.

[2] Kierzenka, J., L.F. Shampine, and S. Thompson, “Solving
Delay Differential Equations with DDE23,” available at
www.mathworks.com/dde_tutorial.

See Also ddesd | ddensd | ddeget | ddeset | deval | function_handle

1-1604

http://www.mathworks.com/dde_tutorial

ddeget

Purpose Extract properties from delay differential equations options structure

Syntax val = ddeget(options,'name')
val = ddeget(options,'name',default)

Description val = ddeget(options,'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = ddeget(options,'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = ddeget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also dde23 | ddesd | ddensd | ddeset

1-1605

ddensd

Purpose Solve delay differential equations (DDEs) of neutral type

Syntax sol = ddensd(ddefun,dely,delyp,history,tspan)
sol = ddensd(ddefun,dely,delyp,history,tspan,options)

Description sol = ddensd(ddefun,dely,delyp,history,tspan) integrates a
system of delay differential equations of neutral type, that has the form

y ’(t) = f(t, y(t), y(dy1),..., y(dyp), y ’(dyp1),..., y ’(dypq))
(1-1)

where

• t is the independent variable representing time.

• dyi is any of p solution delays.

• dypj is any of q derivative delays.

sol = ddensd(ddefun,dely,delyp,history,tspan,options)
replaces default integration parameters with those specified in options,
a structure created with the ddeset function.

Input
Arguments

ddefun - Derivative function
function handle

Derivative function, specified as a function handle whose syntax is yp
= ddefun(t,y,ydel,ypdel). The arguments for ddefun are described
in the table below.

ddefun
Argument

Description

t A scalar value representing the current value of
time, t.

y A vector that represents y(t) in Equation 1-1. The
size of this vector is n-by-1, where n is the number
of equations in the system you want to solve.

1-1606

ddensd

ddefun
Argument

Description

ydel A matrix whose columns, ydel(:,i), represent
y(dyi). The size of this matrix is n-by-p, where n is
the number of equations in the system you want
to solve, and p is the number of y(dy) terms in
Equation 1-1.

ypdel A matrix whose columns, ypdel(:,j) represent y
’(dypj). The size of this matrix is n-by-q, where n is
the number of equations in the system you want
to solve, and q is the number of y ’(dyp) terms in
Equation 1-1.

yp The result returned by ddefun. It is an n-by-1
vector whose elements represent the right side of
Equation 1-1.

dely - Solution delays
function handle | vector

Solution delays, specified as a function handle, which returns
dy1,..., dyp in Equation 1-1. Alternatively, you can pass constant delays
in the form of a vector.

If you specify dely as a function handle, the syntax must be dy =
dely(t,y). The arguments for this function are described in the table
below.

1-1607

ddensd

dely Argument Description

t A scalar value representing the current value of
time, t.

y A vector that represents y(t) in Equation 1-1. The
size of this vector is n-by-1, where n is the number
of equations in the system you want to solve.

dy A vector returned by the dely function whose
values are the solution delays, dyi , in Equation
1-1. The size of this vector is p-by-1, where p is
the number of solution delays in the equation.
Each element must be less than or equal to t.

If you want to specify constant solution delays having the form
dyi = t – τi, then dely must be a vector, where dely(i) = τi. Each value
in this vector must be greater than or equal to zero.

If dy is not present in the problem, set dely to [].

Data Types
function_handle | single | double

delyp - Derivative delays
function handle | vector

Derivative delays, specified as a function handle, which returns
dyp1,..., dypq in Equation 1-1. Alternatively, you can pass constant
delays in the form of a vector.

If delyp is a function handle, its syntax must be dyp = delyp(t,y).
The arguments for this function are described in the table below.

1-1608

ddensd

delyp
Argument

Description

t A scalar value representing the current value of
time, t.

y A vector that represents y(t) in Equation 1-1. The
size of this vector is n-by-1, where n is the number
of equations in the system you want to solve.

dyp A vector returned by the delyp function whose
values are the derivative delays, dypj, in Equation
1-1. The size of this vector must be q-by-1, where
q is the number of solution delays, dypj, in the
equation. Each element of dyp must be less than
t. There is one exception to this restriction: if you
are solving an initial value DDE, the value of
dyp can equal t at t = t0. For more information,
see “Initial Value Neutral Delay Differential
Equations” on page 1-1611.

If you want specify constant derivative delays having the form
dypj = t – τj, then delyp must be a vector, where delyp(j) = τj. Each
value in this vector must be greater than zero. An exception to this
restriction occurs when you solve initial value problems for DDEs of
neutral type. In such cases, a value in delyp can equal zero at t = t0.
See “Initial Value Neutral Delay Differential Equations” on page 1-1611
for more information.

If dyp is not present in the problem, set delyp to [].

Data Types
function_handle | single | double

history - Solution history
function handle | column vector | structure (sol, from previous
integration) | 1-by-2 cell array

1-1609

ddensd

Solution history, specified as a function handle, column vector, sol
structure (from a previous integration), or a cell array. This is the
solution at t ≤ t0.

• If the history varies with time, specify the solution history as a
function handle whose syntax is y = history(t). This function
returns an n-by-1 vector that approximates the solution, y(t), for t <=
t0. The length of this vector, n, is the number of equations in the
system you want to solve.

• If y(t) is constant, you can specify history as an n-by-1 vector of
the constant values.

• If you are calling ddensd to continue a previous integration to t0, you
can specify history as the output, sol, from the previous integration.

• If you are solving an initial value DDE, specify history as a cell
array, {y0, yp0}. The first element, y0, is a column vector of initial
values, y(t0). The second element, yp0, is a column vector whose
elements are the initial derivatives, y ’(t0). These vectors must be
consistent, meaning that they satisfy Equation 1-1 at t0. See “Initial
Value Neutral Delay Differential Equations” on page 1-1611 for
more information.

Data Types
function_handle | single | double | struct | cell

tspan - Interval of integration
1-by-2 vector

Interval of integration, specified as the vector [t0 tf]. The first
element, t0, is the initial value of t. The second element, tf, is the final
value of t. The value of t0 must be less than tf.

Data Types
single | double

options - Optional integration parameters
structure returned by ddeset

1-1610

ddensd

Optional integration parameters, specified as a structure created and
returned by the ddeset function. Some commonly used properties are:
'RelTol', 'AbsTol', and 'Events'. See the ddeset reference page for
more information about specifying options.

Output
Arguments

sol - Solution
structure

Solution, returned as a structure containing the following fields.

sol.x Mesh selected by ddensd.

sol.y An approximation to y(t) at the mesh points.

sol.yp An approximation to y ’(t) at the mesh points.

sol.solver A string identifying the solver, 'ddensd'.

You can pass sol to the deval function to evaluate the solution at
specific points. For example, y = deval(sol, 0.5*(sol.x(1) +
sol.x(end))) evaluates the solution at the midpoint of the interval
of integration.

Definitions Initial Value Neutral Delay Differential Equations

An initial value DDE has dyi≥t0 and dypj≥t0, for all i and j. At t = t0, all
delayed terms reduce to y(dyi) = y(t0) and y ’(dypj) = y ’(t0):

y ’(t0) = f(t0, y(t0), y(t0),..., y(t0), y ’(t0),..., y ’(t0))
(1-2)

For t > t0, all derivative delays must satisfy dyp < t.

When you solve initial value neutral DDEs, you must supply y ’(t0) to
ddensd. To do this, specify history as a cell array {Y0,YP0}. Here, Y0
is the column vector of initial values, y(t0), and YP0 is a column vector of
initial derivatives, y ’(t0). These vectors must be consistent, meaning
that they satisfy Equation 1-2 at t0.

1-1611

ddensd

Examples Neutral DDE with Two Delays

Solve the following neutral DDE, presented by Paul, for 0 ≤ t ≤ π:

y ’(t) = 1 + y(t) – 2y(t/2)2 – y ’(t – π)

with history: y(t) = cos (t) for t ≤ 0.

Create a new program file in the editor. This file will contain a main
function and four local functions.

Define the first-order DDE as a local function.

function yp = ddefun(t,y,ydel,ypdel)
yp = 1 + y - 2*ydel^2 - ypdel;

end

Define the solution delay as a local function.

function dy = dely(t,y)
dy = t/2;

end

Define the derivative delay as a local function.

function dyp = delyp(t,y)
dyp = t-pi;

end

Define the solution history as a local function.

function y = history(t)
y = cos(t);

end

Define the interval of integration and solve the DDE using the ddensd
function. Add this code to the main function.

tspan = [0 pi];
sol = ddensd(@ddefun,@dely,@delyp,@history,tspan);

1-1612

ddensd

Evaluate the solution at 100 equally spaced points between 0 and π.
Add this code to the main function.

tn = linspace(0,pi);
yn = deval(sol,tn);

Plot the results. Add this code to the main function.

plot(tn,yn);
xlim([0 pi]);
ylim([-1.2 1.2]);
xlabel('time t');
ylabel('solution y');

Run your program to calculate the solution and display the plot.

1-1613

ddensd

The file, ddex4.m, contains the complete code for this example. To see
the code in an editor, type edit ddex4 at the command line.

Algorithms For information about the algorithm used in this solver, see Shampine
[2].

1-1614

ddensd

References
[1] Paul, C.A.H. “A Test Set of Functional Differential Equations.”
Numerical Analysis Reports. No. 243. Manchester, UK: Math
Department, University of Manchester, 1994.

[2] Shampine, L.F. “Dissipative Approximations to Neutral DDEs.”
Applied Mathematics & Computation. Vol. 203, Number 2, 2008, pp.
641–648.

See Also deval | ddeset | ddesd | dde23 | function_handle

1-1615

ddesd

Purpose Solve delay differential equations (DDEs) with general delays

Syntax sol = ddesd(ddefun,delays,history,tspan)
sol = ddesd(ddefun,delays,history,tspan,options)

Arguments ddefun Function handle that evaluates the
right side of the differential equations
y′(t) = f(t,y(t),y(d(1),...,y(d(k))). The function must
have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current t, y is a
column vector that approximates y(t), and
Z(:,j) approximates y(d(j)) for delay d(j)
given as component j of delays(t,y). The
output is a column vector corresponding to
f(t,y(t),y(d(1),...,y(d(k))).

delays Function handle that returns a column vector of
delays d(j). The delays can depend on both t and
y(t). ddesd imposes the requirement that d(j) ≤ t
by using min(d(j),t).

If all the delay functions have the form d(j) = t – τj,
you can set the argument delays to a constant
vector delays(j) = τj. With delay functions of this
form, ddesd is used exactly like dde23.

1-1616

ddesd

history Specify history in one of three ways:

• A function of t such that y = history(t)
returns the solution y(t) for t ≤ t0 as a column
vector

• A constant column vector, if y(t) is constant

• The solution sol from a previous integration,
if this call continues that integration

tspan Interval of integration from t0=tspan(1) to
tf=tspan(end) with t0 < tf.

options Optional integration argument. A structure you
create using the ddeset function. See ddeset
for details.

Description sol = ddesd(ddefun,delays,history,tspan) integrates the system
of DDEs

 y t f t y t y d y d k() , (), (()),..., (())1

on the interval [t0,tf], where delays d(j) can depend on both t and y(t),
and t0 < tf. Inputs ddefun and delays are function handles. See the
function_handle reference page for more information.

“Parameterizing Functions” explains how to provide additional
parameters to the functions ddefun, delays, and history, if necessary.

ddesd returns the solution as a structure sol. Use the auxiliary
function deval and the output sol to evaluate the solution at specific
points tint in the interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by ddesd has the following fields.

1-1617

ddesd

sol.x Mesh selected by ddesd

sol.y Approximation to y(x) at the mesh points in
sol.x.

sol.yp Approximation to y′(x) at the mesh points in
sol.x

sol.solver Solver name, 'ddesd'

sol = ddesd(ddefun,delays,history,tspan,options) solves as
above with default integration properties replaced by values in options,
an argument created with ddeset. See ddeset and “Types of DDEs” in
the MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol'
(1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components are 1e-6 by default).

Use the 'Events' option to specify a function that ddesd calls to find
where functions g(t,y(t),y(d(1)),...,y(d(k))) vanish. This function must be
of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth
event function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a
zero of this event function and 0 otherwise.

• direction(k) = 0 if you want ddesd to compute all zeros of this
event function, +1 if only zeros where the event function increases,
and -1 if only zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

1-1618

ddesd

sol.xe Row vector of locations of all events, i.e., times
when an event function vanished

sol.ye Matrix whose columns are the solution values
corresponding to times in sol.xe

sol.ie Vector containing indices that specify which event
occurred at the corresponding time in sol.xe

Examples The equation

sol = ddesd(@ddex1de,@ddex1delays,@ddex1hist,[0,5]);

solves a DDE on the interval [0,5] with delays specified by the function
ddex1delays and differential equations computed by ddex1de. The
history is evaluated for t ≤ 0 by the function ddex1hist. The solution is
evaluated at 100 equally spaced points in [0,5]:

tint = linspace(0,5);
yint = deval(sol,tint);

and plotted with

plot(tint,yint);

This problem involves constant delays. The delay function has the form

function d = ddex1delays(t,y)
%DDEX1DELAYS Delays for using with DDEX1DE.
d = [t - 1

t - 0.2];

The problem can also be solved with the syntax corresponding to
constant delays

delays = [1, 0.2];
sol = ddesd(@ddex1de,delays,@ddex1hist,[0, 5]);

or using dde23:

1-1619

ddesd

sol = dde23(@ddex1de,delays,@ddex1hist,[0, 5]);

For more examples of solving delay differential equations see ddex2
and ddex3.

References [1] Shampine, L.F., “Solving ODEs and DDEs with Residual Control,”
Applied Numerical Mathematics, Vol. 52, 2005, pp. 113-127.

See Also dde23 | ddeget | ddensd | ddeset | deval | function_handle

1-1620

ddeset

Purpose Create or alter delay differential equations options structure

Syntax options = ddeset('name1',value1,'name2',value2,...)
options = ddeset(oldopts,'name1',value1,...)
options = ddeset(oldopts,newopts)
ddeset

Description options = ddeset('name1',value1,'name2',value2,...) creates
an integrator options structure options in which the named properties
have the specified values. Any unspecified properties have default
values. It is sufficient to type only the leading characters that uniquely
identify the property. ddeset ignores case for property names.

options = ddeset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = ddeset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

ddeset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function ddeget to query the options structure for
the value of a specific property.

DDE
Properties

The following sections describe the properties that you can set using
ddeset. There are several categories of properties:

• Error control

• Solver output

• Step size

• Event location

• Discontinuities

1-1621

ddeset

Error Control Properties

At each step, the DDE solvers estimate an error e. The dde23 function
estimates the local truncation error, and the other solvers estimate the
residual. In either case, this error must be less than or equal to the
acceptable error, which is a function of the specified relative tolerance,
RelTol, and the specified absolute tolerance, AbsTol.

|e(i)|*max(RelTol*abs(y(i)),AbsTol(i))

For routine problems, the solvers deliver accuracy roughly equivalent
to the accuracy you request. They deliver less accuracy for problems
integrated over “long” intervals and problems that are moderately
unstable. Difficult problems may require tighter tolerances than the
default values. For relative accuracy, adjust RelTol. For the absolute
error tolerance, the scaling of the solution components is important: if
|y| is somewhat smaller than AbsTol, the solver is not constrained to
obtain any correct digits in y. You might have to solve a problem more
than once to discover the scale of solution components.

Roughly speaking, this means that you want RelTol correct digits in all
solution components except those smaller than thresholds AbsTol(i).
Even if you are not interested in a component y(i) when it is small,
you may have to specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more interesting
components.

The following table describes the error control properties.

1-1622

ddeset

DDE Error Control Properties

Property Value Description

RelTol Positive
scalar {1e-3}

A relative error tolerance that applies to all components
of the solution vector y. It is a measure of the error
relative to the size of each solution component. Roughly,
it controls the number of correct digits in all solution
components except those smaller than thresholds
AbsTol(i). The default, 1e-3, corresponds to 0.1%
accuracy.

The estimated error in each integration step satisfies
|e(i)|max(RelTol*abs(y(i)),AbsTol(i)).

AbsTol Positive
scalar or
vector {1e-6}

Absolute error tolerances that apply to the individual
components of the solution vector. AbsTol(i) is a
threshold below which the value of the ith solution
component is unimportant. The absolute error
tolerances determine the accuracy when the solution
approaches zero. Even if you are not interested in a
component y(i) when it is small, you may have to
specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more
interesting components.

If AbsTol is a vector, the length of AbsTol must be the
same as the length of the solution vector y. If AbsTol is
a scalar, the value applies to all components of y.

NormControl on | {off} Control error relative to norm of solution. Set
this property on to request that the solvers control
the error in each integration step with norm(e)<=
max(RelTol*norm(y),AbsTol). By default, the solvers
use a more stringent component-wise error control.

Solver Output Properties

You can use the solver output properties to control the output that the
solvers generate.

1-1623

ddeset

DDE Solver Output Properties

Property Value Description

OutputFcn Function
handle
{@odeplot}

The output function is a function that the solver calls
after every successful integration step. To specify
an output function, set 'OutputFcn' to a function
handle. For example,

options = ddeset('OutputFcn',...
@myfun)

sets ’OutputFcn’ to @myfun, a handle to the function
myfun. See the function_handle reference page for
more information.

The output function must be of the form

status = myfun(t,y,flag)

“Parameterizing Functions” explains how to provide
additional parameters to myfun, if necessary.

The solver calls the specified output function with
the following flags. Note that the syntax of the call
differs with the flag. The function must respond
appropriately:

• init— The solver calls myfun(tspan,y0,'init')
before beginning the integration to allow the
output function to initialize. tspan is the input
argument to the solvers. y0 is the initial value of
the solution, either from history(t0) or specified
in the initialY option.

• {none} — The solver calls status = myfun(t,y)
after each integration step on which output is
requested. t contains points where output was

1-1624

ddeset

DDE Solver Output Properties (Continued)

Property Value Description

generated during the step, and y is the numerical
solution at the points in t. If t is a vector, the ith
column of y corresponds to the ith element of t.

myfun must return a status output value of 0 or 1.
If literal > status, the solver halts integration. You
can use this mechanism, for instance, to implement
a Stop button.

• done — The solver calls myfun([],[],'done')
when integration is complete to allow the output
function to perform any cleanup chores.

You can use these general purpose output functions
or you can edit them to create your own. Type
help functionname at the command line for more
information.

• odeplot – time series plotting (default when you
call the solver with no output argument and you
have not specified an output function)

• odephas2 – two-dimensional phase plane plotting

• odephas3 – three-dimensional phase plane plotting

• odeprint – print solution as the solver computes it

OutputSel Vector of
indices

Vector of indices specifying which components of the
solution vector the solvers pass to the output function.
For example, if you want to use the odeplot output
function, but you want to plot only the first and third
components of the solution, you can do this using

options = ddeset...
('OutputFcn',@odeplot,...

1-1625

ddeset

DDE Solver Output Properties (Continued)

Property Value Description

'OutputSel',[1 3]);

By default, the solver passes all components of the
solution to the output function.

Stats on | {off} Specifies whether the solver should display statistics
about its computations. By default, Stats is off. If it
is on, after solving the problem the solver displays:

• The number of successful steps

• The number of failed attempts

• The number of times the DDE function was called

Step Size Properties

The step size properties let you specify the size of the first step the
solver tries, potentially helping it to better recognize the scale of the
problem. In addition, you can specify bounds on the sizes of subsequent
time steps.

The following table describes the step size properties.

DDE Step Size Properties

Property Value Description

InitialStep Positive scalar Suggested initial step size. InitialStep sets an
upper bound on the magnitude of the first step size
the solver tries. If you do not set InitialStep, the
solver bases the initial step size on the slope of the
solution at the initial time tspan(1). The initial step
size is limited by the shortest delay. If the slope of
all solution components is zero, the procedure might
try a step size that is much too large. If you know

1-1626

ddeset

DDE Step Size Properties (Continued)

Property Value Description

this is happening or you want to be sure that the
solver resolves important behavior at the start of the
integration, help the code start by providing a suitable
InitialStep.

MaxStep Positive scalar
{0.1*
abs(t0-tf)}

Upper bound on solver step size. If the differential
equation has periodic coefficients or solutions, it may
be a good idea to set MaxStep to some fraction (such
as 1/4) of the period. This guarantees that the solver
does not enlarge the time step too much and step over
a period of interest. Do not reduce MaxStep:

• When the solution does not appear to be accurate
enough. Instead, reduce the relative error tolerance
RelTol, and use the solution you just computed
to determine appropriate values for the absolute
error tolerance vector AbsTol. (See “Error Control
Properties” on page 1-1622 for a description of the
error tolerance properties.)

• To make sure that the solver doesn’t step over
some behavior that occurs only once during the
simulation interval. If you know the time at which
the change occurs, break the simulation interval
into two pieces and call the solver twice. If you do
not know the time at which the change occurs, try
reducing the error tolerances RelTol and AbsTol.
Use MaxStep as a last resort.

Event Location Property

In some DDE problems, the times of specific events are important.
While solving a problem, the solvers can detect such events by locating
transitions to, from, or through zeros of user-defined functions.

The following table describes the Events property.

1-1627

ddeset

DDE Events Property

String Value Description

Events Function
handle

A function handle that includes one or more event
functions. For dde23 and ddesd, this function has the
following syntax:

[value,isterminal,direction] = events(t,y,YDEL)

For ddensd, the syntax is:

[value,isterminal,direction] = events(t,y,YDEL,YPDEL)

The output arguments, value, isterminal, and
direction, are vectors for which the ith element
corresponds to the ith event function:

• value(i) is the value of the ith event function.

• isterminal(i) = 1 if you want the integration to
terminate at a zero of this event function, and 0
otherwise.

• direction(i) = 0 if you want the solver to locate all
zeros (the default), +1 if only zeros where the event
function is increasing, and -1 if only zeros where the
event function is decreasing.

If you specify an events function and events are
detected, the solver returns three additional fields in
the solution structure sol:

• sol.xe is a row vector of times at which events occur.

• sol.ye is a matrix whose columns are the solution
values corresponding to times in sol.xe.

• sol.ie is a vector containing indices that specify which
event occurred at the corresponding time in sol.xe.

1-1628

ddeset

DDE Events Property (Continued)

String Value Description

For examples that use an event function while solving
ordinary differential equation problems, see “Event
Location” (ballode) and “Advanced Event Location”
(orbitode), in the MATLAB Mathematics documentation.

Discontinuity Properties

The solver functions can solve problems with discontinuities in the
history or in the coefficients of the equations. The following properties
enable you to provide these solvers with a different initial value, and,
for dde23, locations of known discontinuities. For more information, see
“Discontinuities in DDEs”.

The following table describes the discontinuity properties.

DDE Discontinuity Properties

String Value Description

Jumps Vector Location of discontinuities. Points t where
the history or solution may have a jump
discontinuity in a low-order derivative. This
applies only to the dde23 solver.

InitialY Vector Initial value of solution. By default the initial
value of the solution is the value returned by
history at the initial point. Supply a different
initial value as the value of the InitialY
property.

Examples To create an options structure that changes the relative error tolerance
of the solver from the default value of 1e-3 to 1e-4, enter

options = ddeset('RelTol',1e-4);

1-1629

ddeset

To recover the value of 'RelTol' from options, enter

ddeget(options,'RelTol')

ans =

1.0000e-004

See Also dde23 | ddensd | ddesd | ddeget | function_handle

1-1630

deal

Purpose Distribute inputs to outputs

Note Beginning with MATLAB Version 7.0 software, you can access
the contents of cell arrays and structure fields without using the deal
function. See Example 3, below.

Syntax [Y1, Y2, Y3, ...] = deal(X)
[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...)
[S.field] = deal(X)
[X{:}] = deal(A.field)
[Y1, Y2, Y3, ...] = deal(X{:})
[Y1, Y2, Y3, ...] = deal(S.field)

Description [Y1, Y2, Y3, ...] = deal(X) copies the single input to all the
requested outputs. It is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...) is the same as Y1 =
X1; Y2 = X2; Y3 = X3; ...

Tips deal is most useful when used with cell arrays and structures via
comma-separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the
structure array S to the value X. If S doesn’t exist, use [S(1:m).field]
= deal(X).

[X{:}] = deal(A.field) copies the values of the field with
name field to the cell array X. If X doesn’t exist, use [X{1:m}] =
deal(A.field).

[Y1, Y2, Y3, ...] = deal(X{:}) copies the contents of the cell
array X to the separate variables Y1, Y2, Y3, ...

[Y1, Y2, Y3, ...] = deal(S.field) copies the contents of the
fields with the name field to separate variables Y1, Y2, Y3, ...

1-1631

deal

Examples Example 1 — Assign Data From a Cell Array

Use deal to copy the contents of a 4-element cell array into four
separate output variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

b =
1
1
1

c =
1 0 0
0 1 0
0 0 1

d =
0
0
0

Example 2 — Assign Data From Structure Fields

Use deal to obtain the contents of all the name fields in a structure
array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =
Pat

1-1632

deal

name2 =
Tony

Example 3 — Doing the Same Without deal

Beginning with MATLAB Version 7.0 software, you can, in most cases,
access the contents of cell arrays and structure fields without using
the deal function. The two commands shown below perform the same
operation as those used in the previous two examples, except that these
commands do not require deal.

[a,b,c,d] = C{:}
[name1,name2] = A(:).name

See Also cell | iscell | celldisp | struct | isstruct | fieldnames |
isfield | orderfields | rmfield | cell2struct | struct2cell

1-1633

deblank

Purpose Strip trailing blanks from end of string

Syntax str = deblank(str)
c = deblank(c)

Description str = deblank(str) removes all trailing whitespace and null
characters from the end of character string str. A whitespace is any
character for which the isspace function returns logical 1 (true).

c = deblank(c) when c is a cell array of strings, applies deblank to
each element of c.

The deblank function is useful for cleaning up the rows of a character
array.

Examples Example 1 – Removing Trailing Blanks From a String

Compose a string str that contains space, tab, and null characters:

NL = char(0); TAB = char(9);
str = [NL 32 TAB NL 'AB' 32 NL 'CD' NL 32 TAB NL 32];

Display all characters of the string between | symbols:

['|' str '|']
ans =

| AB CD |

Remove trailing whitespace and null characters, and redisplay the
string:

newstr = deblank(str);

['|' newstr '|']
ans =

| AB CD|

1-1634

deblank

Example 2– Removing Trailing Blanks From a Cell Array of
Strings

Create a 2-by-2 cell array in which each cell contains a word with
trailing blanks:

A{1,1} = 'MATLAB ';
A{1,2} = 'SIMULINK ';
A{2,1} = 'Toolboxes ';
A{2,2} = 'MathWorks '
A =

'MATLAB ' 'SIMULINK '
'Toolboxes ' 'MathWorks '

Remove the trailing blanks and redisplay the cell array:

A = deblank(A);

A
A =

'MATLAB' 'SIMULINK'
'Toolboxes' 'MathWorks'

See Also strjust | strtrim

1-1635

dec2base

Purpose Convert decimal to base N number in string

Syntax str = dec2base(d, base)
str = dec2base(d, base, n)

Description str = dec2base(d, base) converts the nonnegative integer d to the
specified base. d must be a nonnegative integer smaller than 2^52, and
base must be an integer between 2 and 36. The returned argument
str is a string.

str = dec2base(d, base, n) produces a representation with at least
n digits.

Examples The expression dec2base(23, 2) converts 2310 to base 2, returning
the string '10111'.

See Also base2dec

1-1636

dec2bin

Purpose Convert decimal to binary number in string

Syntax str = dec2bin(d)
str = dec2bin(d,n)

Description returns the

str = dec2bin(d) binary representation of d as a string. d must be a
nonnegative integer smaller than 2^52.

str = dec2bin(d,n) produces a binary representation with at least n
bits.

The output of dec2bin is independent of the endian settings of the
computer you are using.

Examples Decimal 23 converts to binary 010111:

dec2bin(23)
ans =

10111

See Also bin2dec | dec2hex

1-1637

dec2hex

Purpose Convert decimal to hexadecimal number in string

Syntax str = dec2hex(d)
str = dec2hex(d, n)

Description str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative
integer smaller than 2^52. MATLAB converts noninteger inputs, such
as those of class double or char, to their integer equivalents before
converting to hexadecimal.

str = dec2hex(d, n) produces a hexadecimal representation with
at least n digits.

Examples To convert decimal 1023 to hexadecimal,

dec2hex(1023)
ans =

3FF

dec2hex(1023, 6)
ans =
0003FF

Convert 2-by-5 array A to hexadecimal:

A = [3487, 125, 8997, 1433, 189; ...
771, 84832, 118, 9366, 212];

A(:) dec2hex(A)
ans = ans =

3487 00D9F
771 00303
125 0007D

84832 14B60
8997 02325
118 00076

1433 00599

1-1638

dec2hex

9366 02496
189 000BD
212 000D4

See Also dec2bin | format | hex2dec | hex2num

1-1639

decic

Purpose Compute consistent initial conditions for ode15i

Syntax [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
[y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options)
[y0mod,yp0mod,resnrm] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0...)

Description [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
uses the inputs y0 and yp0 as initial guesses for an iteration to find

output values that satisfy the requirement f t y yp(, mod, mod)0 0 0 0 ,
i.e., y0mod and yp0mod are consistent initial conditions. odefun is a
function handle. The function decic changes as few components of
the guesses as possible. You can specify that decic holds certain
components fixed by setting fixed_y0(i) = 1 if no change is
permitted in the guess for y0(i) and 0 otherwise. decic interprets
fixed_y0 = [] as allowing changes in all entries. fixed_yp0 is
handled similarly.

“Parameterizing Functions” explains how to provide additional
parameters to the function odefun, if necessary.

You cannot fix more than length(y0) components. Depending on the
problem, it may not be possible to fix this many. It also may not be
possible to fix certain components of y0 or yp0. It is recommended that
you fix no more components than necessary.

[y0mod,yp0mod] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options) computes
as above with default tolerances for consistent initial conditions,
AbsTol and RelTol, replaced by the values in options, a structure
you create with the odeset function.

[y0mod,yp0mod,resnrm] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0...) returns the
norm of odefun(t0,y0mod,yp0mod) as resnrm. If the norm seems
unduly large, use options to decrease RelTol (1e-3 by default).

Examples The files, ihb1dae.m and iburgersode.m, provide examples which use
decic to solve implicit ODEs.

1-1640

decic

See Also ode15i | odeget | odeset | function_handle

1-1641

deconv

Purpose Deconvolution and polynomial division

Syntax [q,r] = deconv(v,u)

Description [q,r] = deconv(v,u) deconvolves vector u out of vector v, using long
division. The quotient is returned in vector q and the remainder in
vector r such that v = conv(u,q)+r .

If u and v are vectors of polynomial coefficients, convolving them is
equivalent to multiplying the two polynomials, and deconvolution is
polynomial division. The result of dividing v by u is quotient q and
remainder r.

Examples If

u = [1 2 3 4]
v = [10 20 30]

the convolution is

c = conv(u,v)
c =

10 40 100 160 170 120

Use deconvolution to recover u:

[q,r] = deconv(c,u)
q =

10 20 30
r =

0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.

Algorithms deconv uses the filter primitive.

See Also conv | residue

1-1642

del2

Purpose Discrete Laplacian

Syntax L = del2(U)
L = del2(U,h)
L = del2(U,h1,...,hN)

Description L = del2(U) returns a discrete approximation of Laplace’s differential
operator applied to U using the default spacing, h = 1, between all
points.

L = del2(U,h) specifies a uniform, scalar spacing, h, between points in
all dimensions of U.

L = del2(U,h1,...,hN) specifies the spacing, h1,...,hN, between
points in each corresponding dimension of U. For each dimension,
specify the spacing as a scalar or a vector of coordinates. The number of
spacing inputs must equal the number of dimensions in U.

Input
Arguments

U - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

Data Types
single | double
Complex Number Support: Yes

h - Spacing in all dimensions
1 (default) | scalar

Spacing in all dimensions, specified as 1 (default), or a scalar.

Data Types
single | double
Complex Number Support: Yes

h1,...,hN - Spacing in each dimension

1-1643

del2

scalars | vectors

Spacing in each dimension, specified as scalars or vectors. The number
of spacing inputs must be equal to the number of dimensions in U. Each
spacing input defines the spacing between points in the corresponding
dimension of U:

• Use a scalar to specify a uniform spacing.

• Use a vector to specify a nonuniform spacing. The coordinate vector
gives the position of each point and must have the same number of
elements as the corresponding dimension of U (a one-to-one match of
coordinates and points).

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

L - Discrete Laplacian approximation
vector | matrix | multidimensional array

Discrete Laplacian approximation, returned as a vector, matrix, or
multidimensional array. L is the same size as the input, U.

Examples Second Derivative of Vector

Calculate the acceleration of an object from a vector of position data.

Create a vector of position data.

p = [1 3 6 10 16 18 29];

To find the acceleration of the object, use del2 to calculate the second
numerical derivative of p. Use the default spacing h = 1 between data
points.

L = 4*del2(p)

L =

1-1644

del2

1 1 1 2 -4 9 22

Each value of L is an approximation of the instantaneous acceleration
at that point.

Second Derivative of Cosine Vector

Calculate the discrete 1-D Laplacian of a cosine vector.

Define the domain of the function.

x = linspace(-2*pi,2*pi);

This produces 100 evenly spaced points in the range .

Create a vector of cosine values in this domain.

U = cos(x);

Calculate the Laplacian of U using del2. Use the domain vector x to
define the 1-D coordinate of each point in U.

L = 4*del2(U,x);

Analytically, the Laplacian of this function is equal to .

Plot the results.

plot(x,U,x,L);legend('U(x)','L(x)','Location','Best')

1-1645

del2

The graph of U and L agrees with the analytic result for the Laplacian.

Laplacian of Multivariate Function

Calculate and plot the discrete Laplacian of a multivariate function.

Define the x and y domain of the function.

[x,y] = meshgrid(-5:0.25:5,-5:0.25:5);

Define the function over this domain.

1-1646

del2

U = 1/3.*(x.^4+y.^4);

Calculate the Laplacian of this function using del2. The spacing
between the points in U is equal in all directions, so you can specify
a single spacing input, h.

h = 0.25;
L = 4*del2(U,h);

Analytically, the Laplacian of this function is equal to
.

Plot the discrete Laplacian, L.

figure;hold on;grid on;
title('Plot of $\Delta U(x,y) = 4x^2+4y^2$','Interpreter','latex')
xlabel('x'); ylabel('y'); zlabel('z');
surf(x,y,L);
view(35,14)

1-1647

del2

The graph of L agrees with the analytic result for the Laplacian.

Laplacian of Natural Logarithm Function

Calculate the discrete Laplacian of a natural logarithm function.

Define the x and y domain of the function on a grid of real numbers.

[x,y] = meshgrid(-5:5,-5:0.5:5);

Define the function over this domain.

1-1648

del2

U = 0.5*log(x.^2.*y);

The logarithm is complex-valued when the argument y is negative.

Use del2 to calculate the discrete Laplacian of this function. Specify
the spacing between grid points in each direction.

hx = 1;
hy = 0.5;
L = 4*del2(U,hx,hy);

Analytically, the Laplacian is equal to .
This function is not defined on the lines or .

Plot the real parts of U and L on the same graph.

figure;hold on;grid on;
title('Plot of U(x,y) and Δ U(x,y)','Interpreter','latex')
xlabel('x'); ylabel('y'); zlabel('z');
surf(x,y,real(L)); surf(x,y,real(U));
view(41,58)

1-1649

del2

The top surface is U and the bottom surface is L.

Definitions Laplace’s differential operator

If a matrix U is a function U(x,y) that is evaluated at the points of a
square grid, then 4*del2(U) is a finite difference approximation of
Laplace’s differential operator applied to U,

1-1650

del2

L
U U

x

U

y

4

1
4

2

2

2

2
.

For functions of more variables, U(x,y,z,...), the discrete Laplacian
del2(U) calculates second-derivatives in each dimension,

L
U
N N

U

x

U

y

U

z

2

1
2

2

2

2

2

2

2
... ,

where N is the number of dimensions in U and N 2 .

Algorithms If the input U is a matrix, the interior points of L are found by taking the
difference between a point in U and the average of its four neighbors:

L
u

u
u u u

ij
i j i j i j i j

i j
ji

 1 1 1 1

4
, , , ,

, .

Then, del2 calculates the values on the edges of L by linearly
extrapolating the second differences from the interior. This formula is
extended for multidimensional U.

See Also diff | gradient

1-1651

DelaunayTri

Superclasses TriRep

Purpose (Will be removed) Delaunay triangulation in 2-D and 3-D

Note DelaunayTri will be removed in a future release. Use
delaunayTriangulation instead.

Description DelaunayTri creates a Delaunay triangulation object from a set of
points. You can incrementally modify the triangulation by adding or
removing points. In 2-D triangulations you can impose edge constraints.
You can perform topological and geometric queries, and compute the
Voronoi diagram and convex hull.

Definitions The 2-D Delaunay triangulation of a set of points is the triangulation
in which no point of the set is contained in the circumcircle for any
triangle in the triangulation. The definition extends naturally to higher
dimensions.

Construction DelaunayTri (Will be removed) Construct
Delaunay triangulation

Methods convexHull (Will be removed) Convex hull

inOutStatus (Will be removed) Status of
triangles in 2-D constrained
Delaunay triangulation

nearestNeighbor (Will be removed) Point closest to
specified location

1-1652

DelaunayTri

pointLocation (Will be removed) Simplex
containing specified location

voronoiDiagram (Will be removed) Voronoi
diagram

Inherited methods

baryToCart (Will be removed) Convert point
coordinates from barycentric to
Cartesian

cartToBary (Will be removed) Convert point
coordinates from cartesian to
barycentric

circumcenters (Will be removed) Circumcenters
of specified simplices

edgeAttachments (Will be removed) Simplices
attached to specified edges

edges (Will be removed) Triangulation
edges

faceNormals (Will be removed) Unit normals
to specified triangles

featureEdges (Will be removed) Sharp edges of
surface triangulation

freeBoundary (Will be removed) Facets
referenced by only one simplex

incenters (Will be removed) Incenters of
specified simplices

isEdge (Will be removed) Test if vertices
are joined by edge

neighbors (Will be removed) Simplex
neighbor information

1-1653

DelaunayTri

size (Will be removed) Size of
triangulation matrix

vertexAttachments (Will be removed) Return
simplices attached to specified
vertices

Properties Constraints Constraints is a numc-by-2 matrix that defines
the constrained edge data in the triangulation,
where numc is the number of constrained edges.
Each constrained edge is defined in terms of its
endpoint indices into X.

The constraints can be specified when the
triangulation is constructed or can be imposed
afterwards by directly editing the constraints
data.

This feature is only supported for 2-D
triangulations.

X The dimension of X is mpts-by-ndim, where
mpts is the number of points and ndim is the
dimension of the space where the points reside.
If column vectors of x,y or x,y,z coordinates are
used to construct the triangulation, the data is
consolidated into a single matrix X.

Triangulation Triangulation is a matrix representing the set
of simplices (triangles or tetrahedra etc.) that
make up the triangulation. The matrix is of size
mtri-by-nv, where mtri is the number of simplices
and nv is the number of vertices per simplex.
The triangulation is represented by standard
simplex-vertex format; each row specifies a
simplex defined by indices into X, where X is the
array of point coordinates.

1-1654

DelaunayTri

Instance
Hierarchy

DelaunayTri is a subclass of TriRep.

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

See Also scatteredInterpolant | triangulation | delaunayTriangulation

1-1655

DelaunayTri

Purpose (Will be removed) Construct Delaunay triangulation

Note DelaunayTri will be removed in a future release. Use
delaunayTriangulation instead.

Syntax DT = DelaunayTri()
DT = DelaunayTri(X)
DT = DelaunayTri(x,y)
DT = DelaunayTri(x,y,z)
DT = DelaunayTri(..., C)

Description DT = DelaunayTri() creates an empty Delaunay triangulation.

DT = DelaunayTri(X), DT = DelaunayTri(x,y) and DT =
DelaunayTri(x,y,z) create a Delaunay triangulation from a set of
points. The points can be specified as an mpts-by-ndim matrix X, where
mpts is the number of points and ndim is the dimension of the space
where the points reside, where ndim is 2 or 3. Alternatively, the points
can be specified as column vectors (x,y) or (x,y,z) for 2-D and 3-D
input.

DT = DelaunayTri(..., C) creates a constrained Delaunay
triangulation. The edge constraints C are defined by an numc-by-2
matrix, numc being the number of constrained edges. Each row of C
defines a constrained edge in terms of its endpoint indices into the point
set X. This feature is only supported for 2-D triangulations.

Definitions The 2-D Delaunay triangulation of a set of points is the triangulation
in which no point of the set is contained in the circumcircle for any
triangle in the triangulation. The definition extends naturally to higher
dimensions.

Examples Compute the Delaunay triangulation of twenty random points located
within a unit square.

x = rand(20,1);

1-1656

DelaunayTri

y = rand(20,1);
dt = DelaunayTri(x,y)
triplot(dt);

For more examples, type help demoDelaunayTri at the MATLAB
command-line prompt.

See Also scatteredInterpolant | triangulation | delaunayTriangulation

1-1657

delaunay

Purpose Delaunay triangulation

Note Qhull-specific options are no longer supported. Remove the
OPTIONS argument from all instances in your code that pass it to
delaunay.

Syntax TRI = delaunay(X,Y)
TRI = delaunay(X,Y,Z)
TRI = delaunay(X)

Definitions delaunay creates a Delaunay triangulation of a set of points in 2-D or
3-D space. A 2-D Delaunay triangulation ensures that the circumcircle
associated with each triangle contains no other point in its interior.
This definition extends naturally to higher dimensions.

Description TRI = delaunay(X,Y) creates a 2-D Delaunay triangulation of the
points (X,Y), where X and Y are column-vectors. TRI is a matrix
representing the set of triangles that make up the triangulation. The
matrix is of size mtri-by-3, where mtri is the number of triangles.
Each row of TRI specifies a triangle defined by indices with respect to
the points.

TRI = delaunay(X,Y,Z) creates a 3-D Delaunay triangulation of the
points (X,Y,Z), where X, Y, and Z are column-vectors. TRI is a matrix

1-1658

delaunay

representing the set of tetrahedra that make up the triangulation. The
matrix is of size mtri-by-4, where mtri is the number of tetrahedra.
Each row of TRI specifies a tetrahedron defined by indices with respect
to the points.

TRI = delaunay(X) creates a 2-D or 3-D Delaunay triangulation from
the point coordinates X. This variant supports the definition of points in
matrix format. X is of size mpts-by-ndim, where mpts is the number of
points and ndim is the dimension of the space where the points reside,
2 ndim 3. The output triangulation is equivalent to that of the
dedicated functions supporting the 2-input or 3-input calling syntax.

delaunay produces an isolated triangulation, useful for applications
like plotting surfaces via the trisurf function. If you wish to query the
triangulation; for example, to perform nearest neighbor, point location,
or topology queries, use delaunayTriangulation instead.

Visualization Use one of these functions to plot the output of delaunay:

triplot Displays the triangles defined in the m-by-3 matrix
TRI.

trisurf Displays each triangle defined in the m-by-3 matrix
TRI as a surface in 3-D space. To see a 2-D surface,
you can supply a vector of some constant value for the
third dimension. For example

trisurf(TRI,x,y,zeros(size(x)))

1-1659

delaunay

trimesh Displays each triangle defined in the m-by-3 matrix
TRI as a mesh in 3-D space. To see a 2-D surface, you
can supply a vector of some constant value for the
third dimension. For example,

trimesh(TRI,x,y,zeros(size(x)))

produces almost the same result as triplot, except
in 3-D space.

tetramesh Plots a triangulation composed of tetrahedra.

Examples Plot Delaunay Triangulation

Plot the Delaunay triangulation of a large dataset.

load seamount
tri = delaunay(x,y);
trisurf(tri,x,y,z);

1-1660

delaunay

See Also delaunayTriangulation | scatteredInterpolant | plot | triplot |
trimesh | trisurf

1-1661

delaunayn

Purpose N-D Delaunay triangulation

Syntax T = delaunayn(X)
T = delaunayn(X, options)

Description T = delaunayn(X) computes a set of simplices such that no data points
of X are contained in any circumspheres of the simplices. The set
of simplices forms the Delaunay triangulation. X is an m-by-n array
representing m points in n-dimensional space. T is a numt-by-(n+1)
array where each row contains the indices into X of the vertices of the
corresponding simplex.

T = delaunayn(X, options) specifies a cell array of strings options.
The default options are:

• {'Qt','Qbb','Qc'} for 2- and 3-dimensional input

• {'Qt','Qbb','Qc','Qx'} for 4 and higher-dimensional input

If options is [], the default options used. If options is {''}, no options
are used, not even the default.

Visualization Plotting the output of delaunayn depends of the value of n:

• For n = 2, use triplot, trisurf, or trimesh as you would for
delaunay.

• For n = 3, use tetramesh.

For more control over the color of the facets, use patch to plot the
output.

• You cannot plot delaunayn output for n > 3.

Examples 3-D Delaunay Triangulation

This example generates an n-dimensional Delaunay triangulation,
where n = 3.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube

1-1662

delaunayn

x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =

4 3 9 1
4 9 2 1
7 9 3 1
7 5 9 1
7 9 4 3
7 8 4 9
6 2 9 1
6 9 5 1
6 4 9 2
6 4 8 9
6 9 7 5
6 8 7 9

You can use tetramesh to visualize the tetrahedrons that form the
corresponding simplex. camorbit rotates the camera position to provide
a meaningful view of the figure.

tetramesh(Tes,X);camorbit(20,0)

1-1663

delaunayn

See Also delaunayTriangulation | convhulln | tetramesh | voronoin |
camorbit

1-1664

delaunayTriangulation

Superclasses triangulation

Purpose Delaunay triangulation in 2-D and 3-D

Description Use the delaunayTriangulation class to create a 2-D or 3-D
triangulation from a set of points. When your points are in 2-D, you can
specify edge constraints .

You can perform a variety of topological and geometric queries on a
delaunayTriangulation, including any triangulation query. For
example, locate a facet that contains a specific point, find the vertices of
the convex hull, or compute the Voronoi Diagram.

Construction DT = delaunayTriangulation(P) creates a Delaunay triangulation
from the points in P. Matrix P has 2 or 3 columns, depending on whether
your points are in 2-D or 3-D space.

DT = delaunayTriangulation(P,C) specifies the edge constraints in
matrix C. In this case, P specifies points in 2-D. Each row of C defines
the start and end vertex IDs of a constrained edge.

DT = delaunayTriangulation(x,y) creates a 2-D Delaunay
triangulation from the point coordinates in the column vectors, x and y.

DT = delaunayTriangulation(x,y,C) specifies the edge constraints
in matrix C.

DT = delaunayTriangulation(x,y,z) creates a 3-D Delaunay
triangulation from the point coordinates in the column vectors, x, y,
and z.

DT = delaunayTriangulation() creates an empty Delaunay
triangulation.

Input Arguments

P

1-1665

delaunayTriangulation

Input points, specified as a matrix whose columns are the x, y,
(and possibly z) coordinates of the triangulation points. The row
numbers of P are the vertex IDs in the triangulation.

x

x-coordinates vector, specified as a column vector containing the
x-coordinates of the triangulation points.

y

y-coordinates vector, specified as a column vector containing the
y-coordinates of the triangulation points.

z

z-coordinates vector, specified as a column vector containing the
z-coordinates of the triangulation points.

C

Vertex IDs of constrained edges, specified as a 2-column matrix.
Each row of C corresponds to a constrained edge and contains
two IDs:

• C(j,1) is the ID of the vertex at the start of an edge.

• C(j,2) is the ID of the vertex at end of the edge.

You can specify edge constraints for 2-D triangulations only.

Properties Points

Points in the triangulation, represented as a matrix containing
the following information:

• Each row in DT.Points contains the coordinates of a vertex.

• Each row number of DT.Points is a vertex ID.

ConnectivityList

1-1666

delaunayTriangulation

Triangulation connectivity list, represented as a matrix. This
matrix contains the following information:

• Each row represents a triangle or tetrahedron in the
triangulation.

• Each row number of DT.ConnectivityList is a “Triangle or
Tetrahedron ID” on page 1-1669.

• Each element is a vertex ID.

Constraints

Constrained edges, represented as a two-column matrix of vertex
IDs. Each row of DT.Constraints corresponds to a constrained
edge and contains two IDs:

• DT.Constraints(j,1) is the ID of the vertex at the start of
an edge.

• DT.Constraints(j,2) is the ID of the vertex at end of the edge.

DT.Constraints is an empty matrix when the triangulation has
no constrained edges.

Methods
convexHull Convex hull

isInterior Test if triangle is in interior
of 2-D constrained Delaunay
triangulation

nearestNeighbor Vertex closest to specified location

pointLocation Triangle or tetrahedron
containing specified location

voronoiDiagram Voronoi diagram

1-1667

delaunayTriangulation

Inherited Methods

barycentricToCartesian Converts point coordinates from
barycentric to Cartesian

cartesianToBarycentric Converts point coordinates from
Cartesian to barycentric

circumcenter Circumcenter of triangle or
tetrahedron

edgeAttachments Triangles or tetrahedra attached
to specified edge

edges Triangulation edges

faceNormal Triangulation face normal

featureEdges Triangulation sharp edges

freeBoundary Triangulation facets referenced
by only one triangle or
tetrahedron

incenter Incenter of triangle or
tetrahedron

isConnected Test if two vertices are connected
by edge

neighbors Neighbors to specified triangle or
tetrahedron

size Size of triangulation connectivity
list

vertexAttachments Triangles or tetrahedra attached
to specified vertex

vertexNormal Triangulation vertex normal

1-1668

delaunayTriangulation

Definitions Delaunay Triangulation

In a 2-D Delaunay triangulation, the circumcircle associated with each
triangle does not contain any points in its interior. Similarly, a 3-D
Delaunay triangulation does not have any points in the interior of the
circumsphere associated with each tetrahedron. This definition extends
to N-D, although delaunayTriangulation supports only 2-D and 3-D.

Vertex ID

A row number of the matrix, DT.Points. Use this ID to refer a specific
vertex in the triangulation.

Triangle or Tetrahedron ID

A row number of the matrix, DT.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples 2-D Delaunay Triangulation

Create a 2-D delaunayTriangulation for 30 random points.

P = gallery('uniformdata',[30 2],0);
DT = delaunayTriangulation(P)

DT =

delaunayTriangulation with properties:

Points: [30x2 double]
ConnectivityList: [50x3 double]

Constraints: []

Plot the triangulation.

1-1669

delaunayTriangulation

figure
triplot(DT)

3-D Delaunay Triangulation

Create a 3-D delaunayTriangulation for 30 random points.

x = gallery('uniformdata',[30 1],0);
y = gallery('uniformdata',[30 1],1);
z = gallery('uniformdata',[30 1],2);

1-1670

delaunayTriangulation

DT = delaunayTriangulation(x,y,z)

DT =

delaunayTriangulation with properties:

Points: [30x3 double]
ConnectivityList: [111x4 double]

Constraints: []

Plot the triangulation at 30% opacity with a light blue face color.

faceColor = [0.6875 0.8750 0.8984];
figure
tetramesh(DT,'FaceColor',faceColor,'FaceAlpha',0.3);

1-1671

delaunayTriangulation

See Also triangulation | delaunay | delaunayn |

1-1672

delaunayTriangulation.convexHull

Purpose Convex hull

Syntax K = convexHull(DT)
[K,v] = convexHull(DT)

Description K = convexHull(DT) returns the vertices of the convex hull.

[K,v] = convexHull(DT) also returns the area or volume bounded
by the convex hull.

Input
Arguments

DT

A Delaunay triangulation, see delaunayTriangulation.

Output
Arguments

K

Convex hull vertices, returned as a matrix of vertex IDs. The
shape of K depends on whether your triangulation is 2-D or 3-D:

• When DT is 2-D, K is a column vector containing the sequence of
vertex IDs around the convex hull.

• When DT is 3-D, K is a triangulation connectivity list containing
the triangles on the convex hull.

v

Area or volume bounded by the convex hull, returned as a scalar
value.

Definitions Vertex ID

A row number of the matrix, DT.Points. Use this ID to refer a specific
vertex in the triangulation.

Examples Convex Hull in 2-D Space

Create a Delaunay triangulation from a set of random points.

1-1673

delaunayTriangulation.convexHull

x = gallery('uniformdata',[10,1],0);
y = gallery('uniformdata',[10,1],1);
DT = delaunayTriangulation(x,y);

Calculate the convex hull.

k = convexHull(DT)

k =

1
3
2
8
9
1

Plot the points and highlight the convex hull in red.

plot(DT.Points(:,1),DT.Points(:,2), '.','markersize',10);
hold on;
plot(DT.Points(k,1),DT.Points(k,2),'r');
hold off;

1-1674

delaunayTriangulation.convexHull

Convex Hull in 3-D Space

Use convexHull to calculate the convex hull of a set of random points
within a unit cube.

Create a Delaunay triangulation from a set of random points.

P = gallery('uniformdata',[25,3],1);
DT = delaunayTriangulation(P);

1-1675

delaunayTriangulation.convexHull

Calculate the convex hull and the volume bounded by the convex hull.

[K,v] = convexHull(DT);

Examine the volume.

v

v =

0.3561

Plot the convex hull.

trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
'FaceColor','cyan')

1-1676

delaunayTriangulation.convexHull

See Also triangulation | convhulln | convhull | voronoiDiagram

1-1677

delaunayTriangulation.isInterior

Purpose Test if triangle is in interior of 2-D constrained Delaunay triangulation

Syntax tf = isInterior(DT)

Description tf = isInterior(DT) returns an array of logical values that
indicate whether the triangles in a constrained Delaunay
triangulation are inside the bounded geometric domain. A triangle,
DT.ConnectivityList(j,:), is classified as inside the domain when
tf(j) is true. Otherwise, the triangle is outside the domain.

Input
Arguments

DT

A 2-D delaunayTriangulation that has a set of constrained
edges that define a bounded geometric domain.

Output
Arguments

tf

Logical values, returned as a column vector. Element tf(j) is
true when the triangle whose ID is j is inside the domain of DT.

Definitions Triangle ID

A row number of the matrix, DT.ConnectivityList. You use this ID
to refer a specific triangle.

Examples Find and Plot Triangles within a Boundary

Create a geometric domain whose shape is a square frame.

outerprofile = [-5 -5; -3 -5; -1 -5; 1 -5;
3 -5; 5 -5; 5 -3; 5 -1;
5 1; 5 3; 5 5; 3 5;
1 5; -1 5; -3 5; -5 5;

-5 3; -5 1; -5 -1; -5 -3];

innerprofile = outerprofile.*0.5;
profile = [outerprofile; innerprofile];

1-1678

delaunayTriangulation.isInterior

Define the edge constraints.

outercons = [(1:19)' (2:20)'; 20 1;];
innercons = [(21:39)' (22:40)'; 40 21];
C = [outercons; innercons];

Create the constrained Delaunay triangulation.

DT = delaunayTriangulation(profile,C);

Plot the triangulation.

subplot(1,2,1);
triplot(DT);

% Highlight the inner square in red.
hold on;
plot(DT.Points(innercons',1),DT.Points(innercons',2),...

'-r','LineWidth',2);

% Highlight the outer square in red and resize the |x| and |y| axes to
% the plot square.
plot(DT.Points(outercons',1),DT.Points(outercons',2), ...

'-r','LineWidth', 2);
axis equal;

% Plot only the triangles that lie inside of the domain.
hold off;
subplot(1,2,2);
inside = isInterior(DT);
triplot(DT.ConnectivityList(inside, :),DT.Points(:,1),DT.Points(:,2));

% Highlight the inner and outer squares in red.
hold on;
plot(DT.Points(outercons',1),DT.Points(outercons',2), ...

'-r','LineWidth', 2);
plot(DT.Points(innercons',1),DT.Points(innercons',2), ...

'-r','LineWidth', 2);

1-1679

delaunayTriangulation.isInterior

axis equal;
hold off;

See Also triangulation

1-1680

delaunayTriangulation.nearestNeighbor

Purpose Vertex closest to specified location

Syntax vi = nearestNeighbor(DT,QP)
vi = nearestNeighbor(DT,qx,qy)
vi = nearestNeighbor(DT,qx,qy,qz)
[vi,d] = nearestNeighbor(___)

Description vi = nearestNeighbor(DT,QP) returns the IDs of the vertices closest
to the query points in QP. Each row in matrix QP contains the x, y, (and
possibly z) coordinates of a query point.

vi = nearestNeighbor(DT,qx,qy) specifies the x and y coordinates of
the query points in 2-D as separate column vectors.

vi = nearestNeighbor(DT,qx,qy,qz) specifies the x, y, and z
coordinates of the query points in 3-D as separate column vectors.

[vi,d] = nearestNeighbor(___) also returns the Euclidean distance
between each query point and its nearest neighbor. You can specify
both output arguments with any of the previous syntaxes.

nearestNeighbor does not support constrained Delaunay
triangulations.

Input
Arguments

DT

A Delaunay triangulation, see delaunayTriangulation.

QP

Query points, specified as a matrix whose columns are the x, y,
(and possibly z) coordinates of the points to query.

qx

Query x-coordinates, specified as a column vector containing the
x-coordinates of the points to query.

qy

Query y-coordinates, specified as a column vector containing the
y-coordinates of the points to query.

1-1681

delaunayTriangulation.nearestNeighbor

qz

Query z-coordinates, specified as a column vector containing the
z-coordinates of the points to query.

Output
Arguments

vi

Vertex IDs of nearest neighbor, returned as a column vector.
vi(j) is the “Vertex ID” on page 1-1682 of the nearest neighbor to
the query point QP(j).

d

Distance to nearest neighbor, returned as a column vector the
same length as vi. Each value in d is the Euclidean distance
between a query point and its nearest neighbor.

Definitions Vertex ID

A row number of the matrix, DT.Points. Use this ID to refer a specific
vertex in the triangulation.

Examples Nearest Neighbors of Query Points in 2-D

Create a Delaunay triangulation from a set of random points.

x = gallery('uniformdata',[20 1],0);
y = gallery('uniformdata',[20 1],1);
DT = delaunayTriangulation(x,y);

Define two query points.

QP = [0.25 0.25; 0.5 0.5];

Find the nearest neighbors to the query points and the distances
between them.

[vi,d] = nearestNeighbor(DT,QP);

Examine the vertex IDs of the nearest neighbors.

1-1682

delaunayTriangulation.nearestNeighbor

vi

vi =

10
4

Examine the coordinates of the nearest neighbors.

DT.Points(vi,:)

ans =

0.4447 0.3759
0.4860 0.5982

Examine the Euclidean distance between each query point and its
nearest neighbor.

d

d =

0.2319
0.0992

See Also triangulation | pointLocation

1-1683

delaunayTriangulation.pointLocation

Purpose Triangle or tetrahedron containing specified location

Syntax ti = pointLocation(DT,QP)
ti = pointLocation(DT,qx,qy)
ti = pointLocation(DT,qx,qy,qz)
[ti,B] = pointLocation(___)

Description ti = pointLocation(DT,QP) returns the enclosing triangles or
tetrahedra for each query point in QP. Each row in matrix QP contains
the x, y, (and possibly z) coordinates of a query point.

ti = pointLocation(DT,qx,qy) specifies the x and y coordinates of
the query points in 2-D as separate column vectors.

ti = pointLocation(DT,qx,qy,qz) specifies the x, y, z coordinates of
the query points in 3-D as separate column vectors.

[ti,B] = pointLocation(___) also returns the barycentric
coordinates of each query point with respect to its enclosing triangle or
tetrahedron. You can specify both output arguments with any of the
previous syntaxes.

Input
Arguments

DT

A Delaunay triangulation, see delaunayTriangulation.

QP

Query points, specified as a matrix whose columns are the x, y,
(and possibly z) coordinates of the points to query.

qx

Query x-coordinates, specified as a column vector containing the
x-coordinates of the points to query.

qy

Query y-coordinates, specified as a column vector containing the
y-coordinates of the points to query.

qz

1-1684

delaunayTriangulation.pointLocation

Query z-coordinates, specified as a column vector containing the
z-coordinates of the points to query.

Output
Arguments

ti

IDs of enclosing triangles or tetrahedra, returned as a column
vector. Each element in ti is the ID of a triangle or tetrahedron
that encloses a query point. ti(k) encloses the kth query point.

pointLocation returns NaN values for any points outside the
convex hull.

B

Barycentric coordinates, returned as matrix. The values at
B(j,:) are the barycentric coordinates of the jth query point
with respect to ti(j).

Definitions Triangle or Tetrahedron ID

A row number of the matrix, DT.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Examples Find Enclosing Triangles in 2-D

Create a Delaunay triangulation from a set of random points.

x = gallery('uniformdata',[20 1],0);
y = gallery('uniformdata',[20 1],1);
DT = delaunayTriangulation(x,y);

Define two query points.

QP = [0.25 0.25; 0.5 0.5];

Find the IDs of the enclosing triangles for each query point.

ti = pointLocation(DT,QP)

ti =

1-1685

delaunayTriangulation.pointLocation

8
7

Examine the connectivity of the enclosing triangles.

DT.ConnectivityList(ti,:)

ans =

19 15 8
4 10 6

Find Enclosing Tetrahera and Barycentric Coordinates in 3-D

Create a 3-D Delaunay triangulation from a set of random points.

x = gallery('uniformdata',[20 1],0);
y = gallery('uniformdata',[20 1],1);
z = gallery('uniformdata',[20 1],2);
DT = delaunayTriangulation(x,y,z);

Find the tetrahedra that enclose the query points and calculate the
barycentric coordinates of the query points.

QP = [0.7 0.6 0.3; 0.5 0.5 0.5];
[ti,B] = pointLocation(DT,QP)

ti =

57
56

B =

0.2796 0.0184 0.5286 0.1734
0.3687 0.0149 0.5343 0.0821

1-1686

delaunayTriangulation.pointLocation

See Also triangulation | nearestNeighbor

1-1687

delaunayTriangulation.voronoiDiagram

Purpose Voronoi diagram

Syntax [V,R] = voronoiDiagram(DT)

Description [V,R] = voronoiDiagram(DT) returns the Voronoi vertices, V, and the
Voronoi regions, R, of the points, DT.Points.

The Voronoi diagram of a set of points, such as DT.Points, decomposes
the space around each point, DT.Points(j,:), into a region of influence,
R{j}. Locations within the region, R{j}, are closer to point j than any
other point in DT.Points. The region of influence is called the Voronoi
region. The collection of all the Voronoi regions is the Voronoi diagram.

The Voronoi regions associated with points that lie on the convex hull of
DT.Points are unbounded. Bounding edges of these regions radiate to
infinity. The vertex at infinity is represented by the first vertex in V.

Input
Arguments

DT

A Delaunay triangulation, see delaunayTriangulation.

Output
Arguments

V

Voronoi vertices, returned as a matrix. Each row of V contains the
coordinates of a Voronoi vertex.

R

Voronoi regions, returned as a vector cell array the same
length as DT.Points. The elements of R are row numbers of
V. The coordinates of the Voronoi vertices bounding a region
are V(R{j},:). The Voronoi region associated with the point
DT.Points(j) is R{j}.

Examples Compute the Voronoi Diagram of a 2-D Triangulation

Create a Delaunay triangulation from a set of points.

P = [0.5 0
0 0.5

1-1688

delaunayTriangulation.voronoiDiagram

-0.5 -0.5
-0.2 -0.1
-0.1 0.1
0.1 -0.1
0.1 0.1];

DT = delaunayTriangulation(P);

Calculate the Voronoi vertices and regions.

[V,R] = voronoiDiagram(DT);

Examine the connectivity of the Voronoi region associated with the
third point in the triangulation.

R{3}

ans =

1 10 7 4

Examine the coordinates of the Voronoi vertices bounding the region.

V(R{3},:)

ans =

Inf Inf
0.7000 -1.6500

-0.0500 -0.5250
-1.7500 0.7500

The Inf values indicate that the region contains points on the convex
hull.

See Also triangulation | convexHull | voronoi | voronoin

1-1689

delete

Purpose Remove files or objects

Syntax delete('fileName1', 'filename2', ...)
delete(h)
delete(handle_array)
delete fileName

Description delete('fileName1', 'filename2', ...) deletes the files
fileName1, fileName2, and so on, from the disk. fileName is a string
and can be an absolute path or a path relative to the current folder.
fileName also can include wildcards (*).

delete(h) deletes the graphics object with handle h. h can also be a
vector or matrix of handles. Delete multiple objects by appending their
handles as additional arguments, separated by commas. The function
deletes objects without requesting verification, even if when they are
windows.

delete(handle_array) is a method of the handle class. It removes
from memory the handle objects referenced by handle_array.

When deleted, any references to the objects in handle_array become
invalid. To remove the handle variables, use the clear function.

delete fileName is the command syntax. Delete multiple files by
appending filenames, separated by spaces. When filenames contain
space characters, you must use the functional form.

As delete does not ask for confirmation, to avoid accidentally losing
files or graphics objects, make sure to specify accurately the items to
delete. To move files to a different location when running delete, use
the General preference for Deleting files, or the recycle function.

The delete function deletes files and graphics objects only. To delete
folders, use rmdir.

Examples Delete all files with a .mat extension in the ../mytests/ folder:

delete('../mytests/*.mat')

1-1690

delete

Create a figure and an axes, and then delete the axes:

hf = figure, ha = axes

hf =
1

ha =
170.0332

delete(ha)

The axes is deleted, but the figure remain. The axes handle ha remains
in the workspace but no longer points to an object.

See Also dir | recycle | rmdir

How To •

• “Specify File Names”

• “Deleted Handle Objects”

1-1691

delete (COM)

Purpose Remove COM control or server

Syntax h.delete
delete(h)

Description h.delete releases all interfaces derived from the specified COM server
or control, and then deletes the server or control itself. This is different
from releasing an interface, which releases and invalidates only that
interface.

delete(h) is an alternate syntax.

Tips COM functions are available on Microsoft Windows systems only.

See Also release | save (COM) | load (COM) | actxcontrol | actxserver

1-1692

FTP.delete

Purpose Remove file on FTP server

Syntax delete(ftpobj,filename)

Description delete(ftpobj,filename) removes the specified file from the current
folder on the FTP server associated with ftpobj.

Input
Arguments

ftpobj

FTP object created by ftp.

filename

String enclosed in single quotation marks that specifies the name
of the file to delete.

Examples Suppose that a hypothetical host, ftp.testsite.com, contains
myfile.m. Connect to the server and delete the file:

test=ftp('ftp.testsite.com');
delete(test,'myfile.m');

See Also rmdir | ftp

1-1693

delete (handle)

Purpose Handle object destructor

Syntax delete(h)

Description delete(h) deletes a handle object, but does not clear the handle
variable from the workspace. The handle variable is not valid once
the handle object has been deleted.

A subclass of handle can implement a method named delete to
perform cleanup tasks just before MATLAB destroys the handle object.
MATLAB calls the delete method of any handle object (if it exists)
when the object is destroyed. h is a scalar handle object.

A delete method should not generate errors or create new handles
to the object being destroyed. If the delete method has a different
signature (having output arguments or more than one input argument)
it is not called when the handle objects is destroyed. See “Handle Class
Destructor” information on defining destructors for handle subclasses.

See Also handle | (handle) isvalid

1-1694

delete (serial)

Purpose Remove serial port object from memory

Syntax delete(obj)

Description delete(obj) removes obj from memory, where obj is a serial port
object or an array of serial port objects.

Tips When you delete obj, it becomes an invalid object. Because you cannot
connect an invalid serial port object to the device, you should remove it
from the workspace with the clear command. If multiple references
to obj exist in the workspace, then deleting one reference invalidates
the remaining references.

If obj is connected to the device, it has a Status property value of
open. If you issue delete while obj is connected, then the connection
is automatically broken. You can also disconnect obj from the device
with the fclose function.

Examples This example creates the serial port object s on a Windows platform,
connects s to the device, writes and reads text data, disconnects s from
the device, removes s from memory using delete, and then removes s
from the workspace using clear.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)
delete(s)
clear s

See Also clear | fclose | isvalid | Status

1-1695

deleteproperty

Purpose Remove custom property from COM object

Syntax h.deleteproperty('propertyname')
deleteproperty(h,'propertyname')

Description h.deleteproperty('propertyname') deletes the property specified
in the string propertyname from the custom properties belonging to
object or interface h.

deleteproperty(h,'propertyname') is an alternate syntax.

You can only delete properties created with the addproperty function.

COM functions are available on Microsoft Windows systems only.

Examples Remove a custom property from an instance of the MATLAB sample
control:

1 Create an instance of the control:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

MATLAB displays its properties:

Label: 'Label'
Radius: 20

2 Add a custom property named Position and assign a value:

h.addproperty('Position');
h.Position = [200 120];
h.get

MATLAB displays (in part):

Label: 'Label'
Radius: 20

1-1696

deleteproperty

Position: [200 120]

3 Delete the custom property Position:

h.deleteproperty('Position');
h.get

MATLAB displays the original list of properties:

Label: 'Label'
Radius: 20

See Also addproperty | get (COM) | set (COM) | inspect

1-1697

delevent

Purpose Remove tsdata.event objects from timeseries object

Syntax ts = delevent(ts,event)
ts = delevent(ts,events)
ts = delevent(ts,event,n)

Description ts = delevent(ts,event) removes the tsdata.event object from the
ts.events property, where event is an event name string.

ts = delevent(ts,events) removes the tsdata.event object from the
ts.events property, where events is a cell array of event name strings.

ts = delevent(ts,event,n) removes the nth tsdata.event object
from the ts.events property. event is the name of the tsdata.event
object.

Examples The following example shows how to remove an event from a
timeseries object:

1 Create a time series.

ts = timeseries(rand(5,4))

2 Create an event object called 'test' such that the event occurs at
time 3.

e = tsdata.event('test',3)

3 Add the event object to the time series ts.

ts = addevent(ts,e)

4 Remove the event object from the time series ts.

ts = delevent(ts,'test')

See Also addevent | timeseries | tsdata.event

1-1698

delsamplefromcollection

Purpose Remove sample from tscollection object

Syntax tsc = delsamplefromcollection(tsc,'Index',N)
tsc = delsamplefromcollection(tsc,'Value',Time)

Description tsc = delsamplefromcollection(tsc,'Index',N) deletes samples
from the tscollection object tsc. N specifies the indices of the tsc time
vector that correspond to the samples you want to delete.

tsc = delsamplefromcollection(tsc,'Value',Time) deletes
samples from the tscollection object tsc. Time specifies the time
values that correspond to the samples you want to delete.

See Also addsampletocollection | tscollection

1-1699

demo

Purpose Access product examples in Help browser

Syntax demo
demo type
demo type name

Description demo displays the list of MATLAB examples in the Help browser.

demo type lists the examples for the specified product. Valid values
for type are matlab or simulink.

demo type name lists the examples for products other than MATLAB or
Simulink. Valid values for type include matlab, simulink, toolbox,
or blockset.

Input
Arguments

type - Product name or type
matlab (default) | simulink | toolbox | blockset

Product name or type, specified as one of these strings: matlab,
simulink, toolbox, or blockset. For products other than MATLAB or
Simulink, you must also specify a name input that corresponds to the
product name.

name - Product name other than MATLAB or Simulink
string

Product name other than MATLAB or Simulink, specified as a string. If
name requires multiple words, enclose it in single quotes.

On non-English systems, name sometimes uses the localized language.

Examples MATLAB Examples

demo matlab

Statistics Toolbox™ Examples

demo toolbox statistics

1-1700

demo

Communications System Toolbox™ Examples

demo toolbox 'communications system'

Simulink Control Design™ Examples

demo simulink 'simulink control design'

Tips • To access third-party and custom examples without using the demo
command, open the Help browser and navigate to the documentation
home page. Then, at the bottom of the page, click Supplemental
Software.

See Also echodemo | grabcode | help | doc

1-1701

depdir

Purpose List dependent folders for function or P-file

Note depdir will be removed in a future release. Use
matlab.codetools.requiredFilesAndProducts instead.

Syntax list = depdir('file_name')
[list, prob_files, prob_sym, prob_strings] = depdir('file_name')
[...] = depdir('file_name1', 'file_name2',...)

Description The depdir function lists the folders of all the functions that a specified
function or P-file needs to operate. This function is useful for finding all
the folders that need to be included with a run-time application and for
determining the run-time path.

list = depdir('file_name') creates a cell array of strings containing
the folders of all the function and P-files that file_name.m or
file_name.p uses. This includes the second-level files that are called
directly by file_name, as well as the third-level files that are called by
the second-level files, and so on.

[list, prob_files, prob_sym, prob_strings] =
depdir('file_name') creates three additional cell arrays
containing information about any problems with the depdir
search. prob_files contains filenames that depdir was unable to
parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to
parse.

[...] = depdir('file_name1', 'file_name2',...) performs the
same operation for multiple files. The dependent folders of all files are
listed together in the output cell arrays.

Examples list = depdir('mesh')

See Also matlab.codetools.requiredFilesAndProducts

1-1702

depfun

Purpose List dependencies of function or P-file

Compatibility depfun will be removed in a future release. Use
matlab.codetools.requiredFilesAndProducts instead.

Syntax list = depfun(fun)
[list,builtins] = depfun(fun)
[list,builtins,classes] = depfun(fun)
[list,builtins,classes,prob_files] = depfun(fun)
[list,builtins,classes,prob_files,~,eval_strings]
= depfun(fun)
[list,builtins,classes,prob_files,~,eval_strings,

called_from] = depfun(fun)
[list,builtins,classes,prob_files,~,eval_strings,called_from,

opaque_classes] = depfun(fun)

___ = depfun(fun1,...,funN)

___ = depfun(___ ,option1,...,optionM)

Description list = depfun(fun) returns the paths of MATLAB program files that
fun requires to run, where fun is a function, a P-file, or a figure file for a
user interface. The output list includes second-level functions that fun
calls directly, functions that the second-level functions call, and so on.
The depfun function also displays a report in the Command Window.

1-1703

depfun

Note

• depfun does not always list all dependent files. For example, depfun
does not list files hidden in callbacks or files whose names are
constructed dynamically for evaluation.

• The output list often includes extra files that are not called when the
function is actually evaluated.

• If depfun returns a parse error for any of the required functions,
then the rest of the output of depfun might be incomplete. Correct
the problematic files and invoke depfun again.

[list,builtins] = depfun(fun) returns the built-in functions that
fun requires.

[list,builtins,classes] = depfun(fun) returns the MATLAB
classes that fun requires.

[list,builtins,classes,prob_files] = depfun(fun) returns the
files that depfun cannot parse, find, or access. If there are problematic
files (that is, if prob_files is not empty), then the rest of the output of
depfun might be incomplete. Correct the problematic files, and then
invoke depfun again.

[list,builtins,classes,prob_files,~,eval_strings] =
depfun(fun) returns a list of files that contain calls to eval or related
functions (evalin, feval, or evalc). These calls potentially use
functions that are not in list.

The fifth output argument for depfun is not implemented, and returns
an empty structure array. To request arguments later in the list, use
the tilde symbol (~) as a placeholder. The tilde suppresses the creation
of an extra, empty variable.

1-1704

depfun

[list,builtins,classes,prob_files,~,eval_strings,
called_from] = depfun(fun) returns a cell array of indices that
maps each function in list to the set of functions that call it. That is,
list{called_from{k}} returns the paths to the functions that call
the function in list{k}.

[list,builtins,classes,prob_files,~,eval_strings,called_from,
opaque_classes] = depfun(fun) returns the opaque classes that fun
requires, such as Java or COM classes.

___ = depfun(fun1,...,funN) returns the functions required for
multiple functions fun1,...,funN. You can request any of the outputs
from the previous syntaxes.

___ = depfun(___ ,option1,...,optionM) modifies the output as
described by the specified options. For example, specify '-toponly'
to list only the functions that fun calls directly. You can precede the
options with one or more function names.

Input
Arguments

fun - Function name
string | cell array of strings

Function name, specified as a string or a cell array of strings.

fun must be on the MATLAB path, as determined by the which
function. If the path contains any relative folders, then files in those
folders also will have a relative path in the output.

Example: 'plot.m'

Example: 'plot.m','mesh.m'

Example: {'plot.m','mesh.m'}

Data Types
char | cell

option - Reporting option

1-1705

depfun

'-toponly' | '-verbose' | '-quiet' | '-print' | ...

Reporting option, specified as one of the following strings.

Option Description

'-toponly' Identify only the files used directly by the
specified function(s), fun.

'-verbose' Display additional internal messages.

'-quiet' Display only error and warning messages, and
not a summary report.

'-print',filename Print a full report to the specified file.

'-all' Display all outputs in the report, but return
only the specified output arguments.

'-expand' Include both indices and full paths in an
exported report for the call or called_from
list. Requires the '-print' option. This
information does not appear in the Command
Window report.

'-calltree' Replaces the called_from list with a list of
functions that each file calls, as derived from
the called_from list.

Example: '-print','myreport.txt'

Data Types
char

Output
Arguments

list - Paths to required files
cell array of strings

Paths to required files, returned as a cell array of strings.

builtins - Required MATLAB built-in functions
cell array of strings

Required MATLAB built-in functions, returned as a cell array of strings.

1-1706

depfun

classes - Required MATLAB classes
cell array of strings

Required MATLAB classes, returned as a cell array of strings.

prob_files - Files that depfun cannot parse or access
structure

Files that depfun cannot parse or access, returned as a structure with
these fields:

• name — Path to the file

• listindex — Index of the file in list

• errmsg— Error message that describes the problem

• errid — Error identifier, if present

eval_strings - Files that call evaluation functions
cell array of strings

Files that call evaluation functions, returned as a cell array of strings.

called_from - Indices to files that call each function in list
cell array

Indices to files that call each function in list, returned as a cell
array. Each element of the cell array is a numeric array of indices that
correspond to elements in list. The list and called_from outputs
have the same length.

opaque_classes - Paths to opaque classes
cell array of strings

Paths to opaque classes, such as Java or COM classes, returned as a
cell array of strings.

Examples Identify Required Functions

Identify the MATLAB program files that strtok.m requires to run.

1-1707

depfun

fun = 'strtok.m';
list = depfun(fun);

MATLAB displays a summary report in the Command Window and
stores the list of files in variable list.

Identify Top-Level Dependencies Only

List only the program files that strtok.m calls directly.

fun = 'strtok.m';
list = depfun(fun,'-toponly')

==
depfun report summary:(top only)
--
-> trace list: 2 files (total)

1 files (total arguments)
0 files (arguments off MATLABPATH)
0 files (argument duplicates on MATLABPATH)

--
Notes: 1. Use argument '-quiet' to not print this summary.

2. Use arguments '-print','file' to produce a full
report in file.

3. Use argument '-all' to display all possible
left hand side arguments in the report(s).

==

list =

'matlabroot\toolbox\matlab\strfun\strtok.m'
'matlabroot\toolbox\matlab\strfun\@cell\strtok.m'

Determine Which File Invokes Each Function

One of the functions that strtok.m depends upon is num2cell.
Determine which file in the dependency list calls num2cell.

1-1708

depfun

Identify the functions that strtok.m requires (list) and the files that
invoke each of those functions (called_from).

fun = 'strtok.m';
[list,builtins,classes,prob_files,~,eval_strings,...

called_from] = depfun(fun);

Find the index for num2cell within the dependency list.

num2cell_path = which('num2cell');
num2cell_index = find(ismember(list,num2cell_path))

num2cell_index =
5

Identify the file that calls num2cell.

calls_num2cell = list{called_from{num2cell_index}}

calls_num2cell =
matlabroot\toolbox\matlab\elmat\repmat.m

Concepts • “Identify Program Dependencies”

1-1709

det

Purpose Matrix determinant

Syntax d = det(X)

Description d = det(X) returns the determinant of the square matrix X.

Tips Testing singularity using abs(det(X)) <= tolerance is not
recommended as it is difficult to choose the correct tolerance. The
function cond(X) can check for singular and nearly singular matrices.

Algorithms The determinant is computed from the triangular factors obtained by
Gaussian elimination

[L,U] = lu(A)
s = det(L) % This is always +1 or -1
det(A) = s*prod(diag(U))

Examples The statement A = [1 2 3; 4 5 6; 7 8 9]

produces

A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, so det(A) produces a very small
number. Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular
matrix. Now d = det(A) produces d = 27.

See Also cond | condest | inv | lu | rref | mldivide

1-1710

details

Purpose Display array details

Syntax details(A)

Description details(A) displays detailed information about the array, A.

When A is a MATLAB object array, details displays more information
than the default display. This information includes:

• Fully qualified class name, including package names

• Link to class documentation

• Link to handle class documentation for classes that subclass handle

• List of all properties that have public get access

• List of property values if the array is scalar

• Link to list of public methods

• Link to list of events

• Link to list of all nonhidden superclasses

Input
Arguments

A - Input array
scalar or nonscalar array of any type

Input array, specified as a scalar or nonscalar array of any type. The
details function displays detailed information about this array.

Examples Display Object Details

Display object details for a class that overloads its own object display.
The details function never calls overloaded display methods.
Therefore, you can use this function to obtain information about the
object array in all cases.

Suppose PolyNom is a class that provides a specialized default display
for polynomials. Use details to display information about the object.

Create an object using the polynomial coefficients:

1-1711

details

pn = PolyNom([1,2,3,0,4])

The overloaded disp method displays the code for evaluating the
polynomial:

pn =

x^4 + 2*x^3 + 3*x^2 + 4

Calling the details function provids information about the object:

details(pn)

PolyNom with properties:

coef: [1 2 3 0 4]

Methods

See Also classdef | disp | display

1-1712

detrend

Purpose Remove linear trends

Syntax y = detrend(x)
y = detrend(x,'constant')
y = detrend(x,'linear',bp)

Description detrend removes the mean value or linear trend from a vector or
matrix, usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and
returns it in y. If x is a matrix, detrend removes the trend from each
column.

y = detrend(x,'constant') removes the mean value from vector x or,
if x is a matrix, from each column of the matrix.

y = detrend(x,'linear',bp) removes a continuous, piecewise linear
trend from vector x or, if x is a matrix, from each column of the matrix.
Vector bp contains the indices of the breakpoints between adjacent
linear segments. The breakpoint between two segments is defined as
the data point that the two segments share.

detrend(x,'linear'), with no breakpoint vector specified, is the same
as detrend(x).

Examples sig = [0 1 -2 1 0 1 -2 1 0]; % signal with no linear trend
trend = [0 1 2 3 4 3 2 1 0]; % two-segment linear trend

1-1713

detrend

x = sig+trend; % signal with added trend
y = detrend(x,'linear',5) % breakpoint at 5th element

y =

-0.0000
1.0000

-2.0000
1.0000
0.0000
1.0000

-2.0000
1.0000

-0.0000

Note that the breakpoint is specified to be the fifth element, which is
the data point shared by the two segments.

Algorithms detrend computes the least-squares fit of a straight line (or composite
line for piecewise linear trends) to the data and subtracts the resulting
function from the data. To obtain the equation of the straight-line fit,
use polyfit.

See Also polyfit

1-1714

deval

Purpose Evaluate solution of differential equation problem

Syntax sxint = deval(sol,xint)
sxint = deval(xint,sol)
sxint = deval(sol,xint,idx)
sxint = deval(xint,sol,idx)
[sxint, spxint] = deval(...)

Description sxint = deval(sol,xint) and sxint = deval(xint,sol) evaluate
the solution of a differential equation problem. sol is a structure
returned by one of these solvers:

• An initial value problem solver (ode45, ode23, ode113, ode15s,
ode23s, ode23t, ode23tb, ode15i)

• A delay differential equations solver (dde23, ddesd, or ddensd),

• A boundary value problem solver (bvp4c or bvp5c).

xint is a point or a vector of points at which you want the solution. The
elements of xint must be in the interval [sol.x(1),sol.x(end)]. For
each i, sxint(:,i) is the solution at xint(i).

sxint = deval(sol,xint,idx) and sxint = deval(xint,sol,idx)
evaluate as above but return only the solution components with indices
listed in the vector idx.

[sxint, spxint] = deval(...) also returns spxint, the value of the
first derivative of the polynomial interpolating the solution.

Note For multipoint boundary value problems, the solution obtained
by bvp4c or bvp5c might be discontinuous at the interfaces. For an
interface point xc, deval returns the average of the limits from the left
and right of xc. To get the limit values, set the xint argument of deval
to be slightly smaller or slightly larger than xc.

1-1715

deval

Examples Evaluate van der Pol Equation

This example solves the system y' = vdp1(t,y) using ode45 and plots
the first component of the solution.

Solve the system using ode45.

sol = ode45(@vdp1,[0 20],[2 0]);

Evaluate the first component of the solution at 100 points in the
interval

x = linspace(0,20,100);
y = deval(sol,x,1);

Plot the solution.

plot(x,y)

1-1716

deval

See Also ode45 | ode23 | ode113 | ode15s | ode23s | ode23t | ode23tb |
ode15i | dde23 | ddesd | ddensd | bvp4c | bvp5c

1-1717

diag

Purpose Get diagonal elements or create diagonal matrix

Syntax D = diag(v)
D = diag(v,k)

x = diag(A)
x = diag(A,k)

Description D = diag(v) returns a square diagonal matrix with the elements of
vector v on the main (k=0) diagonal.

D = diag(v,k) places the elements of vector v on the kth diagonal.
k=0 represents the main diagonal, k>0 is above the main diagonal, and
k<0 is below the main diagonal.

x = diag(A) returns a column vector of the main (k=0) diagonal
elements of A.

x = diag(A,k) returns a column vector of the elements on the kth
diagonal of A.

Input
Arguments

v - Diagonal elements
vector

Diagonal elements, specified as a vector. If v is a vector with N elements,
then diag(v,k) is a square matrix of order N+abs(k).

diag([]) returns an empty matrix, [].

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

A - Input matrix
matrix

1-1718

diag

Input matrix, specified as a matrix. diag returns an error if ndims(A)
> 2.

diag([]) returns an empty matrix, [].

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

k - Diagonal number
integer

Diagonal number, specified as an integer. k=0 represents the main
diagonal, k>0 is above the main diagonal, and k<0 is below the main
diagonal.

For an m-by-n matrix, k is in the range () () . m k n1 1

Examples Create Diagonal Matrices

Define a 1-by-5 vector.

v = [2 1 -1 -2 -5];

Use diag to create a matrix with the elements of v on the main diagonal.

1-1719

diag

D = diag(v)

D =

2 0 0 0 0
0 1 0 0 0
0 0 -1 0 0
0 0 0 -2 0
0 0 0 0 -5

The result is a 5-by-5 diagonal matrix.

Create a matrix with the elements of v on the first super diagonal (k=1).

D1 = diag(v,1)

D1 =

0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 -1 0 0
0 0 0 0 -2 0
0 0 0 0 0 -5
0 0 0 0 0 0

The result is a 6-by-6 matrix. When you specify a vector of length n as
an input, diag returns a square matrix of size n+abs(k).

Get Diagonal Elements

Create a random 6-by-6 matrix.

rng(0);
A = randi(10,6)

A =

9 3 10 8 7 8
10 6 5 10 8 1

1-1720

diag

2 10 9 7 8 3
10 10 2 1 4 1
7 2 5 9 7 1
1 10 10 10 2 9

Get the elements on the main diagonal of A.

x = diag(A)

x =

9
6
9
1
7
9

The result is a column vector of the elements on the main diagonal of A.

Get the elements on the first sub diagonal (k=-1) of A.

x1 = diag(A,-1)

x1 =

10
10
2
9
2

The result has one less element than the main diagonal.

Nest calls to diag to generate a new diagonal matrix from the diagonal
elements.

A1 = diag(diag(A))

1-1721

diag

A1 =

9 0 0 0 0 0
0 6 0 0 0 0
0 0 9 0 0 0
0 0 0 1 0 0
0 0 0 0 7 0
0 0 0 0 0 9

The result is a square diagonal matrix with the same main diagonal
elements as A.

Tips • When you specify a vector input, diag returns a square diagonal
matrix. When you specify a matrix input, diag returns a column
vector of diagonal elements.

• The trace of a matrix is equal to sum(diag(A)).

See Also spdiags | tril | triu | isdiag | istril | istriu | blkdiag

1-1722

matlab.unittest.diagnostics

Purpose Summary of classes in MATLAB Diagnostics Interface

Description Use diagnostics to communicate relevant information in the event of a
failure. To add a diagnostic message to a test case, use the diagnostic
argument in any of the matlab.unittest.qualifications methods. The
framework also displays diagnostic messages related to the nature
of the qualification failure. The matlab.unittest.diagnostics package
consists of the following classes:

matlab.unittest.diagnostics.ConstraintDiagnosticDiagnostics specific to
matlab.unittest constraints

matlab.unittest.diagnostics.DiagnosticFundamental interface class for
matlab.unittest diagnostics

matlab.unittest.diagnostics.DisplayDiagnosticDiagnostic using a value’s
displayed output

matlab.unittest.diagnostics.FunctionHandleDiagnosticDiagnostic using a function’s
displayed output

matlab.unittest.diagnostics.StringDiagnosticDiagnostic using string

1-1723

matlab.unittest.diagnostics.ConstraintDiagnostic

Superclasses Diagnostic

Purpose Diagnostics specific to matlab.unittest constraints

Description The ConstraintDiagnostic class provides various textual fields that
are common to most constraints. These fields may be turned on or off
depending on their applicability.

The ConstraintDiagnostic class is a helper class for displaying
diagnostics when using constraints. The ConstraintDiagnostic class
provides custom constraint authors a way to add a common look and feel
to diagnostics produced by the getDiagnosticFor method of constraints.

Constraint diagnostics are displayed in the following order: Description,
Conditions, Actual Value, and Expected Value.

Properties ActVal

The actual value passed to the constraint for testing.

ActValHeader

Header information for the actual value property, ActVal,
specified as a string. The default header is 'Actual Value:'.

Conditions

Formatted list of conditions, specified as a single string. Each
condition starts on a new line and begins with an arrow (-->)
delimiter. Conditions are added to the list using the addCondition
and addConditionsFrom methods.

ConditionsCount

Number of conditions in the condition list. This is a read-only
property generated from the conditions list. The conditions list is
defined in the Conditions property.

Description

General diagnostic information, specified as a string.

1-1724

matlab.unittest.diagnostics.ConstraintDiagnostic

DisplayActVal

Indicator whether to display the actual value property, ActVal,
specified as a boolean. By default, the actual value is not
displayed and the value of this property is false.

DisplayConditions

Indicator of whether to display the Conditions property, specified
as a boolean. By default, the conditions are not displayed and the
value of this property is false. Even if DisplayConditions is set
to true, if there are no conditions on the conditions list, neither
the conditions header or the conditions list are displayed.

DisplayDescription

Indicator of whether to display the Description property,
specified as a boolean. By default, the description is not displayed
and the value of this property is false.

DisplayExpVal

Indicator whether to display the expected value property, ExpVal,
specified as a boolean. By default, the expected value is not
displayed and the value of this property is false.

ExpVal

If applicable, the expected value. This property can be turned off
if the associated constraint does not contain an expected value.

ExpValHeader

Header information for the expected value property, ExpVal,
specified as a string. The default header is 'Expected Value:'.

Inherited Properties

DiagnosticResult

The DiagnosticResult property provides the means by which the
actual diagnostic information is communicated to consumers of

1-1725

matlab.unittest.diagnostics.ConstraintDiagnostic

diagnostics, such as testing frameworks. The property is a string
that is defined during evaluation of the diagnose method.

Methods
addCondition Add condition to condition list

addConditionsFrom Add condition from another
ConstraintDiagnostic to
condition list

getDisplayableString Convert object to string for
display

getPostActValString Returns text to be displayed
following actual value

getPostConditionString Returns text to be displayed
following conditions list

getPostDescriptionString Returns text to be displayed
following description

getPostExpValString Returns text to be displayed
following expected value

getPreDescriptionString Returns text to be displayed prior
to description

Inherited Methods

diagnose Execute diagnostic action

join Join multiple diagnostics into a
single array

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also Diagnostic | matlab.unittest.diagnostics |
matlab.unittest.constraints |

1-1726

matlab.unittest.diagnostics.ConstraintDiagnostic

Concepts

1-1727

matlab.unittest.diagnostics.ConstraintDiagnostic.addCondition

Purpose Add condition to condition list

Syntax addCondition(diag, cond)

Description addCondition(diag, cond) adds the condition, cond, to the condition
list. Add conditions to the condition list one at a time. When the
condition list is displayed, each condition is preceded by an arrow (-->)
delimiter and indented.

Input
Arguments

cond

Condition, specified as a string containing information specific to
the cause of the constraint failure or another Diagnostic instance,
which acts as a “subdiagnostic”.

diag

matlab.unittest.diagnostics.Diagnostic instance.

See Also addConditionsFrom

1-1728

matlab.unittest.diagnostics.ConstraintDiagnostic.addCond

Purpose Add condition from another ConstraintDiagnostic to condition list

Syntax addConditionsFrom(constDiag, otherConstDiag)

Description addConditionsFrom(constDiag, otherConstDiag) adds the
conditions from the ConstraintDiagnostic instance, constDiag, to
the condition list in the Diagnostic instance, diag. This is useful
when a constraints composes another constraint, and needs to use the
conditions produced in the diagnostics of the composed constraint.

Input
Arguments

constDiag

Diagnostic to add conditions to, specified as a
matlab.unittest.diagnostics.ConstraintDiagnostic
instance

otherConstDiag

Diagnostic to add conditions from, specified as a
matlab.unittest.diagnostics.ConstraintDiagnostic
instance

Examples Add Conditions from a Constraint

% This demonstrates a constraint that composes another constraint
% and uses the addConditionsFrom method to utilize the conditions
% from the composed ConstraintDiagnostic.
classdef IsDouble < matlab.unittest.constraints.Constraint

properties(Constant, GetAccess=private)
DoubConst=matlab.unittest.constraints.IsInstanceOf(?double)

end

methods
function tf = satisfiedBy(constraint, actual)

tf = constraint.DoubConst.satisfiedBy(actual);
end
function diag = getDiagnosticFor(constraint, actual)

1-1729

matlab.unittest.diagnostics.ConstraintDiagnostic.addConditions

diag = ConstraintDiagnostic;

% Now add conditions from the IsInstanceOf
% Diagnostic
otherDiag = constraint.DoubConst.getDiagnosticFor(actual);
diag.addConditionsFrom(otherDiag);

% ...
end

end
end

See Also addCondition

1-1730

matlab.unittest.diagnostics.ConstraintDiagnostic.getDispla

Purpose Convert object to string for display

Syntax str = matlab.unittest.diagnostics.ConstraintDiagnostic.getDisplayableS
tring(value)

Description str =
matlab.unittest.diagnostics.ConstraintDiagnostic.getDisplayableS
tring(value) converts the object, obj to a string, str for display in a
diagnostic result. This conversion determines if hotlinks should be
included in the string and truncates large numeric or cell arrays.

Input
Arguments

value

Object of arbitrary class

1-1731

matlab.unittest.diagnostics.ConstraintDiagnostic.getPreDescript

Purpose Returns text to be displayed prior to description

Syntax str = getPreDescriptionString(constDiag)

Description str = getPreDescriptionString(constDiag) returns text to be
displayed prior to the description. This method can be overridden
to inject strings prior to displaying the Description property of
the ConstraintDiagnostic. The location of this text is tied to the
Description property. Its placement relative to other fields is not
guaranteed.

Input
Arguments

constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic
instance.

See Also ConstraintDiagnostic | getPostActValString |
getPostDescriptionString | getPostConditionString |
getPostExpValString

1-1732

matlab.unittest.diagnostics.ConstraintDiagnostic.getPostD

Purpose Returns text to be displayed following description

Syntax str = getPostDescriptionString(constDiag)

Description str = getPostDescriptionString(constDiag) returns text to be
displayed following the description. This method can be overridden
to inject strings subsequent to displaying the Description property
of the ConstraintDiagnostic. The location of this text is tied to the
Description property. Its placement relative to other fields is not
guaranteed.

Input
Arguments

constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic
instance.

See Also ConstraintDiagnostic | getPreDescriptionString
| getPostActValString | getPostConditionString |
getPostExpValString

1-1733

matlab.unittest.diagnostics.ConstraintDiagnostic.getPostCondit

Purpose Returns text to be displayed following conditions list

Syntax str = getPostConditionsString(constDiag)

Description str = getPostConditionsString(constDiag) returns text to be
displayed following the conditions list. This method can be overridden to
inject strings subsequent to displaying the Conditions property of the
ConstraintDiagnostic. The location of this text is tied to the Conditions
property. Its placement relative to other fields is not guaranteed.

Input
Arguments

constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic
instance.

See Also ConstraintDiagnostic | getPreDescriptionString |
getPostDescriptionString | getPostActValString |
getPostExpValString

1-1734

matlab.unittest.diagnostics.ConstraintDiagnostic.getPostA

Purpose Returns text to be displayed following actual value

Syntax str = getPostActualValString(constDiag)

Description str = getPostActualValString(constDiag) returns text to be
displayed following the actual value. This method can be overridden
to inject strings subsequent to displaying the ActVal property of the
ConstraintDiagnostic. The location of this text is tied to the ActVal
property. Its placement relative to other fields is not guaranteed.

Input
Arguments

constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic
instance.

See Also ConstraintDiagnostic | getPreDescriptionString |
getPostDescriptionString | getPostConditionString |
getPostExpValString

1-1735

matlab.unittest.diagnostics.ConstraintDiagnostic.getPostExpVa

Purpose Returns text to be displayed following expected value

Syntax str = getPostExpValString(constDiag)

Description str = getPostExpValString(constDiag) returns text to be displayed
following the expected value. This method can be overridden to
inject strings subsequent to displaying the ExpVal property of the
ConstraintDiagnostic. The location of this text is tied to the ExpVal
property. Its placement relative to other fields is not guaranteed.

Input
Arguments

constDiag

matlab.unittest.diagnostics.ConstraintDiagnostic
instance.

See Also ConstraintDiagnostic | getPreDescriptionString |
getPostDescriptionString | getPostConditionString |
getPostActValString

1-1736

matlab.unittest.diagnostics.Diagnostic

Purpose Fundamental interface class for matlab.unittest diagnostics

Description The Diagnostic interface class is the means by which the
matlab.unittest framework and its clients package diagnostic
information. All diagnostics are derived from Diagnostic, whether
they are user-supplied test diagnostics for an individual comparison or
diagnostics associated with the Constraint used in the comparison.

Classes which derive from Diagnostic encode the diagnostic actions
to be performed. They produce a diagnostic result that is displayed
appropriately by the test running framework. In exchange for meeting
this requirement, any Diagnostic implementation can be used directly
with matlab.unittest qualifications. These qualifications execute the
diagnostic action and store the result to be utilized by the test running
framework.

As a convenience, the framework creates appropriate diagnostic
instances for strings and function handles when they are user supplied
test diagnostics. To retain good performance, these values are only
converted into Diagnostic instances when a qualification failure occurs
or when the test running framework is explicitly observing passing
qualifications. The default test runner does not explicitly observe
passing qualifications.

Properties DiagnosticResult

The DiagnosticResult property provides the means by which the
actual diagnostic information is communicated to consumers of
diagnostics, such as testing frameworks. The property is a string
that is defined during evaluation of the diagnose method.

Methods
diagnose Execute diagnostic action

join Join multiple diagnostics into a
single array

1-1737

matlab.unittest.diagnostics.Diagnostic

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Use Diagnostic Result

import matlab.unittest.constraints.IsEqualTo;

% Create a TestCase for interactive use
testCase = matlab.unittest.TestCase;

% Create StringDiagnostic upon failure
testCase.verifyThat(1, IsEqualTo(2), 'User supplied Diagnostic');

% Create FunctionHandleDiagnostic upon failure
testCase.verifyThat(1, IsEqualTo(2), @() system('ps'));

% Usage of user defined Diagnostic upon failure (see definition below)
testCase.verifyThat(1, IsEqualTo(2), ProcessStatusDiagnostic...

('Could not close my third party application!'));

%%%
% Diagnostic definition
%%%
classdef ProcessStatusDiagnostic < matlab.unittest.diagnostics.Diagnostic

% ProcessStatusDiagnostic - an example diagnostic
%
% Simple example to demonstrate how to create a custom
% diagnostic.

properties

% HeaderText - user-supplied header to display
HeaderText = '(No header supplied)';

end

methods
function diag = ProcessStatusDiagnostic(header)

1-1738

matlab.unittest.diagnostics.Diagnostic

% Constructor - construct a ProcessStatusDiagnostic
%
% The ProcessStatusDiagnostic constructor takes an
% optional header to be displayed along with process
% information.
if (nargin >0)

diag.HeaderText = header;
end

end

function diagnose(diag)

[status processInfo] = system('ps');
if (status ~= 0)

processInfo = sprintf(...
['!!! Could not obtain status diagnostic informati
' [exit status code: %d]\n%s'], status, processInf

end
diag.DiagnosticResult = sprintf('%s\n%s', diag.HeaderText,

processInfo);
end

end

end %classdef

See Also StringDiagnostic | FunctionHandleDiagnostic
| matlab.unittest.diagnostics |
matlab.unittest.plugins.DiagnosticsValidationPlugin |
matlab.unittest.constraints.Constraint

Concepts • “Types of Qualifications”

1-1739

matlab.unittest.diagnostics.Diagnostic.diagnose

Purpose Execute diagnostic action

Syntax diagnose(diag)

Description diagnose(diag) executes diagnostic action for the
matlab.unittest.diagnostics.Diagnostic instance, diag.
The diagnose method is the means by which individual Diagnostic
implementations can perform their respective diagnostic evaluations.
Each concrete implementation is responsible for populating the
DiagnosticResult property of the Diagnostic object. Typically, text
printed to the Command Window during diagnostic evaluation is not
considered part of the diagnostic result and is ignored by the testing
framework.

See Also Diagnostic

1-1740

matlab.unittest.diagnostics.Diagnostic.join

Purpose Join multiple diagnostics into a single array

Syntax diagArray = join(diag1,...,diagN)

Description diagArray = join(diag1,...,diagN) joins multiple diagnostics,
specified by diag1 through diagN, into a single array, diagArray.

Input
Arguments

diag

Diagnostic content, specified as an instance of a Diagnostic
object, a string, a function handle, or an arbitrary type.

Output
Arguments

diagArray

Array of joined diagnostic content.

• If diagN is an object that derives from Diagnostic, it is
included in the array unmodified.

• If diagN is a char, it is formed into a StringDiagnostic and
included in the array.

• If diagN is a function_handle, it is formed into a
FunctionHandleDiagnostic and included in the array.

• If diagN is any other type, it is formed into a DisplayDiagnostic
and included in the array.

Alternatives You can use array concatenation join diagnostics into an array if at least
one of the values is a diagnostic. The join method prevents the need to
have any Diagnostics in the array. Considering the following example.

arbitraryValue = 5;
testCase.verifyThat(false, IsTrue, ...

['should have been true', ...
@() system('ps'), ...
arbitraryValue, ...
MyCustomDiagnostic]);

1-1741

matlab.unittest.diagnostics.Diagnostic.join

Since MyCustomDiagnostic is a Diagnostic, the other values are
correctly converted to diagnostics as well.

Examples Join Diagnostic Content

% The following example creates a diagnostic array of length 4,
% demonstrating standard Diagnostic conversions. Note:
% MyCustomDiagnostic is for example purposes and is not executabl
% code.

import matlab.unittest.diagnostics.Diagnostic;
import matlab.unittest.constraints.IsTrue;

arbitraryValue = 5;
testCase.verifyThat(false, IsTrue, ...

Diagnostic.join(...
'should have been true', ...
@() system('ps'), ...
arbitraryValue, ...
MyCustomDiagnostic))

See Also matlab.mixin.Heterogeneous

1-1742

matlab.unittest.diagnostics.DisplayDiagnostic

Superclasses Diagnostic

Purpose Diagnostic using a value’s displayed output

Description The DisplayDiagnostic class provides a diagnostic result that uses a
value’s displayed output. This output is the same text displayed using
the display function. When the diagnostic information is accessible
through a variable in the current workspace, the DisplayDiagnostic
class is a means to provide quick diagnostic information.

Construction DisplayDiagnostic(diagValue) creates a new DisplayDiagnostic
instance.

Input Arguments

diagValue

The value that the Diagnostic uses to generate diagnostic
information.

The resulting diagnostic information is equivalent to displaying
this value at the MATLAB command prompt. The result is
packaged for consumption by the testing framework, which may
or may not display the information at the command prompt.

Properties Value

The value that the Diagnostic uses to generate diagnostic
information, specified in the diagValue input argument. This
property is read-only.

Inherited Properties

DiagnosticResult

The DiagnosticResult property provides the means by which the
actual diagnostic information is communicated to consumers of
diagnostics, such as testing frameworks. The property is a string
that is defined during evaluation of the diagnose method.

1-1743

matlab.unittest.diagnostics.DisplayDiagnostic

Methods Inherited Methods

diagnose Execute diagnostic action

join Join multiple diagnostics into a
single array

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create DisplayDiagnostic Object

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.diagnostics.DisplayDiagnostic;

testCase = TestCase.forInteractiveUse;

Use a DisplayDiagnostic to display diagnostic information upon test
failure.

testCase.verifyThat(1, IsEqualTo(2), DisplayDiagnostic(inputParser));

Interactive verification failed.

Test Diagnostic:

inputParser with properties:

FunctionName: ''
CaseSensitive: 0
KeepUnmatched: 0

PartialMatching: 1
StructExpand: 1

Parameters: {1x0 cell}

1-1744

matlab.unittest.diagnostics.DisplayDiagnostic

Results: [1x1 struct]
Unmatched: [1x1 struct]

UsingDefaults: {1x0 cell}

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
1

Expected Value:
2

In the test diagnostic section of the output, the output from inputParser
object is the same as MATLAB displays at the command prompt.

See Also FunctionHandleDiagnostic | StringDiagnostic |
matlab.unittest.diagnostics

Concepts

1-1745

matlab.unittest.diagnostics.FunctionHandleDiagnostic

Superclasses Diagnostic

Purpose Diagnostic using a function’s displayed output

Description The FunctionHandleDiagnostic class provides a diagnostic result
using a function’s displayed output. This output is the same as the
text displayed at the command prompt when MATLAB executes
the function handle. When the diagnostic information is accessible
through information displayed as output of the function handle, the
FunctionHandleDiagnostic is a means to provide quick diagnostic
information.

When using matlab.unittest qualifications, a function handle can
be supplied directly as a test diagnostic. In this case, the testing
framework automatically creates a FunctionHandleDiagnostic object.

Construction FunctionHandleDiagnostic(fcnHandle) creates a new
FunctionHandleDiagnostic instance.

Input Arguments

fcnHandle

The function handle that the Diagnostic uses to generate
diagnostic information.

The resulting diagnostic information is equivalent to output
displayed at the MATLAB command prompt. The result is
packaged for consumption by the testing framework, which may
or may not display the information at the command prompt.

Properties Fcn

The function handle that the Diagnostic uses to generate
diagnostic information, specified in the fcnHandle input
argument. This property is read-only.

1-1746

matlab.unittest.diagnostics.FunctionHandleDiagnostic

Inherited Properties

DiagnosticResult

The DiagnosticResult property provides the means by which the
actual diagnostic information is communicated to consumers of
diagnostics, such as testing frameworks. The property is a string
that is defined during evaluation of the diagnose method.

Methods Inherited Methods

diagnose Execute diagnostic action

join Join multiple diagnostics into a
single array

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create FunctionHandleDiagnostic Object

Create a diagnostic result that displays the output of the dir function
when a test fails.

Create a folder in your current working folder.

mkdir('subfolderInCurrentFolder');

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.diagnostics.FunctionHandleDiagnostic;

testCase = TestCase.forInteractiveUse;

Use a FunctionHandleDiagnostic to display diagnostic information
upon test failure.

1-1747

matlab.unittest.diagnostics.FunctionHandleDiagnostic

testCase.verifyThat(1, IsEqualTo(2), FunctionHandleDiagnostic(@dir));

Interactive verification failed.

Test Diagnostic:

. .. subfolderInCurrentFol

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
1

Expected Value:
2

Upon test failure, the diagnostic displays the contents of the current
working folder. In this example output, the folder only contains the
subfolder subfolderInCurrentFolder.

Alternatively, the test framework can create a
FunctionHandleDiagnostic object for you from a function handle input
to the verifyThat qualification.

testCase.verifyThat(1, IsEqualTo(2), @dir);

Interactive verification failed.

Test Diagnostic:

1-1748

matlab.unittest.diagnostics.FunctionHandleDiagnostic

. .. subfolderInCurrent

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
1

Expected Value:
2

The testing framework only creates the FunctionHandleDiagnostic
object as needed, typically only in the event of a test failure.

See Also StringDiagnostic | matlab.unittest.diagnostics |
matlab.unittest.plugins.DiagnosticsValidationPlugin

Concepts

1-1749

matlab.unittest.diagnostics.StringDiagnostic

Superclasses Diagnostic

Purpose Diagnostic using string

Description The StringDiagnostic class provides a diagnostic result that uses
a string. When the diagnostic information is known at the time
of construction, the StringDiagnostic is a means to provide quick
diagnostic information.

When using matlab.unittest qualifications, a string can be supplied
directly as a test diagnostic. In this case, the testing framework
automatically creates a StringDiagnostic object.

Construction StringDiagnostic(diagString) creates a new StringDiagnostic
instance.

Input Arguments

diagString

The string that the Diagnostic uses to generate diagnostic
information.

Properties Inherited Properties

DiagnosticResult

The DiagnosticResult property provides the means by which the
actual diagnostic information is communicated to consumers of
diagnostics, such as testing frameworks. The property is a string
that is defined during evaluation of the diagnose method.

Methods Inherited Methods

diagnose Execute diagnostic action

join Join multiple diagnostics into a
single array

1-1750

matlab.unittest.diagnostics.StringDiagnostic

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create StringDiagnostic Object

Create a test case for interactive testing.

import matlab.unittest.TestCase;
import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.diagnostics.StringDiagnostic;

testCase = TestCase.forInteractiveUse;

Use a StringDiagnostic to display diagnostic information upon test
failure.

testCase.verifyThat(1, IsEqualTo(2), ...
StringDiagnostic('actual was supposed to be equal to expected'));

Interactive verification failed.

Test Diagnostic:

actual was supposed to be equal to expected

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
1

Expected Value:
2

1-1751

matlab.unittest.diagnostics.StringDiagnostic

Alternatively, the test framework can create a StringDiagnostic
object for you from a string input to the verifyThat qualification.

testCase.verifyThat(1, IsEqualTo(2), ...
'actual was supposed to be equal to expected');

Interactive verification failed.

Test Diagnostic:

actual was supposed to be equal to expected

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
1

Expected Value:
2

The testing framework only creates the StringDiagnostic object as
needed, typically only in the event of a test failure.

See Also FunctionHandleDiagnostic | matlab.unittest.diagnostics

Concepts

1-1752

dialog

Purpose Create and display empty dialog box

Syntax h = dialog('PropertyName',PropertyValue,...)

Description h = dialog('PropertyName',PropertyValue,...) returns a handle
to a dialog box. The dialog box is a figure graphics object with properties
recommended for dialog boxes. You can specify any valid figure property
value except DockControls, which is always off.

The following table contains the properties that dialog sets and their
default values.

Property Value

'ButtonDownFcn' 'if isempty(allchild(gcbf)),
close(gcbf), end'

'Colormap' []

'Color' DefaultUicontrolBackgroundColor

'DockControls' 'off'

'HandleVisibility' 'callback'

'IntegerHandle' 'off'

'InvertHardcopy' 'off'

'MenuBar' 'none'

'NumberTitle' 'off'

'PaperPositionMode' 'auto'

'Resize' 'off'

'Visible' 'on'

'WindowStyle' 'modal'

1-1753

dialog

Note By default, the dialog box is modal. A modal dialog box prevents
users from interacting with other windows before responding to the
modal dialog box. For more information, see WindowStyle in the
MATLAB Figure Properties.

The default ButtonDownFcn value causes the dialog box to terminate
itself when a user clicks it, if the dialog box contains no child objects.
Replace the default ButtonDownFcn value with another value or an
empty value if you do not want this behavior. You can do this only from
a script or function if the dialog box is modal (the default WindowStyle).

Any property you can specify for the figure function is valid for the
ButtonDownFcn function.

Examples Default modal dialog box

out = dialog;

Nonmodal dialog box

Create a nonmodal dialog box with a name on its title bar.

out = dialog('WindowStyle', 'normal', 'Name', 'My Dialog');

1-1754

dialog

See Also errordlg | helpdlg | inputdlg | listdlg | msgbox | questdlg |
warndlg | figure | uiwait | uiresume

1-1755

diary

Purpose Save Command Window text to file

Syntax diary
diary('filename')
diary off
diary on
diary filename

Description The diary function creates a log of keyboard input and the resulting
text output, with some exceptions (see “Tips” on page 1-1756 for details).
The output of diary is an ASCII file, suitable for searching in, printing,
inclusion in most reports and other documents. If you do not specify
filename, the MATLAB software creates a file named diary in the
current folder.

diary toggles diary mode on and off. To see the status of diary, type
get(0,'Diary'). MATLAB returns either on or off indicating the
diary status.

diary('filename') writes a copy of all subsequent keyboard input and
the resulting output (except it does not include graphics) to the named
file, where filename is the full pathname or filename is in the current
MATLAB folder. If the file already exists, output is appended to the end
of the file. You cannot use a filename called off or on. To see the name
of the diary file, use get(0,'DiaryFile').

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

diary filename is the unquoted form of the syntax.

Tips Because the output of diary is plain text, the file does not exactly
mirror input and output from the Command Window:

• Output does not include graphics (figure windows).

• Syntax highlighting and font preferences are not preserved.

1-1756

diary

• Hidden components of Command Window output such as hyperlink
information generated with matlab: are shown in plain text. For
example, if you enter the following statement

str = sprintf('%s%s', ...
'', ...
'Generate magic square');

disp(str)

MATLAB displays

However, the diary file, when viewed in a text editor, shows

str = sprintf('%s%s', ...
'', ...
'Generate magic square');

disp(str)
Generate magic square

If you view the output of diary in the Command Window, the
Command Window interprets the <a href ...> statement and
displays it as a hyperlink.

• Viewing the output of diary in a console window might produce
different results compared to viewing diary output in the desktop
Command Window. One example is using the \r option for the
fprintf function; using the \n option might alleviate that problem.

See Also evalc

How To • “Command History”

1-1757

diff

Purpose Differences and Approximate Derivatives

Syntax Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description Y = diff(X) calculates differences between adjacent elements of X
along the first array dimension whose size does not equal 1:

• If X is a vector of length m, then Y = diff(X) returns a vector of
length m-1. The elements of Y are the differences between adjacent
elements of X.

Y = [X(2)-X(1) X(3)-X(2) ... X(m)-X(m-1)]

• If X is a nonempty, nonvector p-by-m matrix, then Y = diff(X)
returns a matrix of size (p-1)-by-m, whose elements are the
differences between the rows of X.

Y = [X(2,:)-X(1,:); X(3,:)-X(2,:); ... X(p,:)-X(p-1,:)]

• If X is a 0-by-0 empty matrix, then Y = diff(X) returns a 0-by-0
empty matrix.

Y = diff(X,n) calculates the nth difference by applying the diff(X)
operator recursively n times. In practice, this means diff(X,2) is the
same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference calculated along the dimension
specified by dim. The dim input is a positive integer scalar.

Input
Arguments

X - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

1-1758

diff

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical
Complex Number Support: Yes

n - Difference order
positive integer scalar | []

Difference order, specified as a positive integer scalar or []. The default
value of n is 1.

It is possible to specify n sufficiently large so that dim reduces to a single
(size(X,dim) = 1) dimension. When this happens, diff continues
calculating along the next array dimension whose size does not equal 1.
This process continues until a 0-by-0 empty matrix is returned.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider a two-dimensional p-by-m input array, A:

• diff(A,1,1) works on successive elements in the columns of A and
returns a (p-1)-by-m difference matrix.

• diff(A,1,2) works on successive elements in the rows of A and
returns a p-by-(m-1) difference matrix.

1-1759

diff

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output
Arguments

Y - Difference array
scalar | vector | matrix | multidimensional array

Difference array, returned as a scalar, vector, matrix, or
multidimensional array. If X is a nonempty array, then the dimension
of X acted on by diff is reduced in size by n in the output.

Examples Differences Between Vector Elements

Create a vector, then compute the differences between the elements.

X = [1 1 2 3 5 8 13 21];
Y = diff(X)

Y =

0 1 1 2 3 5 8

Note that Y has one fewer element than X.

Differences Between Matrix Rows

Create a 3-by-3 matrix, then compute the first difference between the
rows.

X = [1 1 1; 5 5 5; 25 25 25];
Y = diff(X)

1-1760

diff

Y =

4 4 4
20 20 20

The output Y is a 2-by-3 difference matrix.

Multiple Differences

Create a vector and compute the second-order difference between the
elements.

X = [0 5 15 30 50 75 105];
Y = diff(X,2)

Y =

5 5 5 5 5

Differences Between Matrix Columns

Create a 3-by-3 matrix, then compute the first-order difference between
the columns.

X = [1 3 5;7 11 13;17 19 23];
Y = diff(X,1,2)

Y =

2 2
4 2
2 4

The output Y is a 3-by-2 difference matrix.

Approximate Derivatives with diff

Use the diff function to approximate partial derivatives with the
syntax Y = diff(f)/h, where f is a vector of function values evaluated
over some domain, X, and h is an appropriate step size.

1-1761

diff

For example, the first derivative of sin(x) with respect to x is cos(x),
and the second derivative with respect to x is -sin(x). You can use
diff to approximate these derivatives.

h = 0.001; %step size
X = -pi:h:pi; %domain
f = sin(X); %range
Y = diff(f)/h; %first derivative
Z = diff(Y)/h; %second derivative
plot(X(:,1:length(Y)),Y,'r',X,f,'b', X(:,1:length(Z)),Z,'k')

1-1762

diff

In this plot the blue line corresponds to the original function, sin. The
red line corresponds to the calculated first derivative, cos, and the black
line corresponds to the calculated second derivative, -sin.

See Also gradient | prod | cumsum | sum

1-1763

diffuse

Purpose Calculate diffuse reflectance

Syntax R = diffuse(Nx,Ny,Nz,S)

Description R = diffuse(Nx,Ny,Nz,S) returns the reflectance of a surface with
normal vector components [Nx,Ny,Nz]. S specifies the direction to the
light source. You can specify these directions as three vectors[x,y,z]
or two vectors [Theta Phi (in spherical coordinates).

Lambert’s Law: R = cos(PSI) where PSI is the angle between the
surface normal and light source.

See Also specular | surfnorm | surfl

How To • “Lighting Overview”

1-1764

dir

Purpose List folder contents

Syntax dir
dir name
listing = dir(name)

Description dir lists the files and folders in the MATLAB current folder. Results
appear in the order returned by the operating system.

dir name lists the files and folders that match the string name. When
name is a folder, dir lists the contents of the folder. Specify name using
absolute or relative path names. You can use wildcards (*).

listing = dir(name) returns attributes about name.

Tips • To obtain a list of available drives on Microsoft Windows platforms:

Use the DOS net use command in the Command Window:

dos('net use')

Or

[s,r] = dos('net use')

MATLAB returns the results to the character array r.

• Short DOS file name support

The MATLAB dir function is consistent with the Microsoft Windows
operating system dir command in that both support short file names
generated by DOS.

• Structure Results for Nonexistent Files

When you run dir with an output argument and the results include a
nonexistent file or a file that dir cannot query for some other reason,
then dir returns the following default values:

date: ''
bytes: []

1-1765

dir

isdir: 0
datenum: []

The most common occurrence is on UNIX1 platforms when dir
queries a file that is a symbolic link, which points to a nonexistent
target. A nonexistent target is a target that was moved, removed, or
renamed. For example, if my_file in my_dir is a symbolic link to
another file that was deleted, then running

r = dir('my_dir')

includes this result for my_file:

r(n) =
name: 'my_file'
date: ''
bytes: []
isdir: 0
datenum: []

where n is the index for my_file, found by searching r by the name
field.

Input
Arguments

name

A string value specifying a file or folder name.

Output
Arguments

listing

Field
Name Description Class

name File or folder name char array

date Modification date timestamp char array

1. UNIX is a registered trademark of The Open Group in the United States and other
countries.

1-1766

dir

Field
Name Description Class

bytes Size of the file in bytes double

isdir 1 if name is a folder; 0 if not logical

datenum Modification date as serial
date number. The value is
locale-dependent.

double

Examples View the Contents of a Folder

View the contents of the matlab/audiovideo folder:

dir(fullfile(matlabroot, 'toolbox/matlab/audiovideo'))

Find Information in the Return Structure

Return the folder listing, restricted to files with a .m extension, to the
variable av_files:

av_files = dir(fullfile(matlabroot, ...
'toolbox/matlab/audiovideo/*.m'))

MATLAB returns the information in a structure array:

av_files =
25x1 struct array with fields:

name
date
bytes
isdir
datenum

Index into the structure to access a particular item:

av_files(3).name
ans =

audioplayerreg.m

1-1767

dir

– Use the Wildcard Character to Find Multiple Files

View the MAT-files in the current folder that include the term my_data
by using the wildcard character:

dir *my_data*.mat

MATLAB returns all file names that match this specification. For
instance, it returns the following if they are in the current folder:

old_my_data.mat my_data_final.mat my_data_test.mat

– Exclude Certain Files from the Output

Return the list of files in the current folder, excluding those files that
dir cannot query:

y = dir;
y = y(find(~cellfun(@isempty,{y(:).date})));

– Find the Date a File Was Modified

To get the serial date number for the date and time a file was last
modified, use the datenum field of the structure returned by the dir
command:

DirInfo = dir('startup.m');
filedate = DirInfo.datenum

Using the datenum function to convert the string returned in the date
field of the structure is not recommended as this can behave differently
in different locales.

filedate = datenum(DirInfo.date)

Alternatives Use the Current Folder browser to view the list of files in a folder.

See Also cd | fileattrib | isdir | ls | mkdir | rmdir | what

How To • “Specify File Names”

1-1768

FTP.dir

Purpose View contents of folder on FTP server

Syntax dir(ftpobj)
dir(ftpobj,folder)
details = dir(ftpobj,folder)

Description dir(ftpobj) lists the files in current folder on the FTP server
associated with ftpobj.

dir(ftpobj,folder) lists the files in the specified folder.

details = dir(ftpobj,folder) returns the results in a structure
array that contains the name, modification date, and size of each file.

Input
Arguments

ftpobj

FTP object created by ftp.

folder

String enclosed in single quotation marks that specifies the target
folder. To specify the folder above the current one, use '..'.

Output
Arguments

details

m-by-1 structure array, where m is the number of files in the folder.
Each element of the structure array contains the following fields:

Field Name Description Data Type

name File name char

date Modification date
timestamp

char

bytes Number of bytes
allocated to the file

double

1-1769

FTP.dir

Field Name Description Data Type

isdir If a folder, isdir = 1,
otherwise isdir = 0

logical

datenum Modification date as
serial date number

char

Examples Connect to the MathWorks FTP server and view the contents:

mw=ftp('ftp.mathworks.com');
dir(mw)

This code returns:

README incoming matlab outgoing pub pubs

Continuing the previous example, save the folder contents to the
structure m, close the connection, and view details about the pub
subfolder:

m=dir(mw);
close(mw);

m(5)

This code returns:

ans =
name: 'pub'
date: '13-Aug-2008 00:00:00'

bytes: 512
isdir: 1

datenum: 733633

See Also cd | ftp | mkdir | rmdir

1-1770

disp

Purpose Display text or array

Syntax disp(X)

Description disp(X) displays the contents of X without printing the variable name.
disp does not display empty variables.

Input
Arguments

X - Variable to display
variable name

Variable to display, specified by the variable name.

Examples Display Matrix with Column Labels

Display a matrix and label the columns as Corn, Oats, and Hay.

X = gallery('uniformdata',[5 3],0);
disp(' Corn Oats Hay')
disp(X)

Corn Oats Hay
0.9501 0.7621 0.6154
0.2311 0.4565 0.7919
0.6068 0.0185 0.9218
0.4860 0.8214 0.7382
0.8913 0.4447 0.1763

Display Hyperlink in Command Window

Include the full hypertext string on a single line as input to disp.

X = 'MathWorks Web Site';
disp(X)

MathWorks Web Site

1-1771

http://www.mathworks.com

disp

The disp function generates a hyperlink in the Command Window.
Click the link to display the MathWorks home page in a MATLAB Web
browser.

Display Multiple Items on Same Line

Concatenate strings together using the [] operator. Convert any
numeric values to characters using the num2str function.

name = 'Alice'; age = 12;
X = [name, ' will be ', num2str(age), ' this year.'];

Display the string.

disp(X)

Alice will be 12 this year.

You also can use sprintf to create a string. Terminate the sprintf
command with a semicolon to prevent "X = " from being displayed.
Then, use disp to display the string.

name = 'Alice'; age = 12;
X = sprintf('%s will be %d this year.', name, age);
disp(X)

Alice will be 12 this year.

Alternatively, use fprintf to create and display the string. Unlike the
sprintf function, fprintf does not display the "X = " text. However,
you need to end the string with the newline (\n) metacharacter to
terminate its display properly.

name = 'Alice'; age = 12;
X = fprintf('%s will be %d this year.\n', name, age);

Alice will be 12 this year.

1-1772

disp

Tips • The disp function accepts only one input. To display more than one
array or string, you can use concatenation or the sprintf or fprintf
functions as shown in the Example, “Display Multiple Items on Same
Line” on page 1-1772.

See Also format | int2str | num2str | rats | sprintf | fprintf | colon (:)

1-1773

disp (MException)

Purpose Display MException object

Syntax disp(exception)
disp(exception.property)

Description disp(exception) displays all properties (fields) of MException object
exception.

disp(exception.property) displays the specified property of
MException object exception.

Examples Using the surf command without input arguments throws an exception.
Use disp to display the identifier, message, stack, and cause
properties of the MException object:

try
surf

catch exception
disp(exception)

end

MException object with properties:

identifier: 'MATLAB:narginchk:notEnoughInputs'
message: 'Not enough input arguments.'

cause: {}
stack: [1x1 struct]

Display only the stack property:

disp(exception.stack)
file: 'C:\Program Files\MATLAB\toolbox\matlab\graph3d\surf.m'

graph3d\surf.m'
name: 'surf'
line: 54

1-1774

disp (MException)

See Also eq(MException) | last(MException) | addCause(MException)
| throwAsCaller(MException) | rethrow(MException) |
throw(MException) | getReport(MException) | ne(MException) |
isequal(MException) | MException | assert | error | try, catch

1-1775

disp (serial)

Purpose Serial port object summary information

Syntax obj
disp(obj)

Description obj or disp(obj) displays summary information for obj, a serial port
object or an array of serial port objects.

Tips In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when:

• Creating a serial port object

• Configuring property values using the dot notation

Use the display summary to quickly view the communication settings,
communication state information, and information associated with read
and write operations.

Examples The following commands display summary information for the serial
port object s. on a Windows platform

s = serial('COM1')
s.BaudRate = 300
s

1-1776

display

Purpose Display text and numeric expressions

Syntax display(X)

Description display(X) prints the value of X. MATLAB implicitly calls display
after any variable or expression that is not terminated by a semicolon.

To customize the display of objects, overload the disp function instead
of the display function. display calls disp.

Examples Display a Matrix

X = magic(3);
display(X)

X =

8 1 6
3 5 7
4 9 2

Input
Arguments

X - Input value
variable | expression

Input value, specified as a variable or expression.

See Also disp | ans | sprintf

Concepts • “Implement disp or disp and display”
• “Overloading Functions for Your Class”
• “Relationship Between disp and display”

1-1777

dither

Purpose Convert image, increasing apparent color resolution by dithering

Syntax X = dither(RGB, map)
X = dither(RGB, map, Qm, Qe)
BW = dither(I)

Description X = dither(RGB, map) creates an indexed image approximation of the
RGB image in the array RGB by dithering the colors in the colormap map.
The colormap cannot have more than 65,536 colors.

X = dither(RGB, map, Qm, Qe) creates an indexed image from RGB,
where Qm specifies the number of quantization bits to use along each
color axis for the inverse color map, and Qe specifies the number of
quantization bits to use for the color space error calculations. If Qe <
Qm, dithering cannot be performed, and an undithered indexed image is
returned in X. If you omit these parameters, dither uses the default
values Qm = 5, Qe = 8.

BW = dither(I) converts the grayscale image in the matrix I to the
binary (black and white) image BW by dithering.

Class
Support

RGB can be uint8, uint16, single, or double. I can be uint8, uint16,
int16, single, or double. All other input arguments must be double.
BW is logical. X is uint8, if it is an indexed image with 256 or fewer
colors; otherwise, it is uint16.

Algorithms dither increases the apparent color resolution of an image by applying
Floyd-Steinberg’s error diffusion dither algorithm.

References [1] Floyd, R. W., and L. Steinberg, "An Adaptive Algorithm for Spatial
Gray Scale," International Symposium Digest of Technical Papers,
Society for Information Displays, 1975, p. 36.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 469-476.

See Also rgb2ind

1-1778

divergence

Purpose Compute divergence of vector field

Syntax div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)
div = divergence(X,Y,U,V)
div = divergence(U,V)

Description div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D
vector field U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must
be monotonic, but do not need to be uniformly spaced. X, Y, and Z must
have the same number of elements, as if produced by meshgrid.

div = divergence(U,V,W) assumes X, Y, and Z are determined by the
expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector
field U, V.

The arrays X and Y, which define the coordinates for U and V, must be
monotonic, but do not need to be uniformly spaced. X and Y must have
the same number of elements, as if produced by meshgrid.

div = divergence(U,V) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

Examples This example displays the divergence of vector volume data as slice
planes, using color to indicate divergence.

load wind
div = divergence(x,y,z,u,v,w);

1-1779

divergence

h = slice(x,y,z,div,[90 134],59,0);
shading interp
daspect([1 1 1])
axis tight
camlight
set([h(1),h(2)],'ambientstrength',.6)

See Also streamtube | curl | isosurface

How To • “Displaying Divergence with Stream Tubes”

1-1780

dlmread

Purpose Read ASCII-delimited file of numeric data into matrix

Syntax M = dlmread(filename)
M = dlmread(filename, delimiter)
M = dlmread(filename, delimiter, R, C)
M = dlmread(filename, delimiter, range)

Description M = dlmread(filename) reads the ASCII-delimited numeric data file
filename, and returns the data in output matrix M. The filename input
is a string enclosed in single quotes. dlmread infers the delimiter from
the formatting of the file.

M = dlmread(filename, delimiter) reads data from the file, using
the specified delimiter. Use '\t' to specify a tab delimiter.

M = dlmread(filename, delimiter, R, C) reads data whose upper
left corner is at row R and column C in the file. Values R and C are
zero-based, so that R=0, C=0 specifies the first value in the file.

M = dlmread(filename, delimiter, range) reads the range
specified by range = [R1 C1 R2 C2] where (R1,C1) is the upper left
corner of the data to read and (R2,C2) is the lower right corner. You
can also specify the range using spreadsheet notation, such as range
= 'A1..B7'.

Tips • All data in the input file must be numeric. dlmread does not read
files that contain nonnumeric data, even if the specified rows and
columns contain only numeric data.

• When dlmread infers the delimiter from the formatting of the file, it
treats repeated white spaces as a single delimiter. By contrast, if you
specify a delimiter, dlmread treats any repeated delimiter character
as a separate delimiter.

• If you want to specify an R, C, or range input, but not a delimiter,
set the delimiter argument to the empty string, (two consecutive
single quotes with no spaces in between, ''). For example,

M = dlmread('myfile.dat', '', 5, 2)

1-1781

dlmread

In this case, dlmread treats repeated white spaces as a single
delimiter.

• dlmread fills empty delimited fields with zero. If each line ends
with a nonspace delimiter, such as a semicolon, the output matrix
contains an additional last column of zeros.

• dlmread imports any complex number as a whole into a complex
numeric field. Valid forms for a complex number are

–<real>–<imag>i|j Example: 5.7-3.1i

–<imag>i|j Example: -7j

Embedded white-space in a complex number is invalid and is
regarded as a field delimiter.

Examples Example 1

Export a 5-by-8 test matrix M to a file, and read it with dlmread, first
with no arguments other than the filename:

M = gallery('integerdata', 100, [5 8], 0);
dlmwrite('myfile.txt', M, 'delimiter', '\t')

dlmread('myfile.txt')
ans =

96 77 62 41 6 21 2 42
24 46 80 94 36 20 75 85
61 2 93 92 82 61 45 53
49 83 74 42 1 28 94 21
90 45 18 90 14 20 47 68

Now read a portion of the matrix by specifying the row and column of
the upper left corner:

dlmread('myfile.txt', '\t', 2, 3)
ans =

92 82 61 45 53

1-1782

dlmread

42 1 28 94 21
90 14 20 47 68

This time, read a different part of the matrix using a range specifier:

dlmread('myfile.txt', '\t', 'C1..G4')
ans =

62 41 6 21 2
80 94 36 20 75
93 92 82 61 45
74 42 1 28 94

Example 2

Export matrix M to a file, and then append an additional matrix to the
file that is offset one row below the first:

M = magic(3);
dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', [M/3], '-append', ...
'roffset', 1, 'delimiter', ' ')

type myfile.txt

40 5 30 1.6 0.2 1.2
15 25 35 0.6 1 1.4
20 45 10 0.8 1.8 0.4

2.6667 0.33333 2
1 1.6667 2.3333
1.3333 3 0.66667

When dlmread imports these two matrices from the file, it pads the
smaller matrix with zeros:

dlmread('myfile.txt')
40.0000 5.0000 30.0000 1.6000 0.2000 1.2000

1-1783

dlmread

15.0000 25.0000 35.0000 0.6000 1.0000 1.4000
20.0000 45.0000 10.0000 0.8000 1.8000 0.4000
2.6667 0.3333 2.0000 0 0 0
1.0000 1.6667 2.3333 0 0 0
1.3333 3.0000 0.6667 0 0 0

See Also dlmwrite | textscan | readtable

1-1784

dlmwrite

Purpose Write matrix to ASCII-delimited file

Syntax dlmwrite(filename,M)
dlmwrite(filename,M,'-append')

dlmwrite(___ ,Name,Value)

dlmwrite(filename,M,delimiter)
dlmwrite(filename,M,delimiter,row,col)

Description dlmwrite(filename,M) writes numeric data in array M to an ASCII
format file, filename, using the default delimiter (,) to separate array
elements. If the file, filename, already exists, dlmwrite overwrites
the file.

dlmwrite(filename,M,'-append') appends the data to the end of
the existing file, filename.

dlmwrite(___ ,Name,Value) additionally specifies delimiter, newline
character, offset, and precision options using one or more name-value
pair arguments.

dlmwrite(filename,M,delimiter) writes array M to the file, filename,
using the specified delimiter, delimiter, to separate array elements.

dlmwrite(filename,M,delimiter,row,col) writes the array starting
at the specified row and column row and col, in the destination file.
Empty elements separated by delimiter fill the leading rows and
columns.

Input
Arguments

filename - Name of file to write
string

Name of file to write, specified as a string.

1-1785

dlmwrite

Example: 'myFile.txt'

Data Types
char

M - Numeric data to write
matrix | cell array of numeric values

Numeric data to write, specified as a matrix or a cell array of numeric
values with one value per cell.

Example: [1,2,3;4,5,6]

Example: {1,2,3;4,5,6}

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | cell
Complex Number Support: Yes

delimiter - Delimiter to separate array elements
',' (default) | string

Delimiter to separate array elements, specified as a string containing a
single character or control character. Use '\t' to produce tab-delimited
files.

Example: ';'

Example: '\t'

Data Types
char

row - Row offset
0 (default) | scalar

Row offset, specified as a scalar. The row offset indicates the number
of rows to skip before writing the numeric data. row is zero-based, so
that row = 0 instructs MATLAB to begin writing in the first row of
the destination file. Skipped rows are populated with the specified
delimiter.

1-1786

dlmwrite

col - Column offset
0 (default) | scalar

Column offset, specified as a scalar. The column offset indicates the
number of columns to skip before writing the numeric data. col is
zero-based, so that col = 0 instructs MATLAB to begin writing in the
first column of the destination file. Skipped columns are separated
with the specified delimiter.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
dlmwrite('myFile.txt',M,'precision',4,'delimiter',' ') writes
the numeric values in array M with four significant digits and
delimited using the whitespace character.

’delimiter’ - Delimiter to separate array elements
',' (default) | string

Delimiter to separate array elements, specified as the comma-separated
pair consisting of 'delimiter' and string containing a single character
or control character. Use '\t' to produce tab-delimited files.

Example: 'delimiter',';'

Example: 'delimiter','\t'

Data Types
char

’roffset’ - Row offset
0 (default) | scalar

Row offset, specified as the comma-separated pair consisting of
'roffset' and a scalar. The row offset indicates the number of rows to

1-1787

dlmwrite

skip before writing the numeric data. These rows are populated with
the specified delimiter. When appending to an existing file, the new
data is offset from the end of the existing data.

The row offset is zero-based, so that 'roffset',0 instructs MATLAB to
begin writing in the first row of the destination file, which is the default.
However, when appending to a file, 'roffset',0 instructs MATLAB to
begin writing in the first row immediately following existing data.

Example: 'roffset',2

’coffset’ - Column offset
0 (default) | scalar

Column offset from the left side of the destination file, specified as
the comma-separated pair consisting of 'coffset' and a scalar. The
column offset indicates the number of columns to skip before writing the
numeric data. These columns are separated with the specified delimiter.

The column offset is zero-based, so that 'coffset',0 instructs
MATLAB to begin writing in the first column of the destination file,
which is the default.

Example: 'coffset',1

’precision’ - Numeric precision
5 (default) | scalar | C-style format string

Numeric precision to use in writing data to the file, specified as the
comma-separated pair consisting of 'precision' and a scalar or a
C-style format string that begins with %, such as '%10.5f'. If the value
of precision is a scalar, then it indicates the number of significant
digits.

Example: 'precision',3

Example: 'precision','%10.5f'

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | char

1-1788

dlmwrite

’newline’ - Line terminator
'pc' | 'unix'

Line terminator, specified as the comma-separated pair consisting of
'newline' and either 'pc' to use a carriage return/line feed (CR/LF),
or 'unix' to use a line feed (LF).

Example: 'newline','pc'

Examples Write Comma-Separated Data

Create an array of sample data, M.

M = magic(3);

Write matrix M to a file, 'myFile.txt', using the default delimiter (,).

dlmwrite('myFile.txt',M)

View the data in the file.

type('myFile.txt')

8,1,6
3,5,7
4,9,2

Write Tab-Delimited Data and Specify Precision

Create an array of sample data, M.

M = magic(3)*pi

M =

25.1327 3.1416 18.8496
9.4248 15.7080 21.9911

12.5664 28.2743 6.2832

1-1789

dlmwrite

Write matrix M to a file, 'myFile.txt', delimited by the tab character
and using a precision of 3 significant digits.

dlmwrite('myFile.txt',M,'delimiter','\t','precision',3)

View the data in the file.

type('myFile.txt')

25.1 3.14 18.8
9.42 15.7 22
12.6 28.3 6.28

Write and Append Data to File

Create two arrays of sample numeric data.

M = magic(5);
N = magic(3);

Export matrix M to a file and use whitespace as the delimiter.

dlmwrite('myFile.txt',M,'delimiter',' ');

Append matrix N to the file, offset from the existing data by one row.
Then, view the file.

dlmwrite('myFile.txt',N,'-append',...
'delimiter',' ','roffset',1)
type('myFile.txt')

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

8 1 6
3 5 7

1-1790

dlmwrite

4 9 2

Read the data in 'myFile.txt' using dlmread.

dlmread('myFile.txt')

ans =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9
8 1 6 0 0
3 5 7 0 0
4 9 2 0 0

When dlmread reads the two matrices from the file, it pads the smaller
matrix with zeros.

Write Data and Specify Precision As String

Create an array of sample numeric data.

M = magic(3);

Export matrix M to a file using a precision of 6 decimal places.

dlmwrite('myFile.txt',M,'precision','%.6f');

View the data in the file.

type('myFile.txt')

8.000000,1.000000,6.000000
3.000000,5.000000,7.000000
4.000000,9.000000,2.000000

1-1791

dlmwrite

Tips • dlmwrite writes a file that spreadsheet programs can read.
Alternatively, if your system has Excel for Windows installed, you
can create a spreadsheet using xlswrite.

See Also dlmread | xlswrite | writetable

1-1792

dmperm

Purpose Dulmage-Mendelsohn decomposition

Syntax p = dmperm(A)
[p,q,r,s,cc,rr] = dmperm(A)

Description p = dmperm(A) finds a vector p such that p(j) = i if column j is
matched to row i, or zero if column j is unmatched. If A is a square
matrix with full structural rank, p is a maximum matching row
permutation and A(p,:) has a zero-free diagonal. The structural rank
of A is sprank(A) = sum(p>0).

[p,q,r,s,cc,rr] = dmperm(A) where A need not be square or full
structural rank, finds the Dulmage-Mendelsohn decomposition of A. p
and q are row and column permutation vectors, respectively, such that
A(p,q) has a block upper triangular form. r and s are index vectors
indicating the block boundaries for the fine decomposition. cc and rr
are vectors of length five indicating the block boundaries of the coarse
decomposition.

C = A(p,q) is split into a 4-by-4 set of coarse blocks:

A11 A12 A13 A14
0 0 A23 A24
0 0 0 A34
0 0 0 A44

where A12, A23, and A34 are square with zero-free diagonals.
The columns of A11 are the unmatched columns, and the rows
of A44 are the unmatched rows. Any of these blocks can be
empty. In the coarse decomposition, the (i,j)th block is
C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1). For a linear system,

• [A11 A12] is the underdetermined part of the system—it is always
rectangular and with more columns and rows, or 0-by-0,

• A23 is the well-determined part of the system—it is always square,
and

1-1793

dmperm

• [A34 ; A44] is the overdetermined part of the system—it is always
rectangular with more rows than columns, or 0-by-0.

The structural rank of A is sprank(A) = rr(4)-1, which is
an upper bound on the numerical rank of A. sprank(A) =
rank(full(sprand(A))) with probability 1 in exact arithmetic.

The A23 submatrix is further subdivided into block upper triangular
form via the fine decomposition (the strongly connected components
of A23). If A is square and structurally nonsingular, A23 is the entire
matrix.

C(r(i):r(i+1)-1,s(j):s(j+1)-1) is the (i,j)th block of the fine
decomposition. The (1,1) block is the rectangular block [A11 A12],
unless this block is 0-by-0. The (b,b) block is the rectangular block
[A34 ; A44], unless this block is 0-by-0, where b = length(r)-1.
All other blocks of the form C(r(i):r(i+1)-1,s(i):s(i+1)-1) are
diagonal blocks of A23, and are square with a zero-free diagonal.

Tips If A is a reducible matrix, the linear system Ax=b can be solved by
permuting A to a block upper triangular form, with irreducible diagonal
blocks, and then performing block backsubstitution. Only the diagonal
blocks of the permuted matrix need to be factored, saving fill and
arithmetic in the blocks above the diagonal.

In graph theoretic terms, dmperm finds a maximum-size matching in the
bipartite graph of A, and the diagonal blocks of A(p,q) correspond to
the strong Hall components of that graph. The output of dmperm can
also be used to find the connected or strongly connected components
of an undirected or directed graph. For more information see Pothen
and Fan [1].

References [1] Pothen, Alex and Chin-Ju Fan “Computing the Block Triangular
Form of a Sparse Matrix” ACM Transactions on Mathematical Software
Vol 16, No. 4 Dec. 1990, pp. 303-324.

See Also sprank

1-1794

doc

Purpose Reference page in Help browser

Syntax doc
doc name

Description doc opens the Help browser. If the Help browser is already open, but
not visible, then doc brings it to the foreground and opens a new tab.

doc name displays documentation for the functionality specified by
name, such as a function, class, or block.

• If there is a MathWorks reference page corresponding to name, then
doc displays the page in the Help browser. The doc command does
not display third-party or custom HTML documentation.

• If there is no reference page corresponding to name, then doc searches
for help text in a file named name.m. When help text is available, doc
displays it in the Help browser.

• If there is no reference page and no help text associated with name,
then doc searches the documentation for name and displays the
search results in the Help browser.

Input
Arguments

name - Name of function, class, block, or other functionality
string

Name of a function, class, block, or other functionality, specified as a
string. Alternatively, an operator symbol.

Some classes and other packaged items require that you specify the
package name. Events, properties, and some methods require that you
specify the class name. Separate the components of the name with
periods, such as:

doc className.name
doc packageName.name
doc packageName.className.name

1-1795

doc

Methods for some classes are not accessible using the doc command;
instead, use links on the class reference page.

Examples Function Reference Pages

Display the reference page for the abs function.

doc abs

Several products include different versions of abs. If your Help
preferences support displaying documentation for those products, then
the Help browser displays the MATLAB abs reference page and a
message with links to other versions of abs. This message appears at
the top of the page.

Class and Method Reference Pages

Display the reference page for the handle class.

doc handle

Display the reference page for the findobj method in the handle class.

doc handle.findobj

Display the reference page for the Map class in the containers package.

doc containers.Map

Custom Class Pages

Display formatted help text for a custom class.

MATLAB includes a set of example files that show how to create a
class, including a class file named sads.m. Add the example folder to
the path, and request documentation for sads.

addpath(...
fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples'))

doc sads

1-1796

doc

Display the help for the steer method of the sads class.

doc sads.steer

Because the help text follows MATLAB conventions, MATLAB formats
the display in the browser.

Tips • To access third-party or custom documentation, open the Help
browser and navigate to the documentation home page. Then, at the
bottom of the page, click Supplemental Software.

See Also help | web

Concepts • “Ways to Get Function Help”
• “Add Help for Your Program”
• “Display Custom Documentation”

1-1797

docsearch

Purpose Help browser search

Syntax docsearch
docsearch expression

Description docsearch opens the Help browser and displays the documentation
home page. If the Help browser is already open, but not visible, then
docsearch brings it to the foreground.

docsearch expression searches MathWorks documentation for pages
with words that match the specified expression and highlights them. To
clear highlighting, press the Esc key. The docsearch command does
not search third-party or custom documentation.

Input
Arguments

expression - Expression that defines search terms
string

Expression that defines search terms, specified as a string. Expressions
can include:

• Quotation marks to specify exact phrases, such as "plot tools".

• Boolean operator keywords in uppercase (listed here in order of
precedence): NOT, OR, AND.

• Asterisk (*) wildcard characters, except at the beginning of a word or
in an exact phrase. Searches require that at least two characters in
the expression are not wildcard characters.

Examples Single Words

Find all documentation pages that contain the word plot.

docsearch plot

Multiple Words

Find documentation pages with the words plot and tools.

docsearch plot tools

1-1798

docsearch

Expand the search to include variations of the word plot, such as
plotting or plots, using a wildcard character.

docsearch plot* tools

Narrow the search to pages that include an exact phrase by enclosing
the phrase in quotation marks.

docsearch "plot tools"

Find pages with either word, but not necessarily both words, using
the OR operator.

docsearch plot OR tools

Tips • To access third-party or custom documentation, open the Help
browser and navigate to the documentation home page. Then, at the
bottom of the page, click Supplemental Software.

See Also builddocsearchdb | doc

Concepts • “Search Syntax and Tips”

1-1799

dos

Purpose Execute DOS command and return output

Syntax status = dos(command)
[status,cmdout] = dos(command)
[status,cmdout] = dos(command,'-echo')

Description status = dos(command) executes the specified DOS command for
Windows platforms, and waits for the command to finish execution
before returning the exit status to the status variable.

[status,cmdout] = dos(command) additionally returns the output
of the DOS command to cmdout. This syntax is most useful for DOS
console commands that do not require user input, such as dir.

[status,cmdout] = dos(command,'-echo') additionally displays
(echoes) the command output in the MATLAB Command Window.
This syntax is most useful for DOS console commands that require
user input and that run correctly in the MATLAB Command Window,
such as comp.

Input
Arguments

command - MS-DOS® command
string

MS-DOS command, specified as a string. The command can be a
Windows UI program that opens a graphical user interface, or a DOS
console command that you typically run in a DOS command window.
The command executes in a DOS shell, which might not be the shell
from which you launched MATLAB.

Example: 'dir'

Output
Arguments

status - Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When
the command is successful, status is 0. Otherwise, status is a nonzero
integer.

1-1800

dos

• If command includes the ampersand character (&), then status is the
exit status upon command launch.

• If command does not include the ampersand character (&), then status
is the exit status upon command completion.

cmdout - Output of operating system command
string

Output of the operating system command, returned as a string.

Limitations • DOS does not support UNC path names. Therefore, if the current
folder uses a UNC path name, then running dos with a DOS command
that relies on the current folder fails. MATLAB returns this error:

Error using dos
DOS commands may not be executed when the current directory is a UNC

To work around this limitation, change the folder to a mapped drive
before running dos or a function that calls dos.

Examples Save DOS Command Exit Status

Issue a DOS command to create a new folder named mynew and save the
exit status to a variable.

command = 'mkdir mynew';
status = dos(command)

status =

0

The status of zero indicates that the mynew folder was created
successfully.

1-1801

dos

Open and Run a Windows UI Command

Open Notepad and immediately return the exit status to MATLAB by
appending an ampersand (&) to the notepad command.

status = dos('notepad &')

status =

0

The status of zero indicates that Notepad successfully started.

Save Successful DOS Command Status and Output

Execute the DOS command, dir, and view the exit status and command
output.

[status,cmdout] = dos('dir');
status, cmdout

status =

0

cmdout =

Volume in drive C is OSDisk
Volume Serial Number is XXX-XXXX

Directory of C:\my_MATLAB_files

04/10/2012 12:08 PM <DIR> .
04/10/2012 12:08 PM <DIR> ..
04/21/2011 09:24 AM 171 base.mat
02/08/2010 05:14 PM 73 baseball.dat
04/10/2012 12:08 PM 474 collatz.asv
04/10/2012 11:56 AM 480 collatz.m

1-1802

dos

.

.

.

When you issue a valid DOS command, status indicates success and
cmdout contains the command output.

Save Unsuccessful DOS Command Status and Output

Attempt to execute a command called foo. Then, view the status and
results output arguments.

[status,results] = dos('foo');
status, results

status =

1

results =

'foo' is not recognized as an internal or external command,
operable program or batch file.

When you issue an invalid DOS command, status indicates failure and
results contains the DOS error message.

Display DOS Command Output in MATLAB Command
Window

Display command output and prompts in the Command Window as
the command executes, and also assign the command output to the
results variable.

[status,results] = dos('comp', '-echo');

Name of first file to compare: collatz.m
collatz.m

1-1803

dos

Name of second file to compare: collatz.asv
collatz.asv
Option: /A
/A
Option:

Comparing collatz.m and collatz.asv...
Files compare OK

Compare more files (Y/N) ? N
N
>>

Tips • To execute the operating system command in the background, include
the trailing character, &, in the command argument (for example,
'notepad &'). The exit status is immediately returned to the status
variable. This syntax is useful for console programs that require
interactive user command input while they run, and that do not run
correctly in the MATLAB Command Window.

Note If command includes the trailing & character, then cmdout is
empty.

See Also computer | perl | system | unix | ! (exclamation point)

1-1804

dot

Purpose Dot product

Syntax C = dot(A,B)
C = dot(A,B,dim)

Description C = dot(A,B) returns the scalar dot product of A and B.

• If A and B are vectors, then they must have the same length.

• If A and B are matrices or multidimensional arrays, then they must
have the same size. In this case, the dot function treats A and B as
collections of vectors. The function calculates the dot product of
corresponding vectors along the first array dimension whose size
does not equal 1.

C = dot(A,B,dim) evaluates the dot product of A and B along
dimension, dim. The dim input is a positive integer scalar.

Input
Arguments

A,B - Input arrays
numeric arrays

Input arrays, specified as numeric arrays.

Data Types
single | double
Complex Number Support: Yes

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider two 2-D input arrays, A and B:

• dot(A,B,1) treats the columns of A and B as vectors and returns the
dot products of corresponding columns.

1-1805

dot

• dot(A,B,2) treats the rows of A and B as vectors and returns the dot
products of corresponding rows.

dot returns conj(A).*B if dim is greater than ndims(A).

Examples Dot Product of Real Vectors

Create two simple, three-element vectors.

A = [4 -1 2];
B = [2 -2 -1];

Calculate the dot product of A and B.

C = dot(A,B)

C =

8

The result is 8 since

C
C

A(1) * B(1) + A(2) * B(2) + A(3) * B(3)
.8 2 2

Dot Product of Complex Vectors

Create two complex vectors.

A = [1+i 1-i -1+i -1-i];
B = [3-4i 6-2i 1+2i 4+3i];

1-1806

dot

Calculate the dot product of A and B.

C = dot(A,B)

C =

1.0000 - 5.0000i

The result is a complex scalar since A and B are complex. In general,
the dot product of two complex vectors is also complex. An exception is
when you take the dot product of a complex vector with itself.

Find the inner product of A with itself.

D = dot(A,A)

D =

8

The result is a real scalar. The inner product of a vector with itself is
related to the Euclidean length of the vector, norm(A).

Dot Product of Matrices

Create two matrices.

A = [1 2 3;4 5 6;7 8 9];
B = [9 8 7;6 5 4;3 2 1];

Find the dot product of A and B.

C = dot(A,B)

C =

54 57 54

The result, C, contains three separate dot products. dot treats the
columns of A and B as vectors and calculates the dot product of

1-1807

dot

corresponding columns. So, for example, C(1) = 54 is the dot product
of A(:,1) with B(:,1).

Find the dot product of A and B, treating the rows as vectors.

D = dot(A,B,2)

D =

46
73
46

In this case, D(1) = 46 is the dot product of A(1,:) with B(1,:).

Dot Product of Multidimensional Arrays

Create two multidimensional arrays.

A = cat(3,[1 1;1 1],[2 3;4 5],[6 7;8 9])
B = cat(3,[2 2;2 2],[10 11;12 13],[14 15; 16 17])

A(:,:,1) =

1 1
1 1

A(:,:,2) =

2 3
4 5

A(:,:,3) =

6 7
8 9

1-1808

dot

B(:,:,1) =

2 2
2 2

B(:,:,2) =

10 11
12 13

B(:,:,3) =

14 15
16 17

Calculate the dot product of A and B along the third dimension (dim
= 3).

C = dot(A,B,3)

C =

106 140
178 220

The result, C, contains four separate dot products. The first dot product,
C(1,1) = 106, is equal to the dot product of A(1,1,:) with B(1,1,:).

Definitions Scalar Dot Product

The scalar dot product of two real vectors of length n is equal to

u v u v u v u v u vi i
i

n

n n

 1 1 2 2

1
... .

1-1809

dot

This relation is commutative for real vectors, such that dot(u,v)
equals dot(v,u). If the dot product is equal to zero, then u and v are
perpendicular.

For complex vectors, the dot product involves a complex conjugate.
This ensures that the inner product of any vector with itself is real
and positive definite.

u v u vi i
i

n

1
.

Unlike the relation for real vectors, the complex relation is not
commutative, so dot(u,v) equals conj(dot(v,u)).

Algorithms • When inputs A and B are real or complex vectors, the dot function
treats them as column vectors and dot(A,B) is the same as
sum(conj(A).*B).

• When the inputs are matrices or multidimensional arrays, the dim
argument determines which dimension the sum function operates on.
In this case, dot(A,B) is the same as sum(conj(A).*B,dim).

See Also cross | sum | conj

1-1810

double

Purpose Convert to double precision

Syntax double(x)

Description double(x) returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

Tips The double function should be overloaded for any object when it makes
sense to convert it to a double-precision value.

1-1811

dragrect

Purpose Drag rectangles with mouse

Syntax [finalrect] = dragrect(initialrect)
[finalrect] = dragrect(initialrect,stepsize)

Description [finalrect] = dragrect(initialrect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix initialrect defines the
rectangles. Each row of initialrect must contain the initial rectangle
position as [left bottom width height] values. dragrect returns the
final position of the rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the
rectangles in increments of stepsize. The lower left corner of the first
rectangle is constrained to a grid of size equal to stepsize starting at
the lower left corner of the figure, and all other rectangles maintain
their original offset from the first rectangle.

[finalrect] = dragrect(...) returns the final positions of the
rectangles when the mouse button is released. The default step size is 1.

Tips dragrect returns immediately if a mouse button is not currently
pressed. Use dragrect in a ButtonDownFcn, or from the command line
in conjunction with waitforbuttonpress, to ensure that the mouse
button is down when dragrect is called. dragrect returns when you
release the mouse button.

If the drag ends over a figure window, the positions of the rectangles
are returned in that figure’s coordinate system. If the drag ends over a
part of the screen not contained within a figure window, the rectangles
are returned in the coordinate system of the figure over which the drag
began.

Note You cannot use normalized figure units with dragrect.

1-1812

dragrect

Examples Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress
point1 = get(gcf,'CurrentPoint') % button down detected
rect = [point1(1,1) point1(1,2) 50 100]
[r2] = dragrect(rect)

See Also rbbox | waitforbuttonpress

1-1813

drawnow

Purpose Update figure window and execute pending callbacks

Syntax drawnow
drawnow expose
drawnow update

Description drawnow causes figure windows and their children to update. Any
callbacks generated by user actions (for example, mouse or key presses,
button clicks, and so on) are executed before drawnow returns.

Use drawnow in animation loops to update the figure during function
execution and to update graphical user interfaces.

drawnow expose causes graphics and user-interface objects to refresh
with all pending changes. However, it does not allow pending callbacks
to execute.

drawnow update causes only user-interface objects to refresh. It does
not allow pending callbacks to execute and does not refresh graphics
objects.

Note On Macintosh systems, drawnow update produces the same
results as described for drawnow expose

Other Actions That Cause Queue Processing

Other actions and function calls that cause the MATLAB software to
flush the queue and update the figure include:

• Returning to the MATLAB prompt

• Executing the following functions:

- figure

- getframe

- input

- pause

1-1814

drawnow

- keyboard

• Functions that wait for user input (i.e., waitforbuttonpress,
waitfor, ginput)

• Any code that causes one of the above functions to execute. For
example, suppose h is the handle of an axes. Calling axes(h) causes
its parent figure to be made the current figure and brought to the
front of all displayed figures, which is the equivalent of executing
a drawnow.

Examples Using drawnow in a loop causes the display to update while the loop
executes:

t = 0:pi/100:2*pi;
y = exp(sin(t));
h = plot(t,y,'YDataSource','y');
for k = 1:0.01:10

y = exp(sin(t.*k));
refreshdata(h,'caller')
drawnow

end

See Also snapnow | waitfor | waitforbuttonpress

1-1815

dsearchn

Purpose N-D nearest point search

Syntax k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)
[k,d] = dsearchn(X,...)

Description k = dsearchn(X,T,XI) returns the indices k of the closest points in
X for each point in XI. X is an m-by-n matrix representing m points in
n-dimensional space. XI is a p-by-n matrix, representing p points in
n-dimensional space. T is a numt-by-n+1 matrix, a triangulation of
the data X generated by delaunayn. The output k is a column vector
of length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest
points in X for each point in XI, unless a point is outside the convex hull.
If XI(J,:) is outside the convex hull, then K(J) is assigned outval, a
scalar double. Inf is often used for outval. If outval is [], then k is
the same as in the case k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a
triangulation. With large X and small XI, this approach is faster and
uses much less memory.

[k,d] = dsearchn(X,...) also returns the distances d to the closest
points. d is a column vector of length p.

Algorithms dsearchn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469–483.

See Also delaunayTriangulation

1-1816

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

dynamicprops

Purpose Abstract class used to derive handle class with dynamic properties

Syntax classdef myclass < dynamicprops

Description classdef myclass < dynamicprops makes myclass a subclass of the
dynamicprops class, which is a subclass of the handle class.

Use the dynamicprops class to derive classes that can define dynamic
properties (instance properties), which are associated with a specific
objects, but have no effect on the objects class definition. Dynamic
properties are useful for attaching temporary data to one or more
objects.

dynamicprops Methods

This class defines one method addprop and, as a subclass of the handle
class, inherits all the handle class methods.

• addprop— adds the named property to the specified handle objects.
See “Dynamic Properties — Adding Properties to an Instance” for
more information.

See Also handle

1-1817

echo

Purpose Display statements during function execution

Syntax echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description The echo command controls the display (or echoing) of statements in a
function during their execution. Normally, statements in a function file
are not displayed on the screen during execution. Command echoing is
useful for debugging or for demonstrations, allowing the commands to
be viewed as they execute.

The echo command behaves in a slightly different manner for script
files and function files. For script files, the use of echo is simple; echoing
can be either on or off, in which case any script used is affected.

echo on Turns on the echoing of commands in all script
files

echo off Turns off the echoing of commands in all script
files

echo Toggles the echo state

With function files, the use of echo is more complicated. If echo is
enabled on a function file, the file is interpreted, rather than compiled.
Each input line is then displayed as it is executed. Since this results in
inefficient execution, use echo only for debugging.

echo fcnname on Turns on echoing of the named function file

echo fcnname
off

Turns off echoing of the named function file

1-1818

echo

echo fcnname Toggles the echo state of the named function file

echo on all Sets echoing on for all function files

echo off all Sets echoing off for all function files

Tips • To avoid confusing syntax, do not use on or off as a function name.

See Also function

1-1819

echodemo

Purpose Run example script step-by-step in Command Window

Syntax echodemo filename
echodemo(filename,index)

Description echodemo filename runs the script specified by filename step-by-step
in the Command Window. The file must contain sections defined with
two percent signs (%%) to enable pausing after each step. At each step,
you can click links in the Command Window to proceed or stop. If the
Command Window is not large enough to show the links, scroll up to
see them.

Caution

If variables in your base workspace have the same name as variables
that the example file creates, the example could overwrite your data.
Preserve your data by saving it to a MAT-file before running the
example.

echodemo(filename,index) starts with the section number specified
by index. If the example relies on results of previous steps, using this
syntax can produce errors or unexpected results.

Input
Arguments

filename - Script file name
string

Script file name, specified as a string.

When you use the function syntax for echodemo and specify its inputs
within parentheses, enclose the filename input in single quotes.

index - Section index
scalar integer

Section index, specified as a scalar integer.

1-1820

echodemo

The link text in the Command Window shows the current section
number, n, and the total number of sections, m, as n/m.

Examples Run Example Script in Command Window

Run the Loma Prieta Earthquake example.

echodemo quake

Start Script from Specified Section

Start the Loma Prieta Earthquake example from the third section.

filename = 'quake';
index = 3;
echodemo(filename,index)

This code errors because the example requires variables created in
earlier sections.

Tips • Only use echodemo to display scripts, not functions. echodemo can
run any script that you can execute, but only scripts with sections
pause between steps.

See Also demo | doc | publish

1-1821

TriRep.edgeAttachments

Purpose (Will be removed) Simplices attached to specified edges

Note edgeAttachments(TriRep) will be removed in a future release.
Use edgeAttachments(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax SI = edgeAttachments(TR, V1, V2)
SI = edgeAttachments(TR, EDGE)

Description SI = edgeAttachments(TR, V1, V2) returns the simplices SI
attached to the edges specified by (V1, V2). (V1, V2) represents the
start and end vertices of the edges to be queried.

SI = edgeAttachments(TR, EDGE) specifies edges in matrix format.

Input
Arguments

TR Triangulation representation.

V1,V2 Column vectors of vertex indices into the array of
points representing the vertex coordinates.

EDGE Matrix specifying edge start and end points. EDGE is
of size m-by-2, m being the number of edges to query.

Output
Arguments

SI Vector cell array of indices into the triangulation
matrix. SI is a cell array because the number of
simplices associated with each edge can vary.

Definitions A simplex is a triangle/tetrahedron or higher dimensional equivalent.

Examples Example 1

Load a 3-D triangulation to compute the tetrahedra attached to an edge.

1-1822

TriRep.edgeAttachments

load tetmesh
trep = TriRep(tet, X);
v1 = [15 21]';
v2 = [936 716]';
t1 = edgeAttachments(trep, v1, v2);

You can also specify the input as edges.

e = [v1 v2];
t2 = edgeAttachments(trep, e);
isequal(t1,t2);

Example 2

Create a triangulation with DelaunayTri.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
dt = DelaunayTri(x,y);

Query the triangles attached to edge (1,5).

t = edgeAttachments(dt, 1,5);
t{:};

See Also edges | triangulation | delaunayTriangulation

1-1823

TriRep.edges

Purpose (Will be removed) Triangulation edges

Note edges(TriRep) will be removed in a future release. Use
edges(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax E = edges(TR)

Description E = edges(TR) returns the edges in the triangulation in an n-by-2
matrix. n is the number of edges. The vertices of the edges index into
TR.X, the array of points representing the vertex coordinates.

Input
Arguments

TR Triangulation representation.

Output
Arguments

E Edge matrix.

Examples Example 1

Load a 2-D triangulation.

load trimesh2d
trep = TriRep(tri, x,y);

Return all edges.

e = edges(trep);

Example 2

Query a 2-D DelaunayTri-generated triangulation.

X = rand(10,2);

1-1824

TriRep.edges

dt = DelaunayTri(X);
e = edges(dt);

See Also edgeAttachments | triangulation | delaunayTriangulation

1-1825

edit

Purpose Edit or create file

Syntax edit
edit file
edit file1 ... fileN

Description edit opens a new file called Untitled in the Editor. MATLAB does
not automatically save Untitled.

edit file opens the specified file in the Editor. If file does not
already exist, MATLAB asks if you want to create it. file can include
a partial path, complete path, relative path, or no path. If file includes
a partial path or no path, edit will look for the file on the search path.
You must have write permission to the path to create file, otherwise,
MATLAB ignores the argument.

You must specify the extension to open .mat and .mdl files. MATLAB
cannot directly edit binary files, such as .p and .mex files.

edit file1 ... fileN opens each file, file1 ... fileN, in the
Editor.

Examples Open a New File

edit

A new file titled Untitled opens in the MATLAB Editor (or default
editor). Untitled does not appear in your Current Folder.

Create a New File

mkdir tests
edit tests/new_script.m

A dialog box appears, asking if you want to create new_script.m. If you
select Yes, MATLAB creates and opens tests/new_script.m.

1-1826

edit

Open Files

edit file1 file2 file3 file4

MATLAB sequentially creates and opens the files: file1, file2, file3,
and file4 in sequence.

Input
Arguments

file - Name of file
string

Name of file, specified as a string. If file specifies a path that contains
a nonexistent folder, MATLAB throws an error. Specify multiple files
on the same line by separating filenames with a space.

If file is overloaded (that is, appears in multiple folders on the search
path), then include a partial path to edit the correct page, such as

edit folderName/file

If you do not specify the extension, then edit opens a file with the
specified name and a .m extension.

edit name

If the file is part of a class or package, then either specify the path
and extension, or separate the components of the name with periods,
such as:

edit className.name
edit packageName.name
edit packageName.className.name
edit packageName.name

Data Types
char

See Also open | type

Concepts • “Change Default Editor”

1-1827

eig

Purpose Eigenvalues and eigenvectors

Syntax lambda = eig(A)
lambda = eig(A,balanceOption)

lambda = eig(A,B)
lambda = eig(A,B,algorithm)

[V,D] = eig(___)
[V,D,W] = eig(___)

[___] = eig(___ ,eigvalOption)

Description lambda = eig(A) returns a column vector containing the eigenvalues,
with multiplicity, that satisfy the equation Av = λv, where A is an n-by-n
matrix, v is a column vector of length n, and λ is a scalar. The values
of λ that satisfy the equation are the eigenvalues. The corresponding
values of v that satisfy the equation are the right eigenvectors.

lambda = eig(A,balanceOption) specifies a balancing option as one
of two strings: 'balance', which enables a preliminary balancing step,
or 'nobalance' which disables it.

lambda = eig(A,B) returns a vector containing the generalized
eigenvalues of the pair, (A,B), that satisfy the equation Av = λBv, where
A and B are n-by-n matrices, v is a column vector of length n, and λ is
a scalar. The values of λ that satisfy the equation are the generalized
eigenvalues. The corresponding values of v are the generalized right
eigenvectors.

lambda = eig(A,B,algorithm) specifies the generalized eigenvalue
algorithm as one of two strings: 'qz', which uses the QZ algorithm, or
'chol', which uses the Cholesky factorization of B.

1-1828

eig

[V,D] = eig(___) returns two optional outputs for any of the previous
input syntaxes. D is a diagonal matrix containing the eigenvalues. V is a
matrix whose columns are the corresponding right eigenvectors.

[V,D,W] = eig(___) also returns W, a matrix whose columns are
the corresponding left eigenvectors, using any of the previous input
syntaxes. The left eigenvectors, w, satisfy the equation w†A = λw†.

[___] = eig(___ ,eigvalOption) returns the eigenvalues in the
form specified by eigvalOption using any of the previous syntaxes or
outputs. Specify eigvalOption as 'vector' to return a column vector
of eigenvalues, lambda, or as 'matrix' to return a diagonal matrix of
eigenvalues, D.

Input
Arguments

A - Input matrix
square matrix

Input matrix, specified as a real or complex square matrix.

Data Types
double | single
Complex Number Support: Yes

B - Generalized eigenvalue problem input matrix
square matrix

Generalized eigenvalue problem input matrix, specified as a square
matrix of real or complex values. B must be the same size as A.

Data Types
double | single
Complex Number Support: Yes

balanceOption - Balance option
'balance' (default) | 'nobalance'

Balance option, specified as one two strings: 'balance', which enables
a preliminary balancing step, or 'nobalance' which disables it. In most

1-1829

eig

cases, the balancing step improves the conditioning of A to produce more
accurate results. However, there are cases in which balancing produces
incorrect results. Specify 'nobalance' when A contains values whose
scale differs dramatically. For example, if A contains nonzero integers,
as well as very small (near zero) values, then the balancing step might
scale the small values to make them as significant as the integers and
produce inaccurate results.

'balance' is the default behavior. The eig function ignores
balanceOption when A is symmetric.

Data Types
char

algorithm - Generalized eigenvalue algorithm
'chol' | 'qz'

Generalized eigenvalue algorithm, specified as 'chol' or 'qz', which
selects the algorithm to use for calculating the generalized eigenvalues
of a pair.

algorithm Description

'chol' Computes the generalized eigenvalues of A and
B using the Cholesky factorization of B.

'qz' Uses the QZ algorithm, also known as the
generalized Schur decomposition. This
algorithm ignores the symmetry of A and B.

In general, the two algorithms return the same result. The QZ
algorithm can be more stable for certain problems, such as those
involving badly conditioned matrices.

When you omit the algorithm argument, the eig function selects
an algorithm based on the properties of A and B. It uses the 'chol'

1-1830

eig

algorithm for symmetric (Hermitian) A and symmetric (Hermitian)
positive definite B. Otherwise, it uses the 'qz' algorithm.

Regardless of the algorithm you specify, the eig function always uses
the QZ algorithm when A or B are not symmetric.

eigvalOption - Eigenvalue option
'vector' | 'matrix'

Eigenvalue option, specified as 'vector' or 'matrix'. This option
allows you to specify whether the eigenvalues are returned in a column
vector, lambda, or a diagonal matrix, D. The default behavior varies
according to the number of outputs specified:

• If you specify one output, such as lambda = eig(A), then the
eigenvalues are returned as a column vector, lambda, by default.

• If you specify two or three outputs, such as [V,D] = eig(A), then
the eigenvalues are returned as a diagonal matrix, D, by default.

Example: D = eig(A,'matrix') returns a diagonal matrix of
eigenvalues with the one output syntax.

Data Types
char

Output
Arguments

lambda - Eigenvalues
column vector

Eigenvalues, returned as a column vector containing the eigenvalues
(or generalized eigenvalues of a pair) with multiplicity.

• When A is real and symmetric or complex Hermitian, the values of
lambda that satisfy Av = λv are real.

• When A is real and skew-symmetric or skew-Hermitian, the values of
lambda that satisfy Av = λv are purely imaginary or zero.

V - Right eigenvectors
square matrix

1-1831

eig

Right eigenvectors, returned as a square matrix whose columns are the
right eigenvectors of A or generalized right eigenvectors of the pair,
(A,B). The form and normalization of V depends on the combination
of input arguments:

• [V,D] = eig(A) returns matrix V, whose columns are the right
eigenvectors of A such that A*V = V*D. The eigenvectors in V are
normalized so that the 2-norm of each is 1.

• [V,D] = eig(A,'nobalance') also returns matrix V. However, the
2-norm of each eigenvector is not necessarily 1.

• [V,D] = eig(A,B) and [V,D] = eig(A,B,algorithm) returns V
as a matrix whose columns are the generalized right eigenvectors
that satisfy A*V = B*V*D. The 2-norm of each eigenvector is not
necessarily 1. In this case, D contains the generalized eigenvalues of
the pair, (A,B), along the main diagonal.

If A is symmetric and B is symmetric positive definite, then the
eigenvectors in V are normalized so that the B-norm of each is 1.

D - Diagonal eigenvalues matrix
diagonal matrix

Diagonal eigenvalues matrix, returned as a matrix containing the
eigenvalues of A or the generalized eigenvalues of the pair, (A,B), with
multiplicity.

• When A is real and symmetric or complex Hermitian, the values of
D that satisfy Av = λv are real.

• When A is real and skew-symmetric or skew-Hermitian, the values of
D that satisfy Av = λv are purely imaginary or zero.

W - Left eigenvectors
square matrix

Left eigenvectors, returned as a square matrix whose columns are the
left eigenvectors of A or generalized left eigenvectors of the pair, (A,B).
The form and normalization of W depends on the combination of input
arguments:

1-1832

eig

• [V,D,W] = eig(A) returns matrix W, whose columns are the left
eigenvectors of A such that W'*A = D*W'. The eigenvectors in W are
normalized so that the 2-norm of each is 1. If A is symmetric, then
W is the same as V.

• [V,D,W] = eig(A,'nobalance') also returns matrix W. However,
the 2-norm of each eigenvector is not necessarily 1.

• [V,D,W] = eig(A,B) and [V,D,W] = eig(A,B,algorithm) returns
W as a matrix whose columns are the generalized left eigenvectors
that satisfy W'*A = D*W'*B. The 2-norm of each eigenvector is not
necessarily 1. In this case, D contains the generalized eigenvalues of
the pair, (A,B), along the main diagonal.

If A and B are symmetric, then W is the same as V.

Examples Eigenvalues of Real Symmetric Matrix

Use the gallery function to create symmetric positive definite matrix.

A = gallery('lehmer',4)

A =

1.0000 0.5000 0.3333 0.2500
0.5000 1.0000 0.6667 0.5000
0.3333 0.6667 1.0000 0.7500
0.2500 0.5000 0.7500 1.0000

Calculate the eigenvalues of A.

lambda = eig(A)

lambda =

0.2078
0.4078
0.8482
2.5362

1-1833

eig

The result is a column vector.

Alternatively, use eigvalOption to return the eigenvalues in a diagonal
matrix.

D = eig(A,'matrix')

D =

0.2078 0 0 0
0 0.4078 0 0
0 0 0.8482 0
0 0 0 2.5362

Eigenvalues and Eigenvectors of Nonsymmetric Matrix

Use the gallery function to create a circulant matrix.

A = gallery('circul',3)

A =

1 2 3
3 1 2
2 3 1

Calculate the eigenvalues and right eigenvectors of A.

[V,D] = eig(A)

V =

-0.5774 + 0.0000i 0.2887 - 0.5000i 0.2887 + 0.5000i
-0.5774 + 0.0000i -0.5774 + 0.0000i -0.5774 + 0.0000i
-0.5774 + 0.0000i 0.2887 + 0.5000i 0.2887 - 0.5000i

D =

1-1834

eig

6.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i -1.5000 + 0.8660i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -1.5000 - 0.8660i

Verify that matrix V diagonalizes A, since the eigenvalues are distinct
and the eigenvectors are independent.

V\A*V

ans =

6.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 + 0.0000i
-0.0000 - 0.0000i -1.5000 + 0.8660i -0.0000 - 0.0000i
-0.0000 + 0.0000i -0.0000 + 0.0000i -1.5000 - 0.8660i

Eigenvalues and Eigenvectors of a Matrix Whose Elements
Differ Dramatically in Scale

A = [3.0 -2.0 -0.9 2*eps;
-2.0 4.0 1.0 -eps;
-eps/4 eps/2 -1.0 0;
-0.5 -0.5 0.1 1.0];

Calculate the eigenvalues and right eigenvectors using the default
(balancing) behavior.

[VB,DB] = eig(A)

VB =

0.6153 -0.4176 -0.0000 -0.1437
-0.7881 -0.3261 -0.0000 0.1264
-0.0000 -0.0000 -0.0000 -0.9196
0.0189 0.8481 1.0000 0.3432

DB =

1-1835

eig

5.5616 0 0 0
0 1.4384 0 0
0 0 1.0000 0
0 0 0 -1.0000

Check to see if the results satisfy A*VB = VB*DB.

A*VB - VB*DB

ans =

0.0000 0.0000 -0.0000 0.0000
0 -0.0000 0.0000 -0.0000

0.0000 -0.0000 0.0000 0.0000
0 0.0000 0.0000 0.6031

This result does not satisfy A*VB = VB*DB. Ideally, the eigenvalue
decomposition satisfies this relationship. Since MATLAB performs the
decomposition using floating-point computations, then A*V can, at best,
approach V*D. In other words, A*V - V*D is close to, but not exactly, 0.

Now, try calculating the eigenvalues and right eigenvectors without
the balancing step.

[VN,DN] = eig(A,'nobalance')

VN =

0.6153 -0.4176 -0.0000 -0.1528
-0.7881 -0.3261 0 0.1345
-0.0000 -0.0000 -0.0000 -0.9781
0.0189 0.8481 -1.0000 0.0443

DN =

5.5616 0 0 0

1-1836

eig

0 1.4384 0 0
0 0 1.0000 0
0 0 0 -1.0000

Verify that the results satisfy A*VN = VN*DN.

A*VN - VN*DN

ans =

1.0e-14 *

-0.1776 -0.0111 -0.0559 -0.0167
0.3553 0.1055 0.0336 -0.0194
0.0017 0.0002 0.0007 0
0.0264 -0.0222 0.0222 0.0097

A*VN - VN*DN is much closer to 0, so the 'nobalance' option produces
more accurate results in this case.

Left Eigenvectors

Create a 3-by-3 matrix.

A = [1 7 3; 2 9 12; 5 22 7];

Calculate the right eigenvectors, V, the eigenvalues, D, and the left
eigenvectors, W.

[V,D,W] = eig(A)

V =

-0.2610 -0.9734 0.1891
-0.5870 0.2281 -0.5816
-0.7663 -0.0198 0.7912

D =

1-1837

eig

25.5548 0 0
0 -0.5789 0
0 0 -7.9759

W =

-0.1791 -0.9587 -0.1881
-0.8127 0.0649 -0.7477
-0.5545 0.2768 0.6368

Matrix W contains the left eigenvectors.

Verify the results satisfy W'*A = D*W'.

W'*A - D*W'

ans =

1.0e-13 *

-0.0444 -0.1066 -0.0888
-0.0011 0.0442 0.0333

0 0.0266 0.0178

Ideally, the eigenvalue decomposition satisfies the relationship.
Since MATLAB performs the decomposition using floating-point
computations, then W'*A can, at best, approach D*W'. In other words,
W'*A - D*W' is close to, but not exactly, 0.

Eigenvalues and Eigenvectors of Nondiagonalizable
(Defective) Matrix

Create a 3-by-3 matrix.

A = [3 1 0; 0 3 1; 0 0 3];

Calculate the eigenvalues and right eigenvectors of A.

1-1838

eig

[V,D] = eig(A)

V =

1.0000 -1.0000 1.0000
0 0.0000 -0.0000
0 0 0.0000

D =

3 0 0
0 3 0
0 0 3

A has repeated eigenvalues and the eigenvectors are not independent.
This means that A is not diagonalizable and is, therefore, defective.

Verify that V and D satisfy the equation, A*V = V*D, even though A
is defective.

A*V - V*D

ans =

1.0e-15 *

0 0.8882 -0.8882
0 0 0.0000
0 0 0

Ideally, the eigenvalue decomposition satisfies the relationship.
Since MATLAB performs the decomposition using floating-point
computations, then A*V can, at best, approach V*D. In other words, A*V
- V*D is close to, but not exactly, 0.

Generalized Eigenvalues and Eigenvectors

Create two matrices, A and B, then solve the generalized eigenvalue
problem for the eigenvalues and right eigenvectors of the pair (A,B).

1-1839

eig

A = [1/sqrt(2) 0; 0 1];
B = [0 1; -1/sqrt(2) 0];
[V,D]=eig(A,B)

V =

1.0000 + 0.0000i 1.0000 + 0.0000i
0.0000 - 0.7071i 0.0000 + 0.7071i

D =

0.0000 + 1.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 - 1.0000i

Verify that the results satisfy A*V = B*V*D.

A*V - B*V*D

ans =

0 0
0 0

The residual error A*V - B*V*D is exactly zero.

Generalized Eigenvalues Using QZ Algorithm for Badly
Conditioned Matrices

Create a badly conditioned symmetric matrix containing values close to
machine precision.

format long e
A = diag([10^-16, 10^-15])

A =

1.000000000000000e-16 0
0 1.000000000000000e-15

1-1840

eig

Calculate the generalized eigenvalues and a set of right eigenvectors
using the default algorithm. In this case, the default algorithm is
'chol'.

[V1,D1] = eig(A,A)

V1 =

1.000000000000000e+08 0
0 3.162277660168380e+07

D1 =

9.999999999999999e-01 0
0 1.000000000000000e+00

Now, calculate the generalized eigenvalues and a set of right
eigenvectors using the 'qz' algorithm.

[V2,D2] = eig(A,A,'qz')

V2 =

1 0
0 1

D2 =

1 0
0 1

Check to see how well the 'chol' result satisfies A*V1 = A*V1*D1.

format
A*V1 - A*V1*D1

1-1841

eig

ans =

1.0e-23 *

0.1654 0
0 -0.6617

Now, check to see how well the 'qz' result satisfies A*V2 = A*V2*D2.

A*V2 - A*V2*D2

ans =

0 0
0 0

When both matrices are Hermitian, eig uses the 'chol' algorithm by
default. In this case, the QZ algorithm returns more accurate results.

Generalized Eigenvalues and Eigenvectors of a Pair in Which
One Matrix is Singular

Create a 2-by-2 identity matrix, A, and a singular matrix, B.

A = eye(2);
B = [3 6; 4 8];

Try to calculate the generalized eigenvalues of the matrix, B-1A.

[V,D] = eig(B\A)

Warning: Matrix is singular to working precision.
Error using eig
Input to EIG must not contain NaN or Inf.

Now calculate the generalized eigenvalues and right eigenvectors by
passing both matrices to the eig function.

[V,D] = eig(A,B)

1-1842

eig

V =

-0.7500 -1.0000
-1.0000 0.5000

D =

0.0909 0
0 Inf

It’s better to pass both matrices separately, and let eig choose the best
algorithm to solve the problem. In this case, eig(A,B) returned a
set of eigenvectors and at least one real eigenvalue, even though B is
not invertible.

Verify Av = λBv for the first eigenvalue and the first eigenvector.

eigval = D(1,1);
eigvec = V(:,1);
A*eigvec - eigval*B*eigvec

ans =

1.0e-15 *

0.1110
0.2220

Ideally, the eigenvalue decomposition satisfies the relationship. Since
the decomposition is performed using floating-point computations, then
A*eigvec can, at best, approach eigval*B*eigvec, as it does in this
case.

Tips • The eig function returns the eigenvalues of a real, symmetric, sparse
matrix for the syntax, lambda = eig(A). Use the eigs function for
all other sparse eigenvalue and eigenvector problems.

1-1843

eig

See Also balance | condeig | eigs | hess | qz | schur

1-1844

eigs

Purpose Largest eigenvalues and eigenvectors of matrix

Syntax d = eigs(A)
[V,D] = eigs(A)
[V,D,flag] = eigs(A)
eigs(A,B)
eigs(A,k)
eigs(A,B,k)
eigs(A,k,sigma)
eigs(A,B,k,sigma)
eigs(A,K,sigma,opts)
eigs(A,B,k,sigma,opts)
eigs(Afun,n,...)

Description d = eigs(A) returns a vector of A’s six largest magnitude eigenvalues.
A must be a square matrix. A should be large and sparse, though eigs
will work on full matrices as well. See “Tips” below.

[V,D] = eigs(A) returns a diagonal matrix D of A’s six largest
magnitude eigenvalues and a matrix V whose columns are the
corresponding eigenvectors.

[V,D,flag] = eigs(A) also returns a convergence flag. If flag is 0
then all the eigenvalues converged; otherwise not all converged.

eigs(A,B) solves the generalized eigenvalue problem A*V == B*V*D.
B must be the same size as A. eigs(A,[],...) indicates the standard
eigenvalue problem A*V == V*D.

eigs(A,k) and eigs(A,B,k) return the k largest magnitude
eigenvalues.

eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based
on sigma, which can take any of the following values:

1-1845

eigs

scalar (real
or complex,
including 0)

The eigenvalues closest to sigma. If A is a function,
Afun must return Y = (A-sigma*B)\x (i.e., Y = A\x
when sigma = 0).

’lm’ Largest magnitude (default).

’sm’ Smallest magnitude. Same as sigma = 0. If A is a
function, Afun must return Y = A\x.

For real symmetric A and symmetric positive-definite B, the following
are also options:

’la’ Largest algebraic

’sa’ Smallest algebraic

’be’ Both ends (one more from high end if k is odd)

For nonsymmetric and complex problems, the following are also
options:

’lr’ Largest real part

’sr’ Smallest real part

’li’ Largest imaginary part

’si’ Smallest imaginary part

Note The syntax eigs(A,k,...) is not valid when A is scalar. To pass
a value for k, you must specify B as the second argument and k as the
third (eigs(A,B,k,...)). If necessary, you can set B equal to [], the
default.

eigs(A,K,sigma,opts) and eigs(A,B,k,sigma,opts) specify an
options structure. Default values are shown in brackets ({}).

1-1846

eigs

Parameter Description Values

opts.issym 1 if A or A-sigma*B
represented by Afun is
symmetric, 0 otherwise.

[{0} | 1]

opts.isreal 1 if A or A-sigma*B
represented by Afun is
real, 0 otherwise.

[0 | {1}]

opts.tol Convergence: Ritz estimate
residual <= tol*norm(A).

[scalar |
{eps}]

opts.maxit Maximum number of
iterations.

[integer |
{300}]

opts.p Number of Lanczos basis
vectors.
p >= 2k (p >= 2k+1 real
nonsymmetric) advised. p
must satisfy k < p <= n for
real symmetric, k+1 < p <=
n otherwise.
Note: If you do not specify a p
value, the default algorithm
uses at least 20 Lanczos
vectors.

[integer |
{2*k}]

opts.v0 Starting vector. [n-by-1 vector
| {randomly
generated by
rand}]

opts.disp Diagnostic information
display level.

[{0} | 1 | 2]

opts.cholB 1 if B is really its Cholesky
factor chol(B), 0 otherwise.

[{0} | 1]

opts.permB Permutation vector permB
if sparse B is really
chol(B(permB,permB)).

[permB | {1:n}]

1-1847

eigs

eigs(Afun,n,...) accepts a function handle, Afun, instead of the
matrix A.

y = Afun(x) should return:

A*x if sigma is not specified, or is a string other than
'sm'

A\x if sigma is 0 or 'sm'

(A-sigma*I)\x if sigma is a nonzero scalar (standard eigenvalue
problem). I is an identity matrix of the same
size as A.

(A-sigma*B)\x if sigma is a nonzero scalar (generalized
eigenvalue problem)

“Parameterizing Functions” explains how to provide additional
parameters to the function Afun, if necessary.

The matrix A, A-sigma*I or A-sigma*B represented by Afun is assumed
to be real and nonsymmetric unless specified otherwise by opts.isreal
and opts.issym. In all the eigs syntaxes, eigs(A,...) can be replaced
by eigs(Afun,n,...).

Tips d = eigs(A,k) is not a substitute for

d = eig(full(A))
d = sort(d)
d = d(end-k+1:end)

but is most appropriate for large sparse matrices. If the problem fits
into memory, it may be quicker to use eig(full(A)).

Unless you provide a start vector with opts.v0, the default start vector
is generated by rand, possibly leading to different iterations each run,
and perhaps even different convergence behavior. In order to control
this, specify your start vector via opts.v0.

1-1848

eigs

Examples Smallest Eigenvalues of Sparse Matrix

A = delsq(numgrid('C',15));
d1 = eigs(A,5,'sm')

returns

d1 =
0.5520
0.4787
0.3469
0.2676
0.1334

Smallest Eigenvalues of Function-Generated Sparse Matrix

This example replaces the matrix A in example 1 with a handle to a
function dnRk. The example is contained in file run_eigs that

• Calls eigs with the function handle @dnRk as its first argument.

• Contains dnRk as a nested function, so that all variables in run_eigs
are available to dnRk.

The following shows the code for run_eigs:

function d2 = run_eigs
n = 139;
opts.issym = 1;
R = 'C';
k = 15;
d2 = eigs(@dnRk,n,5,'sm',opts);

function y = dnRk(x)
y = (delsq(numgrid(R,k))) \ x;

end
end

1-1849

eigs

Largest Eigenvalue Pairs of Sparse Matrix

west0479 is a real-valued 479-by-479 sparse matrix with both real
and complex pairs of conjugate eigenvalues. eig computes all 479
eigenvalues. eigs easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as
computed by eig and eigs.

load west0479
d = eig(full(west0479));
dlm = eigs(west0479,8);
[dum,ind] = sort(abs(d));
plot(dlm,'k+'); hold on
plot(d(ind(end-7:end)),'ks'); hold off
legend('eigs(west0479,8)','eig(full(west0479))')

1-1850

eigs

Repeated Eigenvalues of Symmetric Positive Definite Sparse
Matrix

A = delsq(numgrid('C',30)) is a symmetric positive definite matrix
of size 632 with eigenvalues reasonably well-distributed in the interval
(0 8), but with 18 eigenvalues repeated at 4.

Use the eig function to compute all 632 eigenvalues, and the eigs
function to compute the six largest and smallest magnitude eigenvalues.

1-1851

eigs

A = delsq(numgrid('C',30));
d = sort(eig(full(A)));
dlm = eigs(A);
dsm = eigs(A,6,'sa');

Plot the results from eig and eigs for the six largest and smallest
magnitude eigenvalues.

subplot(2,1,1)
plot(dlm,'k+'), hold on
plot(d(end:-1:end-5),'ks'), hold off
legend('eigs(A)','eig(full(A))',3)
set(gca,'XLim',[0.5 6.5])

subplot(2,1,2)
plot(dsm,'k+'), hold on
plot(d(1:6),'ks'), hold off
legend('eigs(A,6,''sa'')','eig(full(A))',2)
set(gca,'XLim',[0.5 6.5])

1-1852

eigs

The repeated eigenvalue at 4 must be handled more carefully. The
call eigs(A,20,4.0) to compute 20 eigenvalues near 4.0 tries to
find eigenvalues of A - 4.0*I. This involves divisions of the form
1/(lambda - 4.0), where lambda is an estimate of an eigenvalue of A.
As lambda gets closer to 4.0, eigs fails. We must use sigma near but
not equal to 4 to find those eigenvalues.

sigma = 4 - 1e-6;
D = sort(eigs(A,20,sigma));

1-1853

eigs

The plot below shows the 20 eigenvalues closest to 4 that were computed
by eig, along with the 20 eigenvalues closest to 4 - 1e-6 that were
computed by eigs.

figure(2);
plot(d(307:326),'ks'), hold on
plot(D,'k+'), hold off
legend('eig(A)','eigs(A,20,sigma)')
title('18 Repeated Eigenvalues of A')

1-1854

eigs

References [1] Lehoucq, R.B. and D.C. Sorensen, “Deflation Techniques for an
Implicitly Re-Started Arnoldi Iteration,” SIAM J. Matrix Analysis and
Applications, Vol. 17, 1996, pp. 789–821.

[2] Sorensen, D.C., “Implicit Application of Polynomial Filters in a
k-Step Arnoldi Method,” SIAM J. Matrix Analysis and Applications,
Vol. 13, 1992, pp. 357–385.

See Also eig | svds | function_handle

1-1855

ellipj

Purpose Jacobi elliptic functions

Syntax [SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Definitions The Jacobi elliptic functions are defined in terms of the integral:

u
d

m

1 20 sin
.

Then

sn u cn u dn u m() sin , () cos , () sin . 1 2

Some definitions of the elliptic functions use the modulus k instead of
the parameter m. They are related by

k m a2 2 sin ,

where α is the modular angle.

The Jacobi elliptic functions obey many mathematical identities; for a
good sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN,
CN, and DN, evaluated for corresponding elements of argument U and
parameter M. Inputs U and M must be the same size (or either can be
scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions
to accuracy tol. The default is eps; increase this for a less accurate but
more quickly computed answer.

Algorithms ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean of [1]. It starts with the triplet of numbers:

1-1856

ellipj

a b m c m0 0 01 1 , ,

ellipj computes successive iterates with

a a b

b a b

c a b

i i i

i i i

i i i

1
2

1
2

1 1

1 1

1
2

1 1

()

()

()

Next, it calculates the amplitudes in radians using:

sin() sin()2 1 n n
n

n
n

c
a

being careful to unwrap the phases correctly. The Jacobian elliptic
functions are then simply:

sn u

cn u

dn u m sn u

() sin

() cos

() ()

0

0

21

Limitations The ellipj function is limited to the input domain 0 ≤m ≤ 1. Map other
values of M into this range using the transformations described in [1],
equations 16.10 and 16.11. U is limited to real values.

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, 17.6.

See Also ellipke

1-1857

ellipke

Purpose Complete elliptic integrals of first and second kind

Syntax K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Description K = ellipke(M) returns the complete elliptic integral of the first kind
for the each element in M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first
and second kinds.

[K,E] = ellipke(M,tol) computes the complete elliptic integral to
accuracy tol. The default is eps(class(M)); increase the tolerance for
a less accurate but more quickly computed answer.

Limitations ellipke is limited to the input domain 0 ≤ m ≤ 1.

Definitions The complete elliptic integral of the first kind is

[()] [()()] .K m t mt dt= − −
−

∫ 1 12 2
1
2

0

1

where m is the first argument of ellipke.

The complete elliptic integral of the second kind is

E m t mt dt() () () .= − −∫
−

0

1 2
1
2 2

1
21 1

Some definitions of K and E use the elliptical modulus k or modular
angle α instead of the parameter m. They are related by

k m2 2= = sin .

References [1] Abramowitz, M., and I.A. Stegun. Handbook of Mathematical
Functions. Dover Publications, 1965.

1-1858

ellipke

See Also ellipj

1-1859

ellipsoid

Purpose Generate ellipsoid

Syntax [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n)
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr)
ellipsoid(axes_handle,...)
ellipsoid(...)

Description [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n) generates a surface
mesh described by three n+1-by-n+1 matrices, enabling surf(x,y,z)
to plot an ellipsoid with center (xc,yc,zc) and semi-axis lengths
(xr,yr,zr).

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr) uses n = 20.

ellipsoid(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

ellipsoid(...) with no output arguments plots the ellipsoid as a
surface.

Algorithms ellipsoid generates the data using the following equation:

x xc

xr

y yc

yr

z zc

zr

2

2

2

2

2

2
1

Note that ellipsoid(0,0,0,.5,.5,.5) is equivalent to a unit sphere.

1-1860

ellipsoid

Examples Surface Plot of Ellipsoid

Generate data for an ellipsoid with a center at (0,0,0) and semi-axis
lengths (5.9,3.25,3.25). Use surf to plot the ellipsoid.

[x, y, z] = ellipsoid(0,0,0,5.9,3.25,3.25,30);
figure
surf(x, y, z)
axis equal

1-1861

ellipsoid

See Also cylinder | sphere | surf

1-1862

empty

Purpose Create empty array

Syntax A = ClassName.empty
A = ClassName.empty(n,m,p,...)
A = ClassName.empty([n,m,p,...])

Description Use empty to create empty arrays of the specified class, ClassName.
Specify at least one dimension of the array as 0. MATLAB treats
negative values as 0.

A = ClassName.empty returns an empty 0-by-0 array of the class of
ClassName.

A = ClassName.empty(n,m,p,...) returns an empty rectangular
array with the specified dimensions. At least one of the dimensions
must be 0.

A = ClassName.empty([n,m,p,...]) returns an empty rectangular
array with the specified dimensions. At least one of the dimensions
must be 0. This syntax is useful when using the values returned by
the size function to define an empty array that is the same size as
an existing empty array:

A = ClassName.empty(size(otherEmptyArray));

Input
Arguments

n,m,p,...

Dimensions of the empty array. At least one of the specified dimensions
must be 0.

Output
Arguments

A

An empty array of the specified dimensions and of the class used in the
method invocation.

Attributes empty is a hidden, public, static method of all nonabstract MATLAB
classes.

1-1863

empty

Access Public

Hidden true

Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Use empty to create a rectangular empty array of class int16:

A = int16.empty(5,0);
whos

Name Size Bytes Class Attributes

A 5x0 0 int16

Using the empty method of the int16 class to produce an empty array
in which some dimensions are not zero is simpler than using conversion
and reshape operations:

A = int16([]);
A = reshape(A,5,0);
whos

Name Size Bytes Class Attributes

A 5x0 0 int16

Given the following definition for a class,

classdef ExEmpty
properties

Color = [1,0,0];
end
methods

function obj = ExEmpty(c)
if nargin > 0

obj.Color = c;
end

1-1864

empty

end
end

end

Create an empty array of class ExEmpty:

A = ExEmpty.empty;
whos
Name Size Bytes Class Attributes

A 0x0 104 ExEmpty

One dimension of an empty array must be zero:

A5 = ExEmpty.empty(0,5);
whos
Name Size Bytes Class Attributes

A5 0x5 104 ExEmpty

Empty object arrays follow array concatenation behavior:

B = [A,A5]
B =

0x5 ExEmpty array with properties:

Color

You cannot index into an empty array:

A5(1)
Index exceeds matrix dimensions.

You can use the isempty, size, and length functions to identify empty
object arrays:

isempty(A5)

1-1865

empty

ans =

1
size(A5)

ans =

0 5
length(A5)

ans =

0

Class of Empty Object Array

The empty method enables you to initialize arrays of a specific class:

C = char.empty(0,7)

C =

Empty string: 0-by-7

class(C)
ans =

char

Initializing an array with empty brackets ([]):

a = [];

produces an array of class double:

class(a)
ans =

1-1866

empty

double

See Also | isempty | size | length

Tutorials • “Creating Empty Arrays”

• “Empty Matrices, Scalars, and Vectors”

1-1867

enableNETfromNetworkDrive

Purpose Enable access to .NET commands from network drive

Syntax enableNETfromNetworkDrive

Description enableNETfromNetworkDrive adds an entry for the MATLAB interface
to .NET module to the security policy on your machine. You must have
administrative privileges to make changes to your configuration.

Compatibility Use enableNETfromNetworkDrive for MATLAB releases R2012b
or earlier, which support installed versions 2.0, 3.0, and 3.5 of the
Microsoft .NET Framework.

Related
Examples

• “Troubleshooting Security Policy Settings From Network Drives”

1-1868

enableservice

Purpose Enable, disable, or report status of MATLAB Automation server

Syntax state = enableservice('AutomationServer',enable)
state = enableservice('AutomationServer')

Description state = enableservice('AutomationServer',enable) enables or
disables the MATLAB Automation server. If enable is true (logical
1), enableservice converts an existing MATLAB session into an
Automation server. If enable is false (logical 0), enableservice
disables the MATLAB Automation server. state indicates the previous
state of the Automation server. If state = 1, MATLAB was an
Automation server. If state = 0, MATLAB was not an Automation
server.

state = enableservice('AutomationServer') returns the current
state of the Automation server. If state is logical 1 (true), MATLAB
is an Automation server.

COM functions are available on Microsoft Windows systems only.

Examples Enable the Automation server in the current MATLAB session:

state = enableservice('AutomationServer',true);

Show the current state of the MATLAB session. MATLAB displays
true:

state = enableservice('AutomationServer')

Enable the Automation server and show the previous state. MATLAB
displays true. The previous state can be the same as the current state:

state = enableservice('AutomationServer',true)

See Also actxserver

1-1869

enableservice

How To • “MATLAB COM Automation Server Interface”

1-1870

end

Purpose Terminate block of code, or indicate last array index

Syntax end

Description end terminates for, while, switch, try, if, and parfor statements.
Without an end statement, for, while, switch, try, if, and parfor wait
for further input. Each end is paired with the closest previous unpaired
for, while, switch, try, if, or parfor and serves to delimit its scope.

end also marks the termination of a function, although in many cases it
is optional. If your function contains one or more nested functions, then
you must terminate every function in the file, whether nested or not,
with end. This includes primary, nested, private, and local functions.

The end function also serves as the last index in an indexing expression.
In that context, end = (size(x,k)) when used as part of the kth index.
Examples of this use are X(3:end) and X(1,1:2:end-1). When using
end to grow an array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an
end method for the object. The end method should have the calling
sequence end(obj,k,n), where obj is the user object, k is the index in
the expression where the end syntax is used, and n is the total number
of indices in the expression. For example, consider the expression

A(end-1,:)

The MATLAB software calls the end method defined for A using the
syntax

end(A,1,2)

Examples This example shows end used with the for and if statements.

for k = 1:n
if a(k) == 0

a(k) = a(k) + 2;
end

end

1-1871

end

In this example, end is used in an indexing expression.

A = magic(5)

A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

B = A(end,2:end)

B =

18 25 2 9

See Also parfor | while | return | break | for | if | switch | try

1-1872

EndInvoke

Purpose Retrieve result of asynchronous call initiated by .NET System.Delegate
BeginInvoke method

Syntax result = EndInvoke(asyncResult)
[res0,...,resN] = EndInvoke(res0,...,resN,asyncResult)

Description result = EndInvoke(asyncResult) retrieves result of asynchronous
call initiated by BeginInvoke method.

[res0,...,resN] = EndInvoke(res0,...,resN,asyncResult) for
methods with out and/or ref parameters.

Tips • If the delegate contains out or ref parameters, the signature for
the EndInvoke method follows the MATLAB mapping rules. For
information, see “Call Delegates With out and ref Type Arguments”.

Input
Arguments

asyncResult

.NET System.IAsyncResult object returned by BeginInvoke.

res0,...,resN

For methods with out and/or ref parameters, results of the
asynchronous call. The number of arguments is the sum of:

• Number of return values (0 or 1).

• Number of out and ref arguments.

Output
Arguments

result

Results of the asynchronous call.

res0,...,resN

For methods with out and/or ref parameters, results of the
asynchronous call,

1-1873

http://msdn.microsoft.com/en-us/library/system.iasyncresult.aspx

EndInvoke

Examples The following examples show how to call delegates with various input
and output arguments. Each example contains:

1 The C# delegate signature. In order to execute the MATLAB code,
build the delegate code into an assembly named SignatureExamples
and load it into MATLAB. For information, see “Build a .NET
Application for MATLAB Examples”.

2 An example MATLAB function to use with the delegate, which must
exist on your path.

3 The BeginInvoke and EndInvoke signatures MATLAB creates. To
display the signatures, create a delegate instance, myDel, and call
the methodsview function.

4 Simple MATLAB example.

This example shows how to use a delegate that has no return value.

1 C# delegate:

public delegate void delint(Int32 arg);

2 MATLAB function to call:

%Display input argument
function dispfnc(A)
%A = number
['Input is ' num2str(A)]
end

3 MATLAB creates the following signatures. For BeginInvoke:

System.IAsyncResult RetVal
BeginInvoke (

SignatureExamples.delint this,
int32 scalar arg,

1-1874

EndInvoke

System.AsyncCallback callback,
System.Object object)

The EndInvoke signature:

EndInvoke (
SignatureExamples.delint this,
System.IAsyncResult result)

4 Call dispfnc:

myDel = SignatureExamples.delint(@dispfnc);
asyncRes = myDel.BeginInvoke(6, [], []);
while asyncRes.IsCompleted ~= true

pause(0.05); % Use pause() to let MATLAB process event
end
myDel.EndInvoke(asyncRes)

Input is 6

This example shows how to use a delegate with a return value. The
delegate does not have out or ref parameters.

1 C# delegate:

public delegate Int32 del2int(Int32 arg1, Int32 arg2);

2 MATLAB function to call:

%Add input arguments
function res = addfnc(A, B)
%A and B are numbers
res = A + B;
end

3 MATLAB creates the following signatures. For BeginInvoke:

1-1875

EndInvoke

System.IAsyncResult RetVal
BeginInvoke (

SignatureExamples.del2int this,
int32 scalar arg1,
int32 scalar arg2,
System.AsyncCallback callback,
System.Object object)

The EndInvoke signature:

int32 scalar RetVal
EndInvoke (

SignatureExamples.del2int this,
System.IAsyncResult result)

4 Call addfnc:

myDel = SignatureExamples.del2int(@addfnc);
asyncRes = myDel.BeginInvoke(6,8,[],[]);
while asyncRes.IsCompleted ~= true

pause(0.05); % Use pause() to let MATLAB process event
end
result = myDel.EndInvoke(asyncRes)

result =
14

This example shows how to use a delegate with a ref parameter,
refArg, and no return value.

1 C# delegate:

public delegate void delrefvoid(ref Double refArg);

2 MATLAB maps the ref argument as both RHS and LHS arguments.
MATLAB function to call:

1-1876

EndInvoke

%Increment input argument
function res = incfnc(A)
%A = number
res = A + 1;
end

3 MATLAB creates the following signatures. For BeginInvoke:

[System.IAsyncResult RetVal,
double scalar refArg]

BeginInvoke (
SignatureExamples.delrefvoid this,
double scalar refArg,
System.AsyncCallback callback,
System.Object object)

The EndInvoke signature:

double scalar refArg
EndInvoke (

SignatureExamples.delrefvoid this,
double scalar refArg,
System.IAsyncResult result)

4 Call incfnc:

x = 6;
myDel = SignatureExamples.delrefvoid(@incfnc);
asyncRes = myDel.BeginInvoke(x,[],[]);
while asyncRes.IsCompleted ~= true

pause(0.05); % Use pause() to let MATLAB process event
end
myRef = 0;
result = myDel.EndInvoke(myRef,asyncRes);
disp(['Increment of ' num2str(x) ' = ' num2str(result)]);

Increment of 6 = 7

1-1877

EndInvoke

This example shows how to use a delegate with an out parameter,
argOut, and one return value.

1 C# delegate:

public delegate Single deloutsingle(Single argIn, out Single argOut);

2 MATLAB maps the out argument as a return value for a total of two
return values. MATLAB function to call:

%Double input argument
function [res1 res2] = times2fnc(A)
res1 = A*2;
res2 = res1;
end

3 MATLAB creates the following signatures. For BeginInvoke:

[System.IAsyncResult RetVal,
single scalar argOut]

BeginInvoke (
SignatureExamples.deloutsingle this,
single scalar argIn,
System.AsyncCallback callback,
System.Object object)

The EndInvoke signature:

[single scalar RetVal,
single scalar argOut]

EndInvoke (
SignatureExamples.deloutsingle this,
System.IAsyncResult result)

4 Call times2fnc:

myDel = SignatureExamples.deloutsingle(@times2fnc);

1-1878

EndInvoke

asyncRes = myDel.BeginInvoke(6,[],[]);
while asyncRes.IsCompleted ~= true

pause(0.05); % Use pause() to let MATLAB process event
end
[a1 a2] = myDel.EndInvoke(asyncRes);
a1

a1 =
12

See Also BeginInvoke

How To • “Calling .NET Methods Asynchronously”

Related
Links

• MSDN Calling Synchronous Methods Asynchronously

1-1879

http://msdn.microsoft.com/en-us/library/2e08f6yc.aspx

eomday

Purpose Last day of month

Syntax E = eomday(Y, M)

Description E = eomday(Y, M) returns the last day of the year and month given
by corresponding elements of arrays Y and M.

Examples Show the end of month for January through September for the year
1900:

eomday(1900, 1:9)
ans =

31 28 31 30 31 30 31 31 30

Find the number of days during that period:

sum(eomday(1900, 1:9))
ans =

273

Because 1996 is a leap year, the statement eomday(1996,2) returns 29.
To show all the leap years in the twentieth century, try:

y = 1900:1999;
E = eomday(y, 2);
y(find(E == 29))

ans =
Columns 1 through 6

1904 1908 1912 1916 1920 1924

Columns 7 through 12
1928 1932 1936 1940 1944 1948

Columns 13 through 18
1952 1956 1960 1964 1968 1972

1-1880

eomday

Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also datenum | datevec | weekday

1-1881

enumeration

Purpose Display class enumeration members and names

Syntax enumeration ClassName
enumeration(obj)
m = enumeration(ClassName)
m = enumeration(obj)
[m,s] = enumeration(ClassName)
[m,s] = enumeration(obj)

Description enumeration ClassName displays the names of the enumeration
members for the MATLAB class with the name ClassName.

enumeration(obj) displays the names of the enumeration members
for the class of obj.

m = enumeration(ClassName) returns the enumeration members for
the class in the column vector m of objects.

m = enumeration(obj) returns the enumeration members for the class
of object, obj, in the column vector m of objects.

[m,s] = enumeration(ClassName) returns the names of the
enumeration members in the cell array of strings s. The names in s
correspond element-wise to the enumeration members in m.

[m,s] = enumeration(obj) returns the enumeration members for the
class of object, obj, in the column vector m of objects.

Tips • An enumeration class that derives from a built-in class can specify
more than one name for a given enumeration member.

• When you call the enumeration function with no output arguments,
MATLAB displays only the first name for each enumeration member
(as specified in the class definition). To see all available enumeration
members and their names, use the two output arguments (for
example, [m, s] = enumeration(obj);).

Input
Arguments

ClassName

The name of the enumeration class, in single quotes.

1-1882

enumeration

obj

A instance of an enumeration class.

Output
Arguments

m

Column vector of enumeration members.

s

Cell array of strings containing the enumeration names.

Examples All examples use the following enumeration class.

classdef Boolean < logical
enumeration

No (0)
Yes (1)
Off (0)
On (1)

end
end

Display the names of the enumeration members for class Boolean:

enumeration Boolean
Enumerations for class Boolean:

No
Yes

Get the enumeration members for class Boolean in a column vector of
objects:

members = enumeration('Boolean')
members =

1-1883

enumeration

No
Yes

Get all available enumeration members and their names:

[members, names] = enumeration('Boolean')
members =

No
Yes
No
Yes

names =

'No'
'Yes'
'Off'
'On'

See Also classdef

Tutorials • “Working with Enumerations”

1-1884

eps

Purpose Floating-point relative accuracy

Syntax eps
d = eps(X)
eps('double')
eps('single')

Description eps returns the distance from 1.0 to the next largest double-precision
number, that is eps = 2^(-52).

d = eps(X) is the positive distance from abs(X) to the next larger in
magnitude floating point number of the same precision as X. X may be
either double precision or single precision. For all X,

eps(X) = eps(-X) = eps(abs(X))

eps('double') is the same as eps or eps(1.0).

eps('single') is the same as eps(single(1.0)) or single(2^-23).

Except for numbers whose absolute value is smaller than realmin , if
2^E <= abs(X) < 2^(E+1), then

eps(X) = 2^(E-23) if isa(X,'single')
eps(X) = 2^(E-52) if isa(X,'double')

For all X of class double such that abs(X) <= realmin, eps(X) =
2^(-1074). Similarly, for all X of class single such that abs(X) <=
realmin('single'), eps(X) = 2^(-149).

Replace expressions of the form:

if Y < eps * ABS(X)

with

if Y < eps(X)

Examples double precision
eps(1/2) = 2^(-53)

1-1885

eps

eps(1) = 2^(-52)
eps(2) = 2^(-51)
eps(realmax) = 2^971
eps(0) = 2^(-1074)

if(abs(x)) <= realmin, eps(x) = 2^(-1074)
eps(realmin/2) = 2^(-1074)
eps(realmin/16) = 2^(-1074)
eps(Inf) = NaN
eps(NaN) = NaN

single precision
eps(single(1/2)) = 2^(-24)
eps(single(1)) = 2^(-23)
eps(single(2)) = 2^(-22)
eps(realmax('single')) = 2^104
eps(single(0)) = 2^(-149)
eps(realmin('single')/2) = 2^(-149)
eps(realmin('single')/16) = 2^(-149)
if(abs(x)) <= realmin('single'), eps(x) = 2^(-149)
eps(single(Inf)) = single(NaN)
eps(single(NaN)) = single(NaN)

See Also realmax | realmin | intmax

1-1886

eq, ==

Purpose Determine equality

Syntax A == B
eq(A,B)

Description A == B returns a logical array with elements set to logical 1 (true)
where arrays A and B are equal; otherwise, it returns logical 0 (false).
The test compares both real and imaginary parts of numeric arrays.
eq returns logical 0 (false) where A or B have NaN or undefined
categorical elements.

eq(A,B) is an alternative way to execute A == B, but is rarely used. It
enables operator overloading for classes.

Input
Arguments

A - Left array
numeric array | logical array | character array | categorical array

Left array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is a categorical array, the other input can be a categorical
array, a cell array of strings, or a single string. A single string expands
into a cell array of strings of the same size as the other input. If both
inputs are ordinal categorical arrays, they must have the same sets of
categories, including their order. If both inputs are categorical arrays
that are not ordinal, they can have different sets of categories. See
“Compare Categorical Array Elements” for more details.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

B - Right array
numeric array | logical array | character array | categorical array

1-1887

eq, ==

Right array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is a categorical array, the other input can be a categorical
array, a cell array of strings, or a single string. A single string expands
into a cell array of strings of the same size as the other input. If both
inputs are ordinal categorical arrays, they must have the same sets of
categories, including their order. If both inputs are categorical arrays
that are not ordinal, they can have different sets of categories. See
“Compare Categorical Array Elements” for more details.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Equality of Two Vectors

Create two vectors containing both real and imaginary numbers.

A = [1+i 3 2 4+i];
B = [1 3+i 2 4+i];

Compare the two vectors for equality.

A == B

ans =

0 0 1 1

The eq function tests both real and imaginary parts for equality, and
returns logical 1 (true) only where both parts are equal.

Find Characters in String

Create a string of characters.

1-1888

eq, ==

M = 'masterpiece';

Test the string for the presence of a specific character using ==.

M == 'e'

ans =

0 0 0 0 1 0 0 0 1 0 1

The value of logical 1 (true) in the vector indicates the presence of the
character 'e' in the string.

Find Values in Categorical Array

Create a categorical array.

A = categorical({'heads' 'heads' 'tails'; 'tails' 'heads' 'tails'})

A =

heads heads tails
tails heads tails

The array has two categories: 'heads' and 'tails'.

Find all values in the 'heads' category.

A == 'heads'

ans =

1 1 0
0 1 0

A value of logical 1 (true) indicates a value in the category.

Compare the rows of A for equality.

A(1,:) == A(2,:)

1-1889

eq, ==

ans =

0 1 1

The function returns logical 1 (true) where the rows have equal
category values.

Compare Floating-Point Numbers

Some floating-point numbers cannot be represented exactly in binary
form. This leads to small differences in results that the == operator
reflects.

Perform a few subtraction operations on a floating-point number and
store the result in C.

C = 0.5-0.4-0.1

C =

-2.7756e-17

Intuitively, C should be equal to exactly 0. Its small value is due to the
nature of floating-point arithmetic.

Compare C to zero for equality.

C == 0

ans =

0

The result is logical 0 (false).

Compare floating-point numbers using a tolerance, tol, instead of ==.

tol = eps;
abs(C-0) < tol

1-1890

eq, ==

ans =

1

The two numbers, C and 0, are closer to one another than two
consecutive floating-point numbers. They are essentially equal.

Tips • When comparing handle objects, use == to test whether objects have
the same handle. Use isequal to determine if objects with different
handles have equal property values.

See Also ge | gt | le | lt | ne

1-1891

eq (MException)

Purpose Compare scalar MException objects for equality

Syntax eObj1 == eObj2

Description eObj1 == eObj2 tests scalar MException objects eObj1 and eObj2 for
equality, returning logical 1 (true) if the two objects are identical,
otherwise returning logical 0 (false).

See Also last(MException) | addCause(MException) |
throwAsCaller(MException) | rethrow(MException) |
throw(MException) | disp(MException) | getReport(MException)
| ne(MException) | isequal(MException) | MException | assert
| error | try, catch

1-1892

erf

Purpose Error function

Syntax Y = erf(X)

Definitions The error function erf(X) is twice the integral of the Gaussian
distribution with 0 mean and variance of 1/2.

erf()=x e dttx2 2

0
−∫

Description Y = erf(X) returns the value of the error function for each element
of real array X.

See Also erfc | erfcinv | erfcx | erfinv

1-1893

erfc

Purpose Complementary error function

Syntax Y = erfc(X)

Definitions The complementary error function erfc(X) is defined as

erfc

erf

()

()

x e dt

x

t
x

=

= −

−∞
∫2

1

2

Description Y = erfc(X) computes the value of the complementary error function.

Tips The relationship between the complementary error function erfc and
the standard normal probability distribution returned by the Statistics
Toolbox function normcdf is

normcdf erfc()x
x

1
2 2

See Also erf | erfcinv | erfcx | erfinv

1-1894

erfcinv

Purpose Inverse complementary error function

Syntax X = erfcinv(Y)

Description X = erfcinv(Y) returns the value of the inverse of the complementary
error function for each element of Y. Elements of Y must be in the
interval [0 2]. The function erfcinv satisfies y = erfc(x) for 2 ≥ y ≥ 0
and −∞ ≥ x ≥ ∞.

Tips The relationship between the inverse complementary error function
erfcinv and the inverse standard normal probability distribution
returned by the Statistics Toolbox function norminv is:

norminv erfcinv() ().p p 2 2

See Also erf | erfc | erfcx | erfinv

1-1895

erfcx

Purpose Scaled complementary error function

Syntax Y = erfcx(X)

Definitions The scaled complementary error function erfcx(X) is defined as

erfcx erfc() ()x e xx=
2

For large X, erfcx(X) is approximately
1 1

⎛

⎝
⎜

⎞

⎠
⎟ x

Description Y = erfcx(X) computes the value of the scaled complementary error
function.

See Also erf | erfcinv | erfc | erfinv

1-1896

erfinv

Purpose Inverse error function

Syntax X = erfinv(Y)

Description X = erfinv(Y) returns the value of the inverse error function for each
element of Y. Elements of Y should be in the interval [-1 1] or the
function will return NaN. The function erfinv satisfies y = erf(x) for
−1 ≤ y ≤ 1 and −∞ ≤ x ≤ ∞.

Examples erfinv(1) is Inf

erfinv(-1) is -Inf.

See Also erf | erfcinv | erfcx | erfc

1-1897

error

Purpose Display message and abort function

Syntax error('msgIdent', 'msgString', v1, v2, ..., vN)
error('msgString', v1, v2, ...)
error('msgString')
error(msgStruct)

Description error('msgIdent', 'msgString', v1, v2, ..., vN) generates an
exception if the currently-running function tests for and confirms a
faulty or unexpected condition. Depending on how the program has
been designed to respond to the error, MATLAB either enters a catch
block to handle the error condition, or exits the program.

The msgIdent argument is a unique message identifier string that
MATLAB attaches to the error message when it throws the error. A
message identifier has the format component:mnemonic. Its purpose
is to better identify the source of the error (see Message Identifiers for
more information).

The msgString argument is a character string that informs the user
about the cause of the error and can also suggest how to correct the
faulty condition. The msgString string can include escape sequences
such as \t or \n, as well as any of the format specifiers supported by
the sprintf function (such as %s or %d). Additional arguments v1, v2,
..., vN provide values that correspond to and replace the conversion
specifiers.

For example, if msgString is “Error on line %d, command %s”, then v1 is
the line number at which the error was detected, and v2 is the command
that failed. See “Formatting Strings” for more detailed information on
using string formatting commands.

All string input arguments must be enclosed in single quotation marks.
If msgString is an empty string, the error command has no effect.

error('msgString', v1, v2, ...)reports an error without including
a message identifier in the error report. Although including a message
identifier in an error report is recommended, it is not required.

1-1898

error

error('msgString') is the same as the above syntax, except that
the msgString string contains no conversion specifiers, no escape
sequences, and no substitution value (v1, v2, ...) arguments. All
characters in msgString are interpreted exactly as they appear in the
msgString argument. MATLAB displays the \t in 'C:\testFolder'
for example, as a backslash character followed by the letter t, and not
as a horizontal tab.

error(msgStruct) accepts a scalar error structure input msgStruct
with at least one of the fields message, identifier, and stack. When
the msgStruct input includes a stack field, the stack field of the error
will be set according to the contents of the stack input. When specifying
a stack input, use the absolute file name and the entire sequence of
functions that nests the function in the stack frame. This is the same
as the string returned by dbstack('-completenames'). If msgStruct
is an empty structure, no action is taken and error returns without
exiting the function.

Tips The error function captures what information it can about the error
that occurred and stores it in a data structure that is an object of the
MException class. This error record contains the error message string,
message identifier, the error stack, and optionally an array of other
exception objects that are intended to provide information as to the
cause of the exception. See “Capture Information About Exceptions” for
more information on how to access and use an exception object.

You can access information in the exception object using the catch
function as documented in the try, catch reference page. If your
program terminates because of an exception and returns control to
the Command Prompt, you can access the exception object using the
MException.last command.

The error function also determines where the error occurred and
provides this information in the stack field of the MException object.
This field contains a structure array that has the same format as the
output of the dbstack function. This stack points to the line where the
error function was called.

1-1899

error

The following table shows the MATLAB functions that can be useful
for throwing an exception:

Function Description

error Throw exception with specified error message.

assert Evaluate given expression and throw exception if
false.

throw Throw exception based on specified MException
object.

throwAsCaller Throw exception that appears to have been thrown
by the calling function.

rethrow Reissue previously caught exception.

Examples Example 1 — Simple Error Message

Write a short function errtest1 that throws an error when called with
an incorrect number of input arguments. Include a message identifier
'myApp:argChk' and error message:

function errtest1(x, y)
if nargin ~= 2

error('myApp:argChk', 'Wrong number of input arguments')
end

Call the function with an incorrect number of inputs. The call to
nargin, a function that checks the number of inputs, fails and the
program calls error:

errtest1(pi)

Error using errtest1 (line 3)
Wrong number of input arguments

If you run this function from the Command Window, you can use the
MException.last method to view the exception object:

1-1900

error

err = MException.last
err =

MException

Properties:
identifier: 'myApp:argChk'

message: 'Wrong number of input arguments'
cause: {}
stack: [1x1 struct]

Methods

err.stack
ans =

file: 'c:\work\errtest1.m'
name: 'errtest1'
line: 3

Example 2 — Special Characters

MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument
with error. In the single-argument case shown below, \n is taken to
mean backslash-n. It is not converted to a newline character:

error('In this case, the newline \n is not converted.')

In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert
special characters. This holds true regardless of whether the additional
argument supplies conversion values or is a message identifier:

error('ErrorTests:convertTest', ...
'In this case, the newline \n is converted.')

In this case, the newline
is converted.

1-1901

error

See Also last(MException) | getReport(MException) |
addCause(MException) | throwAsCaller(MException) |
rethrow(MException) | throw(MException) | MException | warndlg
| warning | errordlg | dbstop | assert | try

1-1902

errorbar

Purpose Plot error bars along curve

Syntax errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)

Description Error bars show the confidence intervals of data or the deviation along
a curve.

errorbar(Y,E) plots Y and draws an error bar at each element of Y. The
error bar is a distance of E(i) above and below the curve so that each
bar is symmetric and 2*E(i) long.

errorbar(X,Y,E) plots Y versus X with symmetric error bars 2*E(i)
long. X, Y, E must be the same size. When they are vectors, each
error bar is a distance of E(i) above and below the point defined by
(X(i),Y(i)). When they are matrices, each error bar is a distance of
E(i,j) above and below the point defined by (X(i,j),Y(i,j)).

errorbar(X,Y,L,U) plots X versus Y with error bars L(i)+U(i) long
specifying the lower and upper error bars. X, Y, L, and U must be the
same size. When they are vectors, each error bar is a distance of L(i)
below and U(i) above the point defined by (X(i),Y(i)). When they
are matrices, each error bar is a distance of L(i,j) below and U(i,j)
above the point defined by (X(i,j),Y(i,j)).

errorbar(...,LineSpec) uses the color and line style specified by
the string 'LineSpec'. The color is applied to the data line and error
bars. The linestyle and marker are applied to the data line only. See
linespec for examples of styles.

h = errorbar(...) returns handles to the errorbarseries objects
created. errorbar creates one object for vector input arguments and

1-1903

errorbar

one object per column for matrix input arguments. See errorbarseries
properties for more information.

When the arguments are all matrices, errorbar draws one line per
matrix column. If X and Y are vectors, they specify one curve.

Examples Symmetric Error Bars

Draw symmetric error bars that are two standard deviation units in
length.

x = 0:pi/10:pi;
y = sin(x);
e = std(y)*ones(size(x));

figure
errorbar(x,y,e)

1-1904

errorbar

Change Error Bar Marker and Color

Load the count data set to get the three-column matrix count that
contains traffic volume for three street locations over the course of a
day. Compute the mean of count for each row.

load count.dat;
y = mean(count,2);

1-1905

errorbar

Compute the standard deviation of count for each row and normalize
by the number of elements in the sample by setting the second input
argument to 1.

e = std(count,1,2);

Plot the computed average traffic volume, y, and the computed standard
deviations, e, for the three street locations. Set the LineSpec to specify
a red color, cross markers, and no line.

figure
errorbar(y,e,'rx')

1-1906

errorbar

See Also corrcoef | linespec | plot | std | Errorbarseries Properties

How To • ConfidenceBounds

1-1907

Errorbarseries Properties

Purpose Description of errorbarseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property editor (propertyeditor).

Note that you cannot define default property values for errorbarseries
objects. See “Plot Objects” for more information on errorbarseries
objects.

Errorbarseries
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of errorbarseries objects in legends. Specifies
whether this errorbarseries object is represented in a figure
legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
errorbarseries object is displayed in a figure legend.

1-1908

Errorbarseries Properties

IconDisplayStyle
Value

Purpose

on Include the errorbarseries object in a legend
as one entry, but not its children objects

off Do not include the errorbarseries or its
children in a legend (default)

children Include only the children of the
errorbarseries as separate entries in
the legend

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to

1-1909

Errorbarseries Properties

perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press
a mouse button while the pointer is over this object, but not
over another graphics object. See the HitTestArea property for
information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

1-1910

Errorbarseries Properties

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
array of graphics object handles

Children of the errorbarseries object. An array containing the
handles of all line objects parented to the errorbarseries object
(whether visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

Color
ColorSpec

1-1911

Errorbarseries Properties

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color. See “Adding Arrows and Lines to Graphs”.

CreateFcn
string | function handle

Not available on errorbarseries objects.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the errorbarseries object in the legend. The
default is an empty string.

1-1912

Errorbarseries Properties

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

1-1913

Errorbarseries Properties

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

1-1914

Errorbarseries Properties

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

1-1915

Errorbarseries Properties

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the curve or error bars that compose the graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. Select plot
objects by:

• Clicking curve or error bars (default).

• Clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the curve or error bars
to select the object. When HitTestArea is on, you can select this
object by clicking anywhere within the extent of the plot (that is,
anywhere within a rectangle that encloses all the lines).

Interruptible
off | {on}

1-1916

Errorbarseries Properties

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

1-1917

Errorbarseries Properties

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LData
array equal in size to XData and YData

Errorbar length below data point. The errorbar function uses
this data to determine the length of the errorbar below each data
point. Specify these values in data units. See also UData.

LDataSource
string (MATLAB variable)

Link LData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
LData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change LData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata. See the refreshdata reference
page for more information.

LineStyle
{-} | -- | : | -. | none

1-1918

Errorbarseries Properties

Line style of errorbarseries object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

Use LineStyle none when you want to place a marker at each
point but do not want the points connected with a line (see the
Marker property).

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Marker
character (see table)

Marker symbol. Specifies marks that display at data points. You
can set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

1-1919

Errorbarseries Properties

Specifier Marker Type

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto— Uses same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

1-1920

Errorbarseries Properties

Fill color for closed-shape markers. The fill color for markers that
are closed shapes (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Sets the fill color to the axes Color property. If the axes
Color property is none, sets the fill color to the figure Color.

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

1-1921

Errorbarseries Properties

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing selection handles on the curve and error bars. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an errorbarseries object and set the Tag
property:

t = errorbar(Y,E,'Tag','errorbar1')

To access the errorbarseries object, use findobj to find the
errorbarseries object’s handle.

The following statement changes the MarkerFaceColor property
of the object whose Tag is errorbar1.

set(findobj('Tag','errorbar1'),'MarkerFaceColor','red')

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For errorbarseries objects, Type
is ’hggroup’. The following statement finds all the hggroup objects
in the current axes.

1-1922

Errorbarseries Properties

t = findobj(gca,'Type','hggroup');

UData
array equal in size to XData and YData

Errorbar length above data point. The errorbar function uses
this data to determine the length of the errorbar above each data
point. Specify these values in data units.

UDataSource
MATLAB variable, as a string

Link UData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
UData. The default value is an empty array.

set(h,'UDataSource','UDatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
UDataSource does not change the object’s UData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

UIContextMenu
handle of uicontextmenu object

Associate a context menu with the errorbarseries object. Assign
this property the handle of a uicontextmenu object created in the
errorbarseries object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the errorbarseries
object.

UserData
array

1-1923

Errorbarseries Properties

User-specified data. Data you want to associate with the
errorbarseries object (including cell arrays and structures). The
default value is an empty array. MATLAB does not use this data,
but you can access it using the set and get commands.

Visible
{on} | off

Visibility of errorbarseries object and its children. By default,
errorbarseries object visibility is on. This means all children
of the errorbarseries object are visible unless the child object’s
Visible property is off. Setting an errorbarseries object’s
Visible property to off also makes its children invisible.

XData
array

X-coordinates of the curve. The errorbar function plots a curve
using the x-axis coordinates in the XData array. XData must be
the same size as YData.

If you do not specify XData (which is the input argument X), the
errorbar function uses the indices of YData to create the curve.
See the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData
(by setting the XData property or specifying the input argument
x), the errorbar function sets this property to manual.

If you set XDataMode to auto after having specified XData, the
errorbar function resets the x tick-mark labels to the indices
of the YData.

XDataSource
string (MATLAB variable)

1-1924

Errorbarseries Properties

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata. See the refreshdata reference
page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar | vector | matrix

Data defining curve. YData contains the data defining the curve.
If YData is a matrix, the errorbar function displays a curve with
error bars for each column in the matrix.

The input argument Y in the errorbar function calling syntax
assigns values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

1-1925

Errorbarseries Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata. See the refreshdata reference
page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

1-1926

errordlg

Purpose Create and open error dialog box

Syntax h = errordlg
h = errordlg(errorstring)
h = errordlg(errorstring,dlgname)
h = errordlg(errorstring,dlgname,createmode)

Description h = errordlg creates and displays a dialog box with title Error
Dialog that contains the string This is the default error string.
The errordlg function returns the handle of the dialog box in h.

h = errordlg(errorstring) displays a dialog box with title Error
Dialog that contains the string errorstring.

h = errordlg(errorstring,dlgname) displays a dialog box with
titledlgname that contains the string errorstring.

h = errordlg(errorstring,dlgname,createmode) specifies whether
the error dialog box is modal or nonmodal. Optionally, it can also
specify an interpreter for errorstring and dlgname. The createmode
argument can be a string or a structure.

If createmode is a string, it must be one of the values shown in the
following table.

createmode Value Description

modal Replaces the error dialog box having the
specified Title, that was last created or
clicked on, with a modal error dialog box as
specified. All other error dialog boxes with
the same title are deleted. The dialog box
which is replaced can be either modal or
nonmodal.

non-modal (default) Creates a new nonmodal error dialog box
with the specified parameters. Existing

1-1927

errordlg

createmode Value Description

error dialog boxes with the same title are
not deleted.

replace Replaces the error dialog box having the
specified Title, that was last created or
clicked on, with a nonmodal error dialog box
as specified. All other error dialog boxes
with the same title are deleted. The dialog
box which is replaced can be either modal
or nonmodal.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use the uiwait function.

If you open a dialog with errordlg, msgbox, or warndlg using
'CreateMode','modal' and a non-modal dialog created with any of
these functions is already present and has the same name as the modal
dialog, the non-modal dialog closes when the modal one opens.

For more information about modal dialog boxes, see WindowStyle in
the Figure Properties.

If CreateMode is a structure, it can have fields WindowStyle and
Interpreter. WindowStyle must be one of the options shown in the
table above. Interpreter is one of the strings 'tex' or 'none'. The
default value for Interpreter is 'none'.

Tips MATLAB sizes the dialog box to fit the string 'errorstring'. The
error dialog box has an OK push button and remains on the screen until
you press the OK button or the Return key. After pressing the button,
the error dialog box disappears.

The appearance of the dialog box depends on the platform you use.

1-1928

errordlg

Examples This code,

errordlg('File not found','File Error');

displays this dialog box:

This code,

mode = struct('WindowStyle','non-modal',...
'Interpreter','tex');

h = errordlg('Try this equation instead: f(x) = x^2',...
'Equation Error', mode);

displays this dialog box:

See Also dialog | helpdlg | inputdlg | listdlg | msgbox | questdlg |
warndlg | figure | uiwait | uiresume

1-1929

etime

Purpose Time elapsed between date vectors

Syntax e = etime(t2,t1)

Description e = etime(t2,t1) returns the number of seconds between two date
vectors or matrices of date vectors, t1 and t2.

Input
Arguments

t2,t1 - Date vectors
1-by-6 vector | m-by-6 matrix

Date vectors, specified as 1-by-6 vectors or m-by-6 matrices containing
m full date vectors in the format:[Year Month Day Hour Minute
Second].

Example: [2012 03 27 11 50 01]

Data Types
double

Examples Compute Elapsed Time

Compute the time elapsed between a specific time and the current time,
to 0.01-second accuracy.

Define the initial date and time and convert to date vector form.

format shortg
str = 'March 28, 2012 11:51:00';
t1 = datevec(str,'mmmm dd, yyyy HH:MM:SS')

t1 =

2012 3 28 11 51 0

Determine the current date and time.

t2 = clock

1-1930

etime

t2 =

2014 1 17 16 0

The clock function returns the current date and time as a date vector.

Use etime to compute the number of seconds between t1 and t2.

e = etime(t2,t1)

e =

5.7039e+07

Tips • To time the duration of an event, use the timeit or tic and toc
functions instead of clock and etime. The clock function is based on
the system time, which can be adjusted periodically by the operating
system, and thus might not be reliable in time comparison operations.

Algorithms etime does not account for the following:

• Leap seconds.

• Daylight savings time adjustments.

• Differences in time zones.

See Also tic | toc | cputime | clock | now | timeit

1-1931

etree

Purpose Elimination tree

Syntax p = etree(A)
p = etree(A,'col')
p = etree(A,'sym')
[p,q] = etree(...)

Description p = etree(A) returns an elimination tree for the square symmetric
matrix whose upper triangle is that of A. p(j) is the parent of column j
in the tree, or 0 if j is a root.

p = etree(A,'col') returns the elimination tree of A'*A.

p = etree(A,'sym') is the same as p = etree(A).

[p,q] = etree(...) also returns a postorder permutation q of the tree.

See Also treelayout | treeplot | etreeplot

1-1932

etreeplot

Purpose Plot elimination tree

Syntax etreeplot(A)
etreeplot(A,nodeSpec,edgeSpec)

Description etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot(A,nodeSpec,edgeSpec) allows optional parameters
nodeSpec and edgeSpec to set the node or edge color, marker, and
linestyle. Use '' to omit one or both.

See Also etree | treeplot | treelayout

1-1933

eval

Purpose Execute MATLAB expression in text string

Syntax eval(expression)
[output1,...,outputN] = eval(expression)

Description eval(expression) evaluates the MATLAB code in the string
expression. If you use eval within an anonymous function, nested
function, or function that contains a nested function, the evaluated
expression cannot create a variable.

[output1,...,outputN] = eval(expression) stores output from
expression in the specified variables.

Tips • Many common uses of the eval function are less efficient and are
more difficult to read and debug than other MATLAB functions and
language constructs. For more information, see “Alternatives to the
eval Function”.

• Whenever possible, do not include output arguments within the input
to the eval function, such as eval(['output = ',expression]).
The preferred syntax,

output = eval(expression)

allows the MATLAB parser to perform stricter checks on your code,
preventing untrapped errors and other unexpected behavior.

Input
Arguments

expression

String that contains a valid MATLAB expression.

To include a numeric value in the expression, convert it to a string with
int2str, num2str, or sprintf.

Output
Arguments

output1,...,outputN

Outputs from the evaluated expression.

1-1934

eval

Examples Variable Name Evaluation

Select a matrix to plot at runtime.

This example requires that you have a matrix in the current workspace.
For example:

aMatrix = magic(5);

Interactively request the name of a matrix to plot, and call eval to
use its value.

expression = input('Enter the name of a matrix: ','s');
if (exist(expression,'var'))

mesh(eval(expression))
end

If you type aMatrix at the input prompt, this code creates a mesh plot
of magic(5).

See Also evalin | feval | evalc | assignin | try

Concepts • “Alternatives to the eval Function”
• “Variables in Nested and Anonymous Functions”

1-1935

evalc

Purpose Evaluate MATLAB expression with capture

Syntax T = evalc(expression)
[T,output1,...,outputN] = evalc(expression)

Description T = evalc(expression) is the same as eval(expression) except that
anything that would normally be written to the command window,
except for error messages, is captured and returned in the character
array T (lines in T are separated by \n characters).

[T,output1,...,outputN] = evalc(expression) is the same as
[output1,...,outputN] = eval(expression) except that any output
is captured into T.

Tips When you are using evalc, functions diary, more, and input are
disabled.

Input
Arguments

expression

String that contains a valid MATLAB expression.

To include a numeric value in the expression, convert it to a string with
int2str, num2str, or sprintf.

Output
Arguments

T

Output normally written to the command window during the evaluation
of expression, except for error messages, returned in a character array.
The lines in T are separated by \n characters.

output1,...,outputN

Outputs from the evaluated expression.

See Also eval | evalin | assignin | feval | diary | input | more

1-1936

evalin

Purpose Execute MATLAB expression in specified workspace

Syntax evalin(ws, expression)
[a1, a2, a3, ...] = evalin(ws, expression)

Description evalin(ws, expression) executes expression, a string containing
any valid MATLAB expression, in the context of the workspace ws. ws
can have a value of 'base' or 'caller' to denote the MATLAB base
workspace or the workspace of the caller function. You can construct
expression by concatenating substrings and variables inside square
brackets:

expression = [string1, int2str(var), string2,...]

[a1, a2, a3, ...] = evalin(ws, expression) executes
expression and returns the results in the specified output variables.
Using the evalin output argument list is recommended over including
the output arguments in the expression string:

evalin(ws,'[a1, a2, a3, ...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

Tips The MATLAB base workspace is the workspace that is seen from
the MATLAB command line (when not in the debugger). The caller
workspace is the workspace of the function that called the currently
running function. Note that the base and caller workspaces are
equivalent in the context of a function that is invoked from the
MATLAB command line.

evalin('caller', expression) finds only variables in the caller’s
workspace; it does not find functions in the caller. For this reason, you
cannot use evalin to construct a handle to a function that is defined
in the caller.

If you use evalin('caller', expression) in the MATLAB debugger
after having changed your local workspace context with dbup or dbdown,

1-1937

evalin

MATLAB evaluates the expression in the context of the function that is
one level up in the stack from your current workspace context.

Examples This example extracts the value of the variable var in the MATLAB
base workspace and captures the value in the local variable v:

v = evalin('base', 'var');

Limitation evalin cannot be used recursively to evaluate an expression.
For example, a sequence of the form evalin('caller',
'evalin(''caller'', ''x'')') doesn’t work.

See Also feval | evalc | eval | assignin | try

1-1938

event.EventData

Purpose Base class for all data objects passed to event listeners

Description The event package contains the event.EventData class, which defines
the data objects passed to event listeners. If you want to provide
additional information to event listeners, you can do so by subclassing
event.EventData. See “Defining Event-Specific Data” for more
information.

Note Subclasses of event.EventData must set the class
ConstructOnLoad attribute.

Properties The event.EventData class defines two properties and no methods:

• EventName— The name of the event described by this data object.

• Source— The source object whose class defines the event described
by the data object.

See Also event.PropertyEvent

How To • “Learning to Use Events and Listeners”

• “Customizing Event Data”

1-1939

event.listener

Purpose Class defining listener objects

Syntax lh = event.listener(Hobj,'EventName',@CallbackFunction)

Description The event.listener class defines listener objects. Listener objects
respond to the specified event and identify the callback function to
invoke when the event is triggered.

lh = event.listener(Hobj,'EventName',@CallbackFunction)
creates an event.listener object, lh, for the event named in
EventName, on the specified object, Hobj.

If Hobj is an array of object handles, the listener responds to the named
event on any of the objects referenced in the array.

The listener callback function must accept at least two input arguments.
For example,

function CallbackFunction(source,eventData)
...

end

where source is the object that is the source of the event and eventData
is an event.EventData object.

The event.listener class is a handle class.

Limiting Listener Lifecycle

Generally, you create a listener object using addlistener. However,
you can call the event.listener constructor directly to create a
listener. When you use the event.listener constructor, the listener’s
lifecycle is not tied to the object(s) being listened to—once the listener
object goes out of scope, the listener no longer exists. See “Ways to
Create Listeners” for more information on creating listener objects.

Removing a Listener

If you call delete(lh) on the listener object, the listener ceases to exist,
which means the event no longer causes the listener callback function
to execute.

1-1940

event.listener

Disabling a Listener

You can enable or disable a listener by setting the value of the listener’s
Enabled property (see Properties table below).

More Information on Events and Listeners

See “Events” for more information and examples of how to use events
and listeners.

Properties Property Purpose

Source Cell array of source objects

EventName Name of the event

Callback Function to execute when the event is triggered
and the Enabled property is set to true

Enabled The callback executes when the event occurs if
and only if Enabled is set to true (the default).

Recursive When false (the default), this listener does not
execute recursively. Therefore, if the callback
triggers its own event, the listener does not
execute again.

When true, the listener callback can cause the
same event that triggered the callback. This
scheme can lead to infinite recursion, which ends
when the MATLAB recursion limit eventually
triggers an error.

See Also addlistener | delete | event.proplistener

1-1941

event.PropertyEvent

Purpose Data for property events

Description The event.PropertyEvent class defines the data objects passed to
listeners of the meta.property events:

• PreGet

• PostGet

• PreSet

• PostSet

event.PropertyEvent is a sealed subclass of event.EventData (i.e.,
you cannot subclass event.PropertyEvent).

Properties event.PropertyEvent inherits the first two properties from the
event.EventData, and defines one new property:

• EventName— One of the four event names listed in the Description
section

• Source— meta.property object that triggers the event

• AffectedObject— The object whose property is affected.

See Also event.EventData | meta.property

How To • “Listen for Changes to Property Values”

1-1942

event.proplistener

Purpose Define listener object for property events

Syntax lh = event.proplistener(Hobj,Properties,'PropEvent',
@CallbackFunction)

Description lh = event.proplistener(Hobj,Properties,'PropEvent',
@CallbackFunction) creates a property listener object for one or more
properties on the specified object.

• Hobj — handle of object whose property or properties are to be
listened to. If Hobj is an array, the listener responds to the named
event on all objects in the array.

• Properties— an object array or a cell array of meta.property object
handles representing the properties to which you want to listen.

• PropEvent— must be one of the strings: PreSet, PostSet, PreGet,
PostGet

• @CallbackFunction— function handle to the callback function that
executes when the event occurs.

The event.proplistener class defines property event listener objects.
It is a subclass of the event.listener class and adds one property to
those defined by event.listener:

• Object — Cell array of objects whose property events are being
listened to.

You can call the event.proplistener constructor instead of calling
addlistener to create a property listener. However, when you do not
use addlistener, the listener’s lifecycle is not tied to the object(s) being
listened to.

See “Listen for Changes to Property Values”.

See “Getting Information About Properties” for more information on
using meta.property objects.

See Also event.listener | addlistener

1-1943

eventlisteners

Purpose List event handler functions associated with COM object events

Syntax info = h.eventlisteners
info = eventlisteners(h)

Description info = h.eventlisteners lists the events and their event handler
routines registered with COM object h. The function returns a cell array
of strings info, with each row containing the name of a registered event
and the handler routine for that event. If the object has no registered
events, eventlisteners returns an empty cell array. You can register
events either when you create the control, using actxcontrol, or at any
time afterwards, using registerevent.

info = eventlisteners(h) is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Manage events for an instance of the MATLAB control mwsamp:

f = figure('position', [100 200 200 200]);
%Create an mwsamp control and
%register the Click event
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
{'Click' 'myclick'});

h.eventlisteners

ans =
'Click' 'myclick'

MATLAB displays the event name and its event handler, myclick.

Register two more events, DblClick and MouseDown:

h.registerevent({'DblClick', 'my2click'; 'MouseDown' 'mymoused'});
h.eventlisteners

ans =

1-1944

eventlisteners

'Click' 'myclick'
'Dblclick' 'my2click'
'Mousedown' 'mymoused'

MATLAB displays all event names and handlers.

Unregister all events for the control:

h.unregisterallevents
h.eventlisteners

ans =
{}

MATLAB displays an empty cell array, indicating the control has no
registered events.

See Also events (COM) | registerevent | unregisterevent |
unregisterallevents | isevent | actxcontrol

1-1945

events

Purpose Event names

Syntax events('classname')
events(obj)
e = events(...)

Description events('classname') displays the names of the public events for
the MATLAB class classname, including events inherited from
superclasses.

events(obj) obj is a scalar or array of objects of a MATLAB class.

e = events(...) returns the event names in a cell array of strings.

An event is public when the value of its ListenAccess attribute is
public and its Hidden attribute value is false (default values for both
attributes). See “Event Attributes” for a complete list of attributes.

events is also a MATLAB class-definition keyword. See classdef for
more information on class definition keywords.

Examples Get the names of the public events for the handle class:

events('handle')
Events for class handle:

ObjectBeingDestroyed

See Also properties | methods

Tutorials • “Events”

1-1946

events (COM)

Purpose List of events COM object can trigger

Syntax S = h.events
S = events(h)

Description S = h.events returns structure array S containing all events, both
registered and unregistered, known to the COM object, and the function
prototype used when calling the event handler routine. For each array
element, the structure field is the event name and the contents of that
field is the function prototype for that event’s handler.

S = events(h) is an alternate syntax.

Tips COM functions are available on Microsoft Windows systems only.

Examples List Control Events Example

Create an mwsamp control and list all events:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.events

MATLAB software displays information similar to:

Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)
Event_Args = void Event_Args(int16 typeshort, int32 typelong,

double typedouble, string typestring, bool typebool)

Assign the output to a variable and get one field of the returned
structure:

ev = h.events;
ev.MouseDown

1-1947

events (COM)

MATLAB displays:

ans =
void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)

List Workbook Events Example

Open a Microsoft Excel application and list all events for a Workbook
object:

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = wbs.Add;
wb.events

The MATLAB software displays all events supported by the Workbook
object.

Open = void Open()
Activate = void Activate()
Deactivate = void Deactivate()
BeforeClose = void BeforeClose(bool Cancel)

.

.

See Also isevent | eventlisteners | registerevent | unregisterevent
| unregisterallevents

1-1948

Execute

Purpose Execute MATLAB command in Automation server

Syntax IDL Method Signature

BSTR Execute([in] BSTR command)

Microsoft Visual Basic® Client

Execute(command As String) As String

MATLAB Client

result = h.Execute('command')
result = Execute(h, 'command')
result = invoke(h, 'Execute', 'command')

Description The Execute function executes the MATLAB statement specified by the
string command in the MATLAB Automation server attached to handle h.

The server returns output from the command in the string, result. The
result string also contains any warning or error messages that might
have been issued by MATLAB software as a result of the command.

Note that if you terminate the MATLAB command string with a
semicolon and there are no warnings or error messages, result might
be returned empty.

Tips If you want to be able to display output from Execute in the client
window, you must specify an output variable (i.e., result in the above
syntax statements).

Server function names, like Execute, are case sensitive when used with
dot notation (the first syntax shown).

If there is an error, the Execute function returns the MATLAB error
message with the characters ??? prepended to the text.

COM functions are available on Microsoft Windows systems only.

Examples From a Visual Basic .NET client, execute the MATLAB version
function in the server and return the output to the client.

1-1949

Execute

Dim Matlab As Object
Dim server_version As String
Matlab = CreateObject("matlab.application")
server_version = Matlab.Execute("version")

See Also Feval | PutFullMatrix | GetFullMatrix | PutCharArray |
GetCharArray

1-1950

exifread

Purpose Read EXIF information from JPEG and TIFF image files

Syntax
Note exifread will be removed in a future release. Use imfinfo
instead.

output = exifread(filename)

Description output = exifread(filename) reads the Exchangeable Image File
Format (EXIF) data from the file specified by the string filename.
filenamemust specify a JPEG or TIFF image file. output is a structure
containing metadata values about the image or images in imagefile.

Note exifread returns all EXIF tags and does not process them in
any way.

EXIF is a standard used by digital camera manufacturers to store
information in the image file, such as, the make and model of a camera,
the time the picture was taken and digitized, the resolution of the image,
exposure time, and focal length. For more information about EXIF and
the meaning of metadata attributes, see http://www.exif.org/.

See Also imfinfo | imread

1-1951

http://www.exif.org/

exist

Purpose Check existence of variable, function, folder, or class

Syntax exist name
exist name kind
A = exist('name','kind')

Description exist name returns the status of name:

0 name does not exist.

1 name is a variable in the workspace.

2 One of the following is true:

• name exists on your MATLAB search path as a file with
extension .m.

• name is the name of an ordinary file on your MATLAB
search path.

• name is the full pathname to any file.

3 name exists as a MEX-file on your MATLAB search path.

4 name exists as a Simulink model or library file on your
MATLAB search path.

5 name is a built-in MATLAB function.

6 name is a P-file on your MATLAB search path.

7 name is a folder.

8 name is a class. (exist returns 0 for Java classes if you start
MATLAB with the -nojvm option.)

If name is a class, then exist('name') returns an 8. However, if name is
a class file, then exist('name') returns a 2.

If a file or folder is not on the search path, then name must specify either
a full pathname, a partial pathname relative to MATLABPATH, a partial

1-1952

exist

pathname relative to your current folder, or the file or folder must
reside in your current working folder.

If name specifies a filename, that filename may include an extension
to preclude conflicting with other similar filenames. For example,
exist('file.ext').

exist name kind returns the status of name for the specified kind. If
name of type kind does not exist, it returns 0. The kind argument may
be one of the following:

builtin Checks only for built-in functions.

class Checks only for classes.

dir Checks only for folders.

file Checks only for files or folders.

var Checks only for variables.

If you do not specify a kind argument, and name belongs to more than
one of these categories, exist returns one value according to the order
of evaluation shown in the table below. For example, if name matches
both a folder and a file that defines a MATLAB function, exist returns
7, identifying it as a folder.

Order of
Evaluation Return Value Type of Entity

1 1 Variable

2 5 Built-in

3 7 Folder

4 3 MEX-file

5 4 SLX or MDL-file

6 6 P-file

1-1953

exist

Order of
Evaluation Return Value Type of Entity

7 2 MATLAB function

8 8 Class

A = exist('name','kind') is the function form of the syntax.

Tips If name specifies a filename, MATLAB attempts to locate the file,
examines the filename extension, and determines the value to return
based on the extension alone. MATLAB does not examine the contents
or internal structure of the file.

You can specify a partial path to a folder or file. A partial pathname is a
pathname relative to the MATLAB path that contains only the trailing
one or more components of the full pathname. For example, both of
the following commands return 2, identifying mkdir.m as a MATLAB
function. The first uses a partial pathname:

exist('matlab/general/mkdir.m')
exist([matlabroot '/toolbox/matlab/general/mkdir.m'])

To check for the existence of more than one variable, use the ismember
function. For example,

a = 5.83;
c = 'teststring';
ismember({'a','b','c'},who)

ans =

1 0 1

Examples This example uses exist to check whether a MATLAB function is a
built-in function or a file:

type = exist('plot')
type =

1-1954

exist

5

This indicates that plot is a built-in function.

Run exist on a class folder and then on the constructor within that
folder:

exist('@portfolio')
ans =

7 % @portfolio is a folder

exist('@portfolio\portfolio')
ans =

2 % portfolio is a MATLAB function

The following example indicates that testresults is both a variable in
the workspace and a folder on the search path:

exist('testresults','var')
ans =

1
exist('testresults','dir')
ans =

7

See Also assignin | computer | dir | evalin | help | inmem | isfield |
isempty | lookfor | mfilename | what | which | who

1-1955

exit

Purpose Terminate MATLAB program (same as quit)

Alternatives As an alternative to the exit function, click the Close box in the
MATLAB desktop.

Syntax exit
exit(code)

Description exit terminates the current session of MATLAB after running
finish.m, if the file finish.m exists. It performs the same as quit and
takes the same termination options, such as force.

exit(code) returns exit code when calling a MATLAB command from
the system command line.

See Also quit | finish

How To • “Stop Execution”

1-1956

exp

Purpose Exponential

Syntax Y = exp(X)

Description Y = exp(X) returns the exponential for each element of array X. The
function accepts both real and complex inputs. For real values of X in
the interval (-Inf, Inf), exp returns real values in the interval (0,Inf).
For complex values of X, exp returns complex values.

Input
Arguments

X - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types
single | double
Complex Number Support: Yes

Examples Calculate Scalar Exponential Values

Examine several common values of the exponential function.

Calculate the exponential of 0.

exp(0)

ans =

1

The result is 1, which is the y-intercept of the exp function.

Calculate the exponential of 1.

exp(1)

ans =

1-1957

exp

2.7183

The result is equal to Euler’s number, e.

Calculate the exponential of iπ.

exp(1i*pi)

ans =

-1.0000 + 0.0000i

The result of -1 is due to Euler’s famous formula

e ii cos sin .

Calculate the exponential of -Inf.

exp(-Inf)

ans =

0

The result is 0 since exp returns small values for negative inputs.

Plot Real-Valued Exponential Function

Define the domain.

X = (-1:0.5:5)';

Calculate the exponential of the vector, X.

Y = exp(X)

Y =

1-1958

exp

0.3679
0.6065
1.0000
1.6487
2.7183
4.4817
7.3891

12.1825
20.0855
33.1155
54.5982
90.0171

148.4132

The result is a vector of exponential values.

Plot the function values.

plot(X,Y,'LineWidth',1.5)
grid on;
title('Real-Valued Exponential Function');
xlabel('X'); ylabel('Y');

1-1959

exp

The real-valued exponential function maps values in the domain of all
real numbers to the range of .

Plot Complex-Valued Exponential Function

Define a grid of values for the (X,Y) domain.

[X,Y] = meshgrid(0:0.5:10,0:0.5:10);

Calculate the complex exponential on the grid.

1-1960

exp

Z = exp(X+1i*Y);

Make a surface plot of the imaginary portion of the function.

surf(X,Y,imag(Z))
grid on; hold on;
xlabel('X'); ylabel('Y'); zlabel('Z');
view(44,42)

exp is a continuous function on the complex plane.

1-1961

exp

Plot the real portion of the function in the same figure.

surf(X,Y,real(Z))
view(63,14)

In this plot, the real and complex portions of the function are 90 degrees
out of phase. Analytically, this is because the real portion depends on
cos, whereas the complex portion depends on sin.

1-1962

exp

Algorithms For complex inputs z = x + 1i*y, the exp function calculates the
complex exponential exp(x).*(cos(y) + 1i*sin(y)).

See Also expm | log | expm1 | log10 | expint | power | mpower

1-1963

expint

Purpose Exponential integral

Syntax Y = expint(X)

Definitions The exponential integral computed by this function is defined as

E x e t dtt

x
1() /

Another common definition of the exponential integral function is the
Cauchy principal value integral

Ei () /x e t dtt
x

which, for real positive x, is related to expint as

E x x i1() () Ei

Description Y = expint(X) evaluates the exponential integral for each element of X.

References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical
Functions. Chapter 5, New York: Dover Publications, 1965.

1-1964

expm

Purpose Matrix exponential

Syntax Y = expm(X)

Description Y = expm(X) computes the matrix exponential of X.

Although it is not computed this way, if X has a full set of eigenvectors V
with corresponding eigenvalues D, then

[V,D] = EIG(X) and EXPM(X) = V*diag(exp(diag(D)))/V

Use exp for the element-by-element exponential.

Algorithms expm uses the Padé approximation with scaling and squaring. See
reference [3], below.

Note The files, expmdemo1.m, expmdemo2.m, and expmdemo3.m illustrate
the use of Padé approximation, Taylor series approximation, and
eigenvalues and eigenvectors, respectively, to compute the matrix
exponential. References [1] and [2] describe and compare many
algorithms for computing a matrix exponential.

Examples This example computes and compares the matrix exponential of A and
the exponential of A.

A = [1 1 0
0 0 2
0 0 -1];

expm(A)
ans =

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

1-1965

expm

exp(A)
ans =

2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679

Notice that the diagonal elements of the two results are equal. This
would be true for any triangular matrix. But the off-diagonal elements,
including those below the diagonal, are different.

References [1] Golub, G. H. and C. F. Van Loan,Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to
Compute the Exponential of a Matrix,” SIAM Review 20, 1978, pp.
801–836. Reprinted and updated as “Nineteen Dubious Ways to
Compute the Exponential of a Matrix, Twenty-Five Years Later,” SIAM
Review 45, 2003, pp. 3–49.

[3] Higham, N. J., “The Scaling and Squaring Method for the Matrix
Exponential Revisited,” SIAM J. Matrix Anal. Appl., 26(4) (2005), pp.
1179–1193.

See Also exp | expm1 | funm | logm | eig | sqrtm

1-1966

expm1

Purpose Compute exp(x)-1 accurately for small values of x

Syntax y = expm1(x)

Description y = expm1(x) computes exp(x)-1, compensating for the roundoff in
exp(x).

For small x, expm1(x) is approximately x, whereas exp(x)-1 can be
zero.

See Also exp | expm | log1p

1-1967

export2wsdlg

Purpose Export variables to workspace

Syntax export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction,functionlist)
hdialog = export2wsdlg(...)
[hdialog,ok_pressed] = export2wsdlg(...)

Description export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport) creates a dialog with a series of check boxes and edit
fields. checkboxlabels is a cell array of labels for the check boxes.
defaultvariablenames is a cell array of strings that serve as a basis for
variable names that appear in the edit fields. itemstoexport is a cell
array of the values to be stored in the variables. If there is only one item
to export, export2wsdlg creates a text control instead of a check box.

Note By default, the dialog box is modal. A modal dialog box prevents
the user from interacting with other windows before responding.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title) creates the dialog with title as its title.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected) creates the dialog allowing the user
to control which check boxes are checked. selected is a logical array
whose length is the same as checkboxlabels. True indicates that the
check box should initially be checked, false unchecked.

1-1968

export2wsdlg

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction) creates the dialog
with a help button. helpfunction is a callback that displays help.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction,functionlist)
creates a dialog that enables the user to pass in functionlist, a
cell array of functions and optional arguments that calculate, then
return the value to export. functionlist should be the same length
as checkboxlabels.

hdialog = export2wsdlg(...) returns the handle of the dialog.

[hdialog,ok_pressed] = export2wsdlg(...) sets ok_pressed to
true if the OK button is pressed, or false otherwise. If two return
arguments are requested, hdialog is [] and the function does not
return until the dialog is closed.

The user can edit the text fields to modify the default variable names. If
the same name appears in multiple edit fields, export2wsdlg creates
a structure using that name. It then uses the defaultvariablenames
as field names for that structure.

The lengths of checkboxlabels, defaultvariablenames,
itemstoexport and selected must all be equal.

The strings in defaultvariablenames must be unique.

Examples This example creates a dialog box that enables the user to save the
variables sumA and/or meanA to the workspace. The dialog box title is
Save Sums to Workspace.

A = randn(10,1);
checkLabels = {'Save sum of A to variable named:' ...

'Save mean of A to variable named:'};
varNames = {'sumA','meanA'};
items = {sum(A),mean(A)};
export2wsdlg(checkLabels,varNames,items,...

'Save Sums to Workspace');

1-1969

eye

Purpose Identity matrix

Syntax I = eye
I = eye(n)
I = eye(n,m)
I = eye(sz)

I = eye(classname)
I = eye(n,classname)
I = eye(n,m,classname)
I = eye(sz,classname)

I = eye('like',p)
I = eye(n,'like',p)
I = eye(n,m,'like',p)
I = eye(sz,'like',p)

Description I = eye returns the scalar, 1.

I = eye(n) returns an n-by-n identity matrix with ones on the main
diagonal and zeros elsewhere.

I = eye(n,m) returns an n-by-m matrix with ones on the main diagonal
and zeros elsewhere.

I = eye(sz) returns an array with ones on the main diagonal and
zeros elsewhere. The size vector, sz, defines size(I). For example,
eye([2,3]) returns a 2-by-3 array with ones on the main diagonal
and zeros elsewhere.

I = eye(classname) returns a scalar, 1, where the string, classname,
specifies the data type. For example, eye('int8') returns a scalar,
8-bit integer.

1-1970

eye

I = eye(n,classname) returns an n-by-n identity matrix of data type
classname.

I = eye(n,m,classname) returns an n-by-m matrix of data type
classname with ones on the main diagonal and zeros elsewhere.

I = eye(sz,classname) returns a matrix with ones on the main
diagonal and zeros elsewhere. The size vector, sz, defines size(I)
and classname defines class(I).

I = eye('like',p) returns a scalar, 1, with the same data type,
sparsity, and complexity (real or complex) as the numeric variable, p.

I = eye(n,'like',p) returns an n-by-n identity matrix like p.

I = eye(n,m,'like',p) returns an n-by-m matrix like p.

I = eye(sz,'like',p) returns a matrix like p where the size vector,
sz, defines size(I).

Input
Arguments

n - Size of first dimension of I
integer value

Size of first dimension of I, specified as an integer value.

• If n is the only integer input argument, then I is a square n-by-n
identity matrix.

• If n is 0, then I is an empty matrix.

• If n is negative, then it is treated as 0.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

1-1971

eye

m - Size of second dimension of I
integer value

Size of second dimension of I, specified as an integer value.

• If m is 0, then I is an empty matrix.

• If m is negative, then it is treated as 0.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

sz - Size of I
row vector of no more than two integer values

Size of I, specified as a row vector of no more than two integer values.

• If an element of sz is 0, then I is an empty matrix.

• If an element of sz is negative, then the element is treated as 0.

Example: sz = [2,3] defines I as a 2-by-3 matrix.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

classname - Output class
'double' (default) | 'single' | 'int8' | 'uint8' | ...

Output class, specified as 'double', 'single', 'int8', 'uint8',
'int16', 'uint16', 'int32', 'uint32', 'int64', or 'uint64'.

Data Types
char

p - Prototype
numeric variable

Prototype, specified as a numeric variable.

1-1972

eye

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

Examples Square Identity Matrix

Create a 4-by-4 identity matrix.

I = eye(4)

I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Rectangular Matrix

Create a 2-by-3 identity matrix.

I = eye(2,3)

I =

1 0 0
0 1 0

Identity Vector

Create a 3-by-1 identity vector.

sz = [3,1];
I = eye(sz)

I =

1
0

1-1973

eye

0

Nondefault Numeric Data Type

Create a 3-by-3 identity matrix whose elements are 32-bit unsigned
integers.

I = eye(3,'uint32'),
class(I)

I =

1 0 0
0 1 0
0 0 1

ans =

uint32

Complex Identity Matrix

Create a 2-by-2 identity matrix that is not real valued, but instead is
complex like an existing array.

Define a complex vector.

p = [1+2i 3i];

Create an identity matrix that is complex like p.

I = eye(2,'like',p)

I =

1.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i

1-1974

eye

Sparse Identity Matrix

Define a 5-by-5 sparse matrix.

p = sparse(5,5,pi);

Create a 5-by-5 identity matrix that is sparse like P.

I = eye(5,'like',p)

I =

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1

Size and Numeric Data Type Defined by Existing Array

Define a 2-by-2 matrix of single precision.

p = single([1 3 ; 2 4]);

Create an identity matrix that is the same size and data type as P.

I = eye(size(p),'like',p),
class(I)

I =

1 0
0 1

ans =

single

1-1975

eye

See Also speye | ones | zeros

Concepts • “Class Support for Array-Creation Functions”

1-1976

ezcontour

Purpose Easy-to-use contour plotter

Syntax ezcontour(fun)
ezcontour(fun,domain)
ezcontour(...,n)
ezcontour(axes_handle,...)
h = ezcontour(...)

Description ezcontour(fun) plots the contour lines of fun(x,y) using the contour
function. fun is plotted over the default domain: -2π < x < 2π, -2π <
y < 2π.

fun can be a function handle for a MATLAB file function or an
anonymous function (see function handle and “Anonymous
Functions”) or a string (see Tips).

ezcontour(fun,domain) plots fun(x,y) over the specified domain.
domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a
2-by-1 vector [min, max] (where min < x < max, min < y < max).

ezcontour(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontour(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezcontour(...) returns the handle to a contour object in h.

ezcontour automatically adds a title and axis labels.

Tips Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezcontour. For example, the
MATLAB syntax for a contour plot of the expression

sqrt(x.^2 + y.^2)

1-1977

ezcontour

is written as

ezcontour('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontour.

If the function to be plotted is a function of the variables u and v (rather
than x and y), the domain endpoints umin, umax, vmin, and vmax are
sorted alphabetically. Thus, ezcontour('u^2 - v^3',[0,1],[3,6])
plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezcontour.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontour(fh)

When using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since
ezcontour does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then use an anonymous function to specify that parameter:

ezcontour(@(x,y)myfun(x,y,2))

Examples Create Contour Plot of Mathematical Expression

This mathematical expression defines a function of two variables, x
and y.

1-1978

ezcontour

The ezcontour function requires a function handle argument. Write
this mathematical expression in MATLAB® syntax as an anonymous
function with handle f. You can define an anonymous function in the
command window without creating a separate file. For convenience,
write the function on three lines.

f = @(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- 1/3*exp(-(x+1).^2 - y.^2);

Pass the function handle, f, to ezcontour. Specify a domain from
-3 to 3 in both the x-direction and y-direction and use a 49-by-49
computational grid.

ezcontour(f,[-3,3],49)

1-1979

ezcontour

In this particular case, the title string is too long to fit at the top of the
graph so MATLAB® abbreviates the string.

See Also contour | ezcontourf | ezmesh | ezmeshc | ezplot | ezplot3 |
ezpolar | ezsurf | ezsurfc | function_handle

1-1980

ezcontourf

Purpose Easy-to-use filled contour plotter

Syntax ezcontourf(fun)
ezcontourf(fun,domain)
ezcontourf(...,n)
ezcontourf(axes_handle,...)
h = ezcontourf(...)

Description ezcontourf(fun) plots the contour lines of fun(x,y) using the
contourf function. fun is plotted over the default domain: -2π < x <
2π, -2π < y < 2π.

fun can be a function handle or a string (see Tips).

ezcontourf(fun,domain) plots fun(x,y) over the specified domain.
domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a
2-by-1 vector [min, max], where min < x < max, min < y < max).

ezcontourf(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = ezcontourf(...) returns the handle to a contour object in h.

ezcontourf automatically adds a title and axis labels.

Tips Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezcontourf. For example, the
MATLAB syntax for a filled contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

1-1981

ezcontourf

ezcontourf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontourf.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax are
sorted alphabetically. Thus, ezcontourf('u^2 - v^3',[0,1],[3,6])
plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezcontourf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontourf(fh)

When using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since
ezcontourf does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezcontourf(@(x,y)myfun(x,y,2))

Examples Create Filled Contour Plot of Mathematical Expression

This mathematical expression defines a function of two variables, x
and y.

1-1982

ezcontourf

The ezcontourf function requires a function handle argument. Write
this mathematical expression in MATLAB® syntax as an anonymous
function with handle f. You can define an anonymous function in the
command window without creating a separate file. For convenience,
write the function on three lines.

f = @(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- 1/3*exp(-(x+1).^2 - y.^2);

Pass the function handle, f, to ezcontourf. Specify a domain from
-3 to 3 in both the x-direction and y-direction and use a 49-by-49
computational grid.

ezcontourf(f,[-3,3],49)

1-1983

ezcontourf

In this particular case, the title string is too long to fit at the top of the
graph so MATLAB® abbreviates the string.

See Also contourf | ezcontour | ezmesh | ezmeshc | ezplot | ezplot3 |
ezpolar | ezsurf | ezsurfc | function_handle

How To • Anonymous Functions

1-1984

ezmesh

Purpose Easy-to-use 3-D mesh plotter

Syntax ezmesh(fun)
ezmesh(fun,domain)
ezmesh(funx,funy,funz)
ezmesh(funx,funy,funz,[smin,smax,tmin,tmax])
ezmesh(funx,funy,funz,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')
ezmesh(axes_handle,...)
h = ezmesh(...)

Description ezmesh(fun) creates a graph of fun(x,y) using the mesh function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle or a string (see the Tips section).

ezmesh(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezmesh(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmesh(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmesh(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezmesh(...,n) plots fun over the default domain using an n-by-n grid.
The default value for n is 60.

ezmesh(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezmesh(...) returns the handle to a surface object in h.

1-1985

ezmesh

Tips Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezmesh. For example, the MATLAB
syntax for a mesh plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmesh('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmesh.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezmesh('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezmesh.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmesh(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezmesh does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezmesh(@(x,y)myfun(x,y,2))

1-1986

ezmesh

Examples This example visualizes the function

f x y xe x y, 2 2

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a
uniform blue color by setting the colormap to a single color:

fh = @(x,y) x.*exp(-x.^2-y.^2);
ezmesh(fh,40)
colormap([0 0 1])

1-1987

ezmesh

See Also ezmeshc | function_handle | mesh

How To • Anonymous Functions

1-1988

ezmeshc

Purpose Easy-to-use combination mesh/contour plotter

Syntax ezmeshc(fun)
ezmeshc(fun,domain)
ezmeshc(funx,funy,funz)
ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax])
ezmeshc(funx,funy,funz,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')
ezmesh(axes_handle,...)
h = ezmeshc(...)

Description ezmeshc(fun) creates a graph of fun(x,y) using the meshc function.
fun is plotted over the default domain -2π < x < 2π, -2π < y < 2π.

fun can be a function handle or a string (see the Tips section).

ezmeshc(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezmeshc(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmeshc(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezmeshc(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezmeshc(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezmeshc(...) returns the handle to a surface object in h.

1-1989

ezmeshc

Tips Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the string expression you pass to ezmeshc. For example, the MATLAB
syntax for a mesh/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmeshc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmeshc.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezmeshc('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezmeshc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmeshc(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezmeshc does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezmeshc(@(x,y)myfun(x,y,2))

1-1990

ezmeshc

Examples Create a mesh/contour graph of the expression

f x y
y

x y
,() =

+ +1 2 2

over the domain -5 < x < 5, -2*pi < y < 2*pi:

ezmeshc('y/(1 + x^2 + y^2)',[-5,5,-2*pi,2*pi])
view(-65.5,26)

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65.5 and elevation = 26)

1-1991

ezmeshc

See Also ezmesh | ezsurfc | function_handle | meshc

How To • Anonymous Functions

1-1992

ezplot

Purpose Easy-to-use function plotter

Syntax ezplot(fun)
ezplot(fun,[xmin,xmax])
ezplot(fun2)
ezplot(fun2,[xymin,xymax])
ezplot(fun2,[xmin,xmax,ymin,ymax])
ezplot(funx,funy)
ezplot(funx,funy,[tmin,tmax])
ezplot(...,figure_handle)
ezplot(axes_handle,...)
h = ezplot(...)

Description ezplot(fun) plots the expression fun(x) over the default domain -2π <
x < 2π, where fun(x) is an explicit function of only x.

fun can be a function handle or a string.

ezplot(fun,[xmin,xmax]) plots fun(x) over the domain: xmin < x
< xmax.

For an implicit function, fun2(x,y):

ezplot(fun2) plots fun2(x,y) = 0 over the default domain -2π < x
< 2π, -2π < y < 2π.

ezplot(fun2,[xymin,xymax]) plots fun2(x,y) = 0 over xymin < x
< xymax and xymin < y < xymax.

ezplot(fun2,[xmin,xmax,ymin,ymax]) plots fun2(x,y) = 0 over
xmin < x < xmax and ymin < y < ymax.

ezplot(funx,funy) plots the parametrically defined planar curve
funx(t) and funy(t) over the default domain 0 < t < 2π.

ezplot(funx,funy,[tmin,tmax]) plots funx(t) and funy(t) over
tmin < t < tmax.

1-1993

ezplot

ezplot(...,figure_handle) plots the given function over the specified
domain in the figure window identified by the handle figure.

ezplot(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezplot(...) returns the handle to all the plot objects in h.

Tips Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezplot. For example, the MATLAB syntax
for a plot of the expression

x.^2 - y.^2

which represents an implicitly defined function, is written as

ezplot('x^2 - y^2')

That is, x^2 is interpreted as x.^2 in the string you pass to ezplot.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezplot,

fh = @(x,y) sqrt(x.^2 + y.^2 - 1);
ezplot(fh)
axis equal

which plots a circle. Note that when using function handles, you must
use the array power, array multiplication, and array division operators
(.^, .*, ./) since ezplot does not alter the syntax, as in the case
with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)

1-1994

ezplot

z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezplot(@(x,y)myfun(x,y,2))

Controlling Line Color

ezplot colors lines according to the type of graphics object it chooses
to plot the input function.

• For an implicit function, ezplot uses a LineSeries object to generate
the graph. To change the color, you should set the Color property.

• For an explicit function, the graph generated is a Hggroup object. So,
to change the color, you should set the LineColor property.

Example Plot an Explicit Function

Plot the explicit function over the domain .

ezplot('x^2')

1-1995

ezplot

The default domain is .

Plot an Implicit Function

Plot the implicitly defined function over the domain
.

ezplot('x^2-y^4')

1-1996

ezplot

The default domain is .

See Also ezplot3 | ezpolar | function_handle | plot

How To • Anonymous Functions

1-1997

ezplot3

Purpose Easy-to-use 3-D parametric curve plotter

Syntax ezplot3(funx,funy,funz)
ezplot3(funx,funy,funz,[tmin,tmax])
ezplot3(...,'animate')
ezplot3(axes_handle,...)
h = ezplot3(...)

Description ezplot3(funx,funy,funz) plots the spatial curve funx(t), funy(t),
and funz(t) over the default domain 0 < t < 2π.

funx, funy, and funz can be function handles or strings (see the Tips
section).

ezplot3(funx,funy,funz,[tmin,tmax]) plots the curve funx(t),
funy(t), and funz(t) over the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial
curve.

ezplot3(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezplot3(...) returns the handle to the plotted objects in h.

Tips Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezplot3. For example, the MATLAB
syntax for a plot of the expression

x = s./2, y = 2.*s, z = s.^2;

which represents a parametric function, is written as

ezplot3('s/2','2*s','s^2')

1-1998

ezplot3

That is, s/2 is interpreted as s./2 in the string you pass to ezplot3.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezplot3.

fh1 = @(s) s./2; fh2 = @(s) 2.*s; fh3 = @(s) s.^2;
ezplot3(fh1,fh2,fh3)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezplot3 does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfuntk:

function s = myfuntk(t,k)
s = t.^k.*sin(t);

then you can use an anonymous function to specify that parameter:

ezplot3(@cos,@(t)myfuntk(t,1),@sqrt)

Examples Plot a Parametric Curve

Plot this parametric curve over the domain .

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

1-1999

ezplot3

See Also ezplot | ezpolar | function_handle | plot3

How To • Anonymous Functions

1-2000

ezpolar

Purpose Easy-to-use polar coordinate plotter

Syntax ezpolar(fun)
ezpolar(fun,[a,b])
ezpolar(axes_handle,...)
h = ezpolar(...)

Description ezpolar(fun) plots the polar curve rho = fun(theta) over the default
domain 0 < theta < 2π.

fun can be a function handle or a string (see the Tips section).

ezpolar(fun,[a,b]) plots fun for a < theta < b.

ezpolar(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezpolar(...) returns the handle to a line object in h.

Tips Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezpolar. For example, the MATLAB
syntax for a plot of the expression

t.^2.*cos(t)

which represents an implicitly defined function, is written as

ezpolar('t^2*cos(t)')

That is, t^2 is interpreted as t.^2 in the string you pass to ezpolar.

1-2001

ezpolar

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezpolar.

fh = @(t) t.^2.*cos(t);
ezpolar(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezpolar does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k1 and k2 in
myfun:

function s = myfun(t,k1,k2)
s = sin(k1*t).*cos(k2*t);

then you can use an anonymous function to specify the parameters:

ezpolar(@(t)myfun(t,2,3))

Examples Polar Plot of Mathematical Function

Plot the function over the domain .

figure
ezpolar('1+cos(t)')

1-2002

ezpolar

See Also ezplot | ezplot3 | function_handle | plot | plot3 | polar

How To • Anonymous Functions

1-2003

ezsurf

Purpose Easy-to-use 3-D colored surface plotter

Syntax ezsurf(fun)
ezsurf(fun,domain)
ezsurf(funx,funy,funz)
ezsurf(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurf(funx,funy,funz,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')
ezsurf(axes_handle,...)
h = ezsurf(...)

Description ezsurf(fun) creates a graph of fun(x,y) using the surf function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle or a string (see the Tips section).

ezsurf(fun,domain) plots fun over the specified domain. domain must
be a vector. See the “Algorithms” on page 1-2008 section for details on
vector inputs vs axes limit outputs.

ezsurf(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurf(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurf(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezsurf(...,n) plots fun over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurf(...,'circ') plots fun over a disk centered on the domain.

ezsurf(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezsurf(...) returns the handle to a surface object in h.

1-2004

ezsurf

Tips ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezsurf. For example, the MATLAB syntax
for a surface plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurf.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezsurf('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezsurf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezsurf does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

then you can use an anonymous function to specify that parameter:

1-2005

ezsurf

ezsurf(@(x,y)myfun(x,y,2,2,4))

Examples ezsurf does not graph points where the mathematical function is not
defined (these data points are set to NaNs, which do not plot). This
example illustrates this filtering of singularities/discontinuous points
by graphing the function

f x y real a x iy, tan() = +()()
over the default domain -2π < x < 2π, -2π < y < 2π:

ezsurf('real(atan(x+i*y))')

1-2006

ezsurf

Using surf to plot the same data produces a graph without filtering of
discontinuities (as well as requiring more steps):

[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+1i.*y));
surf(x,y,z)

1-2007

ezsurf

Note also that ezsurf creates graphs that have axis labels, a title, and
extend to the axis limits.

Algorithms ezsurf determines the x- and y-axes limits in different ways depending
on how you input the domain (if at all). In the following table, R is the
vector [xmin, xmax, ymin, ymax] and v is the manually entered domain
vector.

1-2008

ezsurf

Number of
domain values
specified:

Resulting domain vector:

v = [];
R = [-2*pi, 2*pi, -2*pi, 2*pi];

v = [v(1)];
R = double([-abs(v),abs(v),-abs(v),abs(v)]);

v = [v(1) v(2)
]; R = double([v(1),v(2),v(1),v(2)]);

v = [v(1) v(2)
v(3)]; R = double([-v(1),v(2),-abs(v(3)),abs(v(3))]);

v = [v(1) v(2)
v(3) v(4)]; R = double(v);

v = [
v(1)..v(n)];
n>4

R = double([-abs(v(1)), abs(v(1)), -abs(v(1)), abs(

If you specify a single number in non-vector format (without square
brackets, []), ezsurf interprets it as the n, the number of points desired
between the axes max and min values.

By default, ezsurf uses 60 points between the max and min values of
an axes. When the min and max values are the default values (R =
[-2*pi, 2*pi, -2*pi, 2*pi];), ezsurf ensures the 60 points fall
within the non-complex range of the specified equation. For example,

1 2 2− −x y is only real when x y2 2 1− ≤ . The default graph of this
function looks like this:

ezsurf('sqrt(1 x^2 y^2)')

1-2009

ezsurf

You can see that there are 60 points between the minimum and

maximum values for which 1 2 2− −x y has real values. However,
when you specify the domain values to be the same as the default (R =
[-2*pi, 2*pi, -2*pi, 2*pi];), a different result appears:

ezsurf('sqrt(1 x^2 y^2)',[-2*pi 2*pi])

1-2010

ezsurf

In this case, the graphic limits are the same, but ezsurf used 60 points
between the user-defined limits instead of checking to see if all those
points would have real answers.

See Also ezmesh | ezsurfc | function_handle | surf

How To • Anonymous Functions

1-2011

ezsurfc

Purpose Easy-to-use combination surface/contour plotter

Syntax ezsurfc(fun)
ezsurfc(fun,domain)
ezsurfc(funx,funy,funz)
ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurfc(funx,funy,funz,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')
ezsurfc(axes_handle,...)
h = ezsurfc(...)

Description ezsurfc(fun) creates a graph of fun(x,y) using the surfc function.
The function fun is plotted over the default domain: -2π < x < 2π, -2π <
y < 2π.

fun can be a function handle or a string (see the Tips section).

ezsurfc(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezsurfc(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurfc(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

ezsurfc(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

1-2012

ezsurfc

h = ezsurfc(...) returns the handles to the graphics objects in h.

Tips ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezsurfc. For example, the MATLAB
syntax for a surface/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurfc.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezsurfc('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezsurfc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezsurfc does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

1-2013

ezsurfc

then you can use an anonymous function to specify that parameter:

ezsurfc(@(x,y)myfun(x,y,2,2,4))

Examples Create a surface/contour plot of the expression

f x y
y

x y
,() =

+ +1 2 2

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid
of size 35-by-35:

ezsurfc('y/(1 + x^2 + y^2)',[-5,5,-2*pi,2*pi],35)

Put the plot in rotate3d mode to use the mouse to rotate the axes to
better observe the contour lines (this picture uses a view of azimuth =
-65.5 and elevation = 26).

1-2014

ezsurfc

See Also ezmesh | ezmeshc | ezsurf | function_handle | surfc

How To • Anonymous Functions

1-2015

TriRep.faceNormals

Purpose (Will be removed) Unit normals to specified triangles

Note faceNormals(TriRep) will be removed in a future release. Use
faceNormal(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax FN = faceNormals(TR, TI)

Description FN = faceNormals(TR, TI) returns the unit normal vector to each of
the specified triangles TI.

Note This query is only applicable to triangular surface meshes.

Input
Arguments

TR Triangulation representation.

TI Column vector of indices that index into the
triangulation matrix TR.Triangulation.

Output
Arguments

FN m-by-3 matrix. m = length(TI), the number of
triangles to be queried. Each row FN(i,:) represents
the unit normal vector to triangle TI(i).

If TI is not specified the unit normal information for
the entire triangulation is returned, where the normal
associated with triangle i is the i’th row of FN.

Examples Triangulate a sample of random points on the surface of a sphere and
use the TriRep to compute the normal to each triangle:

numpts = 100;

1-2016

TriRep.faceNormals

thetha = rand(numpts,1)*2*pi;
phi = rand(numpts,1)*pi;
x = cos(thetha).*sin(phi);
y = sin(thetha).*sin(phi);
z = cos(phi);
dt = DelaunayTri(x,y,z);
[tri Xb] = freeBoundary(dt);
tr = TriRep(tri, Xb);
P = incenters(tr);
fn = faceNormals(tr);
trisurf(tri,Xb(:,1),Xb(:,2),Xb(:,3), ...

'FaceColor', 'cyan', 'faceAlpha', 0.8);
axis equal;
hold on;

Display the result using a quiver plot:

quiver3(P(:,1),P(:,2),P(:,3), ...
fn(:,1),fn(:,2),fn(:,3),0.5, 'color','r');

hold off;

1-2017

TriRep.faceNormals

See Also freeBoundary | delaunayTriangulation | triangulation

1-2018

factor

Purpose Prime factors

Syntax f = factor(n)

Description f = factor(n) returns a row vector containing the prime factors of n.
Vector f is of the same data type as n.

Input
Arguments

n - Input values
scalar, real, nonnegative integer values

Input values, specified as scalars that are real, nonnegative, and
integer-valued.

Example: 10

Example: int16(64)

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Examples Prime Factors of Double Integer Value

f = factor(200)

f =

2 2 2 5 5

Multiply the elements of f to reproduce the input value.

prod(f)

ans =

200

Prime Factors of Unsigned Integer Value

n = uint16(138);

1-2019

factor

f = factor(n)

f =

2 3 23

Multiply the elements of f to reproduce n.

prod(f)

ans =

138

See Also isprime | primes

1-2020

factorial

Purpose Factorial of input

Syntax f = factorial(n)

Description f = factorial(n) returns the product of all positive integers less than
or equal to n, where n is a nonnegative integer value. If n is an array,
then f contains the factorial of each value of n. The data type and size
of f is the same as that of n.

Input
Arguments

n - Input values
scalar, vector, or array of real, nonnegative integer values

Input values, specified as a scalar, vector, or array of real, nonnegative
integers.

Example: 5

Example: [0 1 2 3 4]

Example: int16([10 15 20])

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Examples 10!

f = factorial(10)

f =

3628800

22!

format long
f = factorial(22)

f =

1-2021

factorial

1.124000727777608e+21

In this case, f is accurate up to 15 digits, 1.12400072777760e+21,
because double-precision numbers are only accurate up to 15 digits.

Reset the output format to the default.

format

Factorial of Array Elements

n = [0 1 2; 3 4 5];
f = factorial(n)

f =

1 1 2
6 24 120

Factorial of Unsigned Integer Values

n = uint64([5 10 15 20]);
f = factorial(n)

f =

120 3628800 1307674368000 2432902008176640000

Limitations

• For double-precision inputs, the result is exact when n is less than or
equal to 21. Larger values of n produce a result that has the correct
order of magnitude and is accurate for the first 15 digits. This is
because double-precision numbers are only accurate up to 15 digits.

• For single-precision inputs, the result is exact when n is less than or
equal to 13. Larger values of n produce a result that has the correct
order of magnitude and is accurate for the first 8 digits. This is
because single-precision numbers are only accurate up to 8 digits.

1-2022

factorial

Saturation

• The table below describes the saturation behavior of each data type
when used with the factorial function. The values in the last
column indicate the saturation point; that is, the first positive integer
whose actual factorial is larger than the maximum representable
value in the middle column. For single and double, all values larger
than the maximum value are returned as Inf. For the integer data
types, the saturation value is equal to the maximum value in the
middle column.

Data type Maximum Value Factorial
Saturation
Threshold

double realmax factorial(171)

single realmax('single') factorial(single(35))

uint64 264-1 factorial(uint64(21))

int64 263-1 factorial(int64(21))

uint32 232-1 factorial(uint32(13))

int32 231-1 factorial(int32(13))

uint16 216-1 factorial(uint16(9))

int16 215-1 factorial(int16(8))

uint8 28-1 factorial(uint8(6))

int8 27-1 factorial(int8(6))

See Also prod

1-2023

false

Purpose Logical 0 (false)

Syntax false
F = false(n)
F = false(sz)
F = false(sz1,...,szN)
F = false(___ ,'like',p)

Description false is shorthand for logical(0).

F = false(n) is an n-by-n array of logical zeros.

F = false(sz) is an array of logical zeros where the size vector, sz,
defines size(F). For example, false([2 3]) returns a 2-by-3 array
of logical zeros.

F = false(sz1,...,szN) is a sz1-by-...-by-szN array of logical zeros
where sz1,...,szN indicates the size of each dimension. For example,
false(2,3) returns a 2-by-3 array of logical zeros.

F = false(___ ,'like',p) returns an array of logical zeros of the same
sparsity as the logical variable p using any of the previous size syntaxes.

Input
Arguments

n - Size of square matrix
integer

Size of square matrix, specified as an integer. n sets the output array
size to n-by-n. For example, false(3) returns a 3-by-3 array of logical
zeros.

• If n is 0, then F is an empty matrix.

• If n is negative, then it is treated as 0.

Data Types
int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

1-2024

false

sz - Size vector
row vector of integers

Size vector, specified as a row vector of integers. For example, false([2
3)] returns a 2-by-3 array of logical zeros.

• If the size of any dimension is 0, then F is an empty array.

• If the size of any dimension is negative, then it is treated as 0.

• If any trailing dimensions greater than 2 have a size of 1, then the
output, F, does not include those dimensions.

Data Types
int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

sz1,...,szN - Size inputs
comma-separated list of integers

Size inputs, specified by a comma-separated list of integers. For
example, false(2,3) returns a 2-by-3 array of logical zeros.

• If the size of any dimension is 0, then F is an empty array.

• If the size of any dimension is negative, then it is treated as 0.

• If any trailing dimensions greater than 2 have a size of 1, then the
output, F, does not include those dimensions.

Data Types
int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

p - Prototype
logical variable

Prototype, specified as a logical variable.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

1-2025

false

Output
Arguments

F - Output of logical zeros
scalar | vector | matrix | N-D array

Output of logical zeros, returned as a scalar, vector, matrix, or N-D
array.

Data Types
logical

Examples Generate Square Matrix of Logical Zeros

Use false to generate a 3-by-3 square matrix of logical zeros.

A = false(3)
class(A)

A =
0 0 0
0 0 0
0 0 0

ans =
logical

The result is of class logical.

Generate Array of Logical Zeros with Arbitrary Dimensions

Use false to generate a 3-by-2-by-2 array of logical zeros.

false(3,2,2)

ans(:,:,1) =
0 0
0 0
0 0

ans(:,:,2) =
0 0
0 0
0 0

1-2026

false

Alternatively, use a size vector to specify the size of the matrix.

false([3 2 2])

ans(:,:,1) =
0 0
0 0
0 0

ans(:,:,2) =
0 0
0 0
0 0

Note that specifying multiple vector inputs returns an error.

Execute Logic Statement

false along with true can be used to execute logic statements.

Test the logical statement ~ ~ ~A and B A or B for A = logical
false and B = logical true.

~(false & true) == (~false) | (~true)

ans =
1

The result is logical 1 (true), since the logical statements on both sides
of the equation are equivalent. This logical statement is an instance
of De Morgan’s Law.

Generate Logical Array of Selected Sparsity

Generate a logical array of the same data type and sparsity as the
selected array.

A = logical(sparse(5,3));
whos A
F = false(4,'like',A);

1-2027

false

whos F

Name Size Bytes Class Attributes
A 5x3 41 logical sparse
Name Size Bytes Class Attributes
F 4x4 49 logical sparse

The output array F has the same sparse attribute as the specified
array A.

Tips • false(n) is much faster and more memory efficient than
logical(zeros(n)).

See Also true | logical

Concepts • “Class Support for Array-Creation Functions”

1-2028

fclose

Purpose Close one or all open files

Syntax fclose(fileID)
fclose('all')
status = fclose(...)

Description fclose(fileID) closes an open file. fileID is an integer file identifier
obtained from fopen.

fclose('all') closes all open files.

status = fclose(...) returns a status of 0 when the close operation
is successful. Otherwise, it returns -1.

See Also ferror | fopen | frewind | fseek | ftell | feof | fscanf | fprintf
| fread | fwrite

1-2029

fclose (serial)

Purpose Disconnect serial port object from device

Syntax fclose(obj)

Description fclose(obj) disconnects obj from the device, where obj is a serial port
object or an array of serial port objects.

Tips If obj was successfully disconnected, then the Status property is
configured to closed and the RecordStatus property is configured to
off. You can reconnect obj to the device using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with
the stopasync function, or wait for the write operation to complete.

Examples This example creates the serial port object s on a Windows platform,
connects s to the device, writes and reads text data, and then
disconnects s from the device using fclose.

s = serial('COM1');
fopen(s)
fprintf(s, '*IDN?')
idn = fscanf(s);
fclose(s)

At this point, the device is available to be connected to a serial port
object. If you no longer need s, you should remove from memory with
the delete function, and remove it from the workspace with the clear
command.

See Also clear | delete | fopen | stopasync | RecordStatus | Status

1-2030

feather

Purpose Plot velocity vectors

Syntax feather(U,V)
feather(Z)
feather(...,LineSpec)
feather(axes_handle,...)
h = feather(...)

Description A feather plot displays vectors emanating from equally spaced points
along a horizontal axis. You express the vector components relative to
the origin of the respective vector.

feather(U,V) displays the vectors specified by U and V, where U
contains the x components as relative coordinates, and V contains the y
components as relative coordinates.

feather(Z) displays the vectors specified by the complex numbers in Z.
This is equivalent to feather(real(Z),imag(Z)).

feather(...,LineSpec) draws a feather plot using the line type,
marker symbol, and color specified by LineSpec.

feather(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = feather(...) returns the handles to line objects in h.

Examples Create Feather Plot

Define theta as values between and . Define r as a vector the
same size as theta.

theta = -pi/2:pi/16:pi/2;
r = 2*ones(size(theta));

1-2031

feather

Create a feather plot showing the direction of theta. Since feather uses
Cartesian coordinates, convert theta and r to Cartesian coordinates
using pol2cart.

[u,v] = pol2cart(theta,r);
feather(u,v);

See Also compass | LineSpec | rose

1-2032

TriRep.featureEdges

Purpose (Will be removed) Sharp edges of surface triangulation

Note featureEdges(TriRep) will be removed in a future release. Use
featureEdges(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax FE = featureEdges(TR, filterangle)

Description FE = featureEdges(TR, filterangle) returns an edge matrix FE.
This method is typically used to extract the sharp edges in the surface
mesh for the purpose of display. Edges that are shared by only one
triangle and edges that are shared by more than two triangles are
considered to be feature edges by default.

Note This query is only applicable to triangular surface meshes.

Input
Arguments

TR Triangulation representation.

filterangle The threshold angle in radians. Must be in

the range (,)0 . featureEdges will return
adjacent triangles that have a dihedral angle
that deviates from π by an angle greater than
filterangle.

Output
Arguments

FE Edges of the triangulation. FE is of size m-by-2
where m is the number of computed feature edges
in the mesh. The vertices of the edges index
into the array of points representing the vertex
coordinates, TR.X.

1-2033

TriRep.featureEdges

Examples Create a surface triangulation:

x = [0 0 0 0 0 3 3 3 3 3 3 6 6 6 6 6 9 9 9 9 9 9]';
y = [0 2 4 6 8 0 1 3 5 7 8 0 2 4 6 8 0 1 3 5 7 8]';
dt = DelaunayTri(x,y);
tri = dt(:,:);

Elevate the 2-D mesh to create a surface:

z = [0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0]';
subplot(1,2,1);
trisurf(tri,x,y,z, 'FaceColor', 'cyan');
axis equal;
% TRISURF display of surface mesh
% showing mesh edges

Compute the feature edges using a filter angle of pi/6:

tr = TriRep(tri, x,y,z);
fe = featureEdges(tr,pi/6)';
subplot(1,2,2);
trisurf(tr, 'FaceColor', 'cyan', 'EdgeColor','none', ...

'FaceAlpha', 0.8); axis equal;

Add the feature edges to the plot:

hold on;
plot3(x(fe), y(fe), z(fe), 'k', 'LineWidth',1.5);
hold off;
% TRISURF display of surface mesh
% suppressing mesh edges
% and showing feature edges

1-2034

TriRep.featureEdges

See Also edges | delaunayTriangulation | triangulation

1-2035

feof

Purpose Test for end-of-file

Syntax status = feof(fileID)

Description status = feof(fileID) returns 1 if a previous operation set the
end-of-file indicator for the specified file. Otherwise, feof returns 0.
fileID is an integer file identifier obtained from fopen.

Opening an empty file does not set the end-of-file indicator. Read
operations, and the fseek and frewind functions, move the file position
indicator.

Examples Read bench.dat, which contains MATLAB benchmark data, one
character at a time:

fid = fopen('bench.dat');

k = 0;
while ~feof(fid)

curr = fscanf(fid,'%c',1);
if ~isempty(curr)

k = k+1;
benchstr(k) = curr;

end
end

fclose(fid);

See Also fclose | ferror | fopen | frewind | fseek | ftell

How To • “Testing for End of File (EOF)”

1-2036

ferror

Purpose Information about file I/O errors

Syntax message = ferror(fileID)
[message, errnum] = ferror(fileID)
[...] = ferror(fileID, 'clear')

Description message = ferror(fileID) returns the error message for the most
recent file I/O operation on the specified file. If the operation was
successful, message is an empty string. fileID is an integer file
identifier obtained from fopen, or an identifier reserved for standard
input (0), standard output (1), or standard error (2).

[message, errnum] = ferror(fileID) returns the error number. If
the most recent file I/O operation was successful, errnum is 0. Negative
error numbers correspond to MATLAB error messages. Positive error
numbers correspond to C library error messages for your system.

[...] = ferror(fileID, 'clear') clears the error indicator for
the specified file.

See Also fclose | fopen | fseek | ftell | feof | fscanf | fprintf | fread |
fwrite

1-2037

feval

Purpose Evaluate function

Syntax [y1, y2, ...] = feval(fhandle, x1, ..., xn)
[y1, y2, ...] = feval(fname, x1, ..., xn)

Description [y1, y2, ...] = feval(fhandle, x1, ..., xn) evaluates the
function handle, fhandle, using arguments x1 through xn. If the
function handle is bound to more than one built-in or .m function, (that
is, it represents a set of overloaded functions), then the data type of the
arguments x1 through xn determines which function is dispatched to.

Note It is not necessary to use feval to call a function by means of a
function handle. This is explained in “Calling a Function Using Its
Handle” in the MATLAB Programming Fundamentals documentation.

[y1, y2, ...] = feval(fname, x1, ..., xn). If fname is a quoted
string containing the name of a function (usually defined within
file having a .m file extension), then feval(fname, x1, ..., xn)
evaluates that function at the given arguments. The fname parameter
must be a simple function name; it cannot contain path information.

Tips The following two statements are equivalent.

[V,D] = eig(A)
[V,D] = feval(@eig, A)

Nested functions are not accessible to feval. To call a nested function,
you must either call it directly by name, or construct a function handle
for it using the @ operator.

Examples The following example passes a function handle, fhandle, in a call to
fminbnd. The fhandle argument is a handle to the humps function.

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

1-2038

feval

The fminbnd function uses feval to evaluate the function handle that
was passed in.

function [xf, fval, exitflag, output] = ...
fminbnd(funfcn, ax, bx, options, varargin)

.

.

.
fx = feval(funfcn, x, varargin{:});

See Also assignin | function_handle | functions | builtin | eval | evalin

1-2039

Feval (COM)

Purpose Evaluate MATLAB function in Automation server

Syntax IDL Method Signature

HRESULT Feval([in] BSTR functionname, [in] long nargout,
[out] VARIANT* result, [in, optional] VARIANT arg1, arg2, ...)

Microsoft Visual Basic Client

Feval(String functionname, long numout,
arg1, arg2, ...) As Object

MATLAB Client
result = h.Feval('functionname',numout,arg1,arg2,...)
result = Feval(h,'functionname',numout,arg1,arg2,...)

Description result = h.Feval('functionname',numout,arg1,arg2,...)
executes the MATLAB function specified by the string functionname
in the Automation server attached to handle h. The function name is
case-sensitive.

result = Feval(h,'functionname',numout,arg1,arg2,...) is an
alternate syntax.

Indicate the number of outputs to be returned by the function in a
1-by-1 double array, numout. The server returns output from the
function in the cell array, result.

You can specify as many as 32 input arguments to be passed to the
function. These arguments follow numout in the Feval argument list.
The following table shows ways to pass an argument.

1-2040

Feval (COM)

Passing Mechanism Description

Pass the value itself To pass any numeric or string value, specify the value in the
Feval argument list:

a = h.Feval('sin', 1, -pi:0.01:pi);

Pass a client variable To pass an argument assigned to a variable in the client,
specify the variable name alone:

x = -pi:0.01:pi;
a = h.Feval('sin', 1, x);

Reference a server variable To reference a variable defined in the server, specify the
variable name followed by an equals (=) sign:

h.PutWorkspaceData('x', 'base', -pi:0.01:pi);
a = h.Feval('sin', 1, 'x=');

MATLAB does not reassign the server variable.

Tips To display the output from Feval in the client window, assign a return
value.

COM functions are available on Microsoft Windows systems only.

Examples Passing Arguments

This example shows how to pass arguments using Feval to execute
MATLAB commands on a MATLAB Automation server from a Visual
Basic .NET client.

• Pass two strings to the MATLAB function strcat on the server:

Dim Matlab As Object
Dim out As Object
out = Nothing
Matlab = CreateObject("matlab.application")
Matlab.Feval("strcat", 1, out, "hello", " world")

1-2041

Feval (COM)

• Define clistr locally and pass this variable:

Dim clistr As String
clistr = " world"
Matlab.Feval("strcat", 1, out, "hello", clistr)

• Pass the name of a variable defined on the server:

Matlab.PutCharArray("srvstr", "base", " world")
Matlab.Feval("strcat", 1, out, "hello", "srvstr=")

Defining Feval Return Values

Feval returns data from the evaluated function in a cell array. The cell
array has one row for every return value. You control the number of
return values using the numout argument.

Dim Matlab As Object

Dim out As Object

Matlab = CreateObject("matlab.application")

Matlab.Feval("fileparts", 3, out, "d:\work\ConsoleApp.cpp")

See Also Execute | PutFullMatrix | GetFullMatrix | PutCharArray |
GetCharArray

1-2042

fft

Purpose Fast Fourier transform

Syntax Y = fft(x)
Y = fft(X,n)
Y = fft(X,[],dim)
Y = fft(X,n,dim)

Definitions The functions Y = fft(x) and y = ifft(X) implement the transform
and inverse transform pair given for vectors of length N by:

X k

x j N

x j

X k

j

N

N
j k

k

N

N
j k

()

() (/)

()

()

()()

()()

=

=

=

− −

=

− − −

∑

∑

1

1 1

1

1 11

where

N

i Ne ()/2

is an Nth root of unity.

Description Y = fft(x) returns the discrete Fourier transform (DFT) of vector x,
computed with a fast Fourier transform (FFT) algorithm.

If the input X is a matrix, Y = fft(X) returns the Fourier transform of
each column of the matrix.

If the input X is a multidimensional array, fft operates on the first
nonsingleton dimension.

Y = fft(X,n) returns the n-point DFT. fft(X) is equivalent to fft(X,
n) where n is the size of X in the first nonsingleton dimension. If the
length of X is less than n, X is padded with trailing zeros to length n. If
the length of X is greater than n, the sequence X is truncated. When X is
a matrix, the length of the columns are adjusted in the same manner.

1-2043

fft

Y = fft(X,[],dim) and Y = fft(X,n,dim) applies the FFT operation
across the dimension dim.

Examples A common use of Fourier transforms is to find the frequency components
of a signal buried in a noisy time domain signal. Consider data sampled
at 1000 Hz. Form a signal containing a 50 Hz sinusoid of amplitude 0.7
and 120 Hz sinusoid of amplitude 1 and corrupt it with some zero-mean
random noise:

Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise
plot(Fs*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')

1-2044

fft

It is difficult to identify the frequency components by looking at the
original signal. Converting to the frequency domain, the discrete
Fourier transform of the noisy signal y is found by taking the fast
Fourier transform (FFT):

NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum.
plot(f,2*abs(Y(1:NFFT/2+1)))
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')

The main reason the amplitudes are not exactly at 0.7 and 1 is because
of the noise. Several executions of this code (including recomputation
of y) will produce different approximations to 0.7 and 1. The other
reason is that you have a finite length signal. Increasing L from 1000 to

1-2045

fft

10000 in the example above will produce much better approximations
on average.

Algorithms The FFT functions (fft, fft2, fftn, ifft, ifft2, ifftn) are based on
a library called FFTW [3],[4]. To compute an N-point DFT when N is
composite (that is, when N = N1N2), the FFTW library decomposes the
problem using the Cooley-Tukey algorithm [1], which first computes N1
transforms of size N2, and then computes N2 transforms of size N1. The
decomposition is applied recursively to both the N1- and N2-point DFTs
until the problem can be solved using one of several machine-generated
fixed-size "codelets." The codelets in turn use several algorithms
in combination, including a variation of Cooley-Tukey [5], a prime
factor algorithm [6], and a split-radix algorithm [2]. The particular
factorization of N is chosen heuristically.

When N is a prime number, the FFTW library first decomposes an
N-point problem into three (N – 1)-point problems using Rader’s
algorithm [7]. It then uses the Cooley-Tukey decomposition described
above to compute the (N – 1)-point DFTs.

For most N, real-input DFTs require roughly half the computation time
of complex-input DFTs. However, when N has large prime factors, there
is little or no speed difference.

The execution time for fft depends on the length of the transform. It is
fastest for powers of two. It is almost as fast for lengths that have only
small prime factors. It is typically several times slower for lengths that
are prime or which have large prime factors.

Note You might be able to increase the speed of fft using the utility
function fftw, which controls the optimization of the algorithm used to
compute an FFT of a particular size and dimension.

Data Type
Support

fft supports inputs of data types double and single. If you call fft
with the syntax y = fft(X, ...), the output y has the same data
type as the input X.

1-2046

fft

References [1] Cooley, J. W. and J. W. Tukey, “An Algorithm for the Machine
Computation of the Complex Fourier Series,”Mathematics of
Computation, Vol. 19, April 1965, pp. 297-301.

[2] Duhamel, P. and M. Vetterli, “Fast Fourier Transforms: A Tutorial
Review and a State of the Art,” Signal Processing, Vol. 19, April 1990,
pp. 259-299.

[3] FFTW (http://www.fftw.org)

[4] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software
Architecture for the FFT,”Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp. 1381-1384.

[5] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, p. 611.

[6] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, p. 619.

[7] Rader, C. M., “Discrete Fourier Transforms when the Number of
Data Samples Is Prime,” Proceedings of the IEEE, Vol. 56, June 1968,
pp. 1107-1108.

See Also fft2 | fftn | fftw | fftshift | ifft | filter

1-2047

http://www.fftw.org

fft2

Purpose 2-D fast Fourier transform

Syntax Y = fft2(X)
Y = fft2(X,m,n)

Description Y = fft2(X) returns the two-dimensional discrete Fourier transform
(DFT) of X. The DFT is computed with a fast Fourier transform (FFT)
algorithm. The result, Y, is the same size as X.

If the dimensionality of X is greater than 2, the fft2 function returns
the 2-D DFT for each higher dimensional slice of X. For example, if
size(X) = [100 100 3], then fft2 computes the DFT of X(:,:,1),
X(:,:,2) and X(:,:,3).

Y = fft2(X,m,n) truncates X, or pads X with zeros to create an m-by-n
array before doing the transform. The result is m-by-n.

Algorithms fft2(X) can be simply computed as

fft(fft(X).').'

This computes the one-dimensional DFT of each column X, then of each
row of the result. The execution time for fft depends on the length of
the transform. It is fastest for powers of two. It is almost as fast for
lengths that have only small prime factors. It is typically several times
slower for lengths that are prime or which have large prime factors.

Note You might be able to increase the speed of fft2 using the utility
function fftw, which controls how MATLAB software optimizes the
algorithm used to compute an FFT of a particular size and dimension.

Data Type
Support

fft2 supports inputs of data types double and single. If you call fft2
with the syntax y = fft2(X, ...), the output y has the same data
type as the input X.

1-2048

fft2

See Also fft | fftn | fftw | fftshift | ifft2

1-2049

fftn

Purpose N-D fast Fourier transform

Syntax Y = fftn(X)
Y = fftn(X,siz)

Description Y = fftn(X) returns the discrete Fourier transform (DFT) of X,
computed with a multidimensional fast Fourier transform (FFT)
algorithm. The result Y is the same size as X.

Y = fftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the transform.
The size of the result Y is siz.

Algorithms fftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))

Y = fft(Y,[],p);
end

This computes in-place the one-dimensional fast Fourier transform
along each dimension of X. The execution time for fft depends on the
length of the transform. It is fastest for powers of two. It is almost
as fast for lengths that have only small prime factors. It is typically
several times slower for lengths that are prime or which have large
prime factors.

Note You might be able to increase the speed of fftn using the utility
function fftw, which controls the optimization of the algorithm used to
compute an FFT of a particular size and dimension.

Data Type
Support

fftn supports inputs of data types double and single. If you call fftn
with the syntax y = fftn(X, ...), the output y has the same data
type as the input X.

1-2050

fftn

See Also fft | fft2 | fftw | ifftn

1-2051

fftshift

Purpose Shift zero-frequency component to center of spectrum

Syntax Y = fftshift(X)
Y = fftshift(X,dim)

Description Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by
moving the zero-frequency component to the center of the array. It
is useful for visualizing a Fourier transform with the zero-frequency
component in the middle of the spectrum.

For vectors, fftshift(X) swaps the left and right halves of X. For
matrices, fftshift(X) swaps the first quadrant with the third and the
second quadrant with the fourth.

For higher-dimensional arrays, fftshift(X) swaps “half-spaces” of X
along each dimension.

Y = fftshift(X,dim) applies the fftshift operation along the
dimension dim.

1-2052

fftshift

Note ifftshift will undo the results of fftshift. If the matrix X
contains an odd number of elements, ifftshift(fftshift(X)) must
be done to obtain the original X. Simply performing fftshift(X) twice
will not produce X.

Examples For any matrix X

Y = fft2(X)

has Y(1,1) = sum(sum(X)); the zero-frequency component of the signal
is in the upper-left corner of the two-dimensional FFT. For

Z = fftshift(Y)

this zero-frequency component is near the center of the matrix.

The difference between fftshift and ifftshift is important for input
sequences of odd-length.

N = 5;
X = 0:N-1;
Y = fftshift(fftshift(X));
Z = ifftshift(fftshift(X));

Notice that Z is a correct replica of X, but Y is not.

1-2053

fftshift

isequal(X,Y),isequal(X,Z)

ans =

0

ans =

1

See Also circshift | fft | fft2 | fftn | ifftshift

1-2054

fftw

Purpose Interface to FFTW library run-time algorithm tuning control

Syntax fftw('planner', method)
method = fftw('planner')
str = fftw('dwisdom')
str = fftw('swisdom')
fftw('dwisdom', str)
fftw('swisdom', str)

Description fftw enables you to optimize the speed of the MATLAB FFT functions
fft, ifft, fft2, ifft2, fftn, and ifftn. You can use fftw to
set options for a tuning algorithm that experimentally determines
the fastest algorithm for computing an FFT of a particular size
and dimension at run time. MATLAB software records the optimal
algorithm in an internal data base and uses it to compute FFTs of the
same size throughout the current session. The tuning algorithm is part
of the FFTW library that MATLAB software uses to compute FFTs.

fftw('planner', method) sets the method by which the tuning
algorithm searches for a good FFT algorithm when the dimension of
the FFT is not a power of 2. You can specify method to be one of the
following. The default method is estimate:

• 'estimate'

• 'measure'

• 'patient'

• 'exhaustive'

• 'hybrid'

When you call fftw('planner', method), the next time you call one of
the FFT functions, such as fft, the tuning algorithm uses the specified
method to optimize the FFT computation. Because the tuning involves
trying different algorithms, the first time you call an FFT function,
it might run more slowly than if you did not call fftw. However,
subsequent calls to any of the FFT functions, for a problem of the same
size, often run more quickly than they would without using fftw.

1-2055

fftw

Note The FFT functions only use the optimal FFT algorithm during
the current MATLAB session. “Reusing Optimal FFT Algorithms” on
page 1-2058 explains how to reuse the optimal algorithm in a future
MATLAB session.

If you set the method to 'estimate', the FFTW library does not use
run-time tuning to select the algorithms. The resulting algorithms
might not be optimal.

If you set the method to 'measure', the FFTW library experiments
with many different algorithms to compute an FFT of a given size and
chooses the fastest. Setting the method to 'patient' or 'exhaustive'
has a similar result, but the library experiments with even more
algorithms so that the tuning takes longer the first time you call an
FFT function. However, subsequent calls to FFT functions are faster
than with 'measure'.

If you set 'planner' to 'hybrid', MATLAB software

• Sets method to 'measure' method for FFT dimensions 8192 or
smaller.

• Sets method to 'estimate' for FFT dimensions greater than 8192.

method = fftw('planner') returns the current planner method.

str = fftw('dwisdom') returns the information in the FFTW library’s
internal double-precision database as a string. The string can be saved
and then later reused in a subsequent MATLAB session using the next
syntax.

str = fftw('swisdom') returns the information in the FFTW library’s
internal single-precision database as a string.

fftw('dwisdom', str) loads fftw wisdom represented by the string
str into the FFTW library’s internal double-precision wisdom database.
fftw('dwisdom','') or fftw('dwisdom',[]) clears the internal
wisdom database.

1-2056

fftw

fftw('swisdom', str) loads fftw wisdom represented by the string
str into the FFTW library’s internal single-precision wisdom database.
fftw('swisdom','') or fftw('swisdom',[]) clears the internal
wisdom database.

Note on large powers of 2 For FFT dimensions that are powers
of 2, between 214 and 222, MATLAB software uses special preloaded
information in its internal database to optimize the FFT computation.
No tuning is performed when the dimension of the FTT is a power of 2,
unless you clear the database using the command fftw('wisdom', []).

For more information about the FFTW library, see
http://www.fftw.org.

Examples Comparison of Speed for Different Planner Methods

The following example illustrates the run times for different settings
of planner. The example first creates some data and applies fft to it
using the default method, estimate.

t=0:.001:5;
x = sin(2*pi*50*t)+sin(2*pi*120*t);
y = x + 2*randn(size(t));

tic; Y = fft(y,1458); toc
Elapsed time is 0.000521 seconds.

If you execute the commands

tic; Y = fft(y,1458); toc
Elapsed time is 0.000151 seconds.

a second time, MATLAB software reports the elapsed time as essentially
0. To measure the elapsed time more accurately, you can execute the
command Y = fft(y,1458) 1000 times in a loop.

1-2057

http://www.fftw.org

fftw

tic; for k=1:1000
Y = fft(y,1458);
end; toc
Elapsed time is 0.056532 seconds.

This tells you that it takes on order of 1/10000 of a second to execute
fft(y, 1458) a single time.

For comparison, set planner to patient. Since this planner explores
possible algorithms more thoroughly than hybrid, the first time you
run fft, it takes longer to compute the results.

fftw('planner','patient')
tic;Y = fft(y,1458);toc
Elapsed time is 0.100637 seconds.

However, the next time you call fft, it runs at approximately the same
speed as before you ran the method patient.

tic;for k=1:1000
Y=fft(y,1458);
end;toc
Elapsed time is 0.057209 seconds.

Reusing Optimal FFT Algorithms

In order to use the optimized FFT algorithm in a future MATLAB
session, first save the “wisdom” using the command

str = fftw('wisdom')

You can save str for a future session using the command

save str

The next time you open a MATLAB session, load str using the command

load str

1-2058

fftw

and then reload the “wisdom” into the FFTW database using the
command

fftw('wisdom', str)

See Also fft | fft2 | fftn | ifft | ifft2 | ifftn | fftshift

1-2059

fgetl

Purpose Read line from file, removing newline characters

Syntax tline = fgetl(fileID)

Description tline = fgetl(fileID) returns the next line of the specified file,
removing the newline characters. fileID is an integer file identifier
obtained from fopen. tline is a text string unless the line contains only
the end-of-file marker. In this case, tline is the numeric value -1.

fgetl reads characters using the encoding scheme associated with the
file. To specify the encoding scheme, use fopen.

Examples Read and display the file fgetl.m one line at a time:

fid = fopen('fgetl.m');

tline = fgetl(fid);
while ischar(tline)

disp(tline)
tline = fgetl(fid);

end

fclose(fid);

Compare these results to the fgets example, which replaces the calls to
fgetl with fgets.

See Also fclose | feof | ferror | fgets | fopen | fprintf | fread | fscanf |
fwrite

How To • “Testing for EOF with fgetl and fgets”

1-2060

fgetl (serial)

Purpose Read line of text from device and discard terminator

Syntax tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

Description tline = fgetl(obj) reads one line of text from the device connected to
the serial port object, obj, and returns the data to tline. This returned
data does not include the terminator with the text line. To include the
terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to
count, including the terminator.

[tline,count,msg] = fgetl(obj) returns a warning message to msg
if the read operation was unsuccessful.

Tips Before you can read text from the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the device.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read – including the terminator – each time fgetl is issued.

Rules for Completing a Read Operation with fgetl

A read operation with fgetl blocks access to the MATLAB command
line until:

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Examples On a Windows platform, create the serial port object s, connect s to a
Tektronix® TDS 210 oscilloscope, and write the RS232? command with

1-2061

fgetl (serial)

the fprintf function. RS232? instructs the scope to return serial port
communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is
continuous, data is automatically returned to the input buffer.

s.BytesAvailable

ans =
17

Use fgetl to read the data returned from the previous write operation,
and discard the terminator.

settings = fgetl(s)

settings =
9600;0;0;NONE;LF

length(settings)

ans =
16

Disconnect s from the scope, and remove s from memory and the
workspace.

fclose(s)
delete(s)
clear s

See Also fgets | fopen | BytesAvailable | InputBufferSize | ReadAsyncMode
| Status | Terminator | Timeout | ValuesReceived

1-2062

fgets

Purpose Read line from file, keeping newline characters

Syntax tline = fgets(fileID)
tline = fgets(fileID, nchar)

Description tline = fgets(fileID) reads the next line of the specified file,
including the newline characters. fileID is an integer file identifier
obtained from fopen. tline is a text string unless the line contains only
the end-of-file marker. In this case, tline is the numeric value -1.
fgets reads characters using the encoding scheme associated with the
file. To specify the encoding scheme, use fopen.

tline = fgets(fileID, nchar) returns at most nchar characters of
the next line. tline does not include any characters after the newline
characters or the end-of-file marker.

Examples Read and display the file fgets.m. Because fgets keeps newline
characters and disp adds a newline character, this code displays the
file with double-spacing:

fid = fopen('fgets.m');

tline = fgets(fid);
while ischar(tline)

disp(tline)
tline = fgets(fid);

end

fclose(fid);

Compare these results to the fgetl example, which replaces the calls to
fgets with fgetl.

See Also fclose | feof | ferror | fgetl | fopen | fprintf | fread | fscanf |
fwrite

How To • “Testing for EOF with fgetl and fgets”

1-2063

fgets (serial)

Purpose Read line of text from device and include terminator

Syntax tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

Description tline = fgets(obj) reads one line of text from the device connected
to the serial port object, obj, and returns the data to tline. This
returned data includes the terminator with the text line. To exclude
the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to
count, including the terminator.

[tline,count,msg] = fgets(obj) returns a warning message to msg
if the read operation was unsuccessful.

Tips Before you can read text from the device, it must be connected to obj
with the fopenfunction. A connected serial port object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the device.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read – including the terminator – each time fgets is issued.

Rules for Completing a Read Operation with fgets

A read operation with fgets blocks access to the MATLAB command
line until:

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Examples Create the serial port object s, connect s to a Tektronix TDS 210
oscilloscope, and write the RS232? command with the fprintf function.

1-2064

fgets (serial)

RS232? instructs the scope to return serial port communications
settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is
continuous, data is automatically returned to the input buffer.

s.BytesAvailable

ans =
17

Use fgets to read the data returned from the previous write operation,
and include the terminator.

settings = fgets(s)

settings =
9600;0;0;NONE;LF

length(settings)

ans =
17

Disconnect s from the scope, and remove s from memory and the
workspace.

fclose(s)
delete(s)
clear s

See Also fgetl | fopen | BytesAvailable | BytesAvailableFcn |
InputBufferSize | Status | Terminator | Timeout | ValuesReceived

1-2065

fieldnames

Purpose Field names of structure, or public fields of object

Syntax names = fieldnames(s)
names = fieldnames(obj)
names = fieldnames(obj,'-full')

Description names = fieldnames(s) returns a cell array of strings containing the
names of the fields in structure s.

names = fieldnames(obj) returns a cell array of strings containing
the names of the public properties of obj. MATLAB objects can overload
fieldnames and define their own behavior.

names = fieldnames(obj,'-full') returns a cell array of strings
containing the name, type, attributes, and inheritance of the properties
of obj. Only supported for COM or Java objects.

Examples Structure Fields

Create a structure array and view its fields.

s(1,1).name = 'alice';
s(1,1).ID = 0;
s(2,1).name = 'gertrude';
s(2,1).ID = 1;

names = fieldnames(s)

names =

'name'
'ID'

Java Object Properties

Create a Java® object and view its public properties.

1-2066

fieldnames

obj = java.lang.Integer(0);
names = fieldnames(obj)

names =

'MIN_VALUE'
'MAX_VALUE'
'TYPE'
'SIZE'

See Also setfield | getfield | isfield | orderfields | rmfield

How To • “Generate Field Names from Variables”

1-2067

figure

Purpose Create figure graphics object

Syntax figure
figure
figure('PropertyName',propertyvalue,...)
figure(h)
h = figure(...)

Properties For a list of properties, see Figure Properties.

Description figure creates figure graphics objects. Figure objects are the individual
windows on the screen in which the MATLAB software displays
graphical output.

figure creates a new figure object using default property values. This
automatically becomes the current figure and raises it above all other
figures on the screen until a new figure is created or called.

figure creates a new figure object using default property values. This
automatically becomes the current figure and raises it above all other
figures on the screen until a new figure is created or called.

Number property has been assigned the smallest positive integer not
already assigned to another Figure. This number also appears in the
new Figure’s title bar.

figure('PropertyName',propertyvalue,...) creates a new figure
object using the values of the properties specified. For a description of
the properties, see Figure Properties. MATLAB uses default values
for any properties that you do not explicitly define as arguments.

figure(h) does one of the following (assuming IntegerHandle is its
default value, on):

• If h is the handle to an existing figure, figure(h) makes the figure
identified by h the current figure, makes it visible, and attempts to
raise it above all other figures on the screen. The current figure is
the target for graphics output.

1-2068

figure

• If h is not the handle to an existing figure, but is an integer,
figure(h) creates a figure and assigns it the handle h.

• If h is not the handle to a figure, and is not an integer, MATLAB
returns an error.

h = figure(...) returns the handle to the figure object.

Tips To create a figure object, MATLAB creates a new window whose
characteristics are controlled by default figure properties (both factory
installed and user defined) and properties specified as arguments. See
Figure Properties for a description of these properties.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see the set and get reference pages
for examples of how to specify these data types).

Use set to modify the properties of an existing figure or get to query
the current values of figure properties.

The gcf command returns the handle to the current figure and is useful
as an argument to the set and get commands.

Figures can be docked in the desktop. The DockControls property
determines whether you can dock the figure.

Making a Figure Current

The current figure is the target for graphics output. There are two ways
to make a figure h the current figure.

• Make the figure h current, visible, and displayed on top of other
figures:

figure(h);

• Make the figure h current, but do not change its visibility or stacking
with respect to other figures:

set(0,'CurrentFigure',h);

1-2069

figure

Examples Specifying Figure Size and Screen Location

To create a figure window that is one quarter the size of your screen and
is positioned in the upper left corner, use the root object’s ScreenSize
property to determine the size. ScreenSize is a four-element vector:
[left, bottom, width, height]:

scrsz = get(0,'ScreenSize');
figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

To position the full figure window including the menu bar, title bar,
tool bars, and outer edges, use the OuterPosition property in the
same manner.

Specifying the Figure Window Title

You can add your own title to a figure by setting the Name property and
you can turn off the figure number with the NumberTitle property:

figure('Name','Simulation Plot Window','NumberTitle','off')

See Figure Properties for a description of all properties.

Setting
Default
Properties

You can set default figure properties only on the root object level.

set(0,'DefaultFigureProperty',PropertyValue...)

where Property is the name of the figure property and PropertyValue
is the value you are specifying. Use set and get to access figure
properties.

See “Setting Default Property Values” for more information.

See Also axes | close | clf | gcf | ishghandle | rootobject | uicontrol
| uimenu | Figure Properties

1-2070

Figure Properties

Purpose Define figure properties

Creating
Figure
Objects

Use figure to create figure objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “Customize Objects in Graph” is an interactive tool that enables you
to see and change object property values.

• The set and get commands enable you to set and query the values
of Handle Graphics properties.

To change the default values of properties, see “Setting Default Property
Values” in the Handle Graphics Objects documentation.

Figure
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Alphamap
m-by-1 matrix of alpha values

Figure alphamap. An array of non-NaN alpha values. MATLAB
accesses alpha values by their row number. For example, an
index of 1 specifies the first alpha value, an index of 2 specifies
the second alpha value, and so on. Alphamaps can be any length.
The default alphamap contains 64 values that progress linearly
from 0 to 1.

Alphamaps affect the rendering of surface, image, and patch
objects, but do not affect other graphics objects.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted

1-2071

Figure Properties

property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

See the close and delete function reference pages for related
information.

BusyAction
cancel | {queue}

Callback function interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback functions. If there is a callback
function executing, callback functions invoked subsequently
always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback function.

• queue— Queue the event that attempted to execute a second
callback function until the current callback finishes.

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press a
mouse button while the pointer is in the figure window, but not
over a child object (i.e., uicontrol, uipanel, axes, or axes child).

1-2072

Figure Properties

Define the ButtonDownFcn as a function handle. The function
must define at least two input arguments (handle of figure
associated with the mouse button press and an empty event
structure).

See the figure’s SelectionType property to determine whether
modifier keys were also pressed.

For information on the syntax of callback functions, see Function
Handle Callbacks.

Using the ButtonDownFcn

This example creates a figure and defines a function handle
callback for the ButtonDownFcn property. When the user
Ctrl-clicks the figure, the callback creates a new figure having
the same callback.

Click to view in editor — This link opens the MATLAB Editor
with the following example.

Click to run example — Ctrl-click the figure to create a new
figure.

fh_cb = @newfig; % Create function handle for newfig function

figure('ButtonDownFcn',fh_cb);

function newfig(src,evnt)

if strcmp(get(src,'SelectionType'),'alt')

figure('ButtonDownFcn',fh_cb)

else

disp('Use control-click to create a new figure')

end

end

Children
vector of handles

1-2073

Figure Properties

Children of the figure. A vector containing the handles of all axes,
user-interface objects displayed within the figure. You can change
the order of the handles and thereby change the stacking of the
objects on the display.

When an object’s HandleVisibility property is off, it is not
listed in its parent’s Children property. See HandleVisibility
for more information.

Clipping
{on} | off

Clipping mode. This property has no effect on figures.

CloseRequestFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Function executed on figure close. Executes whenever you issue
the close command (either a close(figure_handle) or a close
all), when you close a figure window from the computer’s window
manager menu, or when you quit MATLAB.

The CloseRequestFcn provides a mechanism to intervene in the
closing of a figure. It allows you to, for example, display a dialog
box to ask a user to confirm or cancel the close operation or to
prevent users from closing a figure that contains a GUI.

The basic mechanism is:

1 A user issues the close command from the command line,
by closing the window from the computer’s window manager
menu, or by quitting MATLAB.

2 The close operation executes the function defined by the figure
CloseRequestFcn. The default function is closereq.

closereq unconditionally deletes the current figure, destroying
the window. closereq takes advantage of the fact that the

1-2074

../ref/figure_props.html#HandleVisibility

Figure Properties

close command makes each figure specified as arguments
the current figure before calling its respective close request
function.

Note that closereq honors the ShowHiddenHandles setting
during figure deletion and will not delete hidden figures.

Redefining the CloseRequestFcn

Define the CloseRequestFcn as a function handle. For example:

set(gcf,'CloseRequestFcn',@my_closefcn)

Where @my_closefcn is a function handle referencing function
my_closefcn.

Unless the close request function calls delete or close,
MATLAB never closes the figure. (Note that you can always call
delete(figure_handle) from the command line if you have
created a window with a nondestructive close request function.)

A useful application of the close request function is to display a
question dialog box asking the user to confirm the close operation.
The following function illustrates how to do this.

Click to view in editor — This link opens the MATLAB editor with
the following example.

Click to run example — Ctrl- click the figure to create a new
figure.

function my_closereq(src,evnt)
% User-defined close request function
% to display a question dialog box

selection = questdlg('Close This Figure?',...
'Close Request Function',...
'Yes','No','Yes');

switch selection,

1-2075

Figure Properties

case 'Yes',
delete(gcf)

case 'No'
return

end
end

Now create a figure using the CloseRequestFcn:

figure('CloseRequestFcn',@my_closereq)

To make this function your default close request function, set a
default value on the root level.

set(0,'DefaultFigureCloseRequestFcn',@my_closereq)

MATLAB then uses this setting for the CloseRequestFcn of all
subsequently created figures.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Color
ColorSpec

Background color. Controls the figure window background color.
You can specify a color using a three-element vector of RGB
values or one of the MATLAB predefined names. See ColorSpec
for more information.

Colormap
m-by-3 matrix of RGB values

Figure colormap. An array of red, green, and blue (RGB) intensity
values that define m individual colors. MATLAB accesses colors
by their row number. For example, an index of 1 specifies the
first RGB triplet, an index of 2 specifies the second RGB triplet,
and so on.

1-2076

Figure Properties

Number of Colors Allowed

Colormaps can be any length, but must be three columns wide.
The default figure colormap contains 64 predefined colors.

Objects That Use Colormaps

Colormaps affect the rendering of surface, image, and patch
objects, but generally do not affect other graphics objects. See
colormap and ColorSpec for more information.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during figure creation. Executes when
MATLAB creates a figure object. You must define this property as
a default value on the root level. For example, the statement:

set(0,'DefaultFigureCreateFcn',@fig_create)

defines a default value on the root level that causes all figures
created to execute the setup function fig_create, which is
defined below:

function fig_create(src,evnt)
set(src,'Color',[.2 .1 .5],...

'IntegerHandle','off',...
'MenuBar','none',...
'ToolBar','none')

end

MATLAB executes the create function after setting all properties
for the figure. Setting this property on an existing figure object
has no effect.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

1-2077

Figure Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo or the handle of the object generating
the callback (the source of the event). For example, this,

f = figure('CreateFcn',@(o,e) keyboard)
K>> gcbo

and this each return 1:

f = figure('CreateFcn',@(o,e) keyboard)
K>> o

CurrentAxes
handle of current axes

Target axes in this figure. MATLAB sets this property to the
handle of the figure’s current axes (the handle returned by the
gca command when this figure is the current figure). In all
figures for which axes children exist, there is always a current
axes. The current axes does not have to be the topmost axes, and
setting an axes to be the CurrentAxes does not restack it above
all other axes.

You can make an axes current using the axes and
set commands. For example, axes(axes_handle) and
set(gcf,'CurrentAxes',axes_handle) both make the axes
identified by the handle axes_handle the current axes. In
addition, axes(axes_handle) restacks the axes above all other
axes in the figure.

If a figure contains no axes, get(gcf,'CurrentAxes') returns
the empty matrix. Note that the gca function actually creates an
axes if one does not exist.

CurrentCharacter
single character

1-2078

Figure Properties

Last key pressed. MATLAB sets this property to the last key
pressed in the figure window. Use CurrentCharacter to obtain
user input.

CurrentObject
object handle

Handle of current object. MATLAB sets this property to the
handle of the last object clicked on by the mouse. This object is
the frontmost object in the view. You can use this property to
determine which object a user has selected. The function gco
provides a convenient way to retrieve the CurrentObject of the
CurrentFigure.

Note that the HitTest property controls whether an object can
become the CurrentObject.

Hidden Handle Objects

Clicking an object whose HandleVisibility property is off (such
as axis labels and title) causes the CurrentObject property to be
set to empty []. To avoid returning an empty value when users
click hidden objects, set the hidden object’s HitTest property to
off.

Mouse Over

Note that cursor motion over objects does not update the
CurrentObject; you must click objects to update this property.
See the CurrentPoint property for related information.

CurrentPoint
two-element vector: [x-coordinate, y-coordinate]

Location of last button click in this figure. MATLAB sets this
property to the location of the pointer at the time of the most
recent mouse button press. MATLAB updates this property

1-2079

Figure Properties

whenever you press the mouse button while the pointer is in the
figure window.

Note that if you select a point in the figure and then use the
values returned by the CurrentPoint property to plot that point,
there can be differences in the position due to round-off errors.

CurrentPoint and Cursor Motion

In addition to the behavior described above, MATLAB updates
CurrentPoint before executing callback routines defined for
the figure WindowButtonMotionFcn and WindowButtonUpFcn
properties. This enables you to query CurrentPoint from these
callback routines. It behaves like this:

• If there is no callback routine defined for the
WindowButtonMotionFcn or the WindowButtonUpFcn,
then MATLAB updates the CurrentPoint only when the mouse
button is pressed down within the figure window.

• If there is a callback routine defined for the
WindowButtonMotionFcn, then MATLAB updates the
CurrentPoint just before executing the callback. Note that
the WindowButtonMotionFcn executes only within the figure
window unless the mouse button is pressed down within
the window and then held down while the pointer is moved
around the screen. In this case, the routine executes (and the
CurrentPoint is updated) anywhere on the screen until the
mouse button is released.

• If there is a callback routine defined for the WindowButtonUpFcn,
MATLAB updates the CurrentPoint just before executing
the callback. Note that the WindowButtonUpFcn executes only
while the pointer is within the figure window unless the mouse
button is pressed down initially within the window. In this case,
releasing the button anywhere on the screen triggers callback
execution, which is preceded by an update of the CurrentPoint.

1-2080

Figure Properties

The figure CurrentPoint is updated only when certain events
occur, as previously described. In some situations (such as when
the WindowButtonMotionFcn takes a long time to execute and
the pointer is moved very rapidly), the CurrentPoint might not
reflect the actual location of the pointer, but rather the location at
the time when the WindowButtonMotionFcn began execution.

The CurrentPoint is measured from the lower-left corner of the
figure window, in units determined by the Units property.

The root PointerLocation property contains the location of the
pointer updated synchronously with pointer movement. However,
the location is measured with respect to the screen, not a figure
window.

See uicontrol for information on how this property is set when
you click a uicontrol object.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Delete figure callback function. Executes when the figure object
is deleted (for example, when you issue a delete or a close
command). MATLAB executes the function before destroying the
object’s properties so these values are available to the callback
routine.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

The handle of the object whose DeleteFcn is being executed is
accessible through the root CallbackObject property, which you
can query using gcbo.

See also the figure CloseRequestFcn property

1-2081

Figure Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DockControls
{on} | off

Displays controls used to dock figure. Determines whether the
figure enables the Desktop menu item and the dock figure button
in the title bar that allow you to dock the figure into the MATLAB
desktop.

• on — Figure docking controls are visible.

• off — The Desktop menu item that enables you to dock the
figure is disabled and the figure dock button is not displayed.

See the WindowStyle property for more information on docking
figure.

DoubleBuffer
{on} | off

Note This property is now obsolete and has no effect. It was
provided for older computer systems to produce flash-free
animations.

Flash-free rendering for simple animations. Double buffering
is the process of drawing to an off-screen pixel buffer and then
printing the buffer contents to the screen once the drawing
is complete. Double buffering generally produces flash-free
rendering for simple animations (such as those involving lines, as
opposed to objects containing large numbers of polygons). Use
double buffering with the animated objects’ EraseMode property
set to normal. Use the set command to disable double buffering.

set(figure_handle,'DoubleBuffer','off')

1-2082

Figure Properties

Double buffering works only when the figure Renderer property
is painters.

FileName
String

GUI FIG-file name. GUIDE stores the name of the FIG-file used
to save the GUI layout in this property. In non-GUIDE GUIs, by
default FileName is empty. You can set the FileName property
in non-GUIDE GUIs as well, and get it to verify what GUI is
running or whether it has been previously saved.

FixedColors
m-by-3 matrix of RGB values (read-only)

Noncolormap colors. Fixed colors define all colors appearing in a
figure window that are not from the figure colormap. These colors
include axis lines and labels, the colors of line, text, uicontrol,
and uimenu, and text objects, and any colors explicitly defined,
for example, with a statement like:

set(gcf,'Color',[0.3,0.7,0.9])

Fixed color definitions reside in the system color table and do not
appear in the figure colormap. For this reason, fixed colors can
limit the number of simultaneously displayed colors if the number
of fixed colors plus the number of entries in the figure colormap
exceed your system’s maximum number of colors.

(See the root ScreenDepth property for information on
determining the total number of colors supported on your system.
See the MinColorMap property for information on how MATLAB
shares colors between applications.)

Note The FixedColors property is being deprecated and will
be removed in a future release

1-2083

Figure Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Visibility and Handles Returned by Other Functions

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigureproperty, objects
do not appear in the root’s CallbackObject property or in the
figure’s CurrentObject property, and axes do not appear in their
parent’s CurrentAxes property.

1-2084

Figure Properties

Making All Handles Visible

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Validity of Hidden Handles

Handles that are hidden are still valid. If you know an object’s
handle, you can pass it to any function that operates on handles,
and set and get its properties.

HitTest
{on} | off

Selectable by mouse click. Determines if the figure can become the
current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the figure.
If HitTest is off, clicking the figure sets the CurrentObject to
the empty matrix.

IntegerHandle
{on} | off

Figure handle mode. Figure object handles are integers by
default. When creating a new figure, MATLAB uses the lowest
integer that is not used by an existing figure. If you delete a
figure, its integer handle can be reused.

If you set this property to off, MATLAB assigns nonreusable
real-number handles (for example, 67.0001221) instead of
integers. This feature is designed for dialog boxes where
removing the handle from integer values reduces the likelihood of
inadvertently drawing into the dialog box.

Interruptible
{on} | off

1-2085

Figure Properties

Callback routine interruption mode. Controls whether a figure
callback function can be interrupted by subsequently invoked
callbacks.

How Callbacks Are Interrupted

MATLAB checks for queued events that can interrupt a callback
function only when it encounters a call to drawnow, figure,
getframe, or pause in the executing callback function. When
executing one of these functions, MATLAB processes all pending
events, including executing all waiting callback functions. The
interrupted callback then resumes execution.

What Property Callbacks Are Interruptible

The Interruptible property only affects callback functions
defined for the ButtonDownFcn, KeyPressFcn, KeyReleaseFcn,
WindowButtonDownFcn, WindowButtonMotionFcn,
WindowButtonUpFcn, WindowKeyPressFcn,
WindowKeyReleaseFcn, and WindowScrollWheelFcn.

See the BusyAction property for related information.

InvertHardcopy
{on} | off

Change hardcopy to black objects on white background. Affects
only exported and printed output. Printing a figure having a
background color (Color property) that is not white results in
poor contrast between graphics objects and the figure background
and also consumes a lot of printer toner.

When InvertHardCopy is on, MATLAB eliminates this effect by
changing the color of the figure and axes to white and the axis
lines, tick marks, axis labels, etc., to black. lines, text, and the
edges of patches and surfaces might be changed, depending on
the print command options specified.

1-2086

Figure Properties

If you set InvertHardCopy to off, the exported and printed
output matches the colors displayed on the screen.

See print for more information on printing MATLAB figures.

KeyPressFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Key press callback function. Callback function invoked by a key
press that occurs while the figure window has focus. Define the
KeyPressFcn as a function handle. The function must define at
least two input arguments (handle of figure associated with key
press and an event structure).

For information on the syntax of callback functions, see Function
Handle Callbacks.

When no callback is specified for this property (which is the
default state), MATLAB passes any key presses to the Command
Window. However, when you define a callback for this property,
the figure retains focus with each key press and executes the
specified callback with each key press.

KeyPressFcn Event Structure

When you specify the callback as a function handle, MATLAB
passes to it a structure to containing the following fields.

1-2087

Figure Properties

Field Contents

Character The character displayed as a result of the
pressing the key(s), which can be empty or
unprintable

Key The key being pressed, identified by the
lowercase label on key or a descriptive string

Modifier A cell array containing the names of one or more
modifier keys being pressed (i.e., control, alt,
shift). On Macintosh computers, it contains
'command' when pressing the command
modifier key

Explore KeyPressFcn Behavior

To view the values of the event data fields for any key or key
combination, run the following code:

figure('NumberTitle','off','Menubar','none',...
'Name',...

'Press keys to put event data in Command Window',...
'Position',[560 728 560 200],...
'KeyPressFcn',@(obj,evt)disp(evt));

Each time you press a key, the KeyPressFcn uses disp to display
the event data in the Command Window.

You can also view and run an example GUI, ex_KeyPressFcn.m,
which displays keystroke event data in the figure window, and
provides an option to write the event data structure to your
workspace.

• Click here to view the example in the MATLAB editor

• Click here to add the example to the MATLAB path

• Click to run the example — Press and release various key
combinations while the figure has focus. The callback displays

1-2088

Figure Properties

event data in text fields in the figure window. The Char
Code data is the Character field displayed as a number, not a
separate event data field.

Event data passed to a KeyPressFcn and KeyReleaseFcn
callbacks have the following characteristics:

• The Key field is always in lower case (contains the non-shifted
symbol).

• Modifier keys (Alt, Ctrl, Shift,) return data when pressed
alone as well as when pressed in combination with other keys.

• Modifier fields contain a cell array with zero or more strings.

• Modifier keys can affect the Character field, but do not change
the Key field.

• Certain keys, plus keys modified with Ctrl, put unprintable
characters in the Character field.

• Ctrl, Alt, Shift, function and several other keys generate no
Character field data.

Using the KeyPressFcn

This example creates a figure and defines a function handle
callback for the KeyPressFcn property. When you press the p key,
the callback exports the figure as a PNG image file. When you
press Ctrl+p, the callback exports the figure as a PDF file.

function figure_keypress

figure('KeyPressFcn',@printfig);

surf(peaks)

function printfig(src,event)

% Callback to parse keypress event data to print a figure

if event.Character == 'p'

% On some systems you must send the file to a printer manually

if length(event.Modifier) == 1 && ...

1-2089

Figure Properties

strcmp(event.Modifier{:},'control')

% Create PDF file of figure when Ctrl key is down

print ('-dpdf',['-f' num2str(src)])

elseif isempty(event.Modifier)

% Print PNG image of figure when Ctrl is not pressed

print ('-dpng','-r200',['-f' num2str(src)])

end

end

end

end

KeyReleaseFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Key release callback function. Callback function invoked by a key
release that occurs while the figure window has focus. Define the
KeyReleaseFcn as a function handle. The function must define at
least two input arguments (handle of figure associated with key
release and an event structure).

For information on the syntax of callback functions, see Function
Handle Callbacks.

KeyReleaseFcn Event Structure

When the callback is a function handle, MATLAB passes a
structure as the second argument to the callback function that
contains the following fields.

1-2090

Figure Properties

Field Contents

Character The character displayed as a result of the
releasing the key(s), which can be empty or
unprintable

Key The key being released, identified by the
lowercase label on key or a descriptive string

Modifier A cell array containing the names of one or more
modifier keys being released (i.e., control, alt,
shift). On Macintosh computers, it contains
'command' when releasing the command
modifier key

Properties Affected by the KeyReleaseFcn

When a callback is defined for the KeyReleaseFcn property,
MATLAB updates the CurrentCharacter figure property just
before executing the callback.

Multiple-Key Press Events and a Single-Key Release Event

Consider a figure having callbacks defined for both the
KeyPressFcn and KeyReleaseFcn. In the case where you press
multiple keys at close to the same time, MATLAB generates
repeated KeyPressFcn events only for the last key pressed.

For example, suppose you press and hold down the a key, then
press and hold down the s key. MATLAB generates repeated
KeyPressFcn events for the a key until you press the s key, at
which point MATLAB generates repeated KeyPressFcn events
for the s key. If you then release the s key, MATLAB generates
a KeyReleaseFcn event for the s key, but no new KeyPressFcn
events for the a key. When you then release the a key, the
KeyReleaseFcn again executes. The KeyReleaseFcn executes its
callback every time you release a key while the figure is in focus,
regardless of what any KeyPressFcn does.

1-2091

Figure Properties

Event structures passed to a KeyPressFcn and KeyReleaseFcn
callbacks have the following characteristics:

• The Key field is always in lower case (contains the non-shifted
symbol).

• Modifier keys (Alt, Ctrl, Shift,) return data when pressed
alone as well as when pressed in combination with other keys.

• Modifier fields contain a cell array with zero or more strings.

• Modifier keys can affect the Character field, but do not change
the Key field.

• Certain keys, plus keys modified with Ctrl, put unprintable
characters in the Character field.

• Ctrl, Alt, Shift, function and several other keys generate no
Character field data.

Modifier Keys

When you press and release a key and a modifier key, the modifier
key is returned in the event structure Modifier field. If you press
and release a modifier key only, its name is not returned in the
event structure of the KeyReleaseFcn, but is returned in the
event structure of the KeyPressFcn.

Explore KeyReleaseFcn Behavior

The following code example creates a figure and defines a function
handle callback for the KeyReleaseFcn property which reports
the event data that the callback receives.

• Click here to view the example in the MATLAB editor

• Click here to add the example to the MATLAB path

• Click to run the example — Press and release various key
combinations while the figure has focus. The callback displays
event data in the Command Window.

1-2092

Figure Properties

function key_releaseFcn

figure('KeyReleaseFcn',@cb)

function cb(src,evnt)

if ~isempty(evnt.Modifier)

for ii = 1:length(evnt.Modifier)

out = sprintf('Character: %c\nModifier: %s\nKey: %s\n',...

evnt.Character,evnt.Modifier{ii},evnt.Key);

disp(out)

end

else

out = sprintf('Character: %c\nModifier: %s\nKey: %s\n',...

evnt.Character,'No modifier key',evnt.Key);

disp(out)

end

end

end

MenuBar
none | {figure}

Enable-disable figure menu bar. Enables you to display or hide
the menu bar that MATLAB places at the top of a figure window.
The default (figure) is to display the menu bar.

This property affects only built-in menus. This property does not
affect menus defined with the uimenu command.

Changing the WindowStyle of a window to 'modal' hides both
its toolbar and menu bar, if they exist. Changing WindowStyle
from 'modal' to 'normal' or 'docked' displays any toolbar or
menu bar a figure has.

MinColormap
scalar (default = 64)

Minimum number of color table entries used. Specifies the
minimum number of system color table entries used by MATLAB
to store the colormap defined for the figure (see the Colormap

1-2093

Figure Properties

property). In certain situations, you might need to increase this
value to ensure proper use of colors.

For example, suppose you run color-intensive applications in
addition to MATLAB and have defined a large figure colormap
(for example, 150 to 200 colors). MATLAB might select colors that
are close but not exact from the existing colors in the system color
table because there are not enough slots available to define all
the colors you specified.

To ensure that MATLAB uses exactly the colors you define in
the figure colormap, set MinColormap equal to the length of the
colormap.

set(gcf,'MinColormap',length(get(gcf,'ColorMap')))

Note that the larger the value of MinColormap, the greater the
likelihood that other windows (including other MATLAB figure
windows) will be displayed in false colors.

Note The MinColormap property is being deprecated and will
be removed in a future release

Name
string

Figure window title. Specifies the title displayed in the figure
window. By default, Name is empty and the figure title is displayed
as Figure 1, Figure 2, and so on. When you set this parameter
to a string, the figure title becomes Figure 1: <string>. See
the NumberTitle property.

NextPlot
new | {add} | replace | replacechildren

1-2094

Figure Properties

How to add next plot. Determines which figure MATLAB uses to
display graphics output. If the value of the current figure is:

• new — Create a new figure to display graphics (unless an
existing parent is specified in the graphing function as a
property/value pair).

• add— Use the current figure to display graphics (the default).

• replace — Reset all figure properties except Position to
their defaults and delete all figure children before displaying
graphics (equivalent to clf reset).

• replacechildren— Remove all child objects, but do not reset
figure properties (equivalent to clf).

The newplot function provides an easy way to handle the
NextPlot property. For more information, see the axes NextPlot
property and “Controlling Graphics Output”.

NumberTitle
{on} | off (GUIDE default off)

Figure window title number string. Determines whether the
string Figure No. N (where N is the figure number) is prefixed
to the figure window title. See the Name property.

OuterPosition
four-element vector

Figure position including title bar, menu bar, tool bars, and outer
edges. Specifies the size and location on the screen of the full
figure window including the title bar, menu bar, tool bars, and
outer edges. Specify the position rectangle with a four-element
vector of the form:

rect = [left, bottom, width, height]

where left and bottom define the distance from the lower-left
corner of the screen to the lower-left corner of the full figure

1-2095

Figure Properties

window. width and height define the dimensions of the window.
See the Units property for information on the units used in this
specification. The left and bottom elements can be negative on
systems that have more than one monitor.

Position of Docked Figures

If the figure is docked in the MATLAB desktop, then the
OuterPosition property is specified with respect to the figure
group container instead of the screen.

Moving and Resizing Figures

Use the get function to obtain this property and determine the
position of the figure. Use the set function to resize and move the
figure to a new location. You cannot set the figure OuterPosition
when it is docked.

Note On Microsoft Windows systems, figure windows cannot
be less than 104 pixels wide, regardless of the value of the
OuterPosition property.

PaperOrientation
{portrait} | landscape

Horizontal or vertical paper orientation. Determines how to orient
printed figures on the page.

• portrait— Orients the longest page dimension vertically.

• landscape— Orients the longest page dimension horizontally.

See the orient command for more information.

PaperPosition
four-element rect vector

1-2096

Figure Properties

Location on printed page. A rectangle that determines the location
of the figure on the printed page. Specify this rectangle with a
vector of the form:

rect = [left, bottom, width, height]

where left specifies the distance from the left side of the
paper to the left side of the rectangle and bottom specifies
the distance from the bottom of the page to the bottom of the
rectangle. Together these distances define the lower-left corner
of the rectangle. width and height define the dimensions of the
rectangle. The PaperUnits property specifies the units used to
define this rectangle.

PaperPositionMode
auto | {manual}

WYSIWYG printing of figure.

• manual — MATLAB honors the value specified by the
PaperPosition property.

• auto— MATLAB prints the figure the same size as it appears
on the computer screen, centered on the page.

PaperSize
[width height]

Paper size. Size of the current PaperType, measured in
PaperUnits. See PaperType to select standard paper sizes.

PaperType
Select a value from the following table.

Selection of standard paper size. Sets the PaperSize to one of the
following standard sizes.

1-2097

Figure Properties

Paper Sizes Table

Property Value Size (Width x Height)

usletter (default) 8.5-by-11 inches

uslegal 8.5-by-14 inches

tabloid 11-by-17 inches

A0 841-by-1189 mm

A1 594-by-841 mm

A2 420-by-594 mm

A3 297-by-420 mm

A4 210-by-297 mm

A5 148-by-210 mm

B0 1029-by-1456 mm

B1 728-by-1028 mm

B2 514-by-728 mm

B3 364-by-514 mm

B4 257-by-364 mm

B5 182-by-257 mm

arch-A 9-by-12 inches

arch-B 12-by-18 inches

arch-C 18-by-24 inches

arch-D 24-by-36 inches

arch-E 36-by-48 inches

A 8.5-by-11 inches

B 11-by-17 inches

C 17-by-22 inches

1-2098

Figure Properties

Property Value Size (Width x Height)

D 22-by-34 inches

E 34-by-43 inches

Note that you might need to change the PaperPosition property
in order to position the printed figure on the new paper size.
One solution is to use normalized PaperUnits, which enables
MATLAB to automatically size the figure to occupy the same
relative amount of the printed page, regardless of the paper size.

PaperUnits
normalized | {inches} | centimeters | points

Hardcopy measurement units. Specifies the units used to
define the PaperPosition and PaperSize properties. MATLAB
measures all units from the lower-left corner of the page.
normalized units map the lower-left corner of the page to (0, 0)
and the upper-right corner to (1.0, 1.0). inches, centimeters,
and points are absolute units (one point equals 1/72 of an inch).

If you change the value of PaperUnits, it is good practice to
return the property to its default value after completing your
computation so as not to affect other functions that assume
PaperUnits is set to the default value.

Parent
handle

Handle of figure’s parent. The parent of a figure object is the root
object object. The handle to the root is always 0.

Pointer

crosshair | {arrow} | watch | topl |
topr | botl | botr | circle | cross |
fleur | left | right | top | bottom |
fullcrosshair | ibeam | custom | hand

1-2099

Figure Properties

Pointer symbol, specified as a string listed in the following table.
By convention, each symbol commonly indicates a particular
usage. However, MATLAB does not enforce rules for the use of
any symbols. The appearance of the symbol that displays for a
given string is operating-system dependent.

Commonly Indicates Symbol String

Editing location in text 'ibeam'

Point on a graphics object 'crosshair'

Point anywhere in the figure 'arrow'

Busy system 'watch'

Resizing an object from
a top-left or bottom-right
corner

'topl' or 'botr'

Resizing an object from
a top-right or bottom-left
corner

'topr' or 'botl'

A hot spot 'circle'

A point 'cross'

Moving an object 'fleur'

Resizing an object from the
left or right

'left' or 'right'

Resizing an object from the
top or bottom

'top' or 'bottom'

Aligning a point with other
objects on the display

'fullcross'

Clickable icon 'hand'

Setting Pointer to custom allows you to define your own
pointer symbol. See the PointerShapeCData property for more
information.

1-2100

Figure Properties

PointerShapeCData
16-by-16 matrix

User-defined pointer. Defines the pointer used when you set the
Pointer property to custom. It is a 16-by-16 element matrix
defining the 16-by-16 pixel pointer using the following values:

• 1 — Color pixel black.

• 2 — Color pixel white.

• NaN — Make pixel transparent (underlying screen shows
through).

Element (1,1) of the PointerShapeCData matrix corresponds to
the upper-left corner of the pointer. Setting the Pointer property
to one of the predefined pointer symbols does not change the
value of the PointerShapeCData. Computer systems supporting
32-by-32 pixel pointers fill only one quarter of the available
pixmap.

PointerShapeHotSpot
two-element vector

Pointer active area. Specifies the row and column indices in the
PointerShapeCData matrix defining the pixel indicating the
pointer location. The location is contained in the CurrentPoint
property and the root object’s PointerLocation property. The
default value is element (1,1), which is the upper-left corner.

Position
four-element vector

Figure position. Specifies the size and location on the screen of the
figure window, not including title bar, menu bar, tool bars, and
outer edges. Specify the position rectangle with a four-element
vector of the form:

rect = [left, bottom, width, height]

1-2101

Figure Properties

where left and bottom define the distance from the lower-left
corner of the screen to the lower-left corner of the figure window.
width and height define the dimensions of the window. See
the Units property for information on the units used in this
specification. The left and bottom elements can be negative on
systems that have more than one monitor.

Position of Docked Figures

If the figure is docked in the MATLAB desktop or in a figure
window container, then the Position property is specified with
respect to the figure group container instead of the screen.

Moving and Resizing Figures

You can use the get function to obtain this property and
determine the position of the figure and you can use the set
function to resize and move the figure to a new location. You
cannot set the figure Position when it is docked.

Note On Windows systems, figure windows cannot be less than
104 pixels wide, regardless of the value of the Position property.

Also, the figure window includes the area to which MATLAB can
draw; it does not include the title bar, menu bar, tool bars, and
outer edges. To place the full window, use the OuterPosition
property.

Renderer
painters | zbuffer | OpenGL

Rendering method used for screen and printing. Selects the
method used to render MATLAB graphics. is the default. The
choices are:

1-2102

Figure Properties

• painters— The original rendering method used by MATLAB
is faster when the figure contains only simple or small graphics
objects.

If you set Renderer to painters on a Windows system, set
Colormap no longer than 256 rows.

• zbuffer — MATLAB draws graphics objects faster and more
accurately because it colors objects on a per-pixel basis and
MATLAB renders only those pixels that are visible in the scene
(thus eliminating front-to-back sorting errors). Note that this
method can consume a lot of system memory if MATLAB is
displaying a complex scene.

• OpenGL — OpenGL is a renderer that is available on many
computer systems. This renderer is generally faster than
painters or zbuffer and in some cases enables MATLAB to
access graphics hardware that is available on some systems.

Hardware vs. Software OpenGL Implementations

There are two kinds of OpenGL implementations — hardware
and software.

The hardware implementation uses special graphics hardware to
increase performance and is therefore significantly faster than
the software version. Many computers have this special hardware
available as an option or might come with this hardware right
out of the box.

Software implementations of OpenGL are much like the ZBuffer
renderer that is available on MATLAB Version 5.0 and later;
however, OpenGL generally provides superior performance to
ZBuffer.

OpenGL Availability

1-2103

Figure Properties

OpenGL is available on all computers that run MATLAB.
MATLAB automatically finds hardware-accelerated
versions of OpenGL if such versions are available. If the
hardware-accelerated version is not available, then MATLAB
uses the software version (except on Macintosh systems, which do
not support software OpenGL).

The following software versions are available:

• On UNIX systems, MATLAB uses the software version of
OpenGL that is included in the MATLAB distribution.

• On Windows, OpenGL is available as part of the operating
system. If you experience problems with OpenGL, contact your
graphics driver vendor to obtain the latest qualified version
of OpenGL.

• On Macintosh systems, software OpenGL is not available.

MATLAB issues a warning if it cannot find a usable OpenGL
library.

Selecting Hardware-Accelerated or Software OpenGL

MATLAB enables you to switch between hardware-accelerated
and software OpenGL. However, Windows and UNIX systems
behave differently:

• On Windows systems, you can toggle between software and
hardware versions any time during the MATLAB session.

• On UNIX systems, you must set the OpenGL version before
MATLAB initializes OpenGL. Therefore, you cannot issue the
opengl info command or create graphs before you call opengl
software. To reenable hardware accelerated OpenGL, you must
restart MATLAB.

• On Macintosh systems, software OpenGL is not available.

1-2104

Figure Properties

If you do not want to use hardware OpenGL, but do want to use
object transparency, you can issue the following command.

opengl software

This command forces MATLAB to use software OpenGL. Software
OpenGL is useful if your hardware-accelerated version of OpenGL
does not function correctly and you want to use image, patch, or
surface transparency, which requires the OpenGL renderer. To
reenable hardware OpenGL, use the command:

opengl hardware

on Windows systems or restart MATLAB on UNIX systems.

By default, MATLAB uses hardware-accelerated OpenGL.

See the opengl reference page for additional information

Determining the OpenGL Library Version

To determine the version and vendor of the OpenGL library that
MATLAB is using on your system, type the following command
at the MATLAB prompt:

opengl info

The returned information contains a line that indicates
if MATLAB is using software (Software = true) or
hardware-accelerated (Software = false) OpenGL.

This command also returns a string of extensions to the OpenGL
specification that are available with the particular library
MATLAB is using. Include this information if you report a bug.

Note that issuing the opengl info command causes MATLAB to
initialize OpenGL.

1-2105

Figure Properties

OpenGL vs. Other MATLAB Renderers

There are some differences between drawings created with
OpenGL and those created with other renderers. The OpenGL
specific differences include:

• OpenGL does not do colormap interpolation. If you create a
surface or patch using indexed color and interpolated face or
edge coloring, OpenGL interpolates the colors through the RGB
color cube instead of through the colormap.

• OpenGL does not support the phong value for the FaceLighting
and EdgeLighting properties of surfaces and patches.

• OpenGL does not support logarithmic-scale axes.

• OpenGL and Zbuffer renderers display objects sorted in front
to back order, as seen on the monitor, and lines always draw
in front of faces when at the same location on the plane of the
monitor. Painters sorts by child order (order specified).

XServer Connection Lost

When using Linux or Macintosh systems, MATLAB can crash
with a segmentation violation if the connection to the XServer
is broken. If this occurs, ensure that the system has the latest
XServer installed.

You can also try using software OpenGL and upgrade the OpenGL
driver on a Linux system.

Try these workarounds:

1 Upgrade you XServer to the latest version

2 Upgrade your OpenGL driver to the latest version

3 Switch to software OpenGL by entering this command:

opengl software

1-2106

Figure Properties

RendererMode
{auto} | manual

Automatic or user selection of renderer. Specifies whether
MATLAB should choose the Renderer based on the contents
of the figure window, or whether the Renderer should remain
unchanged.

When the RendererMode property is auto, MATLAB selects the
rendering method for printing as well as for screen display based
on the size and complexity of the graphics objects in the figure.

For printing, MATLAB switches to zbuffer at a greater scene
complexity than for screen rendering because printing from a
z-buffered figure can be considerably slower than one using the
painters rendering method, and can result in large PostScript®

files. However, the output does always match what is on the
screen. The same holds true for OpenGL: the output is the same
as that produced by the zbuffer renderer — a bitmap with a
resolution determined by the print command’s -r option.

Criteria for Autoselection of the OpenGL Renderer

When the RendererMode property is auto, MATLAB uses the
following criteria to determine whether to select the OpenGL
renderer:

If the opengl autoselection mode is autoselect, MATLAB selects
OpenGL if

• The host computer has OpenGL installed and is in True Color
mode (OpenGL does not fully support 8-bit color mode).

• The figure contains no logarithmic axes (OpenGL does not
support logarithmic axes).

• MATLAB would select zbuffer based on figure contents.

1-2107

Figure Properties

• Patch objects’ faces have no more than three vertices (some
OpenGL implementations of patch tessellation are unstable).

• The figure contains less than 10 uicontrols (OpenGL clipping
around uicontrols is slow).

• No line objects use markers (drawing markers is slow).

• You do not specify Phong lighting (OpenGL does not support
Phong lighting; if you specify Phong lighting, MATLAB uses
the ZBuffer renderer).

Or

• Figure objects use transparency (OpenGL is the only MATLAB
renderer that supports transparency).

When the RendererMode property is manual, MATLAB does not
change the Renderer, regardless of changes to the figure contents.

Resize
{on} | off

Window resize mode. Determines if you can resize the figure
window with the mouse. on means you can resize the window, off
means you cannot. When Resize is off, the figure window does
not display any resizing controls (such as boxes at the corners), to
indicate that it cannot be resized.

ResizeFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Window resize callback function. Executes whenever you resize
the figure window and when the figure is created. You can query
the figure’s Position property to determine the new size and
position of the figure. During execution of the callback routine, the
handle to the figure being resized is accessible only through the
root CallbackObject property, which you can query using gcbo.

1-2108

Figure Properties

You can use ResizeFcn to maintain a GUI layout that is not
directly supported by the MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object
at a constant height in pixels and attached to the top of the
figure, but always matches the width of the figure. The following
ResizeFcn accomplishes this; it keeps the uicontrol whose Tag is
'StatusBar' 20 pixels high, as wide as the figure, and attached to
the top of the figure. Note the use of the Tag property to retrieve
the uicontrol handle, and the gcbo function to retrieve the figure
handle. Also note the defensive programming regarding figure
Units, which the callback requires to be in pixels in order to work
correctly, but which the callback also restores to their previous
value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn
callback; however, the ResizeFcn is not called again as a result.

Note that the print command can cause the ResizeFcn to be
called if the PaperPositionMode property is manual and you have
defined a ResizeFcn function. If you do not want ResizeFcn
called by print, set the PaperPositionMode to auto.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Selected
on | off

1-2109

Figure Properties

Is object selected? This property indicates whether the figure is
selected. You can, for example, define the ButtonDownFcn to set
this property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Figures do not indicate selection.

SelectionType
{normal} | extend | alt | open

Mouse selection type. MATLAB maintains this property to provide
information about the last mouse button press that occurred
within the figure window. This information indicates the type
of selection made. Selection types are actions that MATLAB
generally associates with particular responses from the user
interface software (for example, single-clicking a graphics object
places it in move or resize mode; double-clicking a file name opens
it, etc.).

The physical action required to make these selections varies on
different platforms. However, all selection types exist on all
platforms.

Selection
Type

Microsoft Windows X-Windows

Normal Click left mouse
button.

Click left mouse
button.

Extend Shift - click left
mouse button or click
both left and right
mouse buttons.

Shift-click left mouse
button or click middle
mouse button.

1-2110

Figure Properties

Selection
Type

Microsoft Windows X-Windows

Alternate Control - click left
mouse button or click
right mouse button.

Control-click left
mouse button or click
right mouse button.

Open Double-click any
mouse button.

Double-click any
mouse button.

Note For uicontrols whose Enable property is on, a single
left-click, Ctrl-left click, or Shift-left click sets the figure
SelectionType property to normal. For a list box uicontrol
whose Enable property is on, the second click of a double-click
sets the figure SelectionType property to open. All clicks on
uicontrols whose Enable property is inactive or off and all
right-clicks on uicontrols whose Enable property is on set the
figure SelectionType property as specified in the preceding table.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, suppose you want to direct all graphics output from
a file to a particular figure, regardless of user actions that might
have changed the current figure. To do this, identify the figure
with a Tag.

figure('Tag','Plotting Figure')

1-2111

Figure Properties

Then make that figure the current figure before drawing by
searching for the Tag with findobj.

figure(findobj('Tag','Plotting Figure'))

Toolbar
none | {auto} | figure

Control display of figure toolbar. Control whether MATLAB
displays the default figure toolbar on figures. The possible values
are:

• none — Do not display the figure toolbar.

• auto— Display the figure toolbar, but remove it if a uicontrol
is added to the figure.

• figure — Display the figure toolbar.

Note that this property affects only the figure toolbar; it does not
affect other toolbars (for example, the Camera Toolbar or Plot
Edit Toolbar). Selecting Figure Toolbar from the figure View
menu sets this property to figure.

Changing the WindowStyle of a window to 'modal' hides both
its toolbar and menu bar, if they exist. Changing WindowStyle
from 'modal' to 'normal' or 'docked' displays any toolbar or
menu bar a figure has.

Type
string (read-only)

Object class. String that identifies the class of the graphics object.
Use this property to find all objects of a given type within a
plotting hierarchy. For figures, Type is always 'figure'.

UIContextMenu
handle of uicontextmenu object

1-2112

Figure Properties

Associate a context menu with the figure. Assign the handle of
a uicontextmenu object created in the figure to this property.
Use the uicontextmenu function to create the context menu.
MATLAB displays the context menu whenever you right-click
over the figure.

Units
inches | centimeters | normalized | points | {pixels}
| characters

Units of measurement. Specifies the units MATLAB uses to
interpret size and location data. All units are measured from the
lower-left corner of the window.

• normalized — Units map the lower-left corner of the figure
window to (0,0) and the upper-right corner to (1.0,1.0).

• inches, centimeters, and points — Absolute units. 1 point
= 1/72 inch.

• pixels— Size depends on screen resolution.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

This property affects the CurrentPoint and Position properties.
If you change the value of Units, it is good practice to return it to
its default value after completing your computation so as not to
affect other functions that assume Units is the default value.

When specifying the units as property/value pairs during object
creation, you must set the Units property before specifying the
properties that you want to use these units.

UserData
matrix

1-2113

Figure Properties

User-specified data. Data you want to associate with the figure
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

Visible
{on} | off

Object visibility. The Visible property determines whether an
object is displayed on the screen. If the Visible property of a
figure is off, the entire figure window is invisible.

A Note About Using the Window Button Properties

Your window button callback functions might need to update the display
by calling drawnow or pause, which causes MATLAB to process all
events in the queue. Processing the event queue can cause your window
button callback functions to be reentered. For example, a drawnow in
the WindowButtonDownFcn might result in the WindowButtonDownFcn
being called again before the first call has finished. You should design
your code to handle reentrancy and you should not depend on global
variables that might change state during reentrance.

You can use the Interruptible and BusyAction figure properties to
control how events interact.

WindowButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press a
mouse button while the pointer is in the figure window. See the
WindowButtonMotionFcn property for an example.

1-2114

Figure Properties

Note When using a two- or three-button mouse on Macintosh
systems, right-button and middle-button presses are not always
reported. This happens only when a new figure window appears
under the mouse cursor and the mouse is clicked without first
moving it. In this circumstance, for the WindowButtonDownFcn to
work, the user needs to do one of the following:

• Move the mouse after the figure is created, then click any
mouse button

• Press Shift or Ctrl while clicking the left mouse button to
perform the Extend and Alternate selection types

Pressing the left mouse button (or single mouse button) works
without having to take either of the above actions.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

WindowButtonMotionFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Mouse motion callback function. Executes whenever you
move the pointer within the figure window. Define the
WindowButtonMotionFcn as a function handle. The function must
define at least two input arguments (handle of figure associated
with key release and an event structure).

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Example Using All Window Button Properties

Click to view in editor — This example enables you to use mouse
motion to draw lines. It uses all three window button functions.

1-2115

Figure Properties

Click to run example — Click the left mouse button in the axes
and move the cursor, left-click to define the line end point,
right-click to end drawing mode.

Note On some computer systems, the WindowButtonMotionFcn
is executed when a figure is created even though there has been
no mouse motion within the figure.

WindowButtonUpFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button release callback function. Executes whenever you release
a mouse button. Define the WindowButtonUpFcn as a function
handle. The function must define at least two input arguments
(handle of figure associated with key release and an event
structure).

The button up event is associated with the figure window in which
the preceding button down event occurred. Therefore, the pointer
need not be in the figure window when you release the button to
generate the button up event.

If the callback routines defined by WindowButtonDownFcn or
WindowButtonMotionFcn contain drawnow commands or call other
functions that contain drawnow commands and the Interruptible
property is off, the WindowButtonUpFcn might not be called. You
can prevent this problem by setting Interruptible to on.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

WindowKeyPressFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

1-2116

Figure Properties

Key press callback function for the figure window. Executes
whenever a key press occurs. This is a callback function invoked
by a key press that occurs while either the figure window or any
of its children has focus. Define the WindowKeyPressFcn as a
function handle. The function must define at least two input
arguments (handle of figure associated with key release and an
event structure).

For information on the syntax of callback functions, see Function
Handle Callbacks.

When no callback is specified for this property (which is the
default state), MATLAB passes any key presses to the Command
Window. However, when you define a callback for this property,
the figure retains focus with each key press and executes the
specified callback with each key press.

1-2117

Figure Properties

WindowKeyPressFcn Event Structure

When you specify the callback as a function handle, MATLAB
passes to it a structure to containing the following fields.

Field Contents

Character The character displayed as a result of the
releasing the key(s), which can be empty or
unprintable

Key The key being released, identified by the
lowercase label on key or a descriptive string

Modifier A cell array containing the names of one or more
modifier keys being released (i.e., control, alt,
shift). On Macintosh computers, it contains
'command' when releasing the command
modifier key

For more information and examples of use, see the KeyPressFcn
property description.

WindowKeyReleaseFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Key release callback function for the figure window. Executes
whenever a key release occurs. This is a callback function invoked
by a key release that occurs while the figure window or any of
its children has focus. Define the WindowKeyReleaseFcn as a
function handle. The function must define at least two input
arguments (handle of the figure associated with key release and
an event structure).

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

1-2118

Figure Properties

WindowKeyReleaseFcn Event Structure

When you specify the callback as a function handle, MATLAB
passes to it a structure to containing the following fields.

Field Contents

Character The character displayed as a result of the
releasing the key(s), which can be empty or
unprintable

Key The key being released, identified by the
lowercase label on key or a descriptive string

Modifier A cell array containing the names of one or more
modifier keys being released (i.e., control, alt,
shift). On Macintosh computers, it contains
'command' when releasing the command
modifier key

For more information and examples of use, see the KeyReleaseFcn
property description.

WindowScrollWheelFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Respond to mouse scroll wheel. Executes when the mouse wheel
is scrolled while the figure has focus. MATLAB executes the
callback with each single mouse wheel click.

Note that it is possible for another object to capture the event
from MATLAB. For example, if the figure contains Java or
ActiveX control objects that are listening for mouse scroll wheel
events, then these objects can consume the events and prevent
the WindowScrollWheelFcn from executing.

There is no default callback defined for this property.

1-2119

Figure Properties

WindowScrollWheelFcn Event Structure

When the callback is a function handle, MATLAB passes a
structure to the callback function that contains the following
fields.

Field Contents

VerticalScrollCount A positive or negative integer that
indicates the number of scroll wheel
clicks. Positive values indicate clicks
of the wheel scrolled in the down
direction. Negative values indicate
clicks of the wheel scrolled in the up
direction.

VerticalScrollAmount The current system setting for the
number of lines that are scrolled for
each click of the scroll wheel. If the
mouse property setting for scrolling
is set to One screen at a time,
VerticalScrollAmount returns a
value of 1.

1-2120

Figure Properties

Effects on Other Properties

• CurrentObject property — Mouse scrolling does not update
this figure property.

• CurrentPoint property — If there is no callback defined for
the WindowScrollWheelFcn property, then MATLAB does
not update the CurrentPoint property as the scroll wheel
is turned. However, if there is a callback defined for the
WindowScrollWheelFcn property, then MATLAB updates the
CurrentPoint property just before executing the callback.
This enables you to determine the point at which the mouse
scrolling occurred.

• HitTest property — The WindowScrollWheelFcn callback
executes regardless of the setting of the figure HitTest
property.

• SelectionType property — The WindowScrollWheelFcn
callback has no effect on this property.

Values Returned by VerticalScrollCount

When a user moves the mouse scroll wheel by one click, MATLAB
increments the count by +/- 1, depending on the direction of the
scroll (scroll down being positive). When MATLAB calls the
WindowScrollWheelFcn callback, the counter is reset. In most
cases, this means that the absolute value of the returned value
is 1. However, if the WindowScrollWheelFcn callback takes a
long enough time to return and/or the user spins the scroll wheel
very fast, then the returned value can have an absolute value
greater than one.

The actual value returned by VerticalScrollCount is the
algebraic sum of all scroll wheel clicks that occurred since last
processed. This enables your callback to respond correctly to the
user’s action.

Example

1-2121

Figure Properties

Click to view in editor — This example creates a graph of a
function and enables you to use the mouse scroll wheel to change
the range over which a mathematical function is evaluated and
update the graph to reflect the new limits as you turn the scroll
wheel.

Click to run example — Mouse over the figure and scroll your
mouse wheel.

Related Information

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

WindowStyle
{normal} | modal | docked

Normal, modal, or dockable window behavior. When WindowStyle
is modal:

• The figure window traps all keyboard and mouse events over
all MATLAB windows as long as they are visible.

• Windows belonging to applications other than MATLAB are
unaffected.

• Modal figures remain stacked above all normal figures and the
MATLAB Command Window.

• When multiple modal windows exist, the most recently created
window keeps focus and stays above all other windows until it
becomes invisible, or is returned to WindowStyle normal , or
is deleted. At that time, focus reverts to the window that last
had focus.

Use modal figures to create dialog boxes that force the user
to respond without being able to interact with other windows.
Typing Ctrl+C while the figure has focus causes all figures with

1-2122

Figure Properties

WindowStyle modal to revert to WindowStyle normal, allowing
you to type at the command line.

Invisible Modal Figures

Figures with WindowStyle modal and Visible off do not behave
modally until they are made visible, so it is acceptable to hide a
modal window for later reuse instead of destroying it.

Stacking Order of Modal Figures

Creating a figure with WindowStyle modal stacks it on top of
all existing figure windows, making them inaccessible as long
as the top figure exists and remains modal. However, any new
figures created after a modal figure is displayed (for example,
plots created by a modal GUI) stack on top of it and are accessible;
they can be modal as well.

Changing Modes

You can change the WindowStyle of a figure at any time, including
when the figure is visible and contains children. However, on
some systems this might cause the figure to flash or disappear and
reappear, depending on the windowing system’s implementation
of normal and modal windows. For best visual results, you should
set WindowStyle at creation time or when the figure is invisible.

Window Decorations on Modal Figures

Modal figures do not display uimenu children, built-in menus,
or toolbars but it is not an error to create uimenus in a modal
figure or to change WindowStyle to modal on a figure with uimenu
children. The uimenu objects exist and their handles are retained
by the figure. If you reset the figure’s WindowStyle to normal, the
uimenus are displayed.

Docked WindowStyle

1-2123

Figure Properties

When WindowStyle is docked, the figure is docked in the desktop
or a document window. When you issue the following command:

set(figure_handle,'WindowStyle','docked')

MATLAB docks the figure identified by figure_handle and sets
the DockControls property to on, if it was off.

Note that if WindowStyle is docked, you cannot set the
DockControls property to off.

The value of the WindowStyle property is not changed by calling
reset on a figure.

WVisual
identifier string (Windows only)

Specify pixel format for figure. MATLAB automatically selects a
pixel format for figures based on your current display settings, the
graphics hardware available on your system, and the graphical
content of the figure.

Usually, MATLAB chooses the best pixel format to use in any
given situation. However, in cases where graphics objects are not
rendered correctly, you might be able to select a different pixel
format and improve results. See “Understanding the WVisual
String” for more information.

Querying Available Pixel Formats on Window Systems

You can determine what pixel formats are available on your
system for use with MATLAB using the following statement:

set(gcf,'WVisual')

MATLAB returns a list of the currently available pixel formats
for the current figure. For example, the following are the first
three entries from a typical list:

1-2124

Figure Properties

01 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
OpenGL, GDI, Window)

02 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
OpenGL, Double Buffered, Window)

03 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
OpenGL, Double Buffered, Window)

Use the number at the beginning of the string to specify which
pixel format to use. For example:

set(gcf,'WVisual','02')

specifies the second pixel format in the list above. Note that pixel
formats might differ on your system.

Understanding the WVisual String

The string returned by querying the WVisual property provides
information on the pixel format. For example:

• RGB 16 bits(05 06 05 00)— Indicates true color with 16-bit
resolution (5 bits for red, 6 bits for green, 5 bits for blue, and 0
for alpha (transparency). MATLAB requires true color.

• zdepth 24 — Indicates 24-bit resolution for sorting object’s
front to back position on the screen. Selecting pixel formats
with higher (24 or 32) zdepth might solve sorting problems.

• Hardware Accelerated — Some graphics functions might
be performed by hardware for increased speed. If there are
incompatibilities between your particular graphic hardware
and MATLAB, select a pixel format in which the term Generic
appears instead of Hardware Accelerated.

• Opengl— Supports OpenGL. See the preceding “Pixel Formats
and OpenGL” for more information.

• GDI— Supports for Windows 2-D graphics interface.

1-2125

Figure Properties

• Double Buffered — Support for double buffering with the
OpenGL renderer. Note that the figure DoubleBuffer property
applies only to the painters renderer.

• Bitmap— Support for rendering into a bitmap (as opposed to
drawing in the window).

• Window— Support for rendering into a window.

Pixel Formats and OpenGL

If you are experiencing problems using hardware OpenGL on your
system, you can try using generic OpenGL, which is implemented
in software. To do this, first instruct MATLAB to use the software
version of OpenGL with the following statement:

opengl software

Then allow MATLAB to select best pixel format to use.

See the Renderer property for more information on how MATLAB
uses OpenGL.

WVisualMode
{auto} | manual (Windows only)

Auto or manual selection of pixel format. WVisualMode can take
on two values — auto (the default) and manual. In auto mode,
MATLAB selects the best pixel format to use based on your
computer system and the graphical content of the figure. In
manual mode, MATLAB does not change the visual from the one
currently in use. Setting the WVisual property sets this property
to manual.

XDisplay
display identifier (UNIX only)

Contains the display used for MATLAB. You can query this
property to determine the name of the display that MATLAB is

1-2126

Figure Properties

using. For example, if MATLAB is running on a system called
mycomputer, querying XDisplay returns a string of the following
form:

get(gcf,'XDisplay')
ans
mycomputer:0.0

Setting XDisplay on Motif

If your computer uses Motif-based figures, you can specify the
display MATLAB uses for a figure by setting the value of the
figure’s XDisplay property. For example, to display the current
figure on a system called fred, use the command:

set(gcf,'XDisplay','fred:0.0')

XVisual
visual identifier (UNIX only)

Select visual used by MATLAB. You can select the visual used by
MATLAB by setting the XVisual property to the desired visual
ID. This can be useful if you want to test your application on an
8-bit or grayscale visual. To see what visuals are available on your
system, use the UNIX xdpyinfo command. From MATLAB, type:

!xdpyinfo

The information returned contains a line specifying the visual
ID. For example:

visual id: 0x23

To use this visual with the current figure, set the XVisual
property to the ID.

set(gcf,'XVisual','0x23')

1-2127

Figure Properties

To see which of the available visuals MATLAB can use, call set
on the XVisual property:

set(gcf,'XVisual')

The following typical output shows the visual being used (in curly
braces) and other possible visuals. Note that MATLAB requires a
TrueColor visual.

{ 0x23 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff) }

0x24 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x25 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x26 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x27 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x28 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x29 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x2a (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

You can also use the glxinfo UNIX command to see what visuals
are available for use with the OpenGL renderer. From MATLAB,
type:

!glxinfo

After providing information about the implementation of OpenGL
on your system, glxinfo returns a table of visuals. The partial
listing below shows typical output:

visual x bf lv rg d st colorbuffer ax dp st accumbuffer ms cav

id dep cl sp sz l ci b ro r g b a bf th cl r g b a ns b eat

-

0x23 24 tc 0 24 0 r y . 8 8 8 8 0 0 0 0 0 0 0 0 0 None

0x24 24 tc 0 24 0 r . . 8 8 8 8 0 0 0 0 0 0 0 0 0 None

0x25 24 tc 0 24 0 r y . 8 8 8 8 0 24 8 0 0 0 0 0 0 None

0x26 24 tc 0 24 0 r . . 8 8 8 8 0 24 8 0 0 0 0 0 0 None

0x27 24 tc 0 24 0 r y . 8 8 8 8 0 0 0 16 16 16 0 0 0 Slow

1-2128

Figure Properties

The third column is the class of visual. tc means a true color
visual. Note that some visuals might be labeled Slow under the
caveat column. Such visuals should be avoided.

To determine which visual MATLAB will use by default with the
OpenGL renderer, use the MATLAB opengl info command. The
returned entry for the visual might look like the following:

Visual = 0x23 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

Experimenting with a different TrueColor visual might improve
certain rendering problems.

XVisualMode
{auto} | manual (UNIX only)

Auto or manual selection of visual. XVisualMode can take on
two values — auto (the default) and manual. In auto mode,
MATLAB selects the best visual to use based on the number of
colors, availability of the OpenGL extension, etc. In manual mode,
MATLAB does not change the visual from the one currently in
use. Setting the XVisual property sets this property to manual.

See Also figure

1-2129

figurepalette

Purpose Show or hide Figure Palette

Syntax figurepalette('show')
figurepalette('hide')
figurepalette
figurepalette(figure_handle,...)

Description figurepalette('show') displays the palette on the current figure.

figurepalette('hide') hides the palette on the current figure.

figurepalette toggles the visibility of the palette on the current
figure. You can also use figurepalette('toggle') instead for the
same functionality.

figurepalette(figure_handle,...) shows or hides the palette on the
figure specified by figure_handle.

Tips If you call figurepalette in a MATLAB program and subsequent lines
depend on the Figure Palette being fully initialized, follow it by drawnow
to ensure complete initialization.

Alternatives To collectively enable Plotting Tools, use the large Plotting Tool icon

on the figure toolbar. To collectively disable the Plotting Tools,

1-2130

figurepalette

use the smaller icon . Open or close the Figure Palette tool from
the figure’s View menu.

See Also plottools | plotbrowser | propertyeditor

1-2131

fileattrib

Purpose Set or get attributes of file or folder

Syntax fileattrib
fileattrib(name)

fileattrib(name,attribs)
fileattrib(name,attribs,users)
fileattrib(name,attribs,users,'s')

[status,message,messageid] = fileattrib(name,attribs, ___)
[status,message] = fileattrib(name)

Description fileattrib gets attribute values for the current folder, using the
following structure, where Name is always a string containing the
current folder name. For the other fields, a value of 0 indicates that the
attribute is off, 1 indicates that the attribute is on, and NaN indicates
that the attribute does not apply:

Name
archive
system
hidden
directory
UserRead
UserWrite
UserExecute
GroupRead
GroupWrite
GroupExecute
OtherRead

fileattrib(name) gets the attribute values for the named file or folder.

1-2132

fileattrib

fileattrib(name,attribs) sets the specified attributes for the named
file or folder.

fileattrib(name,attribs,users) sets the file or folder attributes
for the specified subset of users.

fileattrib(name,attribs,users,'s') sets the specified attributes
for the specified users for the contents of the named folder.

[status,message,messageid] = fileattrib(name,attribs, ___)
sets the specified file attributes and gets the function status:

• If status is 0, then message is the error message, and messageid
is the error message identifier.

• If status is 1, then message is a structure containing the attributes
of the named file or folder, and messageid is an empty string.

[status,message] = fileattrib(name) gets status and the last
successfully set attribute structure values for the named file or folder
and returns the structure to message. (status is always 1.)

Input
Arguments

name - File or folder name
string

The absolute or relative path for a folder or file, specified as a string. To
specify all names beginning with certain characters, add the wildcard
character, *.

Example: fileattrib('myfile.m')

attribs - File or folder attribute values
'a' | 'h' | 's' | 'w' | 'x'

File or folder attribute values, specified as a space delimited string. Use
the plus (+) qualifier before an attribute to set it, and the minus (-)
qualifier before an attribute to clear it.

1-2133

fileattrib

attribvalue Description

'a' Archive (Microsoft Windows platform only).

'h' Hidden file (Windows platform only).

's' System file (Windows platform only).

'w' Write access (Windows and UNIX platforms). Results
differ by platform and application. For example, even
though fileattrib disables the “write” privilege for a
folder, making it read only, files in the folder could be
writable for some platforms or applications.

'x' Executable (UNIX platform only).

Example: fileattrib('myfile.m', '+w -h')

users - Subset of users
'a' | 'g' | 'o' | 'u' | ''

Subset of users (on UNIX platforms only), specified as a string. For all
platforms other than UNIX, specify the users argument as an empty
string, ''. This value is not returned by fileattrib get operations.

Value
for UNIX
Users Description

'a' All users on UNIX platforms

'g' Group of users

'o' All other users

'u' Current user

Example: fileattrib('D:/work/results','-w','a')

Output
Arguments

status - Indication of whether attempt to set attribute was
successful
0 | 1

1-2134

fileattrib

If attempt to set attribute was unsuccessful, status is 0. Otherwise,
status is 1.

message - Attribute structure or error message
string | structure array

Attribute structure or error message, depending on whether you are
setting or getting attributes and status.

Getting or Setting
Attributes

Status Message contents

Setting 0 Error message

Setting 1 Empty string

Getting 1 Structure containing
file attributes and
values

When you are getting file attributes, the structure contains these fields
and possible values.

Field name Possible Values

Name String containing name of file or
folder

archive 0 (not set), 1 (set), or NaN (not
applicable)

system 0, 1, or NaN

hidden 0, 1, or NaN

directory 0, 1, or NaN

UserRead 0, 1, or NaN

UserWrite 0, 1, or NaN

UserExecute 0, 1, or NaN

GroupRead 0, 1, or NaN

1-2135

fileattrib

Field name Possible Values

GroupWrite 0, 1, or NaN

GroupExecute 0, 1, or NaN

OtherRead 0, 1, or NaN

OtherWrite 0, 1, or NaN

OtherExecute 0, 1, or NaN

messageid - Error message identifier
string

Error message identifier when the attempt to set attribute is
unsuccessful (status is 0), returned as a string. If status is 1, then
messageid is an empty string.

Tips • fileattrib is like the DOS attrib command, or the UNIX chmod
command. 2

Examples View Current Folder Attributes

View attributes of the current folder, assuming the current folder is
C:\my_MATLAB_files.

fileattrib

ans =

Name: 'C:\my_MATLAB_files'
archive: 0
system: 0
hidden: 0

directory: 1
UserRead: 1

2. UNIX is a registered trademark of The Open Group in the United States and other
countries.

1-2136

fileattrib

UserWrite: 1
UserExecute: 1

GroupRead: NaN
GroupWrite: NaN

GroupExecute: NaN
OtherRead: NaN

OtherWrite: NaN
OtherExecute: NaN

The attributes indicate that you have read, write, and execute
permissions for the current folder.

View File Attributes

View attributes of file collatz.m.

fileattrib('collatz.m')

ans =

Name: 'C:\my_MATLAB_files\collatz.m'
archive: 1
system: 0
hidden: 0

directory: 0
UserRead: 1

UserWrite: 0
UserExecute: 1

GroupRead: NaN
GroupWrite: NaN

GroupExecute: NaN
OtherRead: NaN

OtherWrite: NaN
OtherExecute: NaN

The attributes indicate that the specfieid item is a file. You can read
and execute the file, but cannot update it. The file is archived.

1-2137

fileattrib

View Folder Attributes on a Windows System

View attributes for the folder C:\my_MATLAB_files\doc.

fileattrib('C:\my_MATLAB_files\doc')

ans =

Name: 'C:\my_MATLAB_files\doc'
archive: 0
system: 0
hidden: 0

directory: 1
UserRead: 1

UserWrite: 1
UserExecute: 1

GroupRead: NaN
GroupWrite: NaN

GroupExecute: NaN
OtherRead: NaN

OtherWrite: NaN
OtherExecute: NaN

The attributes indicate that you have read, write, and execute
permissions for the specified folder.

View Folder Attributes on a UNIX System

View attributes for the folder /public on a UNIX system.

fileattrib('/public')

ans =

Name: '/public'
archive: NaN
system: NaN
hidden: NaN

directory: 1

1-2138

fileattrib

UserRead: 1
UserWrite: 1

UserExecute: 1
GroupRead: 1

GroupWrite: 0
GroupExecute: 1

OtherRead: 1
OtherWrite: 0

OtherExecute: 1

The attributes indicate that you have read, write, and execute
permissions for the specfied folder. In addition, users in your UNIX
group and all others have read and execute permissions for the specified
folder, but not write permissions.

Set File Attributes

Make myfile.m writeable.

fileattrib('myfile.m','+w')

Set File Attributes for Specific Users on UNIX

Make the folder /home/work/results a read-only folder for all users
on UNIX platforms.

fileattrib('/home/work/results','-w','a')

The minus (-) preceding the write attribute, w, removes the write status.

Set Attributes for Folder and Its Contents

On Windows platforms, make the folder D:\work\results and all its
contents read only and hidden.

fileattrib('D:\work\results','+h -w','','s')

Because a value for the users argument is not applicable on Windows
systems, the argument is an empty string. The s argument applies the
hidden and read-only attributes to the contents of the folder.

1-2139

fileattrib

Get Attributes Structure for a Folder

Get the attributes for the folder results and return them to a structure:

[stat,struc]=fileattrib('results')

stat =
1

struc =
Name: 'D:\work\results'

archive: 0
system: 0
hidden: 0

directory: 1
UserRead: 1

UserWrite: 1
UserExecute: 1

GroupRead: NaN
GroupWrite: NaN

GroupExecute: NaN
OtherRead: NaN

OtherWrite: NaN
OtherExecute: NaN

The operation is successful as indicated by the status, stat, value of 1.
The structure, struc, contains the file attributes.

Access the name attribute value in the structure. MATLAB returns
the path for results.

struc.Name

ans =
D:\work\results

1-2140

fileattrib

Get Attributes Structure for Multiple Files

Get the attributes for all files in the current folder with names that
begin with new.

[stat,struc]=fileattrib('new*')

stat =
1

mess =
1x3 struct array with fields:

Name
archive
system
hidden
directory
UserRead
UserWrite
UserExecute
GroupRead
GroupWrite
GroupExecute
OtherRead
OtherWrite
OtherExecute

The results indicate there are three matching files.

View the file names.

struc.Name

ans =
D:\work\results\newname.m

ans =
D:\work\results\newone.m

1-2141

fileattrib

ans =
D:\work\results\newtest.m

View just the second file name.

struct(2).Name

ans =
D:\work\results\newname.m

Successfully Set Attributes for a File and Get Messages

Show output that results when an attempt to set file attributes is
successful.

[status,message,messageid] = fileattrib('C:/my_MATLAB_files\doc',...
'+h -w','','s')

status =

1

message =

''

messageid =

''

The status value of 1 indicates the set operation was successful;
therefore, no error message or messageid is returned.

1-2142

fileattrib

Unsuccessfully Set Attributes for a File and Get Messages

Show output that results when an attempt to set file attributes is
unsuccessful.

[status,message,messageid] = fileattrib('C:/my_MATLAB_files\doc',...
'+h w-','','s')

status =

0

message =

Illegal file mode characters on the current platform.

messageid =

MATLAB:FILEATTRIB:ModeSyntaxError

The status value of 0 indicates the set operation was unsuccessful. The
minus sign incorrectly appears after w, instead of before it.

See Also cd | copyfile | delete | dir | ls | mkdir | movefile | rmdir

1-2143

filebrowser

Purpose Open Current Folder browser, or select it if already open

Syntax filebrowser

Description filebrowser opens the Current Folder browser, or if it is already open,
makes it the selected tool.

See Also cd | copyfile | fileattrib | ls | mkdir | movefile | pwd | rmdir

How To • “Manage Files and Folders”

1-2144

filemarker

Purpose Character to separate file name and internal function name

Syntax M = filemarker

Description M = filemarker returns the character that separates a file and a
within-file function name.

Examples On the Microsoft Windows platform, for example, filemarker returns
the ’>’ character:

filemarker

ans =
>

You can use the following command on any platform to get the help text
for the local function pdeodes defined in pdepe.m:

helptext = help(['imwrite' filemarker 'validateSizes'])

helptext =
How many bytes does each element occupy in memory?

You can use the filemarker character to indicate a location within a
MATLAB program file where you want to set a breakpoint, for example.
On all platforms, if you need to distinguish between two nested
functions with the same name, use the forward slash (/) character to
indicate the path to a particular instance of a function.

For instance, suppose myfile.m contains the following code:

function x = A(p1, p2)
...

function y = B(p3)
...

end
function m = C(p4)

...

1-2145

filemarker

end
end

function z = C(p5)
...

function y = D(p6)
...

end
end

To indicate that you want to set a breakpoint at function y nested
within function x, use the following command on the Windows
platform:

dbstop myfile>x/y

To indicate that you want to set a breakpoint at function m nested
within function x use the following command on the Windows
platform:

dbstop myfile>m

In the first case, you specify x/y because myfile.m contains two nested
functions named y. In the second case, there is no need to specify x/m
because there is only one function m within myfile.m.

See Also filesep

1-2146

fileparts

Purpose Parts of file name and path

Note The fourth output argument of fileparts (file version) is no
longer supported and has been removed. Calling the function with more
than three output arguments generates an error.

Syntax [pathstr,name,ext] = fileparts(filename)

Description [pathstr,name,ext] = fileparts(filename) returns the path
name, file name, and extension for the specified file. The file does
not have to exist. filename is a string enclosed in single quotes. The
returned ext field contains a dot (.) before the file extension.

Tips • fileparts only parses file names. It does not verify that a file or
a folder exists.

• You can reconstruct the file from the parts using:

fullfile(pathstr,[name ext])

• On Microsoft Windows systems, you can use either forward (/) or
back (\) slashes as path delimiters, even within the same string. On
UNIX and Macintosh systems, use only / as a delimiter. You can use
the filesep function to insert the correct separator character for the
platform on which your code executes:

sep = filesep;
file = ['H:' sep 'user4' sep 'matlab' sep 'myfile.txt'];

file =
H:\user4\matlab\myfile.txt

• If the input consists of a folder name only, be sure that the right-most
character is a delimiter (/ or \). Otherwise, fileparts parses the
trailing portion of filename as the name of a file and returns it in
name instead of in pathstr.

1-2147

fileparts

Input
Arguments

filename

String containing a name of a file or folder, which can include a path
and file extension. The function interprets all characters following the
right-most delimiter as a file name plus extension.

Output
Arguments

pathstr

String containing the part of filename interpreted as a path name

name

String containing the name of the file without any extension

ext

String containing the file extension only, beginning with a period (.)

Definitions Path Name

The full or partial path to a destination folder location, always the
initial portion of the filename string. Path names end with a slash
character and, where appropriate, can begin with a drive letter.
Windows paths use backward slashes (\). UNIX and Macintosh paths
use forward slashes (/).

Examples Return the pieces of a file specification string to the separate string
outputs pathstr, name, and ext. The full file specification is:

file = 'H:\user4\matlab\myfile.txt';
[pathstr,name,ext] = fileparts(file)

pathstr =
H:\user4\matlab

name =
myfile

ext =

1-2148

fileparts

.txt

Query parts of a user .cshrc file:

[pathstr,name,ext] = fileparts('/home/jsmith/.cshrc')

pathstr =
/home/jsmith

name =
Empty string: 1-by-0

ext =
.cshrc

fileparts interprets the entire file name as an extension because it
begins with a period.

Alternatives Use uigetfile to interactively select and return a file name and path,
or uigetdir to interactively select and return a path name. If you call
fileparts with the output of uigetfile, you can parse out the file
name and extension.

See Also filesep | fullfile | pathsep | uigetdir | uigetfile

Tutorials • “Specify File Names”

1-2149

fileread

Purpose Read contents of file into string

Syntax text = fileread(filename)

Description text = fileread(filename) returns the contents of the file filename
as a MATLAB string.

Examples Read and search the file Contents.m in the MATLAB iofun directory
for the reference to fileread:

% find the correct directory and file
io_contents = ...

fullfile(matlabroot,'toolbox','matlab','iofun','Contents.m');

% read the file
filetext = fileread(io_contents);

% search for the line of code that includes 'fileread'
% each line is separated by a newline ('\n')

expr = '[^\n]*fileread[^\n]*';
fileread_info = regexp(filetext,expr,'match');

See Also fgetl | fgets | fscanf | fread | importdata | textscan | type

1-2150

filesep

Purpose File separator for current platform

Syntax f = filesep

Description f = filesep returns the platform-specific file separator character.
The file separator is the character that separates individual folder and
file names in a path string.

Examples Create a path to the iofun folder on a Microsoft Windows platform:

iofun_dir = ['toolbox' filesep 'matlab' filesep 'iofun']

iofun_dir =
toolbox\matlab\iofun

1-2151

filesep

Create a path to iofun on a UNIX3 platform.

iodir = ['toolbox' filesep 'matlab' filesep 'iofun']

iodir =
toolbox/matlab/iofun

See Also fullfile | fileparts | pathsep

3. UNIX is a registered trademark of The Open Group in the United States and other
countries.

1-2152

fill

Purpose Filled 2-D polygons

Syntax fill(X,Y,C)
fill(X,Y,ColorSpec)
fill(X1,Y1,C1,X2,Y2,C2,...)
fill(...,'PropertyName',PropertyValue)
h = fill(...)

Description The fill function creates colored polygons.

fill(X,Y,C) creates filled polygons from the data in X and Y with
vertex color specified by C. C is a vector or matrix used as an index into
the colormap. If C is a row vector, length(C)must equal size(X,2) and
size(Y,2); if C is a column vector, length(C) must equal size(X,1)
and size(Y,1). If necessary, fill closes the polygon by connecting
the last vertex to the first.

fill(X,Y,ColorSpec) fills two-dimensional polygons specified by X
and Y with the color specified by ColorSpec.

fill(X1,Y1,C1,X2,Y2,C2,...) specifies multiple two-dimensional
filled areas.

fill(...,'PropertyName',PropertyValue) allows you to specify
property names and values for a patch graphics object.

h = fill(...) returns a vector of handles to patch graphics objects,
one handle per patch object.

Tips If X or Y is a matrix, and the other is a column vector with the same
number of elements as rows in the matrix, fill replicates the column
vector argument to produce a matrix of the required size. fill forms a
vertex from corresponding elements in X and Y and creates one polygon
from the data in each column.

1-2153

fill

The type of color shading depends on how you specify color in the
argument list. If you specify color using ColorSpec, fill generates
flat-shaded polygons by setting the patch object’s FaceColor property
to the corresponding RGB triple.

If you specify color using C, fill scales the elements of C by the values
specified by the axes property CLim. After scaling C, C indexes the
current colormap.

If C is a row vector, fill generates flat-shaded polygons where each
element determines the color of the polygon defined by the respective
column of the X and Y matrices. Each patch object’s FaceColor property
is set to 'flat'. Each row element becomes the CData property value
for the nth patch object, where n is the corresponding column in X or Y.

If C is a column vector or a matrix, fill uses a linear interpolation
of the vertex colors to generate polygons with interpolated colors. It
sets the patch graphics object FaceColor property to 'interp' and
the elements in one column become the CData property value for the
respective patch object. If C is a column vector, fill replicates the
column vector to produce the required sized matrix.

Examples Create Red Octagon

Define the data.

t = (1/16:1/8:1)'*2*pi;
x = sin(t);
y = cos(t);

Create a red octagon using the fill function.

fill(x,y,'r')
axis square

1-2154

fill

See Also axis | caxis | colormap | ColorSpec | fill3 | patch

1-2155

fill3

Purpose Filled 3-D polygons

Syntax fill3(X,Y,Z,C)
fill3(X,Y,Z,ColorSpec)
fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...)
fill3(...,'PropertyName',PropertyValue)
h = fill3(...)

Description The fill3 function creates flat-shaded and Gouraud-shaded polygons.

fill3(X,Y,Z,C) fills three-dimensional polygons. X, Y, and Z triplets
specify the polygon vertices. If X, Y, or Z is a matrix, fill3 creates n
polygons, where n is the number of columns in the matrix. fill3 closes
the polygons by connecting the last vertex to the first when necessary.

C specifies color, where C is a vector or matrix of indices into the current
colormap. If C is a row vector, length(C) must equal size(X,2) and
size(Y,2); if C is a column vector, length(C) must equal size(X,1)
and size(Y,1).

fill3(X,Y,Z,ColorSpec) fills three-dimensional polygons defined by
X, Y, and Z with color specified by ColorSpec.

fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...) specifies multiple filled
three-dimensional areas.

fill3(...,'PropertyName',PropertyValue) allows you to set values
for specific patch properties.

h = fill3(...) returns a vector of handles to patch graphics objects,
one handle per patch.

Algorithms If X, Y, and Z are matrices of the same size, fill3 forms a vertex from
the corresponding elements of X, Y, and Z (all from the same matrix
location), and creates one polygon from the data in each column.

1-2156

fill3

If X, Y, or Z is a matrix, fill3 replicates any column vector argument to
produce matrices of the required size.

If you specify color using ColorSpec, fill3 generates flat-shaded
polygons and sets the patch object FaceColor property to an RGB triple.

If you specify color using C, fill3 scales the elements of C by the axes
property CLim, which specifies the color axis scaling parameters, before
indexing the current colormap.

If C is a row vector, fill3 generates flat-shaded polygons and sets
the FaceColor property of the patch objects to 'flat'. Each element
becomes the CData property value for the respective patch object.

If C is a column vector or a matrix, fill3 generates polygons with
interpolated colors and sets the patch object FaceColor property to
'interp'. fill3 uses a linear interpolation of the vertex colormap
indices when generating polygons with interpolated colors. The
elements in one column become the CData property value for the
respective patch object. If C is a column vector, fill3 replicates the
column vector to produce the required sized matrix.

Examples Create four triangles with interpolated colors.

X = [0 1 1 2;1 1 2 2;0 0 1 1];
Y = [1 1 1 1;1 0 1 0;0 0 0 0];
Z = [1 1 1 1;1 0 1 0;0 0 0 0];
C = [0.5000 1.0000 1.0000 0.5000;

1.0000 0.5000 0.5000 0.1667;
0.3330 0.3330 0.5000 0.5000];

fill3(X,Y,Z,C)

1-2157

fill3

See Also axis | caxis | colormap | ColorSpec | fill | patch

1-2158

filter

Purpose 1-D digital filter

Syntax y = filter(b,a,X)
[y,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)
y = filter(b,a,X,zi,dim)
[...] = filter(b,a,X,[],dim)

Description The filter function filters a data sequence using a digital filter which
works for both real and complex inputs. The filter is a direct form II
transposed implementation of the standard difference equation (see
“Algorithm”).

y = filter(b,a,X) filters the data in vector X with the filter described
by numerator coefficient vector b and denominator coefficient vector a.
If a(1) is not equal to 1, filter normalizes the filter coefficients by
a(1). If a(1) equals 0, filter returns an error.

If X is a matrix, filter operates on the columns of X. If X is a
multidimensional array, filter operates on the first nonsingleton
dimension.

[y,zf] = filter(b,a,X) returns the final conditions, zf, of the filter
delays. If X is a row or column vector, output zf is a column vector of
max(length(a),length(b))-1. If X is a matrix, zf is an array of such
vectors, one for each column of X, and similarly for multidimensional
arrays.

[y,zf] = filter(b,a,X,zi) accepts initial conditions, zi, and returns
the final conditions, zf, of the filter delays. Input zi is a vector of
length max(length(a),length(b))-1, or an array with the leading
dimension of size max(length(a),length(b))-1 and with remaining
dimensions matching those of X.

y = filter(b,a,X,zi,dim) and [...] = filter(b,a,X,[],dim)
operate across the dimension dim.

1-2159

filter

Examples You can use filter to find a running average without using a for loop.
This example finds the running average of a 16-element vector, using
a window size of 5.

data = [1:0.2:4]';
windowSize = 5;
filter(ones(1,windowSize)/windowSize,1,data)

ans =
0.2000
0.4400
0.7200
1.0400
1.4000
1.6000
1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
3.2000
3.4000
3.6000

Algorithms The filter function is implemented as a direct form II transposed
structure,

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

where n-1 is the filter order, which handles both FIR and IIR filters [1],
na is the feedback filter order, and nb is the feedforward filter order.
Due to normalization, assume a(1) = 1.

or

1-2160

filter

The operation of filter at sample m is given by the time domain
difference equations

y m b x m z m

z m b x m z m a y m

() () () ()

() () () () () ()

1 1

2 1 2
1

1 2

z m b n x m z m a nn n2 11 1 1() () () () ()yy m

z m b n x m a n y mn

()

() () () () () 1

The input-output description of this filtering operation in the
z-transform domain is a rational transfer function,

Y z
b b z b nb z

a z a na z

nb

na
()

() () ... ()

() ... ()

1 2 1

1 2 1

1

1
XX z()

• If you have the Signal Processing Toolbox™, you can design a filter,
d, using designfilt. Then you can use Y = filter(d,X) to filter
your data.

References [1] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 311-312.

See Also filter2 | filtfilt | filtic | designfilt

1-2161

filter2

Purpose 2-D digital filter

Syntax Y = filter2(h,X)
Y = filter2(h,X,shape)

Description Y = filter2(h,X) filters the data in X with the two-dimensional FIR
filter in the matrix h. It computes the result, Y, using two-dimensional
correlation, and returns the central part of the correlation that is the
same size as X.

Y = filter2(h,X,shape) returns the part of Y specified by the shape
parameter. shape is a string with one of these values:

’full’ Returns the full two-dimensional correlation. In this case, Y
is larger than X.

’same’ (default) Returns the central part of the correlation. In this
case, Y is the same size as X.

’valid’ Returns only those parts of the correlation that are computed
without zero-padded edges. In this case, Y is smaller than X.

Tips Two-dimensional correlation is equivalent to two-dimensional
convolution with the filter matrix rotated 180 degrees. See the
Algorithm section for more information about how filter2 performs
linear filtering.

Algorithms Given a matrix X and a two-dimensional FIR filter h, filter2 rotates
your filter matrix 180 degrees to create a convolution kernel. It then
calls conv2, the two-dimensional convolution function, to implement the
filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of
the FIR filter with the input matrix. By default, filter2 then extracts
the central part of the convolution that is the same size as the input

1-2162

filter2

matrix, and returns this as the result. If the shape parameter specifies
an alternate part of the convolution for the result, filter2 returns
the appropriate part.

See Also conv2 | filter

1-2163

find

Purpose Find indices and values of nonzero elements

Syntax ind = find(X)
ind = find(X, k)
ind = find(X, k, 'first')
ind = find(X, k, 'last')
[row,col] = find(X, ...)
[row,col,v] = find(X, ...)

Description ind = find(X) locates all nonzero elements of array X, and returns the
linear indices of those elements in vector ind. If X is a row vector, then
ind is a row vector; otherwise, ind is a column vector. If X contains no
nonzero elements or is an empty array, then ind is an empty array.

ind = find(X, k) or ind = find(X, k, 'first') returns at most
the first k indices corresponding to the nonzero entries of X. k must be a
positive integer, but it can be of any numeric data type.

ind = find(X, k, 'last') returns at most the last k indices
corresponding to the nonzero entries of X.

[row,col] = find(X, ...) returns the row and column indices of the
nonzero entries in the matrix X. This syntax is especially useful when
working with sparse matrices. If X is an N-dimensional array with N
> 2, col contains linear indices for the columns. For example, for a
5-by-7-by-3 array X with a nonzero element at X(4,2,3), find returns
4 in row and 16 in col. That is, (7 columns in page 1) + (7 columns in
page 2) + (2 columns in page 3) = 16.

[row,col,v] = find(X, ...) returns a column or row vector v of the
nonzero entries in X, as well as row and column indices. If X is a logical
expression, then v is a logical array. Output v contains the non-zero
elements of the logical array obtained by evaluating the expression
X. For example,

A= magic(4)
A =

16 2 3 13
5 11 10 8

1-2164

find

9 7 6 12
4 14 15 1

[r,c,v]= find(A>10);

r', c', v'
ans =

1 2 4 4 1 3
ans =

1 2 2 3 4 4
ans =

1 1 1 1 1 1

Here the returned vector v is a logical array that contains the nonzero
elements of N where

N=(A>10)

Examples Example 1

X = [1 0 4 -3 0 0 0 8 6];
indices = find(X)

returns linear indices for the nonzero entries of X.

indices =
1 3 4 8 9

Example 2

You can use a logical expression to define X. For example,

find(X > 2)

returns linear indices corresponding to the entries of X that are greater
than 2.

ans =
3 8 9

1-2165

find

Example 3

The following find command

X = [3 2 0; -5 0 7; 0 0 1];
[r,c,v] = find(X)

returns a vector of row indices of the nonzero entries of X

r =
1
2
1
2
3

a vector of column indices of the nonzero entries of X

c =
1
1
2
3
3

and a vector containing the nonzero entries of X.

v =
3

-5
2
7
1

Example 4

The expression

X = [3 2 0; -5 0 7; 0 0 1];
[r,c,v] = find(X>2)

1-2166

find

returns a vector of row indices of the nonzero entries of N where N=(X>2)

r =
1
2

a vector of column indices of the nonzero entries of N where N=(X>2)

c =
1
3

and a logical array that contains the nonzero elements of N where
N=(X>2).

v =
1
1

Recall that when you use find on a logical expression, the output vector
v does not contain the nonzero entries of the input array. Instead,
it contains the nonzero values returned after evaluating the logical
expression.

Example 5

Some operations on a vector

x = [11 0 33 0 55]';

find(x)
ans =

1
3
5

find(x == 0)
ans =

2

1-2167

find

4

find(0 < x & x < 10*pi)
ans =

1

Example 6

For the matrix

M = magic(3)
M =

8 1 6
3 5 7
4 9 2

find(M > 3, 4)

returns the indices of the first four entries of M that are greater than 3.

ans =
1
3
5
6

Example 7

If X is a vector of all zeros, find(X) returns an empty matrix. For
example,

indices = find([0;0;0])
indices =

Empty matrix: 0-by-1

See Also nonzeros | sparse | colon | ind2sub

Concepts • “Find Array Elements That Meet a Condition”

1-2168

findall

Purpose Find all graphics objects

Syntax object_handles = findall(handle_list)
object_handles = findall(handle_list,'property','value',...)

Description object_handles = findall(handle_list) returns the handles,
including hidden handles, of all objects in the hierarchy under the
objects identified in handle_list.

object_handles =
findall(handle_list,'property','value',...) returns
the handles of all objects in the hierarchy under the objects
identified in handle_list that have the specified properties set to
the specified values.

Tips findall is similar to findobj, except that it finds objects even if their
HandleVisibility is set to off.

Examples plot(1:10)
xlabel xlab
a = findall(gcf)
b = findobj(gcf)
c = findall(b,'Type','text')
% returns the xlabel handle twice
d = findobj(b,'Type','text')
% can't find the xlabel handle

See Also allchild | findobj

1-2169

findfigs

Purpose Find visible offscreen figures

Syntax findfigs

Description findfigs finds all visible figure windows whose display area is off the
screen and positions them on the screen.

A window appears to the MATLAB software to be offscreen when its
display area (the area not covered by the window’s title bar, menu bar,
and toolbar) does not appear on the screen.

This function is useful when you are bringing an application from a
larger monitor to a smaller one (or one with lower resolution). Windows
visible on the larger monitor may appear offscreen on a smaller monitor.
Using findfigs ensures that all windows appear on the screen.

1-2170

findobj

Purpose Locate graphics objects with specific properties

Syntax findobj
h = findobj
h = findobj('PropertyName',PropertyValue,...)
h =
findobj('PropertyName',PropertyValue,'-logicaloperator',

PropertyName',PropertyValue,...)
h = findobj('-regexp','PropertyName','regexp',...)
h = findobj('-property','PropertyName')
h = findobj(objhandles,...)
h = findobj(objhandles,'-depth',d,...)
h =
findobj(objhandles,'flat','PropertyName',PropertyValue,...)

Description findobj returns handles of the root object and all its descendants
without assigning the result to a variable.

h = findobj returns handles of the root object and all its descendants.

h = findobj('PropertyName',PropertyValue,...) returns handles
of all graphics objects having the property PropertyName, set to the
value PropertyValue. You can specify more than one property/value
pair, in which case, findobj returns only those objects having all
specified values.

h =
findobj('PropertyName',PropertyValue,'-logicaloperator',
PropertyName',PropertyValue,...) applies the logical operator to
the property value matching. Possible values for -logicaloperator are:

• -and

• -or

• -xor

• -not

For more information on logical operators, see “Logical Operations”.

1-2171

findobj

h = findobj('-regexp','PropertyName','regexp',...) matches
objects using regular expressions as if the value of you passed the
property PropertyName to the regexp function as

regexp(PropertyValue,'regexp')

If a match occurs, findobj returns the object handle. See the regexp
function for information on how the MATLAB software uses regular
expressions.

h = findobj('-property','PropertyName') finds all objects having
the specified property.

h = findobj(objhandles,...) restricts the search to objects listed in
objhandles and their descendants.

h = findobj(objhandles,'-depth',d,...) specifies the depth of
the search. The depth argument d controls how many levels under the
handles in objhandles MATLAB traverses. Specify d as inf to get the
default behavior of all levels. Specify d as 0 to get the same behavior as
using the flat argument.

h =
findobj(objhandles,'flat','PropertyName',PropertyValue,...)
restricts the search to those objects listed in objhandles and does not
search descendants.

findobj returns an error if a handle refers to a nonexistent graphics
object.

findobj correctly matches any legal property value. For example,

findobj('Color','r')

finds all objects having a Color property set to red, r, or [1 0 0].

When a graphics object is a descendant of more than one object
identified in objhandles, MATLAB searches the object each time
findobj encounters its handle. Therefore, implicit references to a
graphics object can result in multiple returns of its handle.

1-2172

findobj

To find handle objects that meet specified conditions, use
handle.findobj.

Examples Find all line objects in the current axes:

h = findobj(gca,'Type','line')

Find all objects having a Label set to 'foo' and a String set to 'bar':

h = findobj('Label','foo','-and','String','bar');

Find all objects whose String is not 'foo' and is not 'bar':

h = findobj('-not','String','foo','-not','String','bar');

Find all objects having a String set to 'foo' and a Tag set to 'button
one' and whose Color is not 'red' or 'blue':

h = findobj('String','foo','-and','Tag','button one',...
'-and','-not',{'Color','red','-or','Color','blue'})

Find all objects for which you have assigned a value to the Tag property
(that is, the value is not the empty string ''):

h = findobj('-regexp','Tag','[^'']')

Find all children of the current figure that have their BackgroundColor
property set to a certain shade of gray ([.7 .7 .7]). This statement
also searches the current figure for the matching property value pair.

h = findobj(gcf,'-depth',1,'BackgroundColor',[.7 .7 .7])

1-2173

findobj

See Also copyobj | findall | handle.findobj | gcf | gca | gcbo | gco | get
| regexp | set

Tutorials • “Example — Using Logical Operators and Regular Expression”

1-2174

findobj (handle)

Purpose Find handle objects matching specified conditions

Syntax Hmatch = findobj(Hobj,<conditions>)
Hmatch = findobj(Hobj,'-property','PropertyName')

Description Hmatch = findobj(Hobj,<conditions>) finds handle class objects
that meet the specified conditions. Specify conditions as property
name/property value pairs, indicating that the objects you are trying to
find have specific property values.

The Hobj argument must be an array of handle objects. The returned
value, Hmatch contains an array of object handles that match the
conditions.

Hmatch = findobj(Hobj,'-property','PropertyName') finds all
object in Hobj having the specified property.

findobj has access only to public members of the objects in Hobj.
findobj can find dynamic properties. See “Find Handle Objects” for
more information on using findobj.

You cannot use regular expression with handle class objects.

Examples Find the object with a specific property value. Given the handle class,
BasicHandle:

classdef BasicHandle < handle
properties

Prop1
end
methods

function obj = BasicHandle(val)
if nargin > 0

obj.Prop1 = val;
end

end
end

end

1-2175

findobj (handle)

Create an array of BasicHandle objects:

h(1) = BasicHandle(7);
h(2) = BasicHandle(11);
h(3) = BasicHandle(27);

Find the handle of the object whose Prop1 property has a value of 7:

h7 = findobj(h,'Prop1',7);
h7.Prop1

ans =

7

Find the object with a specific dynamic property. Given the button
class:

classdef button < dynamicprops
properties

UiHandle
end
methods

function obj = button(pos)
if nargin > 0

if length(pos) == 4
obj.UiHandle = uicontrol('Position',pos,...
'Style','pushbutton');

else
error('Improper position')

end
end

end
end

end

1-2176

findobj (handle)

Create an array of button objects, only one element of which defines a
dynamic property. Use findobj to get the handle of the object with the
dynamic property named ButtonCoord:

b(1) = button([20 40 80 20]);
b(1).addprop('ButtonCoord');
b(1).ButtonCoord = [2,3];
b(2) = button([120 40 80 20]);
b(3) = button([220 40 80 20]);

h = findobj(b,'-property','ButtonCoord');
h.ButtonCoord

ans =

2 3

See Also findprop | handle

1-2177

findprop (handle)

Purpose Find meta.property object associated with property name

Syntax p = findprop(h,'Name')

Description p = findprop(h,'Name') returns the meta.property object associated
with the property Name of the object h. Name can be a property defined
by the class of h or a dynamic property defined only for the object h.

Examples Use findprop to view property attribute settings:

findprop(containers.Map,'Count')

ans =

property with properties:

Name: 'Count'
Description: 'Number of pairs in the collection'

DetailedDescription: ''
GetAccess: 'public'
SetAccess: 'private'
Dependent: 1
Constant: 0
Abstract: 0

Transient: 1
Hidden: 0

GetObservable: 0
SetObservable: 0

AbortSet: 0
GetMethod: []
SetMethod: []

DefiningClass: [1x1 meta.class]

See Also handle | findobj (handle) | meta.property

How To • “Getting Information About Properties”

1-2178

findprop (handle)

• “Getting Information About Properties”

• “Dynamic Properties — Adding Properties to an Instance”

1-2179

findstr

Purpose Find string within another, longer string

Note findstr is not recommended. Use strfind instead.

Syntax k = findstr(str1, str2)

Description k = findstr(str1, str2) searches the longer of the two input strings
for any occurrences of the shorter string, returning the starting index of
each such occurrence in the double array k. If no occurrences are found,
then findstr returns the empty array, [].

The search performed by findstr is case sensitive. Any leading and
trailing blanks in either input string are explicitly included in the
comparison.

Unlike the strfind function, the order of the input arguments to
findstr is not important. This can be useful if you are not certain
which of the two input strings is the longer one.

Examples s = 'Find the starting indices of the shorter string.';

findstr(s, 'the')
ans =

6 30

findstr('the', s)
ans =

6 30

See Also strfind | strtok | strcmp | strncmp | strcmpi | strncmpi | regexp
| regexpi | regexprep

1-2180

finish

Purpose Termination file for MATLAB program

Description When the MATLAB program quits, it runs a script called finish.m,
if the script exists and is on the search path MATLAB uses or in the
current directory. This is a file you create yourself that instructs
MATLAB to perform any final tasks just prior to terminating. For
example, you might want to save the data in your workspace to a
MAT-file before MATLAB exits.

finish.m is invoked whenever you do one of the following:

• Click the Close box in the MATLAB desktop on Microsoft Windows
platforms or the equivalent on UNIX platforms

• Type quit or exit at the Command Window prompt

Tips When using Handle Graphics features in finish.m, use uiwait,
waitfor, or drawnow so that figures are visible. See the reference pages
for these functions for more information.

Examples Two sample termination files are provided with MATLAB in
matlabroot/toolbox/local.

• finishsav.m— Saves the workspace to a MAT-file when MATLAB
quits.

• finishdlg.m— Displays a dialog allowing you to cancel quitting and
saves the workspace. See also the “Confirmation Dialogs Preferences”
and the option for exiting MATLAB.

To create a termination file, make a copy of one of these sample files,
changing the name to finish.m, and add it to the path to use it. You
can modify the file to include any operations you want the termination
file to perform.

See Also quit | exit | startup

How To • “Exit MATLAB”

1-2181

fitsdisp

Purpose Display FITS metadata

Syntax fitsdisp(filename)
fitsdisp(filename,Name,Value)

Description fitsdisp(filename) displays metadata for all the Header/Data Units
(HDUs) found in the FITS file specified by filename.

fitsdisp(filename,Name,Value) displays metadata for all the
Header/Data Units (HDUs) found in the FITS file with additional
options specified by one or more Name,Value pair arguments.

Input
Arguments

filename

Text string specifying the name of an existing FITS file.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Index’

Positive scalar value or vector specifying the HDUs.

’Mode’

One of the following strings:

• standard – Display standard keywords

• min – Display only HDU types and sizes

• full – Display all HDU keywords

Default: standard

1-2182

fitsdisp

Examples Display metadata in the 2nd HDU in the FITS file.

fitsdisp('tst0012.fits','Index',2);

Display the metadata in the 1st, 3rd, and 5th HDUs in a file.

fitsdisp('tst0012.fits','Index',[1 3 5]);

Display all metadata in the 5th HDU in a file

fitsdisp('tst0012.fits','Index',5,'Mode','full');

References For copyright information, see the cfitsiocopyright.txt file.

See Also fitsread | fitswrite | fitsinfo

1-2183

fitsinfo

Purpose Information about FITS file

Syntax info = fitsinfo(filename)

Description info = fitsinfo(filename) returns the structure, info, with fields
that contain information about the contents of a Flexible Image
Transport System (FITS) file. filename is a string enclosed in single
quotes that specifies the name of the FITS file.

The info structure contains the following fields, listed in the order
they appear in the structure. In addition, the info structure can also
contain information about any number of optional file components,
called extensions in FITS terminology. For more information, see “FITS
File Extensions” on page 1-2186.

Field Name Description Return Type

Filename Name of the file String

FileModDate File modification date String

FileSize Size of the file in bytes double

Contents List of extensions in the file in
the order that they occur

Cell array of
strings

PrimaryData Information about the primary
data in the FITS file

Structure array

PrimaryData

The PrimaryData field is a structure that describes the primary data
in the file. The following table lists the fields in the order they appear
in the structure.

1-2184

fitsinfo

Field Name Description Return Type

DataType Precision of the data String

Size Size of each dimension. The
number of rows correspond
to the value of the NAXIS2
keyword, while the number of
columns correspond to the value
of the NAXIS1 keyword. Any
further dimensions correspond
to NAXIS3, NAXIS4, and so on.

double array

DataSize Size of the primary data in bytes double

MissingDataValue Value used to represent
undefined data

double

Intercept Value, used with Slope,
to calculate actual pixel
values from the array
pixel values, using the
equation: actual_value
= Slope*array_value +
Intercept

double

Slope Value, used with Intercept,
to calculate actual pixel
values from the array
pixel values, using the
equation: actual_value
= Slope*array_value +
Intercept

double

1-2185

fitsinfo

Field Name Description Return Type

Offset Number of bytes from beginning
of the file to the location of the
first data value

double

Keywords A number-of-keywords-by-3
cell array containing keywords,
values, and comments of the
header in each column

Cell array of
strings

FITS File
Extensions

A FITS file can also include optional extensions. If the file contains any
of these extensions, the info structure can contain these additional
fields.

• AsciiTable — Numeric information in tabular format, stored as
ASCII characters

• BinaryTable — Numeric information in tabular format, stored in
binary representation

• Image — A multidimensional array of pixels

• Unknown — Nonstandard extension

AsciiTable Extension

The AsciiTable structure contains the following fields, listed in the
order they appear in the structure.

Field Name Description Return Type

Rows Number of rows in the table double

RowSize Number of characters in each
row

double

NFields Number of fields in each row double array

1-2186

fitsinfo

Field Name Description Return Type

FieldFormat A 1-by-NFields cell containing
formats in which each field
is encoded. The formats are
FORTRAN-77 format codes.

Cell array of
strings

FieldPrecision A 1-by-NFields cell containing
precision of the data in each field

Cell array of
strings

FieldWidth A 1-by-NFields array containing
the number of characters in each
field

double array

FieldPos A 1-by-NFields array of
numbers representing the
starting column for each field

double array

DataSize Size of the data in the table in
bytes

double

MissingDataValue A 1-by-NFields array of
numbers used to represent
undefined data in each field

Cell array of
strings

Intercept A 1-by-NFields array of
numbers used along with Slope
to calculate actual data values
from the array data values using
the equation: actual_value =
Slope*array_value+Intercept

double array

Slope A 1-by-NFields array of
numbers used with Intercept
to calculate true data values
from the array data values using
the equation: actual_value =
Slope*array_value+Intercept

double array

1-2187

fitsinfo

Field Name Description Return Type

Offset Number of bytes from beginning
of the file to the location of the
first data value in the table

double

Keywords A number-of-keywords-by-3
cell array containing all
the Keywords, Values and
Comments in the ASCII table
header

Cell array of
strings

BinaryTable Extension

The BinaryTable structure contains the following fields, listed in the
order they appear in the structure.

Field Name Description Return Type

Rows Number of rows in the table double

RowSize Number of bytes in each row double

NFields Number of fields in each row double

FieldFormat A 1-by-NFields cell array
containing the data type of the
data in each field. The data
type is represented by a FITS
binary table format code.

Cell array of
strings

FieldPrecision A 1-by-NFields cell containing
precision of the data in each
field

Cell array of
strings

FieldSize A 1-by-NFields array, where
each element contains the
number of values in the Nth
field

double array

1-2188

fitsinfo

Field Name Description Return Type

DataSize Size of the data in the Binary
Table, in bytes. Includes any
data past the main table.

double

MissingDataValue An 1-by-NFields array of
numbers used to represent
undefined data in each field

Cell array of
double

Intercept A 1-by-NFields array of
numbers used along with
Slope to calculate actual
data values from the array
data values using the
equation: actual_value =
slope*array_value+Intercept

double array

Slope A 1-by-NFields array of
numbers used with Intercept to
calculate true data values from
the array data values using the
equation: actual_value =
Slope*array_value+Intercept

double array

Offset Number of bytes from beginning
of the file to the location of the
first data value

double

ExtensionSize Size of any data past the main
table, in bytes

double

ExtensionOffset Number of bytes from the
beginning of the file to any data
past the main table

double

Keywords A number-of-keywords-by-3
cell array containing all
the Keywords, values, and
comments in the Binary Table
header

Cell array of
strings

1-2189

fitsinfo

Image Extension

The Image structure contains the following fields, listed in the order
they appear in the structure.

Field Name Description Return Type

DataType Precision of the data String

Size Size of each dimension. The
number of rows correspond
to the value of the NAXIS2
keyword, while the number of
columns correspond to the value
of the NAXIS1 keyword. Any
further dimensions correspond
to NAXIS3, NAXIS4, and so on.

double array

DataSize Size of the data in the Image
extension in bytes

double

Offset Number of bytes from the
beginning of the file to the first
data value

double

MissingDataValue Value used to represent
undefined data

double

Intercept Value, used with Slope,
to calculate actual pixel
values from the array
pixel values, using the
equation: actual_value =
Slope*array_value+Intercept

double

1-2190

fitsinfo

Field Name Description Return Type

Slope Value, used with Intercept,
to calculate actual pixel
values from the array
pixel values, using the
equation: actual_value
= Slope*array_value +
Intercept

double

Keywords A number-of-keywords-by-3
cell array containing all
the Keywords, values, and
comments in the Binary Table
header

Cell array of
strings

Unknown Structure

The Unknown structure contains the following fields, listed in the order
they appear in the structure.

Field Name Description Return Type

DataType Precision of the data String

Size Sizes of each dimension double array

DataSize Size of the data in nonstandard
extensions, in bytes

double

Offset Number of bytes from beginning
of the file to the first data value

double

MissingDataValue Representation of undefined
data

double

1-2191

fitsinfo

Field Name Description Return Type

Intercept Value, used with Slope,
to calculate actual data
values from the array
data values, using the
equation: actual_value =
Slope*array_value+Intercept

double

Slope Value, used with Intercept,
to calculate actual data
values from the array
data values, using the
equation: actual_value =
Slope*array_value+Intercept

double

Keywords A number-of-keywords-by-3
cell array containing all
the Keywords, values, and
comments in the Binary Table
header

Cell array of
strings

Examples Get Information About FITS File

Use fitsinfo to obtain information about the FITS file tst0012.fits.
In addition to its primary data, the file also contains an example of the
extensions BinaryTable, Unknown, Image, and AsciiTable.

S = fitsinfo('tst0012.fits')

S =
Filename: 'matlabroot\toolbox\matlab\demos\tst0012.fits'

FileModDate: '12-Mar-2001 18:37:46'
FileSize: 109440
Contents: {'Primary' 'Binary Table' 'Unknown'

'Image' 'ASCII Table'}
PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]

1-2192

fitsinfo

Unknown: [1x1 struct]
Image: [1x1 struct]

AsciiTable: [1x1 struct]

View the PrimaryData field.

S.PrimaryData

ans =

DataType: 'single'
Size: [109 102]

DataSize: 44472
MissingDataValue: []

Intercept: 0
Slope: 1

Offset: 2880
Keywords: {25x3 cell}

The PrimaryData field describes the data in the file. For example, the
Size field indicates the data is a 109-by-102 matrix.

View the AsciiTable field.

S.AsciiTable

ans =
Rows: 53

RowSize: 59
NFields: 8

FieldFormat: {'A9' 'F6.2' 'I3' 'E10.4' 'D20.15' 'A5' 'A1' 'I4'}
FieldPrecision: {1x8 cell}

FieldWidth: [9 6.2000 3 10.4000 20.1500 5 1 4]
FieldPos: [1 11 18 22 33 54 54 55]
DataSize: 3127

MissingDataValue: {'*' '---.--' ' *' [] '*' '*' '*' ''}
Intercept: [0 0 -70.2000 0 0 0 0 0]

Slope: [1 1 2.1000 1 1 1 1 1]

1-2193

fitsinfo

Offset: 103680
Keywords: {65x3 cell}

The AsciiTable field describes the AsciiTable extension. For example,
using the FieldWidth and FieldPos fields you can determine the length
and location of each field within a row.

See Also fitsread | fitswrite | fitsdisp

1-2194

fitsread

Purpose Read data from FITS file

Syntax data = fitsread(filename)
data = fitsread(filename,extname)
data = fitsread(filename,extname,index)
data = fitsread(filename,Name,Value)

Description data = fitsread(filename) reads the primary data of the Flexible
Image Transport System (FITS) file specified by the text string
filename. The function replaces undefined data values with NaN and
scales numeric data by the slope and intercept values, always returning
double precision values.

data = fitsread(filename,extname) reads data from the FITS file
extension specified by extname.

data = fitsread(filename,extname,index) reads data from the
FITS file extension specified by extname . If there is more than one of
the specified extensions in the file, index specifies the one to read.

data = fitsread(filename,Name,Value) reads data from the FITS
file with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

filename

Text string specifying the name of a FITS file.

extname

One of the following text strings specifying the name of a data array or
extension in the FITS file. To determine the contents of a FITS, view
the Contents field of the structure returned by fitsinfo.

1-2195

fitsread

Data Arrays or Extensions

Extname Description

'primary' Read data from the primary data array.

'asciitable' Read data from the ASCII Table extension. The
return value, data, is a 1-D cell array.

'binarytable' Read data from the Binary Table extension. The
return value, data, is a 1-D cell array.

'image' Read data from the Image extension.

'unknown' Read data from the Unknown extension.

index

Numeric value specifying which extension to read, if more than one
exists in the file.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’info’

info structure returned by fitsinfo specifying the location of data
to read.

Note Using the info structure returned by fitsinfo to specify the
location of data in a FITS file can significantly improve performance,
especially when reading multiple images from the file.

’PixelRegion’

1-2196

fitsread

Cell array {rows,cols,...} specifying the boundaries of a subimage
region to read from the file. Each dimension (rows, cols) is a vector
of 1-based indices given either as START, [START STOP], or [START
INCREMENT STOP]. This parameter is valid only for primary or image
extensions.

’raw’

Specifies that fitsread should not scale the data read from the file or
replace undefined values with NaN. Data read from the file is the same
class as it is stored in the file.

’TableColumns’

Vector of 1-based indices specifying the columns to read from the ASCII
or Binary table extension. This vector should contain unique and valid
indices into the table data specified in increasing order. This parameter
is valid only for ASCII or Binary extensions.

’TableRows’

Vector of 1-based indices specifying the rows to read from the ASCII or
Binary table extension. This vector should contain unique and valid
indices into the table data specified in increasing order. This parameter
is valid only for ASCII or Binary extensions.

Output
Arguments

data

Data returned from the FITS file.

Definitions extension

A FITS file contains primary data and can optionally contain any
number of optional components, called extensions in FITS terminology.

Examples Read primary data from FITS file

data = fitsread('tst0012.fits');

1-2197

fitsread

Name Size Bytes Class Attributes

data 109x102 88944 double

Inspect available extensions, read ’image’ extension using the extname
option.

info = fitsinfo('tst0012.fits');
% List of contents, includes any extensions if present.
disp(info.Contents);
imageData = fitsread('tst0012.fits','image');

Subsample the fifth plane of ’image’ extension by 2.

info = fitsinfo('tst0012.fits');
rowend = info.Image.Size(1);
colend = info.Image.Size(2);
primaryData = fitsread('tst0012.fits','image',...

'Info', info,...
'PixelRegion',{[1 2 rowend], [1 2 colend], 5 });

Read every other row from an ASCII table.

info = fitsinfo('tst0012.fits');
rowend = info.AsciiTable.Rows;
tableData = fitsread('tst0012.fits','asciitable',...

'Info',info,...
'TableRows',[1:2:rowend]);

Read all data for the first, second and fifth columns of the Binary table.

info = fitsinfo('tst0012.fits');

1-2198

fitsread

rowend = info.BinaryTable.Rows;
tableData = fitsread('tst0012.fits','binarytable',...

'Info',info,...
'TableColumns',[1 2 5]);

See Also fitswrite | fitsinfo | fitsdisp

Tutorials • “Importing Flexible Image Transport System (FITS) Files”

1-2199

fitswrite

Purpose Write image to FITS file

Syntax fitswrite(imagedata,filename)
fitswrite(imagedata,filename,Name,Value)

Description fitswrite(imagedata,filename) writes imagedata to the FITS file
specified by filename. If filename does not exist, fitswrite creates
the file as a simple FITS file. If filename exists, fitswrite overwrites
the file or appends the image to the end of the file, depending on the
value of the writemode argument.

fitswrite(imagedata,filename,Name,Value) writes imagedata to
the FITS file specified by filename with additional options specified by
one or more Name,Value pair arguments.

Input
Arguments

imagedata

Image array.

filename

Text string specifying the name of an existing FITS file or the name you
want to assign to a new FITS file.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’WriteMode’

One of these strings:

• overwrite

• append

1-2200

fitswrite

Default: overwrite

’Compression’

One of these strings:

• none

• gzip

• rice

• hcompress

• plio

Default: none

Examples Create a FITS file containing the red channel of an RGB image.

X = imread('ngc6543a.jpg');
R = X(:,:,1);
fitswrite(R,'myfile.fits');
fitsdisp('myfile.fits');

Create a FITS file with three images constructed from the channels of
an RGB image.

X = imread('ngc6543a.jpg');
R = X(:,:,1); G = X(:,:,2); B = X(:,:,3);
fitswrite(R,'myfile.fits');
fitswrite(G,'myfile.fits','writemode','append');
fitswrite(B,'myfile.fits','writemode','append');
fitsdisp('myfile.fits');

References For copyright information, see the cfitsiocopyright.txt file.

See Also fitsinfo | fitsread

1-2201

fix

Purpose Round toward zero

Syntax B = fix(A)

Description B = fix(A) rounds the elements of A toward zero, resulting in an array
of integers. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6
7.0000 2.4000 + 3.6000i

fix(a)

ans =
Columns 1 through 4
-1.0000 0 3.0000 5.0000

Columns 5 through 6
7.0000 2.0000 + 3.0000i

See Also ceil | floor | round

1-2202

matlab.unittest.fixtures

Purpose Summary of classes in MATLAB Fixtures Interface

Description Fixtures ease creation of setup and teardown code. The
matlab.unittest.fixtures package consists of the following customized
MATLAB fixtures.

matlab.unittest.fixtures.CurrentFolderFixtureFixture for changing current
working folder

matlab.unittest.fixtures.Fixture Interface class for test fixtures

matlab.unittest.fixtures.PathFixtureFixture for adding a folder to the
MATLAB path

matlab.unittest.fixtures.SuppressedWarningsFixtureFixture to suppress display of
warnings

matlab.unittest.fixtures.TemporaryFolderFixtureFixture for creating a temporary
folder

Related
Examples

• “Write Tests Using Shared Fixtures”
• “Create Basic Custom Fixture”
• “Create Advanced Custom Fixture”

1-2203

matlab.unittest.fixtures.CurrentFolderFixture

Purpose Fixture for changing current working folder

Description The CurrentFolderFixture class provides a fixture for changing the
current working folder. When the test framework sets up the fixture, it
changes the working folder. When the test framework tears down the
fixture, it restores the working folder to its previous state.

Construction matlab.unittest.fixtures.CurrentFolderFixture(folder)
constructs a fixture for changing the current working folder to folder.

Input Arguments

folder - Folder to make the current working folder
string

Folder to make the current working folder, specified as a string.
MATLAB throws an error if folder does not exist.

Properties Folder

Folder to make the current working folder, specified as a string
in the folder input argument.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create Fixture to Change Current Working Folder

Create the following changeFolderFixtureTest class definition on your
MATLAB path. This example assumes that the subfolder helperFiles
exists in your working folder. Create the changeToFolderin your
working folder if it does not exist.

The test1 function includes a call to pwd to demonstrate the current
path changed to the helperFiles folder.

classdef changeFolderFixtureTest < matlab.unittest.TestCase
methods(Test)

1-2204

matlab.unittest.fixtures.CurrentFolderFixture

function test1(testCase)
import matlab.unittest.fixtures.CurrentFolderFixture;

changeToFolder = 'helperFiles';
testCase.applyFixture(CurrentFolderFixture ...

(changeToFolder));
pwd

end
end

end

At the command prompt, run the test. For the purposes of this example,
call pwd before and after run to show the fixture was properly torn down
and the path returned to the pre-test state.

currentFolderBeforeTest = pwd
run(changeFolderFixtureTest);
currentFolderAfterTest = pwd

currentFolderBeforeTest =

H:\Documents\doc_examples

Running changeFolderFixtureTest

ans =

H:\Documents\doc_examples\helperFiles

.
Done changeFolderFixtureTest

currentFolderAfterTest =

H:\Documents\doc_examples

1-2205

matlab.unittest.fixtures.CurrentFolderFixture

See Also matlab.unittest.fixtures.PathFixture |
matlab.unittest.TestCase.applyFixture |
matlab.unittest.fixtures

Related
Examples

Concepts

1-2206

matlab.unittest.fixtures.Fixture

Purpose Interface class for test fixtures

Description The Fixture interface class is the means by which test authors create
custom fixtures. Fixtures configure the environment state required
for tests.

Classes deriving from the Fixture interface must implement the setup
method. This method executes the changes to the environment. A
fixture should restore the environment to its initial state when it is torn
down. To restore the environment, use the addTeardown method in the
setup method or implement the fixture’s teardown method.

Subclasses can set the SetupDescription and TeardownDescription
properties in their constructors to provide descriptions for the actions
performed by the setup and teardown methods. The testing framework
can display these descriptions when setting up and tearing down the
fixture.

A class that derives from Fixture must implement the isCompatible
method if its constructor accepts any input arguments or is otherwise
configurable. Fixture subclasses use this method to define a notion
of interchangeability of fixtures. Two matlab.unittest.fixtures
instances of the same class are considered to be interchangeable if the
isCompatible method returns true. The TestRunner uses the result of
isCompatible to determine whether two fixture instances of the same
class correspond to the same shared test fixture state.

Properties SetupDescription

Description of fixture setup actions, specified as a string. The
SetupDescription property describes the actions the fixture
performs when the testing framework invokes the fixture’s setup
method.

TeardownDescription

Description of fixture teardown actions, specified as a string.
The TeardownDescription property describes the actions the
fixture performs when the testing framework invokes the fixture’s
teardown method.

1-2207

matlab.unittest.fixtures.Fixture

Methods
addTeardown Dynamically add teardown

routine

isCompatibile Determine if two fixtures of the
same class are interchangeable

setup Set up fixture

teardown Tear down fixture

Events
AssertionFailed Triggered upon failing assertion.

A QualificationEventData
object is passed to listener
callback functions.

AssertionPassed Triggered upon passing assertion.
A QualificationEventData
object is passed to listener
callback functions.

AssumptionFailed Triggered upon failing
assumption. A
QualificationEventData object
is passed to listener callback
functions.

AssumptionPassed Triggered upon passing
assumption. A
QualificationEventData object
is passed to listener callback
functions.

FatalAssertionFailed Triggered upon failing
fatal assertion. A
QualificationEventData object
is passed to listener callback
functions.

1-2208

matlab.unittest.fixtures.Fixture

FatalAssertionPassed Triggered upon passing
fatal assertion. A
QualificationEventData object
is passed to listener callback
functions.

ExceptionThrown Triggered by the TestRunner
when an exception is thrown.
An ExceptionEventData object
is passed to listener callback
functions.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also matlab.unittest.fixtures |
matlab.unittest.TestCase.getSharedTestFixtures |
matlab.unittest.TestCase.applyFixture | addTeardown |
matlab.unittest.qualifications.QualificationEventData |
matlab.unittest.qualifications.ExceptionEventData

Related
Examples

• “Create Basic Custom Fixture”
• “Create Advanced Custom Fixture”

Concepts

1-2209

matlab.unittest.fixtures.Fixture.setup

Purpose Set up fixture

Syntax setup(f)

Description setup(f) sets up a fixture by performing the defined environment
modifications. Classes deriving from the Fixture interface must
implement the setup method. This method executes the changes to
the environment. A fixture should restore the environment to its
initial state when it is torn down. To restore the environment, use the
addTeardown method in the setup method or implement the fixture’s
teardown method.

Input
Arguments

f

matlab.unittest.fixtures.Fixture instance

See Also matlab.unittest.fixtures.Fixture |
matlab.unittest.fixtures.Fixture.teardown |
matlab.unittest.fixtures.Fixture.addTeardown

Related
Examples

• “Create Basic Custom Fixture”
• “Create Advanced Custom Fixture”

1-2210

matlab.unittest.fixtures.Fixture.teardown

Purpose Tear down fixture

Syntax teardown(f)

Description teardown(f) tears down a fixture by performing the defined actions to
restore the environment to the initial state.

Input
Arguments

f

matlab.unittest.fixtures.Fixture instance

Alternatives Instead of defining a teardownmethod, you can define teardown actions
within the setup method by implementing the addTeardown method.

See Also matlab.unittest.fixtures.Fixture |
matlab.unittest.fixtures.Fixture.addTeardown |
matlab.unittest.fixtures.Fixture.setup

Related
Examples

• “Create Basic Custom Fixture”
• “Create Advanced Custom Fixture”

1-2211

matlab.unittest.fixtures.Fixture.addTeardown

Purpose Dynamically add teardown routine

Syntax addTeardown(f,tearDownFcn)
addTeardown(f,tearDownFcn,arg1,...,argN)

Description addTeardown(f,tearDownFcn) adds the tearDownFcn function handle
that defines fixture teardown code to the Fixture instance. The
teardown code is executed in the reverse order to which it is added.
This is known as LIFO (or Last-In-First-Out).

addTeardown(f,tearDownFcn,arg1,...,argN) provides input
arguments to the tearDownFcn.

Input
Arguments

f

matlab.unittest.fixtures.Fixture instance

tearDownFcn

Function that defines the fixture teardown code, specified as a
function handle.

arg1,...,argN

Input arguments required by tearDownFcn, specified by any
type. The argument type is specified by the tearDownFcn function
argument list.

Alternatives Instead of defining teardown actions within the setup method by
implementing the addTeardown method, you can implement the
teardown method.

See Also matlab.unittest.fixtures.Fixture |
matlab.unittest.fixtures.Fixture.teardown |
matlab.unittest.fixtures.Fixture.setup

Related
Examples

• “Create Advanced Custom Fixture”

1-2212

matlab.unittest.fixtures.Fixture.isCompatible

Purpose Determine if two fixtures of the same class are interchangeable

Syntax TF = isCompatible(f1, f2)

Description TF = isCompatible(f1, f2) determines if two fixtures of the same
class are interchangeable. The isCompatible method returns either
logical 1 (true) or logical 0 (false).

A class that derives from Fixture must implement the isCompatible
method if its constructor accepts any input arguments or is otherwise
configurable. Fixture subclasses use this method to define a notion
of interchangeability of fixtures. Two matlab.unittest.fixtures
instances of the same class are considered to be interchangeable if
the isCompatible method returns true. The TestRunner uses the
result of isCompatible to determine whether two fixture instances
of the same class correspond to the same shared test fixture state.
The test framework always calls the isCompatible method with two
fixture instances of the same class, so the fixture author does not need
to implement code to handle the case where the second fixture is a
different fixtures class.

Input
Arguments

f

matlab.unittest.fixtures.Fixture instance

Attributes
Access Protected

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.unittest.fixtures.Fixture

Related
Examples

• “Create Advanced Custom Fixture”

1-2213

matlab.unittest.fixtures.PathFixture

Purpose Fixture for adding a folder to the MATLAB path

Description The PathFixture class provides a fixture for adding a folder to the
MATLAB path. When the test framework sets up the fixture, it adds
the specified folder to the path. When the test framework tears down
the fixture, it restores the MATLAB path to its previous state.

Construction matlab.unittest.fixtures.PathFixture(folder) constructs a
fixture for adding a folder to the MATLAB path. When the test
framework sets up the fixture, it adds folder to the path. When it tears
down the fixture, it restores the MATLAB path to its previous state.

Input Arguments

folder - Folder to add to the MATLAB path
string

Folder to add to the MATLAB path, specified as a string.
MATLAB throws an error if folder does not exist.

Properties Folder

Folder to add to the MATLAB path, specified as a string in the
folder input argument.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Add Directory to MATLAB Path for Testing

Create the following addPathFixtureTest class definition on your
MATLAB path. This example assumes that the subfolder,helperFiles,
exists in your working folder. If it does not, define addFolder to be a
directory that exists within your current folder.

classdef addPathFixtureTest < matlab.unittest.TestCase

methods(Test)

function test1(testCase)

1-2214

matlab.unittest.fixtures.PathFixture

import matlab.unittest.fixtures.PathFixture;

addFolder = 'helperFiles';

f = testCase.applyFixture(PathFixture(addFolder));

disp(['Added to path: ' f.Folder])

end

end

end

At the command prompt, run the test.

run(addPathFixtureTest);

Running addPathFixtureTest

Added to path: H:\Documents\doc_examples\helperFiles

.

Done addPathFixtureTest

After the tests finish running, the framework removes the folder from
the path.

Add Directory to Path Using Shared Test Fixture

Create the following sharedAddPathFixtureTest class definition
on your MATLAB path. This example assumes that the subfolder,
helperFiles, exists in your working folder.

classdef (SharedTestFixtures={ ...

matlab.unittest.fixtures.PathFixture('helperFiles')}) ...

sharedAddPathFixtureTest < matlab.unittest.TestCase

methods(Test)

function test1(testCase)

f = testCase.getSharedTestFixtures;

disp(['Added to path: ' f.Folder])

end

end

end

1-2215

matlab.unittest.fixtures.PathFixture

At the command prompt, run the test.

run(sharedAddPathFixtureTest);

Setting up PathFixture

Done setting up PathFixture: Added 'H:\Documents\doc_examples\helperFiles' to the path.

Running sharedAddPathFixtureTest

Added to path: H:\Documents\doc_examples\helperFiles

.

Done sharedAddPathFixtureTest

Tearing down PathFixture

Done tearing down PathFixture: Restored the path to its original state.

After the tests finish running, the framework removes the folder from
the path.

See Also matlab.unittest.fixtures.CurrentFolderFixture
| matlab.unittest.TestCase.applyFixture |
matlab.unittest.fixtures

Related
Examples

Concepts

1-2216

matlab.unittest.fixtures.SuppressedWarningsFixture

Purpose Fixture to suppress display of warnings

Description The SuppressedWarningsFixture class provides a fixture to suppress
the display of warnings. When set up, SuppressedWarningsFixture
disables one ore more specified warnings. When torn down, the fixture
restores the states of warnings to their previous values.

Construction matlab.unittest.fixtures.SuppressedWarningsFixture(warnIDs)
constructs a fixture to suppress the display of one or more warnings.

Input Arguments

warnIDs - Identifier for warnings disabled when the fixture is
set up
string | cell array of strings

Warning identifiers for the warnings to be suppressed, specified
as a string or cell array of strings.

Properties Warnings

Warning identifiers describing warnings to suppress specified as
a cell array of strings in the warnings input argument.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create Fixture to Suppress Warnings

Suppress the warning that occurs when you try to remove a folder from
the search path that is not on the search path.

Remove the folder, folderthatisnotonpath from your path, assuming
it does not exist.

rmpath('folderthatisnotonpath');

Warning: "folderthatisnotonpath" not found in path.
> In rmpath at 58

1-2217

matlab.unittest.fixtures.SuppressedWarningsFixture

A warning appears because rmpath cannot find the folder.

Suppress the warning during testing by creating the following
suppressWarningsTest class definition on your MATLAB path.

classdef suppressWarningsTest < matlab.unittest.TestCase
methods(Test)

function test1(testCase)
import matlab.unittest.fixtures.SuppressedWarningsFixture;

testCase.applyFixture(...
SuppressedWarningsFixture('MATLAB:rmpath:DirNotFound'));

% would otherwise cause warning
rmpath('folderthatisnotonpath');

end
end

end

At the command prompt, run the test. For the purposes of this example,
call rmpath before and after running the test to show the warning is not
suppressed outside execution of the test.

rmpath('folderthatisnotonpath');
run(suppressWarningsTest);
rmpath('folderthatisnotonpath');

Warning: "folderthatisnotonpath" not found in path.
> In rmpath at 58
Running suppressWarningsTest
.
Done suppressWarningsTest

Warning: "folderthatisnotonpath" not found in path.
> In rmpath at 58

1-2218

matlab.unittest.fixtures.SuppressedWarningsFixture

Note that the call to rmpath within suppressWarningsTest does not
result in a warning.

See Also matlab.unittest.TestCase.applyFixture | warning |
matlab.unittest.fixtures

Concepts

1-2219

matlab.unittest.fixtures.TemporaryFolderFixture

Purpose Fixture for creating a temporary folder

Description The matlab.unittest.fixtures.TemporaryFolderFixture provides
a fixture to create a temporary folder. When the testing framework
sets up the fixture, it creates the temporary folder. When it tears
down the fixture, it deletes the folder and all its contents. Before it
deletes the folder, the fixture clears from memory the definitions of any
MATLAB-files, P-files, and MEX-files that are defined in the temporary
folder.

Construction matlab.unittest.fixtures.TemporaryFolderFixture constructs a
fixture for creating a temporary folder.

matlab.unittest.fixtures.TemporaryFolderFixture(Name,Value)
constructs a fixture for creating a temporary folder with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PreservingOnFailure - Preservation state of temporary folder
and contents after test failure
true

Indicator of whether the temporary folder and its contents are
preserved in the event of a test failure, specified as logical true.
This property is false by default. You can specify it as true
during fixture construction.

Data Types
logical

WithSuffix - Suffix for temporary folder name
string (default)

1-2220

matlab.unittest.fixtures.TemporaryFolderFixture

Suffix for temporary folder name, specified as a string.

Properties Folder

Absolute path of the folder created by the fixture, specified as a
string.

PreserveOnFailure

Indicator of whether the temporary folder and its contents
are preserved in the event of a test failure. This property is
logical(0) or logical(1). It is logical(0) by default but is set
to logical(1) if the 'PreservingOnFailure' input value is set
to true during fixture construction.

Suffix

Suffix used for temporary folder, specified as a string in the
Name,Value pair argument, 'WithSuffix'.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create Temporary Folder Fixture

Create the following tempFolderFixtureTest class definition on your
MATLAB path.

classdef tempFolderFixtureTest < matlab.unittest.TestCase

methods(Test)

function test1(testCase)

import matlab.unittest.fixtures.TemporaryFolderFixture;

tempFolder = testCase.applyFixture(TemporaryFolderFixture);

disp(['The temporary folder: ' tempFolder.Folder])

end

end

end

1-2221

matlab.unittest.fixtures.TemporaryFolderFixture

At the command prompt, run the test.

run(tempFolderFixtureTest);

Running tempFolderFixtureTest

The temporary folder: C:\Temp\tpfb1ae2cf_c9de_4de3_9557_00d52bfcc1b2

.

Done tempFolderFixtureTest

The name of the temporary folder varies.

Create Temporary Folder Fixture Persisting Through Test
Failure

Create the following anotherTempFolderFixtureTest class definition
on your MATLAB path. For the purposes of this example, the test1
function contains an assertion that causes test failure.

classdef anotherTempFolderFixtureTest < matlab.unittest.TestCase

methods(Test)

function test1(testCase)

import matlab.unittest.fixtures.TemporaryFolderFixture;

testCase.applyFixture(TemporaryFolderFixture(...

'PreservingOnFailure',true,'WithSuffix','TestData'));

% Failed assertion, perserved temporary folder

testCase.assertEqual(1,2);

end

end

end

At the command prompt, run the test.

run(anotherTempFolderFixtureTest);

Running anotherTempFolderFixtureTest

1-2222

matlab.unittest.fixtures.TemporaryFolderFixture

==

Assertion failed in anotherTempFolderFixtureTest/test1.

The remainder of the test method will not run to completion.

Framework Diagnostic:

assertEqual failed.

--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:

1

Expected Value:

2

Stack Information:

In H:\Documents\doc_examples\anotherTempFolderFixtureTest.m (anotherTempFolderFixtureTest.test1)

==

[Terse] Diagnostic logged (20131003T133246):

Because of a failure in the test using the TemporaryFolderFixture, the following folder will not be

C:\Temp\tp70976704_7e39_48b8_90ae_f121bbfaf877TestData

.

Done anotherTempFolderFixtureTest

Failure Summary:

Name Failed Incomplete Reason(s)

==

anotherTempFolderFixtureTest/test1 X X Failed by assertion.

The test failed and the temporary folder persists.
You can open the temporary folder, shown here as

1-2223

matlab.unittest.fixtures.TemporaryFolderFixture

C:\Temp\tp70976704_7e39_48b8_90ae_f121bbfaf877TestData, and
examine any contents.

See Also matlab.unittest.fixtures |
matlab.unittest.fixtures.PathFixture |
matlab.unittest.fixtures.CurrentFolderFixture |
matlab.unittest.TestCase.applyFixture

Concepts

1-2224

flintmax

Purpose Largest consecutive integer in floating-point format

Syntax f = flintmax
f = flintmax(precision)

Description f = flintmax returns the largest consecutive integer in IEEE® double
precision, which is 2^53. Above this value, double-precision format
does not have integer precision, and not all integers can be represented
exactly.

f = flintmax(precision) returns the largest consecutive integer in
IEEE single or double precision. flintmax returns single(2^24) for
single precision and 2^53 for double precision.

Input
Arguments

precision - Floating-point precision type
`double' (default) | `single'

Floating-point precision type, specified as 'double' or 'single'.

Data Types
char

Output
Arguments

f - Largest consecutive integer in floating-point format
scalar constant

Largest consecutive integer in floating-point format returned as a scalar
constant. This constant is 2^53 for double precision and single(2^24)
for single precision.

Examples Double Precision

Return the largest consecutive integer in IEEE double precision.

format long e
f = flintmax

f =

1-2225

flintmax

9.007199254740992e+15

This is 2^53.

Single Precision

Return the largest consecutive integer in IEEE single precision.

f = flintmax('single')

f =

16777216

This is single(2^24).

Check the class of f.

class(f)

ans =

single

Limit of Integer Single Precision

Above the value returned by flintmax('single'), not all integers can
be represented exactly with single precision.

Return the largest consecutive integer in IEEE single precision.

f = flintmax('single')

f =

16777216

This is single(2^24).

Add 1 to the value returned from flintmax.

1-2226

flintmax

f1 = f + 1

f1 =

16777216

f1 is the same as f.

isequal(f,f1)

ans =

1

Add 2 to the value returned from flintmax.

f2 = f + 2

f2 =

16777218

16777218 is represented exactly in single precision while 16777217 is
not.

See Also eps | realmax | intmax | format

Concepts • “Floating-Point Numbers”

1-2227

flip

Purpose Flip order of elements

Syntax B = flip(A)
B = flip(A,dim)

Description B = flip(A) returns array B the same size as A, but with the order of
the elements reversed. The dimension that is reordered in B depends on
the shape of A:

• If A is vector, then flip(A) reverses the order of the elements along
the length of the vector.

• If A is a matrix, then flip(A) reverses the elements in each column.

• If A is an N-D array, then flip(A) operates on the first dimension of
A in which the size value is not 1.

B = flip(A,dim) reverses the order of the elements in A along
dimension dim. For example, if A is a matrix, then flip(A,1) reverses
the elements in each column, and flip(A,2) reverses the elements
in each row.

Input
Arguments

A - Input array
vector | matrix | array | cell array | table

Input array, specified as a vector, matrix, array, cell array, or table.

Example: [1 2 3 4]

Example: ['abcde']

Example: [1 2; 3 4]

Example: {'abcde',[1 2 3]}

Example: table(rand(1,5),rand(1,5))

dim - Dimension to operate along
positive integer scalar

1-2228

flip

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

The following illustration shows the difference between dim=1 and
dim=2 when A is a matrix.

Examples Flip String of Characters

A = 'no word, no bond, row on.';
B = flip(A)

B =

.no wor ,dnob on ,drow on

Flip Column Vector

A = [1;2;3];
B = flip(A)

B =

3
2
1

Flip Matrix

Create a diagonal matrix, A.

1-2229

flip

A = diag([100 200 300])

A =

100 0 0
0 200 0
0 0 300

Flip A without specifying the dim argument.

B = flip(A)

B =

0 0 300
0 200 0

100 0 0

Now, flip A along the second dimension.

B = flip(A,2)

B =

0 0 100
0 200 0

300 0 0

Flip N-D Array

Create a 1-by-3-by-2 array.

A = zeros(1,3,2);
A(:,:,1) = [1 2 3];
A(:,:,2) = [4 5 6];
A

A(:,:,1) =

1-2230

flip

1 2 3

A(:,:,2) =

4 5 6

Flip A without specifying the dim argument.

B = flip(A)

B(:,:,1) =

3 2 1

B(:,:,2) =

6 5 4

Now, flip A along the third dimension.

B = flip(A,3)

B(:,:,1) =

4 5 6

B(:,:,2) =

1 2 3

Flip Cell Array

Create a 3-by-2 cell array.

A = {'foo',1000; 999,true; 'aaa','bbb'}

1-2231

flip

A =

'foo' [1000]
[999] [1]
'aaa' 'bbb'

Flip A without specifying the dim argument.

B = flip(A)

B =

'aaa' 'bbb'
[999] [1]
'foo' [1000]

Now, flip A along the second dimension.

B = flip(A,2)

B =

[1000] 'foo'
[1] [999]
'bbb' 'aaa'

See Also fliplr | flipud | permute | rot90 | transpose

1-2232

flipdim

Purpose Flip array along specified dimension

flipdim will be removed in a future release. Use flip instead.

Syntax B = flipdim(A,dim)

Description B = flipdim(A,dim) returns A with dimension dim flipped.

When the value of dim is 1, the array is flipped row-wise down. When
dim is 2, the array is flipped columnwise left to right. flipdim(A,1) is
the same as flipud(A), and flipdim(A,2) is the same as fliplr(A).

Examples flipdim(A,1) where

A =

1 4
2 5
3 6

produces

3 6
2 5
1 4

See Also fliplr | flipud | permute | rot90 | flip

1-2233

fliplr

Purpose Flip array left to right

Syntax B = fliplr(A)

Description B = fliplr(A) returns A with its columns flipped in the left-right
direction (that is, about a vertical axis).

If A is a row vector, then fliplr(A) returns a vector of the same length
with the order of its elements reversed. If A is a column vector, then
fliplr(A) simply returns A. For multidimensional arrays, fliplr
operates on the planes formed by the first and second dimensions.

Input
Arguments

A - Input array
vector | matrix | array | cell array | categorical array | table

Input array, specified as a vector, matrix, array, cell array, categorical
array, or table of any data type.
Complex Number Support: Yes

Examples Flip Row Vector

Create a row vector.

A = 1:10

A =

1 2 3 4 5 6 7 8 9 10

Use fliplr to flip the elements of A in the horizontal direction.

B = fliplr(A)

B =

10 9 8 7 6 5 4 3 2 1

The order of the elements in B is reversed compared to A.

1-2234

fliplr

Flip Cell Array of Strings

Create a 3-by-3 cell array of strings.

A = {'a' 'b' 'c'; 'd' 'e' 'f'; 'g' 'h' 'i'}

A =

'a' 'b' 'c'
'd' 'e' 'f'
'g' 'h' 'i'

Change the order of the columns in the horizontal direction by using
fliplr.

B = fliplr(A)

B =

'c' 'b' 'a'
'f' 'e' 'd'
'i' 'h' 'g'

The order of the first and third columns of A is switched in B, while the
second column remains unchanged.

Flip Multidimensional Array

Create a multidimensional array.

A = cat(3, [1 2; 3 4], [5 6; 7 8])

A(:,:,1) =

1 2
3 4

A(:,:,2) =

1-2235

fliplr

5 6
7 8

A is an array of size 2-by-2-by-2.

Flip the elements on each page of A in the horizontal direction.

B = fliplr(A)

B(:,:,1) =

2 1
4 3

B(:,:,2) =

6 5
8 7

The result, B, is the same size as A, but the horizontal order of the
elements is flipped. The operation flips the elements on each page
independently.

Tips • fliplr(A) is equivalent to flip(A,2).

• Use the flipud function to flip arrays in the vertical direction (that
is, about a horizontal axis).

• The flip function can flip arrays in any direction.

See Also flip | flipud | rot90

1-2236

flipud

Purpose Flip array up to down

Syntax B = flipud(A)

Description B = flipud(A) returns A with its rows flipped in the up-down direction
(that is, about a horizontal axis).

If A is a column vector, then flipud(A) returns a vector of the same
length with the order of its elements reversed. If A is a row vector, then
flipud(A) simply returns A. For multidimensional arrays, flipud
operates on the planes formed by the first and second dimensions.

Input
Arguments

A - Input array
vector | matrix | array | cell array | categorical array | table

Input array, specified as a vector, matrix, array, cell array, categorical
array, or table of any data type.
Complex Number Support: Yes

Examples Flip Column Vector

Create a column vector.

A=(1:10)'

A =

1
2
3
4
5
6
7
8
9

10

1-2237

flipud

Use flipud to flip the elements of A in the vertical direction.

B = flipud(A)

B =

10
9
8
7
6
5
4
3
2
1

The order of the elements in B is reversed compared to A.

Flip Cell Array of Strings

Create a 3-by-3 cell array of strings.

A = {'a' 'b' 'c'; 'd' 'e' 'f'; 'g' 'h' 'i'}

A =

'a' 'b' 'c'
'd' 'e' 'f'
'g' 'h' 'i'

Change the order of the rows in the vertical direction by using flipud.

B = flipud(A)

B =

'g' 'h' 'i'
'd' 'e' 'f'

1-2238

flipud

'a' 'b' 'c'

The order of the first and third rows of A is switched in B, while the
second row remains unchanged.

Flip Multidimensional Array

Create a multidimensional array.

A = cat(3, [1 2; 3 4], [5 6; 7 8])

A(:,:,1) =

1 2
3 4

A(:,:,2) =

5 6
7 8

A is an array of size 2-by-2-by-2.

Flip the elements on each page of A in the vertical direction.

B = flipud(A)

B(:,:,1) =

3 4
1 2

B(:,:,2) =

7 8
5 6

1-2239

flipud

The result, B, is the same size as A, but the vertical order of the elements
is flipped. The operation flips the elements on each page independently.

Tips • flipud(A) is equivalent to flip(A,1).

• Use the fliplr function to flip arrays in the horizontal direction
(that is, about a vertical axis).

• The flip function can flip arrays in any direction.

See Also fliplr | rot90 | flip

1-2240

floor

Purpose Round toward negative infinity

Syntax B = floor(A)

Description B = floor(A) rounds the elements of A to the nearest integers less
than or equal to A. For complex A, the imaginary and real parts are
rounded independently.

Examples a = [-1.9 -0.2 3.4 5.6 7.0 2.4+3.6i];

floor(a)

ans =

-2.0000 -1.0000 3.0000 5.0000 7.0000 2.0000 + 3.0000i

See Also ceil | fix | round

1-2241

flow

Purpose Simple function of three variables

Syntax v = flow
v = flow(n)
v = flow(x,y,z)
[x,y,z,v] = flow(...)

Description flow, a function of three variables, generates fluid-flow data that is
useful for demonstrating slice, interp3, and other functions that
visualize scalar volume data.

v = flow produces a 50-by-25-by-25 array.

v = flow(n) produces a n-by-2n-by-n array.

v = flow(x,y,z) evaluates the speed profile at the points x, y, and z.

[x,y,z,v] = flow(...) returns the coordinates as well as the volume
data.

See Also slice | interp3

How To • “Slicing Fluid Flow Data”

1-2242

fminbnd

Purpose Find minimum of single-variable function on fixed interval

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer
of the function that is described in fun in the interval x1 < x < x2.
fun is a function_handle.

“Parameterizing Functions” in the MATLAB Mathematics
documentation, explains how to pass additional parameters to your
objective function fun.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminbnd uses these options
structure fields:

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) displays
output only if the function does not converge. See
“Iterative Display” in MATLAB Mathematics for
more information.

FunValCheck Check whether objective function values are valid.
'on' displays an error when the objective function
returns a value that is complex or NaN. 'off'
displays no error.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

1-2243

fminbnd

OutputFcn User-defined function that is called at each
iteration. See “Output Functions” in MATLAB
Mathematics for more information.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots or
write your own. Pass a function handle or a cell
array of function handles. The default is none ([]).

• @optimplotx plots the current point

• @optimplotfval plots the function value

• @optimplotfunccount plots the function count

See “Plot Functions” in MATLAB Mathematics for
more information.

TolX Termination tolerance on x.

[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that
describes the exit condition of fminbnd:

1 fminbnd converged to a solution x based on
options.TolX.

0 Maximum number of function evaluations or
iterations was reached.

-1 Algorithm was terminated by the output function.

-2 Bounds are inconsistent (x1 > x2).

[x,fval,exitflag,output] = fminbnd(...) returns a structure
output that contains information about the optimization in the
following fields:

1-2244

fminbnd

algorithm Algorithm used

funcCount Number of function evaluations

iterations Number of iterations

message Exit message

Arguments fun is the function to be minimized. fun accepts a scalar x and returns
a scalar f, the objective function evaluated at x. The function fun can
be specified as a function handle for a function file

x = fminbnd(@myfun,x1,x2);

where myfun.m is a function file such as

function f = myfun(x)
f = ... % Compute function value at x.

or as a function handle for an anonymous function:

x = fminbnd(@(x) sin(x*x),x1,x2);

Other arguments are described in the syntax descriptions above.

Examples x = fminbnd(@cos,3,4) computes π to a few decimal places and gives
a message on termination.

[x,fval,exitflag] = ...
fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))

computes π to about 12 decimal places, suppresses output, returns the
function value at x, and returns an exitflag of 1.

The argument fun can also be a function handle for an anonymous
function. For example, to find the minimum of the function
f(x) = x3 – 2x – 5 on the interval (0,2), create an anonymous function f

f = @(x)x.^3-2*x-5;

1-2245

fminbnd

Then invoke fminbnd with

x = fminbnd(f, 0, 2)

The result is

x =
0.8165

The value of the function at the minimum is

y = f(x)

y =
-6.0887

If fun is parameterized, you can use anonymous functions to capture
the problem-dependent parameters. For example, suppose you want to
minimize the objective function myfun defined by the following function
file:

function f = myfun(x,a)
f = (x - a)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly
to fminbind. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.

a = 1.5; % define parameter first

2 Call fminbnd with a one-argument anonymous function that captures
that value of a and calls myfun with two arguments:

x = fminbnd(@(x) myfun(x,a),0,1)

Algorithms fminbnd is a function file. Its algorithm is based on golden section
search and parabolic interpolation. Unless the left endpoint x1 is very

1-2246

fminbnd

close to the right endpoint x2, fminbnd never evaluates fun at the
endpoints, so fun need only be defined for x in the interval x1 < x < x2.

If the minimum actually occurs at x1 or x2, fminbnd returns a point
x in the interior of the interval (x1,x2) that is close to the minimizer.
In this case, the distance of x from the minimizer is no more than
2*(TolX + 3*abs(x)*sqrt(eps)). See [1] or [2] for details about the
algorithm.

Limitations The function to be minimized must be continuous. fminbnd may only
give local solutions.

fminbnd often exhibits slow convergence when the solution is on a
boundary of the interval.

fminbnd only handles real variables.

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods
for Mathematical Computations, Prentice-Hall, 1976.

[2] Brent, Richard. P., Algorithms for Minimization without Derivatives,
Prentice-Hall, Englewood Cliffs, New Jersey, 1973

See Also fminsearch | fzero | optimset | function_handle

How To • anonymous function

1-2247

fminsearch

Purpose Find minimum of unconstrained multivariable function using
derivative-free method

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as
unconstrained nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and returns a value x
that is a local minimizer of the function described in fun. x0 can be a
scalar, vector, or matrix. fun is a function_handle.

“Parameterizing Functions” in the MATLAB Mathematics
documentation explains how to pass additional parameters to your
objective function fun. See also “Example 2” on page 1-2251 and
“Example 3” on page 1-2251 below.

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminsearch uses these
options structure fields:

Display Level of display. 'off' displays no output;
'iter' displays output at each iteration; 'final'
displays just the final output; 'notify' (default)
displays output only if the function does not
converge. See “Iterative Display” in MATLAB
Mathematics for more information.

FunValCheck Check whether objective function values are valid.
'on' displays an error when the objective function
returns a value that is complex, Inf or NaN. 'off'
(the default) displays no error.

1-2248

fminsearch

MaxFunEvals Maximum number of function evaluations allowed

MaxIter Maximum number of iterations allowed

OutputFcn User-defined function that is called at each
iteration. See “Output Functions” in MATLAB
Mathematics for more information.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots or
write your own. Pass a function handle or a cell
array of function handles. The default is none ([]).

• @optimplotx plots the current point

• @optimplotfval plots the function value

• @optimplotfunccount plots the function count

See “Plot Functions” in MATLAB Mathematics for
more information.

TolFun Termination tolerance on the function value

TolX Termination tolerance on x

[x,fval] = fminsearch(...) returns in fval the value of the
objective function fun at the solution x.

[x,fval,exitflag] = fminsearch(...) returns a value exitflag
that describes the exit condition of fminsearch:

1 fminsearch converged to a solution x.

0 Maximum number of function evaluations or
iterations was reached.

-1 Algorithm was terminated by the output function.

[x,fval,exitflag,output] = fminsearch(...) returns a structure
output that contains information about the optimization in the
following fields:

1-2249

fminsearch

algorithm 'Nelder-Mead simplex direct search'

funcCount Number of function evaluations

iterations Number of iterations

message Exit message

Arguments fun is the function to be minimized. It accepts an input x and returns a
scalar f, the objective function evaluated at x. The function fun can be
specified as a function handle for a function file

x = fminsearch(@myfun, x0)

where myfun is a function file such as

function f = myfun(x)
f = ... % Compute function value at x

or as a function handle for an anonymous function, such as

x = fminsearch(@(x)sin(x^2), x0);

Other arguments are described in the syntax descriptions above.

Examples Example 1

The Rosenbrock banana function is a classic test example for
multidimensional minimization:

f x x x x() .= −() + −()100 12 1
2 2

1
2

The minimum is at (1,1) and has the value 0. The traditional starting
point is (-1.2,1). The anonymous function shown here defines the
function and returns a function handle called banana:

banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2;

Pass the function handle to fminsearch:

1-2250

fminsearch

[x,fval] = fminsearch(banana,[-1.2, 1])

This produces

x =

1.0000 1.0000

fval =

8.1777e-010

This indicates that the minimizer was found to at least four decimal
places with a value near zero.

Example 2

If fun is parameterized, you can use anonymous functions to capture
the problem-dependent parameters. For example, suppose you want to
minimize the objective function myfun defined by the following function
file:

function f = myfun(x,a)
f = x(1)^2 + a*x(2)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly
to fminsearch. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.

a = 1.5; % define parameter first

2 Call fminsearch with a one-argument anonymous function that
captures that value of a and calls myfun with two arguments:

x = fminsearch(@(x) myfun(x,a),[0,1])

Example 3

You can modify the first example by adding a parameter a to the second
term of the banana function:

1-2251

fminsearch

f x x x a x() .= −() + −()100 2 1
2 2

1
2

This changes the location of the minimum to the point [a,a^2]. To
minimize this function for a specific value of a, for example a = sqrt(2),
create a one-argument anonymous function that captures the value of a.

a = sqrt(2);
banana = @(x)100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,fval] = fminsearch(banana, [-1.2, 1], ...
optimset('TolX',1e-8));

seeks the minimum [sqrt(2), 2] to an accuracy higher than the
default on x.

Algorithms fminsearch uses the simplex search method of Lagarias et al. [1].
This is a direct search method that does not use numerical or analytic
gradients.

If n is the length of x, a simplex in n-dimensional space is characterized
by the n+1 distinct vectors that are its vertices. In two-space, a simplex
is a triangle; in three-space, it is a pyramid. At each step of the search,
a new point in or near the current simplex is generated. The function
value at the new point is compared with the function’s values at the
vertices of the simplex and, usually, one of the vertices is replaced by
the new point, giving a new simplex. This step is repeated until the
diameter of the simplex is less than the specified tolerance.

For more information, see “fminsearch Algorithm”.

Limitations fminsearch can often handle discontinuity, particularly if it does not
occur near the solution. fminsearch may only give local solutions.

fminsearch only minimizes over the real numbers, that is, x must only
consist of real numbers and f(x) must only return real numbers. When x
has complex variables, they must be split into real and imaginary parts.

1-2252

fminsearch

References [1] Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence Properties of the Nelder-Mead Simplex Method in Low
Dimensions,” SIAM Journal of Optimization, Vol. 9 Number 1, pp.
112-147, 1998.

See Also fminbnd | optimset | function_handle

How To • anonymous function

1-2253

fopen

Purpose Open file, or obtain information about open files

Syntax fileID = fopen(filename)
fileID = fopen(filename,permission)
fileID = fopen(filename,permission,machinefmt,encodingIn)
[fileID,errmsg] = fopen(___)

fIDs = fopen('all')

filename = fopen(fileID)
[filename,permission,machinefmt,encodingOut]
= fopen(fileID)

Description fileID = fopen(filename) opens the file, filename, for binary read
access, and returns an integer file identifier equal to or greater than
3. MATLAB reserves file identifiers 0, 1, and 2 for standard input,
standard output (the screen), and standard error, respectively.

If fopen cannot open the file, then fileID is -1.

fileID = fopen(filename,permission) opens the file with the type
of access specified by permission.

fileID = fopen(filename,permission,machinefmt,encodingIn)
additionally specifies the order for reading or writing bytes or bits in
the file using the machinefmt argument. The optional encodingIn
argument specifies the character encoding scheme associated with the
file.

[fileID,errmsg] = fopen(___) additionally returns a
system-dependent error message if fopen fails to open the file.
Otherwise, errmsg is an empty string. You can use this syntax with any
of the input arguments of the previous syntaxes.

1-2254

fopen

fIDs = fopen('all') returns a row vector containing the file
identifiers of all open files. The identifiers reserved for standard input,
output, and error are not included. The number of elements in the
vector is equal to the number of open files.

filename = fopen(fileID) returns the file name that a previous call
to fopen used when it opened the file specified by fileID. The output
filename is resolved to the full path. The fopen function does not read
information from the file to determine the output value.

[filename,permission,machinefmt,encodingOut] =
fopen(fileID) additionally returns the permission, machine format,
and encoding that a previous call to fopen used when it opened the
specified file. If the file was opened in binary mode, permission
includes the letter 'b'. The encodingOut output is a standard encoding
scheme name. fopen does not read information from the file to
determine these output values. An invalid fileID returns empty
strings for all output arguments.

Input
Arguments

filename - Name of file to open
string

Name of the file to open, including the file extension, specified as a
string. If the file is not in the current folder, filename must include a
full or a relative path.

On UNIX systems, if filename begins with '~/' or '~username/',
the fopen function expands the path to the current or specified user’s
home directory, respectively.

• If you open a file with read access and the file is not in the current
folder, then fopen searches along the MATLAB search path.

• If you open a file with write or append access and the file is not in the
current folder, then fopen creates a file in the current directory.

Example: 'myFile.txt'

1-2255

fopen

Data Types
char

permission - File access type
'r' (default) | 'w' | 'a' | 'r+' | 'w+' | 'a+' | 'A' | 'W' | ...

File access type, specified as a string. You can open a file in binary
mode or in text mode. On UNIX systems, both translation modes
have the same effect. To open a file in binary mode, specify one of the
following strings.

'r' Open file for reading.

'w' Open or create new file for writing. Discard existing
contents, if any.

'a' Open or create new file for writing. Append data to the
end of the file.

'r+' Open file for reading and writing.

'w+' Open or create new file for reading and writing.
Discard existing contents, if any.

'a+' Open or create new file for reading and writing.
Append data to the end of the file.

'A' Append without automatic flushing of the current
output buffer. (Used with tape drives.)

'W' Write without automatic flushing of the current output
buffer. (Used with tape drives.)

To open files in text mode, attach the letter 't' to the permission
argument, such as 'rt' or 'wt+'.

On Windows systems, in text mode:

• Read operations that encounter a carriage return followed by a
newline character ('\r\n') remove the carriage return from the
input.

1-2256

fopen

• Write operations insert a carriage return before any newline
character in the output.

Open or create a new file in text mode if you want to write to it in
MATLAB and then open it in Microsoft Notepad, or any text editor that
does not recognize '\n' as a newline sequence. When writing to the file,
end each line with '\r\n'. For an example, see fprintf. Otherwise,
open files in binary mode for better performance.

To read and write to the same file:

• Open the file with a value for permission that includes a plus sign,
'+'.

• Call fseek or frewind between read and write operations. For
example, do not call fread followed by fwrite, or fwrite followed by
fread, unless you call fseek or frewind between them.

machinefmt - Order for reading or writing bytes or bits
'n' (default) | 'b' | 'l' | 's' | 'a' | ...

Order for reading or writing bytes or bits in the file, specified as one of
the following strings.

'n' or 'native' Your system byte ordering (default)

'b' or 'ieee-be' Big-endian ordering

'l' or 'ieee-le' Little-endian ordering

's' or 'ieee-be.l64' Big-endian ordering, 64-bit long data
type

'a' or 'ieee-le.l64' Little-endian ordering, 64-bit long data
type

By default, all currently supported platforms use little-endian ordering
for new files. Existing binary files can use either big-endian or
little-endian ordering.

encodingIn - Character encoding
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

1-2257

fopen

Character encoding to use for subsequent read and write operations,
including fscanf, fprintf, fgetl, fgets, fread, and fwrite, specified
as one of the following strings.

'Big5' 'ISO-8859-1' 'windows-932'

'EUC-JP' 'ISO-8859-2' 'windows-936'

'GBK' 'ISO-8859-3' 'windows-949'

'KSC_5601' 'ISO-8859-4' 'windows-950'

'Macintosh' 'ISO-8859-9' 'windows-1250'

'Shift_JIS' 'ISO-8859-13' 'windows-1251'

'US-ASCII' 'ISO-8859-15' 'windows-1252'

'UTF-8' 'windows-1253'

'windows-1254'

'windows-1257'

The default encoding is system-dependent.

If you specify a value for encoding that is not in the list of supported
values, MATLAB issues a warning. Specifying other encoding names
sometimes (but not always) produces correct results.

Data Types
char

fileID - File identifier of an open file
integer

File identifier of an open file, specified as an integer.

Data Types
double

Examples Open File and Pass Identifier to File I/O Function

Open a file and pass the file identifier to the fgetl function to read data.

1-2258

fopen

Open the file, airfoil.m, and obtain the file identifier.

fileID = fopen('airfoil.m');

Pass the fileID to the fgetl function to read one line from the file.
Then, close the file.

tline = fgetl(fileID);
fclose(fileID)

Request Name of File to Open

Create a prompt to request the name of a file to open. If fopen cannot
open the file, display the relevant error message.

fileID = -1;
errmsg = '';
while fileID < 0

disp(errmsg);
filename = input('Open file: ', 's');
[fileID,errmsg] = fopen(filename);

end

Open File for Writing and Specify Access Type, Writing
Order, Character Encoding

Open a file to write to a file using the Shift-JIS character encoding.

fileID = fopen('japanese_out.txt','w','n','Shift_JIS');

The 'w' input specifies write access, the 'n' input specifies native byte
ordering, and 'Shift_JIS' specifies the character encoding scheme.

Get Information About Open Files

Suppose you previously opened a file using fopen.

fileID = fopen('airfoil.m');

Get the file identifiers of all open files.

1-2259

fopen

fIDs = fopen('all')

fIDs =

3

Get the file name and character encoding for the open file. Use ~ in
place of output arguments you want to omit.

[filename,~,~,encoding] = fopen(3)

filename =

matlabroot\toolbox\matlab\demos\airfoil.m

encoding =

windows-1252

The output shown here is representative. Your results might differ.

Tips • In most cases, it is not necessary to open a file in text mode. MATLAB
import functions, all UNIX applications, and Microsoft Word and
WordPad recognize '\n' as a newline indicator.

See Also fclose | ferror | fseek | ftell | feof | fscanf | fprintf | fread
| fwrite | frewind

1-2260

fopen (serial)

Purpose Connect serial port object to device

Syntax fopen(obj)

Description fopen(obj) connects the serial port object, obj to the device.

Tips Before you can perform a read or write operation, objmust be connected
to the device with the fopen function. When obj is connected to the
device:

• Data remaining in the input buffer or the output buffer is flushed.

• The Status property is set to open.

• The BytesAvailable, ValuesReceived, ValuesSent, and
BytesToOutput properties are set to 0.

An error is returned if you attempt to perform a read or write operation
while obj is not connected to the device. You can connect only one serial
port object to a given device.

Some properties are read-only while the serial port object is open
(connected), and must be configured before using fopen. Examples
include InputBufferSize and OutputBufferSize. Refer to the property
reference pages to determine which properties have this constraint.

The values for some properties are verified only after obj is connected
to the device. If any of these properties are incorrectly configured, then
an error is returned when fopen is issued and obj is not connected to
the device. Properties of this type include BaudRate, and are associated
with device settings.

Examples This example creates the serial port object s, connects s to the device
using fopen, writes and reads text data, and then disconnects s from
the device. This example works on a Windows platform.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')

1-2261

fopen (serial)

idn = fscanf(s);
fclose(s)

See Also fclose | BytesAvailable | BytesToOutput | Status |
ValuesReceived | ValuesSent

1-2262

for

Purpose Execute statements specified number of times

Syntax for index = values
program statements

:
end

Description for index=values, program statements, end repeatedly executes
one or more MATLAB statements in a loop. values has one of the
following forms:

initval:endval increments the index variable from initval
to endval by 1, and repeats execution of
program statements until index is greater
than endval.

initval:step:endval increments index by the value step on
each iteration, or decrements when step is
negative.

valArray creates a column vector index from subsequent
columns of array valArray on each iteration.
For example, on the first iteration, index
= valArray(:,1). The loop executes for
a maximum of n times, where n is the
number of columns of valArray, given by
numel(valArray, 1, :). The input valArray
can be of any MATLAB data type, including a
string, cell array, or struct.

Tips • To force an immediate exit of the loop, use a break or return
statement. To skip the rest of the instructions in the loop, increment
the loop counter, and begin the next iteration, use a continue
statement.

• Avoid assigning a value to the index variable within the body of a
loop. The for statement overrides any changes made to the index
within the loop.

1-2263

for

• To iterate over the values of a single column vector, first transpose
it to create a row vector.

Examples Create a Hilbert matrix using nested for loops:

k = 10;
hilbert = zeros(k,k); % Preallocate matrix

for m = 1:k
for n = 1:k

hilbert(m,n) = 1/(m+n -1);
end

end

Step by increments of -0.1, and display the step values:

for s = 1.0: -0.1: 0.0
disp(s)

end

Execute statements for a defined set of index values:

for s = [1,5,8,17]
disp(s)

end

Successively set e to unit vectors:

for e = eye(5)
disp('Current value of e:')
disp(e)

end

See Also end | break | continue | parfor | return | switch | colon | if

1-2264

format

Purpose Set display format for output

Syntax format
format Style

Description format sets the display of floating-point numeric values to the default
display format, which is the short fixed decimal format. This format
displays 5-digit scaled, fixed-point values.

The format function affects only how numbers display in the Command
Window, not how MATLAB computes or saves them.

format Style changes the display format to the specified Style.

Input
Arguments

Style - Output display format
short (default) | long | shortE | longE | ...

Output display format, specified as one of the strings listed in the tables
that follow.

Use these styles to switch between different output display formats
for floating-point variables. Styles are case insensitive. You also can
insert a space between short or long and the presentation type, for
instance, format short E.

Style Result Example

short
(default)

Short fixed decimal format, with 4
digits after the decimal point.

If you are displaying a matrix with
a wide range of values, consider
using shortG. See “Display Large
Data Range in short and shortg
Formats” on page 1-2270

3.1416

long Long fixed decimal format, with
15 digits after the decimal point
for double values, and 7 digits

3.141592653589793

1-2265

format

Style Result Example

after the decimal point for single
values.

shortE Short scientific notation, with 4
digits after the decimal point.

Integer-valued floating-point
numbers with a maximum of 9
digits do not display in scientific
notation.

3.1416e+00

longE Long scientific notation, with
15 digits after the decimal point
for double values, and 7 digits
after the decimal point for single
values.

Integer-valued floating-point
numbers with a maximum of 9
digits do not display in scientific
notation.

3.141592653589793e+00

shortG The more compact of short fixed
decimal or scientific notation, with
5 digits.

3.1416

longG The more compact of long fixed
decimal or scientific notation, with
15 digits for double values, and 7
digits for single values.

3.14159265358979

shortEng Short engineering notation, with 4
digits after the decimal point, and
an exponent that is a multiple of 3.

3.1416e+000

longEng Long engineering notation, with
15 significant digits, and an
exponent that is a multiple of 3.

3.14159265358979e+000

1-2266

format

Use these format styles to switch between different output display
formats for all numeric variables.

Style Result Example

+ Positive/Negative format, with +, -, and
blank characters displayed for positive,
negative, and zero elements.

+

bank Currency format, with 2 digits after the
decimal point.

3.14

hex Hexadecimal representation of a binary
double-precision number.

400921fb54442d18

rat Ratio of small integers. 355/113

Use these format styles to affect the spacing in the display of all
variables.

DispType Result Example

compact Suppresses excess line feeds to show
more output in a single screen. Contrast
with loose.

theta =
pi/2
theta =

1.5708

loose Adds linefeeds to make output more
readable. Contrast with compact.

theta =
pi/2

theta =

1.5708

Examples Change and View Current Format

Set the display format to long fixed decimal.

format long

1-2267

format

View the result for the value of pi.

pi

ans =

3.141592653589793

View the current format.

get(0,'format')

ans =

long

Display Values in Default and Hexadecimal Format

Set the format to its default, and display the maximum values for
integers and real numbers in MATLAB.

format

intmax('uint64')

ans =

18446744073709551615

realmax

ans =
1.7977e+308

Change the display format to hexadecimal, and then display the same
values.

format hex

1-2268

format

intmax('uint64')

ans =

ffffffffffffffff

realmax

ans =

7fefffffffffffff

The hexadecimal display corresponds to the internal representation
of the value. It is not the same as the hexadecimal notation in the C
programming language.

View Output in Short and Long Engineering Notation

View the difference between output displayed in the shortEng and
longEng formats.

Set the display format to shortEng.

format shortEng

Create variable A and increase its value by a multiple of 10 each time
through a for loop. Display each value of A.

A = 5.123456789;
for k=1:10

disp(A)
A = A * 10;

end

5.1235e+000
51.2346e+000

512.3457e+000
5.1235e+003

51.2346e+003

1-2269

format

512.3457e+003
5.1235e+006

51.2346e+006
512.3457e+006

5.1235e+009

The values for A display with 4 digits after the decimal point, and an
exponent that is a multiple of 3.

Set the display format to longEng and view the same values of A.

format longEng

A = 5.123456789;
for k=1:10

disp(A)
A = A * 10;

end

5.12345678900000e+000
51.2345678900000e+000
512.345678900000e+000
5.12345678900000e+003
51.2345678900000e+003
512.345678900000e+003
5.12345678900000e+006
51.2345678900000e+006
512.345678900000e+006
5.12345678900000e+009

The values for A display with 15 digits, and an exponent that is a
multiple of 3.

Display Large Data Range in short and shortg Formats

View the difference between the short and shortg formats when the
values in a matrix span a wide range.

Define variable x and display the output in the short format.

1-2270

format

x = [25 56 255 9876899999];
format short
x

x =
1.0e+09 *
0.0000 0.0000 0.0000 9.8769

The display indicates each value is multiplied by 1.0e+09.

Set the format to shortg and redisplay x.

format shortg
x

x =
25 56 255 9.8769e+09

Algorithms MATLAB always displays integer variables to the appropriate number
of digits for the class. For example, MATLAB uses 3 digits to display
numbers of type int8 (for example, -128:127). Setting format to short
or long does not affect the display of integer variables.

If the largest element of a matrix is larger than 103 or smaller than
10-3, then MATLAB applies a common scale factor for the short and
long formats.

Tips • The specified format applies only to the current MATLAB session.
To maintain a format across sessions, choose a Numeric format or
Numeric display option in the Command Window Preferences.

• To see which Style is currently in use, type

get(0,'Format')

To see if compact or loose formatting is currently selected, type

get(0,'FormatSpacing')

1-2271

format

See Also disp | display | isnumeric | isfloat | isinteger | floor | sprintf
| fprintf | num2str | rat | spy

Concepts • “Format Output in Command Window”

1-2272

fplot

Purpose Plot function between specified limits

Syntax fplot(fun,limits)
fplot(fun,limits,LineSpec)
fplot(fun,limits,tol)
fplot(fun,limits,tol,LineSpec)
fplot(fun,limits,n)
fplot(fun,lims,...)
fplot(axes_handle,...)
[X,Y] = fplot(fun,limits,...)

Description fplot plots a function between specified limits. The function must be of
the form y = f(x), where x is a vector whose range specifies the limits,
and y is a vector the same size as x and contains the function’s value
at the points in x (see the first example). If the function returns more
than one value for a given x, then y is a matrix whose columns contain
each component of f(x) (see the second example).

fplot(fun,limits) plots fun between the limits specified by limits.
limits is a vector specifying the x-axis limits ([xmin xmax]), or the x-
and y-axes limits, ([xmin xmax ymin ymax]).

fun must be

• The name of a function

• A string with variable x that may be passed to eval, such as
'sin(x)', 'diric(x,10)', or '[sin(x),cos(x)]'

• A function handle

The function f(x) must return a row vector for each element of vector
x. For example, if f(x) returns [f1(x),f2(x),f3(x)] then for input
[x1;x2] the function should return the matrix

f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)

fplot(fun,limits,LineSpec) plots fun using the line specification
LineSpec.

1-2273

fplot

fplot(fun,limits,tol) plots fun using the relative error tolerance
tol (the default is 2e-3, i.e., 0.2 percent accuracy).

fplot(fun,limits,tol,LineSpec) plots fun using the relative error
tolerance tol and a line specification that determines line type, marker
symbol, and color. See LineSpec for more information.

fplot(fun,limits,n) with n >= 1 plots the function with a minimum
of n+1 points. The default n is 1. The maximum step size is restricted
to be (1/n)*(xmax-xmin).

fplot(fun,lims,...) accepts combinations of the optional arguments
tol, n, and LineSpec, in any order.

fplot(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

[X,Y] = fplot(fun,limits,...) returns the abscissas and ordinates
for fun in X and Y. No plot is drawn on the screen; however, you can
plot the function using plot(X,Y).

Tips fplot uses adaptive step control to produce a representative graph,
concentrating its evaluation in regions where the function’s rate of
change is the greatest.

Examples MATLAB® Function Handle

Plot the hyperbolic tangent function from -2 to 2 using the MATLAB®
function tanh.

fh = @tanh;
fplot(fh,[-2,2])

1-2274

fplot

Function Handle Created From Anonymous Function

Create a function handle from an anonymous function. Plot the function
from 0.01 to 0.1.

sn = @(x) sin(1./x);
fplot(sn,[0.01,0.1])

1-2275

fplot

Function Handle Created From Custom Function File

Create a file named myfun.m that contains the following code.

function Y = myfun(x)
Y(:,1) = 200*sin(x(:))./x(:);
Y(:,2) = x(:).^2;

Then, create a function handle pointing to myfun.

fh = @myfun;

1-2276

fplot

Plot the function from -20 to 20.

fplot(fh,[-20 20])

See Also eval | ezplot | feval | LineSpec | plot

How To • Anonymous Functions

1-2277

fprintf

Purpose Write data to text file

Syntax fprintf(fileID,formatSpec,A1,...,An)
fprintf(formatSpec,A1,...,An)

nbytes = fprintf(___)

Description fprintf(fileID,formatSpec,A1,...,An) applies the formatSpec to
all elements of arrays A1,...An in column order, and writes the data
to a text file. fprintf uses the encoding scheme specified in the call to
fopen.

fprintf(formatSpec,A1,...,An) formats data and displays the
results on the screen.

nbytes = fprintf(___) returns the number of bytes that fprintf
writes, using any of the input arguments in the preceding syntaxes.

Input
Arguments

fileID - File identifier
1 (default) | 2 | scalar

File identifier, specified as one of the following:

• A file identifier obtained from fopen.

• 1 for standard output (the screen).

• 2 for standard error.

Data Types
double

formatSpec - Format of the output fields
string

Format of the output fields, specified as a string.

1-2278

fprintf

The string can include a percent sign followed by a conversion
character. The following table lists the available conversion characters
and subtypes.

Value Type Conversion Details

Integer, signed %d or %i Base 10

%u Base 10

%o Base 8 (octal)

%x Base 16 (hexadecimal),
lowercase letters a–f

Integer, unsigned

%X Same as %x, uppercase letters
A–F

%f Fixed-point notation

%e Exponential notation, such as
3.141593e+00

%E Same as %e, but uppercase,
such as 3.141593E+00

%g The more compact of %e or %f,
with no trailing zeros

%G The more compact of %E or %f,
with no trailing zeros

%bx or %bX
%bo
%bu

Double-precision hexadecimal,
octal, or decimal value
Example: %bx prints pi as
400921fb54442d18

Floating-point
number

%tx or %tX
%to
%tu

Single-precision hexadecimal,
octal, or decimal value
Example: %tx prints pi as
40490fdb

%c Single characterCharacters

%s String of characters

1-2279

fprintf

The string can include optional operators, which appear in the following
order (includes spaces for clarity):

���������	�
����

������������������������������

�����
 ��������������!����

"��#$�

Optional operators include:

• Identifier

Order for processing inputs. Use the syntax n$, where n represents
the position of the value in the input list.

For example, '%3$s %2$s %1$s %2$s' prints inputs 'A', 'B', 'C'
as follows: C B A B.

• Flags

' ' Left-justify. Example: %-5.2f

'+' Print sign character (+) for positive values. Example:
%+5.2f

' ' Pad to field width with spaces before the value.
Example: % 5.2f

1-2280

fprintf

'0' Pad to field width with zeros. Example: %05.2f

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.

- For %f, %e, or %E, print decimal point even when
precision is 0.

- For %g or %G, do not remove trailing zeros or decimal
point.

Example: %#5.0f

• Field width

Minimum number of characters to print. Can be a number, or an
asterisk (*) to refer to an argument in the input list. For example, the
input list ('%12d', intmax) is equivalent to ('%*d', 12, intmax).

• Precision

For %f, %e, or %E: Number of digits to the right of the decimal
point.
Example: '%6.4f' prints pi as '3.1416'

For %g or %G Number of significant digits.
Example: '%6.4g' prints pi as ' 3.142'

Can be a number, or an asterisk (*) to refer to an argument in the
input list. For example, the input list ('%6.4f', pi) is equivalent
to ('%*.*f', 6, 4, pi).

The string can also include combinations of the following:

• Literal text to print. To print a single quotation mark, include ''
in formatSpec.

• Control characters, including:

1-2281

fprintf

%% Percent character

\\ Backslash

\a Alarm

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xN Character whose ASCII code is the hexadecimal number,
N

\N Character whose ASCII code is the octal number, N

The following limitations apply to conversions:

• Numeric conversions print only the real component of complex
numbers.

• If you specify a conversion that does not fit the data, such as a string
conversion for a numeric value, MATLAB overrides the specified
conversion, and uses %e.

• If you apply a string conversion (%s) to integer values, MATLAB
converts values that correspond to valid character codes to characters.
For example, '%s' converts [65 66 67] to ABC.

A1,...,An - Numeric or character arrays
scalar | vector | matrix | multidimensional array

Numeric or character arrays, specified as a scalar, vector, matrix, or
multidimensional array.

1-2282

fprintf

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char

Output
Arguments

nbytes - Number of bytes
scalar

Number of bytes that fprintf writes, returned as a scalar. When
writing to a file, nbytes is determined by the character encoding.
When printing data to the screen, nbytes is the number of characters
displayed on the screen.

Tips • Format specifiers for the reading functions sscanf and fscanf differ
from the formats for the writing functions sprintf and fprintf. The
reading functions do not support a precision field. The width field
specifies a minimum for writing but a maximum for reading.

Examples Print Literal Text and Array Values

Print multiple numeric values and literal text to the screen.

A1 = [9.9, 9900];
A2 = [8.8, 7.7 ; ...

8800, 7700];
formatSpec = 'X is %4.2f meters or %8.3f mm\n';
fprintf(formatSpec,A1,A2)

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

%4.2f in the formatSpec input specifies that the first value in each
line of output is a floating-point number with a field width of four
digits, including two digits after the decimal point. %8.3f in the
formatSpec input specifies that the second value in each line of output
is a floating-point number with a field width of eight digits, including
three digits after the decimal point. \n is a control character that starts
a new line.

1-2283

fprintf

Print Double-Precision Values as Integers

Explicitly convert double-precision values with fractions to integer
values.

a = [1.02, 3.04, 5.06];
fprintf('%d\n',round(a));

1
3
5

%d in the formatSpec input prints each value in the vector, round(a),
as a signed integer. \n is a control character that starts a new line.

Write Tabular Data to Text File

Write a short table of the exponential function to a text file called
exp.txt.

x = 0:.1:1;
A = [x; exp(x)];

fileID = fopen('exp.txt','w');
fprintf(fileID,'%6s %12s\n','x','exp(x)');
fprintf(fileID,'%6.2f %12.8f\n',A);
fclose(fileID);

The first call to fprintf prints header text x and exp(x), and the
second call prints the values from variable A.

If you plan to read the file with Microsoft Notepad, use '\r\n' instead
of '\n' to move to a new line. For example, replace the calls to fprintf
with the following:

fprintf(fileID,'%6s %12s\r\n','x','exp(x)');
fprintf(fileID,'%6.2f %12.8f\r\n',A);

MATLAB import functions, all UNIX applications, and Microsoft Word
and WordPad recognize '\n' as a newline indicator.

1-2284

fprintf

View the contents of the file with the type command.

type exp.txt

x exp(x)
0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183

Get Number of Bytes Written to File

Write data to a file and return the number of bytes written.

Write an array of data, A, to a file and get the number of bytes that
fprintf writes.

A = magic(4);

fileID = fopen('myfile.txt','w');
nbytes = fprintf(fileID,'%5d %5d %5d %5d\n',A)

nbytes =

96

The fprintf function wrote 96 bytes to the file.

Close the file.

fclose(fileID);

View the contents of the file with the type command.

1-2285

fprintf

type('myfile.txt')

16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1

Display Hyperlinks in Command Window

Display a hyperlink (The MathWorks Web Site) on the screen.

site = 'http://www.mathworks.com';
title = 'The MathWorks Web Site';

fprintf('%s\n',site,title)

%s in the formatSpec input indicates that the values of the variables
site and title, should be printed as strings.

References
[1] Kernighan, B. W., and D. M. Ritchie, The C Programming Language,
Second Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI,
1430 Broadway, New York, NY 10018.

See Also disp | fclose | ferror | fopen | fread | fscanf | fwrite | fseek
| ftell | sprintf

Related
Examples

• “Export Cell Array to Text File”
• “Appending or Overwriting Existing Files”

Concepts • “Formatting Strings”

1-2286

http://www.mathworks.com

fprintf (serial)

Purpose Write text to device

Syntax fprintf(obj,'cmd')
fprintf(obj,'format','cmd')
fprintf(obj,'cmd','mode')
fprintf(obj,'format','cmd','mode')

Description fprintf(obj,'cmd') writes the string cmd to the device connected to the
serial port object, obj. The default format is %s\n. The write operation
is synchronous and blocks the command-line until execution completes.

fprintf(obj,'format','cmd') writes the string using the format
specified by format.

fprintf(obj,'cmd','mode') writes the string with command line access
specified by mode. mode specifies if cmd is written synchronously or
asynchronously.

fprintf(obj,'format','cmd','mode') writes the string using the
specified format. format is a C language conversion specification.

You need an open connection from the serial port object, obj, to the
device before performing read or write operations.

Use the fopen function to open a connection to the device. When obj
has an open connection to the device it has a Status property value of
open. Refer to “Troubleshooting Common Errors” for fprintf errors.

To understand the use of fprintf refer to “ Completing a Write
Operation with fprintf” and “Rules for Writing the Terminator”.

Input
Arguments

format

ANSI C conversion specification includes these conversion characters.

Specifier Description

%c Single character

%d or %i Decimal notation (signed)

1-2287

fprintf (serial)

Specifier Description

%e Exponential notation (using lowercase e as in
3.1415e+00)

%E Exponential notation (using uppercase E as in
3.1415E+00)

%f Fixed-point notation

%g The more compact of %e or %f, as defined above.
Insignificant zeros do not print.

%G Same as %g, but using uppercase E

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

mode

Specifies whether the string cmd is written synchronously or
asynchronously:

• sync: cmd is written synchronously and the command line is blocked.

• async: cmd is written asynchronously and the command line is not
blocked.

If mode is not specified, the write operation is synchronous.

If you specify asynchronous mode, when the write operation occurs:

• The BytesToOutput property value continuously updates to reflect
the number of bytes in the output buffer.

• The MATLAB file callback function specified for the OutputEmptyFcn
property is executed when the output buffer is empty.

1-2288

fprintf (serial)

Use the TransferStatus property to determine whether an
asynchronous write operation is in progress.

For more information on synchronous and asynchronous write
operations, see Controlling Access to the MATLAB Command Line.

Examples Create a serial port object s and connect it to a Tektronix TDS 210
oscilloscope. Write the RS232? command with fprintf. RS232?
instructs the scope to return serial port communications settings. This
example works on a Windows platform.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Specify a format for the data that does not include the terminator, or
configure the terminator to empty.

s = serial('COM1');
fopen(s)
fprintf(s,'%s','RS232?')

The default format for fprintf is %s\n. Therefore, the terminator
specified by the Terminator property is automatically written.
However, in some cases you might want to suppress writing the
terminator.

Specify an array of formats and commands:

s = serial('COM1');
fopen(s)
fprintf(s,['ch:%d scale:%d'],[1 20e-3],'sync');

See Also fopen | fwrite | stopasync | BytesToOutput | OutputBufferSize |
OutputEmptyFcn | Status | TransferStatus | ValuesSent

Tutorials • Writing and Reading Data

• Controlling Access to the MATLAB Command Line

1-2289

frame2im

Purpose Return image data associated with movie frame

Syntax [X,Map] = frame2im(F)

Description [X,Map] = frame2im(F) returns the indexed image X and associated
colormap Map from the single movie frame F. If the frame contains
true-color data, the m-by-n-3 matrix Map is empty. The functions
getframe and im2frame create a movie frame.

Examples Create and capture an image using getframe and frame2im:

peaks %Make figure
f = getframe; %Capture screen shot
[im,map] = frame2im(f); %Return associated image data
if isempty(map) %Truecolor system

rgb = im;
else %Indexed system

rgb = ind2rgb(im,map); %Convert image data
end

See Also getframe | im2frame | movie

1-2290

fread

Purpose Read data from binary file

Syntax A = fread(fileID)
A = fread(fileID,sizeA)
A = fread(fileID,sizeA,precision)
A = fread(fileID,sizeA,precision,skip)
A = fread(fileID,sizeA,precision,skip,machinefmt)
[A,count] = fread(___)

Description A = fread(fileID) reads data from an open binary file into column
vector A and positions the file pointer at the end-of-file marker. The
binary file is indicated by the file identifier, fileID. Use fopen to open
the file and obtain the fileID value. When you finish reading, close the
file by calling fclose(fileID).

A = fread(fileID,sizeA) reads file data into an array, A, with
dimensions, sizeA, and positions the file pointer after the last value
read. fread populates A in column order.

A = fread(fileID,sizeA,precision) interprets values in the file
according to the form and size described by precision. The sizeA
argument is optional.

A = fread(fileID,sizeA,precision,skip) skips the number of bytes
or bits specified by skip after reading each value in the file. The sizeA
argument is optional.

A = fread(fileID,sizeA,precision,skip,machinefmt) additionally
specifies the order for reading bytes or bits in the file. The sizeA and
skip arguments are optional.

[A,count] = fread(___) additionally returns the number of
characters that fread reads into A. You can use this syntax with any of
the input arguments of the previous syntaxes.

1-2291

fread

Input
Arguments

fileID - File identifier
integer

File identifier of an open binary file, specified as an integer. Before
reading a file with fread, you must use fopen to open the file and
obtain the fileID.

Data Types
double

sizeA - Dimensions of output array
Inf (default) | integer | two-element row vector

Dimensions of the output array, A, specified as Inf, an integer, or a
two-element row vector.

Form of the sizeA Input Dimensions of the output
array, A

Inf Column vector, with each element
containing a value in the file.

n Column vector with n elements.

[m,n] m-by-n matrix, filled in column
order. n can be Inf, but m cannot.

precision - Class and size of values to read
'uint8=>double' (default) | string

Class and size in bits of the values to read, specified as a string in
one of the following forms. Optionally the input specifies the class of
the output matrix, A.

1-2292

fread

Form of the precision Input Description

source Input values are of the class
specified by source. Output
matrix A is class double.
Example: 'int16'

source=>output Input values are of the class
specified by source. The class of
the output matrix, A, is specified
by output.
Example: 'int8=>char'

*source The input values and the output
matrix, A, are of the class specified
by source. For bitn or ubitn
precisions, the output has the
smallest class that can contain
the input.
Example: '*ubit18'
This is equivalent to
'ubit18=>uint32'

N*source or
N*source=>output

Read N values before skipping the
number of bytes specified by the
skip argument.
Example: '4*int8'

The following table shows possible values for source and output.

1-2293

fread

Value Type Precision Bits (Bytes)

uint 32 (4)

uint8 8 (1)

uint16 16 (2)

uint32 32 (4)

uint64 64 (8)

uchar 8 (1)

unsigned char 8 (1)

ushort 16 (2)

ulong 32 (4)

Integers, unsigned

ubitn 1 ≤ n ≤ 64

int 32 (4)

int8 8 (1)

int16 16 (2)

int32 32 (4)

int64 64 (8)

integer*1 8 (1)

integer*2 16 (2)

integer*4 32 (4)

integer*8 64 (8)

schar 8 (1)

signed char 8 (1)

short 16 (2)

long 32 (4)

Integers, signed

bitn 1 ≤ n ≤ 64

1-2294

fread

Value Type Precision Bits (Bytes)

single 32 (4)

double 64 (8)

float 32 (4)

float32 32 (4)

float64 64 (8)

real*4 32 (4)

Floating-point
numbers

real*8 64 (8)

char*1 8 (1)Characters

char Depends on the
encoding scheme
associated with the
file. Set encoding
with fopen.

For most values of source, if fread reaches the end of the file before
reading a complete value, it does not return a result for the final value.
However, if source is bitn or ubitn, then fread returns a partial
result for the final value.

Note To preserve NaN and Inf values in MATLAB, read and write data
of class double or single.

skip - Number of bytes to skip
0 (default) | scalar

Number of bytes to skip after reading each value, specified as a scalar.
If you specify a precision of bitn or ubitn, specify skip in bits.

Use the skip argument to read data from noncontiguous fields in
fixed-length records.

1-2295

fread

machinefmt - Order for reading bytes
'n' (default) | 'b' | 'l' | 's' | 'a' | ...

Order for reading bytes in the file, specified as one of the strings in the
table that follows. For bitn and ubitn precisions, machinefmt specifies
the order for reading bits within a byte, but the order for reading bytes
remains your system byte ordering.

'n' or 'native' Your system byte ordering (default)

'b' or 'ieee-be' Big-endian ordering

'l' or 'ieee-le' Little-endian ordering

's' or 'ieee-be.l64' Big-endian ordering, 64-bit long data
type

'a' or 'ieee-le.l64' Little-endian ordering, 64-bit long data
type

By default, all currently supported platforms use little-endian ordering
for new files. Existing binary files can use either big-endian or
little-endian ordering.

Output
Arguments

A - File data
column vector | matrix

File data, returned as a column vector. If you specified the sizeA
argument, then A is a matrix of the specified size. Data in A is class
double unless you specify a different class in the precision argument.

count - Number of characters read
scalar

Number of characters read, returned as a scalar value.

Examples Read Entire File of uint8 Data

Write a nine-element vector to a sample file, nine.bin.

fileID = fopen('nine.bin','w');

1-2296

fread

fwrite(fileID,[1:9]);
fclose(fileID);

Read all the data in the file into a vector of class double. By default,
fread reads a file 1 byte at a time, interprets each byte as an 8-bit
unsigned integer (uint8), and returns a double array.

fileID = fopen('nine.bin');
A = fread(fileID)

A =

1
2
3
4
5
6
7
8
9

fread returns a column vector, with one element for each byte in the file.

View information about A.

whos A

Name Size Bytes Class Attributes

A 9x1 72 double

Close the file.

fclose(fileID);

1-2297

fread

Read Entire File of Double-Precision Data

Create a file named doubledata.bin, containing nine double-precision
values.

fileID = fopen('doubledata.bin','w');
fwrite(fileID,magic(3),'double');
fclose(fileID);

Open the file, doubledata.bin, and read the data in the file into a
3-by-3 array, A. Specify that the source data is class double.

fileID = fopen('doubledata.bin');
A = fread(fileID,[3 3],'double')

A =

8 1 6
3 5 7
4 9 2

Close the file.

fclose(fileID);

Read Text File

Read the contents of the file, fread.m. Transpose the output array, A
so that it is a row vector.

fileID = fopen('fread.m');
A = fread(fileID,'*char')';
fclose(fileID);

fread returns the character array, A.

Read Selected Rows or Columns from File

Create a file named nine.bin, containing the values from 1 to 9. Write
the data as uint16 values.

1-2298

fread

fileID = fopen('nine.bin','w');
fwrite(fileID,[1:9],'uint16');
fclose(fileID);

Read the first six values into a 3-by-2 array. Specify that the source
data is class uint16.

fileID = fopen('nine.bin');
A = fread(fileID,[3,2],'uint16')

A =

1 4
2 5
3 6

fread returns an array populated column-wise with the first six values
from the file, nine.bin.

Return to the beginning of the file.

frewind(fileID)

Read two values at a time, and skip one value before reading the next
values. Specify this format using the precision value, '2*uint16'.
Because the data is class uint16, one value is represented by 2 bytes.
Therefore, specify the skip argument as 2.

precision = '2*uint16';
skip = 2;
B = fread(fileID,[2,3],precision,skip)

B =

1 4 7
2 5 8

1-2299

fread

fread returns a 2-by-3 array populated column-wise with the values
from nine.bin.

Close the file.

fclose(fileID);

Read Digits of Binary Coded Decimal Values

Create a file with binary coded decimal (BCD) values.

str = ['AB'; 'CD'; 'EF'; 'FA'];

fileID = fopen('bcd.bin','w');
fwrite(fileID,hex2dec(str),'ubit8');
fclose(fileID);

Read 1 byte at a time.

fileID = fopen('bcd.bin');
onebyte = fread(fileID,4,'*ubit8');

Display the BCD values.

disp(dec2hex(onebyte))

AB
CD
EF
FA

Return to the beginning of the file using frewind. If you read 4 bits at a
time on a little-endian system, your results appear in the wrong order.

frewind(fileID);

err = fread(fid,8,'*ubit4');
disp(dec2hex(err))

1-2300

fread

B
A
D
C
F
E
A
F

Return to the beginning of the file using frewind. Read the data 4
bits at a time as before, but specify a big-endian ordering to display
the correct results.

frewind(fileID);

correct = fread(fileID,8,'*ubit4','ieee-be');
disp(dec2hex(correct))

A
B
C
D
E
F
F
A

Close the file.

fclose(fileID);

See Also fclose | fgetl | fopen | fscanf | fprintf | fwrite | fseek | ftell

Concepts • “Reading Portions of a File”
• “Reading Files Created on Other Systems”

1-2301

fread (serial)

Purpose Read binary data from device

Syntax A = fread(obj)
A = fread(obj,size,'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)

Description A = fread(obj) and A = fread(obj,size) read binary data from the
device connected to the serial port object, obj, and returns the data to
A. The maximum number of values to read is specified by size. If size
is not specified, the maximum number of values to read is determined
by the object’s InputBufferSize property. Valid options for size are:

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n
matrix in column order.

size cannot be inf, and an error is returned if the specified number
of values cannot be stored in the input buffer. You specify the size, in
bytes, of the input buffer with the InputBufferSize property. A value
is defined as a byte multiplied by the precision (see below).

A = fread(obj,size,'precision') reads binary data with precision
specified by precision.

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character
values. If precision is not specified, uchar (an 8-bit unsigned
character) is used. By default, numeric values are returned in
double-precision arrays. The supported values for precision are listed
below in Tips.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the
read operation was unsuccessful.

1-2302

fread (serial)

Tips Before you can read data from the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the device.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read, each time fread is issued.

Rules for Completing a Binary Read Operation

A read operation with fread blocks access to the MATLAB command
line until:

• The specified number of values are read.

• The time specified by the Timeout property passes.

Note The Terminator property is not used for binary read operations.

Supported Precisions

The supported values for precision are listed below.

Data Type Precision Interpretation

uchar 8-bit unsigned character

schar 8-bit signed character

Character

char 8-bit signed or unsigned character

1-2303

fread (serial)

Data Type Precision Interpretation

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

Integer

ulong 32- or 64-bit unsigned integer

single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

Floating-point

float64 64-bit floating point

See Also fgetl | fgets | fopen | fscanf | BytesAvailable |
BytesAvailableFcn | InputBufferSize | Status | Terminator |
ValuesReceived

1-2304

TriRep.freeBoundary

Purpose (Will be removed) Facets referenced by only one simplex

Note freeBoundary(TriRep) will be removed in a future release. Use
freeBoundary(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax FF = freeBoundary(TR)
[FF XF] = freeBoundary(TR)

Description FF = freeBoundary(TR) returns a matrix FF that represents the free
boundary facets of the triangulation. A facet is on the free boundary
if it is referenced by only one simplex (triangle/tetrahedron, etc). FF is
of size m-by-n, where m is the number of boundary facets and n is the
number of vertices per facet. The vertices of the facets index into the
array of points representing the vertex coordinates TR.X. The array FF
could be empty as in the case of a triangular mesh representing the
surface of a sphere.

[FF XF] = freeBoundary(TR) returns a matrix of free boundary facets

Input
Arguments

TR Triangulation representation.

Output
Arguments

FF FF that has vertices defined in terms of a compact
array of coordinates XF.

XF XF is of size m-by-ndim where m is the number of free
facets, and ndim is the dimension of the space where
the triangulation resides

Definitions A simplex is a triangle/tetrahedron or higher-dimensional equivalent. A
facet is an edge of a triangle or a face of a tetrahedron.

1-2305

TriRep.freeBoundary

Examples Example 1

Use TriRep to compute the boundary triangulation of an imported
triangulation.

Load a 3-D triangulation:

load tetmesh;
trep = TriRep(tet, X);

Compute the boundary triangulation:

[tri xf] = freeBoundary(trep);

Plot the boundary triangulation:

trisurf(tri, xf(:,1),xf(:,2),xf(:,3), ...
'FaceColor','cyan', 'FaceAlpha', 0.8);

1-2306

TriRep.freeBoundary

Example 2

Perform a direct query of a 2-D triangulation created with DelaunayTri.

Plot the mesh:

x = rand(20,1);
y = rand(20,1);
dt = DelaunayTri(x,y);
fe = freeBoundary(dt)';
triplot(dt);
hold on;

Display the free boundary edges in red:

plot(x(fe), y(fe), '-r', 'LineWidth',2) ;
hold off;

In this instance the free edges correspond to the convex hull of (x, y).

1-2307

TriRep.freeBoundary

See Also delaunayTriangulation | convexHull | featureEdges | faceNormal
| triangulation

1-2308

freqspace

Purpose Frequency spacing for frequency response

Syntax [f1,f2] = freqspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(...,'meshgrid')
f = freqspace(N)
f = freqspace(N,'whole')

Description freqspace returns the implied frequency range for equally spaced
frequency responses. freqspace is useful when creating desired
frequency responses for various one- and two-dimensional applications.

[f1,f2] = freqspace(n) returns the two-dimensional frequency
vectors f1 and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.

For n even, both f1 and f2 are [-n:2:n-2]/n.

[f1,f2] = freqspace([m n]) returns the two-dimensional frequency
vectors f1 and f2 for an m-by-n matrix.

[x1,y1] = freqspace(...,'meshgrid') is equivalent to

[f1,f2] = freqspace(...);
[x1,y1] = meshgrid(f1,f2);

f = freqspace(N) returns the one-dimensional frequency vector f
assuming N evenly spaced points around the unit circle. For N even or
odd, f is (0:2/N:1). For N even, freqspace therefore returns (N+2)/2
points. For N odd, it returns (N+1)/2 points.

f = freqspace(N,'whole') returns N evenly spaced points around the
whole unit circle. In this case, f is 0:2/N:2*(N-1)/N.

See Also meshgrid

1-2309

frewind

Purpose Move file position indicator to beginning of open file

Syntax frewind(fileID)

Description frewind(fileID) sets the file position indicator to the beginning of a
file. fileID is an integer file identifier obtained from fopen.

If the file is on a tape device and the rewind operation fails, frewind
does not return an error message.

Alternatives frewind(fileID) is equivalent to:

fseek(fileID, 0, 'bof');

See Also fclose | feof | ferror | fopen | fseek | ftell | fscanf | fprintf |
fread | fwrite

1-2310

fscanf

Purpose Read data from text file

Syntax A = fscanf(fileID,formatSpec)
A = fscanf(fileID,formatSpec,sizeA)
[A,count] = fscanf(___)

Description A = fscanf(fileID,formatSpec) reads data from an open text file
into column vector A and interprets values in the file according to the
format specified by formatSpec. The fscanf function reapplies the
format throughout the entire file and positions the file pointer at the
end-of-file marker. If fscanf cannot match formatSpec to the data, it
reads only the portion that matches and stops processing.

The text file is indicated by the file identifier, fileID. Use fopen to open
the file, specify the character encoding, and obtain the fileID value.
When you finish reading, close the file by calling fclose(fileID).

A = fscanf(fileID,formatSpec,sizeA) reads file data into an array,
A, with dimensions, sizeA, and positions the file pointer after the last
value read. fscanf populates A in column order.

[A,count] = fscanf(___) additionally returns the number of fields
that fscanf reads into A. For numeric data, this is the number of values
read. You can use this syntax with any of the input arguments of the
previous syntaxes.

Input
Arguments

fileID - File identifier
integer

File identifier of an open text file, specified as an integer. Before
reading a file with fscanf, you must use fopen to open the file and
obtain the fileID.

Data Types
double

formatSpec - Format of data fields

1-2311

fscanf

string

Format of the data fields in the file, specified as a string of one or more
conversion specifiers. When fscanf reads a file, it attempts to match
the data to the formatSpec string.

Numeric Fields

This table lists available conversion specifiers for numeric inputs.
fscanf converts values to their decimal (base 10) representation.

Numeric Field
Type

Conversion
Specifier

Details

%d Base 10

%i The values in the file determine the
base:

• The default is base 10.

• If the initial digits are 0x or 0X,
then the values are hexadecimal
(base 16).

• If the initial digit is 0, then
values are octal (base 8).

Integer, signed

%ld or %li 64-bit values, base 10, 8, or 16

%u Base 10

%o Base 8 (octal)

%x Base 16 (hexadecimal)

Integer, unsigned

%lu, %lo,
%lx

64-bit values, base 10, 8, or 16

%f

%e

Floating-point
number

%g

Floating-point fields can contain
any of the following (not case
sensitive): Inf, -Inf, NaN, or -NaN.

1-2312

fscanf

Character Fields

This table lists available conversion specifiers for character inputs.

Character Field
Type

Conversion
Specifier

Description

%s Read a string until fscanf
encounters white space.

Characters

%c Read any single character,
including white space.
To read multiple characters at a
time, specify field width.

Pattern-matching
string

%[...] Read only characters in
the brackets up to the first
nonmatching character or white
space.

Example: %[mus] reads 'summer '
as 'summ'.

If formatSpec contains a combination of numeric and character
specifiers, then fscanf converts each character to its numeric
equivalent. This conversion occurs even when the format explicitly
skips all numeric values (for example, formatSpec is '%*d %s').

Optional Operators

• Fields and Characters to Ignore

fscanf reads all numeric values and characters in your file in
sequence, unless you tell it to ignore a particular field or a portion
of a field. To skip fields, insert an asterisk (*) after the percent sign
(%). For example, to skip integers, specify %*d.

• Field Width

To specify the maximum number of digits or text characters to read
at a time, insert a number after the percent character. For example,

1-2313

fscanf

%10c reads up to 10 characters at a time, including white space. %4f
reads up to 4 digits at a time, including the decimal point.

• Literal Text to Ignore

fscanf ignores specified text appended to the formatSpec string.

Example: Level%u reads 'Level1' as 1.

Example: %uStep reads '2Step' as 2.

sizeA - Dimensions of output array
Inf (default) | integer | two-element row vector

Dimensions of the output array, A, specified as Inf, an integer, or a
two-element row vector.

Form of the sizeA Input Description

Inf Read to the end of the file.
For numeric data, the output, A, is a
column vector.
For text data, A is a string.

n Read at most n numeric values or
character fields.
For numeric data, the output, A, is a
column vector.
For text data, A, is a string.

[m,n] Read at most m*n numeric values or
character fields. n can be Inf, but m
cannot. The output, A, is m-by-n, filled in
column order.

Output
Arguments

A - File data
column vector | matrix | string | character array

File data, returned as a column vector, matrix, string, or character
array. The class and size of A depend on the formatSpec input:

1-2314

fscanf

• If formatSpec contains only numeric specifiers, then A is numeric. If
you specify the sizeA argument, then A is a matrix of the specified
size. Otherwise, A is a column vector. If the input contains fewer
than sizeA values, then fscanf pads A with zeros.

- If formatSpec contains only 64-bit signed integer specifiers, then
A is of class int64.

- If formatSpec contains only 64-bit unsigned integer specifiers,
then A is of class uint64.

- Otherwise, A is of class double.

• If formatSpec contains only character or string specifiers (%c or
%s), then A is a character array. If you specify sizeA and the input
contains fewer characters, then fscanf pads A with char(0).

• If formatSpec contains a combination of numeric and character
specifiers, then A is numeric, of class double, and fscanf converts
each text characters to its numeric equivalent. This occurs even
when formatSpec explicitly skips all numeric fields (for example,
formatSpec is '%*d %s').

• If MATLAB cannot match the file data to formatSpec, then A can be
numeric or a character array. The class of A depends on the values
that fscanf reads before it stops processing.

count - Number of characters read
scalar

Number of characters read, returned as a scalar value.

Examples Read File Contents into Column Vector

Create a sample text file that contains floating-point numbers.

x = 100*rand(8,1);
fileID = fopen('nums1.txt','w');
fprintf(fileID,'%4.4f\n',x);
fclose(fileID);

1-2315

fscanf

View the contents of the file.

type nums1.txt

81.4724
90.5792
12.6987
91.3376
63.2359
9.7540
27.8498
54.6882

Open the file for reading, and obtain the file identifier, fileID.

fileID = fopen('nums1.txt','r');

Define the format of the data to read. Use the string, '%f', to specify
floating-point numbers.

formatSpec = '%f';

Read the file data, filling output array, A, in column order. fscanf
reapplies the format, formatSpec, throughout the file.

A = fscanf(fileID,formatSpec)

A =

81.4724
90.5792
12.6987
91.3376
63.2359
9.7540

1-2316

fscanf

27.8498
54.6882

A is a column vector containing data from the file.

Close the file.

fclose(fileID);

Read File Contents into Array

Create a sample text file that contains integers and floating-point
numbers.

x = 1:1:5;
y = [x;rand(1,5)];
fileID = fopen('nums2.txt','w');
fprintf(fileID,'%d %4.4f\n',y);
fclose(fileID);

View the contents of the file.

type nums2.txt

1 0.8147
2 0.9058
3 0.1270
4 0.9134
5 0.6324

Open the file for reading, and obtain the file identifier, fileID.

fileID = fopen('nums2.txt','r');

Define the format of the data to read and the shape of the output array.

1-2317

fscanf

formatSpec = '%d %f';
sizeA = [2 Inf];

Read the file data, filling output array, A, in column order. fscanf
reuses the format, formatSpec, throughout the file.

A = fscanf(fileID,formatSpec,sizeA)
fclose(fileID);

A =

1.0000 2.0000 3.0000 4.0000 5.0000
0.8147 0.9058 0.1270 0.9134 0.6324

Transpose the array so that A matches the orientation of the data in
the file.

A = A'

A =

1.0000 0.8147
2.0000 0.9058
3.0000 0.1270
4.0000 0.9134
5.0000 0.6324

Skip Specific Characters in File

Skip specific characters in a sample file, and return only numeric data.

Create a sample text file containing temperature values.

str = '78 C 72 C 64 C 66 C 49 C';

1-2318

fscanf

fileID = fopen('temperature.dat','w');
fprintf(fileID,'%s',str);
fclose(fileID);

Read the numbers in the file, skipping the text, °C. Also return the
number of values that fscanf reads. The extended ASCII code 176
represents the degree sign.

fileID = fopen('temperature.dat','r');
degrees = char(176);
[A,count] = fscanf(fileID, ['%d' degrees 'C'])
fclose(fileID);

A =

78
72
64
66
49

count =

5

A is a vector containing the numeric values in the file. count indicates
that fscanf read five values.

Tips • Format specifiers for the reading functions sscanf and fscanf differ
from the formats for the writing functions sprintf and fprintf. The
reading functions do not support a precision field. The width field
specifies a minimum for writing but a maximum for reading.

Algorithms MATLAB reads characters using the encoding scheme associated with
the file. You specify the encoding when you open the file using the
fopen function.

1-2319

fscanf

See Also fopen | fprintf | textscan | sscanf | fgetl | fgets | fread

Concepts • “Reading Data in a Formatted Pattern”
• “Opening Files with Different Character Encodings”

1-2320

fscanf (serial)

Purpose Read data from device, and format as text

Syntax A = fscanf(obj)
A = fscanf(obj,'format')
A = fscanf(obj,'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)

Description A = fscanf(obj) reads data from the device connected to the serial
port object, obj, and returns it to A. The data is converted to text using
the %c format.

A = fscanf(obj,'format') reads data and converts it according to
format. format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d,
i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the sscanf file I/O format
specifications or a C manual for more information.

A = fscanf(obj,'format',size) reads the number of values specified
by size. Valid options for size are:

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n matrix
in column order.

size cannot be inf, and an error is returned if the specified number of
values cannot be stored in the input buffer. If size is not of the form
[m,n], and a character conversion is specified, then A is returned as a
row vector. You specify the size, in bytes, of the input buffer with the
InputBufferSize property. An ASCII value is one byte.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if
the read operation did not complete successfully.

1-2321

fscanf (serial)

Tips Before you can read data from the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the device.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read – including the terminator – each time fscanf is issued.

Rules for Completing a Read Operation with fscanf

A read operation with fscanf blocks access to the MATLAB command
line until:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The number of values specified by size is read.

• The input buffer is filled (unless size is specified)

Examples Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying sine wave. This example works on a
Windows platform.

s = serial('COM1');
fopen(s)

Use the fprintf function to configure the scope to measure the
peak-to-peak voltage of the sine wave, return the measurement type,
and return the peak-to-peak voltage.

fprintf(s,'MEASUREMENT:IMMED:TYPE PK2PK')
fprintf(s,'MEASUREMENT:IMMED:TYPE?')
fprintf(s,'MEASUREMENT:IMMED:VALUE?')

1-2322

fscanf (serial)

Because the default value for the ReadAsyncMode property is
continuous, data associated with the two query commands is
automatically returned to the input buffer.

s.BytesAvailable

ans =
21

Use fscanf to read the measurement type. The operation will complete
when the first terminator is read.

meas = fscanf(s)

meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number,
and exclude the terminator.

pk2pk = fscanf(s,'%e',14)

pk2pk =
2.0200

Disconnect s from the scope, and remove s from memory and the
workspace.

fclose(s)
delete(s)
clear s

See Also fgetl | fgets | fopen | fread | textscan | BytesAvailable |
BytesAvailableFcn | InputBufferSize | Status | Terminator |
Timeout

1-2323

fseek

Purpose Move to specified position in file

Syntax fseek(fileID, offset, origin)
status = fseek(fileID, offset, origin)

Description fseek(fileID, offset, origin) sets the file position indicator
offset bytes from origin in the specified file.

status = fseek(fileID, offset, origin) returns 0 when the
operation is successful. Otherwise, it returns -1.

Input
Arguments

fileID

Integer file identifier obtained from fopen.

offset

Number of bytes to move from origin. Can be positive, negative, or
zero. The n bytes of a given file are in positions 0 through n-1.

origin

Starting location in the file:

'bof' or -1 Beginning of file

'cof' or 0 Current position in file

'eof' or 1 End of file

Examples Copy 5 bytes from the file test1.dat, starting at the tenth byte, and
append to the end of test2.dat:

% Create files test1.dat and test2.dat
% Each character uses 8 bits (1 byte)

fid1 = fopen('test1.dat', 'w+');
fwrite(fid1, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ');

1-2324

fseek

fid2 = fopen('test2.dat', 'w+');
fwrite(fid2, 'Second File');

% Seek to the 10th byte ('J'), read 5
fseek(fid1, 9, 'bof');
A = fread(fid1, 5, 'uint8=>char');
fclose(fid1);

% Append to test2.dat
fseek(fid2, 0, 'eof');
fwrite(fid2, A);
fclose(fid2);

Alternatives To move to the beginning of a file, call

frewind(fileID)

This call is identical to

fseek(fileID, 0, 'bof')

See Also fclose | feof | ferror | fopen | frewind | ftell | fscanf | fprintf
| fread | fwrite

How To • “Reading Portions of a File”

1-2325

ftell

Purpose Position in open file

Syntax position = ftell(fileID)

Description position = ftell(fileID) returns the current position in the
specified file. position is a zero-based integer that indicates the
number of bytes from the beginning of the file. If the query is
unsuccessful, position is -1. fileID is an integer file identifier
obtained from fopen.

See Also fclose | feof | ferror | fopen | frewind | fseek | fscanf | fprintf
| fread | fwrite

1-2326

FTP

Purpose Connect to FTP server

Description Connect to an FTP server by calling the ftp function, which creates an
FTP object. Perform file operations using methods on the FTP object,
such as mput and mget. When you finish accessing the server, call the
close method to close the connection.

Construction f = ftp(host,username,password) connects to the FTP server host
and creates FTP object f. If the host supports anonymous connections,
you can use the host argument alone. To specify an alternate port,
separate it from host with a colon (:).

Input Arguments

host

String enclosed in single quotation marks that specifies the FTP
server.

username

String enclosed in single quotation marks that specifies your user
name for the FTP server.

password

String enclosed in single quotation marks that specifies your
password for the FTP server. Because FTP is not a secure
protocol, others can see your user name and password.

Methods
ascii Set FTP transfer type to ASCII

binary Set FTP transfer type to binary

cd Change or view current folder on
FTP server

close Close connection to FTP server

delete Remove file on FTP server

1-2327

FTP

dir View contents of folder on FTP
server

mget Download files from FTP server

mkdir Create folder on FTP server

mput Upload file or folder to FTP server

rename Rename file on FTP server

rmdir Remove folder on FTP server

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Connect to the MathWorks FTP server, and display the FTP object:

mw=ftp('ftp.mathworks.com');
disp(mw)

MATLAB returns:

FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Connect to port 34 (not supported at ftp.mathworks.com, so this code
returns an error):

mw=ftp('ftp.mathworks.com:34')

Modify the following code to connect to a host that requires a password:

test=ftp('ftp.testsite.com','myname','mypassword')

1-2328

FTP

Algorithms The ftp function is based on code from the Apache Jakarta Project.

See Also urlwrite

How To • “Specify Proxy Server Settings for Connecting to the Internet”

1-2329

full

Purpose Convert sparse matrix to full matrix

Syntax A = full(S)

Description A = full(S) converts a sparse matrix S to full storage organization,
such that issparse(A) returns logical 0 (false). If S is a full matrix,
then A is identical to S.

Tips If X is an m-by-nmatrix with nz nonzero elements then full(X) requires
space to store m*n elements. On the other hand, sparse(X) requires
space to store nz elements and (nz+n+1) integers.

The density of a matrix (nnz(X)/numel(X)) determines whether or not it
is more efficient to store the matrix as sparse or full. The exact crossover
point depends on the matrix class as well as the platform. For example,
in 32-bit MATLAB, a double sparse matrix with less than about 2/3
density will require less space than the same matrix in full storage. In
64-bit MATLAB, however, double matrices with less than half of their
elements nonzero are more efficient to store as sparse matrices.

Examples Here is an example of a sparse matrix with a density of about
two-thirds. sparse(S) and full(S) require about the same number
of bytes of storage.

S = sparse(+(rand(200,200) < 2/3));
A = full(S);
whos
Name Size Bytes Class

A 200X200 320000 double array
S 200X200 318432 double array (sparse)

See Also issparse | sparse

1-2330

fullfile

Purpose Build full file name from parts

Syntax f = fullfile(filepart1,...,filepartN)

Description f = fullfile(filepart1,...,filepartN) builds a full file
specification, f, from the folders and file names specified. fullfile
inserts platform-dependent file separators where necessary, and does
not add a trailing file separator. The output of fullfile is conceptually
equivalent to

f = [filepart1 filesep filepart2 filesep ... filesep filepartN]

Input
Arguments

filepart1,...,filepartN - Folder and file names
strings | cell arrays of strings

Folder and file names, specified as strings and cell arrays of strings.
Any nonscalar cell arrays must be of the same size.

Example: 'folder1','folder2','myfile.m'

Example:
{'folder1';'folder2'},{'subfolder1';'subfolder2'},'myfile.m'

Examples Create a Full File Name

f = fullfile('myfolder','mysubfolder','myfile.m')

f =
myfolder\mysubfolder\myfile.m

fullfile returns a string containing the full path to the file. On
Windows platforms, the file separator character is a backslash, \. On
other platforms, the file separator might be a different character.

Create Paths to Multiple Files

f = fullfile(toolboxdir('matlab'),'iofun',{'filesep.m';'fullfile.m'});

fullfile returns a cell array containing a path to the file filesep.m,
and a path to the file fullfile.m.

1-2331

fullfile

Create a Path to a Folder

f = fullfile(matlabroot,'toolbox','matlab',filesep);

fullfile does not trim a leading or trailing filesep.

See Also fileparts | filesep | path | pathsep | genpath

1-2332

func2str

Purpose Construct function name string from function handle

Syntax func2str(fhandle)

Description func2str(fhandle) constructs a string s that holds the name of the
function to which the function handle fhandle belongs.

When you need to perform a string operation, such as compare or
display, on a function handle, you can use func2str to construct a
string bearing the function name.

The func2str command does not operate on nonscalar function handles.
Passing a nonscalar function handle to func2str results in an error.

Tips Any variables and their values originally stored in a function handle
when it was created are lost if you convert the function handle to a
string and back again using the func2str and str2func functions.

Examples Example 1

Convert a sin function handle to a string:

fhandle = @sin;

func2str(fhandle)
ans =

sin

Example 2

The catcherr function shown here accepts function handle and data
arguments and attempts to evaluate the function through its handle. If
the function fails to execute, catcherr uses sprintf to display an error
message giving the name of the failing function. The function name
must be a string for sprintf to display it. The code derives the function
name from the function handle using func2str:

function catcherr(func, data)
try

1-2333

func2str

ans = func(data);
disp('Answer is:');
ans

catch
disp(sprintf('Error executing function ''%s''\n', ...

func2str(func)))
end

The first call to catcherr passes a handle to the round function and
a valid data argument. This call succeeds and returns the expected
answer. The second call passes the same function handle and an
improper data type (a MATLAB structure). This time, round fails,
causing catcherr to display an error message that includes the failing
function name:

catcherr(@round, 5.432)
ans =
Answer is 5

xstruct.value = 5.432;
catcherr(@round, xstruct)
Error executing function "round"

See Also function_handle | str2func | functions

1-2334

function

Purpose Declare function name, inputs, and outputs

Syntax function [y1,...,yN] = myfun(x1,...,xM)

Description function [y1,...,yN] = myfun(x1,...,xM) declares a function
named myfun that accepts inputs x1,...,xM and returns outputs
y1,...,yN. This declaration statement must be the first executable
line of the function.

Save the function code in a text file with a .m extension. The name of
the file should match the name of the first function in the file. Valid
function names begin with an alphabetic character, and can contain
letters, numbers, or underscores.

You can declare multiple local functions within the same file, or nest
functions. If any function in a file contains a nested function, all
functions in the file must use the end keyword to indicate the end of the
function. Otherwise, the end keyword is optional.

Examples Function with One Output

Define a function in a file named average.m that accepts an input
vector, calculates the average of the values, and returns a single result.

function y = average(x)
if ~isvector(x)

error('Input must be a vector')
end
y = sum(x)/length(x);
end

Call the function from the command line.

z = 1:99;
average(z)

ans =
50

1-2335

function

Function with Multiple Outputs

Define a function in a file named stat.m that returns the mean and
standard deviation of an input vector.

function [m,s] = stat(x)
n = length(x);
m = sum(x)/n;
s = sqrt(sum((x-m).^2/n));
end

Call the function from the command line.

values = [12.7, 45.4, 98.9, 26.6, 53.1];
[ave,stdev] = stat(values)

ave =
47.3400

stdev =
29.4124

Multiple Functions in a File

Define two functions in a file named stat2.m, where the first function
calls the second.

function [m,s] = stat2(x)
n = length(x);
m = avg(x,n);
s = sqrt(sum((x-m).^2/n));
end

function m = avg(x,n)
m = sum(x)/n;
end

Function avg is a local function. Local functions are only available to
other functions within the same file.

Call function stat2 from the command line.

1-2336

function

values = [12.7, 45.4, 98.9, 26.6, 53.1];
[ave,stdev] = stat2(values)

ave =
47.3400

stdev =
29.4124

See Also nargin | nargout | pcode | return | varargin | varargout | what
| which

Related
Examples

• “Create Functions in Files”

Concepts • “Local Functions”
• “Nested Functions”
• “Base and Function Workspaces”
• “Function Precedence Order”

1-2337

function_handle (@)

Purpose Handle used in calling functions indirectly

Syntax handle = @functionname
handle = @(arglist)anonymous_function

Description handle = @functionname returns a handle to the specified MATLAB
function.

A function handle is a MATLAB value that provides a means of calling
a function indirectly. You can pass function handles in calls to other
functions (often called function functions). You can also store function
handles in data structures for later use (for example, as Handle
Graphics callbacks). A function handle is one of the standard MATLAB
data types.

At the time you create a function handle, the function you specify
must be on the MATLAB path and in the current scope of the code
creating the handle. For example, you can create a handle to a local
function as long as you do so from within the file that defines that local
function. This condition does not apply when you evaluate the function
handle. You can, for example, execute a local function from a separate
(out-of-scope) file using a function handle. This requires that the handle
was created by the local function (in-scope).

handle = @(arglist)anonymous_function constructs an anonymous
function and returns a handle to that function. The body of the
function, to the right of the parentheses, is a single MATLAB statement
or command. arglist is a comma-separated list of input arguments.
Execute the function by calling it by means of the function handle,
handle.

Tips The function handle is a standard MATLAB data type. As such, you can
manipulate and operate on function handles in the same manner as on
other MATLAB data types. This includes using function handles in
structures and cell arrays:

S.a = @sin; S.b = @cos; S.c = @tan;
C = {@sin, @cos, @tan};

1-2338

function_handle (@)

However, standard matrices or arrays of function handles are not
supported:

A = [@sin, @cos, @tan]; % This is not supported

For nonoverloaded functions, local functions, and private functions,
a function handle references just the one function specified in the
@functionname syntax. When you evaluate an overloaded function
by means of its handle, the arguments the handle is evaluated with
determine the actual function that MATLAB dispatches to.

Use isa(h, 'function_handle') to see if variable h is a function
handle.

Examples Example 1 — Constructing a Handle to a Named Function

The following example creates a function handle for the humps function
and assigns it to the variable fhandle.

fhandle = @humps;

Pass the handle to another function in the same way you would pass
any argument. This example passes the function handle just created to
fminbnd, which then minimizes over the interval [0.3, 1].

x = fminbnd(fhandle, 0.3, 1)
x =

0.6370

The fminbnd function evaluates the @humps function handle. A small
portion of the fminbnd file is shown below. In line 1, the funfcn input
parameter receives the function handle @humps that was passed in. The
statement, in line 113, evaluates the handle.

1 function [xf,fval,exitflag,output] = ...
fminbnd(funfcn,ax,bx,options,varargin)

.

.

.

1-2339

function_handle (@)

113 fx = funfcn(x,varargin{:});

Example 2 — Constructing a Handle to an Anonymous
Function

The statement below creates an anonymous function that finds the
square of a number. When you call this function, MATLAB assigns the
value you pass in to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

The @ operator constructs a function handle for this function, and
assigns the handle to the output variable sqr. As with any function
handle, you execute the function associated with it by specifying the
variable that contains the handle, followed by a comma-separated
argument list in parentheses. The syntax is

fhandle(arg1, arg2, ..., argN)

To execute the sqr function defined above, type

a = sqr(5)
a =

25

Because sqr is a function handle, you can pass it in an argument list
to other functions. The code shown here passes the sqr anonymous
function to the MATLAB integral function to compute its integral
from zero to one:

integral(sqr, 0, 1)
ans =

0.3333

Example 3 — Using an Array of Function Handles
This example creates a structure array of function handles S and then
applies each handle in the array to the output of a linspace calculation
in one operation using structfun:

S.a = @sin; S.b = @cos; S.c = @tan;

1-2340

function_handle (@)

structfun(@(x)x(linspace(1,4,3)), S, 'UniformOutput', false)
ans =

a: [0.8415 0.5985 -0.7568]
b: [0.5403 -0.8011 -0.6536]
c: [1.5574 -0.7470 1.1578]

See Also str2func | func2str | functions | isa

1-2341

functions

Purpose Information about function handle

Syntax S = functions(funhandle)

Description S = functions(funhandle) returns, in MATLAB structure S, the
function name, type, filename, and other information for the function
handle stored in the variable funhandle.

functions does not operate on nonscalar function handles. Passing a
nonscalar function handle to functions results in an error.

Caution The functions function is provided for querying and
debugging purposes. Because its behavior may change in subsequent
releases, you should not rely upon it for programming purposes.

This table lists the standard fields of the return structure.

Field Name Field Description

function Function name

type Function type (e.g., simple, overloaded)

file The file to be executed when the function handle is
evaluated with a nonoverloaded data type

Examples Example 1

To obtain information on a function handle for the poly function, type

f = functions(@poly)
f =

function: 'poly'
type: 'simple'
file: '$matlabroot\toolbox\matlab\polyfun\poly.m'

1-2342

functions

(The term $matlabroot used in this example stands for the file
specification of the directory in which MATLAB software is installed for
your system. Your output will display this file specification.)

Access individual fields of the returned structure using dot selection
notation:

f.type
ans =

simple

Example 2

The function get_handles returns function handles for a local function
and private function in output arguments l and p respectively:

function [l, p] = get_handles
l = @mylocfun;
p = @myprivatefun;
%
function mylocfun
disp 'Executing local function mylocfun'

Call get_handles to obtain the two function handles, and then pass
each to the functions function. MATLAB returns information in a
structure having the fields function, type, file, and parentage. The
file field contains the file specification for the local or private function:

[floc fprv] = get_handles;

functions(floc)
ans =

function: 'mylocfun'
type: 'scopedfunction'
file: 'c:\matlab\get_handles.m'

parentage: {'mylocfun' 'get_handles'}

functions(fprv)
ans =

1-2343

functions

function: 'myprivatefun'
type: 'scopedfunction'
file: 'c:\matlab\private\myprivatefun.m'

parentage: {'myprivatefun'}

Example 3

In this example, the function get_handles_nested.m contains a nested
function nestfun. This function has a single output which is a function
handle to the nested function:

function handle = get_handles_nested(A)
nestfun(A);

function y = nestfun(x)
y = x + 1;
end

handle = @nestfun;
end

Call this function to get the handle to the nested function. Use this
handle as the input to functions to return the information shown here.
Note that the function field of the return structure contains the names
of the nested function and the function in which it is nested in the
format. Also note that functions returns a workspace field containing
the variables that are in context at the time you call this function by
its handle:

fh = get_handles_nested(5);

fhinfo = functions(fh)
fhinfo =

function: 'get_handles_nested/nestfun'
type: 'nested'
file: 'c:\matlab\get_handles_nested.m'

workspace: [1x1 struct]

fhinfo.workspace

1-2344

functions

ans =
handle: @get_handles_nested/nestfun

A: 5

See Also function_handle | func2str | str2func

1-2345

functiontests

Purpose Create array of tests from handles to local functions

Syntax tests = functiontests(f)

Description tests = functiontests(f) creates an array of tests, tests, from a
cell array of handles to local functions, f. To apply defined setup and
teardown functions, include their function handles in f.

Local test functions must include ‘test’ at the beginning or end of the
function name. functiontests must be called from within a test file.

Input
Arguments

f - Handles to local test functions
cell array of function handles

Handles to local test functions, specified as a cell array. Use
f=localfunctions in your working file to automatically generate a
cell array of function handles for that file. If you want explicit test
enumeration, construct f by listing individual functions. f must include
any setup or teardown functions necessary for your test.

Example: f = localfunctions;

Example: f = {@setup,@exampleOneTest,@teardown};

Examples Create Test Array

Create the file exampleTest.m in your MATLAB path. In the main
function, create a test array. Use local functions to define setup,
teardown, and two function tests. Your file should look like this.

function tests = exampleTest
tests = functiontests(localfunctions);

function setup(testCase)
function teardown(testCase)
function exampleOneTest(testCase)
function testExampleTwo(testCase)

From the command line, call the exampleTest function.

1-2346

functiontests

tests = exampleTest

tests =

1x2 Test array with properties:

Name
Parameterization
SharedTestFixtures

Access the test suite to verify the names of the two function tests.

tests.Name

ans =

exampleTest/exampleOneTest

ans =

exampleTest/testExampleTwo

See Also matlab.unittest.Test | localfunctions | runtests

Related
Examples

• “Write Function-Based Unit Tests”
• “Write Simple Test Case Using Functions”
• “Write Test Using Setup and Teardown Functions”

1-2347

funm

Purpose Evaluate general matrix function

Syntax F = funm(A,fun)
F = funm(A,fun,options)
F = funm(A,fun,options,p1,p2,...)
[F,exitflag] = funm(...)
[F,exitflag,output] = funm(...)

Description F = funm(A,fun) evaluates the user-defined function fun at the square
matrix argument A. F = fun(x,k) must accept a vector x and an
integer k, and return a vector f of the same size of x, where f(i) is
the kth derivative of the function fun evaluated at x(i). The function
represented by fun must have a Taylor series with an infinite radius of
convergence, except for fun = @log, which is treated as a special case.

You can also use funm to evaluate the special functions listed in the
following table at the matrix A.

Function Syntax for Evaluating Function at Matrix A

exp funm(A, @exp)

log funm(A, @log)

sin funm(A, @sin)

cos funm(A, @cos)

sinh funm(A, @sinh)

cosh funm(A, @cosh)

For matrix square roots, use sqrtm(A) instead. For matrix exponentials,
which of expm(A) or funm(A, @exp) is the more accurate depends on
the matrix A.

The function represented by fun must have a Taylor series with an
infinite radius of convergence. The exception is @log, which is treated
as a special case. “Parameterizing Functions” explains how to provide
additional parameters to the function fun, if necessary.

1-2348

funm

F = funm(A,fun,options) sets the algorithm’s parameters to the
values in the structure options.

The following table lists the fields of options.

Field Description Values

options.Display Level of display 'off' (default), 'on',
'verbose'

options.TolBlk Tolerance for blocking
Schur form

Positive scalar. The
default is 0.1.

options.TolTay Termination tolerance
for evaluating the
Taylor series of
diagonal blocks

Positive scalar. The
default is eps.

options.MaxTerms Maximum number of
Taylor series terms

Positive integer. The
default is 250.

options.MaxSqrt When computing a
logarithm, maximum
number of square roots
computed in inverse
scaling and squaring
method.

Positive integer. The
default is 100.

options.Ord Specifies the ordering
of the Schur form T.

A vector of
length length(A).
options.Ord(i) is the
index of the block into
which T(i,i) is placed.
The default is [].

F = funm(A,fun,options,p1,p2,...) passes extra inputs p1,p2,...
to the function.

[F,exitflag] = funm(...) returns a scalar exitflag that describes
the exit condition of funm. exitflag can have the following values:

• 0 — The algorithm was successful.

1-2349

funm

• 1 — One or more Taylor series evaluations did not converge, or, in
the case of a logarithm, too many square roots are needed. However,
the computed value of F might still be accurate.

[F,exitflag,output] = funm(...) returns a structure output with
the following fields:

Field Description

output.terms Vector for which output.terms(i) is the number
of Taylor series terms used when evaluating the
ith block, or, in the case of the logarithm, the
number of square roots of matrices of dimension
greater than 2.

output.ind Cell array for which the (i,j) block of the
reordered Schur factor T is T(output.ind{i},
output.ind{j}).

output.ord Ordering of the Schur form, as passed to
ordschur

output.T Reordered Schur form

If the Schur form is diagonal then output =
struct('terms',ones(n,1),'ind',{1:n}).

Examples Example 1

The following command computes the matrix sine of the 3-by-3 magic
matrix.

F=funm(magic(3), @sin)

F =

-0.3850 1.0191 0.0162
0.6179 0.2168 -0.1844
0.4173 -0.5856 0.8185

1-2350

funm

Example 2

The statements

S = funm(X,@sin);
C = funm(X,@cos);

produce the same results to within roundoff error as

E = expm(i*X);
C = real(E);
S = imag(E);

In either case, the results satisfy S*S+C*C = I, where I =
eye(size(X)).

Example 3

To compute the function exp(x) + cos(x) at A with one call to funm,
use

F = funm(A,@fun_expcos)

where fun_expcos is the following function.

function f = fun_expcos(x, k)
% Return kth derivative of exp + cos at X.

g = mod(ceil(k/2),2);
if mod(k,2)

f = exp(x) + sin(x)*(-1)^g;
else

f = exp(x) + cos(x)*(-1)^g;
end

Algorithms The algorithm funm uses is described in [1].

References [1] Davies, P. I. and N. J. Higham, “A Schur-Parlett algorithm for
computing matrix functions,” SIAM J. Matrix Anal. Appl., Vol. 25,
Number 2, pp. 464-485, 2003.

1-2351

funm

[2] Golub, G. H. and C. F. Van Loan, Matrix Computation, Third
Edition, Johns Hopkins University Press, 1996, p. 384.

[3] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to
Compute the Exponential of a Matrix, Twenty-Five Years Later” SIAM
Review 20, Vol. 45, Number 1, pp. 1-47, 2003.

See Also expm | logm | sqrtm | function_handle

1-2352

fwrite

Purpose Write data to binary file

Syntax fwrite(fileID, A)
fwrite(fileID, A, precision)
fwrite(fileID, A, precision, skip)
fwrite(fileID, A, precision, skip, machineformat)
count = fwrite(...)

Description fwrite(fileID, A) writes the elements of array A to a binary file in
column order.

fwrite(fileID, A, precision) translates the values of A according
to the form and size described by the precision.

fwrite(fileID, A, precision, skip) skips skip bytes before
writing each value. If precision is bitn or ubitn, specify skip in bits.

fwrite(fileID, A, precision, skip, machineformat) writes data
with the specified machineformat. The skip parameter is optional.

count = fwrite(...) returns the number of elements of A that fwrite
successfully writes to the file.

Input
Arguments

fileID

File identifier, specified as one of the following:

• A file identifier obtained from fopen.

• 1 for standard output (the screen).

• 2 for standard error.

A

Numeric or character array.

precision

String in single quotation marks that controls the form and size of the
output. The following table shows possible values for precision.

1-2353

fwrite

Value Type Precision Bits (Bytes)

uint 32 (4)

uint8 8 (1)

uint16 16 (2)

uint32 32 (4)

uint64 64 (8)

uchar 8 (1)

unsigned char 8 (1)

ushort 16 (2)

ulong 32 (4)

Integers, unsigned

ubitn 1 ≤ n ≤ 64

int 32 (4)

int8 8 (1)

int16 16 (2)

int32 32 (4)

int64 64 (8)

integer*1 8 (1)

integer*2 16 (2)

integer*4 32 (4)

integer*8 64 (8)

schar 8 (1)

signed char 8 (1)

short 16 (2)

long 32 (4)

Integers, signed

bitn 1 ≤ n ≤ 64

1-2354

fwrite

Value Type Precision Bits (Bytes)

single 32 (4)

double 64 (8)

float 32 (4)

float32 32 (4)

float64 64 (8)

real*4 32 (4)

Floating-point
numbers

real*8 64 (8)

char*1 8 (1)Characters

char Depends on the
encoding scheme
associated with the
file. Set encoding
with fopen.

If you specify a precision of bitn or ubitn, and a value is out of range,
fwrite sets all bits for that value.

Default: uint8

skip

Number of bytes to skip before writing each value. If you specify a
precision of bitn or ubitn, specify skip in bits. Use this parameter to
insert data into noncontiguous fields in fixed-length records.

Default: 0

machineformat

String that specifies the order for writing bytes within the file. For bitn
and ubitn precisions, specifies the order for writing bits within a byte.

1-2355

fwrite

'n' or 'native' Your system byte ordering (default)

'b' or 'ieee-be' Big-endian ordering

'l' or 'ieee-le' Little-endian ordering

's' or 'ieee-be.l64' Big-endian ordering, 64-bit long data
type

'a' or 'ieee-le.l64' Little-endian ordering, 64-bit long data
type

By default, all currently supported platforms use little-endian ordering
for new files. Existing binary files can use either big-endian or
little-endian ordering.

Examples Create a 100-byte binary file containing the 25 elements of the 5-by-5
magic square, stored as 4-byte integers:

fid = fopen('magic5.bin', 'w');
fwrite(fid, magic(5), 'integer*4');
fclose(fid);

See Also fclose | ferror | fopen | fprintf | fscanf | fread | fseek | ftell

How To • “Overwriting or Appending to an Existing File”

• “Creating a File for Use on a Different System”

• “Writing and Reading Complex Numbers”

1-2356

fwrite (serial)

Purpose Write binary data to device

Syntax fwrite(obj,A)
fwrite(obj,A,'precision')
fwrite(obj,A,'mode')
fwrite(obj,A,'precision','mode')

Description fwrite(obj,A) writes the binary data A to the device connected to the
serial port object, obj.

fwrite(obj,A,'precision') writes binary data with precision
specified by precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character
values. If precision is not specified, uchar (an 8-bit unsigned
character) is used. The supported values for precision are listed below
in Tips.

fwrite(obj,A,'mode') writes binary data with command line access
specified by mode. If mode is sync, A is written synchronously and the
command line is blocked. If mode is async, A is written asynchronously
and the command line is not blocked. If mode is not specified, the write
operation is synchronous.

fwrite(obj,A,'precision','mode') writes binary data with precision
specified by precision and command line access specified by mode.

Tips Before you can write data to the device, it must be connected to obj with
the fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to perform a write
operation while obj is not connected to the device.

The ValuesSent property value is increased by the number of values
written each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to
be written. You can specify the size of the output buffer with the
OutputBufferSize property.

1-2357

fwrite (serial)

fwrite returns an error message if you set the FlowControl property to
hardware on a serial object, and a hardware connection is not detected.
This occurs if a device is not connected, or a connected device is not
asserting that is ready to receive data. Check you remote device’s status
and flow control settings to see if hardware flow control is causing
errors in MATLAB.

Note If you want to check to see if the device is asserting that it is
ready to receive data, set the FlowControl to none. Once you connect
to the device check the PinStatus structure for ClearToSend. If
ClearToSend is off, there is a problem on the remote device side. If
ClearToSend is on, there is a hardware FlowControl device prepared
to receive data and you can execute fwrite.

Synchronous Versus Asynchronous Write Operations

By default, data is written to the device synchronously and the
command line is blocked until the operation completes. You can perform
an asynchronous write by configuring the mode input argument to be
async. For asynchronous writes:

• The BytesToOutput property value is continuously updated to reflect
the number of bytes in the output buffer.

• The callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in
progress with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more
detail in Writing Data.

Rules for Completing a Write Operation with fwrite

A binary write operation using fwrite completes when:

• The specified data is written.

• The time specified by the Timeout property passes.

1-2358

fwrite (serial)

Note The Terminator property is not used with binary write
operations.

Supported Precisions

The supported values for precision are listed below.

Data Type Precision Interpretation

uchar 8-bit unsigned character

schar 8-bit signed character

Character

char 8-bit signed or unsigned character

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

Integer

ulong 32- or 64-bit unsigned integer

1-2359

fwrite (serial)

Data Type Precision Interpretation

single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

Floating-point

float64 64-bit floating point

See Also fopen | fprintf | BytesToOutput | OutputBufferSize |
OutputEmptyFcn | Status | Timeout | TransferStatus | ValuesSent

1-2360

fzero

Purpose Root of nonlinear function

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)

x = fzero(problem)

[x,fval,exitflag,output] = fzero(___)

Description x = fzero(fun,x0) tries to find a point x where fun(x) = 0. This
solution is where fun(x) changes sign—fzero cannot find a root of a
function such as x^2.

x = fzero(fun,x0,options) uses options to modify the solution
process.

x = fzero(problem) solves a root-finding problem specified by
problem.

[x,fval,exitflag,output] = fzero(___) returns fun(x) in the
fval output, exitflag encoding the reason fzero stopped, and an
output structure containing information on the solution process.

Input
Arguments

fun - Function to solve
function handle

Function to solve, specified as a handle to a scalar-valued function. fun
accepts a scalar x and returns a scalar fun(x).

fzero solves fun(x) = 0. To solve an equation fun(x) = c(x), instead
solve fun2(x) = fun(x) - c(x) = 0.

To include extra parameters in your function, see the example “Root
of Function with Extra Parameter” on page 1-2367 and the section
“Parameterizing Functions”.

Example: @sin

1-2361

fzero

Example: @myFunction

Example: @(x)(x-a)^5 - 3*x + a - 1

Data Types
function_handle

x0 - Initial value
scalar | 2-element vector

Initial value, specified as a real scalar or a 2-element real vector.

• Scalar — fzero begins at x0 and tries to locate a point x1 where
fun(x1) has the opposite sign of fun(x0). Then fzero iteratively
shrinks the interval where fun changes sign to reach a solution.

• 2-element vector — fzero checks that fun(x0(1)) and fun(x0(2))
have opposite signs, and errors if they do not. It then iteratively
shrinks the interval where fun changes sign to reach a solution. An
interval x0 must be finite; it cannot contain ±Inf.

Tip Calling fzero with an interval (x0 with two elements) is often
faster than calling it with a scalar x0.

Example: 3

Example: [2,17]

Data Types
double

options - Options for solution process
structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify
the options structure using optimset. fzero uses these options
structure fields.

1-2362

fzero

Display Level of display:

• 'off' displays no output.

• 'iter' displays output at each iteration.

• 'final' displays just the final output.

• 'notify' (default) displays output only if the
function does not converge.

FunValCheck Check whether objective function values are valid.

• 'on' displays an error when the objective function
returns a value that is complex, Inf, or NaN.

• The default, 'off', displays no error.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either
as a function handle or as a cell array of function
handles. The default is none ([]). See “Output
Functions”.

PlotFcns Plot various measures of progress while the
algorithm executes. Select from predefined plots or
write your own. Pass a function handle or a cell
array of function handles. The default is none ([]).

• @optimplotx plots the current point.

• @optimplotfval plots the function value.
For information on writing a custom plot function,
see “Plot Functions”.

TolX Termination tolerance on x, a positive scalar. The
default is eps, 2.2204e–16.

Example: options = optimset('FunValCheck','on')

Data Types
struct

1-2363

fzero

problem - Root-finding problem
structure

Root-finding problem, specified as a structure with all of the following
fields.

objective Objective function

x0 Initial point for x, real scalar or 2-element vector

solver 'fzero'

options Options structure, typically created using
optimset

For an example, see “Solve Problem Structure” on page 1-2368.

Data Types
struct

Output
Arguments

x - Location of root or sign change
real scalar

Location of root or sign change, returned as a scalar.

fval - Function value at x
real scalar

Function value at x, returned as a scalar.

exitflag - Integer encoding the exit condition
integer

Integer encoding the exit condition, meaning the reason fsolve stopped
its iterations.

1 Function converged to a solution x.

-1 Algorithm was terminated by the output function or plot
function.

1-2364

fzero

-3 NaN or Inf function value was encountered while
searching for an interval containing a sign change.

-4 Complex function value was encountered while searching
for an interval containing a sign change.

-5 Algorithm might have converged to a singular point.

-6 fzero did not detect a sign change.

output - Information about root-finding process
structure

Information about root-finding process, returned as a structure. The
fields of the structure are:

intervaliterationsNumber of iterations taken to find an interval
containing a root

iterations Number of zero-finding iterations

funcCount Number of function evaluations

algorithm 'bisection, interpolation'

message Exit message

Examples Root Starting From One Point

Calculate π by finding the zero of the sine function near 3.

fun = @sin; % function
x0 = 3; % initial point
x = fzero(fun,x0)

x =
3.1416

Root Starting From an Interval

Find the zero of cosine between 1 and 2.

1-2365

fzero

fun = @cos; % function
x0 = [1 2]; % initial interval
x = fzero(fun,x0)

x =
1.5708

Note that cos(1) and cos(2) differ in sign.

Root of a Function Defined by a File

Find a zero of the function f(x) = x3 – 2x – 5.

First, write a file called f.m.

function y = f(x)
y = x.^3 - 2*x - 5;

Save f.m on your MATLAB path.

Find the zero of f(x) near 2.

fun = @f; % function
x0 = 2; % initial point
z = fzero(fun,x0)

z =
2.0946

Since f(x) is a polynomial, you can find the same real zero, and a
complex conjugate pair of zeros, using the roots command.

roots([1 0 -2 -5])

ans =
2.0946

-1.0473 + 1.1359i
-1.0473 - 1.1359i

1-2366

fzero

Root of Function with Extra Parameter

Find the root of a function that has an extra parameter.

myfun = @(x,c) cos(c*x); % parameterized function
c = 2; % parameter
fun = @(x) myfun(x,c); % function of x alone
x = fzero(fun,0.1)

x =

0.7854

Nondefault Options

Plot the solution process by setting some plot functions.

Define the function and initial point.

fun = @(x)sin(cosh(x));
x0 = 1;

Examine the solution process by setting options that include plot
functions.

options = optimset('PlotFcns',{@optimplotx,@optimplotfval});

Run fzero including the options.

x = fzero(fun,x0,options)

x =

1.8115

1-2367

fzero

Solve Problem Structure

Solve a problem that is defined by a problem structure.

Define a structure that encodes a root-finding problem.

problem.objective = @(x)sin(cosh(x));
problem.x0 = 1;
problem.solver = 'fzero'; % a required part of the structure
problem.options = optimset(@fzero); % default options

1-2368

fzero

Solve the problem.

x = fzero(problem)

x =

1.8115

More Information from Solution

Find the point where exp(-exp(-x)) = x, and display information
about the solution process.

fun = @(x) exp(-exp(-x)) - x; % function
x0 = [0 1]; % initial interval
options = optimset('Display','iter'); % show iterations
[x fval exitflag output] = fzero(fun,x0,options)

Func-count x f(x) Procedure
2 1 -0.307799 initial
3 0.544459 0.0153522 interpolation
4 0.566101 0.00070708 interpolation
5 0.567143 -1.40255e-08 interpolation
6 0.567143 1.50013e-12 interpolation
7 0.567143 0 interpolation

Zero found in the interval [0, 1]
x =

0.5671
fval =

0
exitflag =

1
output =

intervaliterations: 0
iterations: 5
funcCount: 7
algorithm: 'bisection, interpolation'

message: 'Zero found in the interval [0, 1]'

1-2369

fzero

fval = 0 means fun(x) = 0, as desired.

Algorithms The fzero command is a function file. The algorithm, created by
T. Dekker, uses a combination of bisection, secant, and inverse quadratic
interpolation methods. An Algol 60 version, with some improvements,
is given in [1]. A Fortran version, upon which fzero is based, is in [2].

References
[1] Brent, R., Algorithms for Minimization Without Derivatives,
Prentice-Hall, 1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods
for Mathematical Computations, Prentice-Hall, 1976.

See Also fminbnd | optimset | roots

Related
Examples

• “Roots of Scalar Functions”
• “Parameterizing Functions”

1-2370

gallery

Purpose Test matrices

Syntax [A,B,C,...] = gallery(matname,P1,P2,...)
[A,B,C,...] = gallery(matname,P1,P2,...,classname)
gallery(3)
gallery(5)

Description [A,B,C,...] = gallery(matname,P1,P2,...) returns the test
matrices specified by the quoted string matname. The matname input is
the name of a matrix family selected from the table below. P1,P2,...
are input parameters required by the individual matrix family. The
number of optional parameters P1,P2,... used in the calling syntax
varies from matrix to matrix. The exact calling syntaxes are detailed in
the individual matrix descriptions below.

[A,B,C,...] = gallery(matname,P1,P2,...,classname) produces
a matrix of class classname. The classname input is a quoted
string that must be either 'single' or 'double' (unless matname is
'integerdata', in which case 'int8', 'int16', 'int32', 'uint8',
'uint16', and 'uint32' are also allowed). If classname is not specified,
then the class of the matrix is determined from those arguments among
P1,P2,... that do not specify dimensions or select an option. If any of
these arguments is of class single then the matrix is single; otherwise
the matrix is double.

gallery(3) is a badly conditioned 3-by-3 matrix and gallery(5) is an
interesting eigenvalue problem.

The gallery holds over fifty different test matrix functions useful for
testing algorithms and other purposes.

• binomial

• cauchy

• chebspec

• chebvand

• chow

1-2371

gallery

• circul

• clement

• compar

• condex

• cycol

• dorr

• dramadah

• fiedler

• forsythe

• frank

• gearmat

• gcdmat

• grcar

• hanowa

• house

• integerdata

• invhess

• invol

• ipjfact

• jordbloc

• kahan

• kms

• krylov

• lauchli

• lehmer

1-2372

gallery

• leslie

• lesp

• lotkin

• minij

• moler

• neumann

• normaldata

• orthog

• parter

• pei

• poisson

• prolate

• randcolu

• randcorr

• randhess

• randjorth

• rando

• randsvd

• redheff

• riemann

• ris

• sampling

• smoke

• toeppd

• tridiag

1-2373

gallery

• triw

• uniformdata

• wathen

• wilk

binomial — Multiple of involutory matrix

A = gallery('binomial',n) returns an n-by-n matrix,with integer
entries such that A^2 = 2^(n-1)*eye(n).

Thus, B = A*2^((1-n)/2) is involutory, that is, B^2 = eye(n).

cauchy — Cauchy matrix

C = gallery('cauchy',x,y) returns an n-by-n matrix,
C(i,j) = 1/(x(i)+y(j)). Arguments x and y are vectors of length n.
If you pass in scalars for x and y, they are interpreted as vectors 1:x
and 1:y.

C = gallery('cauchy',x) returns the same as above with y = x.
That is, the command returns C(i,j) = 1/(x(i)+x(j)).

Explicit formulas are known for the inverse and determinant of a
Cauchy matrix. The determinant det(C) is nonzero if x and y both have
distinct elements. C is totally positive if 0 < x(1) <... < x(n) and
0 < y(1) < ... < y(n).

chebspec — Chebyshev spectral differentiation matrix

C = gallery('chebspec',n,switch) returns a Chebyshev spectral
differentiation matrix of order n. Argument switch is a variable that
determines the character of the output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions”), C is nilpotent (C^n = 0) and
has the null vector ones(n,1). The matrix C is similar to a Jordan
block of size n with eigenvalue zero.

For switch = 1, C is nonsingular and well-conditioned, and its
eigenvalues have negative real parts.

1-2374

gallery

The eigenvector matrix of the Chebyshev spectral differentiation matrix
is ill-conditioned.

chebvand — Vandermonde-like matrix for the Chebyshev
polynomials

C = gallery('chebvand',p) produces the (primal) Chebyshev
Vandermonde matrix based on the vector of points p, which define
where the Chebyshev polynomial is calculated.

C = gallery('chebvand',m,p) where m is scalar, produces a
rectangular version of the above, with m rows.

If p is a vector, then C(i,j) = Ti – 1(p(j)) where Ti – 1 is the Chebyshev
polynomial of degree i – 1. If p is a scalar, then p equally spaced points
on the interval [0,1] are used to calculate C.

chow — Singular Toeplitz lower Hessenberg matrix

A = gallery('chow',n,alpha,delta) returns A such that
A = H(alpha) + delta*eye(n), where Hi,j(α) = α

(i – j + 1) and argument
n is the order of the Chow matrix. Default value for scalars alpha and
delta are 1 and 0, respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The
rest of the eigenvalues are equal to 4*alpha*cos(k*pi/(n+2))^2,
k=1:n-p.

circul — Circulant matrix

C = gallery('circul',v) returns the circulant matrix whose first
row is the vector v.

A circulant matrix has the property that each row is obtained from the
previous one by cyclically permuting the entries one step forward. It is
a special Toeplitz matrix in which the diagonals “wrap around.”

If v is a scalar, then C = gallery('circul',1:v).

The eigensystem of C (n-by-n) is known explicitly: If t is an nth root
of unity, then the inner product of v and w = [1 t t2 ... t(n – 1)] is an
eigenvalue of C and w(n:-1:1) is an eigenvector.

1-2375

gallery

clement — Tridiagonal matrix with zero diagonal entries

A = gallery('clement',n,k) returns an n-by-n tridiagonal matrix
with zeros on its main diagonal and known eigenvalues. It is singular if
n is odd. About 64 percent of the entries of the inverse are zero. The
eigenvalues include plus and minus the numbers n-1, n-3, n-5, ...,
(1 or 0).

For k=0 (the default), A is nonsymmetric. For k=1, A is symmetric.

gallery('clement',n,1) is diagonally similar to
gallery('clement',n).

For odd N = 2*M+1, M+1 of the singular values are the integers
sqrt((2*M+1)^2 - (2*K+1).^2), K = 0:M.

Note Similar properties hold for gallery('tridiag',x,y,z) where y
= zeros(n,1). The eigenvalues still come in plus/minus pairs but they
are not known explicitly.

compar — Comparison matrices

A = gallery('compar',A,1) returns A with each diagonal element
replaced by its absolute value, and each off-diagonal element replaced
by minus the absolute value of the largest element in absolute value in
its row. However, if A is triangular compar(A,1) is too.

gallery('compar',A) is diag(B) - tril(B,-1) - triu(B,1), where
B = abs(A). compar(A) is often denoted by M(A) in the literature.

gallery('compar',A,0) is the same as gallery('compar',A).

condex — Counter-examples to matrix condition number
estimators

A = gallery('condex',n,k,theta) returns a “counter-example”
matrix to a condition estimator. It has order n and scalar parameter
theta (default 100).

1-2376

gallery

The matrix, its natural size, and the estimator to which it applies are
specified by k:

k = 1 4-by-4 LINPACK

k = 2 3-by-3 LINPACK

k = 3 arbitrary LINPACK (rcond) (independent of
theta)

k = 4 n >= 4 LAPACK (RCOND) (default). It is
the inverse of this matrix that is a
counter-example.

If n is not equal to the natural size of the matrix, then the matrix is
padded out with an identity matrix to order n.

cycol — Matrix whose columns repeat cyclically

A = gallery('cycol',[m n],k) returns an m-by-n matrix with
cyclically repeating columns, where one “cycle” consists of randn(m,k).
Thus, the rank of matrix A cannot exceed k, and k must be a scalar.

Argument k defaults to round(n/4), and need not evenly divide n.

A = gallery('cycol',n,k), where n is a scalar, is the same as
gallery('cycol',[n n],k).

dorr — Diagonally dominant, ill-conditioned, tridiagonal
matrix

[c,d,e] = gallery('dorr',n,theta) returns the vectors defining
an n-by-n, row diagonally dominant, tridiagonal matrix that is
ill-conditioned for small nonnegative values of theta. The default
value of theta is 0.01. The Dorr matrix itself is the same as
gallery('tridiag',c,d,e).

A = gallery('dorr',n,theta) returns the matrix itself, rather than
the defining vectors.

1-2377

gallery

dramadah — Matrix of zeros and ones whose inverse has
large integer entries

A = gallery('dramadah',n,k) returns an n-by-n matrix of 0’s and 1’s
for which mu(A) = norm(inv(A),'fro') is relatively large, although
not necessarily maximal. An anti-Hadamard matrix A is a matrix with
elements 0 or 1 for which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of
the output matrix:

k = 1 Default. A is Toeplitz, with abs(det(A)) = 1, and
mu(A) > c(1.75)^n, where c is a constant. The inverse
of A has integer entries.

k = 2 A is upper triangular and Toeplitz. The inverse of A has
integer entries.

k = 3 A has maximal determinant among lower Hessenberg
(0,1) matrices. det(A) = the nth Fibonacci number.
A is Toeplitz. The eigenvalues have an interesting
distribution in the complex plane.

fiedler — Symmetric matrix

A = gallery('fiedler',c), where c is a length n vector, returns the
n-by-n symmetric matrix with elements abs(n(i)-n(j)). For scalar c,
A = gallery('fiedler',1:c).

Matrix A has a dominant positive eigenvalue and all the other
eigenvalues are negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic
Numerical Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel,
and Academic Press, New York, 1977, p. 159] and attributed to Fiedler.
These indicate that inv(A) is tridiagonal except for nonzero (1,n) and
(n,1) elements.

forsythe — Perturbed Jordan block

A = gallery('forsythe',n,alpha,lambda) returns the n-by-n matrix
equal to the Jordan block with eigenvalue lambda, excepting that

1-2378

gallery

A(n,1) = alpha. The default values of scalars alpha and lambda are
sqrt(eps) and 0, respectively.

The characteristic polynomial of A is given by:

det(A-t*I) = (lambda-t)^N - alpha*(-1)^n.

frank — Matrix with ill-conditioned eigenvalues

F = gallery('frank',n,k) returns the Frank matrix of order n. It
is upper Hessenberg with determinant 1. If k = 1, the elements are
reflected about the anti-diagonal (1,n) — (n,1). The eigenvalues of
F may be obtained in terms of the zeros of the Hermite polynomials.
They are positive and occur in reciprocal pairs; thus if n is odd, 1 is
an eigenvalue. F has floor(n/2) ill-conditioned eigenvalues — the
smaller ones.

gcdmat — Greatest common divisor matrix

A = gallery('gcdmat',n) returns the n-by-n matrix with (i,j)
entry gcd(i,j). MatrixA is symmetric positive definite, and A.^r is
symmetric positive semidefinite for all nonnegative r.

gearmat — Gear matrix

A = gallery('gearmat',n,i,j) returns the n-by-n matrix with ones
on the sub- and super-diagonals, sign(i) in the (1,abs(i)) position,
sign(j) in the (n,n+1-abs(j)) position, and zeros everywhere else.
Arguments i and j default to n and -n, respectively.

Matrix A is singular, can have double and triple eigenvalues, and can
be defective.

All eigenvalues are of the form 2*cos(a) and the eigenvectors are of
the form [sin(w+a), sin(w+2*a), ..., sin(w+n*a)], where a and w
are given in Gear, C. W., “A Simple Set of Test Matrices for Eigenvalue
Programs,” Math. Comp., Vol. 23 (1969), pp. 119-125.

grcar — Toeplitz matrix with sensitive eigenvalues

A = gallery('grcar',n,k) returns an n-by-n Toeplitz matrix with -1s
on the subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The
default is k = 3. The eigenvalues are sensitive.

1-2379

gallery

hanowa — Matrix whose eigenvalues lie on a vertical line
in the complex plane

A = gallery('hanowa',n,d) returns an n-by-n block 2-by-2 matrix
of the form:

[d*eye(m) -diag(1:m)
diag(1:m) d*eye(m)]

Argument n is an even integer n=2*m. Matrix A has complex eigenvalues
of the form d ± k*i, for 1 <= k <= m. The default value of d is -1.

house — Householder matrix

[v,beta,s] = gallery('house',x,k) takes x, an n-element column
vector, and returns V and beta such that H*x = s*e1. In this
expression, e1 is the first column of eye(n), abs(s) = norm(x), and H
= eye(n) - beta*V*V' is a Householder matrix.

k determines the sign of s:

k = 0 sign(s) = -sign(x(1)) (default)

k = 1 sign(s) = sign(x(1))

k = 2 sign(s) = 1 (x must be real)

If x is complex, then sign(x) = x./abs(x) when x is nonzero.

If x = 0, or if x = alpha*e1 (alpha >= 0) and either k = 1 or k = 2,
then V = 0, beta = 1, and s = x(1). In this case, H is the identity
matrix, which is not strictly a Householder matrix.

[v, beta] = gallery('house',x) takes x, a scalar or n-element
column vector, and returns v and beta such that eye(n,n) -
beta*v*v' is a Householder matrix. A Householder matrix H satisfies
the relationship

H*x = -sign(x(1))*norm(x)*e1

1-2380

gallery

where e1 is the first column of eye(n,n). Note that if x is complex, then
sign(x) exp(i*arg(x)) (which equals x./abs(x) when x is nonzero).

If x = 0, then v = 0 and beta = 1.

integerdata — Array of arbitrary data from uniform
distribution on specified range of integers

A = gallery('integerdata',imax,[m,n,...],j) returns an
m-by-n-by-... array A whose values are a sample from the uniform
distribution on the integers 1:imax. j must be an integer value in the
interval [0, 2^32-1]. Calling gallery('integerdata', ...) with
different values of J will return different arrays. Repeated calls to
gallery('integerdata',...) with the same imax, size vector and j
inputs will always return the same array.

In any call to gallery('integerdata', ...) you can substitute
individual inputs m,n,... for the size vector input [m,n,...]. For
example, gallery('integerdata',7,[1,2,3,4],5) is equivalent to
gallery('integerdata',7,1,2,3,4,5).

A = gallery('integerdata',[imin imax],[m,n,...],j) returns
an m-by-n-by-... array A whose values are a sample from the uniform
distribution on the integers imin:imax.

[A,B,...] = gallery('integerdata',[imin imax],[m,n,...],j)
returns multiple m-by-n-by-... arrays A, B, ..., containing different values.

A = gallery('integerdata',[imin
imax],[m,n,...],j,classname)produces an array of class classname.
classname must be 'uint8', 'uint16', 'uint32', 'int8', 'int16',
int32', 'single' or 'double'.

invhess — Inverse of an upper Hessenberg matrix

A = gallery('invhess',x,y), where x is a length n vector and y is
a length n-1 vector, returns the matrix whose lower triangle agrees
with that of ones(n,1)*x' and whose strict upper triangle agrees with
that of [1 y]*ones(1,n).

1-2381

gallery

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i,
and its inverse is an upper Hessenberg matrix. Argument y defaults to
-x(1:n-1).

If x is a scalar, invhess(x) is the same as invhess(1:x).

invol — Involutory matrix

A = gallery('invol',n) returns an n-by-n involutory (A*A =
eye(n)) and ill-conditioned matrix. It is a diagonally scaled version
of hilb(n).

B = (eye(n)-A)/2 and B = (eye(n)+A)/2 are idempotent (B*B = B).

ipjfact — Hankel matrix with factorial elements

[A,d] = gallery('ipjfact',n,k) returns A, an n-by-n Hankel
matrix, and d, the determinant of A, which is known explicitly. If k =
0 (the default), then the elements of A are A(i,j) = (i+j)! If k = 1,
then the elements of A are A(i,j) 1/(i+j).

Note that the inverse of A is also known explicitly.

jordbloc — Jordan block

A = gallery('jordbloc',n,lambda) returns the n-by-n Jordan block
with eigenvalue lambda. The default value for lambda is 1.

kahan — Upper trapezoidal matrix

A = gallery('kahan',n,theta,pert) returns an upper trapezoidal
matrix that has interesting properties regarding estimation of condition
and rank.

If n is a two-element vector, then A is n(1)-by-n(2); otherwise, A is
n-by-n. The useful range of theta is 0 < theta < pi, with a default
value of 1.2.

To ensure that the QR factorization with column pivoting does not
interchange columns in the presence of rounding errors, the diagonal
is perturbed by pert*eps*diag([n:-1:1]). The default pert is 25,
which ensures no interchanges for gallery('kahan',n) up to at least n
= 90 in IEEE arithmetic.

1-2382

gallery

kms — Kac-Murdock-Szego Toeplitz matrix

A = gallery('kms',n,rho) returns the n-by-n Kac-Murdock-Szego
Toeplitz matrix such that A(i,j) = rho^(abs(i-j)), for real rho.

For complex rho, the same formula holds except that elements below
the diagonal are conjugated. rho defaults to 0.5.

The KMS matrix A has these properties:

• An LDL’ factorization with L inv(gallery('triw',n,-rho,1))',
and D(i,i) (1-abs(rho)^2)*eye(n), except D(1,1) = 1.

• Positive definite if and only if 0 < abs(rho) < 1.

• The inverse inv(A) is tridiagonal.

krylov — Krylov matrix

B = gallery('krylov',A,x,j) returns the Krylov matrix

[x, Ax, A^2x, ..., A^(j-1)x]

where A is an n-by-n matrix and x is a length n vector. The defaults are
x ones(n,1), and j = n.

B = gallery('krylov',n) is the same as
gallery('krylov',(randn(n)).

lauchli — Rectangular matrix

A = gallery('lauchli',n,mu) returns the (n+1)-by-n matrix

[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other
problems that indicates the dangers of forming A'*A. Argument mu
defaults to sqrt(eps).

lehmer — Symmetric positive definite matrix

A = gallery('lehmer',n) returns the symmetric positive definite
n-by-n matrix such that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

1-2383

gallery

• A is totally nonnegative.

• The inverse inv(A) is tridiagonal and explicitly known.

• The order n <= cond(A) <= 4*n*n.

leslie — Matrix of birth numbers and survival rates

L = gallery('leslie',a,b) is the n-by-n matrix from the Leslie
population model with average birth numbers a(1:n) and survival
rates b(1:n-1). It is zero, apart from the first row (which contains the
a(i)) and the first subdiagonal (which contains the b(i)). For a valid
model, the a(i) are nonnegative and the b(i) are positive and bounded
by 1, i.e., 0 < b(i) <= 1.

L = gallery('leslie',n) generates the Leslie matrix with a =
ones(n,1), b = ones(n-1,1).

lesp — Tridiagonal matrix with real, sensitive eigenvalues

A = gallery('lesp',n) returns an n-by-n matrix whose eigenvalues
are real and smoothly distributed in the interval approximately
[-2*N-3.5, -4.5].

The sensitivities of the eigenvalues increase exponentially as the
eigenvalues grow more negative. The matrix is similar to the
symmetric tridiagonal matrix with the same diagonal entries and
with off-diagonal entries 1, via a similarity transformation with D =
diag(1!,2!,...,n!).

lotkin — Lotkin matrix

A = gallery('lotkin',n) returns the Hilbert matrix with its
first row altered to all ones. The Lotkin matrix A is nonsymmetric,
ill-conditioned, and has many negative eigenvalues of small magnitude.
Its inverse has integer entries and is known explicitly.

minij — Symmetric positive definite matrix

A = gallery('minij',n) returns the n-by-n symmetric positive
definite matrix with A(i,j) = min(i,j).

The minij matrix has these properties:

1-2384

gallery

• The inverse inv(A) is tridiagonal and equal to -1 times the second
difference matrix, except its (n,n) element is 1.

• Givens’ matrix, 2*A-ones(size(A)), has tridiagonal inverse and
eigenvalues 0.5*sec((2*r-1)*pi/(4*n))^2, where r=1:n.

• (n+1)*ones(size(A))-A has elements that are max(i,j) and a
tridiagonal inverse.

moler — Symmetric positive definite matrix

A = gallery('moler',n,alpha) returns the symmetric positive
definite n-by-n matrix U'*U, where U = gallery('triw',n,alpha).

For the default alpha = -1, A(i,j) = min(i,j)-2, and A(i,i) = i.
One of the eigenvalues of A is small.

neumann — Singular matrix from the discrete Neumann
problem (sparse)

C = gallery('neumann',n) returns the sparse n-by-n singular, row
diagonally dominant matrix resulting from discretizing the Neumann
problem with the usual five-point operator on a regular mesh. Argument
n is a perfect square integer n = m2 or a two-element vector. C is sparse
and has a one-dimensional null space with null vector ones(n,1).

normaldata — Array of arbitrary data from standard
normal distribution

A = gallery('normaldata',[m,n,...],j) returns an m-by-n-by-...
array A. The values of A are a random sample from the standard normal
distribution. j must be an integer value in the interval [0, 2^32-1].
Calling gallery('normaldata', ...) with different values of j will
return different arrays. Repeated calls to gallery('normaldata',...)
with the same size vector and j inputs will always return the same
array.

In any call to gallery('normaldata', ...) you can substitute
individual inputs m,n,... for the size vector input [m,n,...]. For
example, gallery('normaldata',[1,2,3,4],5) is equivalent to
gallery('normaldata',1,2,3,4,5).

1-2385

gallery

[A,B,...] = gallery('normaldata',[m,n,...],j) returns
multiple m-by-n-by-... arrays A, B, ..., containing different values.

A = gallery('normaldata',[m,n,...],j, classname) produces a
matrix of class classname. classname must be either 'single' or
'double'.

Generate the arbitrary 6-by-4 matrix of data from the standard normal
distribution N(0, 1) corresponding to j = 2:.

x = gallery('normaldata', [6, 4], 2);

Generate the arbitrary 1-by-2-by-3 single array of data from the
standard normal distribution N(0, 1) corresponding to j = 17:.

y = gallery('normaldata', 1, 2, 3, 17, 'single');

orthog — Orthogonal and nearly orthogonal matrices

Q = gallery('orthog',n,k) returns the kth type of matrix of order
n, where k > 0 selects exactly orthogonal matrices, and k < 0 selects
diagonal scalings of orthogonal matrices. Available types are:

k = 1 Q(i,j) = sqrt(2/(n+1)) * sin(i*j*pi/(n+1))

Symmetric eigenvector matrix for second difference
matrix. This is the default.

k = 2 Q(i,j) = 2/(sqrt(2*n+1)) *
sin(2*i*j*pi/(2*n+1))

Symmetric.

k = 3 Q(r,s) = exp(2*pi*i*(r-1)*(s-1)/n) / sqrt(n)

Unitary, the Fourier matrix. Q^4 is the identity. This is
essentially the same matrix as fft(eye(n))/sqrt(n)!

k = 4 Helmert matrix: a permutation of a lower Hessenberg
matrix, whose first row is ones(1:n)/sqrt(n).

1-2386

gallery

k = 5 Q(i,j) = sin(2*pi*(i-1)*(j-1)/n) +
cos(2*pi*(i-1)*(j-1)/n)

Symmetric matrix arising in the Hartley transform.

k = 6 Q(i,j) = sqrt(2/n)*cos((i-1/2)*(j-1/2)*pi/n)

Symmetric matrix arising as a discrete cosine transform.

k = -1 Q(i,j) = cos((i-1)*(j-1)*pi/(n-1))

Chebyshev Vandermonde-like matrix, based on extrema
of T(n-1).

k = -2 Q(i,j) = cos((i-1)*(j-1/2)*pi/n))

Chebyshev Vandermonde-like matrix, based on zeros of
T(n).

parter — Toeplitz matrix with singular values near pi

C = gallery('parter',n) returns the matrix C such that C(i,j) =
1/(i-j+0.5).

C is a Cauchy matrix and a Toeplitz matrix. Most of the singular values
of C are very close to pi.

pei — Pei matrix

A = gallery('pei',n,alpha), where alpha is a scalar, returns the
symmetric matrix alpha*eye(n) + ones(n). The default for alpha is
1. The matrix is singular for alpha equal to either 0 or -n.

poisson — Block tridiagonal matrix from Poisson’s equation
(sparse)

A = gallery('poisson',n) returns the block tridiagonal (sparse)
matrix of order n^2 resulting from discretizing Poisson’s equation with
the 5-point operator on an n-by-n mesh.

prolate — Symmetric, ill-conditioned Toeplitz matrix

A = gallery('prolate',n,w) returns the n-by-n prolate matrix with
parameter w. It is a symmetric Toeplitz matrix.

1-2387

gallery

If 0 < w < 0.5 then A is positive definite

• The eigenvalues of A are distinct, lie in (0,1), and tend to cluster
around 0 and 1.

• The default value of w is 0.25.

randcolu — Random matrix with normalized cols and
specified singular values

A = gallery('randcolu',n) is a random n-by-n matrix with columns
of unit 2-norm, with random singular values whose squares are from a
uniform distribution.

A'*A is a correlation matrix of the form produced by
gallery('randcorr',n).

gallery('randcolu',x) where x is an n-vector (n > 1), produces a
random n-by-n matrix having singular values given by the vector x. The
vector x must have nonnegative elements whose sum of squares is n.

gallery('randcolu',x,m) where m >= n, produces an m-by-n matrix.

gallery('randcolu',x,m,k) provides a further option:

k = 0 diag(x) is initially subjected to a random two-sided
orthogonal transformation, and then a sequence of
Givens rotations is applied (default).

k = 1 The initial transformation is omitted. This is much
faster, but the resulting matrix may have zero
entries.

For more information, see:

1-2388

gallery

References
[1] Davies, P. I. and N. J. Higham, “Numerically Stable Generation
of Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp.
640-651.

randcorr — Random correlation matrix with specified
eigenvalues

gallery('randcorr',n) is a random n-by-n correlation matrix with
random eigenvalues from a uniform distribution. A correlation matrix
is a symmetric positive semidefinite matrix with 1s on the diagonal
(see corrcoef).

gallery('randcorr',x) produces a random correlation matrix having
eigenvalues given by the vector x, where length(x) > 1. The vector x
must have nonnegative elements summing to length(x).

gallery('randcorr',x,k) provides a further option:

k = 0 The diagonal matrix of eigenvalues is initially
subjected to a random orthogonal similarity
transformation, and then a sequence of Givens
rotations is applied (default).

k = 1 The initial transformation is omitted. This is much
faster, but the resulting matrix may have some zero
entries.

For more information, see:

References
[1] Bendel, R. B. and M. R. Mickey, “Population Correlation Matrices
for Sampling Experiments,” Commun. Statist. Simulation Comput., B7,
1978, pp. 163-182.

1-2389

gallery

[2] Davies, P. I. and N. J. Higham, “Numerically Stable Generation
of Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp.
640-651.

randhess — Random, orthogonal upper Hessenberg matrix

H = gallery('randhess',n) returns an n-by-n real, random,
orthogonal upper Hessenberg matrix.

H = gallery('randhess',x) if x is an arbitrary, real, length n vector
with n > 1, constructs H nonrandomly using the elements of x as
parameters.

Matrix H is constructed via a product of n-1 Givens rotations.

randjorth — Random J-orthogonal matrix

A = gallery('randjorth', n), for a positive integer n, produces a
random n-by-n J-orthogonal matrix A, where

• J = blkdiag(eye(ceil(n/2)),-eye(floor(n/2)))

• cond(A) = sqrt(1/eps)

J-orthogonality means that A’*J*A = J. Such matrices are sometimes
called hyperbolic.

A = gallery('randjorth', n, m), for positive integers n and m,
produces a random (n+m)-by-(n+m) J-orthogonal matrix A, where

• J = blkdiag(eye(n),-eye(m))

• cond(A) = sqrt(1/eps)

A = gallery('randjorth',n,m,c,symm,method)

uses the following optional input arguments:

• c — Specifies cond(A) to be the scalar c.

• symm— Enforces symmetry if the scalar symm is nonzero.

• method — calls qr to perform the underlying orthogonal
transformations if the scalar method is nonzero. A call to qr is much
faster than the default method for large dimensions

1-2390

gallery

rando — Random matrix composed of elements -1, 0 or 1

A = gallery('rando',n,k) returns a random n-by-n matrix with
elements from one of the following discrete distributions:

k = 1 A(i,j) = 0 or 1 with equal probability (default).

k = 2 A(i,j) = -1 or 1 with equal probability.

k = 3 A(i,j) = -1, 0 or 1 with equal probability.

Argument n may be a two-element vector, in which case the matrix
is n(1)-by-n(2).

randsvd — Random matrix with preassigned singular values

A = gallery('randsvd',n,kappa,mode,kl,ku) returns a banded
(multidiagonal) random matrix of order n with cond(A) = kappa and
singular values from the distribution mode. If n is a two-element vector,
A is n(1)-by-n(2).

Arguments kl and ku specify the number of lower and upper
off-diagonals, respectively, in A. If they are omitted, a full matrix is
produced. If only kl is present, ku defaults to kl.

Distribution mode can be:

1 One large singular value.

2 One small singular value.

3 Geometrically distributed singular values (default).

4 Arithmetically distributed singular values.

5 Random singular values with uniformly distributed logarithm.

< 0 If mode is -1, -2, -3, -4, or -5, then randsvd treats mode as
abs(mode), except that in the original matrix of singular
values the order of the diagonal entries is reversed: small to
large instead of large to small.

1-2391

gallery

Condition number kappa defaults to sqrt(1/eps). In the special case
where kappa < 0, A is a random, full, symmetric, positive definite
matrix with cond(A) = -kappa and eigenvalues distributed according
to mode. Arguments kl and ku, if present, are ignored.

A = gallery('randsvd',n,kappa,mode,kl,ku,method) specifies how
the computations are carried out. method = 0 is the default, while
method = 1 uses an alternative method that is much faster for large
dimensions, even though it uses more flops.

redheff — Redheffer’s matrix of 1s and 0s

A = gallery('redheff',n) returns an n-by-n matrix of 0’s and 1’s
defined by A(i,j) = 1, if j = 1 or if i divides j, and A(i,j) = 0
otherwise.

The Redheffer matrix has these properties:

• (n-floor(log2(n)))-1 eigenvalues equal to 1

• A real eigenvalue (the spectral radius) approximately sqrt(n)

• A negative eigenvalue approximately -sqrt(n)

• The remaining eigenvalues are provably “small.”

• The Riemann hypothesis is true if and only if det() ()/A O n 1 2

for every ε > 0.

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside
the unit circle abs(Z) = 1,” and a proof of this conjecture, together with
a proof that some eigenvalue tends to zero as n tends to infinity, would
yield a new proof of the prime number theorem.

riemann — Matrix associated with the Riemann hypothesis

A = gallery('riemann',n) returns an n-by-n matrix for which the
Riemann hypothesis is true if and only if

det() (!)/A O n n 1 2

for every ε > 0.

1-2392

gallery

The Riemann matrix is defined by:

A = B(2:n+1,2:n+1)

where B(i,j) = i-1 if i divides j, and B(i,j) = -1 otherwise.

The Riemann matrix has these properties:

• Each eigenvalue e(i) satisfies abs(e(i)) <= m-1/m, where m = n+1.

• i <= e(i) <= i+1 with at most m-sqrt(m) exceptions.

• All integers in the interval (m/3, m/2] are eigenvalues.

ris — Symmetric Hankel matrix

A = gallery('ris',n) returns a symmetric n-by-n Hankel matrix
with elements

A(i,j) = 0.5/(n-i-j+1.5)

The eigenvalues of A cluster around π/2 and –π/2. This matrix was
invented by F.N. Ris.

sampling — Nonsymmetric matrix with ill-conditioned
integer eigenvalues.

A = gallery('sampling',x), where x is an n-vector, is the n-by-n
matrix with A(i,j) = X(i)/(X(i)-X(j)) for i ~= j and A(j,j) the
sum of the off-diagonal elements in column j. A has eigenvalues 0:n-1.
For the eigenvalues 0 and n–1, corresponding eigenvectors are X and
ones(n,1), respectively.

The eigenvalues are ill-conditioned. A has the property that A(i,j)
+ A(j,i) = 1 for i ~= j.

Explicit formulas are available for the left eigenvectors of A. For scalar
n, sampling(n) is the same as sampling(1:n). A special case of this
matrix arises in sampling theory.

1-2393

gallery

smoke — Complex matrix with a ’smoke ring’
pseudospectrum

A = gallery('smoke',n) returns an n-by-n matrix with 1’s on the
superdiagonal, 1 in the (n,1) position, and powers of roots of unity
along the diagonal.

A = gallery('smoke',n,1) returns the same except that element
A(n,1) is zero.

The eigenvalues of gallery('smoke',n,1) are the nth roots of unity;
those of gallery('smoke',n) are the nth roots of unity times 2^(1/n).

toeppd — Symmetric positive definite Toeplitz matrix

A = gallery('toeppd',n,m,w,theta) returns an n-by-n symmetric,
positive semi-definite (SPD) Toeplitz matrix composed of the sum
of m rank 2 (or, for certain theta, rank 1) SPD Toeplitz matrices.
Specifically,

T = w(1)*T(theta(1)) + ... + w(m)*T(theta(m))

where T(theta(k)) has (i,j) element cos(2*pi*theta(k)*(i-j)).

By default: m = n, w = rand(m,1), and theta = rand(m,1).

toeppen — Pentadiagonal Toeplitz matrix (sparse)

P = gallery('toeppen',n,a,b,c,d,e) returns the n-by-n sparse,
pentadiagonal Toeplitz matrix with the diagonals: P(3,1) = a, P(2,1)
= b, P(1,1) = c, P(1,2) = d, and P(1,3) = e, where a, b, c, d, and e
are scalars.

By default, (a,b,c,d,e) = (1,-10,0,10,1), yielding a matrix of
Rutishauser. This matrix has eigenvalues lying approximately on the
line segment 2*cos(2*t) + 20*i*sin(t).

tridiag — Tridiagonal matrix (sparse)

A = gallery('tridiag',c,d,e) returns the tridiagonal matrix with
subdiagonal c, diagonal d, and superdiagonal e. Vectors c and e must
have length(d)-1.

1-2394

gallery

A = gallery('tridiag',n,c,d,e), where c, d, and e are all scalars,
yields the Toeplitz tridiagonal matrix of order n with subdiagonal
elements c, diagonal elements d, and superdiagonal elements e. This
matrix has eigenvalues

d + 2*sqrt(c*e)*cos(k*pi/(n+1))

where k = 1:n. (see [1].)

A = gallery('tridiag',n) is the same as A =
gallery('tridiag',n,-1,2,-1), which is a symmetric positive
definite M-matrix (the negative of the second difference matrix).

triw — Upper triangular matrix discussed by Wilkinson and
others

A = gallery('triw',n,alpha,k) returns the upper triangular
matrix with ones on the diagonal and alphas on the first k >= 0
superdiagonals.

Order n may be a 2-element vector, in which case the matrix is
n(1)-by-n(2) and upper trapezoidal.

Ostrowski [“On the Spectrum of a One-parametric Family of Matrices,”
J. Reine Angew. Math., 1954] shows that

cond(gallery('triw',n,2)) = cot(pi/(4*n))^2,

and, for large abs(alpha), cond(gallery('triw',n,alpha)) is
approximately abs(alpha)^n*sin(pi/(4*n-2)).

Adding -2^(2-n) to the (n,1) element makes triw(n) singular, as
does adding -2^(1-n) to all the elements in the first column.

uniformdata — Array of arbitrary data from standard
uniform distribution

A = gallery('uniformdata',[m,n,...],j) returns an m-by-n-by-...
array A. The values of A are a random sample from the standard
uniform distribution. j must be an integer value in the interval
[0, 2^32-1]. Calling gallery('uniformdata', ...) with
different values of j will return different arrays. Repeated calls to

1-2395

gallery

gallery('uniformdata',...) with the same size vector and j inputs
will always return the same array.

In any call to gallery('uniformdata', ...) you can substitute
individual inputs m,n,... for the size vector input [m,n,...]. For
example, gallery('uniformdata',[1,2,3,4],5) is equivalent to
gallery('uniformdata',1,2,3,4,5).

[A,B,...] = gallery('uniformdata',[m,n,...],j) returns
multiple m-by-n-by-... arrays A, B, ..., containing different values.

A = gallery('uniformdata',[m,n,...],j, classname) produces
a matrix of class classname. classname must be either 'single' or
'double'.

Generate the arbitrary 6-by-4 matrix of data from the uniform
distribution on [0, 1] corresponding to j = 2.

x = gallery('uniformdata', [6, 4], 2);

Generate the arbitrary 1-by-2-by-3 single array of data from the uniform
distribution on [0, 1] corresponding to j = 17.

y = gallery('uniformdata', 1, 2, 3, 17, 'single');

wathen — Finite element matrix (sparse, random entries)

A = gallery('wathen',nx,ny) returns a sparse, random, n-by-n finite
element matrix where n = 3*nx*ny + 2*nx + 2*ny + 1.

Matrix A is precisely the “consistent mass matrix” for a regular nx-by-ny
grid of 8-node (serendipity) elements in two dimensions. A is symmetric,
positive definite for any (positive) values of the “density,” rho(nx,ny),
which is chosen randomly in this routine.

A = gallery('wathen',nx,ny,1) returns a diagonally scaled matrix
such that

0.25 <= eig(inv(D)*A) <= 4.5

where D = diag(diag(A)) for any positive integers nx and ny and any
densities rho(nx,ny).

1-2396

gallery

wilk — Various matrices devised or discussed by Wilkinson

gallery('wilk',n) returns a different matrix or linear system
depending on the value of n.

n = 3 Upper triangular system Ux=b illustrating
inaccurate solution.

n = 4 Lower triangular system Lx=b, ill-conditioned.

n = 5 hilb(6)(1:5,2:6)*1.8144. A symmetric positive
definite matrix.

n = 21 W21+, a tridiagonal matrix. eigenvalue problem.
For more detail, see [2].

References [1] The MATLAB gallery of test matrices is based upon the work of
Nicholas J. Higham at the Department of Mathematics, University of
Manchester, Manchester, England. Further background can be found
in the books MATLAB Guide, Second Edition, Desmond J. Higham
and Nicholas J. Higham, SIAM, 2005, and Accuracy and Stability of
Numerical Algorithms, Nicholas J. Higham, SIAM, 1996.

[2] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford
University Press, London, 1965, p.308.

See Also hadamard | hilb | invhilb | magic | wilkinson

1-2397

gamma

Purpose Gamma function

Syntax Y = gamma(X)

Definitions The gamma function is defined by the integral:

Γ()x e t dtt x= −∞ −∫0
1

The gamma function interpolates the factorial function. For integer n:

gamma(n+1) = n! = prod(1:n)

Description Y = gamma(X) returns the gamma function at the elements of X. X must
be real.

Algorithms The computation of gamma is based on algorithms outlined in [1].
Several different minimax rational approximations are used depending
upon the value of A.

References [1] Cody, J., An Overview of Software Development for Special
Functions, Lecture Notes in Mathematics, 506, Numerical Analysis
Dundee, G. A. Watson (ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sec. 6.5.

See Also gammainc | gammaincinv | gammaln | psi

1-2398

gammainc

Purpose Incomplete gamma function

Syntax Y = gammainc(X,A)
Y = gammainc(X,A,tail)
Y = gammainc(X,A,'scaledlower')
Y = gammainc(X,A,'scaledupper')

Definitions The incomplete gamma function is:

P a x
a

e t dttx a(,)
()

= − −∫1
0

1

Γ

Note The syntax gammainc(X,A) is equivalent to the function P(A,X)
defined above, where X is the limit of integration in each case.

For any A ≥ 0, gammainc(X,A) approaches 1 as X approaches infinity.
For small X and A, gammainc(X,A) is approximately equal to X^A, so
gammainc(0,0) = 1.

Description Y = gammainc(X,A) returns the incomplete gamma function of
corresponding elements of X and A. The elements of A must be
nonnegative. Furthermore, X and A must be real and the same size
(or either can be scalar).

Y = gammainc(X,A,tail) specifies the tail of the incomplete gamma
function. The choices for tail are 'lower' (the default) and 'upper'.
The upper incomplete gamma function is defined as:

Q a x
a

e t dt P a xt a

x

(,)
()

(,).

1

11

When the upper tail value is close to 0, the 'upper' option provides a
way to compute that value more accurately than by subtracting the
lower tail value from 1.

1-2399

gammainc

Y = gammainc(X,A,'scaledlower') and Y =
gammainc(X,A,'scaledupper') return the incomplete gamma
function, scaled by

() .a
e

x

x

a

1

These functions are unbounded above, but are useful for values of X
and A where gammainc(X,A,'lower') or gammainc(X,A,'upper')
underflow to zero.

Note When X is negative, Y can be inaccurate for abs(X)>A+1. This
applies to all syntaxes.

References [1] Cody, J., An Overview of Software Development for Special
Functions, Lecture Notes in Mathematics, 506, Numerical Analysis
Dundee, G. A. Watson (ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sec. 6.5.

See Also gamma | gammaincinv | gammaln | psi

1-2400

gammaincinv

Purpose Inverse incomplete gamma function

Syntax x = gammaincinv(y,a)
y = gammaincinv(x,a,tail)

Description x = gammaincinv(y,a) evaluates the inverse incomplete gamma
function for corresponding elements of y and a, such that y =
gammainc(x,a). The elements of y must be in the closed interval [0,1],
and those of a must be nonnegative. y and a must be real and the same
size (or either can be a scalar).

y = gammaincinv(x,a,tail) specifies the tail of the incomplete
gamma function. Choices are lower (the default) to use the integral
from 0 to x, or upper to use the integral from x to infinity.

These two choices are related as:

gammaincinv(y,a,'upper') = gammaincinv(1-y,a,'lower').

When y is close to 0, the upper option provides a way to compute x more
accurately than by subtracting y from 1.

Definitions The lower incomplete gamma function is defined as:

gammainc(,) ()x a
a

e t dtt a
x

= − −∫1 1

0
Γ()

The upper incomplete gamma function is defined as:

gammainc(,) ()x a
a

e t dtt a

x

= − −
∞

∫1 1

Γ()

gammaincinv computes the inverse of the incomplete gamma function
with respect to the integration limit x using Newton’s method.

For any a>0, as y approaches 1, gammaincinv(y,a) approaches infinity.

For small x and a, gammainc(x,a) ≅ xa , so gammaincinv(1,0) = 0.

1-2401

gammaincinv

References [1] Cody, J., An Overview of Software Development for Special
Functions, Lecture Notes in Mathematics, 506, Numerical Analysis
Dundee, G. A. Watson (ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sec. 6.5.

See Also gamma | gammainc | gammaln | psi

1-2402

gammaln

Purpose Logarithm of gamma function

Syntax Y = gammaln(A)

Description Y = gammaln(A) returns the logarithm of the gamma function,
gammaln(A) = log(gamma(A)). Input A must be nonnegative and real.
The gammaln command avoids the underflow and overflow that may
occur if it is computed directly using log(gamma(A)).

See Also gammainc | gammaincinv | gamma | psi

1-2403

gca

Purpose Current axes handle

Syntax h = gca

Description h = gca returns the handle to the current axes for the current figure. If
an axes does not exist, then gca creates an axes and returns its handle.
You can use the axes handle to query and modify axes properties. For
more information, see Axes Properties.

Examples Specify Properties for Current Axes

Plot a sine wave. Use the gca command to set the font size, tick
direction, tick length, and y-axis limits for the current axes.

x = linspace(0,10);
y = sin(4*x);
figure;
plot(x,y);
set(gca,'FontSize',12,...

'TickDir','out',...
'TickLength',[.02,.02],...
'YLim',[-2,2])

1-2404

gca

Tips • To view a list of all the axes properties, execute get(gca).

• To get the handle of the current axes without forcing the creation of
an axes if one does not exist, query the figure CurrentAxes property.

h = get(gcf,'CurrentAxes')

MATLAB returns h as an empty array if there is no current axes.

1-2405

gca

• Set axes properties after plotting since some plotting functions reset
axes properties.

Definitions Current Axes

The current axes is the target for graphics output. It is the axes in
which graphics commands such as plot, text, and surf draw their
results. It is typically the last axes created or the last axes clicked with
the mouse. Changing the current figure also changes the current axes.

User interaction can change the current axes. If you need to access a
specific axes, store the axes handle in your program code when you
create the axes and use this handle instead of gca.

See Also axes | cla | gcf | findobj | get | set | Axes Properties

Concepts • “The Current Figure, Axes, and Object”
• “Accessing Object Handles”

1-2406

gcbf

Purpose Handle of figure containing object whose callback is executing

Syntax fig = gcbf

Description fig = gcbf returns the handle of the figure that contains the object
whose callback is currently executing. This object can be the figure
itself, in which case, gcbf returns the figure’s handle.

When no callback is executing, gcbf returns the empty matrix, [].

The value returned by gcbf is identical to the figure output argument
returned by gcbo.

See Also gcbo | gco | gcf | gca

1-2407

gcbo

Purpose Handle of object whose callback is executing

Syntax h = gcbo
[h,figure] = gcbo

Description h = gcbo returns the handle of the graphics object whose callback is
executing.

[h,figure] = gcbo returns the handle of the current callback object
and the handle of the figure containing this object.

Tips The MATLAB software stores the handle of the object whose callback is
executing in the root CallbackObject property. If a callback interrupts
another callback, MATLAB replaces the CallbackObject value with
the handle of the object whose callback is interrupting. When that
callback completes, MATLAB restores the handle of the object whose
callback was interrupted.

The root CallbackObject property is read only, so its value is always
valid at any time during callback execution. The root CurrentFigure
property, and the figure CurrentAxes and CurrentObject properties
(returned by gcf, gca, and gco, respectively) are user settable, so they
can change during the execution of a callback, especially if that callback
is interrupted by another callback. Therefore, those functions are not
reliable indicators of which object’s callback is executing.

When you write callback routines for the CreateFcn and DeleteFcn of
any object and the figure ResizeFcn, you must use gcbo since those
callbacks do not update the root’s CurrentFigure property, or the
figure’s CurrentObject or CurrentAxes properties; they only update
the root’s CurrentFigure property.

When no callbacks are executing, gcbo returns [] (an empty matrix).

See Also gca | gcf | gco | rootobject

1-2408

../ref/rootobject_props.html#CurrentFigure
../ref/figure_props.html#CurrentAxes
../ref/figure_props.html#CurrentObject
../ref/figure_props.html#ResizeFcn
../ref/rootobject_props.html#CurrentFigure
../ref/figure_props.html#CurrentObject
../ref/figure_props.html#CurrentAxes
../ref/rootobject_props.html#CallbackObject

gcd

Purpose Greatest common divisor

Syntax G = gcd(A,B)
[G,U,V] = gcd(A,B)

Description G = gcd(A,B) returns the greatest common divisors of the elements
of A and B. The elements in G are always nonnegative, and gcd(0,0)
returns 0. This syntax supports inputs of any numeric type.

[G,U,V] = gcd(A,B) also returns the Bézout coefficients, U and V,
which satisfy: A.*U + B.*V = G. The Bézout coefficients are useful for
solving Diophantine equations. This syntax supports double, single,
and signed integer inputs.

Input
Arguments

A,B - Input values
scalars, vectors, or arrays of real integer values

Input values, specified as scalars, vectors, or arrays of real integer
values. A and B can be any numeric type, and they can be of different
types within certain limitations:

• If A or B is of type single, then the other can be of type single or
double.

• If A or B belongs to an integer class, then the other must belong to the
same class or it must be a double scalar value.

A and B must be the same size or one must be a scalar.

Example: [20 -3 13],[10 6 7]

Example: int16([100 -30 200]),int16([20 15 9])

Example: int16([100 -30 200]),20

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

1-2409

gcd

Output
Arguments

G - Greatest common divisor
real, nonnegative integer values

Greatest common divisor, returned as an array of real nonnegative
integer values. G is the same size as A and B, and the values in G are
always real and nonnegative. G is returned as the same type as A and
B. If A and B are of different types, then G is returned as the nondouble
type.

U,V - Bézout coefficients
real integer values

Bézout coefficients, returned as arrays of real integer values that satisfy
the equation, A.*U + B.*V = G. The data type of U and V is the same
type as that of A and B. If A and B are of different types, then U and V are
returned as the nondouble type.

Algorithms g = gcd(A,B) is calculated using the Euclidian algorithm.[1]

[g,u,v] = gcd(A,B) is calculated using the extended Euclidian
algorithm.[1]

Examples Greatest Common Divisors of Double Values

A = [-5 17; 10 0];
B = [-15 3; 100 0];
G = gcd(A,B)

G =

5 1
10 0

gcd returns positive values, even when the inputs are negative.

Greatest Common Divisors of Unsigned Integers

A = uint16([255 511 15]);
B = uint16([15 127 1023]);

1-2410

gcd

G = gcd(A,B)

G =

15 1 3

Solution to Diophantine Equation

Solve the Diophantine equation, 30x + 56y = 8 for x and y.

Find the greatest common divisor and a pair of Bézout coefficients for
30 and 56.

[g,u,v] = gcd(30,56)

g =

2

u =

-13

v =

7

u and v satisfy the Bézout’s identity, (30*u) + (56*v) = g.

Rewrite Bézout’s identity so that it looks more like the original
equation. Do this by multiplying by 4. Use == to verify that both sides
of the equation are equal.

(30*u*4) + (56*v*4) == g*4

ans =

1

1-2411

gcd

Calculate the values of x and y that solve the problem.

x = u*4
y = v*4

x =

-52

y =

28

References
[1] Knuth, D. “Algorithms A and X.” The Art of Computer Programming,
Vol. 2, Section 4.5.2. Reading, MA: Addison-Wesley, 1973.

See Also lcm

1-2412

gcf

Purpose Current figure handle

Syntax h = gcf

Description h = gcf returns the current figure handle. If a figure does not exist,
then gcf creates a figure and returns its handle. You can use the figure
handle to query and modify figure properties. For more information,
see Figure Properties.

Examples Specify Properties for Current Figure

Set the background color and remove the toolbar for the current figure
using the gcf command.

figure
surf(peaks);
set(gcf,'Color',[0,0.5,0.5],...

'Toolbar','none')

1-2413

gcf

Definitions Current Figure

The current figure is the target for graphics output. It is the figure
window in which graphics commands such as plot, title, and surf
draw their results. It is typically the last figure created or the last
figure clicked with the mouse.

1-2414

gcf

User interaction can change the current figure. If you need to access a
specific figure, store the figure handle in your program code when you
create the figure and use this handle instead of gcf.

Tips • To view a list of all figure properties, execute get(gcf).

• To get the handle of the current figure without forcing the creation
of a figure if one does not exist, query the CurrentFigure property
on the root object.

h = get(0,'CurrentFigure')

MATLAB returns h as an empty array if there is no current figure.

See Also figure | clf | gca | get | set | Figure Properties

Concepts • “The Current Figure, Axes, and Object”
• “Accessing Object Handles”

1-2415

gco

Purpose Handle of current object

Syntax h = gco
h = gco(figure_handle)

Description h = gco returns the handle of the current object.

h = gco(figure_handle) returns the handle of the current object in
the figure specified by figure_handle.

Tips The current object is the last object clicked on, excluding uimenus. If the
mouse click did not occur over a figure child object, the figure becomes
the current object. The MATLAB software stores the handle of the
current object in the figure’s CurrentObject property.

The CurrentObject of the CurrentFigure does not always indicate
the object whose callback is being executed. Interruptions of callbacks
by other callbacks can change the CurrentObject or even the
CurrentFigure. Some callbacks, such as CreateFcn and DeleteFcn,
and uimenu Callback, intentionally do not update CurrentFigure or
CurrentObject.

gcbo provides the only completely reliable way to retrieve the
handle to the object whose callback is executing, at any point in the
callback function, regardless of the type of callback or of any previous
interruptions.

See Also gca | gcbo | gcf

1-2416

ge, >=

Purpose Determine greater than or equal to

Syntax A >= B
ge(A,B)

Description A >= B returns a logical array with elements set to logical 1 (true)
where A is greater than or equal to B; otherwise, it returns logical
0 (false). The test compares only the real part of numeric arrays.
ge returns logical 0 (false) where A or B have NaN or undefined
categorical elements.

ge(A,B) is an alternate way to execute A >= B, but is rarely used. It
enables operator overloading for classes.

Input
Arguments

A - Left array
numeric array | logical array | character array | ordinal categorical
array

Left array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is an ordinal categorical array, the other input can be an
ordinal categorical array, a cell array of strings, or a single string. A
single string expands into a cell array of strings of the same size as the
other input. If both inputs are ordinal categorical arrays, they must
have the same sets of categories, including their order. See “Compare
Categorical Array Elements” for more details.

B - Right array
numeric array | logical array | character array | ordinal categorical
array

Right array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one

1-2417

ge, >=

is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is an ordinal categorical array, the other input can be an
ordinal categorical array, a cell array of strings, or a single string. A
single string expands into a cell array of strings of the same size as the
other input. If both inputs are ordinal categorical arrays, they must
have the same sets of categories, including their order. See “Compare
Categorical Array Elements” for more details.

Examples Test Vector Elements

Find which vector elements are greater than or equal to a given value.

Create a numeric vector.

A = [1 12 18 7 9 11 2 15];

Test the vector for elements that are greater than or equal to 11.

A >= 11

ans =

0 1 1 0 0 1 0 1

The result is a vector with values of logical 1 (true) where the elements
of A satisfy the expression.

Use the vector of logical values as an index to view the values in A that
are greater than or equal to 11.

A(A >= 11)

ans =

12 18 11 15

The result is a subset of the elements in A.

1-2418

ge, >=

Replace Elements of Matrix

Create a matrix.

A = magic(4)

A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Replace all values greater than or equal to 9 with the value 10.

A(A >= 9) = 10

A =

10 2 3 10
5 10 10 8

10 7 6 10
4 10 10 1

The result is a new matrix whose largest element is 10.

Compare Values in Categorical Array

Create an ordinal categorical array.

A = categorical({'large' 'medium' 'small'; 'medium' ...
'small' 'large'},{'small' 'medium' 'large'},'Ordinal',1)

A =

large medium small
medium small large

The array has three categories: 'small', 'medium', and 'large'.

1-2419

ge, >=

Find all values greater than or equal to the category 'medium'.

A >= 'medium'

ans =

1 1 0
1 0 1

A value of logical 1 (true) indicates a value greater than or equal to the
category 'medium'.

Compare the rows of A.

A(1,:) >= A(2,:)

ans =

1 1 0

The function returns logical 1 (true) where the first row has a category
value greater than or equal to the second row.

Test Complex Numbers

Create a vector of complex numbers.

A = [1+i 2-2i 1+3i 1-2i 5-i];

Find the values that are greater than or equal to 2.

A(A >= 2)

ans =

2.0000 - 2.0000i 5.0000 - 1.0000i

ge compares only the real part of the elements in A.

Use abs to find which elements are outside a radius of 2 from the origin.

1-2420

ge, >=

A(abs(A) >= 2)

ans =

2.0000 - 2.0000i 1.0000 + 3.0000i 1.0000 - 2.0000i 5.0000 - 1

The result has more elements since abs accounts for the imaginary
part of the numbers.

Tips • Some floating-point numbers cannot be represented exactly in binary
form. This leads to small differences in results that the >= operator
reflects. For more information, see “Avoiding Common Problems
with Floating-Point Arithmetic”.

See Also eq | lt | gt | le | ne

Concepts • “Ordinal Categorical Arrays”

1-2421

genpath

Purpose Generate path string

Syntax p = genpath
p = genpath(folderName)

Description p = genpath returns a path string, p, that includes all the folders and
subfolders below matlabroot/toolbox, including empty subfolders.

p = genpath(folderName) returns a path string that includes
folderName and multiple levels of subfolders below folderName. The
path string does not include folders named private, folders that
begin with the @ character (class folders), folders that begin with the +
character (package folders), or subfolders within any of these.

Input
Arguments

folderName - Folder name
string

Folder name, specified as a string.

Example: 'c:/matlab/myfiles'

Examples Add Folder and Subfolders to Search Path

Use genpath in conjunction with addpath to add a folder and its
subfolders to the search path.

Generate a path that includes
matlabroot/toolbox/images/colorspaces and all folders below it.

folderName = fullfile(matlabroot,'toolbox','images','colorspaces');
p = genpath(folderName);

Add the folder and its subfolders to the search path.

addpath(p)

See Also addpath | path | rmpath

1-2422

genpath

Concepts • “What Is the MATLAB Search Path?”

1-2423

genvarname

Purpose Construct valid variable name from string

Note genvarname will be removed in a future release. Use
matlab.lang.makeValidName and matlab.lang.makeUniqueStrings
instead.

Syntax varname = genvarname(str)
varname = genvarname(str, exclusions)

Description varname = genvarname(str) constructs a string varname that is
similar to or the same as the str input, and can be used as a valid
variable name. str can be a single character array or a cell array of
strings. If str is a cell array of strings, genvarname returns a cell
array of strings in varname. The strings in a cell array returned by
genvarname are guaranteed to be different from each other.

varname = genvarname(str, exclusions) returns a valid variable
name that is different from any name listed in the exclusions input.
The exclusions input can be a single character array or a cell array
of strings. Specify the function who in the exclusions character array
to create a variable name that will be unique in the current MATLAB
workspace (see “Example 4” on page 1-2426, below).

Note genvarname returns a string that can be used as a variable name.
It does not create a variable in the MATLAB workspace. You cannot,
therefore, assign a value to the output of genvarname.

Tips A valid MATLAB variable name is a character string of letters, digits,
and underscores, such that the first character is a letter, and the
length of the string is less than or equal to the value returned by the
namelengthmax function. Any string that exceeds namelengthmax is
truncated in the varname output. See “Example 6” on page 1-2427,
below.

1-2424

genvarname

The variable name returned by genvarname is not guaranteed to
be different from other variable names currently in the MATLAB
workspace unless you use the exclusions input in the manner shown
in “Example 4” on page 1-2426, below.

If you use genvarname to generate a field name for a structure,
MATLAB does create a variable for the structure and field in the
MATLAB workspace. See “Example 3” on page 1-2426, below.

If the str input contains any whitespace characters, genvarname
removes then and capitalizes the next alphabetic character in str. If
str contains any nonalphanumeric characters, genvarname translates
these characters into their hexadecimal value.

Examples Example 1

Create four similar variable name strings that do not conflict with
each other:

v = genvarname({'A', 'A', 'A', 'A'})
v =

'A' 'A1' 'A2' 'A3'

Example 2

Read a column header hdr from worksheet trial2 in Excel spreadsheet
myproj_apr23:

[data hdr] = xlsread('myproj_apr23.xls', 'trial2');

Make a variable name from the text of the column header that will not
conflict with other names:

v = genvarname(['Column ' hdr{1,3}]);

Assign data taken from the spreadsheet to the variable in the MATLAB
workspace:

eval([v '= data(1:7, 3);']);

1-2425

genvarname

Example 3

Collect readings from an instrument once every minute over the period
of an hour into different fields of a structure. Simulate instrument
readings using a random number. genvarname not only generates
unique fieldname strings, but also creates the structure and fields in
the MATLAB workspace:

for k = 1:60

record.(genvarname(['reading' datestr(clock, 'HHMMSS')])) = rand(1);

pause(60)

end

After the program ends, display the recorded data from the workspace:

record

record =

reading092610: 0.6541
reading092710: 0.6892
reading092811: 0.7482
reading092911: 0.4505
reading093011: 0.0838

.

.

.

Example 4

Generate variable names that are unique in the MATLAB workspace by
putting the output from the who function in the exclusions list.

for k = 1:5
t = clock;
pause(uint8(rand * 10));
v = genvarname('time_elapsed', who);
eval([v ' = etime(clock,t)'])
end

1-2426

genvarname

As this code runs, you can see that the variables created by genvarname
are unique in the workspace:

time_elapsed =
5.0070

time_elapsed1 =
2.0030

time_elapsed2 =
7.0010

time_elapsed3 =
8.0010

time_elapsed4 =
3.0040

After the program completes, use the who function to view the
workspace variables:

who

k time_elapsed time_elapsed2 time_elapsed4
t time_elapsed1 time_elapsed3 v

Example 5

If you try to make a variable name from a MATLAB keyword,
genvarname creates a variable name string that capitalizes the keyword
and precedes it with the letter x:

v = genvarname('global')
v =

xGlobal

Example 6

If you enter a string that is longer than the value returned by the
namelengthmax function, genvarname truncates the resulting variable
name string:

namelengthmax

ans =

1-2427

genvarname

63

vstr = genvarname(sprintf('%s%s', ...

'This name truncates because it contains ', ...

'more than the maximum number of characters'))

vstr =

ThisNameTruncatesBecauseItContainsMoreThanTheMaximumNumberOfCha

See Also isvarname | iskeyword | isletter | namelengthmax | who | regexp

1-2428

get

Purpose Query Handle Graphics object properties

Syntax get(h)
get(h,'PropertyName')
<m-by-n value cell array> = get(H,pn)
a = get(h)
a = get(0)
a = get(0,'Factory')
a = get(0,'FactoryObjectTypePropertyName')
a = get(h,'Default')
a = get(h,'DefaultObjectTypePropertyName')

Description
Note Do not use the get function on Java objects as it will cause a
memory leak. For more information, see “Accessing Private and Public
Data”

get(h) returns all properties of the graphics object identified by the
handle h and their current values. For this syntax, h must be a scalar.

get(h,'PropertyName') returns the value of the property
'PropertyName' of the graphics object identified by h.

<m-by-n value cell array> = get(H,pn) returns n property values
for m graphics objects in the m-by-n cell array, where m = length(H)
and n is equal to the number of property names contained in pn.

a = get(h) returns a structure whose field names are the object’s
property names and whose values are the current values of the
corresponding properties. If you do not specify an output argument,
MATLAB displays the information on the screen. For this syntax, h
may be a scalar or a m-by-n array of handles. If h is a vector, a will be
a (m*n)-by-1 struct array.

a = get(0) returns the current values of all user-settable properties. a
is a structure array whose field names are the object property names
and whose field values are the values of the corresponding properties.

1-2429

get

If you do not specify an output argument, MATLAB displays the
information on the screen.

a = get(0,'Factory') returns the factory-defined values of all
user-settable properties. a is a structure array whose field names are
the object property names and whose field values are the values of the
corresponding properties. If you do not specify an output argument,
MATLAB displays the information on the screen.

a = get(0,'FactoryObjectTypePropertyName') returns the
factory-defined value of the named property for the specified object type.
The argument FactoryObjectTypePropertyName is the word Factory
concatenated with the object type (e.g., Figure) and the property name
(e.g., Color)FactoryFigureColor.

a = get(h,'Default') returns all default values currently defined on
object h. a is a structure array whose field names are the object property
names and whose field values are the values of the corresponding
properties. If you do not specify an output argument, MATLAB displays
the information on the screen.

a = get(h,'DefaultObjectTypePropertyName') returns the
factory-defined value of the named property for the specified object type.
The argument DefaultObjectTypePropertyName is the word Default
concatenated with the object type (e.g., Figure) and the property name
(e.g., Color).

DefaultFigureColor

Examples You can obtain the default value of the LineWidth property for line
graphics objects defined on the root level with the statement

get(0,'DefaultLineLineWidth')
ans =

0.5000

To query a set of properties on all axes children, define a cell array
of property names:

props = {'HandleVisibility', 'Interruptible';

1-2430

get

'SelectionHighlight', 'Type'};
output = get(get(gca,'Children'),props);

The variable output is a cell array of dimension
length(get(gca,'Children')-by-4.

For example, type

patch;surface;text;line
output = get(get(gca,'Children'),props)
output =
'on' 'on' 'on' 'line'
'on' 'off' 'on' 'text'
'on' 'on' 'on' 'surface'
'on' 'on' 'on' 'patch'

See Also findobj | gca | gcf | gco | set

1-2431

audioplayer.get

Purpose Query property values for audioplayer object

Syntax Value = get(obj,Name)
Values = get(obj,{Name1,...,NameN})
Values = get(obj)
get(obj)

Description Value = get(obj,Name) returns the value of the specified property
for object obj.

Values = get(obj,{Name1,...,NameN}) returns the values of the
specified properties in a 1-by-N cell array.

Values = get(obj) returns a scalar structure that contains the values
of all properties of obj. Each field name corresponds to a property name.

get(obj) displays all property names and their current values.

Examples Create an audioplayer object from the example file handel.mat and
query the object properties:

load handel.mat;
handelObj = audioplayer(y, Fs);

% Display all properties.
get(handelObj)

% Display only the SampleRate property.
get(handelObj, 'SampleRate')

% Create a cell array that contains
% values for two properties.
info = get(handelObj, {'BitsPerSample', 'NumberOfChannels'});

Alternatives To access a single property, you can use dot notation. Reference each
property as though it is a field of a structure array. For example, find
the value of the TotalSamples property for an object named handelObj
(as created in the Example):

1-2432

audioplayer.get

numSamples = handelObj.TotalSamples;

This command is exactly equivalent to:

numSamples = get(handelObj, 'TotalSamples');

See Also audioplayer | set

1-2433

audiorecorder.get

Purpose Query property values for audiorecorder object

Syntax Value = get(obj,Name)
Values = get(obj,{Name1,...,NameN})
Values = get(obj)
get(obj)

Description Value = get(obj,Name) returns the value of the specified property
for object obj.

Values = get(obj,{Name1,...,NameN}) returns the values of the
specified properties in a 1-by-N cell array.

Values = get(obj) returns a scalar structure that contains the values
of all properties of obj. Each field name corresponds to a property name.

get(obj) displays all property names and their current values.

Examples Create an audiorecorder object and query the object properties:

recorderObj = audiorecorder;

% Display all properties.
get(recorderObj)

% Display only the SampleRate property.
get(recorderObj, 'SampleRate')

% Create a cell array that contains
% values for two properties.
info = get(recorderObj, {'BitsPerSample', 'NumberOfChannels'});

Alternatives To access a single property, you can use dot notation. Reference each
property as though it is a field of a structure array. For example,
find the value of the TotalSamples property for an object named
recorderObj (as created in the Example):

numSamples = recorderObj.TotalSamples;

1-2434

audiorecorder.get

This command is exactly equivalent to:

numSamples = get(recorderObj, 'TotalSamples');

See Also audiorecorder | set

1-2435

get (COM)

Purpose Get property value from interface, or display properties

Syntax V = h.get
V = h.get('propertyname')
V = get(h,...)

Description V = h.get returns a list of all properties and their values for the object
or interface, h.

If V is empty, either there are no properties in the object, or the
MATLAB software cannot read the object’s type library. Refer to the
COM vendor’s documentation. For Automation objects, if the vendor
provides documentation for a specific property, use the V = get(h,...)
syntax to call it.

V = h.get('propertyname') returns the value of the property
specified in the string, propertyname.

V = get(h,...) is an alternate syntax for the same operation.

Tips The meaning and type of the return value is dependent upon the specific
property being retrieved. The object’s documentation should describe
the specific meaning of the return value. MATLAB may convert the data
type of the return value. For a description of how MATLAB converts
COM data types, see “Handling COM Data in MATLAB Software”.

COM functions are available on Microsoft Windows systems only.

Examples Create a COM server running Microsoft Excel software:

e = actxserver ('Excel.Application');

Retrieve a single property value:

e.Path

Depending on your spreadsheet program, MATLAB software displays:

ans =

1-2436

get (COM)

C:\Program Files\MSOffice\OFFICE11

Retrieve a list of all properties for the CommandBars interface:

c = e.CommandBars.get

MATLAB displays information similar to the following:

c =
Application: [1x1

Interface.Microsoft_Excel_11.0_Object_Library._Application]
Creator: 1.4808e+009

ActionControl: []
ActiveMenuBar: [1x1

Interface.Microsoft_Office_12.0_Object_Library.CommandBar]
Count: 129

DisplayTooltips: 1
DisplayKeysInTooltips: 0

LargeButtons: 0
MenuAnimationStyle: 'msoMenuAnimationNone'

Parent: [1x1
Interface.Microsoft_Excel_11.0_Object_Library._Application]

AdaptiveMenus: 0
DisplayFonts: 1

DisableCustomize: 0
DisableAskAQuestionDropdown: 0

See Also set (COM) | inspect | isprop | addproperty | deleteproperty

1-2437

get (hgsetget)

Purpose Query property values of handle objects derived from hgsetget class

Syntax CV = get(H,'PropertyName')
SV = get(h)
get(h)

Description CV = get(H,'PropertyName') returns the value of the named property
from the objects in the handle array H. If H is scalar, get returns a single
value; if H is an array, get returns a cell array of property values. If you
specify a cell array of property names, then get returns a cell array
of values, where each row in the cell corresponds to an element in H
and each column in the cell corresponds to an element in the property
name cell array.

If H is nonscalar and PropertyName is the name of a dynamic property,
get returns a value only if the property exists in all objects referenced
in H.

SV = get(h) returns a struct array in which the field names are the
object’s property names and the values are the current values of the
corresponding properties. If h is an array, then SV is a numel(h)-by-1
array of structs.

get(h) displays all property names and their current values for the
MATLAB objects with handle h.

Your subclass can override the hgsetget getdisp method to control
how MATLAB displays this information.

See Also get | handle | hgsetget | set (hgsetget)

How To • “Implementing a Set/Get Interface for Properties”

1-2438

VideoReader.get

Purpose Query property values for video reader object

Syntax Value = get(obj,Name)
Values = get(obj,{Name1,...,NameN})
allValues = get(obj)
get(obj)

Description Value = get(obj,Name) returns the value of the property with the
specified Name for object obj.

Values = get(obj,{Name1,...,NameN}) returns the values of the
specified properties in a 1-by-N cell array.

allValues = get(obj) returns a scalar structure that contains the
values of all properties of obj. Each field name corresponds to a
property name.

get(obj) displays all property names and their current values.

Input
Arguments

obj

VideoReader object created by the VideoReader function.

Name

String enclosed in single quotation marks that specifies a
VideoReader property.

Output
Arguments

Value

String containing the value associated with the specified
VideoReader property.

Values

Cell array containing the values associated with the specified
VideoReader properties. Values is a row vector, with one column
for each property.

allValues

1-2439

VideoReader.get

Scalar (1-by-1) structure array that contains the values of all
properties of VideoReader object obj.

Examples Display All Object Properties

Display all properties of an object associated with the example file,
xylophone.mp4.

xyloObj = VideoReader('xylophone.mp4');
get(xyloObj)

General Settings:
Duration = 4.7000
Name = xylophone.mp4
Path = matlabroot\toolbox\matlab\audiovideo
Tag =
Type = VideoReader
UserData = []

Video Settings:
BitsPerPixel = 24
FrameRate = 30
Height = 240
NumberOfFrames = 141
VideoFormat = RGB24
Width = 320

Store Specific Object Properties

Create a 1-by-3 cell array that contains the values of the Height,
Width, and NumberOfFrames properties of an object associated with
xylophone.mp4.

xyloObj = VideoReader('xylophone.mp4');
xyloSize = get(xyloObj, {'Height','Width','NumberOfFrames'})

xyloSize =

[240] [320] [141]

1-2440

VideoReader.get

Alternatives To access a single property, you can use dot notation. Reference each
property as though it is a field of a structure array. For example,
find the value of the NumberOfFrames property for object xyloObj (as
created in the Examples):

numFrames = xyloObj.NumberOfFrames;

This command is exactly equivalent to:

numFrames = get(xyloObj, 'NumberOfFrames');

See Also VideoReader | set

1-2441

get (RandStream)

Purpose Random stream properties

Class @RandStream

Syntax get(s)
P = get(s)
P = get(s,'PropertyName')

Description get(s) prints the list of properties for the random stream s.

P = get(s) returns all properties of s in a scalar structure.

P = get(s,'PropertyName') returns the property 'PropertyName'.

See Also RandStream | set (RandStream)

1-2442

get (serial)

Purpose Serial port object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Description get(obj) returns all property names and their current values to the
command line for the serial port object, obj.

out = get(obj) returns the structure out where each field name is the
name of a property of obj, and each field contains the value of that
property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a
1-by-n or n-by-1 cell array of strings containing property names, then
get returns a 1-by-n cell array of values to out. If obj is an array
of serial port objects, then out will be a m-by-n cell array of property
values where m is equal to the length of obj and n is equal to the
number of properties specified.

Tips Refer to Displaying Property Names and Property Values for a list of
serial port object properties that you can return with get.

When you specify a property name, you can do so without regard to
case, and you can make use of property name completion. For example,
if s is a serial port object, then these commands are all valid.

out = get(s,'BaudRate');
out = get(s,'baudrate');
out = get(s,'BAUD');

Examples This example illustrates some of the ways you can use get to return
property values for the serial port object s on a Windows platform.

s = serial('COM1');
out1 = get(s);
out2 = get(s,{'BaudRate','DataBits'});

1-2443

get (serial)

get(s,'Parity')

ans =
none

See Also set

1-2444

get (tscollection)

Purpose Query tscollection object property values

Syntax value = get(tsc,'PropertyName')

Description value = get(tsc,'PropertyName') returns the value of the specified
property of the tscollection object tsc. The following syntax is
equivalent:

value = tsc.PropertyName

get(tsc) displays all properties and values of the tscollection object
tsc.

See Also set (tscollection) | timeseries

1-2445

getabstime (tscollection)

Purpose Extract date-string time vector into cell array

Syntax getabstime(tsc)

Description getabstime(tsc) extracts the time vector from the tscollection
object tsc as a cell array of date strings. To define the time vector
relative to a calendar date, set the TimeInfo.StartDate property of
the time-series collection. When the TimeInfo.StartDate format is a
valid datestr format, the output strings from getabstime have the
same format.

Examples 1 Create a tscollection object.

tsc = tscollection(timeseries([3 6 8 0 10]));

2 Set the StartDate property.

tsc.TimeInfo.StartDate = '10/27/2005 07:05:36';

3 Extract a vector of absolute time values.

getabstime(tsc)

ans =

'27-Oct-2005 07:05:36'
'27-Oct-2005 07:05:37'
'27-Oct-2005 07:05:38'
'27-Oct-2005 07:05:39'
'27-Oct-2005 07:05:40'

4 Change the date-string format of the time vector.

tsc.TimeInfo.Format = 'mm/dd/yy';

5 Extract the time vector with the new date-string format.

getabstime(tsc)

1-2446

getabstime (tscollection)

ans =

'10/27/05'
'10/27/05'
'10/27/05'
'10/27/05'
'10/27/05'

See Also datestr | tscollection | setabstime (tscollection)

1-2447

getappdata

Purpose Value of application-defined data

Syntax value = getappdata(h,name)
values = getappdata(h)

Description value = getappdata(h,name) returns the value of a MATLAB variable
stored in a GUI. The first argument, h, is a handle to the component
that is associated with the data. The second argument, name, is a string
that identifies the name of the data. The values of h and name must
match those passed to setappdata when you store the data.

values = getappdata(h) returns all variable data associated with the
component having the handle, h.

Note h can be a handle to any GUI component except an ActiveX
component.

See Also setappdata | isappdata | rmappdata

Concepts • “Share Data Among Callbacks”

1-2448

audiorecorder.getaudiodata

Purpose Store recorded audio signal in numeric array

Syntax y = getaudiodata(recorder)
y = getaudiodata(recorder, dataType)

Description y = getaudiodata(recorder) returns recorded audio data associated
with audiorecorder object recorder to double array y.

y = getaudiodata(recorder, dataType) converts the signal data
to the specified data type: 'double', 'single', 'int16', 'int8', or
'uint8'.

Output
Arguments

y

Audio signal data y contains the same number of columns as the
number of channels in the recording: one for mono, two for stereo.
The range of values depends on the data type, as shown in the
following table.

Data Type Sample Value Range

int8 -128 to 127

uint8 0 to 255

int16 -32768 to 32767

single -1 to 1

double -1 to 1

Examples Collect a sample of your speech with a microphone, and plot the signal
data:

% Record your voice for 5 seconds.
recObj = audiorecorder;
disp('Start speaking.')
recordblocking(recObj, 5);
disp('End of Recording.');

1-2449

audiorecorder.getaudiodata

% Play back the recording.
play(recObj);

% Store data in double-precision array.
myRecording = getaudiodata(recObj);

% Plot the waveform.
plot(myRecording);

See Also audiorecorder

How To • “Characteristics of Audio Files”

• “Record Audio”

1-2450

GetCharArray

Purpose Character array from Automation server

Syntax IDL Method Signature

HRESULT GetCharArray([in] BSTR varName, [in] BSTR Workspace, [out, re

Microsoft Visual Basic Client

GetCharArray(varname As String, workspace As String) As String

MATLAB Client
str = h.GetCharArray('varname', 'workspace')
str = GetCharArray(h, 'varname', 'workspace')

Description str = h.GetCharArray('varname', 'workspace') gets the character
array stored in varname from the specified workspace of the server
attached to handle h and returns it in str. The values for workspace
are base or global.

str = GetCharArray(h, 'varname', 'workspace') is an alternate
syntax.

Examples This example uses a Visual Basic .NET client.

1 Create the Visual Basic application. Use the MsgBox command to
control flow between MATLAB and the application.

Dim Matlab As Object
Dim S As String
Matlab = CreateObject("matlab.application")
MsgBox("In MATLAB, type" & vbCrLf _

& "str='new string';")

2 Open the MATLAB window, then type:

str='new string';

3 Click Ok.

Try

1-2451

GetCharArray

S = Matlab.GetCharArray("str", "base")
MsgBox("str = " & S)

Catch ex As Exception
MsgBox("You did not set 'str' in MATLAB")

End Try

The Visual Basic MsgBox displays what you typed in MATLAB.

See Also PutCharArray | GetWorkspaceData | GetVariable

1-2452

getdisp (hgsetget)

Purpose Override to change command window display

Syntax getdisp(H)

Description getdisp(H) called by get when get is called with no output arguments
and a single input argument that is a handle array. Override
this hgsetget class method in a subclass to change how property
information is displayed in the command window.

See Also hgsetget | get (hgsetget)

How To • “Implementing a Set/Get Interface for Properties”

1-2453

getenv

Purpose Environment variable

Syntax getenv 'name'
N = getenv('name')

Description getenv 'name' searches the underlying operating system’s
environment list for a string of the form name=value, where name is
the input string. If found, MATLAB returns the string value. If the
specified name cannot be found, an empty matrix is returned.

On UNIX platforms, the shell you use to launch MATLAB determines
the operating system environment. For example, starting MATLAB on
a Macintosh platform from the Applications folder creates a different
shell environment from launching MATLAB from Terminal.

N = getenv('name') returns value to the variable N.

Examples os = getenv('OS')

os =
Windows_NT

See Also setenv | computer | pwd | ver | path

1-2454

getfield

Purpose Field of structure array

Syntax value = getfield(struct, 'field')
value =
getfield(struct,{sIndx1,...,sIndxM},'field',{fIndx1,...,

fIndxN})

Description value = getfield(struct, 'field'), where struct is a 1-by-1
structure, returns the contents of the specified field, equivalent to value
= struct.field. Pass field references as strings.

value =
getfield(struct,{sIndx1,...,sIndxM},'field',{fIndx1,...,
fIndxN}) returns the contents of the specified field, equivalent to value
= struct(sIndx1,...,sIndxM).field(fIndx1,...,fIndxN). The
getfield function supports multiple sets of field and fIndx inputs,
and all Indx inputs are optional. If structure struct or any of the fields
is a nonscalar structure, and you do not specify an Indx, the getfield
function returns the values associated with the first index. If
you specify a single colon operator for an fIndx input, enclose
it in single quotation marks: ':'.

Tips • For most cases, retrieve data from a structure array by indexing
rather than using the getfield function. For more information,
see “Access Data in a Structure Array” and “Generate Field Names
from Variables”.

• Call getfield to simplify references to structure arrays with nested
fields, or to avoid creating unnecessary temporary variables, as
shown in the Examples section.

Examples The what function returns a structure array that describes the MATLAB
files in the current folder. Find the files with the .m extension:

files = getfield(what, 'm');

To perform the same task by indexing requires that you create a
temporary variable:

1-2455

getfield

templist = what;
files = templist.m;

Find values within a structure that contains nested fields:

level = 5;
semester = 'Fall';
subject = 'Math';
student = 'John_Doe';
fieldnames = {semester subject student};

% Add data to a structure named grades.
grades(level).(semester).(subject).(student)(10,21:30) = ...

[85, 89, 76, 93, 85, 91, 68, 84, 95, 73];

% Retrieve the data added.
getfield(grades, {level}, fieldnames{:}, {10,21:30})

Using the structure defined in the previous example, find all values in
the tenth row of the specified field:

getfield(grades, {level}, fieldnames{:}, {10,':'})

See Also setfield | fieldnames | isfield | orderfields | rmfield

How To • “Generate Field Names from Variables”

• “Access Data in a Structure Array”

1-2456

VideoReader.getFileFormats

Purpose File formats that VideoReader supports

Syntax formats = VideoReader.getFileFormats()

Description formats = VideoReader.getFileFormats() returns an array of
audiovideo.FileFormatInfo objects that indicate which formats
VideoReader can read on the current system. Each object has the
following properties: Extension, Description, ContainsVideo, and
ContainsAudio.

Tips • On Windows and UNIX systems, the list of file formats does not
always contain all the formats that VideoReader can read on your
system. getFileFormats returns a platform-dependent, static list of
formats that VideoReader can read on most systems.

• On all systems, VideoReader cannot always read a particular video
file even if getFileFormats lists its format. For more information,
see Supported Video File Formats.

Output
Arguments

formats

Array of audiovideo.FileFormatInfo objects, which have the
following properties:

Extension File extension.

Description Text description of the file
format.

ContainsVideo Whether VideoReader can
read video from this format.

ContainsAudio Whether VideoReader can
read audio from this format.

To convert this array to a filter list for dialog boxes generated with
uigetfile, use the getFilterSpec method with the following
syntax:

1-2457

VideoReader.getFileFormats

filterSpec = getFilterSpec(formats)

The filter list includes 'All Video Files' in the first row of the
cell array, and 'All Files (*.*)' in the last row.

Examples View the list of file formats that VideoReader supports on your system:

VideoReader.getFileFormats()

On a Windows system, this list appears as follows:

Video File Formats:
.asf - ASF File
.asx - ASX File
.avi - AVI File
.mj2 - Motion JPEG2000
.mpg - MPEG-1
.wmv - Windows Media Video

Create a dialog box to select a video file:

% Get the supported file formats.
formats = VideoReader.getFileFormats();

% Convert to a filter list.
filterSpec = getFilterSpec(formats);

% Create the dialog box.
[filename, pathname] = uigetfile(filterSpec);

Check whether VideoReader can read an .avi file on the current
system:

fmtList = VideoReader.getFileFormats();

1-2458

VideoReader.getFileFormats

if any(ismember({fmtList.Extension},'avi'))
disp('VideoReader can read AVI files on this system.');

else
disp('VideoReader cannot read AVI files on this system.');

end

See Also VideoReader

1-2459

getframe

Purpose Capture movie frame

Syntax getframe
F = getframe
F = getframe(h)
F = getframe(h,rect)

Description getframe returns a movie frame. The frame is a snapshot (pixmap) of
the current axes or figure.

F = getframe gets a frame from the current axes.

F = getframe(h) gets a frame from the figure or axes identified by
handle h.

F = getframe(h,rect) specifies a rectangular area from which to
copy the pixmap. rect is relative to the lower left corner of the figure
or axes h, in pixel units. rect is a four-element vector in the form
[left bottom width height], where width and height define the
dimensions of the rectangle.

getframe returns a movie frame, which is a structure having two fields:

• cdata — The image data stored as a matrix of uint8 values. The
dimensions of F.cdata are height-by-width-by-3.

• colormap — The colormap stored as an n-by-3 matrix of doubles.
F.colormap is empty on true color systems.

To capture an image, use this approach:

F = getframe(gcf);
image(F.cdata)
colormap(F.colormap)

Tips getframe is usually used in a for loop to assemble an array of movie
frames for playback using movie. For example,

for j = 1:n
plotting commands
F(j) = getframe;

1-2460

getframe

end
movie(F)

If you are capturing frames of a plot that takes a long time to generate
or are repeatedly calling getframe in a loop, make sure that your
computer’s screen saver does not activate and that your monitor does
not turn off for the duration of the capture; otherwise one or more of
the captured frames can contain graphics from your screen saver or
nothing at all.

Note In situations where MATLAB software is running on a
virtual desktop that is not currently visible on your monitor, calls to
getframe will complete, but will capture a region on your monitor
that corresponds to the position occupied by the figure or axes on the
hidden desktop. Therefore, make sure that the window to be captured
by getframe exists on the currently active desktop.

Capture Regions

F = getframe returns the contents of the current axes, exclusive of
the axis labels, title, or tick labels.

F = getframe(gcf) captures the entire interior of the current figure
window.

To capture the figure window menu, use F = getframe(h,rect) with a
rectangle sized to include the menu.

Resolution of Captured Frames

The resolution of the framed image depends on the size of the axes
in pixels when getframe is called. As the getframe command takes
a snapshot of the screen, if the axes is small in size (e.g., because
you have restricted the view to a window within the axes), getframe
captures fewer screen pixels, and the captured image might have poor
resolution if enlarged for display.

1-2461

getframe

Capturing UIControls

To capture uicontrols along with the axes and any annotations displayed
on the plot, specify the figure handle:

F = getframe(figure_handle);

To exclude uicontrols outside of the current axes, do not specify the
figure handle:

F = getframe;

Limitations with Renderer on Windows Systems

Setting the figure Renderer property to zbuffer or painters works
around limitations of using getframe with the OpenGL renderer on some
Windows systems.

Examples Make the peaks function vibrate.

Z = peaks;
figure('Renderer','zbuffer');
surf(Z);
axis tight manual;
set(gca,'NextPlot','replaceChildren');
for j = 1:20

surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end
movie(F,20) % Play the movie twenty times

The fifth frame of the sequence looks like this.

1-2462

getframe

See Also axis | frame2im | gcf | image | im2frame | movie

1-2463

GetFullMatrix

Purpose Matrix from Automation server workspace

Syntax IDL Method Signature

GetFullMatrix([in] BSTR varname, [in] BSTR
workspace, [in, out] SAFEARRAY(double) *pr, [in,
out] SAFEARRAY(double) *pi)

Microsoft Visual Basic Client

GetFullMatrix(varname As String, workspace As String,
[out] XReal As Double, [out] XImag As Double

MATLAB Client
[xreal ximag] =
h.GetFullMatrix('varname','workspace',zreal,zimag)
[xreal ximag] =
GetFullMatrix(h,'varname','workspace',zreal,zimag)

Description [xreal ximag] =
h.GetFullMatrix('varname','workspace',zreal,zimag) gets
matrix stored in variable varname from the specified workspace of the
server attached to handle h. The function returns the real
part in xreal and the imaginary part in ximag. The values
for workspace are base or global.

[xreal ximag] =
GetFullMatrix(h,'varname','workspace',zreal,zimag) is an
alternate syntax.

The zreal and zimag arguments are matrices of the same size as the
real and imaginary matrices (xreal and ximag) returned from the
server. The zreal and zimag matrices are commonly set to zero.

Use GetFullMatrix for values of type double only. Use GetVariable or
GetWorkspaceData for other types.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace.
These functions use the variant data type instead of the safearray

1-2464

GetFullMatrix

data type used by GetFullMatrix and PutFullMatrix. VBScript does
not support safearray.

Examples This example uses a Visual Basic .NET client to read data from a
MATLAB Automation server:

1 Create the Visual Basic application. Use the MsgBox command to
control flow between MATLAB and the application.

Dim MatLab As Object
Dim Result As String
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim i, j As Integer

MatLab = CreateObject("matlab.application")
Result = MatLab.Execute("M = rand(5);")
MsgBox("In MATLAB, type" & vbCrLf _

& "M(3,4)")

2 Open the MATLAB window and type:

M(3,4)

3 Click Ok.

4 In the Visual Basic application:

MatLab.GetFullMatrix("M", "base", XReal, XImag)
i = 2 %0-based array
j = 3

MsgBox("XReal(" & i + 1 & "," & j + 1 & ")" & _
" = " & XReal(i, j))

5 Click Ok to close and terminate MATLAB.

See Also PutFullMatrix | GetVariable | GetWorkspaceData | Execute

1-2465

GetFullMatrix

How To • “Exchanging Data with the Server”

1-2466

getpixelposition

Purpose Get component position in pixels

Syntax position = getpixelposition(handle)
position = getpixelposition(handle,recursive)

Description position = getpixelposition(handle) gets the position, in pixel
units, of the component with handle handle. MATLAB returns the
position as a four-element vector that specifies the location and size
of the component: [distance from left, distance from bottom, width,
height].

position = getpixelposition(handle,recursive) gets the position
as above. If recursive is true, the returned position is relative to the
parent figure of handle.

Use the getpixelposition function only to obtain coordinates
for children of figures and container components (uipanels, or
uibuttongroups). Results are not reliable for children of axes or other
Handle Graphics objects.

Examples This example creates a push button within a panel, and then retrieves
its position, in pixels, relative to the panel.

f = figure('Position',[300 300 300 200]);
p = uipanel('Position',[.2 .2 .6 .6]);
h1 = uicontrol(p,'Style','PushButton',...

'Units','Normalized',...
'String','Push Button',...
'Position',[.1 .1 .5 .2]);

drawnow;
pos1 = getpixelposition(h1)

pos1 =

18.6000 12.6000 88.0000 23.2000

1-2467

getpixelposition

The following statement retrieves the position of the push button, in
pixels, relative to the figure.

pos1 = getpixelposition(h1,true)

pos1 =
78.6000 52.6000 88.0000 23.2000

See Also setpixelposition | uicontrol | uipanel

1-2468

getpref

Purpose Preference

Syntax getpref('group','pref')
getpref('group','pref',default)
getpref('group',{'pref1','pref2',...'prefn'})
getpref('group',{'pref1',...'prefn'},{default1,...defaultn})
getpref('group')
getpref

Description getpref('group','pref') returns the value for the preference
specified by group and pref. It is an error to get a preference that
does not exist.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g. 'ApplicationOnePrefs'. The input argument pref
identifies an individual preference in that group, and must be a legal
variable name.

getpref('group','pref',default) returns the current value if the
preference specified by group and pref exists. Otherwise creates the
preference with the specified default value and returns that value.

getpref('group',{'pref1','pref2',...'prefn'}) returns a cell
array containing the values for the preferences specified by group and
the cell array of preference names. The return value is the same size as
the input cell array. It is an error if any of the preferences do not exist.

getpref('group',{'pref1',...'prefn'},{default1,...defaultn})
returns a cell array with the current values of the preferences specified
by group and the cell array of preference names. Any preference that
does not exist is created with the specified default value and returned.

getpref('group') returns the names and values of all preferences in
the group as a structure.

getpref returns all groups and preferences as a structure.

1-2469

getpref

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples Get the Value of an Existing Preference

addpref('mytoolbox','version','1.0')
getpref('mytoolbox','version')

ans =
1.0

Create a Preference Using Specified Default Value

setpref('mytoolbox','version','1.0')
rmpref('mytoolbox','version')
getpref('mytoolbox','version','1.0');
getpref('mytoolbox','version')

ans =

1.0

The first call to getpref adds the 'version' preference and sets its
value to the default value, 1.0. The second call to getpref verifies that
the preference exists, and that its value is 1.0.

See Also addpref | ispref | rmpref | setpref | uigetpref | uisetpref

1-2470

VideoWriter.getProfiles

Purpose List profiles and file formats supported by VideoWriter

Syntax profiles = VideoWriter.getProfiles()

Description profiles = VideoWriter.getProfiles() returns an array of
audiovideo.writer.ProfileInfo objects that indicate the types of
files VideoWriter can create.

Output
Arguments

profiles

An array of audiovideo.writer.ProfileInfo objects, which
have the following read-only properties:

Name String profile name, such as
'Uncompressed AVI'.

Description String description of the profile.

FileExtensions Cell array of strings containing file
extensions supported by the file format.

ColorChannels Number of color channels in each output
video frame.

CompressionRatio Number greater than 1 that specifies the
target ratio between the number of bytes
in the input image and the number of bytes
in the compressed image. Only applies to
objects associated with Motion JPEG 2000
files. Default: 10.

FrameRate Rate of playback for the video in frames
per second. Default: 30.

1-2471

VideoWriter.getProfiles

LosslessCompressionBoolean value (logical true or false) that
specifies whether to use reversible mode, so
that the decompressed data is identical to
the input data. When true, VideoWriter
ignores values for CompressionRatio.
Only applies to objects associated with
Motion JPEG 2000 files.

MJ2BitDepth Number of least significant bits in the
input image data, from 1 to 16. Only
applies to objects associated with Motion
JPEG 2000 files.

Quality Number from 0 through 100. Higher
values correspond to higher quality video
and larger files. Only applies to objects
associated with the MPEG-4 or Motion
JPEG AVI profile. Default: 75.

VideoBitsPerPixelNumber of bits per pixel in each output
video frame.

VideoCompressionMethodString indicating the type of video
compression, such as 'None' or 'Motion
JPEG'.

VideoFormat String indicating the MATLAB
representation of the video format,
such as 'RGB24'.

Examples Profile Information

View the list of available profiles and specific information about the
'Uncompressed AVI' profile.

profiles = VideoWriter.getProfiles()

uncompAVI = find(ismember({profiles.Name},'Uncompressed AVI'));
profiles(uncompAVI)

1-2472

VideoWriter.getProfiles

profiles(uncompAVI).FileExtensions

See Also VideoWriter

1-2473

getReport (MException)

Purpose Get error message for exception

Syntax msgString = getReport(exception)
msgString = getReport(exception, type)
msgString = getReport(exception, type, 'hyperlinks', value)

Description msgString = getReport(exception) returns a formatted message
string, msgString, from an exception. This exception is represented by
the exception input which is a scalar object of the MException class.
The message string returned by getReport is the same as the error
message displayed by MATLAB when it throws this exception.

msgString = getReport(exception, type) returns a message string
that either describes just the error (basic type), or shows the error
and the stack as well (extended type). The type argument, when
used, must be the second argument in the input argument list. See
“Examples” on page 1-2475 , below.

type Option Displayed Text

'extended' Display line number, error message, and
cause and stack summary (default)

'basic' Display line number and error message

msgString = getReport(exception, type, 'hyperlinks', value)
returns a message string that either does or does not include active
hyperlinks to the failing lines in the code. See the table below for the
valid choices for value. The hyperlinks and value arguments, when
used, must be the third and fourth arguments in the input argument
list.

1-2474

getReport (MException)

value Option Action

'on' Display hyperlinks to failing lines (default)

'off' Do not display hyperlinks to failing lines

'default' Use the default for the Command Window to
determine whether or not to use hyperlinks
in the error message

Examples This function attempts to read from a file that does not exist. When you
call it, pass either `basic' or `extended' to specify the type of report
you want to see displayed:

function line = test_getreport(file, rpttype)
try

line = read_file(file);
catch exc

getReport(exc, rpttype)
end

function line = read_file(file)
fid = fopen(file, 'r');
line = fread(fid);

The basic option displays only the error message:

test_getreport('filethatdoesnotexist.txt', 'basic')
ans =

Error using fread

Invalid file identifier. Use fopen to generate a valid file identifier.

The extended option displays the error message and error call stack:

test_getreport('filethatdoesnotexist.txt', 'extended')
ans =

1-2475

getReport (MException)

Error using fread

Invalid file identifier. Use fopen to generate a valid file identifier.

Error in test_getreport>read_file (line 10)

line = fread(fid);

Error in test_getreport (line 3)

line = read_file(file);

See Also last(MException) | addCause(MException) |
throwAsCaller(MException) | rethrow(MException) |
throw(MException) | MException | assert | error | try, catch

1-2476

getsampleusingtime (tscollection)

Purpose Extract data samples into new tscollection object

Syntax tsc2 = getsampleusingtime(tsc1,Time)
tsc2 = getsampleusingtime(tsc1,StartTime,EndTime)

Description tsc2 = getsampleusingtime(tsc1,Time) returns a new
tscollection tsc2 with a single sample corresponding to Time in tsc1.

tsc2 = getsampleusingtime(tsc1,StartTime,EndTime) returns a
new tscollection tsc2 with samples between the times StartTime
and EndTime in tsc1.

Tips When the time vector in ts1 is numeric, StartTime and EndTime must
also be numeric. When the times in ts1 are date strings and the
StartTime and EndTime values are numeric, then the StartTime and
EndTime values are treated as datenum values.

See Also tscollection

1-2477

Tiff.getTag

Purpose Value of specified tag

Syntax tagValue = getTag(tagId)

Description tagValue = getTag(tagId) retrieves the value of the TIFF tag
specified by tagId. You can specify tagId as a character string
('ImageWidth') or using the numeric tag identifier defined by the
TIFF specification (256). To see a list of all the tags with their
numeric identifiers, view the value of the Tiff object TagID property.
Use the TagID property to specify the value of a tag. For example,
Tiff.TagID.ImageWidth is equivalent to the tag’s numeric identifier.

Examples Get Value of Tag

Open a Tiff object and get the value of a tag. Specify the tag by name.

t = Tiff('example.tif','r');
tagval = t.getTag('ImageWidth')

tagval =

600

Alternatively, specify the tag by numeric identifier.

tagval1 = t.getTag(256)

tagval1 =

600

Another way to specify the numeric identifier is to use the TagID
property.

tagval2 = t.getTag(Tiff.TagID.ImageWidth)

tagval2 =

1-2478

Tiff.getTag

600

Close the Tiff object.

t.close();

References This method corresponds to the TIFFGetField function in the LibTIFF
C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTiff
- TIFF Library and Utilities.

See Also Tiff.setTag

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-2479

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

Tiff.getTagNames

Purpose List of recognized TIFF tags

Syntax tagNames = Tiff.getTagNames()

Description tagNames = Tiff.getTagNames() returns a cell array of TIFF tags
recognized by the Tiff object.

Examples Retrieve a list of TIFF tags recognized by the Tiff object.

Tiff.getTagNames

ans =

'SubFileType'
'ImageWidth'
'ImageLength'
'BitsPerSample'
'Compression'
'Photometric'
'Thresholding'
'FillOrder'
'DocumentName'
'ImageDescription'
.
.
.

See Also Tiff.getTag

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-2480

gettimeseriesnames

Purpose Cell array of names of timeseries objects in tscollection object

Syntax names = gettimeseriesnames(tsc)

Description names = gettimeseriesnames(tsc) returns names of timeseries
objects in a tscollection object tsc. names is a cell array of strings.

Examples 1 Create timeseries objects a and b.

a = timeseries(rand(1000,1),'name','position');
b = timeseries(rand(1000,1),'name','response');

2 Create a tscollection object that includes these two time series.

tsc = tscollection({a,b});

3 Get the names of the timeseries objects in tsc.

names = gettimeseriesnames(tsc)

names =

'position' 'response'

See Also timeseries | tscollection

1-2481

gettsafteratevent

Purpose New timeseries object with samples occurring at or after event

Syntax ts1 = gettsafteratevent(ts,event)
ts1 = gettsafteratevent(ts,event,n)

Description ts1 = gettsafteratevent(ts,event) returns a new timeseries
object ts1 with samples occurring at and after an event in ts, where
event can be either a tsdata.event object or a string. When event is a
tsdata.event object, the time defined by event is used. When event
is a string, the first tsdata.event object in the Events property of the
time series ts that matches the event name specifies the time.

ts1 = gettsafteratevent(ts,event,n) returns a new timeseries
object ts1 with samples at and after an event in ts, where n is the
number of the event occurrence with a matching event name.

Tips When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent | gettsbeforeevent | gettsbetweenevents |
tsdata.event | timeseries

1-2482

gettsafterevent

Purpose New timeseries object with samples occurring after event

Syntax ts1 = gettsafterevent(ts,event)
ts1 = ttsafterevent(ts,event,n)

Description ts1 = gettsafterevent(ts,event) returns a new timeseries
object ts1 with samples occurring after an event in ts, where event
can be either a tsdata.event object or a string. When event is a
tsdata.event object, the time defined by event is used. When event
is a string, the first tsdata.event object in the Events property of ts
that matches the event name specifies the time.

ts1 = ttsafterevent(ts,event,n) returns a new timeseries object
ts1 with samples occurring after an event in time series ts, where n is
the number of the event occurrence with a matching event name.

Tips When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafteratevent | gettsbeforeevent | gettsbetweenevents |
timeseries | tsdata.event

1-2483

gettsatevent

Purpose New timeseries object with samples occurring at event

Syntax ts1 = gettsatevent(ts,event)
ts1 = gettsatevent(ts,event,n)

Description ts1 = gettsatevent(ts,event) returns a new timeseries object ts1
with samples occurring at an event in ts, where event can be either
a tsdata.event object or a string. When event is a tsdata.event
object, the time defined by event is used. When event is a string, the
first tsdata.event object in the Events property of ts that matches
the event name specifies the time.

ts1 = gettsatevent(ts,event,n) returns a new time series ts1 with
samples occurring at an event in time series ts, where n is the number
of the event occurrence with a matching event name.

Tips When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in the ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent | gettsafteratevent | gettsbeforeevent |
gettsbetweenevents | timeseries

1-2484

gettsbeforeatevent

Purpose New timeseries object with samples occurring before or at event

Syntax ts1 = gettsbeforeatevent(ts,event)
ts1 = gettsbeforeatevent(ts,event,n)

Description ts1 = gettsbeforeatevent(ts,event) returns a new timeseries
object ts1 with samples occurring at and before an event in ts, where
event can be either a tsdata.event object or a string. When event is a
tsdata.event object, the time defined by event is used. When event
is a string, the first tsdata.event object in the Events property of ts
that matches the event name specifies the time.

ts1 = gettsbeforeatevent(ts,event,n) returns a new timeseries
object ts1 with samples occurring at and before an event in time series
ts, where n is the number of the event occurrence with a matching
event name.

Tips When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent | gettsbeforeevent | gettsbetweenevents |
tsdata.event

1-2485

gettsbeforeevent

Purpose New timeseries object with samples occurring before event

Syntax ts1 = gettsbeforeevent(ts,event)
ts1 = gettsbeforeevent(ts,event,n)

Description ts1 = gettsbeforeevent(ts,event) returns a new timeseries
object ts1 with samples occurring before an event in ts, where event
can be either a tsdata.event object or a string. When event is a
tsdata.event object, the time defined by event is used. When event
is a string, the first tsdata.event object in the Events property of ts
that matches the event name specifies the time.

ts1 = gettsbeforeevent(ts,event,n) returns a new timeseries
object ts1 with samples occurring before an event in ts, where n is the
number of the event occurrence with a matching event name.

Tips When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent | gettsbeforeatevent | gettsbetweenevents |
tsdata.event

1-2486

gettsbetweenevents

Purpose New timeseries object with samples occurring between events

Syntax ts1 = gettsbetweenevents(ts,event1,event2)
ts1 = gettsbetweenevents(ts,event1,event2,n1,n2)

Description ts1 = gettsbetweenevents(ts,event1,event2) returns a new
timeseries object ts1 with samples occurring between events in ts,
where event1 and event2 can be either a tsdata.event object or a
string. When event1 and event2 are tsdata.event objects, the time
defined by the events is used. When event1 and event2 are strings, the
first tsdata.event object in the Events property of ts that matches
the event names specifies the time.

ts1 = gettsbetweenevents(ts,event1,event2,n1,n2) returns a
new timeseries object ts1 with samples occurring between events
in ts, where n1 and n2 are the nth occurrences of the events with
matching event names.

Tips When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent | gettsbeforeevent | tsdata.event

1-2487

GetVariable

Purpose Data from variable in Automation server workspace

Syntax IDL Method Signature

HRESULT GetVariable([in] BSTR varname, [in] BSTR
workspace, [out, retval] VARIANT* pdata)

Microsoft Visual Basic Client

GetVariable(varname As String, workspace As
String) As Object

MATLAB Client
D = h.GetVariable('varname','workspace')
D = GetVariable(h,'varname','workspace')

Description D = h.GetVariable('varname','workspace') gets data stored in
variable varname from the specified workspace of the server attached to
handle h and returns it in output argument D. The values for workspace
are base or global.

D = GetVariable(h,'varname','workspace') is an alternate syntax.

Do not use GetVariable on sparse arrays, structures, or function
handles.

If your scripting language requires a result be returned explicitly,
use the GetVariable function in place of GetWorkspaceData,
GetFullMatrix or GetCharArray.

Examples This example uses a Visual Basic .NET client to read data from a
MATLAB Automation server:

Dim Matlab As Object
Dim Result As String
Dim C2 As Variant
Matlab = CreateObject("matlab.application")
Result = Matlab.Execute("C1 = {25.72, 'hello', rand(4)};")
C2 = Matlab.GetVariable("C1", "base")
MsgBox("Second item in cell array: " & C2(0, 1))

1-2488

GetVariable

See Also GetWorkspaceData | GetFullMatrix | GetCharArray | Execute

How To • “Exchanging Data with the Server”

1-2489

Tiff.getVersion

Purpose LibTIFF library version

Syntax versionString = Tiff.getVersion()

Description versionString = Tiff.getVersion() returns the version number
and other information about the LibTIFF library.

Examples Display version of LibTIFF library:

Tiff.getVersion

ans =

LIBTIFF, Version 3.9.5
Copyright (c) 1988-1996 Sam Leffler
Copyright (c) 1991-1996 Silicon Graphics, Inc.

References This method corresponds to the TIFFGetVersion function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

1-2490

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

GetWorkspaceData

Purpose Data from Automation server workspace

Syntax IDL Method Signature

HRESULT GetWorkspaceData([in] BSTR varname, [in] BSTR
workspace, [out] VARIANT* pdata)

Microsoft Visual Basic Client

GetWorkspaceData(varname As String, workspace
As String) As Object

MATLAB Client
D = h.GetWorkspaceData('varname','workspace')
D = GetWorkspaceData(h,'varname','workspace')

Description D = h.GetWorkspaceData('varname','workspace') gets data stored
in variable varname from the specified workspace of the server attached
to handle h and returns it in output argument D. The values for
workspace are base or global.

D = GetWorkspaceData(h,'varname','workspace') is an alternate
syntax.

Use GetWorkspaceData instead of GetFullMatrix and GetCharArray
to get numeric and character array data, respectively. Do not use
GetWorkspaceData on sparse arrays, structures, or function handles.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace.
These functions use the variant data type instead of the safearray
data type used by GetFullMatrix and PutFullMatrix. VBScript does
not support safearray.

Examples This example uses a Visual Basic .NET client to read data from a
MATLAB Automation server:

Dim Matlab As Object
Dim C2 As Variant
Dim Result As String

1-2491

GetWorkspaceData

Matlab = CreateObject("matlab.application")
Result = MatLab.Execute("C1 = {25.72, 'hello', rand(4)};")
MsgBox("In MATLAB, type" & vbCrLf & "C1")
Matlab.GetWorkspaceData("C1", "base", C2)
MsgBox("second value of C1 = " & C2(0, 1))

See Also PutWorkspaceData | GetFullMatrix | GetCharArray | GetVariable
| Execute

How To • “Exchanging Data with the Server”

1-2492

ginput

Purpose Graphical input from mouse or cursor

Syntax [x,y] = ginput(n)
[x,y] = ginput
[x,y,button] = ginput(...)

Description ginput raises crosshairs in the current axes to for you to identify points
in the figure, positioning the cursor with the mouse. The figure must
have focus before ginput can receive input. If it has no axes, one is
created upon the first click or keypress.

[x,y] = ginput(n) enables you to identify n points from the current
axes and returns their x- and y-coordinates in the x and y column
vectors. Press the Return key to terminate the input before entering n
points.

[x,y] = ginput gathers an unlimited number of points until you press
the Return key.

[x,y,button] = ginput(...) returns the x-coordinates, the
y-coordinates, and the button or key designation. button is a vector of
integers indicating which mouse buttons you pressed (1 for left, 2 for
middle, 3 for right), or ASCII numbers indicating which keys on the
keyboard you pressed.

Clicking an axes makes that axes the current axes. Even if you set the
current axes before calling ginput, whichever axes you click becomes
the current axes and ginput returns points relative to that axes. If you
select points from multiple axes, the results returned are relative to the
coordinate system of the axes they come from.

1-2493

ginput

Note MATLAB returns errors such as the following if you start
MATLAB with the noFigureWindows or nodisplay flag and then
run ginput:

Error using ginput (line 31)
Terminal mode is no longer supported

Definitions Coordinates returned by ginput are scaled to the XLim and YLim
bounds of the axes you click (data units). Setting the axes or figure
Units property has no effect on the output from ginput. You can click
anywhere within the figure canvas to obtain coordinates. If you click
outside the axes limits, ginput extrapolates coordinate values so they
are still relative to the axes origin.

The figure CurrentPoint property, by contrast, is always returned in
figure Units, irrespective of axes Units or limits.

Examples Pick 4 two-dimensional points from the figure window.

[x,y] = ginput(4)

Position the cursor with the mouse. Enter data points by pressing a
mouse button or a key on the keyboard. To terminate input before
entering 4 points, press the Return key.

x =
0.2362
0.5749
0.5680
0.2707

y =
0.6711
0.6769
0.4313

1-2494

ginput

0.4401

plot(x,y)

In this example, plot rescaled the axes x-limits and y-limits from
[0 1] and [0 1] to [0.20 0.65] and [0.40 0.75]. The rescaling
occurred because the axes XLimMode and YLimMode are set to 'auto'
(the default). Consider setting XLimMode and YLimMode to 'manual' if
you want to maintain consistency when you gather results from ginput
and plot them together.

See Also gtext

Tutorials • “Subsetting a Graphics Image (Cropping)”

1-2495

global

Purpose Declare global variables

Syntax global X Y Z

Description global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function has its own local variables, which
are separate from those of other functions, and from those of the
base workspace. However, if several functions, and possibly the base
workspace, all declare a particular name as global, they all share a
single copy of that variable. Any assignment to that variable, in any
function, is available to all the functions declaring it global.

If the global variable does not exist the first time you issue the global
statement, it is initialized to the empty matrix.

If a variable with the same name as the global variable already exists
in the current workspace, MATLAB issues a warning and changes the
value of that variable to match the global.

Tips Use clear global variable to clear a global variable from the global
workspace. Use clear variable to clear the global link from the
current workspace without affecting the value of the global.

To use a global within a callback, declare the global, use it, then clear
the global link from the workspace. This avoids declaring the global
after it has been referenced. For example,

cbstr = sprintf('%s, %s, %s, %s, %s', ...

'global MY_GLOBAL', ...

'MY_GLOBAL = 100', ...

'disp(MY_GLOBAL)', ...

'MY_GLOBAL = MY_GLOBAL+1', ...

'clear MY_GLOBAL');

uicontrol('style', 'pushbutton', 'CallBack', cbstr, ...

'string', 'count')

1-2496

global

There is no function form of the global command (i.e., you cannot use
parentheses and quote the variable names).

Examples Example 1

Type edit global_demo1 at the command line and enter the following
function definition in a new file named global_demo1.m.

function global_demo1(num)

global globalvar

if nargin > 0

globalvar = num;

end

fprintf('Global variable in function %s is %d\n', ...

mfilename, globalvar);

This function declares a global variable named globalvar. If you
pass a value when calling the function, the function stores the value
in globalvar and then displays it. If you call the function with no
arguments, the function just displays the value last written to the
global workspace.

Create another function global_demo2 just like it. These two functions
have separate function workspaces, but share a common global
workspace:

copyfile global_demo1.m global_demo2.m

Call global_demo1, passing a numeric value. Then call global_demo2
with no value. You can see that the latter function has global access to
the value that was passed to global_demo1.

global_demo1(1357);

Global variable in function global_demo1 is 1357

global_demo2

Global variable in function global_demo2 is 1357

1-2497

global

Now set the value in global_demo2 and read it in global_demo1:

global_demo2(2468)

Global variable in function global_demo2 is 2468

global_demo1

Global variable in function global_demo1 is 2468

Example 2

Call the function global_demo1 that was defined in the previous
example to assign a value to variable globalvar in the global
workspace. Even though the variable is global, it is not accessible
outside of the function workspace:

clear all

global_demo1(1357);

Global variable in function global_demo1 is 1357

if exist('globalvar', 'var')

fprintf('Global variable is set to %d\n', globalvar);

else

fprintf('Global variable is not available at the command line.\n');

end

Global variable is not available at the command line.

Now declare globalvar as a global variable at the MATLAB command
line. Run the same statements to display the variable and this time you
can see that the value assigned by the function is also available as a
global variable in the base workspace:

global globalvar

if exist('globalvar', 'var')

fprintf('Global variable is set to %d\n', globalvar);

else

1-2498

global

fprintf('Global variable is not available at the command line.\n');

end

Global variable is set to 1357

Example 3

Here is the code for the functions tic and toc (some comments
abridged). These functions manipulate a stopwatch-like timer. The
global variable TICTOC is shared by the two functions, but it is invisible
in the base workspace or in any other functions that do not declare it.

function tic

% TIC Start a stopwatch timer.

% TIC; any stuff; TOC

% prints the time required.

% See also: TOC, CLOCK.

global TICTOC

TICTOC = clock;

function t = toc

% TOC Read the stopwatch timer.

% TOC prints the elapsed time since TIC was used.

% t = TOC; saves elapsed time in t, does not print.

% See also: TIC, ETIME.

global TICTOC

if nargout < 1

elapsed_time = etime(clock, TICTOC)

else

t = etime(clock, TICTOC);

end

See Also clear | isglobal | who

1-2499

gmres

Purpose Generalized minimum residual method (with restarts)

Syntax x = gmres(A,b)
gmres(A,b,restart)
gmres(A,b,restart,tol)
gmres(A,b,restart,tol,maxit)
gmres(A,b,restart,tol,maxit,M)
gmres(A,b,restart,tol,maxit,M1,M2)
gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag] = gmres(A,b,...)
[x,flag,relres] = gmres(A,b,...)
[x,flag,relres,iter] = gmres(A,b,...)
[x,flag,relres,iter,resvec] = gmres(A,b,...)

Description x = gmres(A,b) attempts to solve the system of linear equations A*x
= b for x. The n-by-n coefficient matrix A must be square and should
be large and sparse. The column vector b must have length n. A can
be a function handle, afun, such that afun(x) returns A*x. For this
syntax, gmres does not restart; the maximum number of iterations is
min(n,10).

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If gmres converges, a message to that effect is displayed. If gmres fails
to converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

gmres(A,b,restart) restarts the method every restart
inner iterations. The maximum number of outer iterations is
min(n/restart,10). The maximum number of total iterations is
restart*min(n/restart,10). If restart is n or [], then gmres does
not restart and the maximum number of total iterations is min(n,10).

gmres(A,b,restart,tol) specifies the tolerance of the method. If tol
is [], then gmres uses the default, 1e-6.

1-2500

gmres

gmres(A,b,restart,tol,maxit) specifies the maximum number
of outer iterations, i.e., the total number of iterations does not
exceed restart*maxit. If maxit is [] then gmres uses the default,
min(n/restart,10). If restart is n or [], then the maximum number
of total iterations is maxit (instead of restart*maxit).

gmres(A,b,restart,tol,maxit,M) and
gmres(A,b,restart,tol,maxit,M1,M2) use preconditioner M or M =
M1*M2 and effectively solve the system inv(M)*A*x = inv(M)*b for x.
If M is [] then gmres applies no preconditioner. M can be a function
handle mfun such that mfun(x) returns M\x.

gmres(A,b,restart,tol,maxit,M1,M2,x0) specifies the first initial
guess. If x0 is [], then gmres uses the default, an all-zero vector.

[x,flag] = gmres(A,b,...) also returns a convergence flag:

flag = 0 gmres converged to the desired tolerance tol within
maxit outer iterations.

flag = 1 gmres iterated maxit times but did not converge.

flag = 2 Preconditioner M was ill-conditioned.

flag = 3 gmres stagnated. (Two consecutive iterates were the
same.)

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = gmres(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol. The third output,
relres, is the relative residual of the preconditioned system.

[x,flag,relres,iter] = gmres(A,b,...) also returns both the outer
and inner iteration numbers at which x was computed, where 0 <=
iter(1) <= maxit and 0 <= iter(2) <= restart.

[x,flag,relres,iter,resvec] = gmres(A,b,...) also returns a
vector of the residual norms at each inner iteration. These are the
residual norms for the preconditioned system.

1-2501

gmres

Examples Using gmres with a Matrix Input

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = gmres(A,b,10,tol,maxit,M1);

displays the following message:

gmres(10) converged at outer iteration 2 (inner iteration 9) to
a solution with relative residual 3.3e-013

Using gmres with a Function Handle

This example replaces the matrix A in the previous example with a
handle to a matrix-vector product function afun, and the preconditioner
M1 with a handle to a backsolve function mfun. The example is contained
in a function run_gmres that

• Calls gmres with the function handle @afun as its first argument.

• Contains afun and mfun as nested functions, so that all variables in
run_gmres are available to afun and mfun.

The following shows the code for run_gmres:

function x1 = run_gmres
n = 21;
b = afun(ones(n,1));
tol = 1e-12; maxit = 15;
x1 = gmres(@afun,b,10,tol,maxit,@mfun);

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

1-2502

gmres

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end
end

When you enter

x1 = run_gmres;

MATLAB software displays the message

gmres(10) converged at outer iteration 2 (inner iteration 10)
to a solution with relative residual 1.1e-013.

Using a Preconditioner without Restart

This example demonstrates the use of a preconditioner without
restarting gmres.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Set the tolerance and maximum number of iterations.

tol = 1e-12; maxit = 20;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));
[x0,fl0,rr0,it0,rv0] = gmres(A,b,[],tol,maxit);

fl0 is 1 because gmres does not converge to the requested tolerance
1e-12 within the requested 20 iterations. The best approximate
solution that gmres returns is the last one (as indicated by it0(2) =
20). MATLAB stores the residual history in rv0.

1-2503

gmres

Plot the behavior of gmres.

semilogy(0:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

The plot shows that the solution converges slowly. A preconditioner
may improve the outcome.

Use ilu to form the preconditioner, since A is nonsymmetric.

1-2504

gmres

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

Note MATLAB cannot construct the incomplete LU as it would result in
a singular factor, which is useless as a preconditioner.

As indicated by the error message, try again with a reduced drop
tolerance.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = gmres(A,b,[],tol,maxit,L,U);

fl1 is 0 because gmres drives the relative residual to 9.5436e-14
(the value of rr1). The relative residual is less than the prescribed
tolerance of 1e-12 at the sixth iteration (the value of it1(2)) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. The output, rv1(1), is norm(M\b), where M = L*U. The output,
rv1(7), is norm(U\(L\(b-A*x1))).

Follow the progress of gmres by plotting the relative residuals at each
iteration starting from the initial estimate (iterate number 0).

semilogy(0:it1(2),rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-2505

gmres

Using a Preconditioner with Restart

This example demonstrates the use of a preconditioner with restarted
gmres.

Load west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

1-2506

gmres

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Construct an incomplete LU preconditioner as in the previous example.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));

The benefit to using restarted gmres is to limit the amount of memory
required to execute the method. Without restart, gmres requires maxit
vectors of storage to keep the basis of the Krylov subspace. Also, gmres
must orthogonalize against all of the previous vectors at each step.
Restarting limits the amount of workspace used and the amount of work
done per outer iteration. Note that even though preconditioned gmres
converged in six iterations above, the algorithm allowed for as many as
twenty basis vectors and therefore, allocated all of that space up front.

Execute gmres(3), gmres(4), and gmres(5)

tol = 1e-12; maxit = 20;
re3 = 3;
[x3,fl3,rr3,it3,rv3] = gmres(A,b,re3,tol,maxit,L,U);
re4 = 4;
[x4,fl4,rr4,it4,rv4] = gmres(A,b,re4,tol,maxit,L,U);
re5 = 5;
[x5,fl5,rr5,it5,rv5] = gmres(A,b,re5,tol,maxit,L,U);

fl3, fl4, and fl5 are all 0 because in each case restarted gmres drives
the relative residual to less than the prescribed tolerance of 1e-12.

The following plots show the convergence histories of each restarted
gmres method. gmres(3) converges at outer iteration 5, inner iteration
3 (it3 = [5, 3]) which would be the same as outer iteration 6, inner
iteration 0, hence the marking of 6 on the final tick mark.

figure
semilogy(1:1/3:6,rv3/norm(b),'-o');
set(gca,'XTick',[1:1/3:6],...

'XTickLabel',...

1-2507

gmres

['1';' ';' ';'2';' ';' ';'3';' ';' ';'4';' ';' ';'5';' ';' ';'6';])
title('gmres(3)')
xlabel('Iteration number');
ylabel('Relative residual');

figure
semilogy(1:1/4:3,rv4/norm(b),'-o');
set(gca,'XTick',[1:1/4:3],...

'XTickLabel',['1';' ';' ';' ';'2';' ';' ';' ';'3'])
title('gmres(4)')
xlabel('Iteration number');
ylabel('Relative residual');

figure
semilogy(1:1/5:2.8,rv5/norm(b),'-o');
set(gca,'XTick',[1:1/5:2.8],...

'XTickLabel',['1';' ';' ';' ';' ';'2';' ';' ';' ';' '])
title('gmres(5)')
xlabel('Iteration number');
ylabel('Relative residual');

1-2508

gmres

1-2509

gmres

1-2510

gmres

References Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

Saad, Youcef and Martin H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,” SIAM J.
Sci. Stat. Comput., July 1986, Vol. 7, No. 3, pp. 856-869.

1-2511

gmres

See Also bicg | bicgstab | cgs | function_handle | ilu | lsqr | minres |
pcg | qmr | symmlq | mldivide

1-2512

gobjects

Purpose Create array of graphics handles

Syntax H = gobjects(n)
H = gobjects(s1,...,sn)
H = gobjects(v)

H = gobjects
H = gobjects(0)

Description H = gobjects(n) returns an n-by-n array of graphics handles. Use the
gobjects function instead of the ones or zeros functions to preallocate
an array to store graphics handles.

H = gobjects(s1,...,sn) returns an s1-by-...-by-sn array of graphics
handles, where the list of integers s1,...,sn defines the dimensions
of the array. For example, gobjects(2,3) returns a 2-by-3 array.

H = gobjects(v) returns an array of graphics handles where the
elements of the row vector, v, define the dimensions of the array. For
example, gobjects([2,3,4]) returns a 2-by-3-by-4 array.

H = gobjects returns a 1-by-1 graphics handle array.

H = gobjects(0) returns empty.

Input
Arguments

n - Size of square matrix
integer value

Size of the square matrix, specified as an integer value. Negative
integers are treated as 0. The square matrix has dimensions n-by-n.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

1-2513

gobjects

s1,...,sn - Size of each array dimension
two or more integer values

Size of each array dimension, specified as a list of two or more integer
values. Negative integers are treated as 0.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

v - Size of each array dimension
row vector of integer values

Size of each array dimension, specified as a row vector of integer values.
Negative integers are treated as 0.

Example: [2,4,6,7]

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Examples Specify Array Dimensions

Preallocate a 4-by-1 array to store graphics handles.

H = gobjects(4,1)

H =

0
0
0
0

1-2514

gobjects

Specify Array Dimensions with Size of Existing Array

Create an array to store graphics handles using the size of an existing
array.

Define A as a 3-by-4 array.

A = [1,2,3,2; 4,5,6,6; 7,8,9,7];

Create an array of graphics handles using the size of A.

v = size(A);
H = gobjects(v);

The dimensions of the graphics handle array are the same as the
dimensions of A.

isequal(size(H),size(A))

ans =

1

Return Empty Handle Array

Use the gobjects function to return an empty array.

H = gobjects(0)

H =

[]

1-2515

gplot

Purpose Plot nodes and links representing adjacency matrix

Syntax gplot(A,Coordinates)
gplot(A,Coordinates,LineSpec)

Description The gplot function graphs a set of coordinates using an adjacency
matrix.

gplot(A,Coordinates) plots a graph of the nodes defined in
Coordinates according to the n-by-n adjacency matrix A, where n is
the number of nodes. Coordinates is an n-by-2 matrix, where n is the
number of nodes and each coordinate pair represents one node.

gplot(A,Coordinates,LineSpec) plots the nodes using the line type,
marker symbol, and color specified by LineSpec.

Tips For two-dimensional data, Coordinates(i,:) = [x(i) y(i)]
denotes node i, and Coordinates(j,:) = [x(j)y(j)] denotes node
j. If node i and node j are connected, A(i,j) or A(j,i) is nonzero;
otherwise, A(i,j) and A(j,i) are zero.

Examples Plot Graph of Nodes Using Asterisks

Plot half of a "Bucky ball" carbon molecule, placing asterisks at each
node.

k = 1:30;
[B,XY] = bucky;
gplot(B(k,k),XY(k,:),'-*')
axis square

1-2516

gplot

See Also LineSpec | sparse | spy

1-2517

grabcode

Purpose Extract MATLAB code from file published to HTML

Syntax grabcode('name.html')
grabcode('urlname')
codeString = grabcode('name.html')

Description grabcode('name.html') copies MATLAB code from the file name.html
and pastes it into an untitled document in the Editor. Use grabcode
to get MATLAB code from published files when the source code is not
readily available. The file name.html was created by publishing name.m,
a MATLAB code file containing cells. The MATLAB code from name.m is
included at the end of name.html as HTML comments.

grabcode('urlname') copies MATLAB code from the urlname location
and pastes it into an untitled document in the Editor.

codeString = grabcode('name.html') gets MATLAB code from the
file name.html and assigns it the variable codeString.

Examples This example illustrates how to use grabcode to get MATLAB code
from an existing HTML file:

% Copy sine_wave_f.html and the images it includes
% from the MATLAB examples directory to your
% current folder:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','sine_wave_f.html'), 'my_sine_wave.html')

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','sine_wave_f_01.png'), 'sine_wave_f_01.png')

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','sine_wave_f_02.png'), 'sine_wave_f_02.png')

% If you want to view the file, double-click my_sine_wave.html
% in your current folder.

1-2518

grabcode

% Extract the MATLAB code from sine_wave_f.html:
code = grabcode('my_sine_wave.html')

MATLAB returns:

code =

%% Plot Sine Wave
% Calculate and plot a sine wave.

%% Calculate and Plot Sine Wave
% Calculate and plot |y = sin(x)|.

function sine_wave_f(x)

y = sin(x);
plot(x,y)

%% Modify Plot Properties

title('Sine Wave', 'FontWeight','bold')
xlabel('x')
ylabel('sin(x)')
set(gca, 'Color', 'w')
set(gcf, 'MenuBar', 'none')

See Also publish

1-2519

gradient

Purpose Numerical gradient

Syntax FX = gradient(F)
[FX,FY] = gradient(F)
[FX,FY,FZ,...] = gradient(F)
[...] = gradient(F,h)
[...] = gradient(F,h1,h2,...)

Definitions The gradient of a function of two variables, F(x,y), is defined as

F
F
x

i
F
y

jˆ ˆ

and can be thought of as a collection of vectors pointing in the direction
of increasing values of F. In MATLAB software, numerical gradients
(differences) can be computed for functions with any number of
variables. For a function of N variables, F(x,y,z, ...),

F
F
x

i
F
y

j
F
z

kˆ ˆ ˆ ...

Description FX = gradient(F), where F is a vector, returns the one-dimensional
numerical gradient of F. Here FX corresponds to ∂F/∂x, the differences
in x (horizontal) direction.

[FX,FY] = gradient(F), where F is a matrix, returns the x and y
components of the two-dimensional numerical gradient. FX corresponds
to ∂F/∂x, the differences in x (horizontal) direction. FY corresponds to
∂F/∂y, the differences in the y (vertical) direction. The spacing between
points in each direction is assumed to be one.

[FX,FY,FZ,...] = gradient(F), where F has N dimensions, returns
the N components of the gradient of F. There are two ways to control
the spacing between values in F:

• A single spacing value, h, specifies the spacing between points in
every direction.

1-2520

gradient

• N spacing values (h1,h2,...) specifies the spacing for each dimension
of F. Scalar spacing parameters specify a constant spacing for each
dimension. Vector parameters specify the coordinates of the values
along corresponding dimensions of F. In this case, the length of the
vector must match the size of the corresponding dimension.

Note The first output FX is always the gradient along the 2nd
dimension of F, going across columns. The second output FY is always
the gradient along the 1st dimension of F, going across rows. For the
third output FZ and the outputs that follow, the Nth output is the
gradient along the Nth dimension of F.

[...] = gradient(F,h), where h is a scalar, uses h as the spacing
between points in each direction.

[...] = gradient(F,h1,h2,...) with N spacing parameters
specifies the spacing for each dimension of F.

Examples Contour Plot of Vector Field

Calculate the 2-D gradient of on a grid.

v = -2:0.2:2;
[x,y] = meshgrid(v);
z = x .* exp(-x.^2 - y.^2);
[px,py] = gradient(z,.2,.2);

Plot the contour lines and vectors in the same figure.

contour(v,v,z)
hold on
quiver(v,v,px,py)
hold off

1-2521

gradient

Specify Dimensional Spacing of Points

Create a 3-D array.

F(:,:,1) = magic(3);
F(:,:,2) = pascal(3);

The command,

gradient(F)

1-2522

gradient

takes dx = dy = dz = 1. However, the command,

[PX,PY,PZ] = gradient(F,0.2,0.1,0.2)

takes dx = 0.2, dy = 0.1, and dz = 0.2.

Algorithms gradient calculates the central difference between data points. For
an array, matrix, or vector with N values in each row, the ith value is
defined by

A A Ai i i
i

N

1
2 1 1

2

1
.

The gradient at the end points, where i=1 and i=N, is calculated with
a single-sided difference between the endpoint value and the next
adjacent value within the row. If two or more outputs are specified,
gradient also calculates central differences along other dimensions.
Unlike the diff function, gradient returns an array with the same
number of elements as the input.

See Also del2 | diff

1-2523

graymon

Purpose Set default figure properties for grayscale monitors

Syntax graymon

Description graymon sets defaults for graphics properties to produce more legible
displays for grayscale monitors.

See Also axes | figure

1-2524

grid

Purpose Grid lines for 2-D and 3-D plots

Syntax grid on
grid off
grid
grid minor
grid(axes_handle,...)

Description grid on adds major grid lines to the current axes.

grid off removes all grid lines from the current axes.

grid toggles the visibility of the major grid lines of the current axes.

grid minor toggles the visibility of the minor grid lines of the current
axes.

grid(axes_handle,...) uses the axes specified by axes_handle
instead of the current axes.

Examples Display Grid Lines

Display the grid lines for a sine plot.

x = linspace(0,10);
y = sin(x);

figure
plot(x,y);
grid on;

1-2525

grid

Remove Grid Lines

Create a surface plot of the peaks function.

figure
surf(peaks);

1-2526

grid

Remove the grid lines from the surface plot.

grid off

1-2527

grid

Display Major and Minor Grid Lines

Define a vector of random numbers.

rng(0,'twister');
randnumbers = rand(1,20);

Plot the vector. Display the major and minor grid lines on the graph.

figure

1-2528

grid

plot(randnumbers)
grid on
grid minor

Algorithms Some axes properties control the axes grid lines. For more information
on axes properties see Axes Properties.

grid sets the XGrid, YGrid, and ZGrid properties of the axes.

1-2529

grid

To control the major grid line visibility separately for each axis direction
set the XGrid, YGrid, and ZGrid axes properties. These properties can
be set to on or off.

axh = gca;
set(axh,'XGrid','on')
set(axh,'ZGrid','off')

grid minor sets the XMinorGrid, YMinorGrid, and ZMinorGrid
properties of the axes.

To control the minor grid line visibility separately for each axis direction
set the XMinorGrid, YMinorGrid, and ZMinorGrid axes properties.
These properties can be set to on or off.

axh = gca;
set(axh,'XMinorGrid','on')

To change the grid line width, set the LineWidth axes property.

axh = gca;
set(axh,'LineWidth',2);

By default, the number of grid lines changes when you resize a figure.
To keep the same number of grid lines for any figure size, set the
XTickMode, YTickMode, or ZTickMode axes properties to 'manual'.

axh = gca;
set(axh,'XTickMode','manual');

To customize the locations of the tick marks along an axis, set the
XTick, YTick, and ZTick axes properties.

axh = gca;
set(axh,'XTick',[0:5:50]);

To turn on and off the display of the minor tick marks along an axis, set
the XMinorTick, YMinorTick, and ZMinorTick properties to on or off.

1-2530

grid

axh = gca;
set(axh,'XMinorTick','on')

See Also box | gca | axes | set

1-2531

griddata

Purpose Interpolate scattered data

Note Qhull-specific options are no longer supported. Remove the
OPTIONS argument from all instances in your code that pass it to
griddata.

In a future release, the following syntaxes will be removed:

[Xq,Yq,Vq] = griddata(x,y,v,xq,yq)
[Xq,Yq,Vq] = griddata(x,y,v,xq,yq, method)

In addition, griddata will not accept any input vectors of mixed
orientation in a future release. To specify a grid of query points,
construct a full grid with ndgrid or meshgrid before calling griddata.

Syntax vq = griddata(x,y,v,xq,yq)
vq = griddata(x,y,z,v,xq,yq,zq)
vq = griddata(..., method)

Description vq = griddata(x,y,v,xq,yq) fits a surface of the form v = f(x,y) to
the scattered data in the vectors (x,y,v). The griddata function
interpolates the surface at the query points specified by (xq,yq) and
returns the interpolated values, vq. The surface always passes through
the data points defined by x and y.

vq = griddata(x,y,z,v,xq,yq,zq) fits a hypersurface of the form
v = f(x,y,z).

vq = griddata(..., method) uses a specified interpolation method
to compute vq.

Input
Arguments

x

Vector specifying the x- coordinates of the sample points.

y

1-2532

griddata

Vector specifying the y- coordinates of the sample points.

z

Vector specifying the z- coordinates of the sample points.

v

Vector of sample values that correspond to the sample coordinates x, y
(and z for 3-D interpolation).

xq

Vector or array that specifies x- coordinates of the query points to be
evaluated. xqmust be the same size as yq (and zq for 3-D interpolation).

• Specify an array if you want to pass a grid of query points. Use
ndgrid or meshgrid to construct the array.

• Specify a vector if you want to pass a collection of scattered points.

yq

Vector or array that specifies y- coordinates of the query points to be
evaluated. yqmust be the same size as xq (and zq for 3-D interpolation).

• Specify an array if you want to pass a grid of query points. Use
ndgrid or meshgrid to construct the array.

• Specify a vector if you want to pass a collection of scattered points.

zq

Vector or array that specifies z- coordinates of the query points to be
evaluated. zq must be the same size as xq and yq.

• Specify an array if you want to pass a grid of query points. Use
ndgrid or meshgrid to construct the array.

• Specify a vector if you want to pass a collection of scattered points.

method

1-2533

griddata

Keyword that specifies the interpolation method. Use one of the
following:

'linear' Linear interpolation (default)

'cubic' Cubic interpolation

'natural' Natural neighbor interpolation

'nearest' Nearest neighbor interpolation

'v4' MATLAB 4 griddata method

Output
Arguments

vq

The interpolated values at the query points.

• For 2-D interpolation, where xq and yq specify an m-by-n grid of query
points, vq is an m-by-n array.

• For 3-D interpolation, where xq, yq, and zq specify an m-by-n-by-p
grid of query points, vq is an m-by-n-by-p array.

• If xq, yq, (and zq for 3-D interpolation) are vectors that specify
scattered points, vq is a vector of the same length.

Examples Interpolate Scattered Data Over a Uniform Grid

Sample a function at 200 random points between -2.5 and 2.5.

xy = -2.5 + 5*gallery('uniformdata',[200 2],0);
x = xy(:,1); y = xy(:,2);
v = x.*exp(-x.^2-y.^2);

x, y, and v are vectors containing scattered (nonuniform) sample points
and data.

Define a regular grid and interpolate the scattered data over the grid.

[xq,yq] = meshgrid(-2:.2:2, -2:.2:2);
vq = griddata(x,y,v,xq,yq);

1-2534

griddata

Plot the gridded data as a mesh and the scattered data as dots.

figure
mesh(xq,yq,vq);
hold on
plot3(x,y,v,'o');
h = gca;
set(h,'XLim',[-2.7 2.7]);
set(h,'YLim',[-2.7 2.7]);

1-2535

griddata

Interpolate 3-D Data Set Over a Grid in the x-y Plane

Sample a function at 5000 random points between -1 and 1.

rng(0,'twister')
x = 2*rand(5000,1)-1;
y = 2*rand(5000,1)-1;
z = 2*rand(5000,1)-1;
v = x.^2 + y.^2 + z.^2;

1-2536

griddata

x, y, and z are now vectors containing nonuniformly sampled data.

Define a regular grid with points in the range [-0.8, 0.8].

d = -0.8:0.05:0.8;
[xq,yq,zq] = meshgrid(d,d,0);

Interpolate the scattered data over a rectangular region at z=0. Then,
plot the results.

vq = griddata(x,y,z,v,xq,yq,zq);
surf(xq,yq,vq);
set(gca,'XTick',[-1 -0.5 0 0.5 1]);
set(gca,'YTick',[-1 -0.5 0 0.5 1]);

1-2537

griddata

See Also scatteredInterpolant | delaunay | griddatan | interpn | meshgrid
| ndgrid

1-2538

griddatan

Purpose Data gridding and hypersurface fitting (dimension ≥ 2)

Syntax yi = griddatan(x,y,xi)
yi = griddatan(x,y,xi,method)
yi = griddatan(x,y,xi,method,options)

Description yi = griddatan(x,y,xi) fits a hyper-surface of the form y = f(x) to the
data in the (usually) nonuniformly-spaced vectors (x, y). griddatan
interpolates this hyper-surface at the points specified by xi to produce
yi. xi can be nonuniform.

X is of dimension m-by-n, representing m points in n-dimensional space.
y is of dimension m-by-1, representing m values of the hyper-surface f(X).
xi is a vector of size p-by-n, representing p points in the n-dimensional
space whose surface value is to be fitted. yi is a vector of length p
approximating the values f(xi). The hypersurface always goes through
the data points (X,y). xi is usually a uniform grid (as produced by
meshgrid).

yi = griddatan(x,y,xi,method) defines the type of surface fit to the
data, where 'method' is one of:

’linear’ Triangulation-based linear interpolation (default)

’nearest’ Nearest neighbor interpolation

All the methods are based on a Delaunay triangulation of the data.

If method is [], the default 'linear' method is used.

yi = griddatan(x,y,xi,method,options) specifies a cell array of
strings options to be used in Qhull via delaunayn.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default.

Examples Fit a Hypersurface

X=2*gallery('uniformdata',[5000 3],0)-1;;
Y = sum(X.^2,2);

1-2539

griddatan

d = -0.8:0.05:0.8;
[y0,x0,z0] = ndgrid(d,d,d);
XI = [x0(:) y0(:) z0(:)];
YI = griddatan(X,Y,XI);

Since it is difficult to visualize 4-D data sets, use isosurface at 0.8:

YI = reshape(YI, size(x0));
p = patch(isosurface(x0,y0,z0,YI,0.8));
isonormals(x0,y0,z0,YI,p);
set(p,'FaceColor','blue','EdgeColor','none');
view(3), axis equal, camlight, lighting phong

1-2540

griddatan

See Also delaunayn | griddata | meshgrid

1-2541

griddedInterpolant

Purpose Gridded data interpolation

Note The behavior of griddedInterpolant has changed. All
interpolation methods now support extrapolation by default. Set
F.ExtrapolationMethod to 'none' to preserve the pre-R2013a
behavior when F.Method is 'linear', 'cubic' or 'nearest'. Before
R2013a, evaluation returned NaN values at query points outside the
domain when F.Method was set to 'linear', 'cubic' or 'nearest'.

Description Use griddedInterpolant to perform interpolation on a 1-D, 2-D, 3-D, or
N-D “Gridded Data” on page 1-2547 set. For example, you can pass a set
of (x,y) points and values, v, to griddedInterpolant, and it returns a
surface of the form v = F(x, y). This surface always passes through the
sample values at the point locations. You can evaluate this surface at
any query point, (xq,yq), to produce an interpolated value, vq.

Use griddedInterpolant to create the “Interpolant” on page 1-2547,
F. Then you can evaluate F at specific points using any of the following
syntaxes:

• Vq = F(Xq) evaluates F at a set of query points in matrix Xq.
The points in Xq are scattered, and each row of Xq contains the
coordinates of a query point.

• Vq = F(xq1,xq2,...,xqn) specifies the query locations,
xq1,xq2,...,xqn, as column vectors of length m representing m
points scattered in n-dimensional space.

• Vq = F(Xq1,Xq2,...,Xqn) specifies the query locations as n
n-dimensional arrays, Xq1,Xq2,...,Xqn, of equal size which define a
“Full Grid” on page 1-2547 of points.

• Vq = F({xgq1,xgq2,...,xgqn}) specifies the query locations as
“Grid Vectors” on page 1-2547 . Use this syntax to conserve memory
when you want to query a large grid of points.

1-2542

griddedInterpolant

Construction F = griddedInterpolant(x,v) creates a 1-D interpolant from a vector
of sample points, x, and corresponding values, v.

F = griddedInterpolant(X1,X2,...,Xn,V) creates a 2-D, 3-D, or N-D
interpolant using a “Full Grid” on page 1-2547 of sample points passed
as a set of n-dimensional arrays, X1,X2,...,Xn. The V array contains
the sample values associated with the point locations in X1,X2,...,Xn.
Each of the arrays, X1,X2,...,Xn must be the same size as V.

F = griddedInterpolant(V) uses the default grid to create the
interpolant. When you use this syntax, griddedInterpolant defines
the grid as set of points whose spacing is 1 and range is [1, size(V,i)]
in the ith dimension. Use this syntax to when you want to conserve
memory and are not concerned about the absolute distances between
points.

F = griddedInterpolant({xg1,xg2,...,xgn},V) specifies n “Grid
Vectors” on page 1-2547 to describe an n-dimensional grid of sample
points. Use this syntax when you want to use a specific grid and also
conserve memory.

F = griddedInterpolant(___ ,Method) specifies any of five strings
that describe an interpolation method: 'linear', 'nearest', 'pchip',
'cubic', or 'spline'. You can specify Method as the last input
argument in any of the first four syntaxes.

F = griddedInterpolant(___ ,Method,ExtrapolationMethod)
specifies both the interpolation and extrapolation methods as strings.
griddedInterpolant uses ExtrapolationMethod to estimate the value
when your query points fall outside the domain of your sample points.
Specify Method and ExtrapolationMethod together as the last two
input arguments in any of the first four syntaxes.

Input Arguments

x

Sample points vector, specified as a vector of input coordinates
the same size as v.

v

1-2543

griddedInterpolant

Sample values vector, specified as a vector of input values the
same size as x.

X1,X2,...,Xn

Sample points in “Full Grid” on page 1-2547 form, specified
as a set of n-dimensional arrays. You can create the arrays,
X1,X2,...,Xn, using the ndgrid function. These arrays are all
the same size, and each one is the same size as V.

{xg1,xg2,...,xgn}

Sample points in grid vector form, specified as a cell array
of grid vectors. These vectors must specify a grid that is the
same size as V. In other words, size(V) = [length(xg1)
length(xg2),...,length(xgn)]. Use this form as an alternative
to the full grid to save memory when your grid is very large.

V

Sample values, specified as an array. The elements of V are the
values that correspond to the sample points. The size of V must
be the size of the full grid of sample points.

• If you specify the sample points as a full grid consisting of
N-D arrays, then V must be the same size as any one of:
X1,X2,...,Xn.

• If you specify the sample points as grid vectors, then size(V)
= [length(xg1) length(xg2) ... length(xgn)].

Method

Interpolation method, specified as a string from the table below.

1-2544

griddedInterpolant

(Continued)

Method Description Continuity Comments

'linear'(default)The interpolated value at
a query point is based on
linear interpolation of the
values at neighboring grid
points in each respective
dimension.

C0 • Requires at least 2 grid
points in each dimension.

• Requires more memory
than 'nearest'.

'nearest' The interpolated value at
a query point is the value
at the nearest sample grid
point.

Discontinuous • Requires 2 grid points in
each dimension.

• Fastest computation
with modest memory
requirements

'pchip' Shape-preserving piecewise
cubic interpolation (for 1-D
only). The interpolated
value at a query point is
based on a shape-preserving
piecewise cubic interpolation
of the values at neighboring
grid points.

C1 • Requires at least 4 points.

• Requires more memory
and computation time
than 'linear'.

'cubic' The interpolated value at
a query point is based on
a cubic interpolation of the
values at neighboring
grid points in each
respective dimension. The

C1 • Grid must have uniform
spacing, though the
spacing in each dimension
does not have to be the
same.

1-2545

griddedInterpolant

(Continued)

Method Description Continuity Comments

interpolation is based on a
cubic convolution. • Requires at least 4 points

in each dimension.

• Requires more memory
and computation time
than 'linear'.

'spline' The interpolated value at
a query point is based on
a cubic interpolation of the
values at neighboring
grid points in each
respective dimension. The
interpolation is based on a
cubic spline using not-a-knot
end conditions.

C2 • Requires 4 points in each
dimension.

• Requires more memory
and computation time
than 'cubic'.

ExtrapolationMethod

Extrapolation method, specified as any of the Method choices:
'linear', 'nearest', 'pchip', 'cubic', or 'spline'. In
addition, you can specify 'none' if you want queries outside the
domain of your grid return NaN values.

If you omit ExtrapolationMethod, the default value is the
string you specify for Method. If you omit both the Method and
ExtrapolationMethod arguments, both default to 'linear'.

Properties GridVectors

Cell array containing grid vectors, {xg1,xg2,...,xgn}. These
vectors specify the grid points (locations) for the values in
F.Values.

Values

1-2546

griddedInterpolant

Array of values associated with the grid points in F.GridVectors.

Method

A string specifying the name of a method used to interpolate
the data. Method is one of five strings: 'linear', 'nearest',
'pchip', 'cubic', or 'spline'. The default value is 'linear'.

ExtrapolationMethod

A string specifying the name of a method used to extrapolate
the data. ExtrapolationMethod is one of six strings: 'linear',
'nearest', 'pchip', 'cubic', 'spline', or 'none'. A value of
'none' indicates that extrapolation is disabled. The default value
is the value of F.Method.

Definitions Interpolant

Interpolating function that you can evaluate at query locations.

Gridded Data

A set of points that are axis-aligned and ordered.

Scattered Data

A set of points that have no structure among their relative locations.

Full Grid

A grid represented as a set of arrays. For example, you can create a full
grid using ndgrid.

Grid Vectors

A set of vectors that serve as a compact representation of a grid in
ndgrid format. For example, [X,Y] = ndgrid(xg,yg) returns a full
grid in the matrices X and Y. You can represent the same grid using
the grid vectors, xg and yg.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-2547

griddedInterpolant

Indexing Index-based editing of the properties of F are not supported. Instead,
wholly replace the GridVectors or Values arrays as necessary. See
“Interpolation with the griddedInterpolant Class” in the MATLAB
Mathematics documentation for more information.

Examples 2-D Interpolation Over Finer Grid

Interpolate coarsely sampled data using a full grid with spacing of 0.5.

Define the sample points as a full grid with range [1, 10] in both
dimensions.

[X,Y] = ndgrid(1:10,1:10);

Sample at the grid points.

V = X.^2 + Y.^2;

Create the interpolant, specifying cubic interpolation.

F = griddedInterpolant(X,Y,V,'cubic');

Define a full grid of query points with 0.5 spacing and evaluate the
interpolant at those points. Then plot the result.

[Xq,Yq] = ndgrid(1:0.5:10,1:0.5:10);
Vq = F(Xq,Yq);
mesh(Xq,Yq,Vq);

1-2548

griddedInterpolant

1-D Extrapolation

Compare results of querying the interpolant outside the domain of F
using the 'pchip' and 'nearest' extrapolation methods.

Create the interpolant and specify 'pchip' as the interpolation method.

x = [1 2 3 4 5];
v = [12 16 31 10 6];
F = griddedInterpolant(x,v,'pchip')

1-2549

griddedInterpolant

F =

griddedInterpolant with properties:

GridVectors: {[1 2 3 4 5]}
Values: [12 16 31 10 6]
Method: 'pchip'

ExtrapolationMethod: 'pchip'

Query the interpolant, and include points outside the domain of F.

xq = 0:0.1:6;
vq = F(xq);
figure
plot(x,v,'o',xq,vq,'-b');
legend ('v','vq')

1-2550

griddedInterpolant

Query the interpolant at the same points again, using the nearest
neighbor extrapolation method.

F.ExtrapolationMethod = 'nearest';
figure
vq = F(xq);
plot(x,v,'o',xq,vq,'-b');
legend ('v','vq')

1-2551

griddedInterpolant

See Also scatteredInterpolant | interp1 | interp2 | interp3 | interpn |
ndgrid | meshgrid

How To • Class Attributes

• Property Attributes

• “Interpolating Gridded Data”

1-2552

gsvd

Purpose Generalized singular value decomposition

Syntax [U,V,X,C,S] = gsvd(A,B)
sigma = gsvd(A,B)

Description [U,V,X,C,S] = gsvd(A,B) returns unitary matrices U and V, a
(usually) square matrix X, and nonnegative diagonal matrices C and S
so that

A = U*C*X'
B = V*S*X'
C'*C + S'*S = I

A and B must have the same number of columns, but may have different
numbers of rows. If A is m-by-p and B is n-by-p, then U is m-by-m, V is
n-by-n and X is p-by-q where q = min(m+n,p).

sigma = gsvd(A,B) returns the vector of generalized singular values,
sqrt(diag(C'*C)./diag(S'*S)).

The nonzero elements of S are always on its main diagonal. If m >= p
the nonzero elements of C are also on its main diagonal. But if m < p,
the nonzero diagonal of C is diag(C,p-m). This allows the diagonal
elements to be ordered so that the generalized singular values are
nondecreasing.

gsvd(A,B,0), with three input arguments and either m or n >= p,
produces the “economy-sized“decomposition where the resulting U
and V have at most p columns, and C and S have at most p rows. The
generalized singular values are diag(C)./diag(S).

When B is square and nonsingular, the generalized singular values,
gsvd(A,B), are equal to the ordinary singular values, svd(A/B), but
they are sorted in the opposite order. Their reciprocals are gsvd(B,A).

In this formulation of the gsvd, no assumptions are made about the
individual ranks of A or B. The matrix X has full rank if and only if the
matrix [A;B] has full rank. In fact, svd(X) and cond(X) are equal to
svd([A;B]) and cond([A;B]). Other formulations, eg. G. Golub and

1-2553

gsvd

C. Van Loan [1], require that null(A) and null(B) do not overlap and
replace X by inv(X) or inv(X').

Note, however, that when null(A) and null(B) do overlap, the nonzero
elements of C and S are not uniquely determined.

Examples Example 1

The matrices have at least as many rows as columns.

A = reshape(1:15,5,3)
B = magic(3)
A =

1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

B =
8 1 6
3 5 7
4 9 2

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal V, a 3-by-3
nonsingular X,

X =
2.8284 -9.3761 -6.9346

-5.6569 -8.3071 -18.3301
2.8284 -7.2381 -29.7256

and

C =
0.0000 0 0

1-2554

gsvd

0 0.3155 0
0 0 0.9807
0 0 0
0 0 0

S =
1.0000 0 0

0 0.9489 0
0 0 0.1957

Since A is rank deficient, the first diagonal element of C is zero.

The economy sized decomposition,

[U,V,X,C,S] = gsvd(A,B,0)

produces a 5-by-3 matrix U and a 3-by-3 matrix C.

U =
0.5700 -0.6457 -0.4279

-0.7455 -0.3296 -0.4375
-0.1702 -0.0135 -0.4470
0.2966 0.3026 -0.4566
0.0490 0.6187 -0.4661

C =
0.0000 0 0

0 0.3155 0
0 0 0.9807

The other three matrices, V, X, and S are the same as those obtained
with the full decomposition.

The generalized singular values are the ratios of the diagonal elements
of C and S.

sigma = gsvd(A,B)
sigma =

0.0000
0.3325

1-2555

gsvd

5.0123

These values are a reordering of the ordinary singular values

svd(A/B)
ans =

5.0123
0.3325
0.0000

Example 2

The matrices have at least as many columns as rows.

A = reshape(1:15,3,5)
B = magic(5)
A =

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

B =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal V, a 5-by-5
nonsingular X and

C =

1-2556

gsvd

0 0 0.0000 0 0
0 0 0 0.0439 0
0 0 0 0 0.7432

S =

1.0000 0 0 0 0
0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 0.9990 0
0 0 0 0 0.6690

In this situation, the nonzero diagonal of C is diag(C,2). The
generalized singular values include three zeros.

sigma = gsvd(A,B)
sigma =

0
0

0.0000
0.0439
1.1109

Reversing the roles of A and B reciprocates these values, producing two
infinities.

gsvd(B,A)
ans =

1.0e+16 *

0.0000
0.0000
8.8252

Inf
Inf

1-2557

gsvd

Algorithms The generalized singular value decomposition uses the C-S
decomposition described in [1], as well as the built-in svd and qr
functions. The C-S decomposition is implemented in a local function
in the gsvd program file.

Diagnostics The only warning or error message produced by gsvd itself occurs when
the two input arguments do not have the same number of columns.

References [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

See Also qr | svd

1-2558

gt, >

Purpose Determine greater than

Syntax A > B
gt(A,B)

Description A > B returns a logical array with elements set to logical 1 (true) where
A is greater than B; otherwise, it returns logical 0 (false). The test
compares only the real part of numeric arrays. gt returns logical 0
(false) where A or B have NaN or undefined categorical elements.

gt(A,B) is an alternate way to execute A > B, but is rarely used. It
enables operator overloading for classes.

Input
Arguments

A - Left array
numeric array | logical array | character array | ordinal categorical
array

Left array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is an ordinal categorical array, the other input can be an
ordinal categorical array, a cell array of strings, or a single string. A
single string expands into a cell array of strings of the same size as the
other input. If both inputs are ordinal categorical arrays, they must
have the same sets of categories, including their order. See “Compare
Categorical Array Elements” for more details.

B - Right array
numeric array | logical array | character array | ordinal categorical
array

Right array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

1-2559

gt, >

If one input is an ordinal categorical array, the other input can be an
ordinal categorical array, a cell array of strings, or a single string. A
single string expands into a cell array of strings of the same size as the
other input. If both inputs are ordinal categorical arrays, they must
have the same sets of categories, including their order. See “Compare
Categorical Array Elements” for more details.

Examples Test Vector Elements

Determine if vector elements are greater than a given value.

Create a numeric vector.

A = [1 12 18 7 9 11 2 15];

Test the vector for elements that are greater than 10.

A > 10

ans =

0 1 1 0 0 1 0 1

The result is a vector with values of logical 1 (true) where the elements
of A satisfy the expression.

Use the vector of logical values as an index to view the values in A that
are greater than 10.

A(A > 10)

ans =

12 18 11 15

The result is a subset of the elements in A.

1-2560

gt, >

Replace Elements of Matrix

Create a matrix.

A = magic(4)

A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Replace all values greater than 9 with the value 10.

A(A > 9) = 10

A =

10 2 3 10
5 10 10 8
9 7 6 10
4 10 10 1

The result is a new matrix whose largest element is 10.

Compare Values in Categorical Array

Create an ordinal categorical array.

A = categorical({'large' 'medium' 'small'; 'medium' ...
'small' 'large'},{'small' 'medium' 'large'},'Ordinal',1)

A =

large medium small
medium small large

The array has three categories: 'small', 'medium', and 'large'.

1-2561

gt, >

Find all values greater than the category 'medium'.

A > 'medium'

ans =

1 0 0
0 0 1

A value of logical 1 (true) indicates a value greater than the category
'medium'.

Compare the rows of A.

A(1,:) > A(2,:)

ans =

1 1 0

The function returns logical 1 (true) where the first row has a category
value greater than the second row.

Test Complex Numbers

Create a vector of complex numbers.

A = [1+i 2-2i 1+3i 1-2i 5-i];

Find the values that are greater than 2.

A(A > 2)

ans =

5.0000 - 1.0000i

gt compares only the real part of the elements in A.

Use abs to find which elements are outside a radius of 2 from the origin.

1-2562

gt, >

A(abs(A) > 2)

ans =

2.0000 - 2.0000i 1.0000 + 3.0000i 1.0000 - 2.0000i 5.0000 - 1

The result has more elements since abs accounts for the imaginary
part of the numbers.

See Also eq | ge | lt | le | ne

Concepts • “Ordinal Categorical Arrays”

1-2563

gtext

Purpose Mouse placement of text in 2-D view

Syntax gtext('string')
gtext({'string1','string2','string3',...})
gtext({'string1';'string2';'string3';...})
gtext(...,'PropertyName',PropertyValue,...)
h = gtext(...)

Description gtext displays a text string in the current figure window after you
select a location with the mouse.

gtext('string') waits for you to press a mouse button or keyboard
key while the pointer is within a figure window. Pressing a mouse
button or any key places 'string' on the plot at the selected location.

gtext({'string1','string2','string3',...}) places all strings
with one click, each on a separate line.

gtext({'string1';'string2';'string3';...}) places one string
per click, in the sequence specified.

gtext(...,'PropertyName',PropertyValue,...) sets the values
of the specified text properties. For a list of properties, see Text
Properties.

h = gtext(...) returns the handle to a text graphics object that is
placed on the plot at the location you select.

Tips As you move the pointer into a figure window, the pointer becomes
crosshairs to indicate that gtext is waiting for you to select a location.
gtext uses the functions ginput and text.

Examples Place a label on the current plot:

gtext('Note this divergence!')

See Also ginput | text

1-2564

guidata

Purpose Store or retrieve GUI data

Syntax guidata(object_handle,data)
data = guidata(object_handle)

Description guidata(object_handle,data) stores the variable data as GUI data.
If object_handle is not a figure handle, then the object’s parent figure
is used. data can be any MATLAB variable, but is typically a structure,
which enables you to add new fields as required.

guidata can manage only one variable at any time. Subsequent calls
to guidata(object_handle,data) overwrite the previously created
version of GUI data.

GUIDE Uses guidata

GUIDE uses guidata to store and maintain the handles structure.
In a GUIDE GUI code file, do not overwrite the handles structure or
your GUI will no longer work. If you need to store data other than
handles for your GUI, you can add new fields to the handles structure
and safely place your data there.

data = guidata(object_handle) returns previously stored data, or
an empty matrix if nothing is stored.

To change the data managed by guidata:

1 Get a copy of the data with the command data =
guidata(object_handle).

2 Make the desired changes to data.

3 Save the changed version of data with the command
guidata(object_handle,data).

1-2565

guidata

guidata provides application developers with a convenient interface to
a figure’s application data:

• You do not need to create and maintain a hard-coded property name
for the application data throughout your source code.

• You can access the data from within a local function callback routine
using the component’s handle (which is returned by gcbo), without
needing to find the figure’s handle.

If you are not using GUIDE, guidata is particularly useful in
conjunction with guihandles, which creates a structure containing the
handles of all the components in a GUI.

Examples This example calls guidata to save a structure containing a GUI figure’s
application data from within the initialization section of the application
code file. The first section shows how to do this within a GUI you create
manually. The second section shows how the code differs when you
use GUIDE to create a template code file. GUIDE provides a handles
structure as an argument to all local function callbacks, so you do not
need to call guidata to obtain it. You do, however, need to call guidata
to save changes you make to the structure.

Using guidata in a Programmed GUI

Calling the guihandles function creates the structure into which your
code places additional data. It contains all handles used by the figure
at the time it is called, generating field names based on each object’s
Tag property.

% Create figure to use as GUI in your main function or a local function

figure_handle = figure('Toolbar','none');

% create structure of handles

myhandles = guihandles(figure_handle);

% Add some additional data as a new field called numberOfErrors

myhandles.numberOfErrors = 0;

% Save the structure

guidata(figure_handle,myhandles)

1-2566

guidata

You can recall the data from within a local callback function, modify it,
and then replace the structure in the figure:

function My_Callback()

% ...

% Get the structure using guidata in the local function

myhandles = guidata(gcbo);

% Modify the value of your counter

myhandles.numberOfErrors = myhandles.numberOfErrors + 1;

% Save the change you made to the structure

guidata(gcbo,myhandles)

Using guidata in a GUIDE GUI

If you use GUIDE, you do not need to call guihandles to create a
structure, because GUIDE generates a handles structure that contains
the GUI’s handles. You can add your own data to it, for example from
within the OpeningFcn template that GUIDE creates:

% --- Executes just before simple_gui_tab is made visible.

function my_GUIDE_GUI_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to simple_gui_tab (see VARARGIN)

% ...

% add some additional data as a new field called numberOfErrors

handles.numberOfErrors = 0;

% Save the change you made to the structure

guidata(hObject,handles)

Notice that you use the input argument hObject in place of gcbo to
refer to the object whose callback is executing.

Suppose you needed to access the numberOfErrors field in a push
button callback. Your callback code now looks something like this:

1-2567

guidata

% --- Executes on button press in pushbutton1.

function my_GUIDE_GUI_pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% ...

% No need to call guidata to obtain a structure;

% it is provided by GUIDE via the handles argument

handles.numberOfErrors = handles.numberOfErrors + 1;

% save the changes to the structure

guidata(hObject,handles)

See Also guide | guihandles | getappdata | setappdata

1-2568

guide

Purpose Open GUI Layout Editor

Syntax guide
guide('filename.fig')
guide('fullpath')
guide(HandleList)

Description guide initiates the GUI design environment (GUIDE) tools that allow
you to create or edit GUIs interactively.

guide opens the GUIDE Quick Start dialog where you can choose to
open a previously created GUI or create a new one using one of the
provided templates.

guide('filename.fig') opens the FIG-file named filename.fig for
editing if it is on the MATLAB path.

guide('fullpath') opens the FIG-file at fullpath even if it is not on
the MATLAB path.

guide(HandleList) opens the content of each of the figures in
HandleList in a separate copy of the GUIDE design environment.

See Also inspect

How To • “Ways to Build MATLAB GUIs”

• “Create a Simple GUIDE GUI”

1-2569

guihandles

Purpose Create structure of handles

Syntax handles = guihandles(object_handle)
handles = guihandles

Description handles = guihandles(object_handle) returns a structure
containing the handles of the objects in a figure, using the value of their
Tag properties as the field names, with the following caveats:

• Objects are excluded if their Tag properties are empty, or are not
legal variable names.

• If several objects have the same Tag, that field in the structure
contains a vector of handles.

• Objects with hidden handles are included in the structure.

handles = guihandles returns a structure of handles for the current
figure.

See Also guidata | guide | getappdata | setappdata

1-2570

gunzip

Purpose Uncompress GNU zip files

Syntax gunzip(files)
gunzip(files,outputdir)
gunzip(url, ...)
filenames = gunzip(...)

Description gunzip(files) uncompresses GNU zip files from the list of files
specified in files. Directories recursively gunzip all of their content.
The output files have the same name, excluding the extension .gz, and
are written to the same directory as the input files.

files is a string or cell array of strings containing a list of files or
directories. Individual files that are on the MATLAB path can be
specified as partial path names. Otherwise, an individual file can be
specified relative to the current directory or with an absolute path.

Folders must be specified relative to the current folder or with absolute
paths. On UNIX systems, folders can also start with ~/ or ~username/,
which expands to the current user’s home folder or the specified user’s
home folder, respectively. The wildcard character * can be used when
specifying files or folders, except when relying on the MATLAB path to
resolve a file name or partial path name.

gunzip(files,outputdir) writes the gunzipped file into the directory
outputdir. If outputdir does not exist, MATLAB creates it.

gunzip(url, ...) extracts the GNU zip contents from an Internet
universal resource locator (URL). The URL must include the protocol
type (for example, 'http://'). MATLAB downloads the URL to the
temp directory, and then deletes it.

filenames = gunzip(...) gunzips the files and returns the relative
path names of the gunzipped files in the string cell array filenames.

Examples To gunzip all .gz files in the current directory, type:

gunzip('*.gz');

1-2571

gunzip

To gunzip Cleve Moler’s “Numerical Computing with MATLAB”
examples to the output directory ncm, type:

url ='http://www.mathworks.com/moler/ncm.tar.gz';
gunzip(url,'ncm')
untar('ncm/ncm.tar','ncm')

See Also gzip | tar | untar | unzip | zip

1-2572

gzip

Purpose Compress files into GNU zip files

Syntax gzip(files)
gzip(files,outputdir)
filenames = gzip(...)

Description gzip(files) creates GNU zip files from the list of files specified in
files. Directories recursively gzip all their contents. Each output
gzipped file is written to the same directory as the input file and with
the file extension .gz.

files is a string or cell array of strings containing a list of files or
directories to gzip. Individual files that are on the MATLAB path can
be specified as partial path names. Otherwise, an individual file can be
specified relative to the current directory or with an absolute path.

Folders must be specified relative to the current folder or with absolute
paths. On UNIX systems, folders can also start with ~/ or ~username/,
which expands to the current user’s home folder or the specified user’s
home folder, respectively. The wildcard character * can be used when
specifying files or folders, except when relying on the MATLAB path to
resolve a file name or partial path name.

gzip(files,outputdir) writes the gzipped files into the directory
outputdir. If outputdir does not exist, MATLAB creates it.

filenames = gzip(...) gzips the files and returns the relative path
names of all gzipped files in the string cell array filenames.

Examples To gzip all .m and .mat files in the current directory and store the
results in the directory archive, type:

gzip({'*.m','*.mat'},'archive');

See Also gunzip | tar | untar | unzip | zip

1-2573

h5create

Purpose Create HDF5 data set

Syntax h5create(filename,datasetname,size,Name,Value)

Description h5create(filename,datasetname,size,Name,Value) creates an
HDF5 data set in the file specified by filename.

Input
Arguments

filename

Text string specifying the name of an HDF5 file. If filename does not
already exist, h5create creates it, with additional options specified by
one or more Name,Value pair arguments.

datasetname

Text string specifying the name of the data set you want to create. If
datasetname is a full path name, h5create creates all intermediate
groups, if they don’t already exist.

size

Array specifying the extents of the dataset. To specify an unlimited
extent, set the corresponding element of size to Inf.

Name-Value
Pair
Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Datatype

Any of the following MATLAB datatypes.

double uint64 uint32 uint16 uint8

single int64 int32 int16 int8

1-2574

h5create

Default: double

ChunkSize

Defines chunking layout.

Default: Not chunked

Deflate

Defines gzip compression level (0-9).

Default: 0

FillValue

Defines the fill value for numeric data sets.

Fletcher32

Turns on the Fletcher32 checksum filter.

Default: false

Shuffle

Turns on the Shuffle filter.

Default: false

Examples Create a fixed-size 100-by-200 data set.

h5create('myfile.h5','/myDataset1',[100 200]);
h5disp('myfile.h5');

Create a single-precision 1000-by-2000 data set with a chunk size of
50-by-80. Apply the highest level of compression.

1-2575

h5create

h5create('myfile.h5','/myDataset2',[1000 2000], 'Datatype','single', ...
'ChunkSize',[50 80],'Deflate',9);

h5disp('myfile.h5');

Create a two-dimensional data set that is unlimited along the second
extent.

h5create('myfile.h5','/myDataset3',[200 Inf],'ChunkSize',[20 20]);
h5disp('myfile.h5');

See Also h5read | h5write | h5info | h5disp

Tutorials • “Exporting to HDF5 Files”

1-2576

h5disp

Purpose Display contents of HDF5 file

Syntax h5disp(filename)
h5disp(filename,location)
h5disp(filename,location,mode)

Description h5disp(filename) displays the structure (metadata) of the entire
HDF5 file, filename.

h5disp(filename,location) displays the metadata for the specified
location.

h5disp(filename,location,mode) displays the file metadata
according to the value of mode.

Input
Arguments

filename

Text string specifying the name of an HDF5 file.

location

Text string specifying the full path to a location in an HDF5 file. To
display the metadata for the entire file, specify '/' as the value of
location. If location is a group, h5disp displays all objects below
the group.

mode

Either of the following text strings.

Value Description

min Minimal, display only group and data set names.

simple Display data set metadata and attribute values, if the
attribute is an integer, floating point, or a scalar string.

Default: simple

1-2577

h5disp

Examples Display the entire contents of an HDF5 file.

h5disp('example.h5')

Display metadata for one data set in an HDF5 file.

h5disp('example.h5','/g4/world');

See Also h5info

Tutorials • “Using the High-Level HDF5 Functions to Import Data”

1-2578

h5info

Purpose Return information about HDF5 file

Syntax info = h5info(filename)
info = h5info(filename,location)

Description info = h5info(filename) returns information about the entire HDF5
file, specified by filename.

info = h5info(filename,location) returns information about the
group, data set, or named datatype specified by location in the HDF5
file, filename.

Input
Arguments

filename

Text string specifying the name of an HDF5 file.

location

Text string specifying the location of a group, data set, or named
datatype in an HDF5 file.

Output
Arguments

info

A structure containing information about the HDF5 file. The set of
fields in the structure depends on the location parameter. The first
field is always 'Filename'. Other fields that might be present in the
info structure are as follows.

Location
Type

Field Description

Files and
Groups

Name Text string specifying name of
the group. If you specify only a
file name, this value is '/'.

1-2579

h5info

Location
Type

Field Description

Groups Array of structures describing
subgroups.

Datasets Array of structures describing
data sets.

Datatypes Array of structures describing
named datatypes.

Links Array of structures describing
soft, external, user-defined, and
certain hard links.

Attributes Array of structures describing
group attributes.

Data sets

Name Text string specifying the name
of the data set.

Datatype Structure describing the
datatype.

Dataspace Structure describing the size of
the dataset.

ChunkSize Extents of the data set’s chunk
size, if defined.

FillValue Data set’s fill value, if defined.

Filter Array of structures describing
any defined filters such as
compression.

Attributes Array of structures describing
data set attributes.

Named
Datatypes

1-2580

h5info

Location
Type

Field Description

Name Text string specifying the name
of the datatype object.

Class HDF5 class of the named
datatype.

Type Text string or struct further
describing the datatype.

Size Size of the named datatype in
bytes.

Examples Return all information.

info = h5info('example.h5');

Return information about a group and all data sets contained within
the group.

info = h5info('example.h5','/g4');

Return information about a specific dataset.

info = h5info('example.h5','/g4/time');

See Also h5disp

Tutorials • “Using the High-Level HDF5 Functions to Import Data”

1-2581

h5read

Purpose Read data from HDF5 data set

Syntax data = h5read(filename,datasetname)
data = h5read(filename,datasetname,start,count)
data = h5read(filename,datasetname,start,count,stride)

Description data = h5read(filename,datasetname) retrieves all of the data from
the HDF5 data set datasetname in the file filename.

data = h5read(filename,datasetname,start,count) reads a subset
of data from the data set datasetname. start is the one-based index of
the first element to be read. count defines how many elements to read
along each dimension. If a particular element of count is Inf, h5read
reads data until the end of the corresponding dimension.

data = h5read(filename,datasetname,start,count,stride) reads
a subset of data, where stride specifies the interelement spacing along
each data set extent.

Input
Arguments

filename

Text string specifying the name of an HDF5 file.

datasetname

Text string specifying the name of a data set in an HDF5 file.

start

Numeric index value specifying the place to start reading data in the
dataset in an HDF5 file. Indices are 1-based.

count

Numeric value specifying the amount of data to read.

stride

1-2582

h5read

Numeric value specifying the intervalue spacing during the read
operation. For example, a spacing of 2 indicates reading every other
value.

Output
Arguments

data

Data read from the data set.

Examples Read an entire data set.

h5disp('example.h5','/g4/lat');
data = h5read('example.h5','/g4/lat');

Read the first 5-by-3 subset of a data set.

h5disp('example.h5','/g4/world');
data = h5read('example.h5','/g4/world',[1 1],[5 3]);

Read a data set of references to other data sets.

h5disp('example.h5','/g3/reference');
data = h5read('example.h5','/g3/reference');

See Also h5write | h5readatt | h5disp | h5writeatt

Tutorials • “Using the High-Level HDF5 Functions to Import Data”

1-2583

h5readatt

Purpose Read attribute from HDF5 file

Syntax attval = h5readatt(filename,location,attr)

Description attval = h5readatt(filename,location,attr) retrieves the value
for the named attribute attr from the given location in the HDF5
file filename.

Input
Arguments

filename

Text string specifying the name of an HDF5 file.

location

Text string specifying the full path of the attribute in an HDF5 file.
location can refer to either a group or a data set.

attr

Text string specifying the name of an attribute in an HDF5 file.

Output
Arguments

attval

Value of the attribute.

Examples Read a group attribute.

attval = h5readatt('example.h5','/','attr2');

Read a data set attribute.

attval = h5readatt('example.h5','/g4/lon','units');

See Also h5writeatt | h5info

Tutorials • “Using the High-Level HDF5 Functions to Import Data”

1-2584

h5write

Purpose Write to HDF5 data set

Syntax h5write(filename,datasetname,data)
h5write(filename,datasetname,data,start,count)
h5write(filename,datasetname,data,start,count,stride)

Description h5write(filename,datasetname,data) writes data to an entire data
set, datasetname, in the HDF5 file, filename.

h5write(filename,datasetname,data,start,count) writes a subset
of the data to a data set, datasetname, in the HDF5 file, filename.
start is a one-based index value that specifies the first element to
be written. count specifies the number of elements to write along
each dimension. h5write extends an extendable data set along any
unlimited dimensions, if necessary.

h5write(filename,datasetname,data,start,count,stride) writes
a hyperslab of data, where stride specifies the inter-element spacing
along each dimension.

Input
Arguments

filename

Text string specifying the name of an HDF5 file.

datasetname

Text string specifying the name of a data set in the HDF5 file.

data

Data to be written to the HDF5 file. You can specify only floating-point
and integer data sets.

start

Numeric index value specifying where in the data set to start writing
to the file.

count

1-2585

h5write

Numeric value specifying how much data to write to the file.

stride

Numeric value specifying the interelement spacing of data to write
to the file.

Default: Vector of ones.

Definitions Hyperslab

A hyperslab is a collection of points in a data space. The points can be
contiguous or form a regular pattern of points or blocks in a data space.

Examples Write to an entire data set.

h5create('myfile.h5','/DS1',[10 20]);
mydata = rand(10,20);
h5write('myfile.h5', '/DS1', mydata);

Write a hyperslab of data to the last 5-by-7 block of a data set.

h5create('myfile.h5','/DS2',[10 20]);
mydata = rand(5,7);
h5write('myfile.h5','/DS2',mydata,[6 14],[5 7]);

Append data to an unlimited data set.

h5create('myfile.h5','/DS3',[20 Inf],'ChunkSize',[5 5]);
for j = 1:10

data = j*ones(20,1);
start = [1 j];
count = [20 1];
h5write('myfile.h5','/DS3',data,start,count);

end

1-2586

h5write

h5disp('myfile.h5');

Limitations • h5write supports only floating point and integer data sets. To write
to string data sets, you must use the H5D package.

See Also h5read | h5create | h5writeatt | h5disp | H5D.create | H5D.write

Tutorials • “Exporting to HDF5 Files”

1-2587

h5writeatt

Purpose Write HDF5 attribute

Syntax h5writeatt(filename,location,attname,attvalue)

Description h5writeatt(filename,location,attname,attvalue) writes the
attribute named attname with the value attvalue to the HDF5 file
filename. The parent object location can be either a group or variable.
location is the complete path name of the group or variable to which
you want to associate the attribute.

Input
Arguments

filename

Text string specifying the name of an HDF5 file.

location

Text string specifying the full path identifying a group or variable in an
HDF5 file.

attname

Text string specifying the name of an attribute in an HDF5 file. If the
attribute does not exist, h5writeatt creates the attribute with the
name specified.

If the specified attribute already exists but does not have a datatype or
dataspace consistent with attvalue, h5writeatt deletes the attribute
and recreates it. String attributes are created with a scalar dataspace.

attvalue

Value to be written to the attribute in an HDF5 file.

Examples Create a root group attribute whose value is the current time.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
h5writeatt('myfile.h5','/','creation_date',datestr(now));

1-2588

h5writeatt

Create a double-precision data set attribute.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5')
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
attData = [0 1 2 3];
h5writeatt('myfile.h5','/g4/world','attr',attData);
h5disp('myfile.h5','/g4/world');

See Also h5readatt | h5disp | h5write

Tutorials • “Exporting to HDF5 Files”

1-2589

H5.close

Purpose Close HDF5 library

Syntax H5.close()

Description H5.close() closes the HDF5 library.

See Also H5.open

1-2590

H5.garbage_collect

Purpose Free unused memory in HDF5 library

Syntax H5.garbage_collect()

Description H5.garbage_collect() frees unused memory in the HDF5 library.

1-2591

H5.get_libversion

Purpose Version of HDF5 library

Syntax [majnum,minnum,relnum] = H5.get_libversion()

Description [majnum,minnum,relnum] = H5.get_libversion() returns the
version of the HDF5 library in use.

1-2592

H5.open

Purpose Open HDF5 library

Syntax H5.open()

Description H5.open() opens the HDF5 library.

See Also H5.close

1-2593

H5.set_free_list_limits

Purpose Set size limits on free lists

Syntax H5.set_free_list_limits(reg_global_lim,reg_list_lim,arr_global_lim,
arr_list_lim,blk_global_lim,blk_list_lim)

Description H5.set_free_list_limits(reg_global_lim,reg_list_lim,arr_global_lim,
arr_list_lim,blk_global_lim,blk_list_lim) sets size limits on all
types of free lists.

1-2594

H5A.close

Purpose Close specified attribute

Syntax H5A.close(attr_id)

Description H5A.close(attr_id) terminates access to the attribute specified by
attr_id, releasing the identifier.

See Also H5A.open

1-2595

H5A.create

Purpose Create attribute

Syntax attr_id = H5A.create(loc_id,name,type_id,space_id,acpl_id)
attr_id = H5A.create(loc_id,name,type_id,space_id,acpl_id,aapl_id)

Description attr_id = H5A.create(loc_id,name,type_id,space_id,acpl_id)
creates the attribute name that is attached to the object specified
by loc_id. loc_id is a group, dataset, or named datatype identifier.
The datatype and dataspace identifiers of the attribute, type_id and
space_id, respectively, are created with the H5T and H5S interfaces.
The attribute property list, acpl_id, is currently unused and should be
set to 'H5P_DEFAULT'. This interface corresponds to the 1.6.x version of
H5Acreate.

attr_id =
H5A.create(loc_id,name,type_id,space_id,acpl_id,aapl_id)
creates the attribute with the additional attribute access property list
identifier aapl_id. aapl_id should currently be set to 'H5P_DEFAULT'.
This interface corresponds to the 1.8.x version of H5Acreate.

Examples acpl_id = H5P.create('H5P_ATTRIBUTE_CREATE');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
space_id = H5S.create('H5S_SCALAR');
fid = H5F.create('myfile.h5');
attr_id = H5A.create(fid,'my_attr',type_id,space_id,acpl_id);
H5A.close(attr_id);
H5F.close(fid);

See Also H5A.close | H5P.create

1-2596

H5A.delete

Purpose Delete attribute

Syntax H5A.delete(loc_id,name)

Description H5A.delete(loc_id,name) removes the attribute specified by name
from the dataset, group, or named datatype specified by loc_id.

Examples Delete a root group attribute.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5')
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
gid = H5G.open(fid,'/');
H5A.delete(gid,'attr1');
H5G.close(gid);
H5F.close(fid);

1-2597

H5A.get_info

Purpose Information about attribute

Syntax info = H5A.get_info(attr_id)

Description info = H5A.get_info(attr_id) returns information about an
attribute specified by attr_id.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
attr_id = H5A.open(gid,'attr1');
info = H5A.get_info(attr_id);
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also H5A.open

1-2598

H5A.get_name

Purpose Attribute name

Syntax attr_name = H5A.get_name(attr_id)

Description attr_name = H5A.get_name(attr_id) returns the name of the
attribute specified by attr_id.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.1');
idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_INC';
attr_id = H5A.open_by_idx(gid,'dset1.1.1',idx_type,order,0);
name = H5A.get_name(attr_id);
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also H5A.open_by_idx

1-2599

H5A.get_space

Purpose Copy of attribute data space

Syntax dspace_id = H5A.get_space(attr_id)

Description dspace_id = H5A.get_space(attr_id) returns a copy of the data
space for the attribute specified by attr_id.

Examples Retrieve the dimensions of an attribute data space.

fid = H5F.open('example.h5');
attr_id = H5A.open(fid,'attr2');
space = H5A.get_space(attr_id);
[~,dims] = H5S.get_simple_extent_dims(space);
H5A.close(attr_id);
H5F.close(fid);

See Also H5A.open | H5S.close

1-2600

H5A.get_type

Purpose Copy of attribute data type

Syntax type_id = H5A.get_type(attr_id)

Description type_id = H5A.get_type(attr_id) returns a copy of the data type for
the attribute specified by attr_id.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
attr_id = H5A.open(gid,'attr1');
type_id = H5A.get_type(attr_id);
H5T.close(type_id);
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also H5A.open | H5T.close

1-2601

H5A.iterate

Purpose Execute function for attributes attached to object

Syntax [status,idx_stop,cdata_out] = H5A.iterate(obj_id,idx_type,order,
idx_start,iter_func,cdata_in)

H5A.iterate(loc_id,attr_idx,iterator_func)

Description [status,idx_stop,cdata_out] =
H5A.iterate(obj_id,idx_type,order,
idx_start,iter_func,cdata_in) executes the specified function
iter_func for each attribute connected to an object. obj_id identifies
the object to which attributes are attached. idx_type is the type of
index and valid values include the following.

'H5_INDEX_NAME' An alpha-numeric index by
attribute name

'H5_INDEX_CRT_ORDER' An index by creation order

order specifies the index traversal order. Valid values include the
following.

'H5_ITER_INC' Iteration from beginning to end

'H5_ITER_DEC' Iteration from end to beginning

'H5_ITER_NATIVE' Iteration in the fastest available
order

idx_start specifies the starting point of the iteration. idx_stop
returns the point at which iteration was stopped. This allows an
interrupted iteration to be resumed.

The callback function, iter_func, must have the following signature:

[status,cdata_out] =
iter_func(obj_id,attr_name,info,cdata_in)

cdata_in is a user-defined value or structure and is passed to the
first step of the iteration in the iter_func cdata_in parameter. The
cdata_out of an iteration step forms the cdata_in for the next iteration

1-2602

H5A.iterate

step. Then, the final cdata_out at the end of the iteration is returned
to the caller as cdata_out. This form of H5A.iterate corresponds to
the H5Aiterate2 function in the HDF5 C API.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero
status value to the caller if all members have
been processed

positive Stops the iteration and returns the positive
status value to the caller

negative Stops the iteration and throws an error
indicating failure

H5A.iterate(loc_id,attr_idx,iterator_func) executes the
specified function for each attribute of the group, dataset, or named
datatype specified by loc_id. The attr_idx argument specifies where
the iteration begins. iterator_func must be a function handle.

The iterator function must have the following signature:

status = iterator_func(loc_id,attr_name)

loc_id still specifies the group, dataset, or named data type passed
into H5A.iterate, and attr_name specifies the current attribute. This
form of H5A.iterate corresponds to H5Aiterate1 function in the HDF5
C API.

1-2603

H5A.open

Purpose Open attribute

Syntax attr_id = H5A.open(obj_id,attr_name)
attr_id = H5A.open(obj_id,attr_name,aapl_id)

Description attr_id = H5A.open(obj_id,attr_name) opens an attribute for an
object specified by a parent object identifier and attribute name.

attr_id = H5A.open(obj_id,attr_name,aapl_id) opens an attribute
with an attribute access property list identifier, aapl_id. The only
currently valid value for aapl_id is 'H5P_DEFAULT'.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
attr_id = H5A.open(gid,'attr1');
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also H5A.close | H5A.open_by_name | H5A.open_by_idx

1-2604

H5A.open_by_idx

Purpose Open attribute specified by index

Syntax attr_id = H5A.open_by_idx(loc_id,obj_name,idx_type,order,n)
attr_id = H5A.open_by_idx(loc_id,obj_name,idx_type,order,n,aapl_id,

lapl_id)

Description attr_id = H5A.open_by_idx(loc_id,obj_name,idx_type,order,n)
opens an existing attribute at index n attached to an object specified by
its location, loc_id, and name, obj_name.

idx_type is the type of index and valid values include the following.

'H5_INDEX_NAME' An alpha-numeric index by
attribute name

'H5_INDEX_CRT_ORDER' An index by creation order

order specifies the index traversal order. Valid values include the
following.

'H5_ITER_INC' Iteration from beginning to end

'H5_ITER_DEC' Iteration from end to beginning

'H5_ITER_NATIVE' Iteration in the fastest available
order

attr_id =
H5A.open_by_idx(loc_id,obj_name,idx_type,order,n,aapl_id,
lapl_id) opens an attribute with attribute access property list,
aapl_id, and link access property list, lapl_id. The aapl_id argument
must currently be specified as 'H5P_DEFAULT'. Also, lapl_id
can be specified by 'H5P_DEFAULT'.

Examples Loop through a set of dataset attributes in reverse alphabetical order.

fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.1');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');

1-2605

H5A.open_by_idx

info = H5O.get_info(dset_id);
for idx = 0:info.num_attrs-1

attr_id =H5A.open_by_idx(gid,'dset1.1.1','H5_INDEX_NAME','H5_ITER_DEC',
fprintf('attribute name: %s\n',H5A.get_name(attr_id));
H5A.close(attr_id);

end
H5G.close(gid);
H5F.close(fid);

See Also H5A.open | H5A.open_by_name | H5A.close

1-2606

H5A.open_by_name

Purpose Open attribute specified by name

Syntax attr_id = H5A.open_by_name(loc_id,obj_name,attr_name)
attr_id = H5A.open_by_name(loc_id,obj_name,attr_name,aapl_id,lapl_id)

Description attr_id = H5A.open_by_name(loc_id,obj_name,attr_name) opens
an existing attribute attr_name attached to an object specified by its
location loc_id and name obj_name.

attr_id =
H5A.open_by_name(loc_id,obj_name,attr_name,aapl_id,lapl_id)
opens an existing attribute with the attribute access property list
aapl_id and link access property list lacpl_id. aapl_id must be
specified as 'H5P_DEFAULT'. lapl_id may also be specified
by 'H5P_DEFAULT'.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.1');
attr_id = H5A.open_by_name(gid,'dset1.1.1','attr1');
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also H5A.close | H5A.open | H5A.open_by_idx

1-2607

H5A.read

Purpose Read attribute

Syntax attr = H5A.read(attr_id)
attr = H5A.read(attr_id, mem_type_id)

Description attr = H5A.read(attr_id) reads the attribute specified by attr_id.
MATLAB will determine the appropriate memory datatype.

attr = H5A.read(attr_id, mem_type_id) reads the attribute
specified by attr_id. mem_type_id specifies the attribute’s memory
datatype and should usually be given as 'H5ML_DEFAULT', which
specifies that MATLAB will determine the appropriate memory
datatype.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. If the HDF5
library reports the attribute size as 3-by-4-by-5, then the corresponding
MATLAB array size is 5-by-4-by-3. Please consult "Using the MATLAB
Low-Level HDF5 Functions" in the MATLAB documentation for more
information.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
attr_id = H5A.open(gid,'attr1');
data = H5A.read(attr_id);
H5A.close(attr_id);
H5G.close(gid);
H5F.close(fid);

See Also H5A.open | H5A.write

1-2608

H5A.write

Purpose Write attribute

Syntax H5A.write(attr_id,type_id,buf)

Description H5A.write(attr_id,type_id,buf) writes the data in buf into the
attribute specified by attr_id. type_id specifies the attribute’s
memory datatype. The memory datatype should be 'H5ML_DEFAULT',
which specifies that MATLAB should determine the appropriate
memory datatype.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. If the MATLAB
array size is 5-by-4-by-3, then the HDF5 library should be reporting
the attribute size as 3-by-4-by-5. Please consult "Using the MATLAB
Low-Level HDF5 Functions" in the MATLAB documentation for more
information.

Examples Write a scalar double precision attribute.

acpl = H5P.create('H5P_ATTRIBUTE_CREATE');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
space_id = H5S.create('H5S_SCALAR');
fid = H5F.create('myfile.h5');
attr_id = H5A.create(fid,'my_attr',type_id,space_id,acpl);
H5A.write(attr_id,'H5ML_DEFAULT',10.0)
H5A.close(attr_id);
H5F.close(fid);
H5T.close(type_id);

See Also H5A.read

1-2609

H5D.close

Purpose Close dataset

Syntax H5D.close(dataset_id)

Description H5D.close(dataset_id) ends access to a dataset specified by
dataset_id and releases resources used by it.

See Also H5D.create | H5D.open

1-2610

H5D.create

Purpose Create new dataset

Syntax dataset_id = H5D.create(loc_id,name,type_id,space_id,plist_id)
dataset_id = H5D.create(loc_id,name,type_id,space_id,lcpl_id,dcpl_id,

dapl_id)

Description dataset_id =
H5D.create(loc_id,name,type_id,space_id,plist_id) creates the
data set specified by name in the file or in the group specified
by loc_id. type_id and space_id identify the datatype and
dataspace, respectively. plist_id identifies the dataset creation
property list. This interface corresponds to the H5Dcreate1
function in the HDF5 library C 1.6 API.

dataset_id =
H5D.create(loc_id,name,type_id,space_id,lcpl_id,dcpl_id,
dapl_id) creates the data set with three distinct property lists:

lcpl_id link creation property list

dcpl_id dataset creation property list

dapl_id dataset access property list

This interface corresponds to the H5Dcreate function in the HDF5
library C 1.8 API.

Examples Create a 10x5 double precision dataset with default property list
settings.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [10 5];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = 'H5P_DEFAULT';
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);

1-2611

H5D.create

H5S.close(space_id);
H5T.close(type_id);
H5D.close(dset_id);
H5F.close(fid);
h5disp('myfile.h5');

Create a 6x3 fixed length string dataset. Each string will have a length
of 4 characters.

fid = H5F.create('myfile_strings.h5');
type_id = H5T.copy('H5T_C_S1');
H5T.set_size(type_id,4);
dims = [6 3];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = 'H5P_DEFAULT';
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5S.close(space_id);
H5T.close(type_id);
H5D.close(dset_id);
H5F.close(fid);
h5disp('myfile_strings.h5');

See Also H5D.close | H5S.create_simple | H5S.close | H5T.copy

1-2612

H5D.get_access_plist

Purpose Copy of dataset access property list

Syntax plist_id = H5D.get_access_plist(dataset_id)

Description plist_id = H5D.get_access_plist(dataset_id) returns a copy of
the dataset access property list used to open the specified dataset.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
dapl = H5D.get_access_plist(dset_id);
H5P.close(dapl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5D.get_create_plist | H5P.close

1-2613

H5D.get_create_plist

Purpose Copy of dataset creation property list

Syntax plist_id = H5D.get_create_plist(dataset_id)

Description plist_id = H5D.get_create_plist(dataset_id) returns the
identifier to a copy of the dataset creation property list for the dataset
specified by dataset_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
dcpl = H5D.get_create_plist(dset_id);
H5P.close(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5D.get_access_plist | H5P.close

1-2614

H5D.get_offset

Purpose Location of dataset in file

Syntax offset = H5D.get_offset(dataset_id)

Description offset = H5D.get_offset(dataset_id) returns the location in the
file of the dataset specified by dataset_id. The location is expressed as
an offset, in bytes, from the beginning of the file.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
offset = H5D.get_offset(dset_id);
H5D.close(dset_id);
H5F.close(fid);

1-2615

H5D.get_space

Purpose Copy of dataset data space

Syntax dspace_id = H5D.get_space(dataset_id)

Description dspace_id = H5D.get_space(dataset_id) returns an identifier for a
copy of the data space for a dataset.

Examples Retrieve the dimensions of an attribute data space.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
space = H5D.get_space(dset_id);
[~,dims] = H5S.get_simple_extent_dims(space);
H5S.close(space);
H5D.close(dset_id);
H5F.close(fid);

See Also H5D.open | H5S.close

1-2616

H5D.get_space_status

Purpose Determine if space is allocated

Syntax status = H5D.get_space_status(dataset_id)

Description status = H5D.get_space_status(dataset_id) determines whether
space has been allocated for the dataset specified by dataset_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
status = H5D.get_space_status(dset_id);
switch(status)

case H5ML.get_constant_value('H5D_SPACE_STATUS_NOT_ALLOCATED')
fprintf('Not allocated.\n');

case H5ML.get_constant_value('H5D_SPACE_STATUS_ALLOCATED')
fprintf('Allocated.\n');

case H5ML.get_constant_value('H5D_SPACE_STATUS_PART_ALLOCATED')
fprintf('Part allocated.\n');

end
H5D.close(dset_id);
H5F.close(fid);

See Also H5D.get_space

1-2617

H5D.get_storage_size

Purpose Determine required storage size

Syntax dataset_size = H5D.get_storage_size(dataset_id)

Description dataset_size = H5D.get_storage_size(dataset_id) returns
the amount of storage that is required for the dataset specified by
dataset_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
dataset_size = H5D.get_storage_size(dset_id);
H5D.close(dset_id);
H5F.close(fid);

1-2618

H5D.get_type

Purpose Copy of datatype

Syntax type_id = H5D.get_type(dataset_id)

Description type_id = H5D.get_type(dataset_id) returns an identifier for a copy
of the data type for the dataset specified by dataset_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
type_id = H5D.get_type(dset_id);
H5T.close(type_id);
H5D.close(dset_id);
H5F.close(fid);

See Also H5T.close

1-2619

H5D.open

Purpose Open specified dataset

Syntax dataset_id = H5D.open(loc_id,name)
dataset_id = H5D.open(loc_id,name,dapl_id)

Description dataset_id = H5D.open(loc_id,name) opens the dataset specified by
name in the file or group specified by loc_id.

dataset_id = H5D.open(loc_id,name,dapl_id) opens the dataset
specified by name in the file or group specified by loc_id. The dataset
access property list, dapl_id, provides information regarding access
to the dataset.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g2');
dset_id = H5D.open(gid,'dset2.2');
H5D.close(dset_id);
H5F.close(fid);

See Also H5D.close

1-2620

H5D.read

Purpose Read data from HDF5 dataset

Syntax data = H5D.read(dataset_id)
data = H5D.read(dataset_id,mem_type_id,mem_space_id,file_space_id,

dxpl)

Description data = H5D.read(dataset_id) reads the entire dataset specified by
dataset_id.

data =
H5D.read(dataset_id,mem_type_id,mem_space_id,file_space_id,
dxpl) reads the dataset specified by dataset_id. The mem_type_id
input specifies the memory data type and should usually be
'H5ML_DEFAULT' to allow MATLAB to determine the appropriate value.
mem_space_id describes how the data is to be arranged in memory and
should usually be 'H5S_ALL'. The file_space_id input describes how
the data is to be selected from the file. It also can be given as
'H5S_ALL', but this results in the entire dataset being read into
memory. dxpl is the dataset transfer property list identifier and
should usually be 'H5P_DEFAULT'.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. Please consult
"Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples Read an entire dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
data = H5D.read(dset_id);
H5D.close(dset_id);
H5F.close(fid);

1-2621

H5D.read

Read the 2x3 hyperslab starting in the 4th row and 5th column of the
example dataset.

plist = 'H5P_DEFAULT';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g1/g1.1/dset1.1.1');
dims = fliplr([2 3]);
mem_space_id = H5S.create_simple(2,dims,[]);
file_space_id = H5D.get_space(dset_id);
offset = fliplr([3 4]);
block = fliplr([2 3]);
H5S.select_hyperslab(file_space_id,'H5S_SELECT_SET',offset,[],[],block);
data = H5D.read(dset_id,'H5ML_DEFAULT',mem_space_id,file_space_id,plist);
H5D.close(dset_id);
H5F.close(fid);

See Also H5D.open | H5D.write | H5S.create_simple

1-2622

H5D.set_extent

Purpose Change size of dataset dimensions

Syntax H5D.set_extent(dset_id,h5_extents)

Description H5D.set_extent(dset_id,h5_extents) changes the dimensions of the
dataset dset_id to the sizes specified in h5_extents.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_extents
parameter assumes C-style ordering. Please consult "Using the
MATLAB Low-Level HDF5 Functions" in the MATLAB documentation
for more information.

Examples Extend an unlimited one-dimensional dataset from a length of 10 to
a length of 20.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5')
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
dset_id = H5D.open(fid,'/g4/time');
H5D.set_extent(dset_id,20);
H5D.close(dset_id);
H5F.close(fid);

1-2623

H5D.vlen_get_buf_size

Purpose Determine variable length storage requirements

Syntax size = H5D.vlen_get_buf_size(dataset_id,type_id,space_id)

Description size = H5D.vlen_get_buf_size(dataset_id,type_id,space_id)
determines the number of bytes required to store the VL data from the
dataset, using the space_id for the selection in the dataset on disk and
the type_id for the memory representation of the VL data in memory.

1-2624

H5D.write

Purpose Write data to HDF5 dataset

Syntax H5D.write(dataset_id,mem_type_id,mem_space_id,file_space_id,plist_id,
buf)

Description H5D.write(dataset_id,mem_type_id,mem_space_id,file_space_id,plist_id,
buf) writes the dataset specified by dataset_id from the application
memory buffer buf into the file. plist_id specifies the data transfer
properties. mem_type_id identifies the memory datatype of the
dataset. mem_space_id and file_space_id define the part of
the dataset to write. The memory datatype should usually be
'H5ML_DEFAULT', which specifies that MATLAB should determine
the appropriate memory datatype.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. Please consult
"Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples Write to the entire 36-by-19 /g4/world example dataset.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5')
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
plist = 'H5P_DEFAULT';
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
dset_id = H5D.open(fid,'/g4/world');
dims = [36 19];
data = rand(dims);
H5D.write(dset_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',plist,data);
H5D.close(dset_id);
H5F.close(fid);

1-2625

H5D.write

Write to the entire two-element /g3/VLstring dataset.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
h5disp('myfile.h5','/g3/VLstring');
plist = 'H5P_DEFAULT';
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
dset_id = H5D.open(fid,'/g3/VLstring');
data = {'dogs'; 'dogs and cats'};
H5D.write(dset_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',plist,data);
H5D.close(dset_id);
H5F.close(fid);
data_out = h5read('myfile.h5','/g3/VLstring');

Write a 10-by-5 block of data to the location starting at row index 15 and
column index 5 of the same dataset. Recall that indexing is zero-based.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
plist = 'H5P_DEFAULT';
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
dset_id = H5D.open(fid,'/g4/world');
start = [15 5];
h5_start = fliplr(start);
block = [10 5];
h5_block = fliplr(block);
mem_space_id = H5S.create_simple(2,h5_block,[]);
file_space_id = H5D.get_space(dset_id);
H5S.select_hyperslab(file_space_id,'H5S_SELECT_SET',h5_start,[],[],h5_blo
data = rand(block);
H5D.write(dset_id,'H5ML_DEFAULT',mem_space_id,file_space_id,plist,data);
H5D.close(dset_id);
H5F.close(fid);

1-2626

H5D.write

See Also H5D.read

1-2627

H5DS.attach_scale

Purpose Attach dimension scale to specific dataset dimension

Syntax H5DS.attach_scale(dataset_id,dimscale_id,idx)

Description H5DS.attach_scale(dataset_id,dimscale_id,idx) attaches
a dimension scale dimscale_id to dimension idx of the dataset
dataset_id.

Note The ordering of the dimension scale indices are the same as the
HDF5 library C API.

Examples Add the 'lon' and 'lat' dimension scales to the 'world' dataset.

plist = 'H5P_DEFAULT';
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
world_dset_id = H5D.open(fid,'/g4/world',plist);
lat_dset_id = H5D.open(fid,'/g4/lat',plist);
lon_dset_id = H5D.open(fid,'/g4/lon',plist);
H5DS.attach_scale(world_dset_id,lat_dset_id,0);
H5DS.attach_scale(world_dset_id,lon_dset_id,1);
H5D.close(lat_dset_id);
H5D.close(lon_dset_id);
H5D.close(world_dset_id);
H5F.close(fid);

See Also H5DS.detach_scale

1-2628

H5DS.detach_scale

Purpose Detach dimension scale from specific dataset dimension

Syntax H5DS.detach_scale(dataset_id,dimscale_id,idx)

Description H5DS.detach_scale(dataset_id,dimscale_id,idx) detaches
dimension scale dimscale_id from dimension idx of the dataset
dataset_id.

Note The ordering of the dimension scale indices are the same as the
HDF5 library C API.

See Also H5DS.attach_scale

1-2629

H5DS.get_label

Purpose Retrieve label from specific dataset dimension

Syntax label = H5DS.get_label(dataset_id,idx)

Description label = H5DS.get_label(dataset_id,idx) retrieves the label for
dimension idx of the dataset dataset_id.

Note The ordering of the dimension scale indices are the same as the
HDF5 library C API.

Examples fid = H5F.open('example.h5');
world_dset_id = H5D.open(fid,'/g4/world');
label = H5DS.get_label(world_dset_id,0);
H5D.close(world_dset_id);
H5F.close(fid);

See Also H5DS.set_label

1-2630

H5DS.get_num_scales

Purpose Number of scales attached to dataset dimension

Syntax num_scales = H5DS.get_num_scales(dataset_id,idx)

Description num_scales = H5DS.get_num_scales(dataset_id,idx) determines
the number of dimension scales that are attached to dimension idx of
the dataset dataset_id.

Examples fid = H5F.open('example.h5');
world_dset_id = H5D.open(fid,'/g4/world');
num_scales = H5DS.get_num_scales(world_dset_id,0);
H5D.close(world_dset_id);
H5F.close(fid);

1-2631

H5DS.get_scale_name

Purpose Name of dimension scale

Syntax name = H5DS.get_scale_name(dimscale_id)

Description name = H5DS.get_scale_name(dimscale_id) retrieves the name of
the dimension scale dimscale_id.

Examples fid = H5F.open('example.h5');
lat_dset_id = H5D.open(fid,'/g4/lat');
scale_name = H5DS.get_scale_name(lat_dset_id);
H5D.close(lat_dset_id);
H5F.close(fid);

See Also H5DS.set_scale

1-2632

H5DS.is_scale

Purpose Determine if dataset is a dimension scale

Syntax bool = H5DS.is_scale(dataset_id)

Description bool = H5DS.is_scale(dataset_id) determines whether the dataset
dataset_id is a dimension scale.

Examples fid = H5F.open('example.h5');
lat_dset_id = H5D.open(fid,'/g4/lat');
if H5DS.is_scale(lat_dset_id)

fprintf('/g4/lat is a dimension scale.\n');
else

fprintf('/g4/lat is not a dimension scale.\n');
end
H5D.close(lat_dset_id);
H5F.close(fid);

1-2633

H5DS.iterate_scales

Purpose Iterate on scales attached to dataset dimension

Syntax [status,idx_out,opdata_out] = H5DS.iterate_scales(dset_id,dim,idx_in,
iter_func,opdata_in)

Description [status,idx_out,opdata_out] =
H5DS.iterate_scales(dset_id,dim,idx_in,
iter_func,opdata_in) iterates over the scales attached to dimension
dim of the dataset dset_id to perform a common operation whose
function handle is iter_func.

idx_in specifies the starting point of the iteration. idx_out returns
the point at which iteration was stopped. This allows an interrupted
iteration to be resumed. If idx_in is [], then the iterator starts at
the first member.

The callback function iter_func must have the following signature:

function [status,opdata_out] =
iter_func(dset_id,dim,dimscale_id,opdata_in)

opdata_in is a user-defined value or structure and is passed to the
first step of the iteration in the iter_func opdata_in parameter. The
opdata_out of an iteration step forms the opdata_in for the next
iteration step. The final opdata_out at the end of the iteration is then
returned to the caller as opdata_out.

dimscale_id specifies the current dimension scale dataset identifier
and dim is the associated dimension.

status value returned by iter_func is interpreted as follows:

1-2634

H5DS.iterate_scales

zero Continues with the iteration or returns zero
status value to the caller if all members have
been processed

positive Stops the iteration and returns the positive
status value to the caller

negative Stops the iteration and throws an error
indicating failure

1-2635

H5DS.set_label

Purpose Set label for dataset dimension

Syntax H5DS.set_label(dataset_id,idx,label)

Description H5DS.set_label(dataset_id,idx,label) sets a label for dimension
idx of the dataset dataset_id.

Note The ordering of the dimension scale indices are the same as the
HDF5 library C API.

Examples plist = 'H5P_DEFAULT';
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR',plist);
world_dset_id = H5D.open(fid,'/g4/world',plist);
H5DS.set_label(world_dset_id,0,'latitude');
H5DS.set_label(world_dset_id,1,'longitude');
H5D.close(world_dset_id);
H5F.close(fid);

See Also H5DS.get_label

1-2636

H5DS.set_scale

Purpose Convert dataset to dimension scale

Syntax H5DS.set_scale(dataset_id,dim_name)

Description H5DS.set_scale(dataset_id,dim_name) converts the dataset,
dataset_id, to a dimension scale with name dim_name.

Examples Create a dimension scale with name 'xdim'. The dataset has the name,
'x'.

fid = H5F.create('myfile.h5');
space_id = H5S.create_simple(1,10,10);
dtype = 'H5T_NATIVE_INT';
dcpl = 'H5P_DEFAULT';
dset_id = H5D.create(fid,'x',dtype,space_id,dcpl);
H5DS.set_scale(dset_id,'xdim');
H5S.close(space_id);
H5D.close(dset_id);
H5F.close(fid);

See Also H5DS.get_scale_name

1-2637

H5E.clear

Purpose Clear error stack

Syntax H5E.clear()

Description H5E.clear() clears the error stack for the current thread.

1-2638

H5E.get_major

Purpose Description of major error number

Syntax err_string = H5E.get_major(major_number)

Description err_string = H5E.get_major(major_number) returns a character
string describing an error specified by the major error number,
major_number.

The HDF5 group has deprecated the use of this function.

See Also H5E.get_minor

1-2639

H5E.get_minor

Purpose Description of minor error number

Syntax err_string = H5E.get_minor(minor_number)

Description err_string = H5E.get_minor(minor_number) returns a character
string describing an error specified by the minor error number,
minor_number.

The HDF5 group has deprecated the use of this function.

See Also H5E.get_major

1-2640

H5E.walk

Purpose Walk error stack

Syntax H5E.walk(direction,func)

Description H5E.walk(direction,func) walks the error stack for the current
thread and calls the specified function for each error along the way.
func is a function handle. direction specifies how the error stack
is traversed and can be given by one of the following strings or the
numeric equivalent.

'H5E_WALK_UPWARD'

'H5E_WALK_DOWNWARD'

The specified function must have the following signature:

status = func(n,error_struct)

where n is the indexed position of the error in the stack and
error_struct is a structure with the following fields:

maj_num Major error number

min_num Minor error number

func_name Function in which the error
occurred

file_name File in which the error occurred

line Line in file where error occurs

desc Optional supplied description

This function corresponds to the H5Ewalk1 function in the HDF5 library
C API.

See Also H5ML.get_constant_value

1-2641

H5F.close

Purpose Close HDF5 file

Syntax H5F.close(file_id)

Description H5F.close(file_id) terminates access to HDF5 file identified by
file_id, flushing all data to storage.

See Also H5F.open

1-2642

H5F.create

Purpose Create HDF5 file

Syntax file_id = H5F.create(filename)
file_id = H5F.create(name,flags,fcpl_id,fapl_id)

Description file_id = H5F.create(filename) creates the file specified by
filename with default library properties if the file does not already
exist.

file_id = H5F.create(name,flags,fcpl_id,fapl_id) creates the
file specified by name. flags specifies whether to truncate the file, if it
already exists, or to fail if the file already exists. flags can be specified
by one of the following strings or the numeric equivalent:

'H5F_ACC_TRUNC' overwrite any existing file by the
same name

'H5F_ACC_EXCL' do not overwrite an existing file

fcpl_id is the file creation property list identifier. fapl_id is the file
access property list identifier. A value of 'H5P_DEFAULT' for either
property list indicates that the library should use default values for the
appropriate property list.

Examples Create an HDF5 file called 'myfile.h5'.

fid = H5F.create('myfile.h5');
H5F.close(fid);

Create an HDF5 file called 'myfile.h5', overwriting any existing
file by the same name. Default file access and file creation properties
shall apply.

fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

1-2643

H5F.create

See Also H5F.close | H5P.create | H5ML.get_constant_value

1-2644

H5F.flush

Purpose Flush buffers to disk

Syntax H5F.flush(object_id,scope)

Description H5F.flush(object_id,scope) causes all buffers associated with a file
to be immediately flushed to disk without removing the data from the
cache. object_id can be any object associated with the file, including
the file itself, a dataset, a group, an attribute, or a named data type.
scope specifies whether the scope of the flushing action is global or
local. scope may be one of the following strings:

'H5F_SCOPE_GLOBAL'

'H5F_SCOPE_LOCAL'

1-2645

H5F.get_access_plist

Purpose File access property list

Syntax fapl_id = H5F.get_access_plist(file_id)

Description fapl_id = H5F.get_access_plist(file_id) returns the file access
property list identifier of the file specified by file_id.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
H5P.close(fapl);
H5F.close(fid);

See Also H5F.get_create_plist

1-2646

H5F.get_create_plist

Purpose File creation property list

Syntax fcpl_id = H5F.get_create_plist(file_id)

Description fcpl_id = H5F.get_create_plist(file_id) returns a file creation
property list identifier identifying the creation properties used to create
the file specified by file_id.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
H5P.close(fcpl);
H5F.close(fid);

See Also H5F.get_access_plist

1-2647

H5F.get_filesize

Purpose Size of HDF5 file

Syntax size = H5F.get_filesize(file_id)

Description size = H5F.get_filesize(file_id) returns the size of the HDF5
file specified by file_id.

1-2648

H5F.get_freespace

Purpose Amount of free space in file

Syntax free_space = H5F.get_freespace(file_id)

Description free_space = H5F.get_freespace(file_id) returns the amount of
space that is unused by any objects in the file specified by file_id.

1-2649

H5F.get_info

Purpose Global information about file

Syntax file_info = H5F.get_info(obj_id)

Description file_info = H5F.get_info(obj_id) returns global information
for the file associated with the object identifier obj_id. For details
about the fields of the file_info structure, please refer to the HDF5
documentation.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'g2');
info = H5F.get_info(gid);
H5G.close(gid);
H5F.close(fid);

1-2650

H5F.get_mdc_config

Purpose Metadata cache configuration

Syntax config_struct = H5F.get_mdc_config(file_id)

Description config_struct = H5F.get_mdc_config(file_id) returns the current
metadata cache configuration for the target file.

Examples fid = H5F.open('example.h5');
config = H5F.get_mdc_config(fid);
H5F.close(fid);

See Also H5F.set_mdc_config

1-2651

H5F.get_mdc_hit_rate

Purpose Metadata cache hit-rate

Syntax hitRate = H5F.get_mdc_hit_rate(file_id)

Description hitRate = H5F.get_mdc_hit_rate(file_id) queries the metadata
cache of the target file to obtain its hit-rate since the last time hit-rate
statistics were reset. If the cache has not been accessed since the last
time the hit-rate statistics were reset, the hit-rate is defined to be 0.0.
The hit-rate is calculated as

(cache hits / (cache hits + cache misses))

Examples fid = H5F.open('example.h5');
hit_rate = H5F.get_mdc_hit_rate(fid);
H5F.close(fid);

See Also H5F.get_mdc_config

1-2652

H5F.get_mdc_size

Purpose Metadata cache size data

Syntax [max_sz,min_clean_sz,cursz,
num_cur_entries] = H5F.get_mdc_size(fileId)

Description [max_sz,min_clean_sz,cursz, num_cur_entries] =
H5F.get_mdc_size(fileId) queries the metadata cache of the target
file to obtain current metadata cache size information.

Examples fid = H5F.open('example.h5');
[maxsz,minsz,cursz,nent] = H5F.get_mdc_size(fid);
H5F.close(fid);

See Also H5F.get_mdc_config

1-2653

H5F.get_name

Purpose Name of HDF5 file

Syntax name = H5F.get_name(obj_id)

Description name = H5F.get_name(obj_id) returns the name of the file to which
the object obj_id belongs. The object can be a group, dataset, attribute,
or named data type.

Examples fid = H5F.open('example.h5');
name = H5F.get_name(fid);
H5F.close(fid);

See Also H5A.get_name | H5I.get_name

1-2654

H5F.get_obj_count

Purpose Number of open objects in HDF5 file

Syntax obj_count = H5F.get_obj_count(file_id,types)

Description obj_count = H5F.get_obj_count(file_id,types) returns the
number of open object identifiers for the file specified by file_id for
the specified type. types can be one of the following strings.

'H5F_OBJ_FILE'

'H5F_OBJ_DATASET'

'H5F_OBJ_GROUP'

'H5F_OBJ_DATATYPE'

'H5F_OBJ_ATTR'

'H5F_OBJ_ALL'

'H5F_OBJ_LOCAL'

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g2');
obj_count = H5F.get_obj_count(fid,'H5F_OBJ_GROUP');
H5G.close(gid);
H5F.close(fid);

See Also H5F.get_obj_ids

1-2655

H5F.get_obj_ids

Purpose List of open HDF5 file objects

Syntax [num_obj_ids,obj_id_list] = H5F.get_obj_ids(file_id,types,max_objs)

Description [num_obj_ids,obj_id_list] =
H5F.get_obj_ids(file_id,types,max_objs) returns a list of all open
identifiers for HDF5 objects of the type specified by types in the file
specified by file_id. The max_objs input specifies the maximum
number of object identifiers to return. num_obj_ids is the total number
of objects in the list. types can be one of the following strings.

'H5F_OBJ_FILE'

'H5F_OBJ_DATASET'

'H5F_OBJ_GROUP'

'H5F_OBJ_DATATYPE'

'H5F_OBJ_ATTR'

'H5F_OBJ_ALL'

'H5F_OBJ_LOCAL'

Examples fid = H5F.open('example.h5');
gid1 = H5G.open(fid,'/g1');
gid2 = H5G.open(fid,'/g2');
gid3 = H5G.open(fid,'/g3');
gid4 = H5G.open(fid,'/g4');
[num_obj_ids,objs] = H5F.get_obj_ids(fid,'H5F_OBJ_GROUP',3);
H5G.close(gid1);
H5G.close(gid2);
H5G.close(gid3);
H5G.close(gid4);
H5F.close(fid);

See Also H5F.get_obj_count

1-2656

H5F.is_hdf5

Purpose Determine if file is HDF5

Syntax value = H5F.is_hdf5(name)

Description value = H5F.is_hdf5(name) returns a positive number if the file
specified by name is in the HDF5 format, and zero if it is not. A negative
return value indicates failure.

Examples value = H5F.is_hdf5('example.tif');
if value > 0

fprintf('example.tif is an HDF5 file\n');
else

fprintf('example.tif is not an HDF5 file\n');
end

1-2657

H5F.mount

Purpose Mount HDF5 file onto specified location

Syntax H5F.mount(loc_id,name,child_id,plist_id)

Description H5F.mount(loc_id,name,child_id,plist_id) mounts the file
specified by child_id onto the group specified by loc_id and name,
using the mount properties specified by plist_id.

Examples Mount one file with a dataset onto a group in a second file and access
the dataset via the second file.

plist = 'H5P_DEFAULT';
fid2 = H5F.create('file2.h5','H5F_ACC_TRUNC',plist,plist);
gid2 = H5G.create(fid2,'g2',plist,plist,plist);
fid1 = H5F.create('file1.h5','H5F_ACC_TRUNC','H5P_DEFAULT',...

'H5P_DEFAULT');
space_id = H5S.create('H5S_SCALAR');
dset_id = H5D.create(fid1,'DS1','H5T_NATIVE_DOUBLE',space_id,plist);
H5S.close(space_id);
H5D.close(dset_id);
H5F.mount(fid2,'g2',fid1,plist);
dset_id1 = H5D.open(fid1,'/g2/DS1',plist);
H5D.close(dset_id1);
H5F.unmount(fid1,'g2');
H5G.close(gid2);
H5F.close(fid1);
H5F.close(fid2);

See Also H5F.unmount

1-2658

H5F.open

Purpose Open HDF5 file

Syntax file_id = H5F.open(filename)
file_id = H5F.open(name,flags,fapl_id)

Description file_id = H5F.open(filename) opens the file specified by filename
for read-only access and returns the file identifier, file_id.

file_id = H5F.open(name,flags,fapl_id) opens the file specified
by name, returning the file identifier, file_id. flags specifies file
access flags and can be specified by one of the following strings or their
numeric equivalents:

'H5F_ACC_RDWR' read-write mode

'H5F_ACC_RDONLY' read-only mode

The file access property list, fapl_id, may be specified as
'H5P_DEFAULT', in which case the default I/O settings are used.

Examples Open a file in read-only mode with default file access properties.

fid = H5F.open('example.h5');
H5F.close(fid);

Open a file in read-write mode.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5')
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
H5F.close(fid);

See Also H5F.close | H5ML.get_constant_value

1-2659

H5F.reopen

Purpose Reopen HDF5 file

Syntax new_file_id = H5F.reopen(file_id)

Description new_file_id = H5F.reopen(file_id) returns a new file identifier for
the already open HDF5 file specified by file_id.

See Also H5F.open

1-2660

H5F.set_mdc_config

Purpose Configure HDF5 file metadata cache

Syntax H5F.set_mdc_config(fileId,config)

Description H5F.set_mdc_config(fileId,config) attempts to configure the file’s
metadata cache according to the supplied configuration structure.
Before using this function, you should retrieve the current configuration
using H5F.get_mdc_config.

See Also H5F.get_mdc_config

1-2661

H5F.unmount

Purpose Unmount file or group from mount point

Syntax H5F.unmount(loc_id,name)

Description H5F.unmount(loc_id,name) dissassociates the file or group specified
by loc_id from the mount point specified by name. loc_id can be a file
or group identifier.

See Also H5F.mount

1-2662

H5G.close

Purpose Close group

Syntax H5G.close(group_id)

Description H5G.close(group_id) releases resources used by the group specified by
group_id. group_id was returned by either H5G.create or H5G.open.

See Also H5G.create | H5G.open

1-2663

H5G.create

Purpose Create group

Syntax group_id = H5G.create(loc_id,name,size_hint)
group_id = H5G.create(loc_id,name,lcpl_id,gcpl_id,gapl_id)

Description group_id = H5G.create(loc_id,name,size_hint) creates a new
group with the name specified by name at the location specified by
loc_id. loc_id can be a file or group identifier. size_hint specifies
the number of bytes to reserve for the names that will appear in the
group. This interface corresponds to the 1.6 version of H5Gcreate.

group_id = H5G.create(loc_id,name,lcpl_id,gcpl_id,gapl_id)
creates a new group with link creation, group creation, and group
access property lists lcpl_id, gcpl_id, and gapl_id. This interface
corresponds to the 1.8 version of H5Gcreate.

Examples Create an HDF5 file 'myfile.h5' with a group 'my_group' with
default property list settings.

fid = H5F.create('myfile.h5');
plist = 'H5P_DEFAULT';
gid = H5G.create(fid,'my_group',plist,plist,plist);
H5G.close(gid);
H5F.close(fid);

See Also H5G.open | H5G.close

1-2664

H5G.get_info

Purpose Information about group

Syntax info = H5G.get_info(group_id)

Description info = H5G.get_info(group_id) retrieves information about the
group specified by group_id.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g2');
info = H5G.get_info(gid);
H5G.close(gid);
H5F.close(fid);

See Also H5G.open | H5G.create

1-2665

H5G.open

Purpose Open specified group

Syntax group_id = H5G.open(loc_id,name)
group_id = H5G.open(loc_id,name,gapl_id)

Description group_id = H5G.open(loc_id,name) opens the group specified by
name at the location specified by loc_id. loc_id is a file or group
identifier. This interface corresponds to the 1.6 version of H5Gopen.

group_id = H5G.open(loc_id,name,gapl_id) opens the group with
an additional group access property list, gapl_id. This interface
corresponds to the 1.8 version of H5Gopen.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g2');
H5G.close(gid);
H5F.close(fid);

See Also H5G.close | H5P.create

1-2666

H5I.dec_ref

Purpose Decrement reference count

Syntax ref_count = H5I.dec_ref(obj_id)

Description ref_count = H5I.dec_ref(obj_id) decrements the reference count of
the object identified by obj_id and returns the new count.

See Also H5I.get_ref | H5I.inc_ref

1-2667

H5I.get_file_id

Purpose File identifier for specified object

Syntax file_id = H5I.get_file_id(obj_id)

Description file_id = H5I.get_file_id(obj_id) returns the identifier of the file
associated with the object referenced by obj_id.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g4');
fid2 = H5I.get_file_id(gid);
name = H5F.get_name(fid2);
fprintf('The filename is %s.\n',name);
H5G.close(gid);
H5F.close(fid);
H5F.close(fid2);

1-2668

H5I.get_name

Purpose Name of object

Syntax name = H5I.get_name(obj_id)

Description name = H5I.get_name(obj_id) returns the name of the object specified
by obj_id. If no name is attached to the object, the empty string is
returned.

Examples Display the names of all the objects in the /g3 group in the example
file by alphabetical order.

idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_INC';
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g3');
info = H5G.get_info(gid);
for j = 1:info.nlinks

obj_id = H5O.open_by_idx(fid,'g3',idx_type,order,j-1,'H5P_DEFAULT
name = H5I.get_name(obj_id);
fprintf('Object %d: ''%s''.\n',j-1,name);
H5O.close(obj_id);

end
H5G.close(gid);
H5F.close(fid);

See Also H5A.get_name | H5F.get_name

1-2669

H5I.get_ref

Purpose Reference count of object

Syntax refcount = H5I.get_ref(obj_id)

Description refcount = H5I.get_ref(obj_id) returns the reference count of the
object specified by obj_id.

See Also H5I.dec_ref | H5I.inc_ref

1-2670

H5I.get_type

Purpose Type of object

Syntax obj_type = H5I.get_type(obj_id)

Description obj_type = H5I.get_type(obj_id) returns the type of the object
specified by obj_id. obj_type corresponds to one of the following
enumerated values.

H5I_FILE

H5I_GROUP

H5I_DATATYPE

H5I_DATASPACE

H5I_DATASET

H5I_ATTR

H5I_BADID

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g3');
dset_id = H5D.open(fid,'/g4/world');
[~,objs] = H5F.get_obj_ids(fid,'H5F_OBJ_ALL',3);
for j = 1:numel(objs)

name = H5I.get_name(objs(j));
fprintf('object ''%s'': ==> ',name);
type = H5I.get_type(objs(j));
switch(type)

case H5ML.get_constant_value('H5I_FILE')
fprintf('FILE identifier.\n');

case H5ML.get_constant_value('H5I_GROUP')
fprintf('GROUP identifier.\n');

case H5ML.get_constant_value('H5I_DATASET')
fprintf('DATASET identifier.\n');

otherwise
fprintf('unknown identifier type.\n');

end

1-2671

H5I.get_type

end
H5G.close(gid);
H5F.close(fid);

See Also H5ML.get_constant_value

1-2672

H5I.inc_ref

Purpose Increment reference count of specified object

Syntax ref_count = H5I.inc_ref(obj_id)

Description ref_count = H5I.inc_ref(obj_id) increments the reference count of
the object specified by obj_id and returns the new count.

See Also H5I.dec_ref | H5I.get_ref

1-2673

H5I.is_valid

Purpose Determine if specified identifier is valid

Syntax tf = H5I.is_valid(obj_id)

Description tf = H5I.is_valid(obj_id) determines whether the identifier
obj_id is valid.

Examples fapl = H5P.create('H5P_FILE_ACCESS');
H5P.close(fapl);
if H5I.is_valid(fapl);

fprintf('File access property list is valid.\n');
else

fprintf('File access property list is not valid.\n');
end

1-2674

H5L.copy

Purpose Copy link from source location to destination location

Syntax H5L.copy(src_loc_id,src_name,dest_loc_id,dest_name,lcpl_id,lapl_id)

Description H5L.copy(src_loc_id,src_name,dest_loc_id,dest_name,lcpl_id,lapl_id)
copies the link specified by src_name from the file or group specified by
src_loc_id to the destination dest_loc_id. The new copy of the link is
created with the name dest_name.

dest_loc_id must refer to either the current file or a group in the
current file. If dest_loc_id is the file identifier, the copy is placed in
the file’s root group.

The new link is created with the creation and access property lists
specified by lcpl_id and lapl_id.

Examples plist_id = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist_id,plist_id);
g1 = H5G.create(fid,'g1',plist_id);
g2 = H5G.create(fid,'g2',plist_id);
g11 = H5G.create(g1,'g3',plist_id);
H5L.copy(g1,'g3',g2,'g4',plist_id,plist_id);

1-2675

H5L.create_external

Purpose Create soft link to external object

Syntax H5L.create_external(filename,objname,link_loc_id,link_name,lcpl_id,
lapl_id)

Description H5L.create_external(filename,objname,link_loc_id,link_name,lcpl_id,
lapl_id) creates a soft link to an object in a different file. filename
identifies the target file containing the target object. obj_name specifies
the path to the target object within that file. obj_name must start at
the target file’s root group but is not interpreted until lookup time.

link_loc_id and link_name specify the location and name,
respectively, of the new link. link_name is interpreted relative to
link_loc_id.

lcpl_id and lapl_id are the link creation and access property lists
associated with the new link.

Examples plist_id = 'H5P_DEFAULT';
fid1 = H5F.create('myfile1.h5');
g1 = H5G.create(fid1,'g1',plist_id,plist_id,plist_id);
H5G.close(g1);
H5F.close(fid1);
fid2 = H5F.create('myfile2.h5');
H5L.create_external('myfile1.h5','g1',fid2,'g2',plist_id,plist_id);

1-2676

H5L.create_hard

Purpose Create hard link

Syntax H5L.create_hard(obj_loc_id,obj_name,link_loc_id,link_name,lcpl_id,
lapl_id)

Description H5L.create_hard(obj_loc_id,obj_name,link_loc_id,link_name,lcpl_id,
lapl_id) creates a new hard link to a pre-existing object in an HDF5
file. The new link may be one of many that point to that object.
obj_loc_id and obj_name specify the location and name, respectively,
of the target object, i.e., the object to which the new hard link points.

link_loc_id and link_name specify the location and name,
respectively, of the new link. link_name is interpreted relative to
link_loc_id.

lcpl_id and lapl_id are the link creation and access property lists
associated with the new link.

Examples fid = H5F.create('myfile.h5');
gid1 = H5G.create(fid,'/g1',0);
gid2 = H5G.create(gid1,'g2',0);
gid3 = H5G.create(gid2,'g3',0);
lcpl = 'H5P_DEFAULT';
lapl = 'H5P_DEFAULT';
H5L.create_hard(gid2,'g3',gid1,'g4',lcpl,lapl);
H5G.close(gid3);
H5G.close(gid2);
H5G.close(gid1);
H5F.close(fid);

See Also H5L.create_soft

1-2677

H5L.create_soft

Purpose Create soft link

Syntax H5L.create_soft(target_path,link_loc_id,link_name,lcpl_id,lapl_id)

Description H5L.create_soft(target_path,link_loc_id,link_name,lcpl_id,lapl_id)
creates a new soft link to an object in an HDF5 file. The new link may
be one of many that point to that object. target_path specifies the path
to the target object, i.e., the object that the new soft link points to.
target_path can be anything and is interpreted at lookup time. This
target_path may be absolute in the file or relative to link_loc_id.

link_loc_id and link_name specify the location and name,
respectively, of the new link. link_name is interpreted relative to
link_loc_id.

lcpl_id and lapl_id are the link creation and access property lists
associated with the new link.

Examples plist_id = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5');
gid1 = H5G.create(fid,'/g1',0);
gid3 = H5G.create(gid1,'g3',0);
gid2 = H5G.create(fid,'/g2',0);
lcpl = 'H5P_DEFAULT';
lapl = 'H5P_DEFAULT';
H5L.create_soft('/g1/g3',gid2,'g4',lcpl,lapl);
H5G.close(gid3);
H5G.close(gid2);
H5G.close(gid1);
H5F.close(fid);

See Also H5L.create_hard

1-2678

H5L.delete

Purpose Remove link

Syntax H5L.delete(loc_id,name,lapl_id)

Description H5L.delete(loc_id,name,lapl_id) removes the link specified by
name from the location loc_id. lapl_id is a link access property list
identifier.

Examples Remove the only link to the '/g3' group in example.h5.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5')
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
H5L.delete(fid,'g3','H5P_DEFAULT');
H5F.close(fid);

See Also H5L.move

1-2679

H5L.exists

Purpose Determine if link exists

Syntax bool = H5L.exists(loc_id,name,lapl_id)

Description bool = H5L.exists(loc_id,name,lapl_id) checks if a link specified
by the pairing of an object id and name exists within a group. lapl_id
is a link access property list identifier.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.2/g1.2.1');
if H5L.exists(gid,'slink','H5P_DEFAULT')

fprintf('link exists\n');
else

fprintf('link does not exist\n');
end

1-2680

H5L.get_info

Purpose Information about link

Syntax linkStruct = H5L.get_info(location_id,link_name,lapl_id)

Description linkStruct = H5L.get_info(location_id,link_name,lapl_id)
returns information about a link.

A file or group identifier, location_id, specifies the location of the
link. link_name, interpreted relative to link_id, specifies the link
being queried.

Examples fid = H5F.open('example.h5');
info = H5L.get_info(fid,'g3','H5P_DEFAULT');
H5F.close(fid);

1-2681

H5L.get_name_by_idx

Purpose Information about link specified by index

Syntax name = H5L.get_name_by_idx(loc_id,group_name,idx_type,order,n,
lapl_id)

Description name =
H5L.get_name_by_idx(loc_id,group_name,idx_type,order,n,
lapl_id) retrieves information about a link at index n, present in
group group_name, at location loc_id. The lapl_id input specifies the
link access property list for querying the group.

idx_type is the type of index and valid values include the following.

'H5_INDEX_NAME' Alpha-numeric index on name

'H5_INDEX_CRT_ORDER' Index on creation order

order specifies the index traversal order. Valid values include the
following.

'H5_ITER_INC' Iteration from beginning to end

'H5_ITER_DEC' Iteration from end to beginning

'H5_ITER_NATIVE' Iteration in the fastest available
order

Examples fid = H5F.open('example.h5');
idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_DEC';
lapl_id = 'H5P_DEFAULT';
name = H5L.get_name_by_idx(fid,'g3',idx_type,order,0,lapl_id);
H5F.close(fid);

1-2682

H5L.get_val

Purpose Value of symbolic link

Syntax linkval = H5L.get_val(link_loc_id,link_name,lapl_id)

Description linkval = H5L.get_val(link_loc_id,link_name,lapl_id) returns
the value of a symbolic link.

link_loc_id is a file or group identifier. link_name identifies a
symbolic link and is defined relative to link_loc_id. Symbolic links
include soft and external links and some user-defined links.

In the case of soft links, linkval is a cell array containing the path
to which the link points.

In the case of external links, linkval is a cell array consisting of the
name of the target file and the object name.

This function corresponds to the H5L.get_val and
H5Lunpack_elink_val functions in the HDF5 1.8 C API.

Examples fid = H5F.open('example.h5');
gid = H5G.open(fid,'/g1/g1.2/g1.2.1');
linkval = H5L.get_val(gid,'slink','H5P_DEFAULT');
H5G.close(gid);
H5F.close(fid);

1-2683

H5L.iterate

Purpose Iterate over links

Syntax [status,idx_out,opdata_out] = H5L.iterate(group_id,index_type,order,
idx_in,iter_func,opdata_in)

Description [status,idx_out,opdata_out] =
H5L.iterate(group_id,index_type,order,
idx_in,iter_func,opdata_in) iterates through the links in a group,
specified by group_id, to perform a common function whose function
handle is iter_func. H5L.iterate does not recursively follow links
into subgroups of the specified group.

index_type and order establish the iteration. index_type specifies the
index to be used. If the links have not been indexed by the index type,
they will first be sorted by that index then the iteration will begin. If the
links have been so indexed, the sorting step will be unnecessary, so the
iteration may begin more quickly. Valid values include the following:

'H5_INDEX_NAME' Alpha-numeric index on name

'H5_INDEX_CRT_ORDER' Index on creation order

order specifies the order in which objects are to be inspected along the
index specified in index_type. Valid values include the following:

'H5_ITER_INC' Increasing order

'H5_ITER_DEC' Decreasing order

'H5_ITER_NATIVE' Fastest available order

idx_in specifies the starting point of the iteration. idx_out returns
the point at which iteration was stopped. This allows an interrupted
iteration to be resumed.

The callback function iter_func must have the following signature:

function [status,opdata_out] =
iter_func(group_id,name,opdata_in)

1-2684

H5L.iterate

opdata_in is a user-defined value or structure and is passed to the
first step of the iteration in the iter_func opdata_in parameter. The
opdata_out of an iteration step forms the opdata_in for the next
iteration step. The final opdata_out at the end of the iteration is then
returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows:

zero Continues with the iteration or returns zero
status value to the caller if all members have
been processed

positive Stops the iteration and returns the positive
status value to the caller

negative Stops the iteration and throws an error
indicating failure

1-2685

H5L.iterate_by_name

Purpose Iterate through links in group specified by name

Syntax [status,idx_out,opdata_out] = H5L.iterate_by_name(loc_id,group_name,
index_type,order,idx_in,iter_func,opdata_in,lapl_id)

Description [status,idx_out,opdata_out] =
H5L.iterate_by_name(loc_id,group_name,
index_type,order,idx_in,iter_func,opdata_in,lapl_id) iterates
through the links in a group to perform a common function whose
function handle is iter_func. The starting point of the iteration is
pairing of a specified by the location id and a relative group name.
H5L.iterate_by_name does not recursively follow links into subgroups
of the specified group. A link access property list, lapl_id, may affect
the outcome depending upon the type of link being traversed.

index_type and order establish the iteration. index_type specifies the
index to be used. If the links have not been indexed by the index type,
they will first be sorted by that index then the iteration will begin. If the
links have been so indexed, the sorting step will be unnecessary, so the
iteration may begin more quickly. Valid values include the following:

'H5_INDEX_NAME' Alpha-numeric index on name

'H5_INDEX_CRT_ORDER' Index on creation order

order specifies the order in which objects are to be inspected along the
index specified in index_type. Valid values include the following:

'H5_ITER_INC' Increasing order

'H5_ITER_DEC' Decreasing order

'H5_ITER_NATIVE' Fastest available order

idx_in specifies the starting point of the iteration. idx_out returns
the point at which iteration was stopped. This allows an interrupted
iteration to be resumed.

The callback function iter_func must have the following signature:

1-2686

H5L.iterate_by_name

function [status,opdata_out] =
iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the
first step of the iteration in the iter_func opdata_in parameter. The
opdata_out of an iteration step forms the opdata_in for the next
iteration step. The final opdata_out at the end of the iteration is then
returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows:

zero Continues with the iteration or returns zero
status value to the caller if all members have
been processed

positive Stops the iteration and returns the positive
status value to the caller

negative Stops the iteration and throws an error
indicating failure

1-2687

H5L.move

Purpose Rename link

Syntax H5L.move(src_loc_id,src_name,dest_loc_id,dest_name,lcpl_id,lapl_id)

Description H5L.move(src_loc_id,src_name,dest_loc_id,dest_name,lcpl_id,lapl_id)
renames a link within an HDF5 file. The original link, src_name, is
removed from the group graph and the new link, dest_name, is
inserted; this change is accomplished as an atomic operation.

src_loc_id and src_name identify the existing link. src_loc_id is
either a file or group identifier; src_name is the path to the link and is
interpreted relative to src_loc_id.

dest_loc_id and dest_name identify the new link. dest_loc_id is
either a file or group identifier; dest_name is the path to the link and is
interpreted relative to dest_loc_id.

lcpl_id and lapl_id are the link creation and link access property
lists, respectively, associated with the new link, dest_name.

Examples Rename the '/g2' group to '/g2/g3'.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.h5');
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
g2id = H5G.open(fid,'g2');
H5L.move(fid,'g3',g2id,'g3','H5P_DEFAULT','H5P_DEFAULT');
H5G.close(g2id);
H5F.close(fid);

See Also H5L.delete

1-2688

H5L.visit

Purpose Recursively iterate through links in group specified by group identifier

Syntax [status opdata_out] = H5L.visit(group_id,index_type,order,iter_func,
opdata_in)

Description [status opdata_out] =
H5L.visit(group_id,index_type,order,iter_func, opdata_in)
recursively iterates through all links in and below a group, specified
by group_id, to perform a common function whose function handle
is iter_func.

index_type and order establish the iteration. index_type specifies the
index to be used. If the links have not been indexed by the index type,
they are first sorted by that index, and then the iteration will begin. If
the links have been so indexed, the sorting step is unnecessary, so the
iteration can begin more quickly. Valid values include the following.

'H5_INDEX_NAME' Alpha-numeric index on name

'H5_INDEX_CRT_ORDER' Index on creation order

Note that the index type passed in index_type is a best effort setting.
If the application passes in a value indicating iteration in creation order
and a group is encountered that was not tracked in creation order, that
group will be iterated over in alpha-numeric order by name, or name
order. (Name order is the native order used by the HDF5 Library and
is always available.)

order specifies the order in which objects are to be inspected along the
index specified in index_type. Valid values include the following.

'H5_ITER_INC' Increasing order

'H5_ITER_DEC' Decreasing order

'H5_ITER_NATIVE' Fastest available order

The callback function iter_func must have the following signature:

1-2689

H5L.visit

function [status,opdata_out] =
iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the
first step of the iteration in the iter_func opdata_in parameter. The
opdata_out of an iteration step forms the opdata_in for the next
iteration step. The final opdata_out at the end of the iteration is then
returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero
status value to the caller if all members have
been processed

positive Stops the iteration and returns the positive
status value to the caller

negative Stops the iteration and throws an error
indicating failure

1-2690

H5L.visit_by_name

Purpose Recursively iterate through links in group specified by location and
group name

Syntax [status,opdata_out] = H5L.visit_by_name(loc_id,group_name,index_type,
order,iter_func,opdata_in,lapl_id)

Description [status,opdata_out] =
H5L.visit_by_name(loc_id,group_name,index_type,
order,iter_func,opdata_in,lapl_id) recursively iterates though
all links in and below a group to perform a common function whose
function handle is iter_func. The starting point of the iteration is
specified by the pairing of a location id and a relative group name. A
link access property list, lapl_id, may affect the outcome depending
upon the type of link being traversed.

index_type and order establish the iteration. index_type specifies the
index to be used. If the links have not been indexed by the index type,
they are first sorted by that index, and then the iteration will begin. If
the links have been so indexed, the sorting step is unnecessary, so the
iteration can begin more quickly. Valid values include the following.

'H5_INDEX_NAME' Alpha-numeric index on name

'H5_INDEX_CRT_ORDER' Index on creation order

Note that the index type passed in index_type is a best effort setting.
If the application passes in a value indicating iteration in creation order
and a group is encountered that was not tracked in creation order, that
group will be iterated over in alpha-numeric order by name, or name
order. (Name order is the native order used by the HDF5 Library and
is always available.)

order specifies the order in which objects are to be inspected along the
index specified in index_type. Valid values include the following.

1-2691

H5L.visit_by_name

'H5_ITER_INC' Increasing order

'H5_ITER_DEC' Decreasing order

'H5_ITER_NATIVE' Fastest available order

The callback function iter_func must have the following signature:

function [status,opdata_out] =
iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the
first step of the iteration in the iter_func opdata_in parameter. The
opdata_out of an iteration step forms the opdata_in for the next
iteration step. The final opdata_out at the end of the iteration is then
returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero
status value to the caller if all members have
been processed

positive Stops the iteration and returns the positive
status value to the caller

negative Stops the iteration and throws an error
indicating failure

1-2692

H5ML.compare_values

Purpose Numerically compare two HDF5 values

Syntax bEqual = H5ML.compare_values(value1,value2)

Description bEqual = H5ML.compare_values(value1,value2) compares two
values, where either or both values may be represented as a string. The
values are compared numerically.

Function parameters:

bEqual A logical value indicating whether the two
values are equal

value1 The first value to be compared

value2 The second value to be compared

Examples val = H5ML.get_constant_value('H5T_NATIVE_INT');
H5ML.compare_values(val,'H5T_NATIVE_INT')

1-2693

H5ML.get_constant_names

Purpose Constants known by HDF5 library

Syntax names = H5ML.get_constant_names()

Description names = H5ML.get_constant_names() returns a list of known
library constants, definitions, and enumerations. When these strings
are supplied as actual parameters to HDF5 functions, they are
automatically be converted to the appropriate numeric value.

Function parameters.

names An alphabetized cell array of
names

1-2694

H5ML.get_constant_value

Purpose Value corresponding to a string

Syntax value = H5ML.get_constant_value(constant)

Description value = H5ML.get_constant_value(constant) returns the value
corresponding to a given sting. The string should correspond to an
enumeration (for example, 'H5_ENUM_T') or a predefined identifier
(for example, 'H5T_NATIVE_INT'). Since the value corresponding to a
given string is not guaranteed to remain the same, it is almost always
preferable to use the H5ML.compare_values() function instead.

Function parameters:

value The value corresponding to the
supplied string

constant A string that corresponds to a
HDF5 enumeration or defined
value.

Examples a = H5ML.get_constant_value('H5T_NATIVE_INT');

1-2695

H5ML.get_function_names

Purpose Functions provided by HDF5 library

Syntax names = H5ML.get_function_names()

Description names = H5ML.get_function_names() returns a list of supported
library functions.

Function parameters:

names An alphabetized cell array of
names

1-2696

H5ML.get_mem_datatype

Purpose Data type for dataset ID

Syntax DTYPE_ID = H5ML.get_mem_datatype(LOCATION_ID)

Description DTYPE_ID = H5ML.get_mem_datatype(LOCATION_ID) returns the ID
of an HDF5 memory datatype for the dataset or attribute identified
by LOCATION_ID. This HDF5 memory datatype is the default used by
H5D.read or H5D.write when you specify 'H5ML_DEFAULT' as a value of
the memory data type parameter.

The identifier returned by H5ML.get_mem_datatype should eventually
be closed by calling H5T.close to release resources.

Examples file_id = H5F.open('example.h5','H5F_ACC_RDONLY','H5P_DEFAULT');
dset_id = H5D.open(file_id,'/g1/g1.1/dset1.1.1');
datatype_id = H5ML.get_mem_datatype(dset_id)
H5T.close(datatype_id);
H5D.close(dset_id);
H5F.close(file_id);

1-2697

H5ML.hoffset

Purpose Determine the offset of a field within a structure

Note H5ML.hoffset is not recommended. Use H5T instead.

Syntax

Description This function is used to determine the offset (in bytes) of a structure,
H5T.insert(file_type,'a', offset(1), dtype(1));, within a
field. It is used when constructing an HDF5 COMPOUND type. It is
designed to correspond to the HDF5 HOFFSET macro. For more details
about the operation of the HOFFSET macro, please consult the HDF5
documentation.

Function parameters:

offset The byte offset of the field within
the structure.

structure The structure which contains the
specified fieldname.

fieldname The field for which the offset is
determined.

Examples This function is deprecated. It can only be used in workflows that do
not include a field that is itself an HDF5 COMPOUND or of variable
length. To handle these cases, the offsets should be computed directly.
For example, in the case above, a file dataspace for such a compound
could be created with:

dtype(1) = H5T.copy('H5T_NATIVE_INT');
dtype(2) = H5T.copy('H5T_NATIVE_DOUBLE');
dtype(3) = H5T.copy('H5T_NATIVE_FLOAT');

for j = 1:3, sz(j,1) = H5T.get_size(dtype(j)); end

1-2698

H5ML.hoffset

% The first offset would always be zero and the size of the last
% field does not matter.
offset(1) = 0;
offset(2:3) = cumsum(sz(1:2));

file_type = H5T.create('H5T_COMPOUND',sum(sz));

H5T.insert(file_type,'a', offset(1), dtype(1));
H5T.insert(file_type,'b', offset(2), dtype(2));
H5T.insert(file_type,'c', offset(3), dtype(3));

See Also H5T.get_size

1-2699

H5ML.sizeof

Purpose Return the size (in bytes) of a variable as stored on disk

Note H5ML.sizeof is not recommended. Use H5T instead.

Syntax

Description This function is used to determine the size (in bytes) of a structure or
other (simple) variable. It is designed to correspond to the C sizeof()
operator as it is used during the creation of HDF5 datatypes, especially
the HDF5 COMPOUND type.

Function parameters:

size The size (in bytes) of the variable
as it would be stored on disk.

arg The variable for which the size is
being sought.

Examples This function is deprecated. It can only be used in workflows that do
not include a field that is itself an HDF5 COMPOUND or of variable
length. To handle these cases, the offsets should be computed directly.
For example, in the case above, a file dataspace for such a compound
could be created with:

dtype(1) = H5T.copy('H5T_NATIVE_INT');
dtype(2) = H5T.copy('H5T_NATIVE_DOUBLE');
dtype(3) = H5T.copy('H5T_NATIVE_FLOAT');

for j = 1:3, sz(j,1) = H5T.get_size(dtype(j)); end

% The first offset would always be zero and the size of the last
% field does not matter.
offset(1) = 0;
offset(2:3) = cumsum(sz(1:2));

1-2700

H5ML.sizeof

file_type = H5T.create('H5T_COMPOUND',sum(sz));

H5T.insert(file_type,'a', offset(1), dtype(1));
H5T.insert(file_type,'b', offset(2), dtype(2));
H5T.insert(file_type,'c', offset(3), dtype(3));

See Also H5T.get_size

1-2701

H5O.close

Purpose Close object

Syntax H5O.close(obj_id)

Description H5O.close(obj_id) closes the object specified by obj_id. obj_id
cannot be a dataspace, attribute, property list, or file.

1-2702

H5O.copy

Purpose Copy object from source location to destination location

Syntax H5O.copy(src_loc_id,src_name,dst_loc_id,dst_name,ocpypl_id,lcpl_id)

Description H5O.copy(src_loc_id,src_name,dst_loc_id,dst_name,ocpypl_id,lcpl_id)
copies the group, dataset or named datatype specified by src_name from
the file or group specified by src_loc_id to the destination
location dst_loc_id.

The destination location, as specified in dst_loc_id, may be a group in
the current file or a location in a different file. If dst_loc_id is a file
identifier, the copy will be placed in that file’s root group.

The new copy will be created with the name dst_name. dst_name must
not pre-exist in the destination location. If dst_name already exists at
the location dst_loc_id, the operation will fail.

The new copy of the object is created with the object creation property
and link creation property lists ocpypl_id and lcpl_id, respectively.

Examples Copy the group '/g3' and all its datasets to a new group '/g3.5'.

srcFile = [matlabroot '/toolbox/matlab/demos/example.h5'];
copyfile(srcFile,'myfile.h5');
fileattrib('myfile.h5','+w');
ocpl = H5P.create('H5P_OBJECT_COPY');
lcpl = H5P.create('H5P_LINK_CREATE');
H5P.set_create_intermediate_group(lcpl,true);
fid = H5F.open('myfile.h5','H5F_ACC_RDWR','H5P_DEFAULT');
gid = H5G.open(fid,'/');
H5O.copy(gid,'g3',gid,'g3.5',ocpl,lcpl);
H5G.close(gid);
H5P.close(ocpl);
H5P.close(lcpl);
H5F.close(fid);

1-2703

H5O.get_comment

Purpose Get comment for object specified by object identifier

Syntax comment = H5O.get_comment(obj_id)

Description comment = H5O.get_comment(obj_id) retrieves the comment for the
object specified by obj_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'g4/world');
comment = H5O.get_comment(dset_id);
H5D.close(dset_id);
H5F.close(fid);

See Also H5O.get_comment_by_name | H5O.set_comment |
H5O.set_comment_by_name

1-2704

H5O.get_comment_by_name

Purpose Get comment for object specified by location and object name

Syntax comment = H5O.get_comment_by_name(loc_id,name,lapl_id)

Description comment = H5O.get_comment_by_name(loc_id,name,lapl_id)
retrieves a comment where a location id and name together specify
the object. A link access property list can affect the outcome if a link
is traversed to access the object.

Examples fid = H5F.open('example.h5','H5F_ACC_RDONLY','H5P_DEFAULT');
comment = H5O.get_comment_by_name(fid,'g4/world','H5P_DEFAULT');
H5F.close(fid);

See Also H5O.get_comment | H5O.set_comment | H5O.set_comment_by_name

1-2705

H5O.get_info

Purpose Object metadata

Syntax info = H5O.get_info(obj_id)

Description info = H5O.get_info(obj_id) retrieves the metadata for an object
specified by obj_id. For details about the object metadata, please refer
to the HDF5 documentation.

Examples Determine the number of attributes for a dataset.

fid = H5F.open('example.h5','H5F_ACC_RDONLY','H5P_DEFAULT');
dsetId = H5D.open(fid,'/g1/g1.1/dset1.1.1');
info = H5O.get_info(dsetId);
info.num_attrs

Determine the type of objects in the root group.

plist = 'H5P_DEFAULT';
fid = H5F.open('example.h5');
gid = H5G.open(fid,'/');
root_info = H5G.get_info(gid);
idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_DEC';
for j = 0:root_info.nlinks-1

obj_id = H5O.open_by_idx(fid,'/',idx_type,order,j,plist);
obj_info = H5O.get_info(obj_id);
switch(obj_info.type)

case H5ML.get_constant_value('H5G_LINK')
fprintf('Object #%d is a link.\n',j);

case H5ML.get_constant_value('H5G_GROUP')
fprintf('Object #%d is a group.\n',j);

case H5ML.get_constant_value('H5G_DATASET')
fprintf('Object #%d is a dataset.\n',j);

case H5ML.get_constant_value('H5G_TYPE')
fprintf('Object #%d is a named datatype.\n',j);

1-2706

H5O.get_info

end
H5O.close(obj_id);

end
H5G.close(gid);
H5F.close(fid);

See Also H5F.open | H5G.open | H5D.open | H5T.open

1-2707

H5O.link

Purpose Create hard link to specified object

Syntax H5O.link(obj_id,new_loc_id,new_link_name,lcpl_id,lapl_id)

Description H5O.link(obj_id,new_loc_id,new_link_name,lcpl_id,lapl_id)
creates a hard link to an object, where new_loc_id and new_link_name
specify the location. lcpl_id and lapl_id are the link creation and
access property lists associated with the new link.

H5O.link is designed to add additional structure to an existing file so
that, for example, an object can be shared among multiple groups.

Examples Create a hard link from group '/g2' to the dataset '/g1/ds1'.

plist_id = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist_id,plist_id);
gid1 = H5G.create(fid,'/g1',plist_id);
space_id = H5S.create_simple(1,10,[]);
ds1 = H5D.create(gid1,'ds1','H5T_NATIVE_INT',space_id,plist_id);
gid2 = H5G.create(fid,'/g2',plist_id);
H5O.link(ds1,gid2,'ds2',plist_id,plist_id);
H5D.close(ds1);
H5S.close(space_id);
H5G.close(gid2); H5G.close(gid1);
H5F.close(fid);

See Also H5L.create_hard | H5L.create_soft

1-2708

H5O.open

Purpose Open specified object

Syntax obj_id = H5O.open(loc_id,relname,lapl_id)

Description obj_id = H5O.open(loc_id,relname,lapl_id) opens an object
specified by location identifier and relative path name. lapl_id is the
link access property list associated with the link pointing to the object.
If default link access properties are appropriate, this can be passed in
as 'H5P_DEFAULT'.

Examples fid = H5F.open('example.h5');
obj_id = H5O.open(fid,'g3','H5P_DEFAULT');
H5O.close(obj_id);
H5F.close(fid);

See Also H5O.open_by_idx | H5O.close

1-2709

H5O.open_by_idx

Purpose Open object specified by index

Syntax obj_id = H5O.open_by_idx(loc_id, group_name, idx_type, order, n,
lapl_id)

Description obj_id = H5O.open_by_idx(loc_id, group_name, idx_type,
order, n, lapl_id) opens the n-th object in the group specified by
loc_id and group_name. loc_id specifies a file or group. group_name
specifies the group relative to loc_id in which the object can be found.

Two parameters are used to establish the iteration: index_type and
order. index_type specifies the type of index by which objects are
ordered. Valid values include the following:

'H5_INDEX_NAME' Alpha-numeric index on name

'H5_INDEX_CRT_ORDER' Index on creation order

order specifies the order in which the links are to be referenced for the
purposes of this function. Valid values include the following:

'H5_ITER_INC' Increasing order

'H5_ITER_DEC' Decreasing order

'H5_ITER_NATIVE' Fastest available order

n specifies the zero-based position of the object within the index.
lapl_id specifies the link access property list to be used in accessing
the object.

Examples fid = H5F.open('example.h5');
idx_type = 'H5_INDEX_NAME';
order = 'H5_ITER_DEC';
obj_id = H5O.open_by_idx(fid,'g3',idx_type,order,0,'H5P_DEFAULT');
H5O.close(obj_id);
H5F.close(fid);

See Also H5O.open | H5O.close

1-2710

H5O.set_comment

Purpose Set comment for object specified by object identifier

Syntax H5O.set_comment(obj_id,comment)

Description H5O.set_comment(obj_id,comment) sets a comment for the object
specified by obj_id.

Examples plist = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist,plist);
gid = H5G.create(fid,'/g1',plist);
H5O.set_comment(gid,'This is a group comment.');
H5G.close(gid);
H5F.close(fid);

See Also H5O.get_comment | H5O.get_comment_by_name |
H5O.set_comment_by_name

1-2711

H5O.set_comment_by_name

Purpose Set comment for object specified by location and object name

Syntax H5O.set_comment_by_name(loc_id,rel_name,comment,lapl_id)

Description H5O.set_comment_by_name(loc_id,rel_name,comment,lapl_id)
sets a comment for an object specified by a location ID and a relative
name. lapl_id is a link access property list identifier that can affect
the outcome if links are traversed.

Examples plist = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist,plist);
gid = H5G.create(fid,'/g1',plist);
H5O.set_comment_by_name(fid,'g1','This is a group comment.',plist);
H5G.close(gid);
H5F.close(fid);

See Also H5O.get_comment | H5O.get_comment_by_name | H5O.set_comment

1-2712

H5O.visit

Purpose Visit objects specified by object identifier

Syntax [status,opdata_out] = H5O.visit(obj_id,index_type,order,iter_func,
opdata_in)

Description [status,opdata_out] =
H5O.visit(obj_id,index_type,order,iter_func, opdata_in) is
a recursive iteration function to visit the object object_id and, if
object_id is a group, all objects in and below it in an HDF5 file. This
provides a mechanism for an application to perform a common set of
operations across all of those objects or a dynamically selected subset.

If object_id is a group identifier, that group serves as the root of a
recursive iteration. If object_id is a file identifier, that file’s root
group serves as the root of the recursive iteration. If object_id is
any other type of object, such as a dataset or named data type, there
is no iteration.

Two parameters are used to establish the iteration: index_type and
order. The index_type parameter specifies the index used. If the links
in a group have not been indexed by the index type, they are first sorted
by that index, and then the iteration will begin. If the links have been
so indexed, the sorting step is unnecessary, so the iteration can begin
more quickly. Valid values include the following.

'H5_INDEX_NAME' Alpha-numeric index on name

'H5_INDEX_CRT_ORDER' Index on creation order

Note that the index type passed in index_type is a best effort setting.
If the application passes in a value indicating iteration in creation order
and a group is encountered that was not tracked in creation order, that
group will be iterated over in alpha-numeric order by name, or name
order. (Name order is the native order used by the HDF5 Library and
is always available.) order specifies the order in which objects are to
be inspected along the index specified in index_type. Valid values
include the following.

1-2713

H5O.visit

'H5_ITER_INC' Increasing order

'H5_ITER_DEC' Decreasing order

'H5_ITER_NATIVE' Fastest available order

The callback function iter_func must have the following signature:

function [status,opdata_out] =
iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the
first step of the iteration in the iter_func opdata_in parameter. The
opdata_out of an iteration step forms the opdata_in for the next
iteration step. The final opdata_out at the end of the iteration is then
returned to the caller as opdata_out.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero
status value to the caller if all members have
been processed

positive Stops the iteration and returns the positive
status value to the caller

negative Stops the iteration and throws an error
indicating failure

See Also H5O.visit_by_name

1-2714

H5O.visit_by_name

Purpose Visit objects specified by location and object name

Syntax [status,opdata_out] = H5O.visit_by_name(loc_id,obj_name,index_type,
order,iter_func,opdata_in,lapl_id)

Description [status,opdata_out] =
H5O.visit_by_name(loc_id,obj_name,index_type,
order,iter_func,opdata_in,lapl_id) specifies the object by the
pairing of the location identifier and object name. loc_id specifies a file
or an object in a file and obj_name specifies an object in the file with
either an absolute name or relative to loc_id. A link access property
list can affect the outcome if links are involved.

Two parameters are used to establish the iteration: index_type and
order. The index_type parameter specifies the index to be used. If the
links in a group have not been indexed by the index type, they are first
sorted by that index, and then the iteration will begin; if the links have
been so indexed, the sorting step is unnecessary, so the iteration can
begin more quickly. Valid values include the following.

'H5_INDEX_NAME' Alpha-numeric index on name

'H5_INDEX_CRT_ORDER' Index on creation order

Note that the index type passed in index_type is a best effort setting.
If the application passes in a value indicating iteration in creation order
and a group is encountered that was not tracked in creation order, that
group will be iterated over in alpha-numeric order by name, or name
order. (Name order is the native order used by the HDF5 Library and
is always available.) order specifies the order in which objects are to
be inspected along the index specified in index_type. Valid values
include the following.

'H5_ITER_INC' Increasing order

'H5_ITER_DEC' Decreasing order

'H5_ITER_NATIVE' Fastest available order

1-2715

H5O.visit_by_name

The callback function iter_func must have the following signature:

function [status,opdata_out] =
iter_func(group_id,name,opdata_in)

opdata_in is a user-defined value or structure and is passed to the
first step of the iteration in the iter_func opdata_in parameter. The
opdata_out of an iteration step forms the opdata_in for the next
iteration step. The final opdata_out at the end of the iteration is then
returned to the caller as opdata_out.

lapl_id is a link access property list. When default link access
properties are acceptable, 'H5P_DEFAULT' can be used.

status value returned by iter_func is interpreted as follows.

zero Continues with the iteration or returns zero
status value to the caller if all members have
been processed

positive Stops the iteration and returns the positive
status value to the caller

negative Stops the iteration and throws an error
indicating failure

See Also H5O.visit

1-2716

H5P.close

Purpose Close property list

Syntax H5P.close(plist_id)

Description H5P.close(plist_id) terminates access to the property list specified
by plist_id.

See Also H5P.create

1-2717

H5P.copy

Purpose Copy of property list

Syntax plist_copy = H5P.copy(plist_id)

Description plist_copy = H5P.copy(plist_id) returns a copy of the property
list specified by plist_id.

Examples Make a copy of the file creation property list for 'example.h5'.

fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
fcpl2 = H5P.copy(fcpl);

1-2718

H5P.create

Purpose Create new property list

Syntax plist = H5P.create(class_id)

Description plist = H5P.create(class_id) creates a new property list as an
instance of the property list class specified by class_id. The class_id
input can be one of the following strings or the corresponding constant
value.

'H5P_ATTRIBUTE_CREATE'

'H5P_DATASET_ACCESS'

'H5P_DATASET_CREATE'

'H5P_DATASET_XFER'

'H5P_DATATYPE_CREATE'

'H5P_DATATYPE_ACCESS'

'H5P_FILE_MOUNT'

'H5P_FILE_CREATE'

'H5P_FILE_ACCESS'

'H5P_GROUP_CREATE'

'H5P_GROUP_ACCESS'

'H5P_LINK_CREATE'

'H5P_LINK_ACCESS'

'H5P_OBJECT_COPY'

'H5P_OBJECT_CREATE'

'H5P_STRING_CREATE'

class_id can also be an instance of a property list class.

Examples fapl = H5P.create('H5P_FILE_ACCESS');
fid = H5F.open('example.h5','H5F_ACC_RDONLY',fapl);

1-2719

H5P.create

See Also H5P.close | H5P.get_class | H5ML.get_constant_value

1-2720

H5P.get_class

Purpose Property list class

Syntax plist_class = H5P.get_class(plist_id)

Description plist_class = H5P.get_class(plist_id) returns the property list
class for the property list specified by plist_id.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
pclass = H5P.get_class(fcpl);
name = H5P.get_class_name(pclass);

See Also H5P.get_class_name

1-2721

H5P.close_class

Purpose Close property list class

Syntax H5P.close_class(class)

Description H5P.close_class(class) closes the property list class specified by
pclass_id.

1-2722

H5P.equal

Purpose Determine equality of property lists

Syntax value = H5P.equal(plist1_id, plist2_id)

Description value = H5P.equal(plist1_id, plist2_id) returns a positive
number if the two property lists specified are equal, and zero if they are
not. A negative value indicates failure.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
fcpl = H5F.get_create_plist(fid);
if H5P.equal(fapl,fcpl)

fprintf('property lists are equal\n');
else

fprintf('property lists are not equal\n');
end

1-2723

H5P.exist

Purpose Determine if specified property exists in property list

Syntax value = H5P.exist(prop_id, name)

Description value = H5P.exist(prop_id, name) returns a positive value if the
property specified by the text string name exists within the property
list or class specified by prop_id.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
if H5P.exist(fapl,'sieve_buf_size')

fprintf('sieve buffer size property exists\n');
else

fprintf('sieve buffer size property does not exist\n');
end

1-2724

H5P.get

Purpose Value of specified property in property list

Syntax value = H5P.get(plist_id, name)

Description value = H5P.get(plist_id, name) retrieves a copy of the value of the
property specified by the text string name in the property list specified
by plist_id. The H5P.get function returns the property as an array of
uint8 values. You might need to cast the value to an appropriate data
type to get a meaningful result.

Examples plist = H5P.create('H5P_FILE_ACCESS');
val = H5P.get(plist, 'rdcc_w0');
rdcc_w0 = typecast(val,'double');

It is recommended to use alternative functions like H5P.get_chunk,
H5P.get_layout, H5P.get_size etc., where available, to get values
for the common property names.

See Also H5P.set | typecast

1-2725

H5P.get_class_name

Purpose Name of property list class

Syntax classname = H5P.get_class_name(pclass_id)

Description classname = H5P.get_class_name(pclass_id) retrieves the name of
the generic property list class. classname is a text string. If no class is
found, the empty string is returned.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
pclass = H5P.get_class(fcpl);
name = H5P.get_class_name(pclass);

See Also H5P.get_class

1-2726

H5P.get_class_parent

Purpose Identifier for parent class

Syntax pclass_obj_id = H5P.get_class_parent(pclass_id)

Description pclass_obj_id = H5P.get_class_parent(pclass_id) returns an
identifier to the parent class object of the property class specified by
pclass_id.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
fcpl_class = H5P.get_class(fcpl);
parent_class = H5P.get_class_parent(fcpl_class);
name = H5P.get_class_name(parent_class);

See Also H5P.get_class | H5P.get_class_name

1-2727

H5P.get_nprops

Purpose Query number of properties in property list or class

Syntax nprops = H5P.get_nprops(id)

Description nprops = H5P.get_nprops(id) returns the number of properties in
the property list or class specified by id.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
nprops = H5P.get_nprops(fcpl);

1-2728

H5P.get_size

Purpose Query size of property value in bytes

Syntax sz = H5P.get_size(id,name)

Description sz = H5P.get_size(id,name) returns the size, in bytes, of the
property specified by the text string name in the property list or property
class specified by id.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
sz = H5P.get_size(fapl,'sieve_buf_size');

1-2729

H5P.isa_class

Purpose Determine if property list is member of class

Syntax output = H5P.isa_class(plist_id, pclass_id)

Description output = H5P.isa_class(plist_id, pclass_id) returns a positive
number if the property list specified by plist_id is a member of the
class specified by pclass_id, zero if it is not, and a negative value to
indicate an error.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
if H5P.isa_class(fcpl,'H5P_FILE_ACCESS')

fprintf('fcpl is a file access property list\n');
else

fprintf('fcpl is not a file access property list\n');
end

See Also H5P.get_class

1-2730

H5P.iterate

Purpose Iterate over properties in property list

Syntax [output,idx_out] = H5P.iterate(id,idx_in,iter_func)

Description [output,idx_out] = H5P.iterate(id,idx_in,iter_func) executes
the operation iter_func on each property in the property object
specified in id. The id input can be a property list or a property class.
idx_in specifies the index of the next property to be processed. output
is the value returned by the last call to iter_func. idx_out is the index
of the last property processed. iter_func is a function handle.

The iterator function must have the following signature:

status = iter_func(id,prop_name)

id still identifies the property object passed into H5P.iterate, but name
identifies the name of the current property.

1-2731

H5P.set

Purpose Set property list value

Syntax H5P.set(plist_id,name,value)

Description H5P.set(plist_id,name,value) sets the value of the property
specified by the text string name in the property list specified by
plist_id to the value specified in value. The datatype of value must
be uint8.

Examples plist = H5P.create('H5P_FILE_ACCESS');
H5P.set(plist, 'rdcc_w0', typecast(0.8, 'uint8'));

It is recommended to use alternative functions like H5P.set_chunk,
H5P.set_layout, H5P.set_size, etc., where available, to set values
for the common property names.

See Also typecast

1-2732

H5P.get_btree_ratios

Purpose B-tree split ratios

Syntax [left,middle,right] = H5P.get_btree_ratios(plist_id)

Description [left,middle,right] = H5P.get_btree_ratios(plist_id) returns
the B-tree split ratios for the dataset transfer property list specified by
plist_id. The left output specifies the B-tree split ratio for left-most
nodes. right corresponds to the right-most nodes and lone nodes, and
middle corresponds to all other nodes.

Examples dxpl = H5P.create('H5P_DATASET_XFER');
[left,middle,right] = H5P.get_btree_ratios(dxpl);

See Also H5P.set_btree_ratios

1-2733

H5P.get_chunk_cache

Purpose Raw data chunk cache parameters

Syntax [rdcc_nslots,rdcc_nbytes,rdcc_w0] = H5P.get_chunk_cache(dapl_id)

Description [rdcc_nslots,rdcc_nbytes,rdcc_w0] =
H5P.get_chunk_cache(dapl_id) retrieves the number of chunk slots
in the raw data chunk cache hash table (rdcc_nslots), the maximum
possible number of bytes in the raw data chunk cache (rdcc_nbytes),
and the preemption policy value (rdcc_w0) on a dataset access property
list.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/vlen3D');
dapl = H5D.get_access_plist(dset_id);
[rrdcc_nslots,rdcc_nbytes,rdcc_w0] = H5P.get_chunk_cache(dapl);
H5P.close(dapl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.set_chunk_cache

1-2734

H5P.get_dxpl_multi

Purpose Data access property lists for multiple files

Syntax memb_dxpl = H5P.get_dxpl_multi(dxpl_id)

Description memb_dxpl = H5P.get_dxpl_multi(dxpl_id) returns an array of
data access property lists for the multifile data transfer property list
specified by dxpl_id.

See Also H5P.set_dxpl_multi

1-2735

H5P.get_edc_check

Purpose Determine if error detection is enabled

Syntax check = H5P.get_edc_check(plist_id)

Description check = H5P.get_edc_check(plist_id) queries the dataset
transfer property list, specified by plist_id, to determine whether
error detection is enabled for data read operations. Returns either
H5Z_ENABLE_EDC or H5Z_DISABLE_EDC.

Examples dxpl = H5P.create('H5P_DATASET_XFER');
check = H5P.get_edc_check(dxpl);
switch(check)

case H5ML.get_constant_value('H5Z_ENABLE_EDC')
fprintf('error detection enabled\n');

case H5ML.get_constant_value('H5Z_DISABLE_EDC');
fprintf('error detection disabled\n');

end

See Also H5P.set_edc_check

1-2736

H5P.get_hyper_vector_size

Purpose Number of I/O vectors

Syntax sz = H5P.get_hyper_vector_size(dxpl_id)

Description sz = H5P.get_hyper_vector_size(dxpl_id) returns the number of
I/O vectors to be read/written in hyperslab I/O.

Examples dxpl = H5P.create('H5P_DATASET_XFER');
sz = H5P.get_hyper_vector_size(dxpl);

See Also H5P.set_hyper_vector_size

1-2737

H5P.set_btree_ratios

Purpose Set B-tree split ratios for dataset transfer

Syntax H5P.set_btree_ratios(plist_id,left,middle,right)

Description H5P.set_btree_ratios(plist_id,left,middle,right) sets the
B-tree split ratios for the dataset transfer property list specified by
plist_id. The left argument specifies the B-tree split ratio for
left-most nodes. right specifies the B-tree split ratio for right-most
nodes and lone nodes. middle specifies the B-tree split ratio for all
other nodes.

Examples dxpl = H5P.create('H5P_DATASET_XFER');
H5P.set_btree_ratios(dxpl, 0.2, 0.6, 0.95);

See Also H5P.get_btree_ratios

1-2738

H5P.set_chunk_cache

Purpose Set raw data chunk cache parameters

Syntax H5P.set_chunk_cache(dapl_id, rdcc_nslots, rdcc_nbytes, rdcc_w0)

Description H5P.set_chunk_cache(dapl_id, rdcc_nslots, rdcc_nbytes,
rdcc_w0) sets the number of elements (rdcc_nslots), the total number
of bytes (rdcc_nbytes), and the preemption policy value (rdcc_w0) in
the raw data chunk cache.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/vlen3D');
dapl = H5D.get_access_plist(dset_id);
H5P.set_chunk_cache(dapl,500,1e6,0.7);
H5P.close(dapl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.get_chunk_cache

1-2739

H5P.set_dxpl_multi

Purpose Set data transfer property list for multifile driver

Syntax H5P.set_dxpl_multi(dxpl_id, memb_dxpl)

Description H5P.set_dxpl_multi(dxpl_id, memb_dxpl) sets the data transfer
property list dxpl_id to use the multifile driver. memb_dxpl is an array
of data access property lists.

See Also H5P.get_dxpl_multi

1-2740

H5P.set_edc_check

Purpose Enable error detection for dataset transfer

Syntax H5P.set_edc_check(plist_id,check)

Description H5P.set_edc_check(plist_id,check) sets the dataset transfer
property list specified by plist_id to enable or disable error detection
when reading data. check can have the value H5Z_ENABLE_EDC or
H5Z_DISABLE_EDC.

Examples Disable error detection for a default dataset transfer property list.

dxpl = H5P.create('H5P_DATASET_XFER');
H5P.set_edc_check(dxpl,'H5Z_DISABLE_EDC');

See Also H5P.get_edc_check

1-2741

H5P.set_hyper_vector_size

Purpose Set number of I/O vectors for hyperslab I/O

Syntax H5P.set_hyper_vector_size(dxpl_id,size)

Description H5P.set_hyper_vector_size(dxpl_id,size) sets the number of
I/O vectors to be accumulated in memory before being issued to the
lower levels of the HDF5 library for reading or writing the actual data.
dxpl_id is a dataset transfer property list identifier. size specifies the
number of I/O vectors to accumulate in memory for I/O operations.

Examples dxpl = H5P.create('H5P_DATASET_XFER');
H5P.set_hyper_vector_size(dxpl,2048);

See Also H5P.get_hyper_vector_size

1-2742

H5P.all_filters_avail

Purpose Determine availability of all filters

Syntax value = H5P.all_filters_avail(dcpl_id)

Description value = H5P.all_filters_avail(dcpl_id) returns a positive value
if all of the filters set in the dataset creation property list dcpl_id are
currently available, and zero if they are not. A negative value indicates
failure.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
dcpl = H5D.get_create_plist(dset_id);
if H5P.all_filters_avail(dcpl)

fprintf('all filters available\n');
else

fprintf('all filters not available\n');
end
H5P.close(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.set_filter

1-2743

H5P.fill_value_defined

Purpose Determine if fill value is defined

Syntax fvstatus = H5P.fill_value_defined(plist_id)

Description fvstatus = H5P.fill_value_defined(plist_id) determines
whether a fill value is defined in the dataset creation property list
plist_id. The fvstatus output can have any of the following
values: H5D_FILL_VALUE_UNDEFINED, H5D_FILL_VALUE_DEFAULT, or
H5D_FILL_VALUE_USER_DEFINED.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
dcpl = H5D.get_create_plist(dset_id);
fvstatus = H5P.fill_value_defined(dcpl);
switch(fvstatus)

case H5ML.get_constant_value('H5D_FILL_VALUE_UNDEFINED')
fprintf('fill value undefined\n');

case H5ML.get_constant_value('H5D_FILL_VALUE_DEFAULT')
fprintf('fill value set to default\n');

case H5ML.get_constant_value('H5D_FILL_VALUE_USER_DEFINED')
fprintf('fill value is user defined\n');

end

See Also H5P.get_fill_value | H5P.set_fill_value

1-2744

H5P.get_alloc_time

Purpose Return timing of storage space allocation

Syntax alloc_time = H5P.get_alloc_time(plist_id)

Description alloc_time = H5P.get_alloc_time(plist_id) retrieves the timing
for storage space allocation from the dataset creation property list
specified by plist_id. The alloc_time output can have any of the
following values: H5D_ALLOC_TIME_DEFAULT, H5D_ALLOC_TIME_EARLY,
H5D_ALLOC_TIME_INCR, or H5D_ALLOC_TIME_LATE.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
alloc_time = H5P.get_alloc_time(dcpl);
switch(alloc_time)

case H5ML.get_constant_value('H5D_ALLOC_TIME_DEFAULT')
fprintf('allocation time is default\n');

case H5ML.get_constant_value('H5D_ALLOC_TIME_EARLY')
fprintf('allocation time is dataset creation time\n');

case H5ML.get_constant_value('H5D_ALLOC_TIME_INCR')
fprintf('allocation time is incremental\n');

case H5ML.get_constant_value('H5D_ALLOC_TIME_LATE')
fprintf('allocation time is when data is first written\n');

end

1-2745

H5P.get_chunk

Purpose Return size of chunks

Syntax [rank,h5_chunk_dims] = H5P.get_chunk(plist_id)

Description [rank,h5_chunk_dims] = H5P.get_chunk(plist_id) retrieves the
size of chunks for the raw data of a chunked layout dataset for the
dataset creation property list specified by plist_id.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The
h5_chunk_dims parameter assumes C-style ordering. Please consult
"Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g4/time');
dcpl = H5D.get_create_plist(dset_id);
[rank,chunk_dims] = H5P.get_chunk(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.set_chunk

1-2746

H5P.get_external

Purpose Return information about external file

Syntax [name,offset,size] = H5P.get_external(plist_id,idx)

Description [name,offset,size] = H5P.get_external(plist_id,idx) returns
information about the external file specified by the dataset creation
property list plist_id. The idx specifies the external file index,
which is a number from zero to N-1, where N is the value returned by
H5P.get_external_count. The name output returns the name of the
external file (limited by 2048 characters). The offset output returns
the location in bytes, from the beginning of the external file, where the
data starts. The size output returns the size of the external data.

See Also H5P.get_external_count

1-2747

H5P.get_external_count

Purpose Return count of external files

Syntax num_files = H5P.get_external_count(plist_id)

Description num_files = H5P.get_external_count(plist_id) returns the
number of external files for the dataset creation property list, plist_id.

See Also H5P.get_external

1-2748

H5P.get_fill_time

Purpose Return time when fill values are written to dataset

Syntax fill_time = H5P.get_fill_time(plist_id)

Description fill_time = H5P.get_fill_time(plist_id) returns the time
when fill values are written to the dataset specified by the dataset
creation property list plist_id. The fill_time output is one of the
following values: H5D_FILL_TIME_IFSET, H5D_FILL_TIME_ALLOC, or
H5D_FILL_TIME_NEVER.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
fill_time = H5P.get_fill_time(dcpl);
switch(fill_time)

case H5ML.get_constant_value('H5D_FILL_TIME_IFSET')
fprintf('upon allocation if and only if fill value set by user

case H5ML.get_constant_value('H5D_FILL_TIME_ALLOC')
fprintf('written when storage space is allocated\n');

case H5ML.get_constant_value('H5D_FILL_TIME_NEVER')
fprintf('fill values are never written\n');

end

See Also H5P.get_fill_time | H5P.set_fill_value

1-2749

H5P.get_fill_value

Purpose Return dataset fill value

Syntax value = H5P.get_fill_value(plist_id,type_id)

Description value = H5P.get_fill_value(plist_id,type_id) returns the
dataset fill value defined in the dataset creation property list plist_id.
The type_id input specifies the datatype of the returned fill value.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
type_id = H5T.copy('H5T_NATIVE_INT');
fill_value = H5P.get_fill_value(dcpl,type_id);

See Also H5P.set_fill_value | H5P.get_fill_time | H5P.set_fill_time

1-2750

H5P.get_filter

Purpose Return information about filter in pipeline

Syntax [filter,flags,cd_values,name] = H5P.get_filter(plist_id,index)
[filter,flags,cd_values,name,filter_config] = H5P.get_filter(plist_id,

index)

Description [filter,flags,cd_values,name] =
H5P.get_filter(plist_id,index) returns information about the
filter, specified by its filter index, in the filter pipeline, specified by the
property list with which it is associated. This interface corresponds to
the 1.6 version of H5Pget_filter in the HDF5 library.

[filter,flags,cd_values,name,filter_config] =
H5P.get_filter(plist_id, index) returns information about the
filter, specified by its filter index, in the filter pipeline, specified
by the property list with which it is associated. It also returns
information about the filter. Consult the HDF5 documentation for
H5Zget_filter_info for information about filter_config. This
interface corresponds to the 1.8 version of H5Pget_filter in the HDF5
library.

See Also H5P.get_nfilters | H5P.get_filter_by_id | H5P.modify_filter |
H5P.remove_filter

1-2751

H5P.get_filter_by_id

Purpose Return information about specified filter

Syntax [flags,cd_values,name,filter_config] = H5P.get_filter_by_id(plist_id,
idx)

Description [flags,cd_values,name,filter_config] =
H5P.get_filter_by_id(plist_id, idx) returns information about
the filter specified by the filter id, idx.

See Also H5P.get_filter | H5P.get_nfilters | H5P.modify_filter |
H5P.remove_filter

1-2752

H5P.get_layout

Purpose Determine layout of raw data for dataset

Syntax layout = H5P.get_layout(dcpl)

Description layout = H5P.get_layout(dcpl) returns the layout of the raw data
for the dataset specified by the dataset creation property list, dcpl.
Possible values are: H5D_COMPACT, H5D_CONTIGUOUS, or H5D_CHUNKED.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
layout = H5P.get_layout(dcpl);
switch(layout)

case H5ML.get_constant_value('H5D_COMPACT')
fprintf('layout is compact\n');

case H5ML.get_constant_value('H5D_CONTIGUOUS')
fprintf('layout is contiguous\n');

case H5ML.get_constant_value('H5D_CHUNKED')
fprintf('layout is chunked\n');

end

See Also H5P.set_layout

1-2753

H5P.get_nfilters

Purpose Return number of filters in pipeline

Syntax num_filters = H5P.get_nfilters(plist_id)

Description num_filters = H5P.get_nfilters(plist_id) returns the number of
filters defined in the filter pipeline associated with the dataset creation
property list, plist_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g4/world');
dcpl = H5D.get_create_plist(dset_id);
num_filters = H5P.get_nfilters(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.get_filter | H5P.get_filter_by_id | H5P.modify_filter |
H5P.remove_filter

1-2754

H5P.modify_filter

Purpose Modify filter in pipeline

Syntax H5P.modify_filter(plist_id,filter_id,flags,cd_values)

Description H5P.modify_filter(plist_id,filter_id,flags,cd_values)
modifies the specified filter in the filter pipeline. plist_id is a property
list identifier. flags is a bit vector specifying certain general properties
of the filter. cd_values specifies auxiliary data for the filter.

See Also H5P.get_filter | H5P.get_nfilters | H5P.get_filter_by_id |
H5P.remove_filter

1-2755

H5P.remove_filter

Purpose Remove filter from property list

Syntax H5P.remove_filter(plist_id,filter)

Description H5P.remove_filter(plist_id,filter) removes the specified filter
from the filter pipeline. plist_id is the dataset creation property list
identifier.

See Also H5P.get_filter | H5P.get_nfilters | H5P.get_filter_by_id |
H5P.modify_filter

1-2756

H5P.set_alloc_time

Purpose Set timing for storage space allocation

Syntax H5P.set_alloc_time(plist_id,alloc_time)

Description H5P.set_alloc_time(plist_id,alloc_time) sets the timing for
the allocation of storage space for a dataset’s raw data. plist_id
is a dataset creation property list. alloc_time can have any of the
following values: H5D_ALLOC_TIME_DEFAULT, H5D_ALLOC_TIME_EARLY,
H5D_ALLOC_TIME_INC, or H5D_ALLOC_TIME_LATE.

Examples Create a 1000x500 double precision dataset with late allocation time.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [1000 500];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
alloc_time = H5ML.get_constant_value('H5D_ALLOC_TIME_LATE');
H5P.set_alloc_time(dcpl,alloc_time);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.get_alloc_time

1-2757

H5P.set_chunk

Purpose Set chunk size

Syntax H5P.set_chunk(plist_id,h5_chunk_dims)

Description H5P.set_chunk(plist_id,h5_chunk_dims) sets the size of the chunks
used to store a chunked layout dataset. plist_id is a dataset creation
property list identifier. h5_chunk_dims is an array specifying the size,
in dataset elements, of each chunk.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The
h5_chunk_dims parameter assumes C-style ordering. Please consult
"Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples Create a two dimensional double precision dataset that has an initial
size of [512 1024], but is also unlimited in both dimensions and has a
chunk size of [512 1024].

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
unlimited = H5ML.get_constant_value('H5S_UNLIMITED');
dims = [512 1024];
h5_dims = fliplr(dims);
h5_maxdims = [unlimited unlimited];
space_id = H5S.create_simple(2,[1024 512],h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
chunk_dims = [512 1024];
h5_chunk_dims = fliplr(chunk_dims);
H5P.set_chunk(dcpl,h5_chunk_dims);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

1-2758

H5P.set_chunk

See Also H5P.get_chunk

1-2759

H5P.set_deflate

Purpose Set compression method and compression level

Syntax H5P.set_deflate(plist_id,level)

Description H5P.set_deflate(plist_id,level) sets the compression method
for the dataset creation property list specified by plist_id to
H5D_COMPRESS_DEFLATE. level specifies the compression level as a
value from 0 and 9, inclusive. Lower values results in less compression.

Examples Create a two dimensional double precision dataset that has an initial
size of [512 1024], but is also unlimited in both dimensions and has a
chunk size of [512 1024] and a compression level of 5.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
unlimited = H5ML.get_constant_value('H5S_UNLIMITED');
dims = [512 1024];
h5_dims = fliplr(dims);
h5_maxdims = [unlimited unlimited];
space_id = H5S.create_simple(2,[1024 512],h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
chunk_dims = [512 1024];
h5_chunk_dims = fliplr(chunk_dims);
H5P.set_chunk(dcpl,h5_chunk_dims);
H5P.set_deflate(dcpl,5);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

1-2760

H5P.set_external

Purpose Add additional file to external file list

Syntax H5P.set_external(plist_id,name,offset,nbytes)

Description H5P.set_external(plist_id,name,offset,nbytes) adds the external
file specified by name to the list of external files in the dataset creation
property list, plist_id. The offset argument specifies the location,
in bytes, where the data starts relative to the beginning of the file.
nbytes is the number of bytes reserved in the file for the data. nbytes
may also be given as 'H5F_UNLIMITED', in which case the external file
may be of unlimited size.

Examples Create a dataset with an unlimited size external file.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 50];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
H5P.set_external(dcpl,'myexternalfile.dat',0,'H5F_UNLIMITED');
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
data = rand(dims);
dxpl = 'H5P_DEFAULT';
H5D.write(dset_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',dxpl,data);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.get_external | H5ML.get_constant_value

1-2761

H5P.set_fill_time

Purpose Set time when fill values are written to dataset

Syntax H5P.set_fill_time(plist_id,fill_time)

Description H5P.set_fill_time(plist_id,fill_time) sets the timing for
writing fill values to a dataset in the dataset creation property
list plist_id. The timing can be specified by one of the following
values: H5D_FILL_TIME_IFSET, H5D_FILL_TIME_ALLOC, or
H5D_FILL_TIME_NEVER.

Examples fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 50];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
fill_time = H5ML.get_constant_value('H5D_FILL_TIME_ALLOC');
H5P.set_fill_time(dcpl,fill_time);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.get_fill_time | H5P.get_fill_value | H5P.set_fill_value

1-2762

H5P.set_fill_value

Purpose Set fill value for dataset creation property list

Syntax H5P.set_fill_value(plist_id,type_id,value)

Description H5P.set_fill_value(plist_id,type_id,value) sets the fill value for
a the dataset creation property list specified by plist_id. The value
argument specifies the fill value. type_id specifies the datatype of
the fill value. Setting value to an empty array indicates that the fill
value is to be undefined.

Examples Create a double precision dataset with a fill value of -999.

fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 50];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = H5P.create('H5P_DATASET_CREATE');
fill_time = H5ML.get_constant_value('H5D_FILL_TIME_ALLOC');
H5P.set_fill_time(dcpl,fill_time);
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
H5P.set_fill_value(dcpl,type_id,-999);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

1-2763

H5P.set_filter

Purpose Add filter to filter pipeline

Syntax H5P.set_filter(plist_id,filter,flags,cd_values)

Description H5P.set_filter(plist_id,filter,flags,cd_values) adds the
specified filter and corresponding properties to the end of an output
filter pipeline. plist_id is a property list identifier. filter is a filter
identifier and should correspond to one of the following values:

H5P_FILTER_DEFLATE

H5P_FILTER_SHUFFLE

H5P_FILTER_FLETCHER32

flags is a bit vector specifying properties of the filter. cd_values is an
array that contains auxiliary data for the filter.

See Also H5P.set_deflate | H5P.set_fletcher32 | H5P.set_shuffle

1-2764

H5P.set_fletcher32

Purpose Set Fletcher32 checksum filter in dataset creation

Syntax H5P.set_fletcher32(plist_id)

Description H5P.set_fletcher32(plist_id) sets the Fletcher32 checksum filter in
the dataset creation property list specified by plist_id. The dataset
creation property list must also have chunking enabled.

Examples fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,dims,[]);
dcpl = H5P.create('H5P_DATASET_CREATE');
chunk_dims = [10 20];
h5_chunk_dims = fliplr(chunk_dims);
H5P.set_chunk(dcpl,h5_chunk_dims);
H5P.set_fletcher32(dcpl);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.set_deflate | H5P.set_shuffle

1-2765

H5P.set_layout

Purpose Set type of storage for dataset

Syntax H5P.set_layout(dcpl,layout)

Description H5P.set_layout(dcpl,layout) sets the type of storage used to
store the raw data for the dataset creation property list, dcpl. The
layout argument specifies the type of storage layout for raw data:
H5D_COMPACT, H5D_CONTIGUOUS, or H5D_CHUNKED.

Examples fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,dims,[]);
dcpl = H5P.create('H5P_DATASET_CREATE');
layout = H5ML.get_constant_value('H5D_CONTIGUOUS');
H5P.set_layout(dcpl,layout);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.get_layout | H5P.set_chunk

1-2766

H5P.set_nbit

Purpose Set N-Bit filter

Syntax H5P.set_nbit(plist_id)

Description H5P.set_nbit(plist_id) sets the N-Bit filter, H5Z_FILTER_NBIT, in
the dataset creation property list plist_id.

1-2767

H5P.set_scaleoffset

Purpose Set Scale-Offset filter

Syntax H5P.set_scaleoffset(plistId,scaleType,scaleFactor)

Description H5P.set_scaleoffset(plistId,scaleType,scaleFactor) sets the
Scale-Offset filter, H5Z_FILTER_SCALEOFFSET, for a dataset. For integer
data types, the parameter scaleType should be set to the enumerated
value H5Z_SO_INT. For floating-point data types, the scaleType should
be the enumerated value H5Z_SO_FLOAT_DSCALE. Chunking must
already be enabled on the dataset creation property list.

See Also H5P.set_chunk

1-2768

H5P.set_shuffle

Purpose Set shuffle filter

Syntax H5P.set_shuffle(plist_id)

Description H5P.set_shuffle(plist_id) sets the shuffle filter,
H5Z_FILTER_SHUFFLE, in the dataset creation property list
plist_id. Compression must be enabled on the dataset creation
property list in order to use the shuffle filter, and best results are
usually obtained when the shuffle filter is set immediately prior to
setting the deflate filter.

Examples fid = H5F.create('myfile.h5');
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,dims,[]);
dcpl = H5P.create('H5P_DATASET_CREATE');
chunk_dims = [10 20];
h5_chunk_dims = fliplr(chunk_dims);
H5P.set_chunk(dcpl,h5_chunk_dims);
H5P.set_shuffle(dcpl);
H5P.set_deflate(dcpl,5);
dset_id = H5D.create(fid,'DS',type_id,space_id,dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.set_deflate

1-2769

H5P.get_alignment

Purpose Retrieve alignment properties

Syntax [threshold,alignment] = H5P.get_alignment(plist_id)

Description [threshold,alignment] = H5P.get_alignment(plist_id) retrieves
the current settings for alignment properties from the file access
property list specified by plist_id.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
[threshold,alignment] = H5P.get_alignment(fapl);
H5P.close(fapl);
H5F.close(fid);

1-2770

H5P.get_driver

Purpose Low-level file driver

Syntax driver_id = H5P.get_driver(plist_id)

Description driver_id = H5P.get_driver(plist_id) returns the identifier of the
low-level file driver associated with the file access property list or data
transfer property list specified by plist_id. See HDF5 documentation
for a list of valid return values.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
driver_id = H5P.get_driver(fapl);
if (driver_id == H5ML.get_constant_value('H5FD_SEC2'))

fprintf('File driver is H5FD_SEC2.\n');
end
H5P.close(fapl);
H5F.close(fid);

See Also H5ML.get_constant_value

1-2771

H5P.get_family_offset

Purpose Offset for family file driver

Syntax offset = H5P.get_family_offset(fapl_id)

Description offset = H5P.get_family_offset(fapl_id) retrieves the value of
offset from the file access property list, fapl_id. offset is the offset of
the data in the HDF5 file that is stored on disk in the selected member
file in a family of files.

See Also H5P.set_family_offset

1-2772

H5P.get_fapl_core

Purpose Information about core file driver properties

Syntax [increment,backing_store] = H5P.get_fapl_core(fapl_id)

Description [increment,backing_store] = H5P.get_fapl_core(fapl_id)
queries the H5FD_CORE driver properties as set by H5P.set_fapl_core.
The fapl_id argument specifies a file access property list. The return
value increment specifies the size, in bytes, of memory increments.
backing_store is a Boolean flag indicating whether to write the file
contents to disk when the file is closed.

See Also H5P.set_fapl_core

1-2773

H5P.get_fapl_family

Purpose File access property list information

Syntax [memb_size,memb_fapl_id] = H5P.get_fapl_family(fapl_id)

Description [memb_size,memb_fapl_id] = H5P.get_fapl_family(fapl_id)
returns the size in bytes of each file member and the identifier of the file
access property list for use with the family driver specified by fapl_id.

See Also H5P.set_fapl_family

1-2774

H5P.get_fapl_multi

Purpose Information about multifile access property list

Syntax [memb_map,memb_fapl,memb_name,memb_addr,
relax] = H5P.get_fapl_multi(fapl_id)

Description [memb_map,memb_fapl,memb_name,memb_addr, relax] =
H5P.get_fapl_multi(fapl_id) returns information about the multifile
access property list specified by fapl_id. The memb_map output maps
memory usage types to other memory usage types. memb_fapl is a
property list for each memory usage type. memb_name is the name
generator for names of member files. relax is a Boolean value that,
when non-zero, allows read-only access to incomplete file sets.

See Also H5P.set_fapl_multi

1-2775

H5P.get_fclose_degree

Purpose File close degree

Syntax degree = H5P.get_fclose_degree(fapl_id)

Description degree = H5P.get_fclose_degree(fapl_id) returns the current
setting of the file close degree property fc_degree in the file
access property list specified by fapl_id. Possible return values
are: H5F_CLOSE_DEFAULT, H5F_CLOSE_WEAK, H5F_CLOSE_SEMI, or
H5F_CLOSE_STRONG.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
degree = H5P.get_fclose_degree(fapl);
switch(degree)

case H5ML.get_constant_value('H5F_CLOSE_DEFAULT')
fprintf('file close degree is default\n');

case H5ML.get_constant_value('H5F_CLOSE_WEAK')
fprintf('file close degree is weak\n');

case H5ML.get_constant_value('H5F_CLOSE_SEMI')
fprintf('close degree is semi\n');

case H5ML.get_constant_value('H5F_CLOSE_STRONG')
fprintf('close degree is strong\n');

end
H5P.close(fapl);
H5F.close(fid);

See Also H5P.set_fclose_degree

1-2776

H5P.get_libver_bounds

Purpose Library version bounds settings

Syntax [low,high] = H5P.get_libver_bounds(fapl_id)

Description [low,high] = H5P.get_libver_bounds(fapl_id) gets bounds on
library version bounds settings that control the format versions used
when creating objects in the file with access property list fapl_id.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
[low,high] = H5P.get_libver_bounds(fapl);

See Also H5F.get_access_plist | H5P.set_libver_bounds

1-2777

H5P.get_gc_references

Purpose Garbage collection references setting

Syntax gc_ref = H5P.get_gc_references(fapl_id)

Description gc_ref = H5P.get_gc_references(fapl_id) returns the current
setting for the garbage collection references property from the file access
property list specified by fapl_id. If gc_ref is 1, garbage collection is
on; if 0, garbage collection is off.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
gc_ref = H5P.get_gc_references(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also H5P.set_gc_references

1-2778

H5P.get_mdc_config

Purpose Metadata cache configuration

Syntax config_struct = H5P.get_mdc_config(plist_id)

Description config_struct = H5P.get_mdc_config(plist_id) returns the
current metadata cache configuration from the indicated file access
property list.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
config = H5P.get_mdc_config(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also H5P.set_mdc_config

1-2779

H5P.get_meta_block_size

Purpose Metadata block size setting

Syntax sz = H5P.get_meta_block_size(fapl_id)

Description sz = H5P.get_meta_block_size(fapl_id) returns the current
minimum size, in bytes, of new metadata block allocations.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
sz = H5P.get_meta_block_size(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also H5P.set_meta_block_size

1-2780

H5P.get_multi_type

Purpose Type of data property for MULTI driver

Syntax type = H5P.get_multi_type(fapl_id)

Description type = H5P.get_multi_type(fapl_id) returns the type of data
setting from the file access or data transfer property list, fapl_id.

This function should only be used with an HDF5 file written as a set of
files with the MULTI file driver.

See Also H5P.set_multi_type

1-2781

H5P.get_sieve_buf_size

Purpose Maximum data sieve buffer size

Syntax sz = H5P.get_sieve_buf_size(fapl_id)

Description sz = H5P.get_sieve_buf_size(fapl_id) returns the current
maximum size of the data sieve buffer.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
sz = H5P.get_sieve_buf_size(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also H5P.set_sieve_buf_size

1-2782

H5P.get_small_data_block_size

Purpose Small data block size setting

Syntax sz = H5P.get_small_data_block_size(fapl_id)

Description sz = H5P.get_small_data_block_size(fapl_id) returns the current
setting for the size of the small data block. fapl_id is a file access
property list identifier.

Examples fid = H5F.open('example.h5');
fapl = H5F.get_access_plist(fid);
sz = H5P.get_small_data_block_size(fapl);
H5P.close(fapl);
H5F.close(fid);

See Also H5P.set_small_data_block_size

1-2783

H5P.set_alignment

Purpose Set alignment properties for file access property list

Syntax H5P.set_alignment(fapl_id,threshold,alignment)

Description H5P.set_alignment(fapl_id,threshold,alignment) sets the
alignment properties of the file access property list specified by fapl_id
so that any file object greater than or equal in size to threshold (in
bytes) is aligned on an address which is a multiple of alignment.

In most cases the default values of threshold and alignment result in
the best performance.

See Also H5P.get_alignment

1-2784

H5P.set_family_offset

Purpose Set offset property for family of files

Syntax H5P.set_family_offset(fapl_id,offset)

Description H5P.set_family_offset(fapl_id,offset) sets offset property in the
file access property list specified by fapl_id for low-level access to a file
in a family of files. offset identifies a user-determined location from
the beginning of the HDF5 file in bytes.

See Also H5P.get_family_offset

1-2785

H5P.set_fapl_core

Purpose Modify file access to use H5FD_CORE driver

Syntax H5P.set_fapl_core(fapl_id,increment,backing_store)

Description H5P.set_fapl_core(fapl_id,increment,backing_store) modifies
the file access property list to use the H5FD_CORE driver. increment
specifies the increment by which allocated memory is to be increased
each time more memory is required. backing_store is a Boolean flag
that, when non-zero, indicates the file contents should be written to
disk when the file is closed.

Examples Create a file image in memory only.

plist = 'H5P_DEFAULT';
ndatasets = 20;
block_size = 1024*1024;
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fapl_core(fapl,2^16,false);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist,fapl);
space_id = H5S.create_simple(1, block_size, []);
type_id = H5T.copy('H5T_IEEE_F64LE');
data = zeros(block_size,1);
for j = 1:ndatasets
dsname = sprintf('dset%02d', j);
fprintf('Writing dataset %s...\n',dsname);
dsid = H5D.create(fid,dsname,type_id,space_id,'H5P_DEFAULT');
H5D.write(dsid,'H5ML_DEFAULT',space_id,space_id,plist,data);
H5D.close(dsid);

end
H5P.close(fapl);
H5S.close(space_id);
H5T.close(type_id);
H5F.close(fid);
dir('myfile.h5');

See Also H5P.get_fapl_core

1-2786

H5P.set_fapl_family

Purpose Set file access to use family driver

Syntax H5P.set_fapl_family(fapl_id,memb_size,memb_fapl_id)

Description H5P.set_fapl_family(fapl_id,memb_size,memb_fapl_id) sets the
file access property list, specified by fapl_id, to use the family driver.
memb_size is the size in bytes of each file member. memb_fapl_id is
the identifier of the file access property list to be used for each family
member.

Examples plist = 'H5P_DEFAULT';
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fapl_family(fapl, 8192, plist);
fid = H5F.create('family%d.h5','H5F_ACC_TRUNC','H5P_DEFAULT',fapl);
type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [50 25];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,[]);
dset_id = H5D.create(fid,'DS',type_id,space_id,plist)
data = reshape(1:prod(dims),dims);
H5D.write(dset_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',plist,data);
H5P.close(fapl);
H5T.close(type_id);
H5S.close(space_id);
H5D.close(dset_id);
dir('*.h5');
h5disp('family%d.h5');

See Also H5P.get_fapl_family

1-2787

H5P.set_fapl_log

Purpose Set use of logging driver

Syntax H5P.set_fapl_log(fapl_id,logfile,flags,buf_size)

Description H5P.set_fapl_log(fapl_id,logfile,flags,buf_size) modifies the
file access property list, fapl_id, to use the logging driver H5FD_LOG.
logfile is the name of the file in which the logging entries are to be
recorded. flags is a bit mask that specifies the types of activity to
log. See the HDF5 documentation for a list of available flag settings.
buf_size specifies the size of the logging buffer.

1-2788

H5P.set_fapl_multi

Purpose Set use of multifile driver

Syntax H5P.set_fapl_multi(fapl_id,relax)
H5P.set_fapl_multi(fapl_id,memb_map,memb_fapl,memb_name,memb_addr,

relax)

Description H5P.set_fapl_multi(fapl_id,relax) sets the file access property
list, fapl_id, to access HDF5 files created with the multi-driver with
default values provided by the HDF5 library. relax is a Boolean value
that allows read-only access to incomplete file sets when set to 1.

H5P.set_fapl_multi(fapl_id,memb_map,memb_fapl,memb_name,memb_addr,
relax) sets the file access property list to use the multifile driver.
memb_map maps memory usage types to other memory usage types.
memb_fapl contains a property list for each memory usage type.
memb_name is a name generator for names of member files.
memb_addr specifies the offsets within the virtual address space at
which each type of data storage begins.

See Also H5P.get_fapl_multi

1-2789

H5P.set_fapl_sec2

Purpose Set file access for sec2 driver

Syntax H5P.set_fapl_sec2(fapl_id)

Description H5P.set_fapl_sec2(fapl_id) modifies the file access property list,
fapl_id, to use the H5FD_SEC2 driver.

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fapl_sec2(fapl);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

1-2790

H5P.set_fapl_split

Purpose Set file access for emulation of split file driver

Syntax H5P.set_fapl_split(fapl_id,meta_ext,meta_plist_id,raw_ext,
raw_plist_id)

Description H5P.set_fapl_split(fapl_id,meta_ext,meta_plist_id,raw_ext,
raw_plist_id) is a compatibility function that enables the multi-file
driver to emulate the split driver from HDF5 Releases 1.0 and 1.2.
meta_ext is a text string that specifies the metadata filename extension.
meta_plist_id is a file access property list identifier for the metadata
file. raw_ext is a text string that specifies the raw data filename
extension. raw_plist_id is the file access property list identifier for
the raw data file.

1-2791

H5P.set_fapl_stdio

Purpose Set file access for standard I/O driver

Syntax H5P.set_fapl_stdio(fapl_id)

Description H5P.set_fapl_stdio(fapl_id) modifies the file access property list,
fapl_id, to use the standard I/O driver, H5FD_STDIO.

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fapl_stdio(fapl);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

1-2792

H5P.set_fclose_degree

Purpose Set file access for file close degree

Syntax H5P.set_fclose_degree(fapl_id,degree)

Description H5P.set_fclose_degree(fapl_id,degree) sets the file close degree
property in the file access property list, fapl_id, to the value specified
by degree. The degree argument can have any of the following values:

'H5F_CLOSE_WEAK'

'H5F_CLOSE_SEMI'

'H5F_CLOSE_STRONG'

'H5F_CLOSE_DEFAULT'

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_fclose_degree(fapl,'H5F_CLOSE_STRONG');
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also H5P.get_fclose_degree

1-2793

H5P.set_gc_references

Purpose Set garbage collection references flag

Syntax H5P.set_gc_references(fapl_id,gc_ref)

Description H5P.set_gc_references(fapl_id,gc_ref) sets the flag for garbage
collecting references for the file specified by the file access property list
identifier, fapl_id. The gc_ref argument is a flag setting reference
garbage collection to on (1) or off (0).

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_gc_references(fapl,1);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also H5P.get_gc_references

1-2794

H5P.set_libver_bounds

Purpose Set library version bounds for objects

Syntax H5P.get_libver_bounds(fapl_id,low,high)

Description H5P.get_libver_bounds(fapl_id,low,high) sets bounds on library
versions, and indirectly format versions, to be used when creating
objects in the file with access property list fapl_id. The low argument
must be set to either of 'H5F_LIBVER_EARLIEST', 'H5F_LIBVER_18'
or 'H5F_LIBVER_LATEST'. The high argument must be set to
'H5F_LIBVER_18' or 'H5F_LIBVER_LATEST'.

Examples Create an HDF5 file where objects are created using the latest available
format for each object.

fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_libver_bounds(fapl,'H5F_LIBVER_LATEST','H5F_LIBVER_LATEST');
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);

See Also H5P.get_libver_bounds | H5ML.get_constant_value

1-2795

H5P.set_mdc_config

Purpose Set initial metadata cache configuration

Syntax H5P.set_mdc_config(plist_id,config_struct)

Description H5P.set_mdc_config(plist_id,config_struct) sets the initial
metadata cache configuration in the indicated file access property list to
the supplied values. Before using this function, you should retrieve the
current configuration using H5P.get_mdc_config.

Many of the fields in the structure, config_struct, are intended to be
used only in close consultation with the HDF5 Group itself.

See Also H5P.get_mdc_config

1-2796

H5P.set_meta_block_size

Purpose Set minimum metadata block size

Syntax H5P.set_meta_block_size(fapl_id,size)

Description H5P.set_meta_block_size(fapl_id,size) sets the minimum
metadata block size for the file access property list specified by fapl_id.
The size argument specifies minimum size, in bytes, of metadata block
allocations.

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_meta_block_size(fapl,4096);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also H5P.get_meta_block_size

1-2797

H5P.set_multi_type

Purpose Specify type of data accessed with MULTI driver

Syntax H5P.set_multi_type(fapl_id,type)

Description H5P.set_multi_type(fapl_id,type) sets the type of data property
in the file access or data transfer property list fapl_id. The type
argument can have any of the following values: H5FD_MEM_SUPER,
H5FD_MEM_BTREE, H5FD_MEM_DRAW, H5FD_MEM_GHEAP, H5FD_MEM_LHEAP,
or H5FD_MEM_OHDR.

See Also H5P.get_multi_type

1-2798

H5P.set_sieve_buf_size

Purpose Set maximum size of data sieve buffer

Syntax H5P.set_sieve_buf_size(fapl_id,buffer_size)

Description H5P.set_sieve_buf_size(fapl_id,buffer_size) sets buffer_size,
the maximum size in bytes of the data sieve buffer, which is used by
file drivers that are capable of using data sieving. fapl_id is a file
access property list identifier.

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_sieve_buf_size(fapl,131072);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also H5P.get_sieve_buf_size

1-2799

H5P.set_small_data_block_size

Purpose Set size of block reserved for small data

Syntax H5P.set_small_data_block_size(fapl_id,size)

Description H5P.set_small_data_block_size(fapl_id,size) sets the maximum
size, in bytes, of a contiguous block reserved for small data. fapl_id is
a file access property list identifier.

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_small_data_block_size(fapl,4096);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also H5P.get_small_data_block_size

1-2800

H5P.get_istore_k

Purpose Return 1/2 rank of indexed storage B-tree

Syntax ik = H5P.get_istore_k(plist_id)

Description ik = H5P.get_istore_k(plist_id) returns the chunked storage
B-tree 1/2 rank of the file creation property list specified by plist_id.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
ik = H5P.get_istore_k(fcpl);
H5P.close(fcpl);
H5F.close(fid);

See Also H5P.set_istore_k

1-2801

H5P.get_sizes

Purpose Return size of offsets and lengths

Syntax [sizeof_addr,sizeof_size] = H5P.get_sizes(fcpl)

Description [sizeof_addr,sizeof_size] = H5P.get_sizes(fcpl) returns the
size of the offsets and lengths used in an HDF5 file. fcpl specifies a
file creation property list.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
[soaddr, sosize] = H5P.get_sizes(fcpl);
H5P.close(fcpl);
H5F.close(fid);

See Also H5P.set_sizes

1-2802

H5P.get_sym_k

Purpose Return size of B-tree 1/2 rank and leaf node 1/2 size

Syntax [ik,lk] = H5P.get_sym_k(plist_id)

Description [ik,lk] = H5P.get_sym_k(plist_id) returns the size of the symbol
table B-tree 1/2 rank, ik, and the symbol table leaf node 1/2 size, lk.
The plist_id argument is a file creation property list identifier.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
[ik, lk] = H5P.get_sym_k(fcpl);
H5P.close(fcpl);
H5F.close(fid);

See Also H5P.set_sym_k

1-2803

H5P.get_userblock

Purpose Return size of user block

Syntax sz = H5P.get_userblock(plist_id)

Description sz = H5P.get_userblock(plist_id) returns the size of a user block
in a file creation property list. plist_id is a property list identifier.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
sz = H5P.get_userblock(fcpl);
H5P.close(fcpl);
H5F.close(fid);

See Also H5P.set_userblock

1-2804

H5P.get_version

Purpose Return version information for file creation property list

Syntax [superblock,freelist,stab,shhdr] = H5P.get_version(fcpl)

Description [superblock,freelist,stab,shhdr] = H5P.get_version(fcpl)
returns the version of the super block, the global freelist, the symbol
table, and the shared object header. Retrieving this information
requires the file creation property list.

Examples fid = H5F.open('example.h5');
fcpl = H5F.get_create_plist(fid);
[super,freelist,stab,shhdr] = H5P.get_version(fcpl);
H5P.close(fcpl);
H5F.close(fid);

1-2805

H5P.set_istore_k

Purpose Set size of parameter for indexing chunked datasets

Syntax H5P.set_istore_k(plist_id,ik)

Description H5P.set_istore_k(plist_id,ik) sets the size of the parameter used
to control the B-trees for indexing chunked datasets for the file creation
property list specified by plist_id. The ik argument is one half the
rank of a tree that stores chunked raw data.

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_istore_k(fcpl,64);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also H5P.get_istore_k

1-2806

H5P.set_sizes

Purpose Set byte size of offsets and lengths

Syntax H5P.set_sizes(plist_id,sizeof_addr,sizeof_size)

Description H5P.set_sizes(plist_id,sizeof_addr,sizeof_size) sets the byte
size of the offsets and lengths used to address objects in an HDF5 file.
plist_id is a file creation property list.

See Also H5P.get_sizes

1-2807

H5P.set_sym_k

Purpose Set size of parameters used to control symbol table nodes

Syntax H5P.set_sym_k(plist_id,ik,lk)

Description H5P.set_sym_k(plist_id,ik,lk) sets the size of parameters used to
control the symbol table nodes for the file access property list, plist_id.
The ik argument is one half the rank of a tree that stores a symbol
table for a group. lk is one half of the number of symbols that can be
stored in a symbol table node.

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_sym_k(fcpl,32,8);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also H5P.get_sym_k

1-2808

H5P.set_userblock

Purpose Set user block size

Syntax H5P.set_userblock(plist_id,size)

Description H5P.set_userblock(plist_id,size) sets the user block size of the file
creation property list, plist_id.

Examples fcpl = H5P.create('H5P_FILE_CREATE');
fapl = H5P.create('H5P_FILE_ACCESS');
H5P.set_userblock(fcpl,4096);
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',fcpl,fapl);
H5F.close(fid);

See Also H5P.get_userblock

1-2809

H5P.get_attr_creation_order

Purpose Return tracking order and indexing settings

Syntax crt_order_flags = H5P.get_attr_phase_change(ocpl_id)

Description crt_order_flags = H5P.get_attr_phase_change(ocpl_id) retrieves
tracking and indexing settings for attribute creation order. If
crt_order_flags is zero, then the attribute creation order is neither
tracked or indexed. Otherwise the creation order flags should be one
of the following constant values:

H5P_CRT_ORDER_TRACKED

H5P_CRT_ORDER_INDEXED

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
flags = H5P.get_attr_creation_order(dcpl);
switch (flags)

case 0
fprintf('neither tracked nor indexed\n');

case H5ML.get_constant_value('H5P_CRT_ORDER_TRACKED')
fprintf('tracked\n');

case H5ML.get_constant_value('H5P_CRT_ORDER_INDEXED')
fprintf('indexed\n');

end
H5P.close(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.set_attr_creation_order | H5ML.get_constant_value

1-2810

H5P.get_attr_phase_change

Purpose Retrieve attribute phase change thresholds

Syntax [max_compact,min_dense] = H5P.get_attr_phase_change(ocpl_id)

Description [max_compact,min_dense] =
H5P.get_attr_phase_change(ocpl_id) retrieves attribute phase
change thresholds for the dataset or group with creation property
list ocpl_id.

max_compact is the maximum number of attributes to be stored in
compact storage (default is 8).

min_dense is the minimum number of attributes to be stored in dense
storage (default is 6).

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
dcpl = H5D.get_create_plist(dset_id);
[max_compact,min_dense] = H5P.get_attr_phase_change(dcpl);
H5P.close(dcpl);
H5D.close(dset_id);
H5F.close(fid);

See Also H5P.set_attr_phase_change

1-2811

H5P.get_copy_object

Purpose Return properties to be used when object is copied

Syntax copy_options = H5P.get_copy_object(ocpl_id)

Description copy_options = H5P.get_copy_object(ocpl_id) retrieves the
properties currently specified in the object copy property list ocpl_id,
which will be invoked when a new copy is made of an existing object.

Examples ocpl = H5P.create('H5P_OBJECT_COPY');
options = H5P.get_copy_object(ocpl);

See Also H5P.set_copy_object

1-2812

H5P.set_attr_creation_order

Purpose Set tracking of attribute creation order

Syntax H5P.set_attr_creation_order(gcplId,crt_order_flags)

Description H5P.set_attr_creation_order(gcplId,crt_order_flags) sets
tracking and indexing of attribute creation order. The creation order
flags should be either H5P_CRT_ORDER_TRACKED or a bitwise-or of
H5P_CRT_ORDER_TRACKED and H5P_CRT_ORDER_INDEXED.

The default behavior is that attribute creation order is neither tracked
nor indexed.

Examples dcpl = H5P.create('H5P_DATASET_CREATE');
order = H5ML.get_constant_value('H5P_CRT_ORDER_TRACKED');
H5P.set_attr_creation_order(dcpl,order);

See Also H5P.get_attr_creation_order | H5ML.get_constant_value | bitor

1-2813

H5P.set_attr_phase_change

Purpose Set attribute storage phase change thresholds

Syntax H5P.get_attr_phase_change(ocpl_id,max_compact,min_dense)

Description H5P.get_attr_phase_change(ocpl_id,max_compact,min_dense) sets
attribute storage phase change thresholds for the group or dataset with
creation order property list ocpl_id.

max_compact is the maximum number of attributes to be stored in
compact storage (default is 8).

min_dense is the minimum number of attributes to be stored in dense
storage (default is 6).

See Also H5P.get_attr_phase_change

1-2814

H5P.set_copy_object

Purpose Set properties to be used when objects are copied

Syntax H5P.set_copy_object(ocp_plist_id,copy_options)

Description H5P.set_copy_object(ocp_plist_id,copy_options) sets the
properties in the object copy property list ocp_plist_id that will be
invoked when a new copy is made of an existing object. ocp_plist_id
is the object copy property list and specifies the properties governing
the copying of the object.

Several flags, described below, are available for inclusion in the object
copy property list:

H5O_COPY_SHALLOW_HIERARCHY_FLAGCopy only immediate members
of a group. Default behavior,
without flag: Recursively copy all
objects below the group.

H5O_COPY_EXPAND_SOFT_LINK_FLAGExpand soft links into new
objects. Default behavior,
without flag: Keep soft links as
they are.

H5O_COPY_EXPAND_EXT_LINK_FLAG Expand external link into new
objects. Default behavior, without
flag: Keep external links as they
are.

H5O_COPY_EXPAND_REFERENCE_FLAGCopy objects that are pointed to
by references. Default behavior,
without flag: Update only the
values of object references.

H5O_COPY_WITHOUT_ATTR_FLAG Copy object without copying
attributes. Default behavior,
without flag: Copy object along
with all its attributes.

1-2815

H5P.set_copy_object

Examples ocp_plist_id = H5P.create ('H5P_OBJECT_COPY');
option1 = H5ML.get_constant_value('H5O_COPY_EXPAND_SOFT_LINK_FLAG');
option2 = H5ML.get_constant_value('H5O_COPY_EXPAND_REFERENCE_FLAG');
copy_options = bitor(option1,option2);
H5P.set_copy_object(ocp_plist_id, copy_options);

1-2816

H5P.get_create_intermediate_group

Purpose Determine creation of intermediate groups

Syntax bool = H5P.get_create_intermediate_group(lcpl_id)

Description bool = H5P.get_create_intermediate_group(lcpl_id) determines
whether the link creation property list lcpl_id is set to enable creating
missing intermediate groups.

Examples lcpl = H5P.create('H5P_LINK_CREATE');
if H5P.get_create_intermediate_group(lcpl)

fprintf('set to enable creating intermediate groups\n');
else

fprintf('not set to enable creating intermediate groups\n');
end

See Also H5P.set_create_intermediate_group

1-2817

H5P.get_link_creation_order

Purpose Query if link creation order is tracked

Syntax crt_order_flags = H5P.get_link_phase_change(gcpl_id)

Description crt_order_flags = H5P.get_link_phase_change(gcpl_id) queries
whether link creation order is tracked or indexed in a group with
creation property list identifier gcpl_id. The creation order flags
should be one of the following constant values:

H5P_CRT_ORDER_TRACKED

H5P_CRT_ORDER_INDEXED

Examples tracked = H5ML.get_constant_value('H5P_CRT_ORDER_TRACKED');
indexed = H5ML.get_constant_value('H5P_CRT_ORDER_INDEXED');
gcpl = H5P.create('H5P_GROUP_CREATE');
order = H5P.get_link_creation_order(gcpl);
if bitand(order,tracked)

fprintf('order is tracked\n');
end
if bitand(order,indexed)

fprintf('order is indexed\n');
end

See Also H5P.set_link_creation_order | H5ML.get_constant_value | bitand

1-2818

H5P.get_link_phase_change

Purpose Query settings for conversion between groups

Syntax [max_compact,min_dense] = H5P.get_link_phase_change(gcpl_id)

Description [max_compact,min_dense] =
H5P.get_link_phase_change(gcpl_id) retrieves the settings for
conversion between compact and dense groups.

max_compact is the maximum number of links to store as header
messages in the group header before converting the group to the dense
format. Groups that are in the compact format and exceed this number
of links are automatically converted to the dense format.

min_dense is the minimum number of links to store in the dense
format. Groups which are in dense format and in which the number of
links falls below this number are automatically converted back to the
compact format.

Examples gcpl = H5P.create('H5P_GROUP_CREATE');
[max_compact, min_dense] = H5P.get_link_phase_change(gcpl);

See Also H5P.set_link_phase_change

1-2819

H5P.set_create_intermediate_group

Purpose Set creation of intermediate groups

Syntax H5P.set_create_intermediate_group(lcpl_id,flag)

Description H5P.set_create_intermediate_group(lcpl_id,flag) specifies in
the link creation property list lcpl_id whether to create missing
intermediate groups.

Examples Enable the creation of intermediate groups.

fid = H5F.create('myfile.h5');
lcpl = H5P.create('H5P_LINK_CREATE');
H5P.set_create_intermediate_group(lcpl,1);
gid = H5G.create(fid,'/a/b/c/d',lcpl,'H5P_DEFAULT','H5P_DEFAULT');
H5G.close(gid);
H5F.close(fid);

See Also H5P.get_create_intermediate_group

1-2820

H5P.set_link_creation_order

Purpose Set creation order tracking and indexing

Syntax H5P.set_link_creation_order(gcplId,crt_order_flags)

Description H5P.set_link_creation_order(gcplId,crt_order_flags) sets
creation order tracking and indexing for links in the group with group
creation property list gcpl_id.

The creation order flags should be one of the following constant values:

H5P_CRT_ORDER_TRACKED

H5P_CRT_ORDER_INDEXED

If only H5P_CRT_ORDER_TRACKED is set, HDF5 will track link creation
order in any group created with the group creation property list
gcpl_id. If both H5P_CRT_ORDER_TRACKED and H5P_CRT_ORDER_INDEXED
are set, HDF5 will track link creation order in the group and index
links on that property.

Examples tracked = H5ML.get_constant_value('H5P_CRT_ORDER_TRACKED');
indexed = H5ML.get_constant_value('H5P_CRT_ORDER_INDEXED');
order = bitor(tracked,indexed);
gcpl = H5P.create('H5P_GROUP_CREATE');
H5P.set_link_creation_order(gcpl,order);

See Also H5P.get_link_creation_order | H5ML.get_constant_value

1-2821

H5P.set_link_phase_change

Purpose Set parameters for group conversion

Syntax H5P.get_link_phase_change(gcpl_id,max_compact,min_dense)

Description H5P.get_link_phase_change(gcpl_id,max_compact,min_dense) sets
the parameters for conversion between compact and dense groups.

max_compact is the maximum number of links to store as header
messages in the group header before converting the group to the dense
format. Groups that are in the compact format and exceed this number
of links are automatically converted to the dense format.

min_dense is the minimum number of links to store in the dense
format. Groups which are in dense format and in which the number of
links falls below this number are automatically converted back to the
compact format.

Examples gcpl = H5P.create('H5P_GROUP_CREATE');
H5P.set_link_phase_change(gcpl,10,8);

See Also H5P.get_link_phase_change

1-2822

H5P.get_char_encoding

Purpose Return character encoding

Syntax encoding = H5P.get_char_encoding(propertyList)

Description encoding = H5P.get_char_encoding(propertyList) retrieves the
character encoding used to encode strings or object names that are
created with the property list propertyList. The values returned
correspond to either H5T_CSET_ASCII or H5T_CSET_UTF8.

See Also H5P.set_char_encoding | H5ML.get_constant_value

1-2823

H5P.set_char_encoding

Purpose Set character encoding used to encode strings

Syntax H5P.set_char_encoding(propList,encoding)

Description H5P.set_char_encoding(propList,encoding) sets the character
encoding used to encode strings or object names that are created with
the property list propList. The values of encoding should either be
H5T_CSET_ASCII or H5T_CSET_UTF8.

See Also H5P.get_char_encoding | H5ML.get_constant_value

1-2824

H5R.create

Purpose Create reference

Syntax ref = H5R.create(loc_id,name,ref_type,space_id)

Description ref = H5R.create(loc_id,name,ref_type,space_id) creates the
reference, ref, of the type specified in ref_type, pointing to the object
specified by name located at loc_id. The ref_type argument can
be either 'H5R_OBJECT', or 'H5R_DATASET_REGION'. The space_id
argument should be -1, if ref_type is 'H5R_OBJECT'.

Examples Create a double-precision dataset and a reference dataset.

fid = H5F.create('myfile.h5');
type1_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [10 5];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space1_id = H5S.create_simple(2,h5_dims,h5_maxdims);
dcpl = 'H5P_DEFAULT';
dset1_id = H5D.create(fid,'my_double',type1_id,space1_id,dcpl);
type2_id = 'H5T_STD_REF_OBJ';
space2_id = H5S.create('H5S_SCALAR');
dset2_id = H5D.create(fid,'my_ref',type2_id,space2_id,dcpl);
ref_data = H5R.create(fid,'my_double','H5R_OBJECT',-1);
dxpl = 'H5P_DEFAULT';
H5D.write(dset2_id,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',dxpl,ref_data);
H5D.close(dset1_id);
H5D.close(dset2_id);
H5F.close(fid);

See Also H5D.create

1-2825

H5R.dereference

Purpose Open object specified by reference

Syntax output = H5R.dereference(dataset,ref_type,ref)

Description output = H5R.dereference(dataset,ref_type,ref) returns an
identifier to the object specified by ref in the dataset specified by
dataset.

Examples plist = 'H5P_DEFAULT';
space = 'H5S_ALL';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/reference');
ref_data = H5D.read(dset_id,'H5T_STD_REF_OBJ',space,space,plist);
deref_dset_id = H5R.dereference(dset_id,'H5R_OBJECT',ref_data(:,1));
H5D.close(dset_id);
H5D.close(deref_dset_id);
H5F.close(fid);

See Also H5R.create | H5I.get_name

1-2826

H5R.get_name

Purpose Name of referenced object

Syntax name = H5R.get_name(loc_id,ref_type,ref)

Description name = H5R.get_name(loc_id,ref_type,ref) retrieves the name for
the object identified by ref. The loc_id argument is the identifier for
the dataset containing the reference or for the group containing that
dataset. ref_type specifies the type of the reference ref. Valid values
for ref_type are 'H5R_OBJECT' or 'H5R_DATASET_REGION'.

Examples plist = 'H5P_DEFAULT';
space = 'H5S_ALL';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/reference');
ref_data = H5D.read(dset_id,'H5T_STD_REF_OBJ',space,space,plist);
name = H5R.get_name(dset_id,'H5R_OBJECT',ref_data(:,1));
H5D.close(dset_id);
H5F.close(fid);

See Also H5I.get_name

1-2827

H5R.get_obj_type

Purpose Type of referenced object

Syntax obj_type = H5R.get_obj_type(id,ref_type,ref)

Description obj_type = H5R.get_obj_type(id,ref_type,ref) returns the type of
object that an object reference points to. Valid values for ref_type are:
H5R_OBJECT or H5R_DATASET_REGION. Valid return values correspond to
the following values.

'H5O_TYPE_GROUP' Object is a group.

'H5O_TYPE_DATASET' Object is a dataset.

'H5O_TYPE_NAMED_DATATYPE' Object is a named datatype.

This function corresponds to the 1.8 interface version of
H5Rget_obj_type in the HDF5 library C API.

Examples plist = 'H5P_DEFAULT';
space = 'H5S_ALL';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/reference');
ref_data = H5D.read(dset_id,'H5T_STD_REF_OBJ',space,space,plist);
obj_type = H5R.get_obj_type(fid,'H5R_OBJECT',ref_data(:,1));
switch(obj_type)

case H5ML.get_constant_value('H5O_TYPE_GROUP')
fprintf('group\n');

case H5ML.get_constant_value('H5O_TYPE_DATASET')
fprintf('dataset\n');

case H5ML.get_constant_value('H5O_TYPE_NAMED_DATATYPE')
fprintf('named datatype\n');

end
H5D.close(dset_id);
H5F.close(fid);

See Also H5ML.get_constant_value

1-2828

H5R.get_region

Purpose Copy of data space of specified region

Syntax space_id = H5R.get_region(dataset,ref_type,ref)

Description space_id = H5R.get_region(dataset,ref_type,ref) returns a data
space with the specified region selected. dataset is used to identify
the file containing the referenced region and can be any identifier for
any object in the file.

Examples space = 'H5S_ALL';
plist = 'H5P_DEFAULT';
fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/region_reference');
ref_data = H5D.read(dset_id,'H5T_STD_REF_DSETREG',space,space,plist);
space_id = H5R.get_region(fid,'H5R_DATASET_REGION',ref_data(:,1));
H5S.close(space_id);
H5D.close(dset_id);
H5F.close(fid);

1-2829

H5S.copy

Purpose Create copy of data space

Syntax output = H5S.copy(space_id)

Description output = H5S.copy(space_id) creates a new data space, which is
an exact copy of the dataspace identified by space_id. The output
argument is a data space identifier.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g2/dset2.1');
space1_id = H5D.get_space(dset_id);
space2_id = H5S.copy(space1_id);
[~,dims1] = H5S.get_simple_extent_dims(space1_id)
[~,dims2] = H5S.get_simple_extent_dims(space2_id)

See Also H5D.get_space | H5S.get_simple_extent_dims

1-2830

H5S.create

Purpose Create new data space

Syntax space_id = H5S.create(space_type)

Description space_id = H5S.create(space_type) creates a new dataspace of the
type specified by space_type, which can be specified by one of the
following strings.

'H5S_SCALAR'

'H5S_SIMPLE'

'H5S_NULL'

space_id is the identifier for the new dataspace.

Examples Create a scalar dataspace.

space_id = H5S.create('H5S_SCALAR');
numpoints = H5S.get_simple_extent_npoints(space_id);

See Also H5S.get_simple_extent_npoints

1-2831

H5S.close

Purpose Close data space

Syntax H5S.close(space_id)

Description H5S.close(space_id) releases and terminates access to a data space.
space_id is a data space identifier.

See Also H5A.get_space | H5D.get_space

1-2832

H5S.create_simple

Purpose Create new simple data space

Syntax space_id = H5S.create_simple(rank,h5_dims,h5_maxdims)

Description space_id = H5S.create_simple(rank,h5_dims,h5_maxdims) creates
a new simple data space and opens it for access. rank is the number
of dimensions used in the data space. h5_dims is an array specifying
the size of each dimension of the dataset. h5_maxdims is an array
specifying the upper limit on the size of each dimension. space_id
is a data space identifier.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_dims
and h5_maxdims parameters assume C-style ordering. Please consult
"Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples Create a data space for a dataset with 10 rows and 5 columns.

dims = [10 5];
h5_dims = fliplr(dims);
h5_maxdims = h5_dims;
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);

Create a data space for a dataset with 10 rows and 5 columns such that
the dataset is extendible along the column dimension.

dims = [10 5];
h5_dims = fliplr(dims);
maxdims = [10 H5ML.get_constant_value('H5S_UNLIMITED')];
h5_maxdims = fliplr(maxdims);
space_id = H5S.create_simple(2,h5_dims,h5_maxdims);

1-2833

H5S.create_simple

See Also H5S.create | H5S.close | H5ML.get_constant_value

1-2834

H5S.extent_copy

Purpose Copy extent from source to destination data space

Syntax H5S.extent_copy(dst_id,src_id)

Description H5S.extent_copy(dst_id,src_id) copies the extent from the source
data space, src_id, to the destination data space, dst_id.

Examples space_id1 = H5S.create('H5S_SIMPLE');
dims = [100 200];
h5_dims = fliplr(dims);
maxdims = [100 H5ML.get_constant_value('H5S_UNLIMITED')];
h5_maxdims = fliplr(maxdims);
H5S.set_extent_simple(space_id1,2,h5_dims,h5_maxdims);
space_id2 = H5S.create('H5S_SIMPLE');
H5S.extent_copy(space_id2,space_id1);

See Also H5S.create | H5S.get_simple_extent_dims |
H5S.set_extent_simple

1-2835

H5S.get_select_bounds

Purpose Bounding box of data space selection

Syntax [start,finish] = H5S.get_select_bounds(space_id)

Description [start,finish] = H5S.get_select_bounds(space_id) returns the
coordinates of the bounding box containing the current selection. start
contains the starting coordinates of the bounding box and finish
contains the coordinates of the diagonally opposite corner.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_start,
h5_stride, h5_count and h5_block parameters assume C-style
ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
start = fliplr([30 40]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_OR',start,[],[],block);
[start, finish] = H5S.get_select_bounds(space_id);
matlab_start = fliplr(start);
matlab_finish = fliplr(finish);

See Also H5S.create_simple | H5S.select_hyperslab

1-2836

H5S.get_select_elem_npoints

Purpose Number of element points in selection

Syntax numpoints = H5S.get_select_elem_npoints(space_id)

Description numpoints = H5S.get_select_elem_npoints(space_id) returns the
number of element points in the current data space selection.

Examples Select the corner points of a data space.

dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
coords = [0 0; 0 199; 99 0; 99 199];
coords = fliplr(coords);
coords = coords';
H5S.select_elements(space_id,'H5S_SELECT_SET',coords)
numpoints = H5S.get_select_elem_npoints(space_id);

See Also H5S.select_elements

1-2837

H5S.get_select_elem_pointlist

Purpose Element points in data space selection

Syntax points = H5S.get_select_elem_pointlist(space_id,startpoint,numpoints)

Description points =
H5S.get_select_elem_pointlist(space_id,startpoint,numpoints)
returns the list of element points in the current data space selection.
startpoint specifies the element point to start with and numpoints
specifies the total number of points.

points is a two-dimensional array of 0-based values specifying the
coordinates of the elements. If m is the rank of the dataspace, then
points will have size [m x numpoints].

Note The ordering of the coordinate points is the same as the HDF5
library C API.

Examples Determine the first two points in the current selection.

dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
coords = [0 0; 0 199; 99 0; 99 199];
coords = fliplr(coords);
coords = coords';
H5S.select_elements(space_id,'H5S_SELECT_SET',coords);
points = H5S.get_select_elem_pointlist(space_id,0,2);

1-2838

H5S.get_select_hyper_blocklist

Purpose List of hyperslab blocks

Syntax blocklist = H5S.get_select_hyper_blocklist(space_id,startblock,
numblocks)

Description blocklist =
H5S.get_select_hyper_blocklist(space_id,startblock,
numblocks) returns a list of the hyperslab blocks currently selected.
space_id is a dataspace identifier. startblock specifies the block to
start with and numblocks specifies the number of hyperslab
blocks to retrieve.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_start,
h5_stride, h5_count and h5_block parameters assume C-style
ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 25]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
start = fliplr([20 30]); block = fliplr([20 25]);
H5S.select_hyperslab(space_id,'H5S_SELECT_NOTB',start,[],[],block);
nblocks = H5S.get_select_hyper_nblocks(space_id);
for j = 1:nblocks

hblocks{j} = H5S.get_select_hyper_blocklist(space_id,j-1,1);
end

See Also H5S.select_hyperslab | H5S.get_select_hyper_nblocks

1-2839

H5S.get_select_hyper_nblocks

Purpose Number of hyperslab blocks

Syntax num_blocks = H5S.get_select_hyper_nblocks(space_id)

Description num_blocks = H5S.get_select_hyper_nblocks(space_id) returns
the number of hyperslab blocks in the current data space selection.

Examples dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 25]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
start = fliplr([20 30]); block = fliplr([20 25]);
H5S.select_hyperslab(space_id,'H5S_SELECT_NOTB',start,[],[],block);
nblocks = H5S.get_select_hyper_nblocks(space_id);

See Also H5S.get_select_hyper_blocklist | H5S.select_hyperslab

1-2840

H5S.get_select_npoints

Purpose Number of elements in data space selection

Syntax num_points = H5S.get_select_npoints(space_id)

Description num_points = H5S.get_select_npoints(space_id) returns the
number of elements in the current data space selection.

Examples dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
op = 'H5S_SELECT_SET';
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
n = H5S.get_select_npoints(space_id);

See Also H5S.create_simple | H5S.select_hyperslab

1-2841

H5S.get_select_type

Purpose Type of data space selection

Syntax sel_type = H5S.get_select_type(space_id)

Description sel_type = H5S.get_select_type(space_id) returns the data
space selection type. Valid return values correspond to the following
enumerated constants:

H5S_SEL_NONE

H5S_SEL_POINTS

H5S_SEL_HYPERSLABS

H5S_SEL_ALL

Examples dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
sel_type = H5S.get_select_type(space_id);
switch(sel_type)

case H5ML.get_constant_value('H5S_SEL_NONE')
fprintf('no selection\n');

case H5ML.get_constant_value('H5S_SEL_POINTS');
fprintf('point selection\n');

case H5ML.get_constant_value('H5S_SEL_HYPERSLABS');
fprintf('hyperslab selection\n');

end

See Also H5S.select_elements | H5S.select_hyperslab |
H5ML.get_constant_value

1-2842

H5S.get_simple_extent_dims

Purpose Data space size and maximum size

Syntax [numdims,h5_dims,h5_maxdims] = H5S.get_simple_extent_dims(space_id)

Description [numdims,h5_dims,h5_maxdims] =
H5S.get_simple_extent_dims(space_id) returns the number of
dimensions in the data space, the size of each dimension, and the
maximum size of each dimension.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_dims
and h5_maxdims assume C-style ordering. Please consult "Using the
MATLAB Low-Level HDF5 Functions" in the MATLAB documentation
for more information.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g2/dset2.2');
space_id = H5D.get_space(dset_id);
[ndims,h5_dims] = H5S.get_simple_extent_dims(space_id);
matlab_dims = fliplr(h5_dims);

1-2843

H5S.get_simple_extent_ndims

Purpose Data space rank

Syntax output = H5S.get_simple_extent_ndims(space_id)

Description output = H5S.get_simple_extent_ndims(space_id) returns the
dimensionality (also called the rank) of a data space.

1-2844

H5S.get_simple_extent_npoints

Purpose Number of elements in data space

Syntax output = H5S.get_simple_extent_npoints(space_id)

Description output = H5S.get_simple_extent_npoints(space_id) returns the
number of elements in the data space specified by space_id.

1-2845

H5S.get_simple_extent_type

Purpose Data space class

Syntax space_type = H5S.get_simple_extent_type(space_id)

Description space_type = H5S.get_simple_extent_type(space_id) returns the
data space class of the data space specified by space_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
space_id = H5D.get_space(dset_id);
space_type = H5S.get_simple_extent_type(space_id);
switch(space_type)

case H5ML.get_constant_value('H5S_SCALAR')
fprintf('scalar\n');

case H5ML.get_constant_value('H5S_SIMPLE')
fprintf('simple\n');

case H5ML.get_constant_value('H5S_NULL')
fprintf('none\n');

end

See Also H5S.create | H5D.get_space | H5ML.get_constant_value

1-2846

H5S.is_simple

Purpose Determine if data space is simple

Syntax output = H5S.is_simple(space_id)

Description output = H5S.is_simple(space_id) returns a positive value if the
data space specified by space_id is a simple data space, zero if it is not,
and a negative value to indicate failure.

Examples Create a new data space and verify that it is simple.

dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
val = H5S.is_simple(space_id);

Create a null data space and verify that it is not simple.

space_id = H5S.create('H5S_NULL');
val = H5S.is_simple(space_id);

See Also H5S.create | H5S.create_simple

1-2847

H5S.offset_simple

Purpose Set offset of simple data space

Syntax H5S.offset_simple(space_id,offset)

Description H5S.offset_simple(space_id,offset) specifies the offset of the
simple data space specified by space_id. This function allows the same
shaped selection to be moved to different locations within a data space
without requiring it to be redefined.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_start,
h5_stride, h5_count and h5_block parameters assume C-style
ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);
offset = fliplr([3 5]);
H5S.offset_simple(space_id,offset)
[start,finish] = H5S.get_select_bounds(space_id);
start = fliplr(start);
finish = fliplr(finish);

See Also H5S.get_select_bounds | H5S.select_hyperslab

1-2848

H5S.select_all

Purpose Select entire extent of data space

Syntax H5S.select_all(space_id)

Description H5S.select_all(space_id) selects the entire extent of the data space
specified by space_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
space_id = H5D.get_space(dset_id);
num_points1 = H5S.get_select_npoints(space_id);
H5S.select_none(space_id);
num_points2 = H5S.get_select_npoints(space_id);
H5S.select_all(space_id);
num_points3 = H5S.get_select_npoints(space_id);

1-2849

H5S.select_elements

Purpose Specify coordinates to include in selection

Syntax H5S.select_elements(space_id,op,h5_coord)

Description H5S.select_elements(space_id,op,h5_coord) selects the array
elements to be included in the selection for the data space specified by
space_id. The op argument determines how the new selection is to be
combined with the previously existing selection for the data space and
can be specified by one of the following string values.

'H5S_SELECT_SET'

'H5S_SELECT_APPEND'

'H5S_SELECT_PREPEND'

h5_coord is a two-dimensional array of 0-based values specifying the
coordinates of the elements being selected. If m is the rank of the data
space and if n is the number of points, then h5_coord should be an
m-by-n array.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_coord
parameter assumes coordinates have C-style ordering. Please consult
"Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples Select the corner points of a data space. In this case, h5_coord should
have size 2x4.

dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
coords = [0 0; 0 199; 99 0; 99 199];
h5_coords = fliplr(coords);
h5_coords = h5_coords';

1-2850

H5S.select_elements

H5S.select_elements(space_id,'H5S_SELECT_SET',h5_coords);

See Also H5S.create_simple | H5S.get_select_elem_npoints |
H5S.get_select_elem_pointlist

1-2851

H5S.select_hyperslab

Purpose Select hyperslab region

Syntax H5S.select_hyperslab(space_id,op,h5_start,h5_stride,h5_count,
h5_block)

Description H5S.select_hyperslab(space_id,op,h5_start,h5_stride,h5_count,
h5_block) selects a hyperslab region to add to the current selected
region for the data space specified by space_id. The op argument
determines how the new selection is to be combined with the previously
existing selection for the data space. Possible values include:
H5S_SELECT_SET, H5S_SELECT_OR, H5S_SELECT_AND, H5S_SELECT_XOR,
H5S_SELECT_NOTA, or H5S_SELECT_NOTB.

The h5_start array determines the starting coordinates of the
hyperslab to select. The h5_count array determines how many blocks
to select from the data space, in each dimension. The h5_stride array
specifies how many elements to move in each dimension. The h5_block
array determines the size of the element block selected from the data
space.

If h5_stride is specified as [], then a contiguous hyperslab is selected,
as if each value in h5_stride were set to 1. If h5_count is specified as
[], the number of blocks selected along each dimension defaults to 1.
If h5_block is specified as [], then the block size defaults to a single
element in each dimension, as if each value in the block array were
set to 1.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_start,
h5_stride, h5_count and h5_block parameters assume C-style
ordering. Please consult "Using the MATLAB Low-Level HDF5
Functions" in the MATLAB documentation for more information.

Examples dims = [100 200];
h5_dims = fliplr(dims);

1-2852

H5S.select_hyperslab

space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([10 20]); block = fliplr([20 30]);
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],[],block);

See Also H5S.create_simple

1-2853

H5S.select_none

Purpose Reset selection region to include no elements

Syntax H5S.select_none(space_id)

Description H5S.select_none(space_id) resets the selection region for the data
space space_id to include no elements.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
space_id = H5D.get_space(dset_id);
num_points1 = H5S.get_select_npoints(space_id);
H5S.select_none(space_id);
num_points2 = H5S.get_select_npoints(space_id);

1-2854

H5S.select_valid

Purpose Determine validity of selection

Syntax output = H5S.select_valid(space_id)

Description output = H5S.select_valid(space_id) returns a positive value if the
selection of the data space space_id is within the extent of that data
space, and zero if it is not. A negative value indicates failure.

Examples dims = [100 200];
h5_dims = fliplr(dims);
space_id = H5S.create_simple(2,h5_dims,h5_dims);
start = fliplr([90 190]); count = [11 11];
H5S.select_hyperslab(space_id,'H5S_SELECT_SET',start,[],count,[]);
valid = H5S.select_valid(space_id);

See Also H5S.create_simple | H5S.select_hyperslab

1-2855

H5S.set_extent_none

Purpose Remove extent from data space

Syntax H5S.set_extent_none(space_id)

Description H5S.set_extent_none(space_id) removes the extent from a data
space and sets the type to H5S_NO_CLASS.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer2D');
space_id = H5D.get_space(dset_id);
H5S.set_extent_none(space_id);
extent_type = H5S.get_simple_extent_type(space_id);
switch(extent_type)

case H5ML.get_constant_value('H5S_SCALAR')
fprintf('scalar\n');

case H5ML.get_constant_value('H5S_SIMPLE')
fprintf('simple\n');

case H5ML.get_constant_value('H5S_NO_CLASS')
fprintf('no class\n');

end

See Also H5S.get_simple_extent_dims

1-2856

H5S.set_extent_simple

Purpose Set size of data space

Syntax H5S.set_extent_simple(space_id,rank,h5_dims,h5_maxdims)

Description H5S.set_extent_simple(space_id,rank,h5_dims,h5_maxdims) sets
the size of the data space identified by space_id. The rank argument is
the number of dimensions used in the data space. h5_dims is an array
specifying the size of each dimension of the dataset. h5_maxdims is an
array specifying the upper limit on the size of each dimension.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_dims
and h5_maxdims parameters assume C-style ordering. Please consult
"Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples space_id = H5S.create('H5S_SIMPLE');
dims = [100 200];
h5_dims = fliplr(dims);
maxdims = [100 H5ML.get_constant_value('H5S_UNLIMITED')];
h5_maxdims = fliplr(maxdims);
H5S.set_extent_simple(space_id,2,h5_dims, h5_maxdims);

See Also H5S.create | H5S.get_simple_extent_dims |
H5ML.get_constant_value

1-2857

H5T.close

Purpose Close data type

Syntax H5T.close(type_id)

Description H5T.close(type_id) releases the data type specified by type_id.

See Also H5A.get_type | H5D.get_type

1-2858

H5T.commit

Purpose Commit transient data type

Syntax H5T.commit(loc_id,name,type_id)
H5T.commit(loc_id,name,type_id,lcpl_id,tcpl_id,tapl_id)

Description H5T.commit(loc_id,name,type_id) commits a transient data type to a
file, creating a new named data type. loc_id is a file or group identifier.
name is the name of the data type and type_id is the data type id. This
interface corresponds to the 1.6.x version of H5Tcommit.

H5T.commit(loc_id,name,type_id,lcpl_id,tcpl_id,tapl_id)
commits a transient data type to a file, creating a new named data type.
loc_id is a file or group identifier. name is the name of the data type
and type_id is the data type id. lcpl_id, tcpl_id, and tapl_id are
link creation, data type creation, and data type access property list
identifiers. This interface corresponds to the 1.8.x version of H5Tcommit.

Examples Create a named variable-length data type.

plist_id = 'H5P_DEFAULT';
fid = H5F.create('myfile.h5','H5F_ACC_TRUNC',plist_id,plist_id);
base_type_id = H5T.copy('H5T_NATIVE_DOUBLE');
vlen_type_id = H5T.vlen_create(base_type_id);
H5T.commit(fid,'MyVlen',vlen_type_id);
H5T.close(vlen_type_id);
H5T.close(base_type_id);
H5F.close(fid);

See Also H5T.close | H5T.committed

1-2859

H5T.committed

Purpose Determine if data type is committed

Syntax output = H5T.committed(type_id)

Description output = H5T.committed(type_id) returns a positive value to
indicate that the data type has been committed, and zero to indicate
that it has not. A negative value indicates failure.

Examples type_id = H5T.copy('H5T_NATIVE_DOUBLE');
is_committed = H5T.committed(type_id);

See Also H5T.commit

1-2860

H5T.copy

Purpose Copy data type

Syntax output_type_id = H5T.copy(type_id)

Description output_type_id = H5T.copy(type_id) copies the existing data type
identifier, a dataset identifier specified by type_id, or a predefined
data type such as 'H5T_NATIVE_DOUBLE'. output_type_id is a data
type identifier.

Examples type_id = H5T.copy('H5T_NATIVE_DOUBLE');
type_size = H5T.get_size(type_id);

See Also H5T.get_size

1-2861

H5T.create

Purpose Create new data type

Syntax output = H5T.create(class_id,size)

Description output = H5T.create(class_id,size) creates a new data type of the
class specified by class_id, with the number of bytes specified by size.
The output argument is a data type identifier.

Examples Create a signed 32-bit enumerated data type.

type_id = H5T.create('H5T_ENUM',4);
H5T.set_order(type_id,'H5T_ORDER_LE');
H5T.set_sign(type_id,'H5T_SGN_2');
H5T.enum_insert(type_id,'black',0);
H5T.enum_insert(type_id,'white',1);

See Also H5T.set_order | H5T.set_sign

1-2862

H5T.detect_class

Purpose Determine of data type contains specific class

Syntax output = H5T.detect_class(type_id,class_id)

Description output = H5T.detect_class(type_id,class_id) returns a positive
value if the data type specified in type_id contains any data types of
the data type class specified in class_id, or zero to indicate that it does
not. A negative value indicates failure.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/vlen');
type_id = H5D.get_type(dset_id);
has_double = H5T.detect_class(type_id,'H5T_FLOAT');

See Also H5D.get_type

1-2863

H5T.equal

Purpose Determine equality of data types

Syntax output = H5T.equal(type1_id,type2_id)

Description output = H5T.equal(type1_id,type2_id) returns a positive number
if the data type identifiers refer to the same data type, and zero to
indicate that they do not. A negative value indicates failure. Either of
the input values could be a string corresponding to an HDF5 data type.

Examples Determine if the data type of a dataset is a 32-bit little endian integer.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer2D');
dtype_id = H5D.get_type(dset_id);
if H5T.equal(dtype_id,'H5T_STD_I32LE')

fprintf('32-bit little endian integer\n');
end

See Also H5D.get_type

1-2864

H5T.get_class

Purpose Data type class identifier

Syntax class_id = H5T.get_class(type_id)

Description class_id = H5T.get_class(type_id) returns the data type class
identifier of the data type specified by type_id.

Valid class identifiers include:

H5T_INTEGER

H5T_FLOAT

H5T_STRING

H5T_BITFIELD

H5T_OPAQUE

H5T_COMPOUND

H5T_ENUM

H5T_VLEN

H5T_ARRAY

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
type_id = H5D.get_type(dset_id);
class_id = H5T.get_class(type_id);
switch(class_id)

case H5ML.get_constant_value('H5T_INTEGER')
fprintf('Integer\n');

case H5ML.get_constant_value('H5T_FLOAT')
fprintf('Floating point\n');

case H5ML.get_constant_value('H5T_STRING')
fprintf('String\n');

case H5ML.get_constant_value('H5T_BITFIELD')
fprintf('Bitfield\n');

case H5ML.get_constant_value('H5T_OPAQUE')

1-2865

H5T.get_class

fprintf('Opaque\n');
case H5ML.get_constant_value('H5T_COMPOUND')

fprintf('Compound'\n');
case H5ML.get_constant_value('H5T_ENUM')

fprintf('Enumerated\n');
case H5ML.get_constant_value('H5T_VLEN')

fprintf('Variable length\n');
case H5ML.get_constant_value('H5T_ARRAY')

fprintf('Array\n');
end

See Also H5ML.get_constant_value

1-2866

H5T.get_create_plist

Purpose Copy of data type creation property list

Syntax plist_id = H5T.get_create_plist(datatype_id)

Description plist_id = H5T.get_create_plist(datatype_id) returns a property
list identifier for the data type creation property list associated with the
data type specified by datatype_id.

See Also H5D.get_create_plist | H5F.get_create_plist

1-2867

H5T.get_native_type

Purpose Native data type of dataset data type

Syntax output = H5T.get_native_type(type_id,direction)

Description output = H5T.get_native_type(type_id,direction) returns the
equivalent native data type for the dataset data type specified in
type_id. The direction argument indicates the order in which the
library searches for a native data type match and must be either
'H5T_DIR_ASCEND' or 'H5T_DIR_DESCEND'.

1-2868

H5T.get_size

Purpose Size of data type in bytes

Syntax type_size = H5T.get_size(type_id)

Description type_size = H5T.get_size(type_id) returns the size of a data type
in bytes. type_id is a data type identifier.

Examples Determine the size of the data type for a specific dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/bitfield2D');
type_id = H5D.get_type(dset_id);
type_size = H5T.get_size(type_id);

See Also H5T.set_size | H5D.get_type

1-2869

H5T.get_super

Purpose Base data type

Syntax super_type_id = H5T.get_super(type_id)

Description super_type_id = H5T.get_super(type_id) returns the base data
type from which the data type type specified by type_id is derived.

Examples Retrieve the base data type for an enumerated dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
dtype_id = H5D.get_type(dset_id);
super_type_id = H5T.get_super(dtype_id);

1-2870

H5T.lock

Purpose Lock data type

Syntax H5T.lock(type_id)

Description H5T.lock(type_id) locks the data type specified by type_id, making
it read-only and non-destructible.

1-2871

H5T.open

Purpose Open named data type

Syntax type_id = H5T.open(loc_id,name)

Description type_id = H5T.open(loc_id,name) opens a named data type at the
location specified by loc_id and returns an identifier for the data type.
loc_id is either a file or group identifier.

This function corresponds to the H5Topen1 function in the HDF5 library
C API.

See Also H5T.close | H5A.open | H5D.open | H5G.open | H5O.open

1-2872

H5T.array_create

Purpose Create array data type object

Syntax array_type_id = H5T.array_create(base_id,h5_dims)
array_type_id = H5T.array_create(base_id,rank,h5_dims,perms)

Description array_type_id = H5T.array_create(base_id,h5_dims) creates a
new array data type object. This interface corresponds to the 1.8 library
version of H5Tarray_create.

array_type_id =
H5T.array_create(base_id,rank,h5_dims,perms) creates a new
array data type object. This interface corresponds to the 1.6
library version of H5Tarray_create. The perms parameter is not
used at this time and can be omitted.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. The h5_dims
parameter assumes C-style ordering. Please consult "Using the
MATLAB Low-Level HDF5 Functions" in the MATLAB documentation
for more information.

Examples Create a 100-by-200 double precision array data type.

base_type_id = H5T.copy('H5T_NATIVE_DOUBLE');
dims = [100 200];
h5_dims = fliplr(dims);
array_type = H5T.array_create(base_type_id,h5_dims);

See Also H5T.get_array_dims | H5T.get_array_ndims

1-2873

H5T.get_array_dims

Purpose Array dimension extents

Syntax dimsizes = H5T.get_array_dims(type_id)
[ndims,dimsizes,perm] = H5T.get_array_dims(type_id)

Description dimsizes = H5T.get_array_dims(type_id) returns the sizes of the
dimensions and the dimension permutations of the specified array
data type object. This interface corresponds to the 1.8 version of
H5Tget_array_dims.

[ndims,dimsizes,perm] = H5T.get_array_dims(type_id)
corresponds to the 1.6 version of the interface. It is strongly deprecated.

Note The HDF5 library uses C-style ordering for multidimensional
arrays, while MATLAB uses FORTRAN-style ordering. Please consult
"Using the MATLAB Low-Level HDF5 Functions" in the MATLAB
documentation for more information.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/array2D');
type_id = H5D.get_type(dset_id);
h5_dims = H5T.get_array_dims(type_id);
dims = fliplr(h5_dims);

See Also H5T.array_create | H5T.get_array_ndims

1-2874

H5T.get_array_ndims

Purpose Rank of array data type

Syntax output = H5T.get_array_ndims(type_id)

Description output = H5T.get_array_ndims(type_id) returns the rank, the
number of dimensions, of an array data type object.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/array2D');
type_id = H5D.get_type(dset_id);
ndims = H5T.get_array_ndims(type_id);

See Also H5T.get_array_dims

1-2875

H5T.get_cset

Purpose Character set of string data type

Syntax cset = H5T.get_cset(type_id)

Description cset = H5T.get_cset(type_id) returns the character set type of the
data type specified by type_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/string');
type_id = H5D.get_type(dset_id);
cset = H5T.get_cset(type_id);
switch(cset)

case H5ML.get_constant_value('H5T_CSET_ASCII')
fprintf('ASCII\n');

case H5ML.get_constant_value('H5T_CSET_UTF8')
fprintf('UTF-8\n');

end

See Also H5T.set_cset

1-2876

H5T.get_ebias

Purpose Exponent bias of floating-point type

Syntax output = H5T.get_ebias(type_id)

Description output = H5T.get_ebias(type_id) returns the exponent bias of a
floating-point type. type_id is data type identifier.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
type_id = H5D.get_type(dset_id);
ebias = H5T.get_ebias(type_id);

See Also H5T.set_ebias

1-2877

H5T.get_fields

Purpose Floating-point data type bit field information

Syntax [spos,epos,esize,mpos,msize] = H5T.get_fields(type_id)

Description [spos,epos,esize,mpos,msize] = H5T.get_fields(type_id)
returns information about the locations of the various bit fields of a
floating point data type. type_id is a data type identifier. spos is the
floating-point sign bit. epos is the exponent bit-position. esize is the
size of the exponent in bits. mpos is the mantissa bit-position. msize is
the size of the mantissa in bits.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
type_id = H5D.get_type(dset_id);
[spos, epos, esize, mpos, msize] = H5T.get_fields(type_id);

1-2878

H5T.get_inpad

Purpose Internal padding type for floating-point data types

Syntax pad_type = H5T.get_inpad(type_id)

Description pad_type = H5T.get_inpad(type_id) returns the internal padding
type for unused bits in floating-point data types. type_id is a data
type identifier. pad_type can be H5T_PAD_ZERO, H5T_PAD_ONE, or
H5T_PAD_BACKGROUND.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
type_id = H5D.get_type(dset_id);
pad_type = H5T.get_inpad(type_id);
switch(pad_type)

case H5ML.get_constant_value('H5T_PAD_ZERO')
fprintf('pad zero\n');

case H5ML.get_constant_value('H5T_PAD_ONE');
fprintf('pad one\n');

case H5ML.get_constant_value('H5T_PAD_BACKGROUND')
fprintf('pad background\n');

end

See Also H5T.set_inpad

1-2879

H5T.get_norm

Purpose Mantissa normalization type

Syntax norm_type = H5T.get_norm(type_id)

Description norm_type = H5T.get_norm(type_id) returns the mantissa
normalization of a floating-point data type. type_id is a data type
identifier. norm_type can be H5T_NORM_IMPLIED, H5T_NORM_MSBSET,
or H5T_NORM_NONE.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
type_id = H5D.get_type(dset_id);
norm_type = H5T.get_norm(type_id);
switch(norm_type)

case H5ML.get_constant_value('H5T_NORM_IMPLIED')
fprintf('MSB of mantissa is not stored, always 1\n');

case H5ML.get_constant_value('H5T_NORM_MSBSET');
fprintf('MSB of mantissa is always 1\n');

case H5ML.get_constant_value('H5T_NORM_NONE')
fprintf('mantissa is not normalized\n');

end

See Also H5T.set_norm

1-2880

H5T.get_offset

Purpose Bit offset of first significant bit

Syntax offset = H5T.get_offset(type_id)

Description offset = H5T.get_offset(type_id) returns the offset of the first
significant bit. type_id is a data type identifier.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/float');
type_id = H5D.get_type(dset_id);
offset = H5T.get_offset(type_id);

See Also H5T.set_offset

1-2881

H5T.get_order

Purpose Byte order of atomic data type

Syntax output = H5T.get_order(type_id)

Description output = H5T.get_order(type_id) returns the byte order of an
atomic data type. type_id is a data type identifier. Possible return
values are the constant values corresponding to the following strings:

'H5T_ORDER_LE'

'H5T_ORDER_BE'

'H5T_ORDER_VAX'

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g2/dset2.2');
type_id = H5D.get_type(dset_id);
switch(H5T.get_order(type_id))

case H5ML.get_constant_value('H5T_ORDER_LE')
fprintf('little endian\n');

case H5ML.get_constant_value('H5T_ORDER_BE')
fprintf('big endian\n');

case H5ML.get_constant_value('H5T_ORDER_VAX')
fprintf('vax\n');

end

See Also H5T.set_order | H5ML.get_constant_value

1-2882

H5T.get_pad

Purpose Padding type of least and most-significant bits

Syntax [lsb,msb] = H5T.get_pad(type_id)

Description [lsb,msb] = H5T.get_pad(type_id) returns the padding type of the
least and most-significant bit padding. type_id is a data type identifier.
lsb is the least-significant bit padding type. msb is the most-significant
bit padding type. Values for lsb and msb can be H5T_PAD_ZERO,
H5T_PAD_ONE, or H5T_PAD_BACKGROUND.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
type_id = H5D.get_type(dset_id);
[lsb,msb] = H5T.get_pad(type_id);
switch(lsb)

case H5ML.get_constant_value('H5T_PAD_ZERO')
fprintf('lsb pad type is zeros\n');

case H5ML.get_constant_value('H5T_PAD_ONE');
fprintf('lsb pad type is ones\n');

case H5ML.get_constant_value('H5T_PAD_BACKGROUND')
fprintf('lsb pad type is background\n');

end
switch(msb)

case H5ML.get_constant_value('H5T_PAD_ZERO')
fprintf('msb pad type is zeros\n');

case H5ML.get_constant_value('H5T_PAD_ONE');
fprintf('msb pad type is ones\n');

case H5ML.get_constant_value('H5T_PAD_BACKGROUND')
fprintf('msb pad type is background\n');

end

See Also H5T.set_pad

1-2883

H5T.get_precision

Purpose Precision of atomic data type

Syntax output = H5T.get_precision(type_id)

Description output = H5T.get_precision(type_id) returns the precision of an
atomic data type. type_id is a data type identifier.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
type_id = H5D.get_type(dset_id);
numbits = H5T.get_precision(type_id);

See Also H5T.set_precision

1-2884

H5T.get_sign

Purpose Sign type for integer data type

Syntax sign_type = H5T.get_sign(type_id)

Description sign_type = H5T.get_sign(type_id) returns the sign type for
an integer type. type_id is a data type identifier. Valid types are:
H5T_SGN_NONE or H5T_SGN_2.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/integer');
type_id = H5D.get_type(dset_id);
sign_type = H5T.get_sign(type_id);
switch(sign_type)

case H5ML.get_constant_value('H5T_SGN_NONE')
fprintf('Unsigned integer type.\n');

case H5ML.get_constant_value('H5T_SGN_2');
fprintf('Signed integer type.\n');

end

See Also H5T.set_sign

1-2885

H5T.get_strpad

Purpose Storage mechanism for string data type

Syntax output = H5T.get_strpad(type_id)

Description output = H5T.get_strpad(type_id) returns the storage mechanism
(padding type) for a string data type. Possible values are:

H5T_STR_NULLPAD Pad with zeros

H5T_STR_NULLTERM Null-terminate

H5T_STR_SPACEPAD Pad with spaces

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/string');
type_id = H5D.get_type(dset_id);
padding = H5T.get_strpad(type_id);
switch(padding)

case H5ML.get_constant_value('H5T_STR_NULLTERM')
fprintf('null-terminated\n');

case H5ML.get_constant_value('H5T_STR_NULLPAD')
fprintf('padded with zeros\n');

case H5ML.get_constant_value('H5T_STR_SPACEPAD')
fprintf('padded with spaces\n');

end

See Also H5T.set_strpad

1-2886

H5T.set_cset

Purpose Set character dataset for string data type

Syntax H5T.set_cset(type_id, cset)

Description H5T.set_cset(type_id, cset) sets the character encoding used to
create strings. The only valid type is H5T_CSET_ASCII.

Examples type_id = H5T.copy('H5T_C_S1');
H5T.set_size(type_id,10);
encoding = H5ML.get_constant_value('H5T_CSET_ASCII');
H5T.set_cset(type_id,encoding);

See Also H5T.get_cset

1-2887

H5T.set_ebias

Purpose Set exponent bias of floating-point data type

Syntax H5T.set_ebias(type_id,ebias)

Description H5T.set_ebias(type_id,ebias) sets the exponent bias of a
floating-point type. type_id is a data type identifier. ebias is an
exponent bias value.

Examples type_id = H5T.copy('H5T_NATIVE_FLOAT');
H5T.set_size(type_id,32);
H5T.set_ebias(type_id,99);

See Also H5T.get_ebias

1-2888

H5T.set_fields

Purpose Set sizes and locations of floating-point bit fields

Syntax H5T.set_fields(type_id,spos,epos,esize,mpos,msize)

Description H5T.set_fields(type_id,spos,epos,esize,mpos,msize) sets the
locations and sizes of the various floating-point bit fields. spos is the
sign position. epos is the exponent in bits. esize is the size of exponent
in bits. mpos is the mantissa bit position. msize is the size of the
mantissa in bits.

Examples type_id = H5T.copy('H5T_NATIVE_DOUBLE');
H5T.set_fields(type_id,30,24,6,0,2);

See Also H5T.get_fields

1-2889

H5T.set_inpad

Purpose Specify how unused internal bits are to be filled

Syntax H5T.set_inpad(type_id,pad)

Description H5T.set_inpad(type_id,pad) sets how unused internal bits of a
floating point type are filled. type_id is the identifier of the data type.
inpad specifies how to fill the bits: H5T_PAD_ZERO, H5T_PAD_ONE, or
H5T_PAD_BACKGROUND (leave background alone).

Examples type_id = H5T.copy('H5T_NATIVE_FLOAT');
pad_type = H5ML.get_constant_value('H5T_PAD_ZERO');
H5T.set_inpad(type_id,pad_type);

See Also H5T.get_inpad

1-2890

H5T.set_norm

Purpose Set mantissa normalization of floating-point data type

Syntax H5T.set_norm(type_id,norm)

Description H5T.set_norm(type_id,norm) sets the mantissa normalization
of a floating-point data type. Valid normalization types are:
H5T_NORM_IMPLIED, H5T_NORM_MSBSET, or H5T_NORM_NONE.

Examples type_id = H5T.copy('H5T_NATIVE_FLOAT');
norm_type = H5ML.get_constant_value('H5T_NORM_MSBSET');
H5T.set_norm(type_id,norm_type);

See Also H5T.get_norm

1-2891

H5T.set_offset

Purpose Set bit offset of first significant bit

Syntax H5T.set_offset(type_id,offset)

Description H5T.set_offset(type_id,offset) sets the bit offset of the first
significant bit. type_id is the identifier of the data type. offset
specifies the number of bits of padding that appear.

Examples type_id = H5T.copy('H5T_NATIVE_INT');
H5T.set_offset(type_id,16);

See Also H5T.get_offset

1-2892

H5T.set_order

Purpose Set byte ordering of atomic data type

Syntax H5T.set_order(type_id,type_order)

Description H5T.set_order(type_id,type_order) sets the byte ordering of an
atomic data type. type_order can be one of the following values:

H5T_ORDER_LE

H5T_ORDER_BE

H5T_ORDER_VAX

Examples Create a big endian 32-bit integer type.

type_id = H5T.copy('H5T_NATIVE_INT');
order = H5ML.get_constant_value('H5T_ORDER_BE');
H5T.set_order(type_id,order);

See Also H5T.get_order | H5ML.get_constant_value

1-2893

H5T.set_pad

Purpose Set padding type for least and most significant bits

Syntax H5T.set_pad(type_id,lsb,msb)

Description H5T.set_pad(type_id,lsb,msb) sets the padding type for the least
and most-significant bits. type_id is the identifier of the data
type. lsb specifies the padding type for least-significant bits; msb
for most-significant bits. Valid padding types are H5T_PAD_ZERO,
H5T_PAD_ONE, or H5T_PAD_BACKGROUND (leave background alone).

Examples type_id = H5T.copy('H5T_NATIVE_INT');
lsb = H5ML.get_constant_value('H5T_PAD_ONE');
msb = H5ML.get_constant_value('H5T_PAD_ZERO');
H5T.set_pad(type_id,lsb,msb);

See Also H5T.get_pad

1-2894

H5T.set_precision

Purpose Set precision of atomic data type

Syntax H5T.set_precision(type_id,prec)

Description H5T.set_precision(type_id,prec) sets the precision of an atomic
data type. type_id is a data type identifier. prec specifies the number
of bits of precision for the data type.

1-2895

H5T.set_sign

Purpose Set sign property for integer data type

Syntax H5T.set_sign(type_id,sign)

Description H5T.set_sign(type_id,sign) sets the sign property for an integer
type. type_id is a data type identifier. sign specifies the sign type.
Valid values are H5T_SGN_NONE or H5T_SGN_2.

Examples type_id = H5T.copy('H5T_NATIVE_LONG');
sgn = H5ML.get_constant_value('H5T_SGN_NONE');
H5T.set_sign(type_id,sgn);

See Also H5T.get_sign

1-2896

H5T.set_size

Purpose Set size of data type in bytes

Syntax H5T.set_size(type_id,type_size)

Description H5T.set_size(type_id,type_size) sets the total size in bytes for the
data type specified by type_id. The string 'H5T_VARIABLE' can also
be used if a variable length string is desired.

Examples Create a variable length string with null termination.

type_id = H5T.copy('H5T_C_S1');
H5T.set_size(type_id,'H5T_VARIABLE');
H5T.set_strpad(type_id,'H5T_STR_NULLTERM');

See Also H5T.get_size

1-2897

H5T.set_strpad

Purpose Set storage mechanism for string data type

Syntax H5T.set_strpad(type_id,storage_type)

Description H5T.set_strpad(type_id,storage_type) defines the storage
mechanism for the string data type identified by type_id. The storage
type may be one of the following values.

'H5T_STR_NULLTERM' Null terminated

'H5T_STR_NULLPAD' Padded with zeros

'H5T_STR_SPACEPAD' Padded with spaces

Examples Create a ten-character string data type with space padding.

type_id = H5T.copy('H5T_C_S1');
H5T.set_size(type_id,10);
H5T.set_strpad(type_id,'H5T_STR_SPACEPAD');

See Also H5T.get_strpad

1-2898

H5T.get_member_class

Purpose Data type class for compound data type member

Syntax output = H5T.get_member_class(type_id,membno)

Description output = H5T.get_member_class(type_id,membno) returns the data
type class of the compound data type member specified by membno. The
type_id argument is the data type identifier of a compound object.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
type_id = H5D.get_type(dset_id);
member_name = H5T.get_member_name(type_id,0);
member_class = H5T.get_member_class(type_id,0);

See Also H5T.get_member_name

1-2899

H5T.get_member_index

Purpose Index of compound or enumeration type member

Syntax idx = H5T.get_member_index(type_id,name)

Description idx = H5T.get_member_index(type_id,name) returns the index of a
field of a compound data type or an element of an enumeration data
type. type_id is a data type identifier and name is a text string that
identifies the target field or element.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
type_id = H5D.get_type(dset_id);
idx = H5T.get_member_index(type_id,'b');

See Also H5T.get_member_name

1-2900

H5T.get_member_name

Purpose Name of compound or enumeration type member

Syntax name = H5T.get_member_name(type_id,membno)

Description name = H5T.get_member_name(type_id,membno) returns the name of
a field of a compound data type or an element of an enumeration data
type. type_id is a data type identifier. membno is a zero-based index of
the field or element whose name is to be retrieved.

Examples Determine the name of the first field of a compound dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
dtype_id = H5D.get_type(dset_id);
member_name = H5T.get_member_name(dtype_id,0);

See Also H5T.get_member_index

1-2901

H5T.get_member_offset

Purpose Offset of field of compound data type

Syntax output = H5T.get_member_offset(type_id,membno)

Description output = H5T.get_member_offset(type_id,membno) returns the
byte offset of the field specified by membno in the compound data type
specified by type_id. Note that zero (0) is a valid offset.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
type_id = H5D.get_type(dset_id);
idx = H5T.get_member_offset(type_id,1);

See Also H5T.get_member_name

1-2902

H5T.get_member_type

Purpose Data type of specified member

Syntax type_id = H5T.get_member_type(type_id,membno)

Description type_id = H5T.get_member_type(type_id,membno) returns the data
type of the member specified by membno in the data type specified by
type_id.

Examples Get the size of the data type of the first member of a compound data
type.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
compound_type_id = H5D.get_type(dset_id);
member_type_id = H5T.get_member_type(compound_type_id,0);
type_size = H5T.get_size(member_type_id);

See Also H5D.get_type

1-2903

H5T.get_nmembers

Purpose Number of elements in enumeration type

Syntax output = H5T.get_nmembers(type_id)

Description output = H5T.get_nmembers(type_id) retrieves the number of fields
in a compound data type or the number of members of an enumeration
data type. type_id is a data type identifier.

Examples Determine the number of fields in a compound dataset.

fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/compound');
dtype_id = H5D.get_type(dset_id);
nmembers = H5T.get_nmembers(dtype_id);

1-2904

H5T.insert

Purpose Add member to compound data type

Syntax H5T.insert(type_id,name,offset,member_datatype)

Description H5T.insert(type_id,name,offset,member_datatype) adds another
member to the compound data type specified by type_id. The name
argument is a text string that specifies the name of the new member,
which must be unique in the compound data type. offset specifies
where you want to insert the new member and member_datatype
specifies the data type identifier of the new member.

Examples type_id = H5T.create('H5T_COMPOUND',16);
H5T.insert(type_id,'first',0,'H5T_NATIVE_DOUBLE');
H5T.insert(type_id,'second',8,'H5T_NATIVE_INT');
H5T.insert(type_id,'third',12,'H5T_NATIVE_UINT');

See Also H5T.create

1-2905

H5T.pack

Purpose Recursively remove padding from compound data type

Syntax H5T.pack(type_id)

Description H5T.pack(type_id) recursively removes padding from within a
compound data type to make it more efficient (space-wise) to store that
data. type_id is a data type identifier.

1-2906

H5T.enum_create

Purpose Create new enumeration data type

Syntax output = H5T.enum_create(parent_id)

Description output = H5T.enum_create(parent_id) creates a new enumeration
data type based on the specified base data type, parent_id, which
must be an integer type. output is a data type identifier for the new
enumeration data type.

Examples parent_id = H5T.copy('H5T_NATIVE_UINT');
type_id = H5T.enum_create(parent_id);
H5T.enum_insert(type_id,'red',1);
H5T.enum_insert(type_id,'green',2);
H5T.enum_insert(type_id,'blue',3);
H5T.close(type_id);
H5T.close(parent_id);

See Also H5T.enum_insert

1-2907

H5T.enum_insert

Purpose Insert enumeration data type member

Syntax H5T.enum_insert(type_id,name,value)

Description H5T.enum_insert(type_id,name,value) inserts a new enumeration
data type member into the enumeration data type specified by type_id.
The name argument is a text string that specifies the name of the new
member of the enumeration and value is the value of the member.

Examples parent_id = H5T.copy('H5T_NATIVE_UINT');
type_id = H5T.enum_create(parent_id);
H5T.enum_insert(type_id,'red',1);
H5T.enum_insert(type_id,'green',2);
H5T.enum_insert(type_id,'blue',3);
H5T.close(type_id);
H5T.close(parent_id);

See Also H5T.enum_create

1-2908

H5T.enum_nameof

Purpose Name of enumeration data type member

Syntax name = H5T.enum_nameof(type_id,value)

Description name = H5T.enum_nameof(type_id,value) returns the symbol name
corresponding to a member of an enumeration data type. type_id
specifies the enumeration data type. value identifies the member
of the enumeration.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
type_id = H5D.get_type(dset_id);
name0 = H5T.enum_nameof(type_id,int32(0));
name1 = H5T.enum_nameof(type_id,int32(1));

See Also H5T.enum_valueof

1-2909

H5T.enum_valueof

Purpose Value of enumeration data type member

Syntax value = H5T.enum_valueof(type_id,member_name)

Description value = H5T.enum_valueof(type_id,member_name) returns the value
corresponding to a specified member of an enumeration data type.
type_id specifies the enumeration data type and member_name specifies
the member.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
type_id = H5D.get_type(dset_id);
num_members = H5T.get_nmembers(type_id);
for j = 1:num_members

member_name{j} = H5T.get_member_name(type_id,j-1);
member_value(j) = H5T.enum_valueof(type_id,member_name{j});

end

See Also H5T.get_member_name | H5T.get_nmembers

1-2910

H5T.get_member_value

Purpose Value of enumeration data type member

Syntax value = H5T.get_member_value(type_id,membno)

Description value = H5T.get_member_value(type_id,membno) returns the value
of the enumeration data type member specified by membno. The type_id
argument is the data type identifier for the enumeration data type.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/enum');
type_id = H5D.get_type(dset_id);
num_members = H5T.get_nmembers(type_id);
for j = 1:num_members

member_name{j} = H5T.get_member_name(type_id,j-1);
member_value(j) = H5T.get_member_value(type_id,j-1);

end

See Also H5T.get_member_name | H5T.get_nmembers

1-2911

H5T.get_tag

Purpose Tag associated with opaque data type

Syntax tag = H5T.get_tag(type_id)

Description tag = H5T.get_tag(type_id) returns the tag associated with the
opaque data type specified by type_id.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/opaque');
dtype_id = H5D.get_type(dset_id);
tag = H5T.get_tag(dtype_id);

See Also H5T.set_tag

1-2912

H5T.set_tag

Purpose Tag opaque data type with description

Syntax H5T.set_tag(type_id,tag)

Description H5T.set_tag(type_id,tag) tags the opaque data type specified by
type_id, with the descriptive ASCII string identifier, tag.

Examples Create an opaque data type with a length of 4 bytes and a particular tag.

type_id = H5T.create('H5T_OPAQUE',4);
H5T.set_tag(type_id,'Created by MATLAB.');

See Also H5T.create | H5T.get_tag

1-2913

H5T.is_variable_str

Purpose Determine if data type is variable-length string

Syntax output = H5T.is_variable_str(type_id)

Description output = H5T.is_variable_str(type_id) returns a positive value if
the data type specified by type_id is a variable-length string and zero
if it is not. A negative value indicates failure.

Examples fid = H5F.open('example.h5');
dset_id = H5D.open(fid,'/g3/VLstring2D');
type_id = H5D.get_type(dset_id);
if H5T.is_variable_str(type_id) > 0

fprintf('variable length string\n');
end

See Also H5T.vlen_create | H5T.get_size | H5D.get_type

1-2914

H5T.vlen_create

Purpose Create new variable-length data type

Syntax vlen_type_id = H5T.vlen_create(base_id)

Description vlen_type_id = H5T.vlen_create(base_id) creates a new
variable-length (VL) data type. base_id specifies the base type of the
data type to create.

Examples Create a variable length data type for 64-bit floating-point numbers.

base_type_id = H5T.copy('H5T_NATIVE_DOUBLE');
vlen_type_id = H5T.vlen_create(base_type_id);

See Also H5T.is_variable_str

1-2915

H5Z.filter_avail

Purpose Determine if filter is available

Syntax output = H5Z.filter_avail(filter_id)

Description output = H5Z.filter_avail(filter_id) determines whether the
filter specified by the filter identifier is available to the application.
filter_id can be specified by one of the following strings or its numeric
equivalent.

'H5Z_FILTER_DEFLATE'

'H5Z_FILTER_SHUFFLE'

'H5Z_FILTER_FLETCHER32'

'H5Z_FILTER_SZIP'

'H5Z_FILTER_NBIT'

'H5Z_FILTER_SCALEOFFSET'

Examples Determine if the shuffle filter is available.

bool = H5Z.filter_avail('H5Z_FILTER_SHUFFLE');

See Also H5ML.get_constant_value

1-2916

H5Z.get_filter_info

Purpose Information about filter

Syntax filter_config_flags = H5Z.get_filter_info(filter)

Description filter_config_flags = H5Z.get_filter_info(filter) retrieves
information about the filter specified by its identifier. At present,
the information returned is the filter’s configuration flags, indicating
whether the filter is configured to decode data, to encode data,
neither, or both. filter_config_flags should be used with the
HDF5 constant values H5Z_FILTER_CONFIG_ENCODE_ENABLED and
H5Z_FILTER_CONFIG_DECODE_ENABLED in a bitwise AND operation. If
the resulting value is 0, then the encode or decode functionality is not
available.

Examples Determine if encoding is enabled for the deflate filter.

flags = H5Z.get_filter_info('H5Z_FILTER_DEFLATE');
functionality = H5ML.get_constant_value('H5Z_FILTER_CONFIG_ENCODE_ENAB
enabled = bitand(flags,functionality) > 0;

See Also H5Z.filter_avail | H5ML.get_constant_value | bitand

1-2917

hadamard

Purpose Hadamard matrix

Syntax H = hadamard(n)

Description H = hadamard(n) returns the Hadamard matrix of order n.

Definitions Hadamard matrices are matrices of 1’s and -1’s whose columns are
orthogonal,

H'*H = n*I

where [n n]=size(H) and I = eye(n,n) ,.

They have applications in several different areas, including
combinatorics, signal processing, and numerical analysis, [1], [2].

An n-by-nHadamard matrix with n > 2 exists only if rem(n,4) = 0. This
function handles only the cases where n, n/12, or n/20 is a power of 2.

Examples The command hadamard(4) produces the 4-by-4 matrix:

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

References [1] Ryser, H. J., Combinatorial Mathematics, John Wiley and Sons,
1963.

[2] Pratt, W. K., Digital Signal Processing, John Wiley and Sons, 1978.

See Also compan | hankel | toeplitz

1-2918

handle

Purpose Abstract class for deriving handle classes

Syntax classdef MyHandleClass < handle

Description classdef MyHandleClass < handle makes MyHandleClass a subclass
of the handle class.

The handle class is the superclass for all classes that follow handle
semantics. A handle is a reference to an object. If you copy an object’s
handle, MATLAB copies only the handle and both the original and copy
refer to the same object data. If a function modifies a handle object
passed as an input argument, the modification affects the original
input object.

In contrast, nonhandle objects (that is, value objects) are not references.
Functions must return modified value objects to the caller to cause
change to the object outside of the function’s workspace.

See “Modifying Objects” for information on passing objects to functions.

Handle object behavior is like that of Handle Graphics objects, where
the handle of a graphics object always refers to a particular instance
regardless of whether you save the handle when you create the object,
store it in another variable, or obtain it with convenience functions like
findobj, gca, and so on.

If you want to create a class that defines events, you must derive that
class from the handle class.

The handle class is an abstract class, so you cannot create an instance
of this class directly. You use the handle class to derive other classes,
which can be concrete classes whose instances are handle objects. See
“Handle Classes” for information on using handle classes.

Handle Class Methods

When you derive a class from the handle class, your class inherits the
following methods.

1-2919

handle

Method Purpose

addlistener Creates a listener for the specified event and
assigns a callback function to execute when the
event occurs.

notify Broadcast a notice that a specific event is
occurring on a specified handle object or array of
handle objects.

delete Handle object destructor method that is called
when the object’s lifecycle ends.

findobj Finds objects matching the specified conditions
from the input array of handle objects.

findprop Returns a meta.property objects associated with
the specified property name.

isvalid Returns a logical array in which elements are
true if the corresponding elements in the input
array are valid handles. This method is Sealed so
you cannot override it in a handle subclass.

eq
ne
lt
le
gt
ge
Relational
Operators

Relational functions return a logical array of
the same size as the pair of input handle object
arrays. Comparisons use a number associated
with each handle. You can assume that the
same two handles will compare as equal and the
repeated comparison of any two handles will yield
the same result in the same MATLAB session.
Different handles are always not-equal. The order
of handles is purely arbitrary, but consistent.

Handle Class Events

The handle class defines one event:

ObjectBeingDestroyed

1-2920

handle

This event is triggered when the handle object is about to be destroyed.
If you define a listener for this event, its callback executes before
MATLAB destroys the handle object.

You can add a listener for this event using the addlistener method.
See “Events and Listeners — Syntax and Techniques” for more
information on using events and listeners.

You can define a delete method for a handle subclass that MATLAB
calls when the object is destroyed. See “Handle Class Destructor”.

Handle Subclasses

You can use the following abstract handle subclasses to derive more
specialized handle classes:

• hgsetget – use when you want to create a handle class that inherits
set and get methods having the same behavior as Handle Graphics
set and get functions.

• dynamicprops – use when you want to create a handle class that
allows you to add instance data (dynamically defined properties)
to objects.

• matlab.mixin.Copyable – use to add a copy method to a handle
subclass.

Useful Functions

• properties — list the class public properties

• methods — list the class methods

• events — list the events defined by the class

Note that ishandle does not test for handle class objects. Use isa
instead.

1-2921

hankel

Purpose Hankel matrix

Syntax H = hankel(c)
H = hankel(c,r)

Description H = hankel(c) returns the square Hankel matrix whose first column is
c and whose elements are zero below the first anti-diagonal.

H = hankel(c,r) returns a Hankel matrix whose first column is c and
whose last row is r. If the last element of c differs from the first element
of r, the last element of c prevails.

Definitions A Hankel matrix is a matrix that is symmetric and constant across the
anti-diagonals, and has elements h(i,j) = p(i+j-1), where vector
p = [c r(2:end)] completely determines the Hankel matrix.

Examples A Hankel matrix with anti-diagonal disagreement is

c = 1:3; r = 7:10;
h = hankel(c,r)
h =

1 2 3 8
2 3 8 9
3 8 9 10

p = [1 2 3 8 9 10]

See Also hadamard | toeplitz | kron

1-2922

hdf5info

Purpose Information about HDF5 file

Note hdf5info will be removed in a future version. Use h5info
instead.

Syntax fileinfo = hdf5info(filename)
fileinfo = hdf5info(...,'ReadAttributes',BOOL)
[...] = hdf5info(..., 'V71Dimensions', BOOL)

Description fileinfo = hdf5info(filename) returns a structure fileinfo whose
fields contain information about the contents of the HDF5 file filename.
filename is a string that specifies the name of the HDF5 file.

fileinfo = hdf5info(...,'ReadAttributes',BOOL) specifies
whether hdf5info returns the values of the attributes or just
information describing the attributes. By default, hdf5info reads in
attribute values (BOOL = true).

[...] = hdf5info(..., 'V71Dimensions', BOOL) specifies whether
to report the dimensions of data sets and attributes as they were
returned in previous versions of hdf5info (MATLAB 7.1 [R14SP3] and
earlier). If BOOL is true, hdf5info swaps the first two dimensions of the
data set. This behavior was intended to account for the difference in
how HDF5 and MATLAB express array dimenions. HDF5 describes
data set dimensions in row-major order; MATLAB stores data in
column-major order. However, swapping these dimensions may not
correctly reflect the intent of the data in the file and may invalidate
metadata. When BOOL is false (the default), hdf5info returns data
dimensions that correctly reflect the data ordering as it is written in
the file—each dimension in the output variable matches the same
dimension in the file.

1-2923

hdf5info

Note If you use the 'V71Dimensions' parameter and intend on passing
the fileinfo structure returned to the hdf5read function, you should
also specify the 'V71Dimensions' parameters with hdf5read. If you
do not, hdf5read uses the new behavior when reading the data set
and certain metadata returned by hdf5info does not match the actual
data returned by hdf5read.

Examples fileinfo = hdf5info('example.h5');

To get more information about the contents of the HDF5 file, look at the
GroupHierarchy field in the fileinfo structure returned by hdf5info.

toplevel = fileinfo.GroupHierarchy

toplevel =

Filename: [1x64 char]
Name: '/'

Groups: [1x2 struct]
Datasets: []

Datatypes: []
Links: []

Attributes: [1x2 struct]

To probe further into the file hierarchy, keep examining the Groups
field.

See also hdf5read, hdf5write

1-2924

hdf5read

Purpose Read HDF5 file

Note hdf5read will be removed in a future version. Use h5read
instead.

Syntax data = hdf5read(filename,datasetname)
attr = hdf5read(filename,attributename)
[data, attr] = hdf5read(...,'ReadAttributes',BOOL)
data = hdf5read(hinfo)
[...] = hdf5read(..., 'V71Dimensions', BOOL)

Description data = hdf5read(filename,datasetname) reads all the data in the
data set datasetname that is stored in the HDF5 file filename and
returns it in the variable data. To determine the names of data sets in
an HDF5 file, use the hdf5info function.

The return value, data, is a multidimensional array. hdf5read maps
HDF5 data types to native MATLAB data types, whenever possible. If
it cannot represent the data using MATLAB data types, hdf5read uses
one of the HDF5 data type objects. For example, if an HDF5 file contains
a data set made up of an enumerated data type, hdf5read uses the
hdf5.h5enum object to represent the data in the MATLAB workspace.
The hdf5.h5enum object has data members that store the enumerations
(names), their corresponding values, and the enumerated data.

Note hdf5read performs best when reading numeric datasets. If you
need to read string, compound, or variable length datasets, MathWorks
strongly recommends that you use the low-level HDF5 interface
function, H5D.read. To read a subset of a dataset, you must use the
low-level interface.

attr = hdf5read(filename,attributename) reads all the metadata in
the attribute attributename, stored in the HDF5 file filename, and

1-2925

hdf5read

returns it in the variable attr. To determine the names of attributes
in an HDF5 file, use the hdf5info function.

[data, attr] = hdf5read(...,'ReadAttributes',BOOL) reads all
the data, as well as all of the associated attribute information contained
within that data set. By default, BOOL is false.

data = hdf5read(hinfo) reads all of the data in the data set specified
in the structure hinfo and returns it in the variable data. The hinfo
structure is extracted from the output returned by hdf5info, which
specifies an HDF5 file and a specific data set.

[...] = hdf5read(..., 'V71Dimensions', BOOL) specifies whether
to change the majority of data sets read from the file. If BOOL is true,
hdf5read permutes the first two dimensions of the data set, as it
did in previous releases (MATLAB 7.1 [R14SP3] and earlier). This
behavior was intended to account for the difference in how HDF5
and MATLAB express array dimensions. HDF5 describes data set
dimensions in row-major order; MATLAB stores data in column-major
order. However, permuting these dimensions may not correctly reflect
the intent of the data and may invalidate metadata. When BOOL is false
(the default), the data dimensions correctly reflect the data ordering as
it is written in the file — each dimension in the output variable matches
the same dimension in the file.

Examples Use hdf5info to get information about an HDF5 file and then use
hdf5read to read a data set, using the information structure (hinfo)
returned by hdf5info to specify the data set.

hinfo = hdf5info('example.h5');
dset = hdf5read(hinfo.GroupHierarchy.Groups(2).Datasets(1));

See Also hdf5info | hdf5write

1-2926

hdf5write

Purpose Write data to file in HDF5 format

Note hdf5write will be removed in a future version. Use h5write
instead.

Syntax hdf5write(filename,location,dataset)
hdf5write(filename,details,dataset)
hdf5write(filename,details,attribute)
hdf5write(filename, details1, dataset1, details2, dataset2,...)
hdf5write(filename,...,'WriteMode',mode,...)
hdf5write(..., 'V71Dimensions', BOOL)

Description hdf5write(filename,location,dataset) writes the data dataset to
the HDF5 file, filename. If filename does not exist, hdf5write creates
it. If filename exists, hdf5write overwrites the existing file, by default,
but you can also append data to an existing file using an optional syntax.

location defines where to write the data set in the file. HDF5 files
are organized in a hierarchical structure similar to a UNIX directory
structure. location is a string that resembles a UNIX path.

hdf5write maps the data in dataset to HDF5 data types according to
rules outlined below.

hdf5write(filename,details,dataset) writes dataset to filename
using the values in the details structure. For a data set, the details
structure can contain the following fields.

Field Name Description Data Type

Location Location of the data set in
the file

Character array

Name Name to attach to the
data set

Character array

1-2927

hdf5write

hdf5write(filename,details,attribute) writes the metadata
attribute to filename using the values in the details structure. For
an attribute, the details structure can contain following fields.

Field Name Description Data Type

AttachedTo Location of the object this
attribute modifies

Structure array

AttachType Identifies what kind
of object this attribute
modifies; possible
values are 'group' and
'dataset'

Character array

Name Name to attach to the
data set

Character array

hdf5write(filename, details1, dataset1, details2,
dataset2,...) writes multiple data sets and associated attributes
to filename in one operation. Each data set and attribute must have
an associated details structure.

hdf5write(filename,...,'WriteMode',mode,...) specifies whether
hdf5write overwrites the existing file (the default) or appends data sets
and attributes to the file. Possible values for mode are 'overwrite'
and 'append'.

hdf5write(..., 'V71Dimensions', BOOL) specifies whether to
change the majority of data sets written to the file. If BOOL is true,
hdf5write permutes the first two dimensions of the data set, as it
did in previous releases (MATLAB 7.1 [R14SP3] and earlier). This
behavior was intended to account for the difference in how HDF5
and MATLAB express array dimensions. HDF5 describes data set
dimensions in row-major order; MATLAB stores data in column-major
order. However, permuting these dimensions may not correctly reflect
the intent of the data and may invalidate metadata. When BOOL is
false (the default), the data written to the file correctly reflects the
data ordering of the data sets — each dimension in the file’s data sets
matches the same dimension in the corresponding MATLAB variable.

1-2928

hdf5write

Data Type
Mappings

The following table lists how hdf5write maps the data type from the
workspace into an HDF5 file. If the data in the workspace that is being
written to the file is a MATLAB data type, hdf5write uses the following
rules when translating MATLAB data into HDF5 data objects.

MATLAB Data Type HDF5 Data Set or Attribute

Numeric Corresponding HDF5 native data type. For example, if the
workspace data type is uint8, the hdf5write function writes
the data to the file as 8-bit integers. The size of the HDF5
dataspace is the same size as the MATLAB array.

String Single, null-terminated string

Cell array of strings Multiple, null-terminated strings, each the same length. Length
is determined by the length of the longest string in the cell
array. The size of the HDF5 dataspace is the same size as the
cell array.

Cell array of numeric
data

Numeric array, the same dimensions as the cell array. The
elements of the array must all have the same size and type. The
data type is determined by the first element in the cell array.

Structure array HDF5 compound type. Individual fields in the structure
employ the same data translation rules for individual data
types. For example, a cell array of strings becomes a multiple,
null-terminated strings.

HDF5 objects If the data being written to the file is composed of HDF5 objects,
hdf5write uses the same data type when writing to the file. For
all HDF5 objects, except HDF5.h5enum objects, the dataspace
has the same dimensions as the array of HDF5 objects passed to
the function. For HDF5.h5enum objects, the size and dimensions
of the data set in the HDF5 file is the same as the object’s Data
field.

Examples Write a 5-by-5 data set of uint8 values to the root group.

hdf5write('myfile.h5', '/dataset1', uint8(magic(5)))

1-2929

hdf5write

Write a 2-by-2 string data set in a subgroup.

dataset = {'north', 'south'; 'east', 'west'};
hdf5write('myfile2.h5', '/group1/dataset1.1', dataset);

Write a data set and attribute to an existing group.

dset = single(rand(10,10));
dset_details.Location = '/group1/dataset1.2';
dset_details.Name = 'Random';

attr = 'Some random data';
attr_details.Name = 'Description';
attr_details.AttachedTo = '/group1/dataset1.2/Random';
attr_details.AttachType = 'dataset';

hdf5write('myfile2.h5', dset_details, dset, ...
attr_details, attr, 'WriteMode', 'append');

Write a data set using objects.

dset = hdf5.h5array(magic(5));
hdf5write('myfile3.h5', '/g1/objects', dset);

See Also hdf5read | hdf5info

1-2930

hdfan

Purpose Gateway to HDF multifile annotation (AN) interface

Syntax [out1,...,outN] = hdfan(funcstr,input1,...,inputN)

Description hdfan is the MATLAB gateway to the HDF multifile annotation (AN)
interface.

[out1,...,outN] = hdfan(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the AN function in the HDF
library specified by functstr.

There is a one-to-one correspondence between AN functions in
the HDF library and valid values for funcstr. For example,
hdfan('endaccess',annot_id) corresponds to the C library call
ANendaccess(annot_id).

Access Functions

Access functions initialize the interface and provide and terminate
access to annotations.

Value of
funcstr

Function Syntax Description

'start' AN_id =
hdfan('start',file_id)

Initializes the multifile
annotation interface.

'select' annot_id =
hdfan('select',AN_id,
index,annot_type)

Selects and returns
the identifier for the
annotation identified by
the given index value and
annotation type.

'end' status =
hdfan('end',AN_id)

Terminates access to
the multifile annotation
interface.

1-2931

hdfan

Value of
funcstr

Function Syntax Description

'create' annot_id =
hdfan('create',AN_id,tag,ref,annot_type)

Creates a data
annotation for the object
identified by the specified
tag and reference
number. annot_type
can be 'data_label' or
'data_desc'.

'createf' annot_id =
hdfan('createf',AN_id,annot_type)

Creates a file label
or file description
annotation. annot_type
can be 'file_label' or
'file_desc'.

'endaccess' status =
hdfan('endaccess',annot_id)

Terminates access to an
annotation.

Read/Write Functions

Read/write functions read and write file or object annotations.

Value of
funcstr

Function Syntax Description

'writeann' status =
hdfan('writeann',annot_id,annot_string)

Writes the annotation
corresponding to the
given annotation
identifier.

[annot_string,status]
=
hdfan('readann',annot_id)

Reads the annotation
corresponding to
the given annotation
identifier;

'readann'

1-2932

hdfan

Value of
funcstr

Function Syntax Description

[annot_string,status]
=
hdfan('readann',annot_id,max_str_length)

Reads the annotation
corresponding to
the given annotation
identifier. annot_string
will not be longer than
max_str_length.

General Inquiry Functions

General inquiry functions return information about the annotations
in a file.

Value of
funcstr

Function Syntax Description

'numann' num_annot =
hdfan('numann',AN_id,annot_type,tag,ref)

Gets number of
annotations of specified
type corresponding to
given tag/ref pair.

'annlist' [ann_list,status] =
hdfan('annlist',AN_id,annot_type,tag,ref)

Gets the list of
annotations of given type
in the file corresponding
to a given tag/ref pair.

'annlen' length =
hdfan('annlen',annot_id)

Gets the length
of annotation
corresponding to
the given annotation
identifier.

1-2933

hdfan

Value of
funcstr

Function Syntax Description

'fileinfo' [nfl,nfd,ndl,ndd,status]
=
hdfan('fileinfo',AN_id)

Gets number of file
label, file description,
data label, and data
description annotations
in the file corresponding
to AN_id.

'get_tagref' [tag,ref,status] =
hdfan('get_tagref',AN_id,index,annot_type)

Gets the tag/ref pair for
the specified annotation
type and index.

'id2tagref' [tag,ref,status] =
hdfan('id2tagref',annot_id)

Gets the tag/ref pair
corresponding to the
specified annotation
identifier.

'tagref2id' annot_id =
hdfan('tagref2id',AN_id,tag,ref)

Gets the annotation
identifier corresponding
to the specified tag/ref
pair.

'atype2tag' tag =
hdfan('atype2tag',annot_type)

Gets the tag
corresponding to the
specified annotation
type.

'tag2atype' annot_type =
hdfan('tag2atype',tag)

Gets the annotation type
corresponding to the
specified tag.

Input/Output Arguments

A status or identifier output of -1 indicates that the operation failed.

In general, the input argument annot_type can be one of these strings:

• 'file_label'

• 'file_desc'

1-2934

hdfan

• 'data_label'

• 'data_desc'

AN_id refers to the multifile annotation interface identifier.

annot_id refers to an individual annotation identifier.

You must terminate access to all opened identifiers using either
hdfan('end',AN_id) or hdfan('endaccess',annot_id). Otherwise,
the HDF library might not properly write all data to the file.

See Also matlab.io.hdf4.sd | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe |
hdfhx | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2935

hdfdf24

Purpose Gateway to HDF 24-bit raster image (DF24) interface

Syntax [out1,...,outN] = hdfdf24(funcstr,input1,...,inputN)

Description hdfdf24 is the MATLAB gateway to the HDF 24-bit raster image
interface.

[out1,...,outN] = hdfdf24(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the DF24 function in the HDF
library specified by functstr.

There is a one-to-one correspondence between DF24 functions
in the HDF library and valid values for funcstr. For example,
hdfdf24('lastref') corresponds to the C library call DF24lastref().

Write Functions

Write functions create raster image sets and store them in new files
or append them to existing files.

Value of
funcstr

Function Syntax Description

'addimage' status =
hdfdf24('addimage',filename,RGB)

Appends a 24-bit raster
image to a file.

'putimage' status =
hdfdf24('putimage',filename,RGB)

Writes a 24-bit raster
image to file by
overwriting all existing
data.

1-2936

hdfdf24

Value of
funcstr

Function Syntax Description

'setcompress' status =
hdfdf24('setcompress',compress_type,...)

Sets the compress
method for the next
raster image written to
the file. compress_type
can be 'none', 'rle',
'jpeg', or 'imcomp'.
If compress_type
is 'jpeg', then two
additional parameters
must be specified:
quality (a scalar
between 0 and 100)
and force_baseline
(either 0 or 1). Other
compression types do
not have additional
parameters.

'setdims' status =
hdfdf24('setdims',width,height)

Sets the dimensions for
the next raster image
written to the file.

'setil' status =
hdfdf24('setil',interlace)

Sets the interlace format
of the next raster image
written to the file.
interlace can be
'pixel', 'line', or
'component'.

'lastref' ref =
hdfdf24('lastref')

Reports the last
reference number
assigned to a 24-bit
raster image.

1-2937

hdfdf24

Read Functions

Read functions determine the dimensions and interlace format of an
image set, read the actual image data, and provide sequential or
random read access to any raster image set.

Value of
funcstr

Function Syntax Description

'getdims' [width,height,interlace,status]
=
hdfdf24('getdims',filename)

Retrieves the dimensions
before reading the next
raster image. interlace
can be 'pixel', 'line',
or 'component'.

'getimage' [RGB,status] =
hdfdf24('getimage',filename)

Reads the next 24-bit
raster image.

'reqil' status =
hdfdf24('reqil',interlace)

Specifies the interlace
format before reading
the next raster image.
interlace can be
'pixel', 'line', or
'component'.

'readref' status =
hdfdf24('readref',filename,ref)

Reads 24-bit raster
image with the specified
raster number.

'restart' status =
hdfdf24('restart')

Returns to the first
24-bit raster image in
the file.

'nimages' num_images =
hdfdf24('nimages',filename)

Reports the number of
24-bit raster images in a
file.

Input/Output Arguments

A status or identifier output of -1 indicates that the operation failed.

HDF uses C-style ordering of elements, in which elements along the
last dimension vary fastest. MATLAB uses FORTRAN-style ordering,
in which elements along the first dimension vary fastest. hdfdf24

1-2938

hdfdf24

does not automatically convert from C-style ordering to MATLAB style
ordering, which means that MATLAB image arrays need to be permuted
when using hdfdf24 to read or write from HDF files. The exact
permutation depends on the interlace format specified by, for example,
hdfdf24('setil',...). The following calls to permute converts HDF
arrays to MATLAB arrays, according to the specified interlace format.

RGB = permute(RGB,[3 2 1]);
'pixel' interlace

RGB = permute(RGB,[3 1 2]);
'line' interlace

RGB = permute(RGB,[2 1 3]);
'component' interlace

See Also matlab.io.hdf4.sd | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe |
hdfhx | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2939

hdfdfr8

Purpose Gateway to HDF 8-bit raster image (DFR8) interface

Syntax [out1,...,outN] = hdfdfr8(funcstr,input1,...,inputN)

Description hdfdfr8 is the MATLAB gateway to the HDF 8-bit raster image (DFR8)
interface.

[out1,...,outN] = hdfdfr8(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the DFR8 function in the HDF
library specified by functstr.

There is a one-to-one correspondence between DFR8 functions
in the HDF library and valid values for funcstr. For example,
hdfdfr8('setpalette',map) corresponds to the C library call
DFR8setpalette(map).

Write Functions

Write functions create raster image sets and store them in new files
or append them to existing files.

Value of
funcstr

Function Syntax Description

'writeref' status =
hdfdfr8('writeref',filename,ref)

Stores the raster image
using the specified
reference number.

'setpalette' status =
hdfdfr8('setpalette',colormap)

Sets palette for multiple
8-bit raster images.

'addimage' status =
hdfdfr8('addimage',filename,X,compress)

Appends an 8-bit raster
image to a file. compress
can be 'none', 'rle',
'jpeg', or 'imcomp'.

1-2940

hdfdfr8

Value of
funcstr

Function Syntax Description

'putimage' status =
hdfdfr8('putimage',filename,X,compress)

Writes an 8-bit raster
image to an existing
file or creates the
file. compress can be
'none', 'rle', 'jpeg',
or 'imcomp'.

'setcompress' status =
hdfdfr8('setcompress',compress_type,...)

Sets the compression
type. compress_type
can be 'none', 'rle',
'jpeg', or 'imcomp'.
If compress_type
is 'jpeg', then two
additional parameters
must be passed in:
quality (a scalar
between 0 and 100)
and force_baseline
(either 0 or 1). Other
compression types do
not have additional
parameters.

Read Functions

Read functions determine the dimension and palette assignment for
an image set, read the actual image data, and provide sequential or
random read access to any raster image set.

1-2941

hdfdfr8

Value of
funcstr

Function Syntax Description

'getdims' [width,height,hasmap,status]
=
hdfdfr8('getdims',filename)

Retrieves dimensions for
an 8-bit raster image.

'getimage' [X,map,status] =
hdfdfr8('getimage',filename)

Retrieves an 8-bit raster
image and its palette.

'readref' status =
hdfdfr8('readref',filename,ref)

Gets the next raster
image with the specified
reference number.

'restart' status =
hdfdfr8('restart')

Ignores information
about last file accessed
and restarts from
beginning.

'nimages' num_images =
hdfdfr8('nimages',filename)

Returns number of
raster images in a file.

'lastref' ref =
hdfdfr8('lastref')

Returns reference
number of last element
accessed.

Input/Output Arguments

A status or identifier output of -1 indicates that the operation failed.

HDF uses C-style ordering of elements, in which elements along the
last dimension vary fastest.MATLAB uses FORTRAN-style ordering, in
which elements along the first dimension vary fastest. hdfdfr8 does not
automatically convert from C-style ordering to MATLAB style ordering,
which means that MATLAB image and colormap matrices must be
transposed when using hdfdfr8 to read or write from HDF files.

Functions in hdfdfr8 that read and write palette information expect
to use uint8 data in the range [0,255], while MATLAB colormaps
contain double-precision values in the range [0,1]. Therefore, HDF
palettes must be converted to double and scaled to be used as MATLAB
colormaps.

1-2942

hdfdfr8

See Also matlab.io.hdf4.sd | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe |
hdfhx | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2943

hdfh

Purpose Gateway to HDF H interface

Syntax [out1,...,outN] = hdfh(funcstr,input1,...,inputN)

Description hdfh is the MATLAB gateway to the HDF H interface.

[out1,...,outN] = hdfh(funcstr,input1,...,inputN) returns one
or more outputs corresponding to the H function in the HDF library
specified by functstr.

There is a one-to-one correspondence between H functions in
the HDF library and valid values for funcstr. For example,
hdfh('close',file_id) corresponds to the C library call
Hclose(file_id).

Functions

Value of
funcstr

Function Syntax Description

'appendable' status =
hdfh('appendable',access_id)

Specifies that the
element can be
appended to.

'close' status =
hdfh('close',file_id)

Closes the access path
to the file.

'deldd' status =
hdfh('deldd',file_id,tag,ref)

Deletes a tag and
reference number from
the data descriptor list.

'dupdd' status =
hdfh('dupdd',file_id,tag,ref,old_tag,old_ref)

'endaccess' status =
hdfh('endaccess',access_id)

Terminates access to a
data object by disposing
of the access identifier.

'fidinquire' [filename,access_mode,attach,status]
=
hdfh('fidinquire',file_id)

Returns information
about specified file.

1-2944

hdfh

Value of
funcstr

Function Syntax Description

'find' [tag,ref,offset,length,status]
=
hdfh('find',file_id,...
search_tag,search_ref,search_type,dir)

Locates the next object
to be searched for in an
HDF file. search_type
can be 'new' or
'continue'. The dir
input can be 'forward'
or 'backward'.

'getelement' [data,status] =
hdfh('getelement',file_id,tag,ref)

Reads the data element
for the specified tag and
reference number.

'getfileversion'[major,minor,release,info,status]
=
hdfh('getfileversion',file_id)

Returns version
information for an
HDF file.

'getlibversion'[major,minor,release,info,status]
= hdfh('getlibversion')

Returns version
information for the
current HDF library.

'inquire' [file_id,tag,ref,length,offset,position,access,...
special,status] =
hdfh('inquire',access_id)

Returns access
information about a
data element.

'ishdf' tf =
hdfh('ishdf',filename)

Determines if a file is
an HDF file.

'length' length =
hdfh('length',file_id,tag,ref)

Returns the length of a
data object specified by
the tag and reference
number.

'newref' ref =
hdfh('newref',file_id)

Returns a reference
number that can be
used with any tag
to product a unique
tag/reference number
pair.

1-2945

hdfh

Value of
funcstr

Function Syntax Description

'nextread' status =
hdfh('nextread',access_id,tag,ref,origin)

Searches for the next
data descriptor that
matches the specified
tag and reference
number. origin can be
'start' or 'current'.

'number' num =
hdfh('number',file_id,tag)

Returns the number of
instances of a tag in a
file.

'offset' offset =
hdfh('offset',file_id,tag,ref)

Returns the offset of a
data element in the file.

'open' file_id =
hdfh('open',filename,access,n_dds)

Provides an access
path to an HDF file
by reading all the data
descriptor blocks into
memory.

'putelement' count =
hdfh('putelement',file_id,tag,ref,X)

Writes a data element
or replaces an existing
data element in an
HDF file. X must be a
uint8 array.

'read' X =
hdfh('read',access_id,length)

Reads the next segment
in a data element.

'seek' status =
hdfh('seek',access_id,offset,origin)

Sets the access pointer
to an offset within a
data element. origin
can be 'start' or
'current'.

'startread' access_id =
hdfh('startread',file_id,tag,ref)

1-2946

hdfh

Value of
funcstr

Function Syntax Description

'startwrite' access_id =
hdfh('startwrite',file_id,tag,ref,length)

'sync' status =
hdfh('sync',file_id)

'trunc' length =
hdfh('trunc',access_id,trunc_len)

Truncates the specified
data object to the given
length.

'write' count =
hdfh('write',access_id,X)

Writes the next data
segment to a specified
data element. X must
be a uint8 array.

Output Arguments

A status or identifier output of -1 indicates that the operation failed.

Limitations • hdfh does not support these functions in the NCSA H interface:

- Hcache

- Hendbitaccess

- Hexist

- Hflushdd

- Hgetbit

- Hputbit

- Hsetlength

- Hshutdown

- Htagnewref

See Also matlab.io.hdf4.sd | hdfan | hdfdf24 | hdfdfr8 | hdfhd | hdfhe |
hdfhx | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2947

hdfhd

Purpose Gateway to HDF HD interface

Syntax [out1,...,outN] = hdfhd(funcstr,input1,...,inputN)

Description hdfhd is the MATLAB gateway to the HDF HD interface.

[out1,...,outN] = hdfhd(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the HD function in the HDF
library specified by functstr.

There is a one-to-one correspondence between HD functions in the HDF
library and valid values for funcstr.

Functions

Value of
funcstr

Function Syntax Description

'gettagsname' tag_name =
hdfhd('gettagsname',tag)

Gets the name of the
specified tag.

Output Arguments

A status or identifier output of -1 indicates that the operation failed.

See Also matlab.io.hdf4.sd | hdfan | hdfdf24 | hdfdfr8 | hdfh | hdfhd |
hdfhe | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2948

hdfhe

Purpose Gateway to HDF HE interface

Syntax [out1,...,outN] = hdfhe(funcstr,input1,...,inputN)

Description hdfhe is the MATLAB gateway to the HDF HE interface.

This is a stub page.

[out1,...,outN] = hdfhe(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the HE function in the HDF
library specified by functstr.

There is a one-to-one correspondence between HE functions in the HDF
library and valid values for funcstr.

Functions

Value of funcstr Function Syntax Description

'clear' hdfhe('clear') Clears all information
on reported errors
from the error stack.

'print' hdfhe('print',level)Prints information in
error stack. If level
is 0, then the entire
error stack is printed.

'string' error_text =
hdfhe('string',error_code)

Returns the error
message associated
with the specified
error code.

'value' error_code =
hdfhe('value',stack_offset)

Returns an error
code from the
specified level of
the error stack. A
stack_offset value
of 1 gets the most
recent error code.

1-2949

hdfhe

Output Arguments

A status or identifier output of -1 indicates that the operation failed.

Limitations • hdfhe does not support these functions:

- HEpush

- HEreport

See Also matlab.io.hdf4.sd | hdfan | hdfdf24 | hdfdfr8 | hdfh | hdfhd |
hdfhe | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2950

hdfhx

Purpose Gateway to HDF external data (HX) interface

Syntax [out1,...,outN] = hdfhx(funcstr,input1,...,inputN)

Description hdfhx is the MATLAB gateway to the HDF interface for manipulating
linked and external data elements.

[out1,...,outN] = hdfhx(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the HX function in the HDF
library specified by functstr.

There is a one-to-one correspondence between HX functions in
the HDF library and valid values for funcstr. For example,
hdfhx('setdir',pathname); corresponds to the C library call
HXsetdir(pathname).

Functions

Value of
funcstr

Function Syntax Description

'create' access_id =
hdfhx('create',file_id,tag,ref,extern_name,offset,len

Creates a new external
file special data element.

'setcreatedir' status =
hdfhx('setcreatedir',pathname);

Sets the directory
location for writing
external file.

'setdir' status =
hdfhx('setdir',pathname);

Sets the directory for
locating external files.
pathname can contain
multiple directories
separated by vertical
bars.

Input/Output Arguments

A status or identifier output of -1 indicates that the operation failed.

In cases where the HDF C library accepts NULL for certain inputs, an
empty matrix ([] or '') can be used.

1-2951

hdfhx

See Also matlab.io.hdf4.sd | hdfan | hdfdf24 | hdfdfr8 | hdfh | hdfhd |
hdfhe | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2952

hdfinfo

Purpose Information about HDF4 or HDF-EOS file

Syntax S = hdfinfo(filename)
S = hdfinfo(filename,mode)

Description S = hdfinfo(filename) returns a structure S whose fields contain
information about the contents of an HDF4 or HDF-EOS file. filename
is a string that specifies the name of the HDF4 file.

S = hdfinfo(filename,mode) reads the file as an HDF4 file, if mode
is 'hdf', or as an HDF-EOS file, if mode is 'eos'. If mode is 'eos',
only HDF-EOS data objects are queried. To retrieve information on the
entire contents of a file containing both HDF4 and HDF-EOS objects,
mode must be 'hdf'.

Note hdfinfo can be used on Version 4.x HDF files or Version 2.x
HDF-EOS files. To get information about an HDF5 file, use hdf5info.

The set of fields in the returned structure S depends on the individual
file. Fields that can be present in the S structure are shown in the
following table.

Mode Field Name Description Return Type

HDF Attributes Attributes of the data
set

Structure
array

Description Annotation
description

Cell array

Filename Name of the file String

Label Annotation label Cell array

Raster8 Description of 8-bit
raster images

Structure
array

1-2953

hdfinfo

Mode Field Name Description Return Type

Raster24 Description of 24-bit
raster images

Structure
array

SDS Description of
scientific data sets

Structure
array

Vdata Description of Vdata
sets

Structure
array

Vgroup Description of
Vgroups

Structure
array

EOS Filename Name of the file String

Grid Grid data Structure
array

Point Point data Structure
array

Swath Swath data Structure
array

Those fields in the table above that contain structure arrays are further
described in the tables shown below.

Fields Common to Returned Structure Arrays

Structure arrays returned by hdfinfo contain some common fields.
These are shown in the table below. Not all structure arrays will
contain all of these fields.

Field Name Description Data Type

Attributes Data set attributes. Contains
fields Name and Value.

Structure array

Description Annotation description Cell array

Filename Name of the file String

Label Annotation label Cell array

1-2954

hdfinfo

Field Name Description Data Type

Name Name of the data set String

Rank Number of dimensions of the
data set

Double

Ref Data set reference number Double

Type Type of HDF or HDF-EOS
object

String

Fields Specific to Certain Structures

Structure arrays returned by hdfinfo also contain fields that are
unique to each structure. These are shown in the tables below.

Fields of the Attribute Structure

Field Name Description Data Type

Name Attribute name String

Value Attribute value or description Numeric or string

Fields of the Raster8 and Raster24 Structures

Field Name Description Data Type

HasPalette 1 (true) if the image has an
associated palette, otherwise 0
(false) (8-bit only)

Logical

Height Height of the image, in pixels Number

Interlace Interlace mode of the image
(24-bit only)

String

Name Name of the image String

Width Width of the image, in pixels Number

1-2955

hdfinfo

Fields of the SDS Structure

Field Name Description Data Type

DataType Data precision String

Dims Dimensions of the data
set. Contains fields Name,
DataType, Size, Scale, and
Attributes. Scale is an array
of numbers to place along
the dimension and demarcate
intervals in the data set.

Structure array

Index Index of the SDS Number

Fields of the Vdata Structure

Field Name Description Data Type

DataAttributes Attributes of the entire data
set. Contains fields Name and
Value.

Structure array

Class Class name of the data set String

Fields Fields of the Vdata. Contains
fields Name and Attributes.

Structure array

NumRecords Number of data set records Double

IsAttribute 1 (true) if Vdata is an
attribute, otherwise 0 (false)

Logical

1-2956

hdfinfo

Fields of the Vgroup Structure

Field Name Description Data Type

Class Class name of the data set String

Raster8 Description of the 8-bit
raster image

Structure array

Raster24 Description of the 24-bit
raster image

Structure array

SDS Description of the Scientific
Data sets

Structure array

Tag Tag of this Vgroup Number

Vdata Description of the Vdata
sets

Structure array

Vgroup Description of the Vgroups Structure array

Fields of the Grid Structure

Field Name Description Data Type

Columns Number of columns in the
grid

Number

DataFields Description of the data
fields in each Grid field
of the grid. Contains
fields Name, Rank, Dims,
NumberType, FillValue,
and TileDims.

Structure array

LowerRight Lower right corner location,
in meters

Number

Origin Code Origin code for the grid Number

PixRegCode Pixel registration code Number

1-2957

hdfinfo

Fields of the Grid Structure (Continued)

Field Name Description Data Type

Projection Projection code, zone code,
sphere code, and projection
parameters of the grid.
Contains fields ProjCode,
ZoneCode, SphereCode, and
ProjParam.

Structure

Rows Number of rows in the grid Number

UpperLeft Upper left corner location,
in meters

Number

Fields of the Point Structure

Field Name Description Data Type

Level Description of each level
of the point. Contains
fields Name, NumRecords,
FieldNames, DataType, and
Index.

Structure

Fields of the Swath Structure

Field Name Description Data Type

DataFields Data fields in the swath.
Contains fields Name, Rank,
Dims, NumberType, and
FillValue.

Structure array

GeolocationFieldsGeolocation fields in the
swath. Contains fields Name,

Structure array

1-2958

hdfinfo

Fields of the Swath Structure (Continued)

Field Name Description Data Type

Rank, Dims, NumberType, and
FillValue.

IdxMapInfo Relationship between
indexed elements of the
geolocation mapping.
Contains fields Map and
Size.

Structure

MapInfo Relationship between data
and geolocation fields.
Contains fields Map, Offset,
and Increment.

Structure

Examples To retrieve information about the file example.hdf,

fileinfo = hdfinfo('example.hdf')

fileinfo =
Filename: 'example.hdf'

SDS: [1x1 struct]
Vdata: [1x1 struct]

And to retrieve information from this about the scientific data set in
example.hdf,

sds_info = fileinfo.SDS

sds_info =
Filename: 'example.hdf'

Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2

DataType: 'int16'
Attributes: []

1-2959

hdfinfo

Dims: [2x1 struct]
Label: {}

Description: {}
Index: 0

See Also hdfread

1-2960

hdfml

Purpose Utilities for working with MATLAB HDF gateway functions

Syntax hdfml('closeall')
hdfml('listinfo')
tag = hdfml('tagnum',tagname)
nbytes = hdfml('sizeof',data_type)
hdfml('defaultchartype',char_type)

Description hdfml('closeall') closes all open registered HDF file and data object
identifiers.

hdfml('listinfo') prints information about all open registered HDF
file and data object identifiers.

tag = hdfml('tagnum',tagname) returns the tag number
corresponding to the tag name specified by tagname.

nbytes = hdfml('sizeof',data_type) returns size in bytes of
specified data type.

hdfml('defaultchartype',char_type) defines the HDF data type for
MATLAB strings. Valid values for char_type are 'char8' or 'uchar8'.
The change persists until the MATLAB HDF gateway function is
cleared from memory. MATLAB strings are mapped to char8 by default.

The MATLAB HDF gateway functions maintain lists of certain HDF
file and data object identifiers so that, for example, HDF objects and
files can be properly closed when a user issues the command:

clear mex

These lists are updated whenever these identifiers are created or closed.

See Also matlab.io.hdf4.sd | hdfan | hdfdf24 | hdfdfr8 | hdfh | hdfhd |
hdfhe | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2961

hdfpt

Purpose Interface to HDF-EOS Point object

Syntax [out1,...,outN] = hdfpt(funcstr,input1,...,inputN)

Description hdfpt is the MATLAB gateway to the Point functions in the HDF-EOS
C library, which is developed and maintained by EOSDIS (Earth
Observing System Data and Information System). A Point data set
comprises a series of data records taken at (possibly) irregular time
intervals and at scattered geographic locations. Each data record
consists of a set of one or more data values representing the state of a
point in time and/or space.

[out1,...,outN] = hdfpt(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the Point function in the
HDF-EOS library specified by functstr.

There is a one-to-one correspondence between PT functions in the
HDF-EOS C library and valid values for funcstr. For example,
hdfpt('detach',point_id) corresponds to the C library call
PTdetach(point_id).

Programming Model

The programming model for accessing a point data set through hdfpt is
as follows:

1 Open the file and initialize the PT interface by obtaining a file id
from a file name.

2 Open or create a point data set by obtaining a point id from a point
name.

3 Perform desired operations on the data set.

4 Close the point data set by disposing of the point id.

5 Terminate point access to the file by disposing of the file id.

1-2962

hdfpt

To access a single point data set that already exists in an HDF-EOS file,
use the following MATLAB commands:

fileid = hdfpt('open',filename,access);
pointid = hdfpt('attach',fileid,pointname);

% Optional operations on the data set...

status = hdfpt('detach',pointid);
status = hdfpt('close',fileid);

To access several files at the same time, obtain a separate file identifier
for each file to be opened. To access more than one point data set, obtain
a separate point id for each data set.

It is important to properly dispose of point id’s and file id’s so that
buffered operations are written completely to disk. If you quit MATLAB
or clear all MEX-files with PT identifiers still open, MATLAB issues a
warning and automatically disposes of them.

Note that file identifiers returned by hdfpt are not interchangeable
with file identifiers returned by any other HDF-EOS or HDF function.

Access Routines

Access routines initialize and terminate access to the PT interface and
point data sets (including opening and closing files).

1-2963

hdfpt

Value of
funcstr

Function Syntax Description

'open' file_id =
hdfpt('open',filename,access)

Given the filename and
desired access mode,
opens or creates an
HDF file in order to
create, read, or write a
point. access can be
'read', 'readwrite', or
'create'. file_id is -1
if the operation fails.

'create' point_id =
hdfpt('create',file_id,pointname)

Creates a point data set
with the specified name.
pointname is a string
contain the name of the
point data set. point_id
is -1 if the operation
fails.

'attach' point_id =
hdfpt('attach',file_id,pointname)

Attaches to an existing
point data set within the
file. point_id is -1 if the
operation fails.

'detach' status =
hdfpt('detach',point_id)

Detaches from point
data set.

'close' status =
hdfpt('close',file_id)

Closes file.

Definition Routines

Definition routines allow the user to set key features of a point data set.

1-2964

hdfpt

Value of
funcstr

Function Syntax Description

'deflevel' status =
hdfpt('deflevel',point_id,levelname,...
fieldList,fieldTypes,fieldOrders)

Defines a new level
within a point data
set. levelname is the
name of the level to be
defined. fieldList is
a string containing a
comma-separated list of
field names in the new
level. fieldTypes is
a cell array containing
the number type string
for each field. Valid
number type strings
include 'uchar8',
'uchar', 'char8',
'char', 'double',
'uint8', 'uint16',
'uint32', 'float',
'int8', 'int16', and
'int32'. fieldOrders
is a vector containing the
order for each field.

'deflinkage' status =
hdfpt('deflinkage',point_id,parent,child,linkfield)

Defines a linkfield
between two adjacent
levels. parent is the
name of the parent level.
child is the name of the
child level. linkfield is
the name of a field that
is defined at both levels.

Basic I/O Routines

Basic I/O routines read and write data and metadata to a point data set.

1-2965

hdfpt

Value of
funcstr

Function Syntax Description

'writelevel' status =
hdfpt('writelevel',point_id,level,data)

Appends new records to
the specified level in a
point data set. level is
the desired level index
(zero-based). data must
be a P-by-1 cell array
where P is the number
of fields defined for the
specified level. Each cell
of data must contain
an M(k)-by-N matrix of
data, where M(k) is the
order of the k-th field
(the number of scalar
values in the field) and N
is the number of records.
The MATLAB class of
the cells must match the
HDF data type defined
for the corresponding
fields. A MATLAB
string is automatically
converted to match any
of the HDF char types.
Other data types must
match exactly.

'readlevel' [data,status] =
hdfpt('readlevel',point_id,...
level,fieldList,records)

Reads data from a
given level in a point
data set. level is the
index (zero-based) of the
desired level. fieldList
is a string containing
a comma-separated list
of the fields to read.

1-2966

hdfpt

Value of
funcstr

Function Syntax Description

records is a vector
containing the indices
(zero-based) of the
records to read. data
is a P-by-1 cell array
where P is the number
of requested fields. Each
cell of data contains an
M(k)-by-N matrix of data
where M(k) is the order
of the k-th field and N is
the number of records,
or length(records).

'updatelevel' status =
hdfpt('updatelevel',point_id,...
level,fieldList,records,data)

Updates (corrects) data
in a particular level
of a point data set.
level is the index
(zero-based) of the
desired level. fieldList
is a string containing
a comma-separated
list of field names to
update. records is a
vector containing the
indices (zero-based) of
the records to update.
data is a P-by-1 cell array
where P is the number
of specified fields. Each
cell of data must contain
an M(k)-by-N matrix of
data, where M(k) is the
order of the k-th field
(the number of scalar

1-2967

hdfpt

Value of
funcstr

Function Syntax Description

values in the field) and N
is the number of records,
or length(records).
The MATLAB class of
the cells must match the
HDF data type defined
for the corresponding
fields. A MATLAB
string is automatically
converted to match any
of the HDF char types.
Other data types must
match exactly.

'writeattr' status =
hdfpt('writeattr',point_id,attrname,data)

Writes or updates the
point data set attribute
with the specified name.
If the attribute does
not already exist, it is
created.

'readattr' [data,status] =
hdfpt('readattr',point_id,attrname)

Reads the attribute
data from the specified
attribute.

Inquiry Routines

Inquiry routines return information about data contained in a point
data set.

1-2968

hdfpt

Value of
funcstr

Function Syntax Description

'nlevels' nlevels =
hdfpt('nlevels',point_id)

Returns the number of
levels in a point data
set. nlevels is -1 if the
operation fails.

'nrecs' nrecs =
hdfpt('nrecs',point_id,level)

Returns the number of
records in the specified
level. nrecs is -1 if the
operation fails.

'nfields' [numfields,strbufsize]
=
hdfpt('nfields',point_id,level)

Returns the number of
fields in the specified
level. strbufsize
is the length of the
comma-separated field
name string. numfields
is -1 and strbufsize is
[] if the operation fails.

'levelinfo' [numfields,fieldList,field
Type,fieldOrder] =
...
hdfpt('levelinfo',point_id,level)

Returns information
on fields for a specified
level. fieldList is
a string containing a
comma-separated list of
field names. fieldType
is a cell array of strings
that defined the data
type for each field.
fieldOrder is a vector
containing the order
(number of scalar values)
associated with each
field. If the operation
fails, numfields is -1

1-2969

hdfpt

Value of
funcstr

Function Syntax Description

and the other outputs
are empty.

'levelindx' level =
hdfpt('levelindx',point_id,levelname)

Returns the level index
(zero-based) of the
level with the specified
name. level is -1 if the
operation fails.

'bcklinkinfo' [linkfield,status] =
hdfpt('bcklinkinfo',point_id,level)

Returns the linkfield
to the previous level.
status is -1 and
linkfield is [] if the
operation fails.

'fwdlinkinfo' [linkfield,status] =
hdfpt('fwdlinkinfo',point_id,level)

Returns the linkfield to
the following level.
status is -1 and
linkfield is [] if the
operation fails.

'getlevelname' [levelname,status] =
hdfpt('getlevelname',point_id,level)

Returns the name of
a level given the level
index. status is -1 and
levelname is [] if the
operation fails.

1-2970

hdfpt

Value of
funcstr

Function Syntax Description

'sizeof' [byteSize,fieldLevels]
=
hdfpt('sizeof',point_id,fieldList)

Returns the size
in bytes and field
levels of the specified
fields. fieldList is
a string containing a
comma-separated list of
field names. byteSize is
the total size of bytes of
the specified fields, and
fieldLevels is a vector
containing the level
index corresponding to
each field. byteSize is
-1 and fieldLevels is
[] if the operation fails.

'attrinfo' [numberType,count,status]
= ...
hdfpt('attrinfo',point_id,attrname)

Returns the number
type and size in
bytes of the specified
attribute. attrname
is the name of the
attribute. numberType is
a string corresponding
to the HDF data type
of the attribute. count
is the number of bytes
used by the attribute
data. status is -1 and
numberType and count
are [] if the operation
fails.

1-2971

hdfpt

Value of
funcstr

Function Syntax Description

'inqattrs' [nattrs,attrnames] =
hdfpt('inqattrs',point_id)

Retrieve information
about attributes defined
in a point data set.
nattrs and attrnames
are the number and
names of all the defined
attributes, respectively.
If the operation fails,
nattrs is -1 and
attrnames is [].

'inqpoint' [numpoints,pointnames]
=
hdfpt('inqpoint',filename)

Retrieve number and
names of point data sets
defined in an HDF-EOS
file. pointnames is
a string containing a
comma-separated list of
point names. numpoints
is -1 and pointnames is
[] if the operation fails.

Utility Routines

Placeholder.

1-2972

hdfpt

Value of
funcstr

Function Syntax Description

'getrecnums' [outRecords,status]
=
hdfpt('getrecnums',...
point_id,inLevel,outLevel,inRecords)

Returns the record
numbers in outLevel
corresponding the
group of records
specified by inRecords
in level inLevel.
The inLevel and
outLevel arguments
are zero-based level
indices. inRecords is
a vector of zero-based
record indices. status is
-1 and outRecords is []
if the operation fails.

Subset Routines

Subset routines allow reading of data from a specified geographic region.

Value of
funcstr

Function Syntax Description

'defboxregion' region_id =
hdfpt('defboxregion',point_id,cornerLon,cornerLat)

Defines a
longitude-latitude
box region for a
point. cornerLon
is a two-element
vector containing the
longitudes of opposite
box corners. cornerLat
is a two-element vector
containing the latitudes
of opposite box corners.

1-2973

hdfpt

Value of
funcstr

Function Syntax Description

region_idis -1 if the
operation fails.

'defvrtregion' period_id =
hdfpt('defvrtregion',point_id,region_id,...
vert_field,range)

Defines a vertical region
for a point. vert_field
is the name of the field
to subset. range is
a two-element vector
containing the minimum
and maximum vertical
values. period_id is -1
if the operation fails.

'regioninfo' [byteSize,status] =
hdfpt('regioninfo',point_id,...
region_id,level,fieldList)

Returns the data size
in bytes of the subset
period of the specified
level. fieldlist is
a string containing a
comma-separated list of
fields to extract. status
and byteSize are -1 if
the operation fails.

'regionrecs' [numRec,recNumbers,status]
=
hdfpt('regionrecs',...
point_id,region_id,level)

Returns the records
numbers within the
subsetted region of the
specified level. status
and numrec are -1 and
recNumbers is [] if the
operation fails.

1-2974

hdfpt

Value of
funcstr

Function Syntax Description

'extractregion'[data,status] =
hdfpt('extractregion',point_id,...
region_id,level,fieldList)

Reads data from
the specified subset
region. fieldList is
a string containing a
comma-separated list of
requested fields. data
is a P-by-1 cell array
where P is the number
of requested fields. Each
cell of data contains an
M(k)-by-N matrix of data
where M(k) is the order
of the k-th field and N is
the number of records.
status is -1 and data is
[] if the operation fails.

'deftimeperiod'period_id =
hdfpt('deftimeperiod',point_id,startTime,stopTime)

Defines a time period
for a point data set.
period_id is -1 if the
operation fails.

'periodinfo' [byteSize,status] =
hdfpt('periodinfo',point_id,...
period_id,level,fieldList)

Retrieves the size in
bytes of the subsetted
period. fieldList is
string containing a
comma-separated list
of desired field names.
byteSize and status
are -1 if the operation
fails.

1-2975

hdfpt

Value of
funcstr

Function Syntax Description

'periodrecs' [numRec,recNumbers,status]
=
hdfpt('periodrecs',...
point_id,period_id,level)

Returns the records
numbers within the
subsetted time period
of the specified level.
numRec and status are
-1 if the operation fails.

'extractperiod'[data,status] =
hdfpt('extractperiod',...
point_id,period_id,level,fieldList)

Reads data from the
specified subsetted time
period. fieldList is
a string containing a
comma-separated list of
requested fields. data
is a P-by-1 cell array
where P is the number
of requested fields. Each
cell of data contains an
M(k)-by-N matrix of data
where M(k) is the order
of the k-th field and N is
the number of records.
status is -1 and data is
[] if the operation fails.

Input/Output Arguments

Most routines return the flag, status, which is 0 when the routine
succeeds and -1 when the routine fails. Routines with syntaxes which
do not contain status return failure information in one of its outputs as
notated in the function syntaxes.

levelName is a string.

Some of the C library functions accept input values that are defined in
terms of C macros. For example, the C PTopen() function requires
an access mode input that can be DFACC_READ, DFACC_RDWR, or

1-2976

hdfpt

DFACC_CREATE, where these symbols are defined in the appropriate
C header file. Where macro definitions are used in the C library, the
equivalent MATLAB syntaxes use strings derived from the macro
names. You can either use a string containing the entire macro name,
or you can omit the common prefix. You can use either upper or lower
case. For example, this C function call:

status = PTopen("PointFile.hdf",DFACC_CREATE)

is equivalent to these MATLAB function calls:

status = hdfpt('open','PointFile.hdf','DFACC_CREATE')
status = hdfpt('open','PointFile.hdf','dfacc_create')
status = hdfpt('open','PointFile.hdf','CREATE')
status = hdfpt('open','PointFile.hdf','create')

In cases where a C function returns a value with a macro definition, the
equivalent MATLAB function returns the value as a string containing
the lowercase short form of the macro.

HDF number types are specified by strings, including 'uchar8',
'uchar', 'char8', 'char', 'double', 'uint8', 'uint16', 'uint32',
'float', 'int8', 'int16', and 'int32'.

In cases where the HDF-EOS library accepts NULL, use an empty matrix
([]).

See Also matlab.io.hdfeos.sw

1-2977

hdfread

Purpose Read data from HDF4 or HDF-EOS file

Syntax data = hdfread(filename, datasetname)
data = hdfread(hinfo)
data = hdfread(...,param,value,...)
data = hdfread(filename,EOSname,param,value,...)
[data,map] = hdfread(...)

Description data = hdfread(filename, datasetname) returns all the data in
the data set specified by datasetname from the HDF4 or HDF-EOS
file specified by filename. To determine the name of a data set in an
HDF4 file, use the hdfinfo function.

Note hdfread can be used on Version 4.x HDF files or Version 2.x
HDF-EOS files. To read data from an HDF5 file, use h5read.

data = hdfread(hinfo) returns all the data in the data set specified
by the structurehinfo, returned by the hdfinfo function. Specify the
field in the hinfo structure that relates to a particular type of data set,
and use indexing to specify which data set, when there are more than
one. See “Specify data set to read” on page 1-2986 for more information.

data = hdfread(...,param,value,...) returns subsets of the data
according to the specified parameter and value pairs. See the tables
below to find the valid parameters and values for different types of
data sets.

data = hdfread(filename,EOSname,param,value,...) subsets the
data field from the HDF-EOS point, grid, or swath specified by EOSname.

[data,map] = hdfread(...) returns the image data and the colormap
map for an 8-bit raster image.

1-2978

hdfread

Subsetting
Parameters

The following tables show the subsetting parameters that can be used
with the hdfread function for certain types of HDF4 data. These data
types are

• HDF Scientific Data (SD)

• HDF Vdata (V)

• HDF-EOS Grid Data

• HDF-EOS Point Data

• HDF-EOS Swath Data

Note the following:

• If a parameter requires multiple values, use a cell array to store the
values. For example, the 'Index' parameter requires three values:
start, stride, and edge. Enclose these values in curly braces as a
cell array.

hdfread(..., 'Index', {start,stride,edge})

• All values that are indices are 1-based.

Subsetting Parameters for HDF Scientific Data (SD) Data Sets

When you are working with HDF SD files, hdfread supports the
parameters listed in this table.

1-2979

hdfread

Parameter Description

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set

• start— A 1-based array specifying the position in the file to begin
reading

Default: 1, start at the first element of each dimension. The values
specified must not exceed the size of any dimension of the data set.

• stride — A 1-based array specifying the interval between the
values to read

Default: 1, read every element of the data set.

• edge — A 1-based array specifying the length of each dimension
to read

Default: An array containing the lengths of the corresponding
dimensions

For example, this code reads the data set Example SDS from the HDF
file example.hdf. The 'Index' parameter specifies that hdfread start
reading data at the beginning of each dimension, read until the end
of each dimension, but only read every other data value in the first
dimension.

data = hdfread('example.hdf','Example SDS','Index',{[],[2 1],[]})

Subsetting Parameters for HDF Vdata Sets

When you are working with HDF Vdata files, hdfread supports these
parameters.

Parameter Description

'Fields' Text string specifying the name of the field to be read. When
specifying multiple field names, use a cell array.

'FirstRecord' 1-based number specifying the record from which to begin reading

'NumRecords' Number specifying the total number of records to read

1-2980

hdfread

For example, this code reads the Vdata set Example Vdata from the
HDF file example.hdf.

data = hdfread('example.hdf','Example Vdata','FirstRecord', 2,'NumRecords', 5)

Subsetting Parameters for HDF-EOS Grid Data

When you are working with HDF-EOS grid data, hdfread supports
three types of parameters:

• Required parameters

• Optional parameters

• Mutually exclusive parameters — You can only specify one of these
parameters in a call to hdfread, and you cannot use these parameters
in combination with any optional parameter.

Parameter Description

Required Parameter

'Fields' String specifying the field to be read. You can specify only one field
name for a Grid data set.

Mutually Exclusive Optional Parameters

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set

start— An array specifying the position in the file to begin reading

Default: 1, start at the first element of each dimension. The values
must not exceed the size of any dimension of the data set.

stride — An array specifying the interval between the values to
read

Default: 1, read every element of the data set.

edge— An array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding
dimensions

1-2981

hdfread

Parameter Description

'Interpolate' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude points that define a region for bilinear
interpolation. Each element is an N-length vector specifying
longitude and latitude coordinates.

'Pixels' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. Each
element is an N-length vector specifying longitude and latitude
coordinates. This region is converted into pixel rows and columns
with the origin in the upper left corner of the grid.

Note: This is the pixel equivalent of reading a 'Box' region.

'Tile' Vector specifying the coordinates of the tile to read, for HDF-EOS
Grid files that support tiles

Optional Parameters

'Box' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. longitude
and latitude are each two-element vectors specifying longitude
and latitude coordinates.

'Time' Two-element cell array, [start stop], where start and stop are
numbers that specify the start and end-point for a period of time

'Vertical' Two-element cell array, {dimension, range}

dimension— String specifying the name of the data set field to be
read from. You can specify only one field name for a Grid data set.

range— Two-element array specifying the minimum and maximum
range for the subset. If dimension is a dimension name, then range
specifies the range of elements to extract. If dimension is a field
name, then range specifies the range of values to extract.

'Vertical' subsetting can be used alone or in conjunction with
'Box' or 'Time'. To subset a region along multiple dimensions,
vertical subsetting can be used up to eight times in one call to
hdfread.

1-2982

hdfread

For example,

data = hdfread('grid.hdf','PolarGrid','Fields','ice_temp','Index', {[5 10],[],[15 20]})

Subsetting Parameters for HDF-EOS Point Data

When you are working with HDF-EOS Point data, hdfread has two
required parameters and three optional parameters.

Parameter Description

Required Parameters

'Fields' String naming the data set field to be read. For multiple field
names, use a comma-separated list.

'Level' 1-based number specifying which level to read from in an HDF-EOS
Point data set

Mutually Exclusive Optional Parameters

'Box' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. longitude
and latitude are each two-element vectors specifying longitude
and latitude coordinates.

'RecordNumbers' Vector specifying the record numbers to read

'Time' Two-element cell array, [start stop], where start and stop are
numbers that specify the start and endpoint for a period of time

For example,

hdfread(...,'Fields',{field1, field2},...

'Level',level,'RecordNumbers',[1:50, 200:250])

Subsetting Parameters for HDF-EOS Swath Data

When you are working with HDF-EOS Swath data, hdfread supports
three types of parameters:

• Required parameters

• Optional parameters

1-2983

hdfread

• Mutually exclusive

You can only use one of the mutually exclusive parameters in a call to
hdfread, and you cannot use these parameters in combination with any
optional parameter.

Parameter Description

Required Parameter

'Fields' String naming the data set field to be read. You can specify only
one field name for a Swath data set.

Mutually Exclusive Optional Parameters

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set

• start — An array specifying the position in the file to begin
reading

Default: 1, start at the first element of each dimension. The
values must not exceed the size of any dimension of the data set.

• stride — An array specifying the interval between the values
to read

Default: 1, read every element of the data set.

• edge— An array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding
dimensions

'Time' Three-element cell array, {start, stop, mode}, where start and
stop specify the beginning and the endpoint for a period of time,
and mode is a string defining the criterion for the inclusion of a
cross track in a region. The cross track is within a region if any of
these conditions is met:

• Its midpoint is within the box (mode='midpoint').

• Either endpoint is within the box (mode='endpoint').

1-2984

hdfread

Parameter Description

Optional Parameters

'Box' Three-element cell array, {longitude, latitude, mode}
specifying the longitude and latitude coordinates that define a
region. longitude and latitude are two-element vectors that
specify longitude and latitude coordinates. mode is a string defining
the criterion for the inclusion of a cross track in a region. The cross
track is within a region if any of these conditions is met:

• Its midpoint is within the box (mode='midpoint').

• Either endpoint is within the box (mode='endpoint').

• Any point is within the box (mode='anypoint').

'Vertical' Two-element cell array, {dimension, range}

• dimension is a string specifying either a dimension name or field
name to subset the data by.

• range is a two-element vector specifying the minimum and
maximum range for the subset. If dimension is a dimension
name, then range specifies the range of elements to extract. If
dimension is a field name, then range specifies the range of
values to extract.

'Vertical' subsetting can be used alone or in conjunction with
'Box' or 'Time'. To subset a region along multiple dimensions,
vertical subsetting can be used up to eight times in one call to
hdfread.

For example,

hdfread('swath.hdf', 'Example Swath', 'Fields', 'Temperature', ...

'Time', {5000, 6000, 'midpoint'})

1-2985

hdfread

Examples Read Data Set in HDF File

Specify the name of the HDF file and the name of the data set. This
example reads a data set named temperature from a sample HDF file.

data = hdfread('sd.hdf','temperature');

Specify data set to read

Call hdfinfo to retrieve information about the contents of the HDF file.

fileinfo = hdfinfo('sd.hdf')

fileinfo =

Filename: 'B:\matlab\toolbox\matlab\imagesci\sd.hdf'
Attributes: [1x1 struct]

SDS: [1x2 struct]
Vdata: [1x1 struct]

Extract the structure containing information about the particular data
set you want to import from the data returned by hdfinfo. This example
uses the structure in the SDS field to retrieve a scientific data set.

sds_info = fileinfo.SDS(2)

sds_info =

Filename: 'B:\matlab\toolbox\matlab\imagesci\sd.hdf'
Type: 'Scientific Data Set'
Name: 'temperature'
Rank: 2

DataType: 'double'
Attributes: [1x11 struct]

1-2986

hdfread

Dims: [2x1 struct]
Label: {}

Description: {}
Index: 1

Pass this structure to hdfread to import the data in the data set.

data = hdfread(sds_info);

Read Data from HDF-EOS Grid Field

Read data from the HDF-EOS global grid field, TbOceanRain, in the
example file, example.hdf.

data1 = hdfread('example.hdf','MonthlyRain','Fields','TbOceanRain');

Read data for the northern hemisphere for the same field. Use the Box
parameter to specify the longitude and latitude coordinates for that
region.

data2 = hdfread('example.hdf','MonthlyRain', ...
'Fields','TbOceanRain', ...
'Box', {[0 360],[0 90]});

Read Subset of Data in Data Set

Retrieve info about the example file, example.hdf.

fileinfo = hdfinfo('example.hdf');

Retrieve information about Scientific Data Set in example.hdf.

data_set_info = fileinfo.SDS;

Check the size of the data set.

data_set_info.Dims.Size

1-2987

hdfread

ans =

16

ans =

5

Read a subset of the data in the data set using the 'index' parameter
with hdfread. This example specifies a starting index of [3 3], an
interval of 1 between values ([] meaning the default value of 1), and a
length of 10 rows and 2 columns.

data = hdfread(data_set_info,'Index',{[3 3],[],[10 2]});
data(:,1)

ans =

7
8
9

10
11
12
13
14
15
16

data(:,2)

1-2988

hdfread

ans =

8
9

10
11
12
13
14
15
16
17

Access Data in Fields of Vdata

Use the Vdata field from the information returned by hdfinfo to read
three fields of the data, Idx, Temp, and Dewpt.

s = hdfinfo('example.hdf');
data = hdfread(s.Vdata(1),'Fields',{'Idx','Temp','Dewpt'})

data =

[1x10 int16]
[1x10 int16]
[1x10 int16]

See Also hdfinfo

1-2989

hdftool

Purpose Browse and import data from HDF4 or HDF-EOS files

Note hdftool will be removed in a future release. To read data from
an HDF file, use hdfread, matlab.io.hdf4.sd, matlab.io.hdfeos.gd,
or matlab.io.hdfeos.sw instead.

Syntax hdftool
hdftool(filename)
h = hdftool(...)

Description hdftool starts the HDF Import Tool, a graphical user interface used
to browse the contents of HDF4 and HDF-EOS files and import data
and subsets of data from these files. To open an HDF4 or HDF-EOS
file, select Open from the Home tab. You can open multiple files in the
HDF Import Tool by selecting Open from the Home tab.

hdftool(filename) opens the HDF4 or HDF-EOS file specified by
filename in the HDF Import Tool.

h = hdftool(...) returns a handle h to the HDF Import Tool. To close
the tool from the command line, use close(h).

Examples hdftool('example.hdf');

See Also hdfinfo | hdfread | uiimport

1-2990

hdfv

Purpose Gateway to HDF Vgroup (V) interface

Syntax [out1,...,outN] = hdfv(funcstr,input1,...,inputN)

Description hdfv is the MATLAB gateway to the HDF Vgroup (V) interface.

[out1,...,outN] = hdfv(funcstr,input1,...,inputN) returns one
or more outputs corresponding to the V function in the HDF library
specified by functstr.

There is a one-to-one correspondence between V functions in
the HDF library and valid values for funcstr. For example,
hdfv('nattrs',vgroup_id) corresponds to the C library call
Vnattrs(vgroup_id).

Access Functions

Access functions open files, initialize the Vgroup interface, and access
individual groups. They also terminate access to vgroups and the
Vgroup interface and close HDF files.

Value of
funcstr

Function Syntax Description

'start' status =
hdfv('start',file_id)

Initializes the V
interface.

'attach' vgroup_id =
hdfv('attach',file_id,vgroup_ref,access)

Establishes access to a
vgroup. access can be
'r' or 'w'.

'detach' status =
hdfv('detach',vgroup_id)

Terminates access to a
vgroup.

'end' status =
hdfv('end',file_id)

Terminates access to the
V interface.

Create Functions

Create functions organize, label, and add data objects to vgroups.

1-2991

hdfv

Value of
funcstr

Function Syntax Description

'setclass' status =
hdfv('setclass',vgroup_id,class)

Assigns a class to a
vgroup.

'setname' status =
hdfv('setname',vgroup_id,name)

Assigns a name to a
vgroup.

'insert' ref =
hdfv('insert',vgroup_id,
id)

Adds a vgroup or vdata
to an existing group. id
can be a vdata id or a
vgroup id.

'addtagref' status =
hdfv('addtagref',vgroup_id,tag,ref)

Adds any HDF data
object to an existing
vgroup.

'setattr' status =
hdfv('setattr',vgroup_id,name,A)

Sets the attribute of a
vgroup.

File Inquiry Functions

File inquiry functions return information about how vgroups are stored
in a file. They are useful for locating vgroups in a file.

Value of
funcstr

Function Syntax Description

'lone' [refs,count] =
hdfv('lone',file_id,maxsize)

Returns the reference
numbers of vgroups
not included in other
vgroups.

'getid' next_ref =
hdfv('getid',file_id,vgroup_ref)

Returns the reference
number for the next
vgroup in the HDF file.

1-2992

hdfv

Value of
funcstr

Function Syntax Description

'find' vgroup_ref =
hdfv('find',file_id,vgroup_name)

Returns the reference
number of the vgroup
with the specified name
if successful and zero
otherwise.

'findclass' vgroup_ref =
hdfv('findclass',file_id,class)

Returns the reference
number of the vgroup
with the specified class.

Vgroup Inquiry Functions

Vgroup inquiry functions provide specific information about a specific
vgroup. This information includes the class, name, member count, and
additional member information.

Value of
funcstr

Function Syntax Description

'getclass' [class_name,status]
=
hdfv('getclass',vgroup_id)

Returns the name of
the class of the specified
group.

'getname' [vgroup_name,status]
=
hdfv('getname',vgroup_id)

Returns the name of the
specified group.

'inquire' [num_entries,name,status]
=
hdfv('inquire',vgroup_id)

Returns the number of
entries and the name of
a vgroup.

'isvg' status =
hdfv('isvg',vgroup_id,ref)

Checks if the object
specified by ref refers
to a child vgroup of
the vgroup specified by
vgroup_id.

1-2993

hdfv

Value of
funcstr

Function Syntax Description

'isvs' status =
hdfv('isvs',vgroup_id,vdata_ref)

Checks if the object
specified by vdata_ref
refers to a child vdata of
the vgroup specified by
vgroup_id.

'gettagref' [tag,ref,status] =
hdfv('gettagref',vgroup_id,index)

Retrieves a tag/reference
number pair for a data
object in the specified
vgroup.

'ntagrefs' count =
hdfv('ntagrefs',vgroup_id)

Returns the number of
tag/reference number
pairs contained in the
specified vgroup.

'gettagrefs' [tag,refs,count] =
hdfv('gettagrefs',vgroup_id,maxsize)

Retrieves the
tag/reference pairs of
all the data objects
within a vgroup.

'inqtagref' tf =
hdfv('inqtagref',vgroup_id,tag,ref)

Checks if an object
belongs to a vgroup.

'getversion' version =
hdfv('getversion',vgroup_id)

Queries the vgroup
version of a given
vgroup.

'nattrs' count =
hdfv('nattrs',vgroup_id)

Queries the total
number of vgroup
attributes.

'attrinfo' [name,data_type,count,nbytes,status]
=
hdfv('attrinfo',vgroup_id,...
attr_index)

Queries information on
a given vgroup attribute.

1-2994

hdfv

Value of
funcstr

Function Syntax Description

'getattr' [values,status] =
hdfv('getattr',vgroup_id,attr_index)

Queries the values of a
given attribute.

'Queryref' ref =
hdfv('Queryref',vgroup_id)

Returns the reference
number of the specified
vgroup.

'Querytag' tag =
hdfv('Querytag',vgroup_id)

Returns the tag of the
specified vgroup.

'flocate' vdata_ref =
hdfv('flocate',vgroup_id,field)

Returns the reference
number of the vdata
containing the specified
field name in the
specified vgroup.

'nrefs' count =
hdfv('nrefs',vgroup_id,tag)

Returns the number
of data objects with
the specified tag in the
specified vgroup.

Output Arguments

A status or identifier output of -1 indicates that the operation failed.

See Also matlab.io.hdf4.sd | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe |
hdfhx | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2995

hdfvf

Purpose Gateway to VF functions in HDF Vdata interface

Syntax [out1,...,outN] = hdfvf(funcstr,input1,...,inputN)

Description hdfvf is the MATLAB gateway to the VF unctions in the HDF Vdata
interface.

[out1,...,outN] = hdfvf(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the VF function in the HDF
library specified by functstr.

There is a one-to-one correspondence between VF functions in
the HDF library and valid values for funcstr. For example,
hdfvf('nfields',vdata_id) corresponds to the C library call
VFnfields(vdata_id).

Field Inquiry Functions

Field inquiry functions provide specific information about the fields in a
given vdata, including the field’s size, name, order, type, and number of
fields in the vdata.

Value of
funcstr

Function Syntax Description

'fieldesize'fsize =
hdfvf('fieldesize',vdata_id,field_index)

Retrieves the field size
(as stored in a file) of a
specified field.

'fieldisize'fsize =
hdfvf('fieldisize',vdata_id,field_index)

Retrieves the field size
(as stored in memory) of a
specified field.

'fieldname' name =
hdfvf('fieldname',vdata_id,field_index)

Retrieves the name of the
specified field in the given
vdata.

'fieldorder'order =
hdfvf('fieldorder',vdata_id,field_index)

Retrieves the order of the
specified field in the given
vdata.

1-2996

hdfvf

Value of
funcstr

Function Syntax Description

'fieldtype' data_type =
hdfvf('fieldtype',vdata_id,field_index)

Retrieves the data type for
the specified field in the
given vdata.

'nfields' count =
hdfvf('nfields',vdata_id)

Retrieves the total number
of fields in the specified
vdata.

Output Arguments

A status or identifier output of -1 indicates that the operation failed.

See Also matlab.io.hdf4.sd | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe |
hdfhx | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2997

hdfvh

Purpose Gateway to VH functions in HDF Vdata interface

Syntax [out1,...,outN] = hdfvh(funcstr,input1,...,inputN)

Description hdfvh is the MATLAB gateway to VH functions in the HDF Vdata
interface.

[out1,...,outN] = hdfvh(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the VH function in the HDF
library specified by functstr.

There is a one-to-one correspondence between VH functions in the HDF
library and valid values for funcstr.

High-level Vdata Functions

High-level Vdata functions write data to single-field vdatas.

Value of
funcstr

Function Syntax Description

'makegroup' vgroup_ref =
hdfvh('makegroup',file_id,tags,refs,..
vgroup_name,vgroup_class)

Groups a collection of
data objects within a
vgroup.

'storedata' count =
hdfvh('storedata',file_id,fieldname,data,...
vdata_name,vdata_class)

Creates vdatas
containing records
limited to one field with
one component per field.

'storedatam' count =
hdfvh('storedatam',file_id,fieldname,data,...
vdata_name,vdata_class)

Creates vdatas
containing records with
one field containing one
or more components.

Output Arguments

A status or identifier output of -1 indicates that the operation failed.

1-2998

hdfvh

See Also matlab.io.hdf4.sd | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe |
hdfhx | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-2999

hdfvs

Purpose Gateway to VS functions in HDF Vdata interface

Syntax [out1,...,outN] = hdfvs(funcstr,input1,...,inputN)

Description hdfvs is the MATLAB gateway to the VS functions in the HDF Vdata
interface.

[out1,...,outN] = hdfvs(funcstr,input1,...,inputN) returns
one or more outputs corresponding to the VS function in the HDF
library specified by functstr.

There is a one-to-one correspondence between VS functions in
the HDF library and valid values for funcstr. For example,
hdfvs('detach',vdata_id) corresponds to the C library call
VSdetach(vdata_id).

Access Functions

Access functions attach, or allow access, to vdatas. Data transfer can
only occur after a vdata has been accessed. These routines also detach
from, or properly terminate access to, vdatas when data transfer has
been completed.

Value of
funcstr

Function Syntax Description

'attach' vdata_id =
hdfvs('attach',file_id,vdata_ref,access)

Establishes access to a
specified vdata. access
can be 'r' or 'w'.

'detach' status =
hdfvs('detach',vdata_id)

Terminates access to a
specified vdata.

Read and Write Functions

Read and write functions read and write the contents of a vdata.

1-3000

hdfvs

Value of
funcstr

Function Syntax Description

'fdefine' status =
hdfvs('fdefine',vdata_id,fieldname,data_type,order)

Defines a new vdata
field. data_type is a
string specifying the
HDF number type.
It can be any hese
strings: 'uchar8',
'uchar', 'char8',
'char', 'double',
'uint8', 'uint16',
'uint32', 'float',
'int8', 'int16', or
'int32'.

'setclass' status =
hdfvs('setclass',vdata_id,class)

Assigns a class to a
vdata.

'setfields' status =
hdfvs('setfields',vdata_id,fields)

Specifies the vdata
fields to be written.

'setinterlace' status =
hdfvs('setinterlace',vdata_id,interlace)

Sets the interlace mode
for a vdata. interlace
can be 'full' or 'no'.

'setname' status =
hdfvs('setname',vdata_id,name)

Assigns a name to a
vdata.

1-3001

hdfvs

Value of
funcstr

Function Syntax Description

'write' count =
hdfvs('write',
vdata_id, data)

Writes to a vdata.
data must be an
nfields-by-1 cell array.
Each cell must contain
an order(i)-by-n
vector of data where
order(i) is the number
of scalar values in each
field. The types of
the data must match
the field types set via
hdfvs('setfields') or
the fields in an already
existing vdata.

'read' [data,count] =
hdfvs('read',vdata_id,n)

Reads from a vdata.
Data is returned in a
nfields-by-1 cell array.
Each cell contains a
order(i)-by-n vector
of data where order
is the number of
scalar values in each
field. The fields are
returned in the same
order as specified in
hdfvs('setfields',...).

'seek' pos =
hdfvs('seek',vdata_id,record)

Seeks to a specified
record in a vdata.

'setattr' status =
hdfvs('setattr',vdata_id,field_index,name,A)

Sets the attribute of a
vdata field or vdata.

1-3002

hdfvs

Value of
funcstr

Function Syntax Description

'setexternalfile'status =
hdfvs('setexternalfile',vdata_id,filename,offset)

Stores vdata
information in an
external file.

'getattr' [value,status] =
hdfvs('getattr',vdata_id,field_index,attr_index)

Reads the value of an
attribute attached to a
vdata or a vdata field.
Set field_index to
'vdata' to retrieve
an attribute attached
to the field itself. Set
field_index to the
numerical index of the
field to retrieve an
attribute attached to a
vdata field.

'setattr' status =
hdfvs('setattr',vdata_id,field_index,name,A)

Sets the attribute
of a vdata field or
vdata.field_index can
be an index number or
'vdata'.

File Inquiry Functions

File inquiry functions provide information about how vdatas are stored
in a file. They are useful for locating vdatas in a file.

1-3003

hdfvs

Value of
funcstr

Function Syntax Description

'find' vdata_ref =
hdfvs('find',file_id,vdata_name)

Searches for a given
vdata name in the
specified HDF file.

'findclass' vdata_ref =
hdfvs('findclass',file_id,vdata_class)

Returns the reference
number of the first
vdata corresponding
to the specified vdata
class.

'getid' next_ref =
hdfvs('getid',file_id,vdata_ref)

Returns the identifier
of the next vdata in the
file.

'lone' [refs,count] =
hdfvs('lone',file_id,maxsize)

Returns the reference
numbers of the vdatas
that are not linked into
vgroups.

Vdata Inquiry Functions

Vdata inquiry functions provide specific information about a given
vdata, including the vdata’s name, class, number of fields, number of
records, tag and reference pairs, interlace mode, and size.

Value of
funcstr

Function Syntax Description

'fexist' status =
hdfvs('fexist',vdata_id,fields)

Tests for the existence
of fields in the specified
vdata.

'inquire' [n,interlace,fields,nbytes,vdata_name,status]
= ...
hdfvs('inquire',vdata_id)

Returns information
about the specified
vdata.

1-3004

hdfvs

Value of
funcstr

Function Syntax Description

'elts' count =
hdfvs('elts',vdata_id)

Returns the number of
records in the specified
vdata.

'getclass' [class_name,status]
=
hdfvs('getclass',vdata_id)

Returns the HDF class
of the specified vdata.

'getfields' [field_names,count]
=
hdfvs('getfields',vdata_id)

Returns all field names
within the specified
vdata.

'getinterlace' [interlace,status] =
hdfvs('getinterlace',vdata_id)

Retrieves the interlace
mode of the specified
vdata.

'getname' [vdata_name,status]
=
hdfvs('getname',vdata_id)

Retrieves the name of
the specified vdata.

'getversion' version =
hdfvs('getversion',vdata_id)

Returns the version
number of a vdata.

'sizeof' nbytes =
hdfvs('sizeof',vdata_id,fields)

Returns the fields sizes
of the specified vdata.

'Queryfields' [fields,status] =
hdfvs('Queryfields',vdata_id)

Returns the field names
of the specified vdata.

'Queryname' [name,status] =
hdfvs('Queryname',vdata_id)

Returns the name of the
specified vdata.

'Queryref' ref =
hdfvs('Queryref',vdata_id)

Retrieves the reference
number of the specified
vdata.

'Querytag' tag =
hdfvs('Querytag',vdata_id)

Retrieves the tag of the
specified vdata.

1-3005

hdfvs

Value of
funcstr

Function Syntax Description

'Querycount' [count,status] =
hdfvs('Querycount',vdata_id)

Returns the number of
records in the specified
vdata.

'Queryinterlace'[interlace,status] =
hdfvs('Queryinterlace',vdata_id)

Returns the interlace
mode of the specified
vdata.

'Queryvsize' vsize =
hdfvs('Queryvsize',vdata_id)

Retrieves the local size
in bytes of the specified
vdata record.

'findex' [field_index,status]
=
hdfvs('findex',vdata_id,fieldname)

Queries the index of a
vdata field given the
field name.

'nattrs' count =
hdfvs('nattrs',vdata_id)

Returns the number
of attributes of the
specified vdata and the
vdata fields contained in
it.

'fnattrs' count =
hdfvs('fnattrs',vdata_id,field_index)

Queries the total
number of vdata
attributes.

'findattr' attr_index =
hdfvs('findattr',vdata_id,field_index,attr_name)

Retrieves the index of
an attribute given the
attribute name.

1-3006

hdfvs

Value of
funcstr

Function Syntax Description

'isattr' tf =
hdfvs('isattr',vdata_id)

Determines if the given
vdata is an attribute.

'attrinfo' [name,data_type,count,nbytes,status]
=
hdfvs('attrinfo',...
vdata_id,field_index,attr_index)

Returns the name,
data type, number of
values, and the size
of the values of the
specified attributes of
the specified vdata field
or vdata.

Output Arguments

A status or identifier output of -1 indicates that the operation failed.

See Also matlab.io.hdf4.sd | hdfdf24 | hdfdfr8 | hdfh | hdfhd | hdfhe |
hdfhx | hdfml | hdfv | hdfvf | hdfvh | hdfvs

1-3007

height

Purpose Number of table rows

Syntax H = height(T)

Description H = height(T) returns the number of rows in the table, T.

height(T) is equivalent to size(T,1).

Input
Arguments

T - Input table
table

Input table, specified as a table.

Examples Number of Table Rows

Create a table, T.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

T = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

T =

Age Height Weight BloodPressure
___ ______ ______ _______________

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

Find the number of rows in table T.

1-3008

height

H = height(T)

H =

5

T contains five rows; height does not count the variable names.

See Also width | size | numel

1-3009

help

Purpose Help for functions in Command Window

Syntax help
help name

Description help lists all primary help topics in the Command Window. Each main
help topic corresponds to a folder name on the MATLAB search path.

help name displays the help text for the functionality specified by name,
such as a function, method, class, or toolbox.

Tips • Some help text displays the names of functions in uppercase
characters to make them stand out from the rest of the text. When
typing these function names, use lowercase. For function names that
appear in mixed case (such as javaObject), type the names as shown.

• To prevent long descriptions from scrolling off the screen before you
have time to read them, enter more on, and then enter the help
statement.

• Some classes require that you specify the package name to display
the help text. To identify the package name, create an instance of the
class, and then call class(obj).

Input
Arguments

name

String that specifies an operator symbol (such as +) or the name of a
function, class, method, package, toolbox folder, or other functionality.

Some classes and other packaged items require that you specify the
package name. Events, properties, and some methods require that you
specify the class name. Separate the components of the name with
periods, such as:

help className.name
help packageName.name
help packageName.className.name

1-3010

help

If name is overloaded, that is, appears in multiple folders on the search
path, help displays the help text for the first instance of name found
on the search path, and displays a hyperlinked list of the overloaded
functions and their folders.

When name specifies the name or partial path of a toolbox folder:

• If the folder contains a nonempty Contents.m file, the help function
displays the file. Contents.m contains a list of MATLAB program
files in the folder and their descriptions. If Contents.m exists, but is
empty, MATLAB responds with No help found for name.

• If the folder does not contain a Contents.m file, the help function
lists the first line of help text for each program file in the folder.

• If name is the name of both a function and a toolbox, help displays
the associated text for both the toolbox and the function.

Examples Functions and Overloaded Methods

Display help for the MATLAB close function.

help close

Because close refers to the name of a function and to the name of
several methods, the help text includes hyperlinks to the overloaded
methods.

Request help for the Database Toolbox™ close method.

help database.close

Package, Class, and Method Help

Display help for the containers package, Map class, and the isKey
method.

help containers
help containers.Map
help containers.Map.isKey

1-3011

help

Not all packages, classes, and associated methods or events require
complete specification. For example, display the help for the
throwAsCaller method of the MException class.

help throwAsCaller

Functions in Folder

List all of the functions in the folder
matlabroot/toolbox/matlab/general by specifying a partial path.

help general

Alternatives View more extensive help using the doc command or the Function
Browser. To open the Function Browser, click its icon, .

See Also class | dbtype | doc | lookfor | more | path | what | which | whos

How To • “Ways to Get Function Help”

• “Add Help for Your Program”

1-3012

helpbrowser

Purpose Open Help browser to access online documentation

Note helpbrowser will be removed in a future release. Use doc
instead.

Syntax helpbrowser

Description helpbrowser displays the Help browser, open to its default startup
page.

See Also doc | help

How To • “Ways to Get Function Help”

1-3013

helpdesk

Purpose Open Help browser

Note helpdesk will be removed in a future release. Use doc instead.

Syntax helpdesk

Description helpdesk opens the Help browser to the default startup page. In
previous releases, helpdesk displayed the Help Desk, which was the
precursor to the Help browser.

See Also doc

1-3014

helpdlg

Purpose Create and open help dialog box

Syntax helpdlg
helpdlg('helpstring')
helpdlg('helpstring','dlgname')
h = helpdlg(...)

Description helpdlg creates a nonmodal help dialog box or brings the named help
dialog box to the front.

Note A nonmodal dialog box enables the user to interact with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

helpdlg displays a dialog box named 'Help Dialog' containing the
string 'This is the default help string.'

helpdlg('helpstring') displays a dialog box named 'Help Dialog'
containing the string specified by 'helpstring'.

helpdlg('helpstring','dlgname') displays a dialog box named
'dlgname' containing the string 'helpstring'.

h = helpdlg(...) returns the handle of the dialog box.

Tips MATLAB wraps the text in 'helpstring' to fit the width of the dialog
box. The dialog box remains on your screen until you press the OK
button or the Enter key. After either of these actions, the help dialog
box disappears.

Examples The statement

helpdlg('Choose 10 points from the figure',...
'Point Selection');

displays this dialog box:

1-3015

helpdlg

See Also dialog | errordlg | inputdlg | listdlg | msgbox | questdlg |
warndlg | figure | uiwait | uiresume

1-3016

helpwin

Purpose Provide access to help comments for all functions

Note helpwin will be removed in a future release. Use doc instead.

Syntax helpwin
helpwin topic

Description helpwin lists topics for groups of functions in the MATLAB Help
browser. It shows brief descriptions of the topics and provides links to
display help comments for the functions. You cannot follow links in the
helpwin list of functions if the MATLAB software is busy (for example,
running a program).

helpwin topic displays help information for the topic. If topic is a
folder, it displays all functions in the folder. If topic is a function,
helpwin displays help for that function. From the page, you can access
a list of folders (Default Topics link) as well as the reference page help
for the function (Go to online doc link). You cannot follow links in the
helpwin list of functions if MATLAB is busy (for example, running
a program).

Examples Typing

helpwin datafun

displays the functions in the datafun folder and a brief description
of each.

Typing

helpwin fft

displays the help for the fft function.

See Also doc | help

1-3017

hess

Purpose Hessenberg form of matrix

Syntax H = hess(A)
[P,H] = hess(A)
[AA,BB,Q,Z] = hess(A,B)

Description H = hess(A) finds H, the Hessenberg form of matrix A.

[P,H] = hess(A) produces a Hessenberg matrix H and a unitary matrix
P so that A = P*H*P' and P'*P = eye(size(A)) .

[AA,BB,Q,Z] = hess(A,B) for square matrices A and B, produces
an upper Hessenberg matrix AA, an upper triangular matrix BB, and
unitary matrices Q and Z such that Q*A*Z = AA and Q*B*Z = BB.

Definitions A Hessenberg matrix is zero below the first subdiagonal. If the matrix
is symmetric or Hermitian, the form is tridiagonal. This matrix has
the same eigenvalues as the original, but less computation is needed
to reveal them.

Examples H is a 3-by-3 eigenvalue test matrix:

H =
-149 -50 -154
537 180 546
-27 -9 -25

Its Hessenberg form introduces a single zero in the (3,1) position:

hess(H) =
-149.0000 42.2037 -156.3165
-537.6783 152.5511 -554.9272

0 0.0728 2.4489

See Also eig | qz | schur

1-3018

matlab.mixin.Heterogeneous

Purpose Superclass for heterogeneous array formation

Description matlab.mixin.Heterogeneous is an abstract class that provides
support for the formation of heterogeneous arrays. A heterogeneous
array is an array of objects that differ in their specific class, but are all
derived from or are instances of a root class. The root class derives
directly from matlab.mixin.Heterogeneous.

Heterogeneous Hierarchy

Use matlab.mixin.Heterogeneous to define hierarchies of classes
whose instances you can combine into heterogeneous arrays.

The following class definition enables the formation of heterogeneous
arrays that combine instances of any classes derived from
HierarchyRoot.

classdef HierarchyRoot < matlab.mixin.Heterogeneous
% HierarchyRoot is a direct subclass of
% matlab.mixin.Heterogeneous
% HierarchyRoot is the root of this heterogeneous hierarchy

Deriving the HierarchyRoot class directly from
matlab.mixin.Heterogeneous enables the HierarchyRoot class to
become the root of a hierarchy of classes. You can combine instances
of the members of this hierarchy into a heterogeneous array. Only
instances of classes derived from the same root class can combine to
form a valid heterogeneous array.

Class of a Heterogeneous Array

The class of a heterogeneous array is always the class of the most
specific superclass common to all objects in the array. For example,
suppose you define the following class hierarchy:

1-3019

matlab.mixin.Heterogeneous

Forming an array (harray) of an instance of LeafA with an instance of
LeafB creates an array of class Middle:

harray = [LeafA,LeafB];
class(harray)
ans =
Middle

Forming an array (harray) of an instance of LeafC with an instance of
LeafD creates an array of class HierarchyRoot:

harray = [LeafC,LeafD];
class(harray)
ans =
HierarchyRoot

Forming an array (harray) of an instance of LeafA with an other
instance of LeafA creates a homogeneous array of class LeafA:

harray = [LeafA,LeafA];
class(harray)
ans =

1-3020

matlab.mixin.Heterogeneous

LeafA

Note You cannot form heterogeneous arrays that include instances of
classes that are not derived from the same hierarchy root (that is, the
HierarchyRoot class in the hierarchy shown previously).

Forming a Heterogeneous Array
Heterogeneous arrays are the result of operations that produces arrays
containing instances of two or more classes from the heterogeneous
hierarchy. Usually, concatenation or indexed assignment form these
arrays. For example, these statements form harray using indexed
assignment:

harray(1) = LeafA;
harray(2) = LeafC;
class(harray)
ans =
Middle

Growing the Array Can Change Its Class
Assigning new objects into an array containing objects derived from
matlab.mixin.Heterogeneous can change the class of the array. For
example, given a homogeneous array containing objects only of the
LeafA class:

harray = [LeafA,LeafA,LeafA];
class(harray)
ans =
LeafA

Adding an object of another class derived from the same root to harray
converts the array’s class to the most specific superclass:

harray(4) = LeafB;
class(harray)
ans =

1-3021

matlab.mixin.Heterogeneous

Middle

Method Dispatching

When MATLAB invokes a method for which the dominant argument is
a heterogeneous array, the method:

• Must be defined for the class of the heterogeneous array, either
directly by the class of the array or inherited from a superclass.

• Must be Sealed = true (cannot be overridden by a subclass).

The class of the heterogeneous array determines which class method
executes for any given method invocation, as is the case with a
homogeneous array. MATLAB does not consider the class of individual
elements in the array when dispatching to methods.

Sealing Inherited Methods
The requirement that methods called on a heterogeneous array be
Sealed = true ensures correct and predictable behavior with all array
elements.

You must override methods that are inherited from outside the
heterogeneous hierarchy if these methods are not Sealed = true and
you want to call these methods on heterogeneous arrays.

For example, suppose you define a heterogeneous array by subclassing
hgsetget, in addition to matlab.mixin.Heterogeneous. Override the
set method to call the hgsetget superclass method as required by your
class design:

methods(Sealed)
function varargout = set(obj,varargin)

if nargout == 0
set@hgsetget(obj, varargin{:});

else
varargout{:} = set@hgsetget(obj,varargin{:});

end
end

end

1-3022

matlab.mixin.Heterogeneous

Method implementations can take advantage of the fact that, given a
heterogeneous array harray, and a scalar index n, the expression

harray(n)

is not a heterogeneous array. Therefore, when invoking a method on
a single element of a heterogeneous array, special requirements for
heterogeneous arrays do not apply.

Defining the Default Object

When working with object arrays (both heterogeneous and
homogeneous), MATLAB creates default objects to fill in missing array
elements by calling the class constructor with no arguments. Filling in
missing array elements becomes necessary in cases such as:

• Indexed assignment creates an array with gaps. For example, if
harray is not previously defined:

harray(5) = LeafA;

• Loading a heterogeneous array from a MAT-file when MATLAB
cannot find the class definition of a specific object.

The matlab.mixin.Heterogeneous class provides a default
implementation of a method called getDefaultScalarElement. This
method returns an instance of the root class of the heterogeneous
hierarchy, unless the root class is abstract.

If the root class is abstract or is not an appropriate default object
for the classes in the heterogeneous hierarchy, you can override the
getDefaultScalarElement method to return an instance of a class
derived from the root class.

Defining the getDefaultScalarElement Method
Specify the class of the default object by overriding
the matlab.mixin.Heterogeneous method called
getDefaultScalarElement in the root class of the heterogeneous

1-3023

matlab.mixin.Heterogeneous

hierarchy. You can override getDefaultScalarElement only in the root
class (direct subclasses of matlab.mixin.Heterogeneous).

getDefaultScalarElement has the following signature:

methods (Static, Sealed, Access = protected)
function default_object = getDefaultScalarElement
...
end

end

The getDefaultScalarElement method must satisfy these criteria:

• Static — MATLAB calls this method without an object.

• Protected — MATLAB calls this method, object users do not.

• Sealed (not required) — Seal this method to ensure users of the
heterogeneous hierarchy do not change the intended behavior of the
class.

• It must return a scalar object

• It must pass the isa test for the root class, that is:

(isa(getDefaultScalarElement,'HierarchyRoot')

where HierarchyRoot is the name of the heterogeneous hierarchy
root class. This means the default object can be an instance of any
class derived from the root class.

Cannot Redefine Indexing or Concatenation

The use of heterogeneous arrays requires consistent indexing
and concatenation behaviors. Therefore, subclasses of
matlab.mixin.Heterogeneous cannot change their default indexed
reference, indexed assignment, or concatenation behavior.

You cannot override the following methods in your subclasses:

• cat

1-3024

matlab.mixin.Heterogeneous

• horzcat

• vertcat

• subref

• subsasign

In cases involving multiple inheritance in which your subclass inherits
from superclasses in addition to matlab.mixin.Heterogeneous, the
superclasses cannot define any of these methods.

Default Concatenation Behavior
Statements of the form:

a = [obj1,obj2,...];

create an array, a, containing the objects listed in brackets.

Concatenating Heterogeneous objects of the same specific class retains
the class of the objects and does not form a heterogeneous array.

Concatenating Heterogeneous objects derived from the same
root superclass, but that are of different specific classes, yields a
heterogeneous array. MATLAB does not attempt to convert the class of
any array members if all are part of the same root hierarchy.

Indexed Assignment Behavior
Statements of the form:

a(m:n) = [objm,...objn];

assign the right-hand side objects to the array elements (m:n), specified
on the left side of the assignment.

Indexed assignment to a heterogeneous array can:

• Increase or decrease the size of the array

• Overwrite existing array elements

• Change property values of objects within the array

1-3025

matlab.mixin.Heterogeneous

• Change the class of the array

• Change whether the array is heterogeneous

Indexed Reference Behavior
Statements of the form:

a = harray(m:n);

assign the elements of harray referenced by indices m:n, to array a.

Indexed reference on a heterogeneous array returns a sub-range of
the original array. Depending on the specific elements within that
sub-range (m:n), the result might have a different class than the original
array, and might not be heterogeneous.

Converting Nonmember Objects

If you attempt to form a heterogeneous array with objects that are not
derived from the same root class, MATLAB calls the convertObject
method, if it exists, to convert objects to the dominant class.
Implementing a convertObject method enables the formation of
heterogeneous arrays containing objects that are not part of the
heterogeneous hierarchy.

When Is Conversion Necessary
Suppose there are two classes A and B, where B is not derived
from matlab.mixin.Heterogeneous, or where A and B are
derived from different root classes that are derived from
matlab.mixin.Heterogeneous.

MATLAB attempts to call the convertObject method implemented by
the root class of A in the following cases:

• The indexed assignment:

A(k) = B

• Horizontal and vertical concatenations:

[A,B] and [A;B]

1-3026

matlab.mixin.Heterogeneous

Implement a convertObject method if you want to support conversion
of objects whose class is not defined in your heterogeneous hierarchy.
You do not need to implement this method if your class design does
not require this conversion.

Implementing convertObject
Only the root class of the heterogeneous hierarchy can implement a
convertObject method.

The convertObject method must have the following signature:

Method (Static, Sealed, Access = protected)
function cobj = convertObject('DomClass',objToConvert)
...
end

end

For indexed assignment A(k) = B and concatenation [A,B]:

• DomClass — Name of the class of the array A

• objToConvert— Object to be converted, B in this case

• cobj — Legal member of the heterogeneous hierarchy to which A
belongs

You must implement convertObject to return a valid object of class A
or MATLAB issues an error.

Handle Compatibility

The matlab.mixin.Heterogeneous class is handle compatible. It
can be combined with either handle or value classes when defining a
subclass using multiple superclasses. See “Supporting Both Handle and
Value Subclasses” for information on handle compatibility.

The matlab.mixin.Heterogeneous class is a value class. To learn
how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation

1-3027

matlab.mixin.Heterogeneous

Methods
cat Concatenation for heterogeneous

arrays

getDefaultScalarElement Return default object for
heterogeneous array operations

horzcat Horizontal concatenation for
heterogeneous arrays

vertcat Vertical concatenation for
heterogeneous arrays

See Also handle

How To • Class Attributes

• Property Attributes

• “Creating Subclasses — Syntax and Techniques”

1-3028

matlab.mixin.Heterogeneous.cat

Purpose Concatenation for heterogeneous arrays

Syntax C = cat(dim,A,B)

Description C = cat(dim,A,B) concatenates objects A and B along the dimension
dim. The class of object arrays A and B must be derived from the same
root class of a matlab.mixin.Heterogeneous hierarchy.

• If A and B are of the same class, the class of the resulting array is
unchanged.

• If A and B are of different subclasses of a common superclass that is
derived from matlab.mixin.Heterogeneous, then the result is a
heterogeneous array and the array’s class is that of the most specific
superclass shared by A and B.

The cat method is sealed in the class matlab.mixin.Heterogeneous
and, therefore, you cannot override it in subclasses.

Input
Arguments

dim

Scalar dimension along which to concatenate arrays

A

Object array derived from the same root subclass of
matlab.mixin.Heterogeneous as B

B

Object array derived from the same root subclass of
matlab.mixin.Heterogeneous as A

Output
Arguments

C

Array resulting from the specified concatenation. The class of this
array is that of the most specific superclass shared by A and B.

1-3029

matlab.mixin.Heterogeneous.cat

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.Heterogeneous | cat

1-3030

matlab.mixin.Heterogeneous.getDefaultScalarElement

Purpose Return default object for heterogeneous array operations

Syntax defaultObject = getDefaultScalarElement

Description defaultObject = getDefaultScalarElement returns the default
object for a heterogeneous hierarchy. Override this method if the
“Root Class” on page 1-3032 is abstract or is not an appropriate
default object for the classes in the heterogeneous hierarchy.
getDefaultScalarElement must return an instance of another member
of the heterogeneous hierarchy.

The matlab.mixin.Heterogeneous class provided a default
implementation of this method that returns an instance of the “Root
Class” on page 1-3032.

MATLAB calls the getDefaultScalarElement method when requiring
a default object. See matlab.mixin.Heterogeneous for more
information on heterogeneous arrays and default objects.

Tips • Override getDefaultScalarElement only if the “Root Class” on page
1-3032 is not suitable as a default object.

• Override getDefaultScalarElement only in the “Root Class” on page
1-3032 of the heterogeneous hierarchy.

• getDefaultScalarElement must return a scalar object.

• getDefaultScalarElement must be a static method with protected
access. While not required by MATLAB, you can seal this method to
prevent overriding by other classes.

• MATLAB returns an error if the value returned by
getDefaultScalarElement is not scalar or is not an instance of a
class that is a valid member of the hierarchy.

Output
Arguments

defaultObject

The default object for heterogeneous array operations.

1-3031

matlab.mixin.Heterogeneous.getDefaultScalarElement

Definitions Root Class

Root class – The direct subclass of matlab.mixin.Heterogeneous that
forms the root of a heterogeneous hierarchy. Classes of objects that you
can combine into heterogeneous arrays must derive from this root class.

Attributes
Static true

Access Protected

Sealed true not required

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples This example describes a heterogeneous hierarchy with a root class
(FinancialObjects) that is an abstract class and cannot, therefore, be
used for the default object. The FinancialObjects class definition
includes an override of the getDefaultScalarElement method which
returns an instance of the Assets class as the default object.

1-3032

matlab.mixin.Heterogeneous.getDefaultScalarElement

The root class can override the getDefaultScalarElement method
that is defined in matlab.mixin.Heterogeneous class and return an
Assets object as the default object.

classdef FinancialObjects < matlab.mixin.Heterogeneous
methods (Abstract)

val = determineCurrentValue(obj)
end
methods (Static, Sealed, Access = protected)

function default_object = getDefaultScalarElement
default_object = Assets;

end
end

end

See Also matlab.mixin.Heterogeneous

1-3033

matlab.mixin.Heterogeneous.horzcat

Purpose Horizontal concatenation for heterogeneous arrays

Syntax C = horzcat(A1,A2,...)

Description C = horzcat(A1,A2,...) concatenates the
matlab.mixin.Heterogeneous objects A1, A2, and so on, to form the
array C. All input arrays must have the same number of rows.

The class of object arrays A1,A2,... must be derived from the same
root class of a matlab.mixin.Heterogeneous hierarchy.

MATLAB calls:

C = horzcat(A1,A2,...)

for the expressions:

C = [A1,A2,...]
C = [A1 A2 ...]

when A1 is an array of matlab.mixin.Heterogeneous objects.

If all input arguments are of the same specific class, the class of
the resulting array is unchanged. If all input arguments are of
different subclasses of a common superclass that is derived from
matlab.mixin.Heterogeneous, then the result is a heterogeneous
array. The array’s class is that of the most specific superclass shared by
all input arguments.

If all input arguments are not members of the same heterogeneous
hierarchy, MATLAB calls the convertObjects method, if defined by
the dominant root class (the first argument or the left-most element in
the concatenation if no other class is dominant).

The horzcat method is sealed in the class
matlab.mixin.Heterogeneous and, therefore, you cannot override it
in subclasses.

1-3034

matlab.mixin.Heterogeneous.horzcat

Input
Arguments

A1

Object array of class matlab.mixin.Heterogeneous

A2

Object array of class matlab.mixin.Heterogeneous

Output
Arguments

C

Array resulting from the specified concatenation. The class of
this array is that of the most specific superclass shared by the
input arguments.

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.Heterogeneous | horzcat

1-3035

matlab.mixin.Heterogeneous.vertcat

Purpose Vertical concatenation for heterogeneous arrays

Syntax C = vertcat(A1,A2,...)

Description C = vertcat(A1,A2,...) concatenates the
matlab.mixin.Heterogeneous objects A1, A2, and so on, to form the
array C. All input arrays must have the same number of columns.

The class of object arrays A1,A2,... must be derived from the same
root class of a matlab.mixin.Heterogeneous hierarchy.

MATLAB calls:

C = vertcat(A1,A2,...)

for the expression:

C = [A1;A2;...]

when A1 and A2, and so on are arrays of matlab.mixin.Heterogeneous
objects.

If all input arguments are of the same specific class, the class of
the resulting array is unchanged. If all input arguments are of
different subclasses of a common superclass that is derived from
matlab.mixin.Heterogeneous, then the result is a heterogeneous
array. The array’s class is that of the most specific superclass shared by
all input arguments.

If all input arguments are not members of the same heterogeneous
hierarchy, MATLAB calls the convertObjects method, if defined by
the dominant root class (the first argument or the left-most element in
the concatenation if no other class is dominant).

The horzcat method is sealed in the class
matlab.mixin.Heterogeneous and, therefore, you cannot override it
in subclasses.

1-3036

matlab.mixin.Heterogeneous.vertcat

Input
Arguments

A1

Object array of class matlab.mixin.Heterogeneous

A2

Object array of class matlab.mixin.Heterogeneous

Output
Arguments

C

Array resulting from the specified vertical concatenation. The
class of this array is that of the most specific superclass shared
by the input arguments.

Attributes
Sealed true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also matlab.mixin.Heterogeneous | vertcat

1-3037

hex2dec

Purpose Convert hexadecimal number string to decimal number

Syntax d = hex2dec('hex_value')

Description d = hex2dec('hex_value') converts hex_value to its floating-point
integer representation. The argument hex_value is a hexadecimal
integer stored in a MATLAB string or cell array of strings. The value of
hex_value must be smaller than hexadecimal 10,000,000,000,000.

If hex_value is a cell array of strings, each row is interpreted as a
hexadecimal string.

Examples hex2dec('3ff')

ans =

1023

For a character array S,

S =
0FF
2DE
123
hex2dec(S)

ans =

255
734
291

See Also dec2hex | format | hex2num | sprintf

1-3038

hex2num

Purpose Convert hexadecimal number string to double-precision number

Syntax n = hex2num(S)

Description n = hex2num(S), where S is a 16 character string or cell array of strings
representing a hexadecimal number, returns the IEEE double-precision
floating-point number n that it represents. Fewer than 16 characters
are padded on the right with zeros. If S is a cell array of strings, each
row is interpreted as a double-precision number.

NaNs, infinities and denorms are handled correctly.

Examples hex2num('400921fb54442d18')

returns Pi.

hex2num('bff')

returns

ans =

-1

See Also num2hex | hex2dec | sprintf | format

1-3039

hgexport

Purpose Export figure

Syntax hgexport(h,filename)
hgexport(h,'-clipboard')

Description hgexport(h,filename) writes figure h to the file filename.

hgexport(h,'-clipboard') writes figure h to the Microsoft Windows
clipboard.

The format in which the figure is exported is determined by which
renderer you use. The Painters renderer generates a metafile. The
ZBuffer and OpenGL renderers generate a bitmap.

Alternatives Use the File > Export Setup dialog. Use Edit > Copy Figure to
copy the figure’s content to the system clipboard. Fore details, see How
to Print or Export.

See Also print

1-3040

hggroup

Purpose Create hggroup object

Syntax h = hggroup
h = hggroup(...,'PropertyName',propertyvalue,...)

Properties For a list of properties, see Hggroup Properties.

Description h = hggroup creates an hggroup object as a child of the current axes
and returns its handle, h.

h = hggroup(...,'PropertyName',propertyvalue,...) creates an
hggroup object with the property values specified in the argument list.
For a description of the properties, see Hggroup Properties.

An hggroup object can be the parent of any axes children except light
objects, as well as other hggroup objects. You can use hggroup objects
to form a group of objects that can be treated as a single object with
respect to the following cases:

• Visible — Setting the hggroup object’s Visible property also sets
each child object’s Visible property to the same value.

• Selectable — Setting each hggroup child object’s HitTest property to
off enables you to select all children by clicking any child object.

• Current object — Setting each hggroup child object’s HitTest
property to off enables the hggroup object to become the current
object when any child object is picked. See the next section for an
example.

Examples This example defines a callback for the ButtonDownFcn property of an
hggroup object. In order for the hggroup to receive the mouse button
down event that executes the ButtonDownFcn callback, the HitTest
properties of all the line objects must be set to off. The event is then
passed up the hierarchy to the hggroup.

The following function creates a random set of lines that are parented
to an hggroup object. The local function set_lines defines a callback
that executes when the mouse button is pressed over any of the lines.

1-3041

hggroup

The callback simply increases the widths of all the lines by 1 with each
button press.

Note If you are using the MATLAB help browser, you can run this
example or open it in the MATLAB editor.

function doc_hggroup
hg = hggroup('ButtonDownFcn',@set_lines);
hl = line(randn(5),randn(5),'HitTest','off','Parent',hg);

function set_lines(cb,eventdata)
hl = get(cb,'Children');% cb is handle of hggroup object
lw = get(hl,'LineWidth');% get current line widths
set(hl,{'LineWidth'},num2cell([lw{:}]+1,[5,1])')

Note that selecting any one of the lines selects all the lines. (To select
an object, enable plot edit mode by selecting Plot Edit from the Tools
menu.)

Instance Diagram for This Example

The following diagram shows the object hierarchy created by this
example.

1-3042

hggroup

Setting
Default
Properties

You can set default hggroup properties on the axes, figure, and root
object levels:

set(0,'DefaultHggroupProperty',PropertyValue...)
set(gcf,'DefaultHggroupProperty',PropertyValue...)
set(gca,'DefaultHggroupProperty',PropertyValue...)

where Property is the name of the hggroup property whose default
value you want to set and PropertyValue is the value you are
specifying. Use set and get to access the hggroup properties.

See Also hgtransform | Hggroup Properties

How To • “Group Objects”

• “Function Handle Callbacks”

1-3043

Hggroup Properties

Purpose Hggroup properties

Creating
Hggroup
Objects

Use hggroup to create hggroup objects.

Modifying
Properties

You can set and query graphics object properties using the set and
get commands.

To change the default values of properties, see “Setting Default Property
Values”.

See “Group Objects” for general information on this type of object.

Hggroup
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of hggroup objects in legends. Specifies
whether this hggroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the hggroup
object is displayed in a figure legend.

1-3044

Hggroup Properties

IconDisplayStyle
Value

Purpose

on Include the hggroup object in a legend as one
entry, but not its children objects

off Do not include the hggroup or its children
in a legend (default)

children Include only the children of the hggroup as
separate entries in the legend

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

1-3045

Hggroup Properties

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press
a mouse button while the pointer is over the children of the
hggroup object. Define the ButtonDownFcn as a function handle.
The function must define at least two input arguments (handle
of figure associated with the mouse button press and an empty
event structure).

For information on the syntax of callback functions, see Function
Handle Callbacks.

1-3046

Hggroup Properties

Children
array of graphics object handles

Children of the hggroup object. An array containing the handles of
all objects parented to the hggroup object (whether visible or not).

Note that if a child object’s HandleVisibility property is
callback or off, its handle does not appear in the hggroup
Children property unless you set the Root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips stairs plots to the axes plot box
by default. If you set Clipping to off, lines might be displayed
outside the axes plot box.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object creation. Executes when
MATLAB creates an hggroup object. You must define this
property as a default value for hggroup objects or in a call to the
hggroup function to create a new hggroup object. For example,
the statement:

set(0,'DefaulthggroupCreateFcn',@myCreateFcn)

defines a default value on the root level that applies to every
hggroup object created in that MATLAB session. Whenever you
create an hggroup object, the function associated with the function
handle @myCreateFcn executes.

1-3047

Hggroup Properties

MATLAB executes the callback after setting all the hggroup
object’s properties. Setting the CreateFcn property on an existing
hggroup object has no effect.

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when the
hggroup object is deleted (for example, this might happen when
you issue a delete command on the hggroup object, its parent
axes, or the figure containing it). MATLAB executes the callback
before destroying the object’s properties so the callback routine
can query these values.

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string

1-3048

../ref/hggroupproperties.html#BeingDeleted

Hggroup Properties

String used by legend. The legend function uses the DisplayName
property to label the hggroup object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase hggroup child objects. Alternative erase modes
are useful for creating animated sequences, where control of
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

1-3049

Hggroup Properties

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color
of the screen behind it and it is correctly colored only when it
is over the axes background color (or the figure background
color if the axes Color property is none). That is, it isn’t erased
correctly if there are objects behind it.

• background— Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color if
the axes Color property is none). This damages other graphics
objects that are behind the erased object, but the erased object
is always properly colored.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

1-3050

Hggroup Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing the hggroup object.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

1-3051

Hggroup Properties

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether the
hggroup object can become the current object (as returned by the
gco command and the figure CurrentObject property) as a result
of a mouse click on the hggroup child objects. Note that to pick
the hggroup object, its children must have their HitTest property
set to off.

If the hggroup object’s HitTest is off, clicking it picks the object
behind it.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

1-3052

Hggroup Properties

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

Parent
axes handle

1-3053

Hggroup Properties

Parent of hggroup object. This property contains the handle of the
hggroup object’s parent object. The parent of an hggroup object is
the axes, hggroup, or hgtransform object that contains it.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection handles at the corners and midpoints of hggroup
child objects if the SelectionHighlight property is also on (the
default).

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing selection handles on the hggroup child objects. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an hggroup object and set the Tag property:

t = hggroup('Tag','group1')

When you want to access the object, use findobj to find its
handle. For example:

h = findobj('Tag','group1');

1-3054

Hggroup Properties

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For hggroup objects, Type is
’hggroup’. The following statement finds all the hggroup objects
in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of uicontextmenu object

Associate a context menu with the hggroup object. Assign this
property the handle of a uicontextmenu object created in the
hggroup object’s figure. Use the uicontextmenu function to create
the context menu. MATLAB displays the context menu whenever
you right-click the hggroup object.

UserData
array

User-specified data. Data you want to associate with the hggroup
object (including cell arrays and structures). The default value is
an empty array. MATLAB does not use this data, but you can
access it using the set and get commands.

Visible
{on} | off

Visibility of hggroup object and its children. By default, hggroup
object visibility is on. This means all children of the hggroup
are visible unless the child object’s Visible property is off.
Setting an hggroup object’s Visible property to off also makes
its children invisible.

See Also hggroup

1-3055

hgload

Purpose Load Handle Graphics object hierarchy from file

Syntax h = hgload('filename')
[h,old_prop_values] = hgload(...,property_structure)
hgload(...,'all')

Description h = hgload('filename') loads Handle Graphics objects and its
children (if any) from the FIG-file specified by filename and returns
handles to the top-level objects. If filename contains no extension, then
the MATLAB software adds the .fig extension.

[h,old_prop_values] = hgload(...,property_structure)
overrides the properties on the top-level objects stored in the FIG-file
with the values in property_structure, and returns their previous
values in old_prop_values.

property_structure must be a structure having field names that
correspond to property names and values that are the new property
values.

old_prop_values is a cell array equal in length to h, containing the old
values of the overridden properties for each object. Each cell contains a
structure having field names that are property names, each of which
contains the original value of each property that has been changed. Any
property specified in property_structure that is not a property of a
top-level object in the FIG-file is not included in old_prop_values.

hgload(...,'all') overrides the default behavior, which does not
reload nonserializable objects saved in the file. These objects include
the default toolbars and default menus. This option is obsolete and
will be removed in a future release.

Nonserializable objects (such as the default toolbars and the default
menus) are normally not reloaded because they are loaded from
different files at figure creation time. This allows revisions of the
default menus and toolbars to occur without affecting existing FIG-files.
Passing the string all to hgload ensures that any nonserializable
objects contained in the file are also reloaded.

1-3056

hgload

Note that, by default, hgsave excludes nonserializable objects from the
FIG-file unless you use the all flag.

Alternatives Use the File > Open on the figure window menu to access figure files
with the Open dialog.

See Also hgsave | open

1-3057

hgsave

Purpose Save Handle Graphics object hierarchy to file

Syntax hgsave('filename')
hgsave(h,'filename')
hgsave(...,'all')
hgsave(...,'-v6')
hgsave(...,'-v7.3')

Description hgsave('filename') saves the current figure to a file named filename.

hgsave(h,'filename') saves the objects identified by the array of
handles h to a file named filename. If you do not specify an extension
for filename, then the extension .fig is appended. If h is a vector,
none of the handles in h may be ancestors or descendents of any other
handles in h.

hgsave(...,'all') overrides the default behavior, which does not
save nonserializable objects. Nonserializable objects include the default
toolbars and default menus. This allows revisions of the default menus
and toolbars to occur without affecting existing FIG-files and also
reduces the size of FIG-files. Passing the string all to hgsave ensures
that nonserializable objects are also saved. This option is obsolete and
will be removed in a future release.

The default behavior of hgload is to ignore nonserializable objects in
the file at load time. You can override this behavior using the all
argument with hgload.

hgsave(...,'-v6') saves the FIG-file in a format that can be loaded
by versions prior to MATLAB 7.

hgsave(...,'-v7.3') saves the FIG-file in a format that can be loaded
only by MATLAB versions 7.3 and above. This format, based on HDF5
files, is intended for saving FIG-files larger than 2 GB.

You can make -v6 or -v7.3 your default format for saving MAT-files
and FIG-files by setting a preference, which will eliminate the need to
specify the flag each time you save. See “MAT-Files Preferences” in the
MATLAB Desktop Tools and Development Environment documentation.

1-3058

hgsave

Full Backward Compatibility

When creating a figure you want to save and use in a MATLAB version
prior to MATLAB 7, use the 'v6' option with the plotting function and
the '-v6' option for hgsave. Check the reference page for the plotting
function you are using for more information.

See “Plot Objects and Backward Compatibility” for more information.

Alternatives Use the File > Export Setup dialog. Use Edit > Copy Figure to
copy the figure’s content to the system clipboard. Fore details, see How
to Print or Export.

See Also hgload | open | save

1-3059

hgsetget

Purpose Abstract class used to derive handle class with set and get methods

Syntax classdef myclass < hgsetget

Description classdef myclass < hgsetget makes myclass a subclass of the
hgsetget class, which is a subclass of the handle class.

Use the hgsetget class to derive classes that inherit set and get
methods that behave like Handle Graphics set and get functions.

Methods

When you derive a class from the hgsetget class, your class inherits
the following methods.

Method Purpose

set Assigns values to the specified properties or
returns a cell array of possible values for writable
properties.

get Returns value of specified property or a struct
with all property values.

setdisp Called when set is called with no output
arguments and a handle array, but no property
name. Override this method to change what set
displays.

getdisp Called when get is called with no output
arguments and handle array, but no property
name. Override this method to change what get
displays.

See Also handle | set (hgsetget) | get (hgsetget) | set | get

How To • “Implementing a Set/Get Interface for Properties”

1-3060

hgtransform

Purpose Create hgtransform graphics object

Syntax h = hgtransform
h = hgtransform('PropertyName',propertyvalue,...)

Properties For a list of properties, see Hgtransform Properties.

Description h = hgtransform creates an hgtransform object and returns its handle.

h = hgtransform('PropertyName',propertyvalue,...) creates an
hgtransform object with the property value settings specified in the
argument list. For a description of the properties, see Hgtransform
Properties.

hgtransform objects can contain other objects, which lets you treat the
hgtransform and its children as a single entity with respect to visibility,
size, orientation, etc. You can group objects by parenting them to a
single hgtransform object (i.e., setting the object’s Parent property to
the hgtransform object’s handle):

h = hgtransform;
surface('Parent',h,...)

The primary advantage of parenting objects to an hgtransform object
is that you can perform transforms (for example, translation, scaling,
rotation, etc.) on the child objects in unison.

The parent of an hgtransform object is either an axes object or another
hgtransform.

Although you cannot see an hgtransform object, setting its Visible
property to off makes all its children invisible as well.

Exceptions and Limitations

• An hgtransform object can be the parent of any number of axes child
objects belonging to the same axes, except for light objects.

• hgtransform objects can never be the parent of axes objects and
therefore can contain objects only from a single axes.

1-3061

hgtransform

• hgtransform objects can be the parent of other hgtransform objects
within the same axes.

• You cannot transform image objects because images are not true 3-D
objects. Texture mapping the image data to a surface CData enables
you to produce the effect of transforming an image in 3-D space.

Note Many plotting functions clear the axes (i.e., remove axes
children) before drawing the graph. Clearing the axes also deletes any
hgtransform objects in the axes.

Examples Transforming a Group of Objects

This example shows how to create a 3-D star with a group of surface
objects parented to a single hgtransform object. The hgtransform then
rotates the object about the z-axis while scaling its size.

Tip If you are using the MATLAB Help browser, you can run this
example or open it in the MATLAB Editor.

1 Create an axes and adjust the view. Set the axes limits to prevent
auto limit selection during scaling.

ax = axes('XLim',[-1.5 1.5],'YLim',[-1.5 1.5],...
'ZLim',[-1.5 1.5]);

view(3); grid on; axis equal

2 Create the objects you want to parent to the hgtransform object.

[x y z] = cylinder([.2 0]);
h(1) = surface(x,y,z,'FaceColor','red');
h(2) = surface(x,y,-z,'FaceColor','green');
h(3) = surface(z,x,y,'FaceColor','blue');
h(4) = surface(-z,x,y,'FaceColor','cyan');

1-3062

hgtransform

h(5) = surface(y,z,x,'FaceColor','magenta');
h(6) = surface(y,-z,x,'FaceColor','yellow');

3 Create an hgtransform object and parent the surface objects to it.
The figure should not change from the image above.

t = hgtransform('Parent',ax);
set(h,'Parent',t)

4 Select a renderer and show the objects.

set(gcf,'Renderer','opengl')
drawnow

1-3063

hgtransform

5 Initialize the rotation and scaling matrix to the identity matrix (eye).
Again, the image should not change.

Rz = eye(4);
Sxy = Rz;

6 Form the z-axis rotation matrix and the scaling matrix. Rotate group
and scale by using the increasing values of r.

for r = 1:.1:2*pi
% Z-axis rotation matrix

Rz = makehgtform('zrotate',r);
% Scaling matrix
Sxy = makehgtform('scale',r/4);

1-3064

hgtransform

% Concatenate the transforms and
% set the hgtransform Matrix property

set(t,'Matrix',Rz*Sxy)
drawnow

end
pause(1)

7 Reset to the original orientation and size using the identity matrix.

set(t,'Matrix',eye(4))

1-3065

hgtransform

Transforming Objects Independently

This example creates two hgtransform objects to illustrate how to
transform each independently within the same axes. A translation
transformation moves one hgtransform object away from the origin.

Tip If you are using the MATLAB Help browser, you can run this
example or open it in the MATLAB Editor.

1 Create and set up the axes object that will be the parent of both
hgtransform objects. Set the limits to accommodate the translated
object.

1-3066

hgtransform

ax = axes('XLim',[-2 1],'YLim',[-2 1],'ZLim',[-1 1]);
view(3); grid on; axis equal

2 Create the surface objects to group.

[x y z] = cylinder([.3 0]);
h(1) = surface(x,y,z,'FaceColor','red');
h(2) = surface(x,y,-z,'FaceColor','green');
h(3) = surface(z,x,y,'FaceColor','blue');
h(4) = surface(-z,x,y,'FaceColor','cyan');
h(5) = surface(y,z,x,'FaceColor','magenta');
h(6) = surface(y,-z,x,'FaceColor','yellow');

1-3067

hgtransform

3 Create the hgtransform objects and parent them to the same axes.
The figure should not change.

t1 = hgtransform('Parent',ax);
t2 = hgtransform('Parent',ax);

4 Set the renderer to use OpenGL.

set(gcf,'Renderer','opengl')

5 Parent the surfaces to hgtransform t1, then copy the surface objects
and parent the copies to hgtransform t2. This figure should not
change.

1-3068

hgtransform

set(h,'Parent',t1)
h2 = copyobj(h,t2);

6 Translate the second hgtransform object away from the first
hgtransform object and display the result.

Txy = makehgtform('translate',[-1.5 -1.5 0]);
set(t2,'Matrix',Txy)
drawnow

7 Rotate both hgtransform objects in opposite directions. The final
image for this step is the same as for step 6. However, you should
run the code to see the rotations.

1-3069

hgtransform

% Rotate 10 times (2pi radians = 1 rotation)
for r = 1:.1:20*pi
% Form z-axis rotation matrix
Rz = makehgtform('zrotate',r);
% Set transforms for both hgtransform objects
set(t1,'Matrix',Rz)
set(t2,'Matrix',Txy*inv(Rz))
drawnow

end

Setting
Default
Properties

You can set default hgtransform properties on the axes, figure, and
root object levels:

set(0,'DefaultHgtransformPropertyName',propertyvalue,...)
set(gcf,'DefaultHgtransformPropertyName',propertyvalue,...)
set(gca,'DefaultHgtransformPropertyName',propertyvalue,...)

PropertyName is the name of the hgtransform property and
propertyvalue is the specified value. Use set and get to access
hgtransform properties.

See Also hggroup | makehgtform | Hgtransform Properties

How To • “Group Objects”

1-3070

Hgtransform Properties

Purpose Hgtransform properties

Creating
Hgtransform
Objects

Use hgtransform to create hgtransform objects.

Modifying
Properties

You can set and query graphics object properties using the set and
get commands.

To change the default values of properties, see “Setting Default Property
Values”.

See “Group Objects” for general information on this type of object.

Hgtransform
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of hgtransform objects in legends. Specifies
whether this hgtransform object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
hgtransform object is displayed in a figure legend.

1-3071

Hgtransform Properties

IconDisplayStyle
Value

Purpose

on Include the hgtransform object in a legend
as one entry, but not its children objects

off Do not include the hgtransform or its
children in a legend (default)

children Include only the children of the hgtransform
as separate entries in the legend

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

1-3072

Hgtransform Properties

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press
a mouse button while the pointer is within the extent of the
hgtransform object, but not over another graphics object. The
extent of an hgtransform object is the smallest rectangle that
encloses all the children. Note that you cannot execute the
hgtransform object’s button down function if it has no children.

Define the ButtonDownFcn as a function handle. The function
must define at least two input arguments (handle of figure

1-3073

Hgtransform Properties

associated with the mouse button press and an empty event
structure).

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
array of graphics object handles

Children of the hgtransform object. An array containing the
handles of all graphics objects parented to the hgtransform object
(whether visible or not).

The graphics objects that can be children of an hgtransform are
images, lights, lines, patches, rectangles, surfaces, and text. You
can change the order of the handles and thereby change the
stacking of the objects on the display.

Note that if a child object’s HandleVisibility property is
callback or off, its handle does not show up in the hgtransform
Children property unless you set the Root ShowHiddenHandles
property to on.

Clipping
{on} | off

Clipping mode. This property has no effect on hgtransform objects.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object creation. Executes when
MATLAB creates an hgtransform object. You must define this
property as a default value for hgtransform objects. For example,
the statement:

set(0,'DefaultHgtransformCreateFcn',@myCreateFcn)

1-3074

Hgtransform Properties

defines a default value on the root level that applies to every
hgtransform object created in a MATLAB session. Whenever you
create an hgtransform object, the function associated with the
function handle @myCreateFcn executes.

MATLAB executes the callback after setting all the hgtransform
object’s properties. Setting the CreateFcn property on an existing
hgtransform object has no effect.

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when the
hgtransform object is deleted (for example, this might happen
when you issue a delete command on the hgtransform object, its
parent axes, or the figure containing it). MATLAB executes the
callback before destroying the object’s properties so the callback
routine can query these values.

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is accessible through the root CallbackObject property,
which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

1-3075

../ref/hgtransformproperties.html#BeingDeleted

Hgtransform Properties

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the hgtransform object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase hgtransform child objects (light objects have
no erase mode). Alternative erase modes are useful for creating
animated sequences, where control of the way individual objects
are redrawn is necessary to improve performance and obtain the
desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all

1-3076

Hgtransform Properties

objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor— Draw and erase the object by performing an exclusive OR
(XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color
of the screen behind it and it is correctly colored only when it
is over the axes background color (or the figure background
color if the axes Color property is none). That is, it isn’t erased
correctly if there are objects behind it.

• background— Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color if
the axes Color property is none). This damages other graphics
objects that are behind the erased object, but the erased object
is always properly colored.

Set the axes background color with the axes Color property.
Set the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

1-3077

Hgtransform Properties

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing the hgtransform object.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in

1-3078

Hgtransform Properties

the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether the
hgtransform object can become the current object (as returned
by the gco command and the figure CurrentObject property)
as a result of a mouse click within the limits of the hgtransform
object. If HitTest is off, clicking the hgtransform picks the object
behind it.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB

1-3079

Hgtransform Properties

handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

1-3080

Hgtransform Properties

Matrix
4-by-4 matrix

Transformation matrix applied to hgtransform object and its
children. The hgtransform object applies the transformation
matrix to all its children.

See “Group Objects” for more information and examples.

Parent
figure handle

Parent of hgtransform object. This property contains the handle
of the hgtransform object’s parent object. The parent of an
hgtransform object is the axes, hggroup, or hgtransform object
that contains it.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection handles on all child objects of the hgtransform
if the SelectionHighlight property is also on (the default).

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by drawing
selection handles on the objects parented to the hgtransform.
When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

1-3081

Hgtransform Properties

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an hgtransform object and set the Tag
property:

t = hgtransform('Tag','subgroup1')

When you want to access the hgtransform object to add another
object, use findobj to find the hgtransform object’s handle. The
following statement adds a line to subgroup1 (assuming x and
y are defined).

line('XData',x,'YData',y,...
'Parent',findobj('Tag','subgroup1'))

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For hgtransform objects, Type is
’hgtransform’. The following statement finds all the hgtransform
objects in the current axes.

t = findobj(gca,'Type','hgtransform');

UIContextMenu
handle of uicontextmenu object

Associate a context menu with the hgtransform object. Assign this
property the handle of a uicontextmenu object created in the
hgtransform object’s figure. Use the uicontextmenu function to
create the context menu. MATLAB displays the context menu
whenever you right-click over the extent of the hgtransform object.

UserData
array

1-3082

Hgtransform Properties

User-specified data. Data you want to associate with the
hgtransform object (including cell arrays and structures). The
default value is an empty array. MATLAB does not use this data,
but you can access it using the set and get commands.

Visible
{on} | off

Visibility of hgtransform object and its children. By default,
hgtransform object visibility is on. This means all children of the
hgtransform are visible unless the child object’s Visible property
is off. Setting an hgtransform object’s Visible property to off
also makes its children invisible.

See Also hgtransform

1-3083

hidden

Purpose Remove hidden lines from mesh plot

Syntax hidden on
hidden off
hidden

Description Hidden line removal draws only those lines that are not obscured by
other objects in a 3-D view. The hidden function only applies to surface
plot objects that have a uniform FaceColor.

hidden on turns on hidden line removal for the current mesh plot so
lines in the back of a mesh are hidden by those in front. This is the
default behavior.

hidden off turns off hidden line removal for the current mesh plot.

hidden toggles the hidden line removal state.

Algorithms When a surface graphics object has a uniform FaceColor matching
the Color property of the axes, hidden off sets the FaceColor of the
surface object to 'none'.

hidden on sets the FaceColor property of such surface objects to match
the axes Color property (or to match that of the figure, if axes Color
is 'none').

Examples Show Obscured Lines

Create a mesh plot of the peaks function.

figure
mesh(peaks)

1-3084

hidden

By default, MATLAB® hides obscured lines from the view. Show the
obscured parts of the mesh by setting the hidden line removal to off.

hidden off

1-3085

hidden

See Also shading | mesh | EdgeColor | FaceColor

1-3086

hilb

Purpose Hilbert matrix

Syntax H = hilb(n)

Description H = hilb(n) returns the Hilbert matrix of order n.

Definitions The Hilbert matrix is a notable example of a poorly conditioned matrix
[1]. The elements of the Hilbert matrices are H(i,j) = 1/(i + j – 1).

Examples Even the fourth-order Hilbert matrix shows signs of poor conditioning.

cond(hilb(4)) =
1.5514e+04

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear
Algebraic Systems, Prentice-Hall, 1967, Chapter 19.

See Also invhilb

1-3087

hist

Purpose Histogram plot

Syntax hist(data)
hist(data,nbins)
hist(data,xvalues)

hist(axes_handle, ___)

nelements = hist(___)
[nelements,centers] = hist(___)

Description hist(data) creates a histogram bar plot of data. Elements in data
are sorted into 10 equally spaced bins along the x-axis between the
minimum and maximum values of data. Bins are displayed as
rectangles such that the height of each rectangle indicates the number
of elements in the bin.

hist(data,nbins) sorts data into the number of bins specified by
the scalar nbins.

hist(data,xvalues) sorts data into bins with intervals determined by
the vector xvalues.

• If xvalues is a vector of evenly spaced values, then hist uses the
values as the bin centers.

• If xvalues is a vector unevenly spaced values, then hist uses the
midpoints between consecutive values as the bin edges.

The length of the vector, length(xvalues), determines the number
of bins.

hist(axes_handle, ___) plots into the axes specified by axes_handle
instead of into the current axes (gca). The option axes_handle can
precede any of the input argument combinations in the previous
syntaxes.

1-3088

hist

nelements = hist(___) returns a row vector, nelements, indicating
the number of elements in each bin.

[nelements,centers] = hist(___) returns an additional row vector,
centers, indicating the location of each bin center on the x-axis. To
plot the histogram, you can use bar(centers,nelements).

Input
Arguments

data - Data to distribute among bins
vector or matrix

Data to distribute among bins, specified as a vector or a matrix.

• If data is a vector, then one histogram is created.

• If data is a matrix, then a histogram is created separately for each
column. Each histogram plot is displayed on the same figure with a
different color.

If data contains NaN values, then hist ignores these values and does
not include them in the bin counts.

If data contains the infinite values -inf or inf, then hist sorts -inf
into the first bin and inf into the last bin. If you do not specify the bin
intervals, then hist calculates the bin intervals using only the finite
values in data.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

nbins - Number of bins
10 (default) | scalar

Number of bins, specified as a scalar.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

1-3089

hist

xvalues - Values to calculate bin intervals
vector

Values to calculate bin intervals, specified as a vector.

• If the values in xvalues are equally spaced, then these values are
the bin centers.

• If the values in xvalues are not equally spaced, then these values
are indicated by markers along the x-axis, but are not the actual bin
centers. Instead, MATLAB calculates the bin edges as the midpoints
between consecutive values in vector xvalues. To specify directly
the bin edges use histc.

The first and last bins extend to cover the minimum and maximum
values in data.

Use only finite values with xvalues. If xvalues contains -inf or inf,
then hist does not populate the bins.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

axes_handle - Axes handle
handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Output
Arguments

nelements - Number of elements in each bin
row vector

Number of elements in each bin, returned as a row vector.

centers - Bin centers
row vector

1-3090

hist

Bin centers, returned as a row vector. If used with the syntax
[nelements,centers] = hist(data,xvalues), then the output
centers is equal to the input xvalues.

Examples Create Histogram Bar Plot with Vector Input

figure
data = [0,2,9,2,5,8,7,3,1,9,4,3,5,8,10,0,1,2,9,5,10];
hist(data)

1-3091

hist

hist sorts the values in data among 10 equally spaced bins between 0
and 10, the minimum and maximum values.

Create Histogram Bar Plot with Matrix Input

Initialize the random-number generator to make the output of randn
repeatable. Generate 1,000 normally distributed pseudorandom
numbers and create a histogram bar plot.

rng(0,'twister')
data = randn(1000,3);
figure
hist(data)

1-3092

hist

The values in data are sorted among 10 equally spaced bins between
the minimum and maximum values. hist sorts the columns of data
separately and plots each column with a different color.

Specify Number of Bins

Initialize the random-number generator to make the output of randn
repeatable. Generate 1,000 normally distributed pseudorandom
numbers.

1-3093

hist

rng(0,'twister')
data = randn(1000,1);

Create a histogram plot of data sorted into 50 equally spaced bins.

figure
nbins = 50;
hist(data,nbins)

1-3094

hist

Specify Bin Intervals

Create a figure divided into three subplots. Plot a histogram of the
same data set in all three subplots using different bin intervals for each
histogram.

First, initialize the random-number generator to make the output of
randn repeatable. Generate 1,000 normally distributed pseudorandom
numbers.

rng(0,'twister')
data = randn(1000,1);

In the upper subplot specify the bin centers using a vector of evenly
spaced values that span the values in data.

figure
subplot(3,1,1)
xvalues1 = -4:4;
hist(data,xvalues1)

1-3095

hist

In the middle subplot specify the bin centers using a vector of evenly
spaced values that do not span the values in data. Notice that the
first and last bins extend to cover the minimum and maximum values
in data.

subplot(3,1,2)
xvalues2 = -2:2;
hist(data,xvalues2)

1-3096

hist

In the lower subplot set the bin intervals using a vector of unevenly
spaced values. These unevenly spaced values are not used as the bin
centers. MATLAB® indicates the specified values by markers along
the x-axis.

subplot(3,1,3)
xvalues3 = [-4,-2.5,0,0.5,1,3];
hist(data,xvalues3)

1-3097

hist

Specify Axes for Histogram Bar Plot

Initialize the random-number generator to make the output of randn
repeatable. Generate 1,000 normally distributed pseudorandom
numbers.

rng(0,'twister')
data = randn(1000,1);

1-3098

hist

Create a figure with handles to two subplots. In the upper subplot, plot
a histogram of data sorted into 50 equally spaced bins. In the lower
subplot, plot a histogram of the same data and use bins with centers
at -3, 0, and 3.

figure
s(1) = subplot(2,1,1);
s(2) = subplot(2,1,2);

hist(s(1),data,50)

xvalues = [-3,0,3];
hist(s(2),data,xvalues)

1-3099

hist

Plot Histogram Using Bar Graph

Initialize the random-number generator to make the output of randn
repeatable. Generate 1,000 normally distributed pseudorandom
numbers.

rng(0,'twister')
data = randn(1000,1);

1-3100

hist

Sort data into 10 equally spaced bins. Get the number of elements in
each bin and the locations of the bin centers.

[nelements,centers] = hist(data)

nelements =

4 27 88 190 270 243 123 38 13 4

centers =

Columns 1 through 7

-2.8915 -2.2105 -1.5294 -0.8484 -0.1673 0.5137 1.1947

Columns 8 through 10

1.8758 2.5568 3.2379

Use bar to plot the histogram.

figure
bar(centers,nelements)

1-3101

hist

Change Histogram Color Properties

Initialize the random-number generator to make the output of randn
repeatable. Generate 1,000 normally distributed pseudorandom
numbers and create a histogram bar plot.

figure
rng(0,'twister')
data = randn(1000,1);
hist(data)

1-3102

hist

Get the handle to the patch object that creates the histogram bar plot.

h = findobj(gca,'Type','patch');

Use the handle to change the face color and the edge color of the bars
plotted.

set(h,'FaceColor',[0 .5 .5],'EdgeColor','w')

1-3103

hist

Tips The x-axis reflects the range of values in data. The y-axis ranges from
0 to the greatest number of elements deposited in any bin.

See Also bar | ColorSpec | histc | mode | patch | rose | stairs

1-3104

histc

Purpose Histogram bin count

Syntax bincounts = histc(x,binranges)
bincounts = histc(x,binranges,dim)
[bincounts,ind]= histc(___)

Description bincounts = histc(x,binranges) counts the number of values in
x that are within each specified bin range. The input, binranges,
determines the endpoints for each bin. The output, bincounts, contains
the number of elements from x in each bin.

• If x is a vector, then histc returns bincounts as a vector of
histogram bin counts.

• If x is a matrix, then histc operates along each column of x and
returns bincounts as a matrix of histogram bin counts for each
column.

To plot the histogram, use bar(binranges,bincounts,'histc').

bincounts = histc(x,binranges,dim) operates along the dimension
dim.

[bincounts,ind]= histc(___) returns ind, an array the same size as
x indicating the bin number that each entry in x sorts into. Use this
syntax with any of the previous input argument combinations.

Input
Arguments

x - Values to be sorted
vector | matrix

Values to be sorted, specified as a vector or a matrix. The bin counts do
not include values in x that are NaN or that lie outside the specified bin
ranges. If x contains complex values, then histc ignores the imaginary
parts and uses only the real parts.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

1-3105

histc

binranges - Bin ranges
vector | matrix

Bin ranges, specified as a vector of monotonically nondecreasing values
or a matrix of monotonically nondecreasing values running down each
successive column. The values in binranges determine the left and
right endpoints for each bin. If binranges contains complex values,
then histc ignores the imaginary parts and uses only the real parts.

If binranges is a matrix, then histc determines the bin ranges by
using values running down successive columns. Each bin includes the
left endpoint, but does not include the right endpoint. The last bin
consists of the scalar value equal to last value in binranges.

For example, if binranges equals the vector [0,5,10,13], then histc
creates four bins. The first bin includes values greater than or equal
to 0 and strictly less than 5. The second bin includes values greater
than or equal to 5 and less than 10, and so on. The last bin contains
the scalar value 13.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

dim - Dimension along which to operate
scalar

Dimension along which to operate, specified as a scalar.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

Output
Arguments

bincounts - Number of elements in each bin
vector | matrix

Number of elements in each bin, returned as a vector or a matrix that is
the same size as x. The last entry in bincounts is the number of values
in x that equal the last entry in binranges.

1-3106

histc

ind - Bin index numbers
vector | matrix

Bin index numbers, returned as a vector or a matrix that is the same
size as x.

Examples Create Histogram Plot

Initialize the random number generator to make the output of randn
repeatable.

rng(0,'twister')

Define x as 100 normally distributed random numbers. Define bin
ranges between -4 and 4. Determine the number of values in x that
are within each specified bin range. Return the number of elements
in each bin in bincounts.

x = randn(100,1);
binranges = -4:4;
[bincounts] = histc(x,binranges)

bincounts =

0
2

17
28
32
16
3
2
0

To plot the histogram, use the bar function.

1-3107

histc

figure
bar(binranges,bincounts,'histc')

Return Bin Numbers for Histogram

Defined ages as a vector of ages. Sort ages into bins with varying
ranges between 0 and 75.

ages = [3,12,24,15,5,74,23,54,31,23,64,75];
binranges = [0,10,25,50,75];

1-3108

histc

[bincounts,ind] = histc(ages,binranges)

bincounts =

2 5 1 3 1

ind =

1 2 2 2 1 4 2 4 3 2 4

bincounts contains the number of values in each bin. ind indicates
the bin numbers.

Tips • If values in x lie outside the specified bin ranges, then histc does not
include these values in the bin counts. Start and end the binranges
vector with -inf and inf to ensure that all values in x are included
in the bin counts.

See Also bar | hist | mode

1-3109

hold

Purpose Retain current graph when adding new graphs

Syntax hold on
hold off
hold all
hold
hold(axes_handle,...)

Description The hold function controls whether MATLAB clears the current graph
when you make subsequent calls to plotting functions (the default), or
adds a new graph to the current graph.

hold on retains the current graph and adds another graph to it.
MATLAB adjusts the axes limits, tick marks, and tick labels as
necessary to display the full range of the added graph.

hold off resets hold state to the default behavior, in which MATLAB
clears the existing graph and resets axes properties to their defaults
before drawing new plots.

hold all holds the graph and the current line color and line style so
that subsequent plotting commands do not reset the ColorOrder and
LineStyleOrder property values to the beginning of the list. Plotting
commands continue cycling through the predefined colors and line
styles from where the last graph stopped in the list.

hold reverses the current hold state. If the hold state is currently on,
then a hold command sets the state to off. Similarly, if the hold state is
currently off, then a hold command sets the state to on.

hold(axes_handle,...) applies the hold to the axes identified by the
handle axes_handle. If several axes objects exist in a figure window,
each axes has its own hold state. hold also creates an axes if one does
not exist.

Test the hold state using the ishold function.

1-3110

hold

Examples Add Plot to Existing Graph

Plot the sine function. Then, set the hold state to on to retain the
current graph. Add a cosine plot.

x = -pi:pi/20:pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1);
hold on
plot(x,y2);
hold off % reset hold state

1-3111

hold

Algorithm hold toggles the NextPlot axes property between the add and replace.

hold on sets the NextPlot property of the current figure and axes
to add. hold off sets the NextPlot property of the current axes to
replace.

Tips If the range of subsequently added data is much greater than the
original data, the original graph can become difficult to see in one

1-3112

hold

axes. In these cases, it is usually better to use two separate axes. See
subplot to create multiple axes in one figure.

See Also axis | cla | ishold | newplot

How To • NextPlot

• “Controlling Graphics Output”

1-3113

home

Purpose Send cursor home

Syntax home

Description home moves the cursor to the upper-left corner of the window. When
using the MATLAB desktop, home also scrolls the visible text in the
window up and out of view. You can use the scroll bar to see what was
previously on the screen.

Examples Execute a MATLAB command that displays something in the Command
Window and then run the home function. home moves the cursor to the
upper-left corner of the screen and clears the screen.

magic(5)

ans =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

home

See Also clc

1-3114

horzcat

Purpose Concatenate arrays horizontally

Syntax C = horzcat(A1,...,AN)

Description C = horzcat(A1,...,AN) horizontally concatenates arrays A1,...,AN.
All arrays in the argument list must have the same number of rows.

• If the inputs are multidimensional arrays, horzcat concatenates
along the second dimension. The first and remaining dimensions
must match.

• If the inputs are tables, horzcat concatenates by matching row
names when present, or by matching position for tables that do not
have row names. All the table inputs must have unique variable
names and the row names for all tables that have them must be
identical, except for order.

horzcat assigns values for the Description and UserData properties
in C using the first nonempty value for the corresponding property
in the tables A1,...,AN.

MATLAB calls C = horzcat(A1, A2,...) for the syntax C = [A1 A2
...] when any of the inputs are an object.

Tips You can concatenate categorical arrays with cell arrays of strings. For
more information, see “Combine Categorical Arrays”.

If all the input arrays are ordinal categorical arrays, they must have
the same sets of categories including their order. For more information,
see “Ordinal Categorical Arrays”.

For information on combining unlike integer types, integers with
nonintegers, cell arrays with non-cell arrays, or empty matrices with
other elements, see “Valid Combinations of Unlike Classes”.

Examples Horizontally Concatenate Two Matrices

Create a 3-by-5 matrix, A.

A = magic(5);

1-3115

horzcat

A(4:5,:) = []

A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

Create a 3-by-3 matrix, B.

B = magic(3)*100

B =

800 100 600
300 500 700
400 900 200

Horizontally concatenate A and B.

C = horzcat(A,B)

C =

17 24 1 8 15 800 100 600
23 5 7 14 16 300 500 700
4 6 13 20 22 400 900 200

Horizontally Concatenate Two Tables

Create a table, A, with three rows and two variables.

A = table([5;6;5],['M';'M';'M'],...
'VariableNames',{'Age' 'Gender'},...
'RowNames',{'Thomas' 'Gordon' 'Percy'})

A =

Age Gender

1-3116

horzcat

--- ------
Thomas 5 M
Gordon 6 M
Percy 5 M

Create a table, B, with three rows and three variables.

B = table([45;41;40],[45;32;34],{'NY';'CA';'MA'},...
'VariableNames',{'Height' 'Weight' 'Birthplace'},...
'RowNames',{'Percy' 'Gordon' 'Thomas'})

B =

Height Weight Birthplace
------ ------ ----------

Percy 45 45 'NY'
Gordon 41 32 'CA'
Thomas 40 34 'MA'

Horizontally concatenate A and B.

C = horzcat(A,B)

C =

Age Gender Height Weight Birthplace
--- ------ ------ ------ ----------

Thomas 5 M 40 34 'MA'
Gordon 6 M 41 32 'CA'
Percy 5 M 45 45 'NY'

The order of rows in C matches the order in A.

See Also vertcat | cat | strcat | char | special character

How To • “Redefining Concatenation for Your Class”

1-3117

horzcat (tscollection)

Purpose Horizontal concatenation for tscollection objects

Syntax tsc = horzcat(tsc1,tsc2,...)

Description tsc = horzcat(tsc1,tsc2,...) performs horizontal concatenation
for tscollection objects:

tsc = [tsc1 tsc2 ...]

This operation combines multiple tscollection objects, which must
have the same time vectors, into one tscollection containing
timeseries objects from all concatenated collections.

See Also tscollection | vertcat (tscollection)

1-3118

hsv2rgb

Purpose Convert HSV colormap to RGB colormap

Syntax M = hsv2rgb(H)
rgb_image = hsv2rgb(hsv_image)

Description M = hsv2rgb(H) converts a hue-saturation-value (HSV) colormap to
a red-green-blue (RGB) colormap. H is an m-by-3 matrix, where m is
the number of colors in the colormap. The columns of H represent hue,
saturation, and value, respectively. M is an m-by-3 matrix. Its columns
are intensities of red, green, and blue, respectively.

rgb_image = hsv2rgb(hsv_image) converts the HSV image to the
equivalent RGB image. HSV is an m-by-n-by-3 image array whose
three planes contain the hue, saturation, and value components for the
image. RGB is returned as an m-by-n-by-3 image array whose three
planes contain the red, green, and blue components for the image.

Tips As H(:,1) varies from 0 to 1, the resulting color varies from red through
yellow, green, cyan, blue, and magenta, and returns to red. When
H(:,2) is 0, the colors are unsaturated (i.e., shades of gray). When
H(:,2) is 1, the colors are fully saturated (i.e., they contain no white
component). As H(:,3) varies from 0 to 1, the brightness increases.

The MATLAB hsv colormap uses hsv2rgb([huesaturationvalue])
where hue is a linear ramp from 0 to 1, and saturation and value
are all 1’s.

See Also brighten | colormap | rgb2hsv

1-3119

hypot

Purpose Square root of sum of squares

Syntax c = hypot(a,b)

Description c = hypot(a,b) returns the element-wise result of the following
equation, computed to avoid underflow and overflow:

c = sqrt(abs(a).^2 + abs(b).^2)

Inputs a and b must follow these rules:

• Both a and b must be single- or double-precision, floating-point
arrays.

• The sizes of the a and b arrays must either be equal, or one a scalar
and the other nonscalar. In the latter case, hypot expands the scalar
input to match the size of the nonscalar input.

• If a or b is an empty array (0-by-N or N-by-0), the other must be the
same size or a scalar. The result c is an empty array having the
same size as the empty input(s).

hypot returns the following in output c, depending upon the types of
inputs:

• If the inputs to hypot are complex (w+xi and y+zi), then the
statement c = hypot(w+xi,y+zi) returns the positive real result

c = sqrt(abs(w).^2+abs(x).^2+abs(y).^2+abs(z).^2)

• If a or b is –Inf, hypot returns Inf.

• If neither a nor b is Inf, but one or both inputs is NaN, hypot returns
NaN.

• If all inputs are finite, the result is finite. The one exception
is when both inputs are very near the value of the MATLAB
constant realmax. The reason for this is that the equation c =
hypot(realmax,realmax) is theoretically sqrt(2)*realmax, which
overflows to Inf.

1-3120

hypot

Examples Example 1

To illustrate the difference between using the hypot function and coding
the basic hypot equation in M-code, create an anonymous function that
performs the same function as hypot, but without the consideration to
underflow and overflow that hypot offers:

myhypot = @(a,b)sqrt(abs(a).^2+abs(b).^2);

Find the upper limit at which your coded function returns a useful
value. You can see that this test function reaches its maximum at about
1e154, returning an infinite result at that point:

myhypot(1e153,1e153)
ans =

1.4142e+153

myhypot(1e154,1e154)
ans =

Inf

Do the same using the hypot function, and observe that hypot operates
on values up to about 1e308, which is approximately equal to the
value for realmax on your computer (the largest double-precision
floating-point number you can represent on a particular computer):

hypot(1e308,1e308)
ans =

1.4142e+308

hypot(1e309,1e309)
ans =

Inf

Example 2

hypot(a,a) theoretically returns sqrt(2)*abs(a), as shown in this
example:

x = 1.271161e308;

1-3121

hypot

y = x * sqrt(2)
y =

1.7977e+308

y = hypot(x,x)
y =

1.7977e+308

See Also sqrt | abs | norm

1-3122

i

Purpose Imaginary unit

Syntax 1i
z = a + bi
z = x + 1i*y

Description 1i returns the basic imaginary unit. i is equivalent to sqrt(-1).

You can use i to enter complex numbers. You also can use the character
j as the imaginary unit. To create a complex number without using i
and j, use the complex function.

z = a + bi returns a complex numerical constant, z.

z = x + 1i*y returns a complex array, z.

Input
Arguments

a - Real component of complex scalar
scalar

Real component of a complex scalar, specified as a scalar.

Data Types
single | double

b - Imaginary component of complex scalar
scalar

Imaginary component of a complex scalar, specified as a scalar.

If b is double, you can use the character, i, without a multiplication
sign as a suffix in forming the complex numerical constant.

Example: 7i

If b is single, you must use a multiplication sign when forming the
complex numerical constant.

Example: single(7)*i

1-3123

i

Data Types
single | double

x - Real component of complex array
scalar | vector | matrix | multidimensional array

Real component of a complex array, specified as a scalar, vector, matrix,
or mulitdimensional array.

The size of x must match the size of y, unless one is a scalar. If either
x or y is a scalar, MATLAB expands the scalar to match the size of
the other input.

single can combine with double.

Data Types
single | double

y - Imaginary component of complex array
scalar | vector | matrix | multidimensional array

Imaginary component of a complex array, specified as a scalar, vector,
matrix, or mulitdimensional array.

The size of x must match the size of y, unless one is a scalar. If either
x or y is a scalar, MATLAB expands the scalar to match the size of
the other input.

single can combine with double.

Data Types
single | double

Output
Arguments

z - Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a scalar, vector, matrix, or multidimensional
array.

The size of z is the same as the input arguments.

1-3124

i

z is single if at least one input argument is single. Otherwise, z is
double.

Examples Complex Scalar

Create a complex scalar and use the character, i, without a
multiplication sign as a suffix in forming a complex numerical constant.

z = 1+2i

z =

1.0000 + 2.0000i

Complex Vector

Create a complex vector from two 4-by-1 vectors of real numbers.

x = [1:4]';
y = [8:-2:2]';

z = x+1i*y

z =

1.0000 + 8.0000i
2.0000 + 6.0000i
3.0000 + 4.0000i
4.0000 + 2.0000i

z is a 4-by-1 complex vector.

Complex Exponential

Create a complex scalar representing a complex vector with radius, r,
and angle from the origin, theta.

r = 4;
theta = pi/4;

1-3125

i

z = r*exp(1i*theta)

z =

2.8284 + 2.8284i

Tips • For speed and improved robustness in complex arithmetic, use 1i
and 1j instead of i and j.

• Since i is a function, it can be overridden and used as a variable.
However, it is best to avoid using i and j for variable names if you
intend to use them in complex arithmetic.

• Use the complex function to create a complex output in the following
cases:

- When the names i and j might be used for other variables (and
do not equal sqrt(-1))

- When the inputs are not double or single

- When the imaginary component is all zeros

See Also conj | complex | imag | j | real

Concepts • “Complex Numbers”

1-3126

ichol

Purpose Incomplete Cholesky factorization

Syntax L = ichol(A)
L = ichol(A,opts)

Description L = ichol(A) performs the incomplete Cholesky factorization of A with
zero-fill.

L = ichol(A,opts) performs the incomplete Cholesky factorization of
A with options specified by opts.

By default, ichol references the lower triangle of A and produces lower
triangular factors.

Input
Arguments

A

Sparse matrix

opts

Structure with up to five fields:

Field
Name

Summary Description

type Type of factorization String indicating which
flavor of incomplete
Cholesky to perform.
Valid values of this field are
'nofill' and 'ict'. The
'nofill' variant performs
incomplete Cholesky with
zero-fill (IC(0)). The 'ict'
variant performs incomplete
Cholesky with threshold

1-3127

ichol

Field
Name

Summary Description

dropping (ICT). The default
value is 'nofill'.

droptol Drop tolerance when type is
'ict'

Nonnegative scalar used
as a drop tolerance when
performing ICT. Elements
which are smaller in
magnitude than a local drop
tolerance are dropped from
the resulting factor except
for the diagonal element
which is never dropped.
The local drop tolerance at
step j of the factorization is
norm(A(j:end,j),1)*droptol.
'droptol' is ignored if
'type' is 'nofill'. The
default value is 0.

michol Indicates whether
to perform modified
incomplete Cholesky

Indicates whether or
not modified incomplete
Cholesky (MIC) is
performed. The field
may be 'on' or 'off'.
When performing MIC, the
diagonal is compensated
for dropped elements to
enforce the relationship
A*e = L*L'*e where
e = ones(size(A,2),1)).
The default value is 'off'.

1-3128

ichol

Field
Name

Summary Description

diagcomp Perform compensated
incomplete Cholesky with
the specified coefficient

Real nonnegative scalar
used as a global diagonal
shift alpha in forming
the incomplete Cholesky
factor. That is, instead of
performing incomplete
Cholesky on A, the
factorization of A +
alpha*diag(diag(A))
is formed. The default value
is 0.

shape Determines which triangle
is referenced and returned

Valid values are 'upper'
and 'lower'. If 'upper'
is specified, only the upper
triangle of A is referenced
and R is constructed such
that A is approximated by
R'*R. If 'lower' is specified,
only the lower triangle of
A is referenced and L is
constructed such that A is
approximated by L*L’. The
default value is 'lower'.

Tips • The factor given by this routine may be useful as a preconditioner
for a system of linear equations being solved by iterative methods
such as pcg or minres.

• ichol works only for sparse square matrices

Examples Incomplete Cholesky Factorization

This example generates an incomplete Cholesky factorization.

1-3129

ichol

Start with a symmetric positive definite matrix, A:

N = 100;
A = delsq(numgrid('S',N));

A is the two-dimensional, five-point discrete negative Laplacian on a
100-by-100 square grid with Dirichlet boundary conditions. The size
of A is 98*98 = 9604 (not 10000 as the borders of the grid are used to
impose the Dirichlet conditions).

The no-fill incomplete Cholesky factorization is a factorization which
contains only nonzeros in the same position as A contains nonzeros.
This factorization is extremely cheap to compute. Although the product
L*L' is typically very different from A, the product L*L' will match
A on its pattern up to round-off.

L = ichol(A);
norm(A-L*L','fro')./norm(A,'fro')

ans =

0.0916

norm(A-(L*L').*spones(A),'fro')./norm(A,'fro')

ans =

4.9606e-17

ichol may also be used to generate incomplete Cholesky factorizations
with threshold dropping. As the drop tolerance decreases, the factor
tends to get more dense and the product L*L' tends to be a better
approximation of A. The following plots show the relative error of the
incomplete factorization plotted against the drop tolerance as well as

1-3130

ichol

the ratio of the density of the incomplete factors to the density of the
complete Cholesky factor.

n = size(A,1);
ntols = 20;
droptol = logspace(-8,0,ntols);
nrm = zeros(1,ntols);
nz = zeros(1,ntols);
nzComplete = nnz(chol(A,'lower'));
for k = 1:ntols

L = ichol(A,struct('type','ict','droptol',droptol(k)));
nz(k) = nnz(L);
nrm(k) = norm(A-L*L','fro')./norm(A,'fro');

end
figure; loglog(droptol,nrm,'LineWidth',2);
title('Drop tolerance vs norm(A-L*L'',''fro'')./norm(A,''fro'')');
figure; semilogx(droptol,nz./nzComplete,'LineWidth',2);
title('Drop tolerance vs fill ratio ichol/chol');

1-3131

ichol

1-3132

ichol

The relative error is typically on the same order as the drop tolerance,
although this is not guaranteed.

Using ichol as a Preconditioner

This example shows how to use an incomplete Cholesky factorization as
a preconditioner to improve convergence.

Create a symmetric positive definite matrix, A.

N = 100;

1-3133

ichol

A = delsq(numgrid('S',N));

Create an incomplete Cholesky factorization as a preconditioner for pcg.
Use a constant vector as the right hand side. As a baseline, execute pcg
without a preconditioner.

b = ones(size(A,1),1);
tol = 1e-6; maxit = 100;
[x0,fl0,rr0,it0,rv0] = pcg(A,b,tol,maxit);

Note that fl0 = 1 indicating that pcg did not drive the relative residual
to the requested tolerance in the maximum allowed iterations. Try the
no-fill incomplete Cholesky factorization as a preconditioner.

L1 = ichol(A);
[x1,fl1,rr1,it1,rv1] = pcg(A,b,tol,maxit,L1,L1');

fl1 = 0, indicating that pcg converged to the requested tolerance
and did so in 59 iterations (the value of it1). Since this matrix is a
discretized Laplacian, however, using modified incomplete Cholesky
can create a better preconditioner. A modified incomplete Cholesky
factorization constructs an approximate factorization that preserves
the action of the operator on the constant vector. That is, norm(A*e
L*(L'*e)) will be approximately zero for e = ones(size(A,2),1)
even though norm(A-L*L','fro')/norm(A,'fro') is not close to zero.
It is not necessary to specify type for this syntax since nofill is the
default, but it is good practice.

opts.type = 'nofill'; opts.michol = 'on';
L2 = ichol(A,opts);
e = ones(size(A,2),1);
norm(A*e-L2*(L2'*e))
[x2,fl2,rr2,it2,rv2] = pcg(A,b,tol,maxit,L2,L2');

ans =

1-3134

ichol

3.7983e-14

pcg converges (fl2 = 0) but in only 38 iterations. Plotting all three
convergence histories shows the convergence.

semilogy(0:maxit,rv0./norm(b),'b.');
hold on;
semilogy(0:it1,rv1./norm(b),'r.');
semilogy(0:it2,rv2./norm(b),'k.');
legend('No Preconditioner','IC(0)','MIC(0)');

1-3135

ichol

The plot shows that the modified incomplete Cholesky preconditioner
creates a much faster convergence.

You can also try incomplete Cholesky factorizations with threshold
dropping. The following plot shows convergence of pcg with
preconditioners constructed with various drop tolerances.

L3 = ichol(A, struct('type','ict','droptol',1e-1));
[x3,fl3,rr3,it3,rv3] = pcg(A,b,tol,maxit,L3,L3');
L4 = ichol(A, struct('type','ict','droptol',1e-2));

1-3136

ichol

[x4,fl4,rr4,it4,rv4] = pcg(A,b,tol,maxit,L4,L4');
L5 = ichol(A, struct('type','ict','droptol',1e-3));
[x5,fl5,rr5,it5,rv5] = pcg(A,b,tol,maxit,L5,L5');
figure; semilogy(0:maxit,rv0./norm(b),'b-','linewidth',2);
hold on;
semilogy(0:it3,rv3./norm(b),'b-.','linewidth',2);
semilogy(0:it4,rv4./norm(b),'b--','linewidth',2);
semilogy(0:it5,rv5./norm(b),'b:','linewidth',2);
legend('No Preconditioner','ICT(1e-1)','ICT(1e-2)', ...

'ICT(1e-3)','Location','SouthEast');

1-3137

ichol

Note the incomplete Cholesky preconditioner constructed with drop
tolerance 1e-2 is denoted as ICT(1e-2).

As with the zero-fill incomplete Cholesky, the threshold dropping
factorization can benefit from modification (i.e. opts.michol = 'on')
since the matrix arises from an elliptic partial differential equation.
As with MIC(0), the modified threshold based dropping incomplete
Cholesky will preserve the action of the preconditioner on constant
vectors, that is norm(A*e-L*(L'*e)) will be approximately zero.

1-3138

ichol

Using the diagcomp Option

This example illustrates the use of the diagcomp option of ichol.

Incomplete Cholesky factorizations of positive definite matrices do
not always exist. The following code constructs a random symmetric
positive definite matrix and attempts to solve a linear system using pcg.

S = rng('default');
A = sprandsym(1000,1e-2,1e-4,1);
rng(S);
b = full(sum(A,2));
[x0,fl0,rr0,it0,rv0] = pcg(A,b,1e-6,100);

Since convergence is not attained, try to construct an incomplete
Cholesky preconditioner.

L = ichol(A,struct('type','ict','droptol',1e-3));

Error using ichol
Encountered nonpositive pivot.

If ichol breaks down as above, you can use the diagcomp option to
construct a shifted incomplete Cholesky factorization. That is, instead
of constructing L such that L*L' approximates A, ichol with diagonal
compensation constructs L such that L*L' approximates M = A +
alpha*diag(diag(A)) without explicitly forming M. As incomplete
factorizations always exist for diagonally dominant matrices, alpha can
be found to make M diagonally dominant.

alpha = max(sum(abs(A),2)./diag(A))-2

alpha =

62.9341

1-3139

ichol

L1 = ichol(A, struct('type','ict','droptol',1e-3,'diagcomp',alpha));
[x1,fl1,rr1,it1,rv1] = pcg(A,b,1e-6,100,L1,L1');

Here, pcg still fails to converge to the desired tolerance within the
desired number of iterations, but as the plot below shows, convergence
is better for pcg with this preconditioner than with no preconditioner.
Choosing a smaller alpha may help. With some experimentation, we
can settle on an appropriate value for alpha.

alpha = .1;
L2 = ichol(A, struct('type','ict','droptol',1e-3,'diagcomp',alpha));
[x2,fl2,rr2,it2,rv2] = pcg(A,b,1e-6,100,L2,L2');

Now, pcg converges and a plot can show the convergence histories with
each preconditioner.

semilogy(0:100,rv0./norm(b),'b.');
hold on;
semilogy(0:100,rv1./norm(b),'r.');
semilogy(0:it2,rv2./norm(b),'k.');
legend('No Preconditioner','\alpha \approx 63','\alpha = .1');
xlabel('Iteration Number');
ylabel('Relative Residual');

1-3140

ichol

References [1] Saad, Yousef. “Preconditioning Techniques.” Iterative Methods for
Sparse Linear Systems. PWS Publishing Company, 1996.

[2] Manteuffel, T.A. “An incomplete factorization technique for positive
definite linear systems.” Math. Comput. 34, 473–497, 1980.

See Also ilu | chol | pcg | minres

1-3141

idivide

Purpose Integer division with rounding option

Syntax C = idivide(A, B, opt)
C = idivide(A, B)
C = idivide(A, B, 'fix')
C = idivide(A, B, 'round')
C = idivide(A, B, 'floor')
C = idivide(A, B, 'ceil')

Description C = idivide(A, B, opt) is the same as A./B for integer classes except
that fractional quotients are rounded to integers using the optional
rounding mode specified by opt. The default rounding mode is 'fix'.
Inputs A and B must be real and must have the same dimensions unless
one is a scalar. At least one of the arguments A and B must belong to an
integer class, and the other must belong to the same integer class or be
a scalar double. The result C belongs to the integer class.

C = idivide(A, B) is the same as A./B except that fractional quotients
are rounded toward zero to the nearest integers.

C = idivide(A, B, 'fix') is the same as the syntax shown
immediately above.

C = idivide(A, B, 'round') is the same as A./B for integer classes.
Fractional quotients are rounded to the nearest integers.

C = idivide(A, B, 'floor') is the same as A./B except that
fractional quotients are rounded toward negative infinity to the nearest
integers.

C = idivide(A, B, 'ceil') is the same as A./B except that the
fractional quotients are rounded toward infinity to the nearest integers.

Examples a = int32([-2 2]);
b = int32(3);

idivide(a,b) % Returns [0 0]
idivide(a,b,'floor') % Returns [-1 0]
idivide(a,b,'ceil') % Returns [0 1]

1-3142

idivide

idivide(a,b,'round') % Returns [-1 1]

See Also ceil | floor | fix | round | rdivide | ldivide

1-3143

if, elseif, else

Purpose Execute statements if condition is true

Syntax if expression
statements

elseif expression
statements

else
statements

end

Description if expression, statements, end evaluates an expression, and
executes a group of statements when the expression is true.

elseif and else are optional, and execute statements only when
previous expressions in the if block are false. An if block can include
multiple elseif statements.

An evaluated expression is true when the result is nonempty and
contains all nonzero elements (logical or real numeric). Otherwise, the
expression is false.

Expressions can include relational operators (such as < or ==) and
logical operators (such as &&, ||, or ~). MATLAB evaluates compound
expressions from left to right, adhering to operator precedence rules.

Note Within the condition expression of an if or while statement,
logical operators & and | behave as short-circuit operators. This
behavior is the same as && and ||, respectively. Since && and ||
consistently short-circuit in if and while condition expressions and
statements, it is good practice to use && and || instead of & and | within
expression.

Tips • You can nest any number of if statements. Each if statement
requires an end keyword.

1-3144

if, elseif, else

• Avoid adding a space within the elseif keyword (else if). The
space creates a nested if statement that requires its own end
keyword.

Examples Assign to a matrix values that depend on their indices.

% Preallocate a matrix
nrows = 10;
ncols = 10;
myData = ones(nrows, ncols);

% Loop through the matrix
for r = 1:nrows

for c = 1:ncols

if r == c
myData(r,c) = 2;

elseif abs(r - c) == 1
myData(r,c) = -1;

else
myData(r,c) = 0;

end

end
end

Respond to command-line input. Because the input string could be more
than one character, use strcmp rather than == to test for equality.

reply = input('Would you like to see an echo? (y/n): ', 's');
if strcmp(reply,'y')

disp(reply)
end

1-3145

if, elseif, else

Find the indices of values in a vector that are greater than a specified
limit.

A = rand(1,10);
limit = .75;

B = (A > limit); % B is a vector of logical values
if any(B)

fprintf('Indices of values > %4.2f: \n', limit);
disp(find(B))

else
disp('All values are below the limit.')

end

Concatenate two variables when they are the same size. To avoid an
error when the variables have different dimensions, compare the sizes
using isequal rather than the == operator.

A = ones(2,3); % Two-dimensional array
B = rand(3,4,5); % Three-dimensional array

if isequal(size(A), size(B))
C = [A; B];

else
warning('A and B are not the same size.');
C = [];

end

Take advantage of short-circuiting to avoid error or warning messages.

x = 42;
if exist('myfunction.m') && (myfunction(x) >= pi)

disp('Condition is true')
end

1-3146

if, elseif, else

See Also for | while | switch | return | Logical Operators: Short
Circuit

Concepts • “Relational Operators”

1-3147

ifft

Purpose Inverse fast Fourier transform

Syntax y = ifft(X)
y = ifft(X,n)
y = ifft(X,[],dim)
y = ifft(X,n,dim)
y = ifft(..., 'symmetric')
y = ifft(..., 'nonsymmetric')

Description y = ifft(X) returns the inverse discrete Fourier transform (DFT) of
vector X, computed with a fast Fourier transform (FFT) algorithm. If X
is a matrix, ifft returns the inverse DFT of each column of the matrix.

ifft tests X to see whether vectors in X along the active dimension
are conjugate symmetric. If so, the computation is faster and the
output is real. An N-element vector x is conjugate symmetric if
x(i) = conj(x(mod(N-i+1,N)+1)) for each element of x.

If X is a multidimensional array, ifft operates on the first non-singleton
dimension.

y = ifft(X,n) returns the n-point inverse DFT of vector X.

y = ifft(X,[],dim) and y = ifft(X,n,dim) return the inverse DFT
of X across the dimension dim.

y = ifft(..., 'symmetric') causes ifft to treat X as conjugate
symmetric along the active dimension. This option is useful when X is
not exactly conjugate symmetric, merely because of round-off error.

y = ifft(..., 'nonsymmetric') is the same as calling ifft(...)
without the argument 'nonsymmetric'.

For any X, ifft(fft(X)) equals X to within roundoff error.

Algorithms The algorithm for ifft(X) is the same as the algorithm for fft(X),
except for a sign change and a scale factor of n = length(X). As for
fft, the execution time for ifft depends on the length of the transform.
It is fastest for powers of two. It is almost as fast for lengths that have

1-3148

ifft

only small prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors.

Note You might be able to increase the speed of ifft using the utility
function fftw, which controls how MATLAB software optimizes the
algorithm used to compute an FFT of a particular size and dimension.

Data Type
Support

ifft supports inputs of data types double and single. If you call ifft
with the syntax y = ifft(X, ...), the output y has the same data
type as the input X.

See Also fft | fft2 | ifft2 | ifftn | ifftshift | fftw

1-3149

ifft2

Purpose 2-D inverse fast Fourier transform

Syntax Y = ifft2(X)
Y = ifft2(X,m,n)
y = ifft2(..., 'symmetric')
y = ifft2(..., 'nonsymmetric')

Description Y = ifft2(X) returns the two-dimensional inverse discrete Fourier
transform (DFT) of X, computed with a fast Fourier transform (FFT)
algorithm. The result Y is the same size as X.

ifft2 tests X to see whether it is conjugate symmetric. If so, the
computation is faster and the output is real. An M-by-N matrix X
is conjugate symmetric if X(i,j) = conj(X(mod(M-i+1, M) + 1,
mod(N-j+1, N) + 1)) for each element of X.

Y = ifft2(X,m,n) returns the m-by-n inverse fast Fourier transform
of matrix X.

y = ifft2(..., 'symmetric') causes ifft2 to treat X as conjugate
symmetric. This option is useful when X is not exactly conjugate
symmetric, merely because of round-off error.

y = ifft2(..., 'nonsymmetric') is the same as calling ifft2(...)
without the argument 'nonsymmetric'.

For any X, ifft2(fft2(X)) equals X to within roundoff error.

Algorithms The algorithm for ifft2(X) is the same as the algorithm for fft2(X),
except for a sign change and scale factors of [m,n] = size(X). The
execution time for ifft2 depends on the length of the transform. It is
fastest for powers of two. It is almost as fast for lengths that have only
small prime factors. It is typically several times slower for lengths that
are prime or which have large prime factors.

1-3150

ifft2

Note You might be able to increase the speed of ifft2 using the utility
function fftw, which controls how MATLAB software optimizes the
algorithm used to compute an FFT of a particular size and dimension.

Data Type
Support

ifft2 supports inputs of data types double and single. If you call
ifft2 with the syntax y = ifft2(X, ...), the output y has the same
data type as the input X.

See Also fft2 | fftw | fftshift | ifft | ifftn | ifftshift

1-3151

ifftn

Purpose N-D inverse fast Fourier transform

Syntax Y = ifftn(X)
Y = ifftn(X,siz)
y = ifftn(..., 'symmetric')
y = ifftn(..., 'nonsymmetric')

Description Y = ifftn(X) returns the n-dimensional inverse discrete Fourier
transform (DFT) of X, computed with a multidimensional fast Fourier
transform (FFT) algorithm. The result Y is the same size as X.

ifftn tests X to see whether it is conjugate symmetric. If so, the
computation is faster and the output is real. An N1-by-N2-by- ... Nk
array X is conjugate symmetric if

X(i1,i2, ...,ik) = conj(X(mod(N1-i1+1,N1)+1, mod(N2-i2+1,N2)+1,
... mod(Nk-ik+1,Nk)+1))

for each element of X.

Y = ifftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the inverse
transform. The size of the result Y is siz.

y = ifftn(..., 'symmetric') causes ifftn to treat X as conjugate
symmetric. This option is useful when X is not exactly conjugate
symmetric, merely because of round-off error.

y = ifftn(..., 'nonsymmetric') is the same as calling ifftn(...)
without the argument 'nonsymmetric'.

Tips For any X, ifftn(fftn(X)) equals X within roundoff error.

Algorithms ifftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))

Y = ifft(Y,[],p);
end

1-3152

ifftn

This computes in-place the one-dimensional inverse DFT along each
dimension of X.

The execution time for ifftn depends on the length of the transform. It
is fastest for powers of two. It is almost as fast for lengths that have
only small prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors.

Note You might be able to increase the speed of ifftn using the utility
function fftw, which controls how MATLAB software optimizes the
algorithm used to compute an FFT of a particular size and dimension.

Data Type
Support

ifftn supports inputs of data types double and single. If you call
ifftn with the syntax y = ifftn(X, ...), the output y has the same
data type as the input X.

See Also fftn | fftw | ifft | ifft2 | ifftshift

1-3153

ifftshift

Purpose Inverse FFT shift

Syntax ifftshift(X)
ifftshift(X,dim)

Description ifftshift(X) swaps the left and right halves of the vector X. For
matrices, ifftshift(X) swaps the first quadrant with the third and
the second quadrant with the fourth. If X is a multidimensional array,
ifftshift(X) swaps “half-spaces” of X along each dimension.

ifftshift(X,dim) applies the ifftshift operation along the
dimension dim.

Note ifftshift undoes the results of fftshift. If the matrix X
contains an odd number of elements, ifftshift(fftshift(X)) must
be done to obtain the original X. Simply performing fftshift(X) twice
will not produce X.

See Also fft | fft2 | fftn | fftshift

1-3154

ilu

Purpose Sparse incomplete LU factorization

Syntax ilu(A,setup)
[L,U] = ilu(A,setup)
[L,U,P] = ilu(A,setup)

Description ilu produces a unit lower triangular matrix, an upper triangular
matrix, and a permutation matrix.

ilu(A,setup) computes the incomplete LU factorization of A. setup
is an input structure with up to five setup options. The fields must
be named exactly as shown in the table below. You can include any
number of these fields in the structure and define them in any order.
Any additional fields are ignored.

Field
Name Description

type Type of factorization. Values for type include:

• 'nofill'(default)—Performs ILU factorization with
0 level of fill in, known as ILU(0). With type set to
'nofill', only the milu setup option is used; all other
fields are ignored.

• 'crout'—Performs the Crout version of ILU
factorization, known as ILUC. With type set to
'crout', only the droptol and milu setup options are
used; all other fields are ignored.

• 'ilutp'—Performs ILU factorization with threshold
and pivoting.

If type is not specified, the ILU factorization with 0 level
of fill in is performed. Pivoting is only performed with
type set to 'ilutp'.

droptol Drop tolerance of the incomplete LU factorization.
droptol is a non-negative scalar. The default value is 0,
which produces the complete LU factorization.

1-3155

ilu

Field
Name Description

The nonzero entries of U satisfy

abs(U(i,j)) >= droptol*norm(A(:,j)),

with the exception of the diagonal entries, which are
retained regardless of satisfying the criterion. The
entries of L are tested against the local drop tolerance
before being scaled by the pivot, so for nonzeros in L

abs(L(i,j)) >= droptol*norm(A(:,j))/U(j,j).

milu Modified incomplete LU factorization. Values for milu
include:

• 'row'—Produces the row-sum modified incomplete LU
factorization. Entries from the newly-formed column
of the factors are subtracted from the diagonal of the
upper triangular factor, U, preserving column sums.
That is, A*e = L*U*e, where e is the vector of ones.

• 'col'—Produces the column-sum modified incomplete
LU factorization. Entries from the newly-formed
column of the factors are subtracted from the diagonal
of the upper triangular factor, U, preserving column
sums. That is, e'*A = e'*L*U.

• 'off' (default)—No modified incomplete LU
factorization is produced.

udiag If udiag is 1, any zeros on the diagonal of the upper
triangular factor are replaced by the local drop tolerance.
The default is 0.

thresh Pivot threshold between 0 (forces diagonal pivoting)
and 1, the default, which always chooses the maximum
magnitude entry in the column to be the pivot.

1-3156

ilu

ilu(A,setup) returns L+U-speye(size(A)), where L is a unit lower
triangular matrix and U is an upper triangular matrix.

[L,U] = ilu(A,setup) returns a unit lower triangular matrix in L and
an upper triangular matrix in U.

[L,U,P] = ilu(A,setup) returns a unit lower triangular matrix in L,
an upper triangular matrix in U, and a permutation matrix in P.

Tips These incomplete factorizations may be useful as preconditioners for
a system of linear equations being solved by iterative methods such
as BICG (BiConjugate Gradients), GMRES (Generalized Minimum
Residual Method).

Limitations ilu works on sparse square matrices only.

Examples Start with a sparse matrix and compute the LU factorization.

A = gallery('neumann', 1600) + speye(1600);
setup.type = 'crout';
setup.milu = 'row';
setup.droptol = 0.1;
[L,U] = ilu(A,setup);
e = ones(size(A,2),1);
norm(A*e-L*U*e)

ans =

1.4251e-014

This shows that A and L*U, where L and U are given by the modified
Crout ILU, have the same row-sum.

Start with a sparse matrix and compute the LU factorization.

A = gallery('neumann', 1600) + speye(1600);
setup.type = 'nofill';
nnz(A)

1-3157

ilu

ans =

7840

nnz(lu(A))
ans =

126478

nnz(ilu(A,setup))
ans =

7840

This shows that A has 7840 nonzeros, the complete LU factorization has
126478 nonzeros, and the incomplete LU factorization, with 0 level of
fill-in, has 7840 nonzeros, the same amount as A.

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS
Publishing Company, 1996, Chapter 10 - Preconditioning Techniques.

See Also bicg | ichol | gmres

1-3158

im2frame

Purpose Convert image to movie frame

Syntax f = im2frame(X,map)
f = im2frame(X)

Description f = im2frame(X,map) converts the indexed image, X, and the
associated colormap, map, into a movie frame f.

• If you specify X as an m-by-n array of integers, then im2frame uses
the associated colormap, map, where map is a three-column array of
values in the range [0,1]. Each row of map is a three-element RGB
triplet that specifies the red, green, and blue components of a single
color of the colormap.

• If you specify X as an m-by-n-by-3 truecolor image, then map is
optional and has no effect.

f = im2frame(X) converts the indexed image, X, into a movie frame f
using the current colormap if X contains an indexed image.

For more information on image types, see “Image Types”.

Class
Support

X must be of class uint8 or double.

Examples Convert Image Sequence to Movie

Use im2frame to convert a sequence of images into a movie.

F(1) = im2frame(X1,map);
F(2) = im2frame(X2,map);
...

F(n) = im2frame(Xn,map);
movie(F)

See Also frame2im | movie

1-3159

im2java

Purpose Convert image to Java image

Syntax jimage = im2java(I)
jimage = im2java(X,MAP)
jimage = im2java(RGB)

Description To work with a MATLAB image in the Java environment, you must
convert the image from its MATLAB representation into an instance of
the Java image class, java.awt.Image.

jimage = im2java(I) converts the intensity image I to an instance of
the Java image class, java.awt.Image.

jimage = im2java(X,MAP) converts the indexed image X, with
colormap MAP, to an instance of the Java image class, java.awt.Image.

jimage = im2java(RGB) converts the RGB image RGB to an instance of
the Java image class, java.awt.Image.

Class
Support

The input image can be of class uint8, uint16, or double.

Note Java requires uint8 data to create an instance of the Java image
class, java.awt.Image. If the input image is of class uint8, jimage
contains the same uint8 data. If the input image is of class double or
uint16, im2java makes an equivalent image of class uint8, rescaling
or offsetting the data as necessary, and then converts this uint8
representation to an instance of the Java image class, java.awt.Image.

Examples This example reads an image into the MATLAB workspace and then
uses im2java to convert it into an instance of the Java image class.

I = imread('ngc6543a.jpg');
javaImage = im2java(I);
frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);

1-3160

im2java

frame.getContentPane.add(label);
frame.pack
frame.show

1-3161

imag

Purpose Imaginary part of complex number

Syntax Y = imag(Z)

Description Y = imag(Z) returns the imaginary part of the elements of array Z.

Examples imag(2+3i)

ans =

3

See Also conj | i | j | real

1-3162

image

Purpose Display image object

Syntax image(C)
image(x,y,C)
image(x,y,C,'PropertyName',PropertyValue,...)
image('PropertyName',PropertyValue,...)
handle = image(...)

Properties For a list of properties, see Image Properties.

Description image creates an image graphics object by interpreting each element
in a matrix as an index into the figure’s colormap or directly as RGB
values, depending on the data specified.

The image function has two forms:

• A high-level function that calls newplot to determine where to draw
the graphics objects and sets the following axes properties:

- XLim and YLim to enclose the image

- Layer to top to place the image in front of the tick marks and
grid lines

- YDir to reverse

- View to [0 90]

• A low-level function that adds the image to the current axes without
calling newplot. The low-level function argument list can contain
only property name/property value pairs.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see set and get for examples of how to
specify these data types).

1-3163

../ref/image_props.html

image

image(C) displays matrix C as an image. Each element of C specifies
the color of a rectangular segment in the image.

image(x,y,C), where x and y are two-element vectors, specifies the
range of the x- and y-axis labels, but produces the same image as
image(C). This can be useful, for example, if you want the axis tick
labels to correspond to real physical dimensions represented by the
image. If x(1) > x(2) or y(1) > y(2), the image is flipped left-right
or up-down, respectively. It can also be useful when you want to place
the image within a set of axes already created. In this case, use hold
on with the current figure and enter x and y values corresponding to
the corners of the desired image location. The image is stretched and
oriented as applicable.

image(x,y,C,'PropertyName',PropertyValue,...) is a high-level
function that also specifies property name/property value pairs. For a
description of the properties, see Image Properties. This syntax calls
newplot before drawing the image.

image('PropertyName',PropertyValue,...) is the low-level syntax
of the image function. It specifies only property name/property value
pairs as input arguments.

handle = image(...) returns the handle of the image object it creates.
You can obtain the handle with all forms of the image function.

Tips Image data can be either indexed or true color. An indexed image stores
colors as an array of indices into the figure colormap. A true color
image does not use a colormap; instead, the color values for each pixel
are stored directly as RGB triplets. In MATLAB graphics, the CData
property of a truecolor image object is a three-dimensional (m-by-n-by-3)
array. This array consists of three m-by-nmatrices (representing the red,
green, and blue color planes) concatenated along the third dimension.

The imread function reads image data into MATLAB arrays from
graphics files in various standard formats, such as TIFF. You can write
MATLAB image data to graphics files using the imwrite function.
imread and imwrite both support a variety of graphics file formats
and compression schemes.

1-3164

../ref/image_props.html

image

When you read image data into the MATLAB workspace using imread,
the data is usually stored as an array of 8-bit integers. However, imread
also supports reading 16-bit-per-pixel data from TIFF and PNG files.
These are more efficient storage methods than the double-precision
(64-bit) floating-point numbers that MATLAB typically uses. However,
it is necessary to interpret 8-bit and 16-bit image data differently from
64-bit data. This table summarizes these differences.

You cannot interactively pan or zoom outside the x-limits or y-limits of
an image, unless the axes limits are already been set outside the bounds
of the image, in which case there is no such restriction. If other objects
(such as lineseries) occupy the axes and extend beyond the bounds of
the image, you can pan or zoom to the bounds of the other objects, but
no further.

Image
Type

Double-Precision Data
(double Array)

8-Bit Data (uint8 Array)
16-Bit Data (uint16
Array)

Indexed
(colormap)

Image is stored as
a two-dimensional
(m-by-n) array of
integers in the range
[1, length(colormap)];
colormap is an m-by-3
array of floating-point
values in the range [0, 1].

Image is stored as a
two-dimensional (m-by-n)
array of integers in the
range [0, 255] (uint8)
or [0, 65535] (uint16);
colormap is an m-by-3
array of floating-point
values in the range [0, 1].

True color
(RGB)

Image is stored as
a three-dimensional
(m-by-n-by-3) array of
floating-point values in
the range [0, 1].

Image is stored as
a three-dimensional
(m-by-n-by-3) array of
integers in the range [0,
255] (uint8) or [0, 65535]
(uint16).

By default, image plots the y-axis from lowest to highest value, top to
bottom. To reverse this, type set(gca,'YDir','normal'). This will
reverse both the y-axis and the image.

1-3165

image

Indexed Images

In an indexed image of class double, the value 1 points to the first row
in the colormap, the value 2 points to the second row, and so on. In a
uint8 or uint16 indexed image, there is an offset; the value 0 points
to the first row in the colormap, the value 1 points to the second row,
and so on.

If you want to convert a uint8 or uint16 indexed image to double, you
need to add 1 to the result. For example,

X64 = double(X8) + 1;

or

X64 = double(X16) + 1;

To convert from double to uint8 or uint16, you need to first subtract 1,
and then use round to ensure all the values are integers.

X8 = uint8(round(X64 - 1));

or

X16 = uint16(round(X64 - 1));

When you write an indexed image using imwrite, values are
automatically converted if necessary.

Colormaps

MATLAB colormaps are always m-by-3 arrays of double-precision
floating-point numbers in the range [0, 1]. In most graphics file formats,
colormaps are stored as integers, but MATLAB colormaps cannot have
integer values. imread and imwrite automatically convert colormap
values when reading and writing files.

True Color Images

In a true color image of class double, the data values are floating-point
numbers in the range [0, 1]. In a true color image of class uint8, the

1-3166

image

data values are integers in the range [0, 255], and for true color images
of class uint16 the data values are integers in the range [0, 65535].

If you want to convert a true color image from one data type to the
other, you must rescale the data. For example, this statement converts
a uint8 true color image to double.

RGB64 = double(RGB8)/255;

or for uint16 images,

RGB64 = double(RGB16)/65535;

This statement converts a double true color image to uint8:

RGB8 = uint8(round(RGB64*255));

or to obtain uint16 images, type

RGB16 = uint16(round(RGB64*65535));

When you write a true color image using imwrite, values are
automatically converted if necessary.

Examples Load MAT-File and Display Image

Load the mandrill file which contains an indexed image, X, and its
associated colormap, map. Display the image using its colormap.

load mandrill
image(X)
colormap(map)

1-3167

image

Remove the axis tick marks and tick labels. Set the aspect ratio to
obtain square pixels.

axis off
axis image

1-3168

image

Load and Display JPEG Image File

Load a JPEG image file of the Cat’s Eye Nebula from the Hubble Space
Telescope (image courtesy NASA). Display the original image using its
RGB color values (left) as a subplot.

Create a linked subplot (same size and scale) to display the transformed
intensity image as a heat map (right).

figure

1-3169

image

ax(1) = subplot(1,2,1);
rgb = imread('ngc6543a.jpg');
image(rgb);
title('RGB image')

ax(2) = subplot(1,2,2);
im = mean(rgb,3);
image(im);
title('Intensity Heat Map')
colormap(hot(256))
linkaxes(ax,'xy')
axis(ax,'image')

1-3170

image

Setting
Default
Properties

You can set default image properties on the axes, figure, and root
object levels:

set(0,'DefaultImageProperty',PropertyValue...)
set(gcf,'DefaultImageProperty',PropertyValue...)
set(gca,'DefaultImageProperty',PropertyValue...)

1-3171

image

where Property is the name of the image property and PropertyValue
is the value you are specifying. Use set and get to access image
properties.

Tutorials For more information, see “Working with Images in MATLAB Graphics”
.

See Also colormap | imagesc | imfinfo | imread | imwrite | newplot | pcolor
| surface | Image Properties

1-3172

../ref/image_props.html

Image Properties

Purpose Define image properties

Creating
Image
Objects

Use image to create image objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “Customize Objects in Graph” is an interactive tool that enables you
to see and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Image
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

AlphaData
m-by-n matrix of double or uint8

Transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData
can be of class double or uint8.

MATLAB software determines the transparency in one of the
following ways:

• Using the elements of AlphaData as transparency values
(AlphaDataMapping set to none)

• Using the elements of AlphaData as indices into the current
alphamap (AlphaDataMapping set to direct)

1-3173

Image Properties

• Scaling the elements of AlphaData to range between the
minimum and maximum values of the axes ALim property
(AlphaDataMapping set to scaled, the default)

AlphaDataMapping
none | direct | {scaled}

Transparency mapping method. Determines how MATLAB
interprets indexed alpha data. Values for this property are:

• none — The transparency values of AlphaData are between 0
and 1 or are clamped to this range.

• scaled — Transform the AlphaData to span the portion of
the alphamap indicated by the axes ALim property, linearly
mapping data values to alpha values (the default).

• direct — Use the AlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer
values ranging from 1 to length(alphamap). MATLAB maps
values less than 1 to the first alpha value in the alphamap, and
values greater than length(alphamap) to the last alpha value
in the alphamap. Values with a decimal portion are fixed to
the nearest, lower integer. If AlphaData is an array of uint8
integers, then the indexing begins at 0 (that is, MATLAB maps
a value of 0 to the first alpha value in the alphamap).

Annotation
hg.Annotation object (read-only)

Handle of Annotation object. The Annotation property enables
you to specify whether this image object is represented in a figure
legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

1-3174

../ref/axes_props.html#ALim

Image Properties

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the image
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this image object in a legend
(default)

off Do not include this image object in a legend

children Same as on because image objects do not
have children

Setting the IconDisplayStyle property

Set the IconDisplayStyle of a graphics object with handle hobj
to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to

1-3175

Image Properties

perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press a
mouse button while the pointer is over this object, but not over
another graphics object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

1-3176

Image Properties

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

CData
matrix | m-by-n-by-3 array

The image data. A matrix or 3-D array of values specifying the
color of each rectangular area defining the image. image(C)
assigns the values of C to CData. MATLAB determines the
coloring of the image in one of three ways:

• Using the elements of CData as indices into the current
colormap (the default) (CDataMapping set to direct)

• Scaling the elements of CData to range between the values
min(get(gca,'CLim')) and max(get(gca,'CLim'))
(CDataMapping set to scaled)

• Interpreting the elements of CData directly as RGB values
(true color specification)

Note that the behavior of NaNs in image CData is not defined.
See the image AlphaData property for information on using
transparency with images.

A true color specification for CData requires an m-by-n-by-3 array
of RGB values. The first page contains the red component, the
second page the green component, and the third page the blue
component of each element in the image. RGB values range from
0 to 1. The following picture illustrates the relative dimensions of
CData for the two color models.

1-3177

Image Properties

If CData has only one row or column, the height or width
respectively is always one data unit and is centered about the
first YData or XData element respectively. For example, using a
4-by-1 matrix of random data:

C = rand(4,1);
image(C,'CDataMapping','scaled')
axis image

produces

1-3178

Image Properties

CDataMapping
scaled | {direct}

Direct or scaled indexed colors. Determines whether MATLAB
interprets the values in CData as indices into the figure colormap
(the default) or scales the values according to the values of the
axes CLim property.

When CDataMapping is direct, the values of CData should be
in the following ranges:

• In the range 1 to length(get(gcf,'Colormap')) for type
double or single

1-3179

Image Properties

• In the range 0 to length(get(gcf,'Colormap')) (up to the
range limits of the type) for types uint8 and uint16.

• If CData is of type logical, then the values of 0 index the first
color of the colormap and values of 1 index the second color.

If you use true color specification for CData, the CDataMapping
property has no effect.

Children
handle

The empty matrix; image objects have no children.

Clipping
{on} | off

Clipping mode. By default, MATLAB clips images to the axes
rectangle. If you set Clipping to off, the image can be displayed
outside the axes rectangle. For example, if you create an image,
set hold to on, freeze axis scaling (with axis manual), and then
create a larger image, it extends beyond the axis limits.

CreateFcn
string | function handle

Callback routine executed during object creation. This property
defines a callback routine that executes when MATLAB creates
an image object. You must define this property as a default value
for images or in a call to the image function to create a new image
object. For example, the statement:

set(0,'DefaultImageCreateFcn','axis image')

defines a default value on the root level that sets the aspect ratio
and the axis limits so the image has square pixels. MATLAB
executes this routine after setting all image properties. Setting
this property on an existing image object has no effect.

1-3180

Image Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the image object in the legend. The default is an
empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

1-3181

Image Properties

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,

1-3182

Image Properties

the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides

1-3183

Image Properties

a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

1-3184

Image Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the objects that compose the area graph. If HitTest is off,
clicking this object selects the object below it (which is usually
the axes containing it).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

1-3185

Image Properties

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

1-3186

Image Properties

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, use findobj to
find the object’s handle. The following statement changes the
FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read-only)

1-3187

Image Properties

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For image objects, Type is
always ’image’.

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
[1 size(CData,2)] by default

Control placement of image along x-axis. A vector specifying
the locations of the centers of the elements CData(1,1) and
CData(m,n), where CData has a size of m-by-n. Element
CData(1,1) is centered over the coordinate defined by the first

1-3188

Image Properties

elements in XData and YData. Element CData(m,n) is centered
over the coordinate defined by the last elements in XData and
YData. The centers of the remaining elements of CData are evenly
distributed between those two points.

The width of each CData element is determined by the expression:

(XData(2)-XData(1))/(size(CData,2)-1)

You can also specify a single value for XData. In this case, image
centers the first element at this coordinate and centers each
following element one unit apart.

YData
[1 size(CData,1)] by default

Control placement of image along y-axis. A vector specifying
the locations of the centers of the elements CData(1,1) and
CData(m,n), where CData has a size of m-by-n. Element
CData(1,1) is centered over the coordinate defined by the first
elements in XData and YData. Element CData(m,n) is centered
over the coordinate defined by the last elements in XData and
YData. The centers of the remaining elements of CData are evenly
distributed between those two points.

The height of each CData element is determined by the expression:

(YData(2)-YData(1))/(size(CData,1)-1)

You can also specify a single value for YData. In this case, image
centers the first element at this coordinate and centers each
following element one unit apart.

See Also image

1-3189

imagesc

Purpose Scale data and display image object

Syntax imagesc(C)
imagesc(x,y,C)
imagesc(...,clims)
imagesc('PropertyName',PropertyValue,...)
h = imagesc(...)

Description The imagesc function scales image data to the full range of the current
colormap and displays the image. (See “Examples” on page 1-3191 for
an illustration.)

imagesc(C) displays C as an image. Each element of C corresponds to
a rectangular area in the image. The values of the elements of C are
indices into the current colormap that determine the color of each patch.

imagesc(x,y,C) displays C as an image and specifies the bounds of the
x- and y-axis with vectors x and y. If x(1) > x(2) or y(1) > y(2),
the image is flipped left-right or up-down, respectively. If x and y are
scalars, the image is translated to the specified location (x,y) such that
the upper left corner of the image starts at (x,y).

imagesc(...,clims) normalizes the values in C to the range specified
by clims and displays C as an image. clims is a two-element vector
that limits the range of data values in C. These values map to the full
range of values in the current colormap.

imagesc('PropertyName',PropertyValue,...) is the low-level
syntax of the imagesc function. It specifies only property name/property
value pairs as input arguments. See Image Properties for a list of the
property names and their values.

h = imagesc(...) returns the handle for an image graphics object.

1-3190

../ref/image_props.html

imagesc

Tips x and y do not affect the elements in C; they only affect the annotation
of the axes. If length(x) > 2 or length(y) > 2, imagesc ignores all
except the first and last elements of the respective vector.

imagesc creates an image with CDataMapping set to scaled, and sets the
axes CLim property to the value passed in clims.

You cannot interactively pan or zoom outside the x-limits or y-limits
of an image.

By default, imagesc plots the y-axis from lowest to highest value, top to
bottom. To reverse this, type set(gca,'YDir','normal'). This will
reverse both the y-axis and the image.

Examples You can expand midrange color resolution by mapping low values to the
first color and high values to the last color in the colormap by specifying
color value limits (clims). If the size of the current colormap is 81-by-3,
the statements

clims = [10 60]
imagesc(C,clims)

map the data values in C to the colormap as shown in this illustration
and the code that follows:

1-3191

imagesc

In this example, the left image maps to the gray colormap using the
statements

load clown
figure
subplot(1,2,1)
imagesc(X)
colormap(gray)
axis image
title('Default CLim (= [1 81])')

The right image has values between 10 and 60 scaled to the full range
of the gray colormap using the statements

subplot(1,2,2)
clims = [10 60];
imagesc(X,clims)
colormap(gray)
axis image
title('CLim = [10 60]')

This example shows how to shift the image starting from origin to a
position (100, 100),

i = imread('eight.tif');

1-3192

imagesc

figure; subplot(2,2,1); imagesc(i);
axis([0 400 0 400]);
colormap(gray);
subplot(2,2,2); imagesc(100,100,i);
axis([0 400 0 400]);
colormap(gray);

The figure output is as:

The top right corner of the image is now starting from (100,100) instead
of the origin.

Passing vector values with the image scales the image to the specified
size of 400–by–400.

figure; imagesc(1:400,1:400,i);
colormap(gray);

1-3193

imagesc

See Also image | imfinfo | imread | imwrite | colorbar | colormap | pcolor
| surface | surf

1-3194

imapprox

Purpose Approximate indexed image by reducing number of colors

Syntax [Y,newmap] = imapprox(X,map,n)
[Y,newmap] = imapprox(X,map,tol)
Y = imapprox(X,map,newmap)
Y = imapprox(...,dither_option)

Description [Y,newmap] = imapprox(X,map,n) approximates the colors in the
indexed image X and associated colormap map by using minimum
variance quantization. imapprox returns the indexed image Y with
colormap newmap, which has at most n colors.

[Y,newmap] = imapprox(X,map,tol) approximates the colors in
X and map through uniform quantization. newmap contains at most
(floor(1/tol)+1)^3 colors. tol must be between 0 and 1.0.

Y = imapprox(X,map,newmap) approximates the colors in map by
using colormap mapping to find the colors in newmap that best match
the colors in map.

Y = imapprox(...,dither_option) enables or disables dithering.
dither_option is a string that can have one of these values.

Value Description

{'dither'}(default)Dithers, if necessary, to achieve better color
resolution at the expense of spatial resolution.

'nodither' Maps each color in the original image to the
closest color in the new map. No dithering is
performed.

Class
Support

The input image X can be of class uint8, uint16, or double. The output
image Y is of class uint8 if the length of newmap is less than or equal to
256. If the length of newmap is greater than 256, Y is of class double.

Algorithms imapprox uses rgb2ind to create a new colormap that uses fewer colors.

1-3195

imapprox

Examples Load an indexed image of a mandrill’s face. Display image X using its
associated colormap, map, which has 220 colors.

load mandrill
figure('color','k')
image(X)
colormap(map)
size(map) % See that the color map has 220 entries

ans =
220 3

axis off % Remove axis ticks and numbers
axis image % Set aspect ratio to obtain square pixels

1-3196

imapprox

Reduce the number of colors in the indexed image from 220 to only 16
colors by producing a new image, Y, and its associated colormap, newmap:

figure('color','k')
[Y, newmap] = imapprox(X, map, 16);
size(newmap) % See that the new color map has 16 entries

ans =
16 3

1-3197

imapprox

image(Y)
colormap(newmap)
axis off % Remove axis ticks and numbers
axis image % Set aspect ratio to obtain square pixels

See Also cmunique | dither | rgb2ind

1-3198

imfinfo

Purpose Information about graphics file

Syntax info = imfinfo(filename)
info = imfinfo(filename,fmt)
info = imfinfo(URL)

Description info = imfinfo(filename) returns a structure whose fields contain
information about an image in a graphics file, filename. The file must
be in the current folder or in a folder on the MATLAB path.

The format of the file is inferred from its contents.

• If filename is a TIFF, HDF, ICO, GIF, or CUR file containing more
than one image, then info is a structure array with one element
for each image in the file. For example, info(3) would contain
information about the third image in the file.

info = imfinfo(filename,fmt) additionally looks for a file named
filename.fmt, if MATLAB cannot find a file named filename.

info = imfinfo(URL) returns information about the image at the
specified Internet resource, URL.

Input
Arguments

filename - Name of graphics file
string

Name of graphics file, specified as a string.

Example: 'myImage.jpg'

Data Types
char

fmt - Image format
string

1-3199

imfinfo

Image format, specified as a string. The possible values for fmt are
contained in the MATLAB file format registry. To view of list of these
formats, run the imformats command.

Example: 'gif'

Data Types
char

URL - Image location
string

Image location, specified as a string. URL must include the protocol
type (e.g., http://).

Data Types
char

Output
Arguments

info - Information about graphics file
structure array

Information about the graphics file, returned as a structure array. The
set of fields in info depends on the individual file and its format. This
table lists the nine fields that always appear, and describes their values.

Field
Name Description Value

Filename Name of the file or the Internet URL
specified. If the file is not in the current
folder, the string contains the full path
name of the file.

string

FileModDate Date when the file was last modified. string

FileSize Size of the file, in bytes. integer

1-3200

imfinfo

Field
Name Description Value

Format File format, as specified by fmt. For
formats with more than one possible
extension (for example, JPEG and TIFF
files), imfinfo returns the first variant
in the file format registry.

string

FormatVersionFile format version. string or
number

Width Image width, in pixels. integer

Height Image height, in pixels. integer

BitDepth Number of bits per pixel. integer

ColorType Image type. ColorType includes, but
is not limited to, 'truecolor' for a
truecolor (RGB) image, 'grayscale'
for a grayscale intensity image, or
'indexed' for an indexed image.

string

Additional fields returned by some file formats:

• JPEG and TIFF only — If filename contains Exchangeable
Image File Format (EXIF) tags, then info might also contain
'DigitalCamera' or 'GPSInfo' (global positioning system
information) fields.

• GIF only — imfinfo returns the value of the 'DelayTime' field
in hundredths of seconds.

• JPEG2000 only— The info structure contains an m-by-3 cell array,
'ChannelDefinition'. The first column of 'ChannelDefinition'
reports a channel position as it exists in the file. The second column
reports the type of channel, and the third column reports the channel
mapping.

1-3201

imfinfo

Examples Return Information About Graphics File

Find information about the example image, ngc6543a.jpg.

info = imfinfo('ngc6543a.jpg')

info =

Filename: 'matlabroot\toolbox\matlab\demos\ngc6543a.jpg'
FileModDate: '01-Oct-1996 16:19:44'

FileSize: 27387
Format: 'jpg'

FormatVersion: ''
Width: 600

Height: 650
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3

CodingMethod: 'Huffman'
CodingProcess: 'Sequential'

Comment: {'CREATOR: XV Version 3.00b Rev: 6/15/94 Quality =
'}

See Also imformats | imread | imwrite

1-3202

imformats

Purpose Manage image file format registry

Syntax imformats

formatStruct = imformats(fmt)

registry = imformats
registry = imformats(formatStruct)
registry = imformats('add',formatStruct)
registry = imformats('remove',fmt)
registry = imformats('update',fmt,formatStruct)
registry = imformats('factory')

Description imformats displays a table of information listing all the values in the
MATLAB file format registry. This registry determines which file
formats the imfinfo, imread, and imwrite functions support.

formatStruct = imformats(fmt) searches the known formats in the
MATLAB file format registry for the format associated with the file
name extension specified by fmt. If found, formatStruct is a structure
containing the characteristics and function names associated with the
format. Otherwise, formatStruct is an empty structure.

registry = imformats returns a structure array, registry, containing
all the values in the MATLAB file format registry.

registry = imformats(formatStruct) sets the MATLAB file format
registry for the current MATLAB session to the values in formatStruct.
The output structure, registry, contains the new registry settings. Use
this syntax to replace image file format support.

Incorrect use of imformats to specify values in the MATLAB file format
registry can result in the inability to load any image files. To return
the file format registry to a working state, use imformats with the
'factory' input.

1-3203

imformats

registry = imformats('add',formatStruct) adds the values in
formatStruct to the file format registry. Use this syntax to add image
file format support.

registry = imformats('remove',fmt) removes the format with the
extension specified by fmt from the file format registry. Use this syntax
to remove image file format support.

registry = imformats('update',fmt,formatStruct) changes the
format registry values for the format with extension fmt to have the
values specified by formatStruct.

registry = imformats('factory') resets the MATLAB file format
registry to the default format registry values. This removes any
user-specified settings.

Input
Arguments

formatStruct - File format registry values
structure array

File format registry values, specified as a structure array with the
following 7 fields.

Field Description Value

ext File name extensions that
are valid for this format.

Cell array of strings

isa Name of the function that
determines if a file is of a
certain format.

String or function handle

info Name of the function that
reads information about a
file.

String or function handle

read Name of the function that
reads image data in a file.

String or function handle

1-3204

imformats

Field Description Value

write Name of the function that
writes MATLAB data to a
file.

String or function handle

alpha Presence or absence of an
alpha channel.

1 if the format has an
alpha channel; otherwise
it is 0.

description Text description of the file
format.

String

The values for the isa, info, read, and write fields must be either
functions on the MATLAB search path or function handles.

Data Types
struct

fmt - File format extension
string

File format extension, specified as a string.

Example: 'jpg'

Data Types
char

Output
Arguments

registry - File format registry
structure array

File format registry, returned as a structure array with the following
fields.

1-3205

imformats

Field Description Value

ext File name extensions that
are valid for this format.

Cell array of strings

isa Name of the function that
determines if a file is of a
certain format.

String or function handle

info Name of the function that
reads information about a
file.

String or function handle

read Name of the function that
reads image data in a file.

String or function handle

write Name of the function that
writes MATLAB data to a
file.

String or function handle

alpha Presence or absence of an
alpha channel.

1 if the format has an
alpha channel; otherwise
it is 0.

description Text description of the file
format.

String

Note Use the imread, imwrite, and imfinfo functions to read, write,
or get information about an image file when the file format is in the
format registry. Do not directly invoke the functions returned in the
fields of the registry structure array.

Examples Determine if File Format Exists in Registry

Determine if the file format associated with the .bmp file extension is
in the image file format registry.

1-3206

imformats

formatStruct = imformats('bmp')

formatStruct =

ext: {'bmp'}
isa: @isbmp

info: @imbmpinfo
read: @readbmp

write: @writebmp
alpha: 0

description: 'Windows Bitmap'

formatStruct is a non empty structure, so the BMP file format is in
the registry.

Add, Update, or Remove File Format from Registry

Add a hypothetical file format, ABC, to the image file format registry.
Update, and then remove the format.

Create a structure with seven fields, defining values for the new format.

formatStruct = struct('ext','abc','isa',@isabc,...
'info',@abcinfo,'read',@readabc,'write','',...
'alpha',0,'description','My ABC Format')

formatStruct =

ext: 'abc'
isa: @isabc

info: @abcinfo
read: @readabc

write: ''
alpha: 0

description: 'My ABC Format'

formatStruct is a 1-by-1 structure with seven fields. In this example,
the write field is empty.

1-3207

imformats

Add the new format to the file format registry.

registry = imformats('add',formatStruct);

Redefine the format associated with the extension, abc, by adding a
value for the write field. Then, update the registry value for the format.

formatStruct2 = struct('ext','abc','isa',@isabc,...
'info',@abcinfo,'read',@readabc,'write',@writeabc,...
'alpha',0,'description','My ABC Format');

registry = imformats('update','abc',formatStruct2);

Remove the format with the extension, abc, from the file format registry.

registry = imformats('remove','abc');

Tips • Changes to the format registry do not persist between MATLAB
sessions. To have a format always available when you start
MATLAB, add the appropriate imformats command to the MATLAB
startup file, startup.m, located in $MATLAB/toolbox/local on UNIX
systems, or $MATLAB\toolbox\local on Windows systems.

See Also imfinfo | imread | imwrite | path

Concepts • “What Is the MATLAB Search Path?”

1-3208

import

Purpose Add package or class to current import list

Syntax import package_name.class_name
import package_name.function_name
import package_name.*
import package_name.class_name1 package_name.class_name2...
import package_name1.* package_name2.*...
L = import
import

Description import package_name.class_name adds the fully qualified class name
to the current import list.

import package_name.function_name adds the specified
package-based function.

import package_name.* adds the specified package name. Note that
package_name must be followed by .*.

import package_name.class_name1 package_name.class_name2...
adds multiple fully qualified class names.

import package_name1.* package_name2.*... adds multiple package
names.

L = import with no input arguments returns a cell array of strings
containing the current import list, without adding to it.

import with no input arguments displays the current import list,
without adding to it.

The import function allows your code to refer to an imported class or
function using fewer or no package prefixes.

The import function only affects the import list of the function within
which it is used. When invoked at the command prompt, import uses
the import list for the MATLAB command environment. If import is
used in a script invoked from a function, it affects the import list of the
function. If import is used in a script that is invoked from the command
prompt, it affects the import list for the command environment.

1-3209

import

The import list of a function is persistent across calls to that function
and is only cleared when the function is cleared.

To clear the current import list, use the following command.

clear import

This command may only be invoked at the command prompt.
Attempting to use clear import within a function results in an error.

Importing MATLAB Packages and Classes

You can import packages and classes into a MATLAB workspace (from
the command line or in a function definition). For example:

import packagename.*

imports all classes and package functions so that you can reference
those classes and functions by their simple names, without the package
qualifier.

You can import just a single class from a package:

import packagename.ClassName
import Classname

You must still use the class name to call static methods:

ClassName.staticMethod()

For more information on how import works with MATLAB classes and
packages, see “Importing Classes”.

Tips The import function allows your code to refer to an imported class by
class name only, rather than with the fully qualified class name. import
is particularly useful in streamlining calls to constructors, where most
references to Java classes occur.

If you use the import function in a control statement, for example, if
or switch, or in a function, MATLAB limits the scope of the variables

1-3210

import

to that block of code. If you use the variables outside the function or
control block, MATLAB displays an error message.

Limitations • import cannot load a Java JAR package created by the MATLAB
Builder™ JA product.

Examples To add the containers.Map class to the current import list:

import containers.Map
myMap = Map('KeyType', 'char', 'ValueType', 'double');

To import two Java packages:

import java.util.Enumeration java.lang.String
s = String('hello'); % Create java.lang.String object
methods Enumeration % List java.util.Enumeration methods

To add the java.awt package:

import java.awt.*
f = Frame; % Create java.awt.Frame object

This example uses import in a function to call members of a .NET
class in the System.Drawing namespace. Create the getPrinterInfo
function:

function ptr = getPrinterInfo
import System.Drawing.Printing.*;
ptr = PrinterSettings;
end

To call the function, type:

NET.addAssembly('System.Drawing');

1-3211

import

printer = getPrinterInfo;

See Also clear | load | importdata

1-3212

importdata

Purpose Load data from file

Syntax A = importdata(filename)
A = importdata('-pastespecial')
A = importdata(___ ,delimiterIn)
A = importdata(___ ,delimiterIn,headerlinesIn)
[A,delimiterOut,headerlinesOut] = importdata(___)

Description A = importdata(filename) loads data into array A.

A = importdata('-pastespecial') loads data from the system
clipboard rather than from a file.

A = importdata(___ ,delimiterIn) interprets delimiterIn as the
column separator in ASCII file, filename, or the clipboard data. You
can use delimiterIn with any of the input arguments in the above
syntaxes.

A = importdata(___ ,delimiterIn,headerlinesIn) loads data from
ASCII file, filename, or the clipboard, reading numeric data starting
from line headerlinesIn+1.

[A,delimiterOut,headerlinesOut] = importdata(___) additionally
returns the detected delimiter character for the input ASCII file
in delimiterOut and the detected number of header lines in
headerlinesOut, using any of the input arguments in the previous
syntaxes.

Input
Arguments

filename - Name and extension of file to import
string

Name and extension of the file to import, specified as a string. If
importdata recognizes the file extension, it calls the MATLAB helper
function designed to import the associated file format (such as load

1-3213

importdata

for MAT-files or xlsread for spreadsheets). Otherwise, importdata
interprets the file as a delimited ASCII file.

For ASCII files and spreadsheets, importdata expects to find numeric
data in a rectangular form (that is, like a matrix). Text headers can
appear above or to the left of the numeric data, as follows:

• Column headers or file description text at the top of the file, above
the numeric data.

• Row headers to the left of the numeric data.

Example: 'myFile.jpg'

Data Types
char

delimiterIn - Column separator character
string

Column separator character, specified as a string. The default character
is interpreted from the file. Use '\t' for tab.

Example: ','

Example: ' '

Data Types
char

headerlinesIn - Number of text header lines in ASCII file
nonnegative scalar integer

Number of text header lines in the ASCII file, specified as a nonnegative
scalar integer. If you do not specify headerlinesIn, the importdata
function detects this value in the file.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

1-3214

importdata

Output
Arguments

A - Data from the file
matrix | multidimensional array | scalar structure array

Data from the file, returned as a matrix, multidimensional array, or
scalar structure array, depending on the characteristics of the file.
Based on the file format of the input file, importdata calls a helper
function to read the data. When the helper function returns more than
one nonempty output, importdata combines the outputs into a struct
array.

This table lists the file formats associated with helper functions that
can return more than one output, and the possible fields in the structure
array, A.

File Format Possible Fields Class

MAT-files One field for each
variable

Associated with each
variable.

ASCII files and
Spreadsheets

data
textdata
colheaders
rowheaders

For ASCII files, data
contains a double
array. Other fields
contain cell arrays
of strings. textdata
includes row and
column headers.
For spreadsheets,
each field contains a
struct, with one field
for each worksheet.

Images cdata
colormap
alpha

See imread.

Audio files data
fs

See audioread.

The MATLAB helper functions for most other supported file formats
return one output. For more information about the class of each output,

1-3215

importdata

see the functions listed in “Supported File Formats for Import and
Export”.

If the ASCII file or spreadsheet contains either column or row headers,
but not both, importdata returns a colheaders or rowheaders field in
the output structure, where:

• colheaders contains only the last line of column header text.
importdata stores all text in the textdata field.

• rowheaders is created only when the file or worksheet contains a
single column of row headers.

delimiterOut - Detected column separator in the input ASCII file
string

Detected column separator in the input ASCII file, returned as a string.

headerlinesOut - Detected number of text header lines in the
input ASCII file
integer

Detected number of text header lines in the input ASCII file, returned
as an integer.

Examples Import and Display an Image

Import and display the image ngc6543a.jpg.

A = importdata('ngc6543a.jpg');
image(A);

The output, A, is class uint8 because the helper function, imread,
returns empty results for colormap and alpha.

Import a Text File and Specify Delimiter and Column Header

Using a text editor, create a space-delimited ASCII file with column
headers called myfile01.txt.

Day1 Day2 Day3 Day4 Day5 Day6 Day7

1-3216

importdata

95.01 76.21 61.54 40.57 5.79 20.28 1.53
23.11 45.65 79.19 93.55 35.29 19.87 74.68
60.68 1.85 92.18 91.69 81.32 60.38 44.51
48.60 82.14 73.82 41.03 0.99 27.22 93.18
89.13 44.47 17.63 89.36 13.89 19.88 46.60

Import the file, specifying the space delimiter and the single column
header.

filename = 'myfile01.txt';
delimiterIn = ' ';
headerlinesIn = 1;
A = importdata(filename,delimiterIn,headerlinesIn);

View columns 3 and 5.

for k = [3, 5]
disp(A.colheaders{1, k})
disp(A.data(:, k))
disp(' ')

end

Day3
61.5400
79.1900
92.1800
73.8200
17.6300

Day5
5.7900

35.2900
81.3200
0.9900

13.8900

1-3217

importdata

Import a Text File and Return Detected Delimiter

Using a text editor, create a comma-delimited ASCII file called
myfile02.txt.

1,2,3
4,5,6
7,8,9

Import the file, and display the output data and detected delimiter
character.

filename = 'myfile02.txt';
[A,delimiterOut]=importdata(filename)

A =

1 2 3
4 5 6
7 8 9

delimiterOut =

,

Import Data from Clipboard

Copy the following lines to the clipboard. Select the text, right-click,
and then select Copy.

1,2,3
4,5,6
7,8,9

Import the clipboard data into MATLAB by typing the following.

A = importdata('-pastespecial')

1-3218

importdata

A =

1 2 3
4 5 6
7 8 9

Tips • To import ASCII files with nonnumeric characters outside of column
or row headers, including columns of character data or formatted
dates or times, use textscan instead of importdata.

See Also load | save | textscan | xlsread | imread | readtable | uiimport

Concepts • “Supported File Formats for Import and Export”
• “Ways to Import Text Files”
• “Ways to Import Spreadsheets”
• “Import or Export a Sequence of Files”

1-3219

imread

Purpose Read image from graphics file

Syntax A = imread(filename, fmt)
[X, map] = imread(...)
[...] = imread(filename)
[...] = imread(URL,...)
[...] = imread(...,Param1,Val1,Param2,Val2...)

Description A = imread(filename, fmt) reads a grayscale or color image from the
file specified by the string filename. If the file is not in the current
folder, or in a folder on the MATLAB path, specify the full pathname.

The text string fmt specifies the format of the file by its standard file
extension. For example, specify 'gif' for Graphics Interchange Format
files. To see a list of supported formats, with their file extensions, use
the imformats function. If imread cannot find a file named filename, it
looks for a file named filename.fmt.

The return value A is an array containing the image data. If the file
contains a grayscale image, A is an M-by-N array. If the file contains a
truecolor image, A is an M-by-N-by-3 array. For TIFF files containing
color images that use the CMYK color space, A is an M-by-N-by-4
array. See TIFF in the Format-Specific Information section for more
information.

The class of A depends on the bits-per-sample of the image data,
rounded to the next byte boundary. For example, imread returns 24-bit
color data as an array of uint8 data because the sample size for each
color component is 8 bits. See “Tips” on page 1-3221 for a discussion of
bitdepths, and see “Format-Specific Information” on page 1-3221 for
more detail about supported bit depths and sample sizes for a particular
format.

[X, map] = imread(...) reads the indexed image in filename into X
and its associated colormap into map. Colormap values in the image file
are automatically rescaled into the range [0,1].

[...] = imread(filename) attempts to infer the format of the file
from its content.

1-3220

imread

[...] = imread(URL,...) reads the image from an Internet URL.
The URL must include the protocol type (e.g., http://).

[...] = imread(...,Param1,Val1,Param2,Val2...) specifies
parameters that control various characteristics of the operations
for specific formats. For more information, see “Format-Specific
Information” on page 1-3221.

Tips • Bit depth is the number of bits used to represent each image pixel.
Bit depth is calculated by multiplying the bits-per-sample with the
samples-per-pixel. Thus, a format that uses 8-bits for each color
component (or sample) and three samples per pixel has a bit depth
of 24. Sometimes the sample size associated with a bit depth can
be ambiguous: does a 48-bit bit depth represent six 8-bit samples,
four 12-bit samples, or three 16-bit samples? See “Format-Specific
Information” on page 1-3221 for sample size information to avoid
this ambiguity.

Format-Specific
Information

The following sections provide information about the support for specific
formats, listed in alphabetical order by format name. These sections
include information about format-specific syntaxes, if they exist.

“BMP — Windows
Bitmap” on page
1-3222

“JPEG — Joint
Photographic Experts
Group” on page
1-3224

“PNG — Portable
Network Graphics”
on page 1-3227

“CUR — Cursor File”
on page 1-3222

“JPEG 2000 — Joint
Photographic Experts
Group 2000” on page
1-3225

“PPM — Portable
Pixmap” on page
1-3228

“GIF — Graphics
Interchange Format”
on page 1-3223

“PBM — Portable
Bitmap” on page
1-3226

“RAS — Sun Raster”
on page 1-3229

1-3221

imread

“HDF4 —
Hierarchical Data
Format” on page
1-3224

“PCX — Windows
Paintbrush” on page
1-3227

“TIFF — Tagged
Image File Format”
on page 1-3229

“ICO — Icon File” on
page 1-3224

“PGM — Portable
Graymap” on page
1-3227

“XWD — X Window
Dump” on page
1-3231

BMP — Windows Bitmap

Supported
Bitdepths

No
Compression

RLE
Compression

Output
Class

Notes

1-bit y – logical

4-bit y y uint8

8-bit y y uint8

16-bit y – uint8 1 sample/pixel

24-bit y – uint8 3 samples/pixel

32-bit y – uint8 3 samples/pixel
(1 byte padding)

CUR — Cursor File

Supported
Bitdepths

No
Compression

Compression Output Class

1-bit y – logical

4-bit y – uint8

8-bit y – uint8

Format-specific syntaxes:

[...] = imread(..., idx) reads in one image from a multi-image
icon or cursor file. idx is an integer value that specifies the order that
the image appears in the file. For example, if idx is 3, imread reads

1-3222

imread

the third image in the file. If you omit this argument, imread reads
the first image in the file.

[A, map, alpha] = imread(...) returns the AND mask for the
resource, which can be used to determine the transparency information.
For cursor files, this mask may contain the only useful data.

Note By default, Microsoft Windows cursors are 32-by-32 pixels.
MATLAB pointers must be 16-by-16. You will probably need to scale
your image. If you have Image Processing Toolbox™, you can use its
imresize function.

GIF — Graphics Interchange Format

Supported Bitdepths Output Class

1-bit logical

2-bit to 8-bit uint8

Format-specific syntaxes:

[...] = imread(..., idx) reads in one or more frames from a
multiframe (i.e., animated) GIF file. idx must be an integer scalar or
vector of integer values. For example, if idx is 3, imread reads the third
image in the file. If idx is 1:5, imread returns only the first five frames.

[...] = imread(..., 'frames', idx) is the same as the syntax
above except that idx can be 'all'. In this case, all the frames are read
and returned in the order that they appear in the file.

Note Because of the way that GIF files are structured, all the frames
must be read when a particular frame is requested. Consequently, it is
much faster to specify a vector of frames or 'all' for idx than to call
imread in a loop when reading multiple frames from the same GIF file.

1-3223

imread

HDF4 — Hierarchical Data Format

Supported
Bitdepths

Raster
Image
with
colormap

Raster
image
without
colormap

Output
Class

Notes

8-bit y y uint8

24-bit – y uint8 3
samples/pixel

Format-specific syntaxes:

[...] = imread(..., ref) reads in one image from a multi-image
HDF4 file. ref is an integer value that specifies the reference number
used to identify the image. For example, if ref is 12, imread reads the
image whose reference number is 12. (Note that in an HDF4 file the
reference numbers do not necessarily correspond to the order of the
images in the file. You can use imfinfo to match image order with
reference number.) If you omit this argument, imread reads the first
image in the file.

ICO — Icon File

See “CUR — Cursor File” on page 1-3222

JPEG — Joint Photographic Experts Group

imread can read any baseline JPEG image as well as JPEG images
with some commonly used extensions. For information about support
for JPEG 2000 files, see JPEG 2000.

1-3224

imread

Supported
Bits-per-sample

Lossy
Compression

Lossless
Compression

Output Class Notes

8-bit y y uint8 Grayscale or RGB

12-bit y y uint16 Grayscale or RGB

16-bit – y uint16 Grayscale

JPEG 2000 — Joint Photographic Experts Group 2000

For information about JPEG files, see JPEG.

Note Indexed JPEG 2000 images are not supported. Only JP2
compatible color spaces are supported for JP2/JPX files. By default, all
image channels are returned in the order they are stored in the file.

Supported
Bits-per-sample

Lossy
Compression

Lossless
Compression

Output
Class

Notes

1-bit y y logical Grayscale
only

2- to 8-bit y y uint8 or
int8

Grayscale
or RGB

9- to 16-bit y y uint16 or
int16

Grayscale
or RGB

Format-specific syntaxes:

[...] = imread(..., 'Param1', value1, 'Param2', value2,
...) uses parameter-value pairs to control the read operation,
described in the following table.

1-3225

imread

Parameter Value

'ReductionLevel' A non-negative integer specifying the reduction in the
resolution of the image. For a reduction level L, the image
resolution is reduced by a factor of 2^L. Its default value
is 0 implying no reduction. The reduction level is limited
by the total number of decomposition levels as specified by
the'WaveletDecompositionLevels' field in the structure
returned by the imfinfo function.

'PixelRegion' {ROWS, COLS} — The imread function returns the
sub-image specified by the boundaries in ROWS and
COLS. ROWS and COLS must both be two-element vectors
that denote the 1-based indices [START STOP]. If
'ReductionLevel' is greater than 0, then ROWS and COLS
are coordinates in the reduced-sized image.

'V79Compatible' A logical value. If true, the image returned is transformed
to grayscale or RGB, consistent with previous versions
of imread (MATLAB 7.9 [R2009b] and earlier). Use this
option to transform YCC images into RGB. The default
is false.

PBM — Portable Bitmap

Supported
Bitdepths

Raw Binary ASCII (Plain)
Encoded

Output Class

1-bit y y logical

1-3226

imread

PCX — Windows Paintbrush

Supported
Bitdepths

Output Class Notes

1-bit logical Grayscale only

8-bit uint8 Grayscale or indexed

24-bit uint8 RGB
Three 8-bit
samples/pixel

PGM — Portable Graymap

Supported
Bitdepths

Raw
Binary

ASCII
(Plain)
Encoded

Output Class Notes

8-bit y – uint8

16-bit y – uint16

Arbitrary – y 1-bit to 8-bit:
uint8
9-bit to 16-bit:
uint16

Values are
scaled

PNG — Portable Network Graphics

Supported
Bitdepths

Output Class Notes

1-bit logical Grayscale

2-bit uint8 Grayscale

4-bit uint8 Grayscale

8-bit uint8 Grayscale or Indexed

16-bit uint16 Grayscale or Indexed

1-3227

imread

Supported
Bitdepths

Output Class Notes

24-bit uint8 RGB
Three 8-bit samples/pixel.

48-bit uint16 RGB
Three 16-bit samples/pixel.

Format-specific syntaxes:

[...] = imread(...,'BackgroundColor',BG) composites any
transparent pixels in the input image against the color specified in
BG. If BG is 'none', then no compositing is performed. If the input
image is indexed, BG must be an integer in the range [1,P] where P is
the colormap length. If the input image is grayscale, BG should be an
integer in the range [0,1]. If the input image is RGB, BG should be a
three-element vector whose values are in the range [0,1]. The string
'BackgroundColor' can be abbreviated.

[A, map, alpha] = imread(...) returns the alpha channel if
one is present. If no alpha channel is present, or if you specify
'BackgroundColor', then alpha is []. The map output can be empty if
the file contains a grayscale or truecolor image.

If you specify the alpha output argument, BG defaults to 'none', if not
specified. Otherwise, if the PNG file contains a background color chunk,
that color is used as the default value for BG. If alpha is not used and
the file does not contain a background color chunk, then the default
value for BG is 1 for indexed images; 0 for grayscale images; and [0
0 0] for truecolor (RGB) images.

PPM — Portable Pixmap

Supported
Bitdepths

Raw Binary ASCII (Plain)
Encoded

Output Class

Up to 16-bit y – uint8

Arbitrary – y

1-3228

imread

RAS — Sun™ Raster

The following table lists the supported bitdepths, compression, and
output classes for RAS files.

Supported
Bitdepths

Output Class Notes

1-bit logical Bitmap

8-bit uint8 Indexed

24-bit uint8 RGB
Three 8-bit samples/pixel

32-bit uint8 RGB with Alpha
Four 8-bit samples/pixel

TIFF — Tagged Image File Format

Most images supported by the TIFF specification or LibTIFF can be
read by imread.

imread supports the following TIFF capabilities:

• Any number of samples-per-pixel

• CCITT group 3 and 4 FAX, Packbits, JPEG, LZW, Deflate,
ThunderScan compression, and uncompressed images

• Logical, grayscale, indexed color, truecolor and hyperspectral images

• RGB, CMYK, CIELAB, ICCLAB color spaces. If the color
image uses the CMYK color space, A is an M-by-N-by-4 array.
To determine which color space is used, use imfinfo to get
information about the graphics file and look at the value of the
PhotometricInterpretation field. If a file contains CIELAB color
data, imread converts it to ICCLAB before bringing it into the
MATLAB workspace because 8- or 16-bit TIFF CIELAB-encoded
values use a mixture of signed and unsigned data types that cannot
be represented as a single MATLAB array.

• Data organized into tiles or scanlines

1-3229

imread

Note

• YCbCr images are converted into the RGB colorspace.

• All grayscale images are read as if black=0, white=largest value.

• 1-bit images are returned as class logical.

• CIELab images are converted into ICCLab colorspace.

The following are format-specific syntaxes for TIFF files.

A = imread(...) returns color data that uses the RGB, CIELAB,
ICCLAB, or CMYK color spaces. If the color image uses the CMYK color
space, A is an M-by-N-by-4 array.

[...] = imread(..., 'Param1', value1, 'Param2', value2,
...) uses parameter/value pairs to control the read operation. The
following table lists the parameters you can use.

Parameter Value

'Index' Positive integer specifying which image to read.
For example, if you specify the value 3, imread
reads the third image in the file. If you omit this
argument, imread reads the first image in the
file.

'Info' Structure array returned by imfinfo.

Note: When reading images from a multi-image
TIFF file, passing the output of imfinfo as the
value of the 'Info' argument helps imread locate
the images in the file more quickly.

'PixelRegion' Cell array, {Rows, Cols}, specifying the
boundaries of the region. Rows and Cols must
be either two- or three-element vectors. If you
specify two elements, the values denote the
1-based indices [start stop]. If you specify

1-3230

imread

Parameter Value

three elements, the values denote the 1-based
indices [start increment stop], to allow image
downsampling.

For copyright information, see the libtiffcopyright.txt file.

XWD — X Window Dump

The following table lists the supported bitdepths, compression, and
output classes for XWD files.

Supported
Bitdepths

ZPixmaps XYBitmaps XYPixmaps Output
Class

1-bit y – y logical

8-bit y – – uint8

Class
Support

For most image file formats, imread uses 8 or fewer bits per color plane
to store image pixels. The following table lists the class of the returned
array for the data types used by the file formats.

Data Type
Used in File Class of Array Returned by imread

1-bit per pixel logical

2- to 8-bits per
color plane

uint8

9- to 16-bit per
pixel

uint16 (BMP, JPEG, PNG, and TIFF)

For the 16-bit BMP packed format (5-6-5),
MATLAB returns uint8

1-3231

imread

Note For indexed images, imread always reads the colormap into an
array of class double, even though the image array itself may be of
class uint8 or uint16.

Examples Read and Display Image

Read a sample image.

A = imread('ngc6543a.jpg');

imread returns a 650-by-600-by-3 array, A.

Display the image.

image(A)

1-3232

imread

Convert Indexed Image to RGB

Read an image and convert it to an RGB image.

Read the first image in the sample indexed image file, corn.tif.

[X,map] = imread('corn.tif');

X is a 415-by-312 array of type uint8.

1-3233

imread

Verify that the colormap, map, is not empty, and convert the data in X
to RGB.

if ~isempty(map)
Im = ind2rgb(X,map);

end

View the size and class of X.

whos Im

Name Size Bytes Class Attributes

Im 415x312x3 3107520 double

X is now a 415-by-312-by-3 array of type double.

Read Specific Image in Multi-Page TIFF File

Read the third image in the sample file, corn.tif.

[X,map] = imread('corn.tif',3);

Return Alpha Channel of PNG Image

Return the alpha channel of the sample image, peppers.png.

[X,map,alpha] = imread('peppers.png');
alpha

alpha =

[]

No alpha channel is present, so alpha is empty.

Read Specified Region of TIFF Image

Read a specific region of pixels of the sample image, corn.tif.

Specify the 'PixelRegion' parameter with a cell array of vectors
indicating the boundaries of the region to read. The first vector specifies

1-3234

imread

the range of rows to read, and the second vector specifies the range
of columns to read.

A = imread('corn.tif','PixelRegion',{[1,2],[2,5]});

imread reads the image data in rows 1–2 and columns 2–5 from
corn.tif and returns the 2-by-4 array, A.

See Also double | fread | image | imfinfo | imformats | imwrite | ind2rgb |
uint8 | uint16

1-3235

imwrite

Purpose Write image to graphics file

Syntax imwrite(A,filename)
imwrite(A,map,filename)

imwrite(___ ,fmt)

imwrite(___ ,Name,Value)

Description imwrite(A,filename) writes image data A to the file specified by
filename, inferring the file format from the extension. imwrite creates
the new file in your current folder. The bit depth of the output image
depends on the data type of A and the file format. For most formats:

• If A is of data type uint8, then imwrite outputs 8-bit values.

• If A is of data type uint16 and the output file format supports 16-bit
data (JPEG, PNG, and TIFF), then imwrite outputs 16-bit values.
If the output file format does not support 16-bit data, then imwrite
errors.

• If A is a grayscale or RGB color image of data type double or single,
then imwrite assumes the dynamic range is [0,1] and automatically
scales the data by 255 before writing it to the file as 8-bit values. If
the data in A is single, convert A to double before writing to a GIF
or TIFF file.

• If A is of data type logical, then imwrite assumes the data is a
binary image and writes it to the file with a bit depth of 1, if the
format allows it. BMP, PNG, or TIFF formats accept binary images
as input arrays.

If A contains indexed image data, you should additionally specify the
map input argument.

imwrite(A,map,filename) writes the indexed image in A and its
associated colormap, map, to the file specified by filename.

1-3236

imwrite

• If A is an indexed image of data type double or single, then imwrite
converts the indices to zero-based indices by subtracting 1 from
each element, and then writes the data as uint8. If the data in A is
single, convert A to double before writing to a GIF or TIFF file.

imwrite(___ ,fmt) writes the image in the format specified by fmt,
regardless of the file extension in filename. You can specify fmt after
the input arguments in any of the previous syntaxes.

imwrite(___ ,Name,Value) specifies additional parameters for output
GIF, HDF, JPEG, PBM, PGM, PNG, PPM, and TIFF files, using one or
more name-value pair arguments, in additional to any of the arguments
in the previous syntaxes.

Input
Arguments

A - Image data to write
matrix

Image data to write, specified as a full (nonsparse) matrix.

• For grayscale images, A can be m-by-n.

• For indexed images, A can be m-by-n. Specify the associated colormap
in the map input argument.

• For truecolor images, A must be m-by-n-by-3.

For TIFF files, A can be an m-by-n-by-4 array containing color data that
uses the CMYK color space.

For multiframe GIF files, A can be an m-by-n-by-1-by-p array containing
grayscale or indexed images, where p is the number of frames to write.
RGB images are not supported in this case.

Data Types
double | single | uint8 | uint16 | logical

filename - Name of output file
string

1-3237

imwrite

Name of the output file including the file extension, specified as a
string. For a list of the image types that imwrite can write, see the
description for the fmt input argument.

Example: 'myFile.gif'

Data Types
char

map - Colormap of indexed image
m-by-3 array

Colormap associated with indexed image data in A, specified as an
m-by-3 array. map must be a valid MATLAB colormap. See colormap for
a list of built-in MATLAB colormaps. Most image file formats do not
support colormaps with more than 256 entries.

Example: [0,0,0;0.5,0.5,0.5;1,1,1]

Example: jet(60)

Data Types
double

fmt - Format of output file
string

Format of the output file, specified as one of the following strings.

This table also summarizes the types of images that imwrite can write.
The MATLAB file format registry determines which file formats are
supported. See imformats for more information about this registry.

For certain formats, imwrite can accept additional name-value pair
arguments. To view these arguments, click the linked format names
below.

1-3238

imwrite

Value of
fmt

Format of
Output File Description

'bmp' Windows
Bitmap
(BMP)

1-bit, 8-bit, and 24-bit uncompressed
images

'gif' Graphics
Interchange
Format
(GIF)

8-bit images

'hdf' Hierarchical
Data Format
(HDF4)

8-bit raster image data sets with or
without associated colormap, 24-bit raster
image data sets

'jpg' or
'jpeg'

Joint
Photographic
Experts
Group
(JPEG)

8-bit, 12-bit, and 16-bit Baseline JPEG
images

Note imwrite converts indexed images
to RGB before writing data to JPEG files,
because the JPEG format does not support
indexed images.

'jp2' or
'jpx'

JPEG 2000
— Joint
Photographic
Experts
Group 2000

1-bit, 8-bit, and 16-bit JPEG 2000 images

'pbm' Portable
Bitmap
(PBM)

Any 1-bit PBM image, ASCII (plain) or
raw (binary) encoding

'pcx' Windows
Paintbrush
(PCX)

8-bit images

1-3239

imwrite

Value of
fmt

Format of
Output File Description

'pgm' Portable
Graymap
(PGM)

Any standard PGM image; ASCII (plain)
encoded with arbitrary color depth; raw
(binary) encoded with up to 16 bits per
gray value

'png' Portable
Network
Graphics
(PNG)

1-bit, 2-bit, 4-bit, 8-bit, and 16-bit
grayscale images; 8-bit and 16-bit
grayscale images with alpha channels;
1-bit, 2-bit, 4-bit, and 8-bit indexed
images; 24-bit and 48-bit truecolor
images; 24-bit and 48-bit truecolor images
with alpha channels

'pnm' Portable
Anymap
(PNM)

Any of the PPM/PGM/PBM formats,
chosen automatically

'ppm' Portable
Pixmap
(PPM)

Any standard PPM image: ASCII (plain)
encoded with arbitrary color depth or raw
(binary) encoded with up to 16 bits per
color component

'ras' Sun Raster
(RAS)

Any RAS image, including 1-bit bitmap,
8-bit indexed, 24-bit truecolor and 32-bit
truecolor with alpha

1-3240

imwrite

Value of
fmt

Format of
Output File Description

'tif' or
'tiff'

Tagged
Image File
Format
(TIFF)

Baseline TIFF images, including:

• 1-bit, 8-bit, 16-bit, 24-bit, and 48-bit
uncompressed images and images with
packbits, LZW, or Deflate compression

• 1-bit images with CCITT 1D, Group 3,
and Group 4 compression

• CIELAB, ICCLAB, and CMYK images

'xwd' X Windows
Dump
(XWD)

8-bit ZPixmaps

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: imwrite(A,'myFile.png','BitDepth',8) writes the data
in A using 8 bits to represent each pixel.

GIF — Graphics Interchange Format

’BackgroundColor’ - Color to use as background color
scalar integer

Color to use as background color for the indexed image, specified as the
comma-separated pair consisting of 'BackgroundColor' and a scalar
integer corresponding to the colormap index.

The background color is used for some disposal methods in animated
GIFs.

1-3241

imwrite

• If image data A is uint8 or logical, then the colormap index is
zero-based.

• If image data A is double, then the colormap index is one-based.

The default background color corresponds to the first color in the
colormap.

Example: 'BackgroundColor',15

’Comment’ - Comment to add to image
string | cell array of strings

Comment to add to the image, specified as the comma-separated pair
consisting of 'Comment' and a string or a 1-by-n cell array of strings. For
a cell array of strings, imwrite adds a carriage return after each string.

Example: 'Comment',{'Sample #314','January 5, 2013'}

Data Types
char | cell

’DelayTime’ - Delay before displaying next image
0.5 (default) | scalar value in the range [0,655]

Delay before displaying next image, in seconds, specified as the
comma-separated pair consisting of 'DelayTime' and a scalar value in
the range [0,655]. A value of 0 displays images as fast as your hardware
allows.

Example: 'DelayTime',60

’DisposalMethod’ - Disposal method of animated GIF
'doNotSpecify' (default) | 'leaveInPlace' | 'restoreBG' |
'restorePrevious'

Disposal method of an animated GIF, specified as the comma-separated
pair consisting of 'DisposalMethod' and one of the following strings.

1-3242

imwrite

Value of DisposalMethod Result

'doNotSpecify' (default) Replace one full-size,
nontransparent frame with
another.

'leaveInPlace' Any pixels not covered up by the
next frame continue to display.

'restoreBG' The background color or
background tile shows through
transparent pixels.

'restorePrevious' Restore to the state of a previous,
undisposed frame.

Example: 'DisposalMethod','restoreBG'

’Location’ - Offset of screen relative to image
[0,0] (default) | two-element vector

Offset of the screen relative to the image, measured from the top left
corner of each, specified as the comma-separated pair consisting of
'Location' and a two-element vector. The first vector element specifies
the offset from the top, and the second element specifies the offset from
the left, in pixels.

Example: 'Location',[10,15]

Data Types
double

’LoopCount’ - Number of times to repeat animation
Inf (default) | integer in the range [0,65535]

Number of times to repeat the animation, specified as the
comma-separated pair consisting of 'LoopCount' and either an integer
in the range [0,65535], or the value Inf. If you specify 0, the animation
plays once. If you specify the value 1, the animation plays twice, and so
on. A LoopCount value of Inf causes the animation to continuously loop.

1-3243

imwrite

To enable animation within Microsoft PowerPoint®, specify a value for
'LoopCount' within the range [1,65535]. Some Microsoft applications
interpret the value 0 to mean do not loop at all.

Example: 'LoopCount',3

’ScreenSize’ - Height and width of frame
height and width of input image (default) | two-element vector

Height and width of the frame, specified as the comma-separated
pair consisting of 'ScreenSize' and a two-element vector. When you
use the ScreenSize argument with 'Location', it provides a way
to write frames to the image that are smaller than the whole frame.
'DisposalMethod' determines the fill value for pixels outside the
frame.

Example: 'ScreenSize',[1000 1060]

Data Types
double

’TransparentColor’ - Color to use as transparent color
scalar integer

Color to use as transparent color for the image, specified as the
comma-separated pair consisting of 'TransparentColor' and a scalar
integer corresponding to the colormap index.

• If image data A is uint8 or logical, then indexing begins at 0.

• If image data A is double, then indexing begins at 1.

Example: 'TransparentColor',20

’WriteMode’ - Writing mode
'overwrite' (default) | 'append'

Writing mode, specified as the comma-separated pair consisting of
'WriteMode' and either 'overwrite' or 'append'. In overwritemode,
imwrite overwrites an existing file,filename. In append mode, imwrite
adds a single frame to the existing file.

1-3244

imwrite

Example: 'WriteMode','append'

HDF4 — Hierarchical Data Format

’Compression’ - Compression scheme
'none' (default) | 'jpeg' | 'rle'

Compression scheme, specified as the comma-separated pair consisting
of 'Compression' and one of the following strings.

Value of Compression Result

'none' (default) No compression

'jpeg' JPEG compression. Valid only for
grayscale and RGB images.

'rle' Run-length encoding. Valid only
for grayscale and indexed images.

Example: 'Compression','jpeg'

’Quality’ - Quality of JPEG-compressed file
75 (default) | scalar in the range [0,100]

Quality of the JPEG-compressed file, specified as the comma-separated
pair consisting of 'Quality' and a scalar in the range [0,100], where 0
is lower quality and higher compression, and 100 is higher quality and
lower compression. This parameter applies only if 'Compression' is
'jpeg'.

Example: 'Quality',25

’WriteMode’ - Writing mode
'overwrite' (default) | 'append'

Writing mode, specified as the comma-separated pair consisting of
'WriteMode' and either 'overwrite' or 'append'. In overwritemode,
imwrite overwrites an existing file,filename. In append mode, imwrite
adds a single frame to the existing file.

1-3245

imwrite

Example: 'WriteMode','append'

JPEG — Joint Photographic Experts Group

’BitDepth’ - Number of bits per pixel
8 (default) | scalar

Number of bits per pixel, specified as the comma-separated pair
consisting of 'BitDepth' and a scalar.

• For grayscale images, the BitDepth value can be 8, 12, or 16. The
default value is 8. For 16-bit images, the 'Mode' name-value pair
argument must be 'lossless'.

• For color images, the BitDepth value is the number of bits per plane,
and can be 8 or 12. The default is 8 bits per plane.

Example: 'BitDepth',12

’Comment’ - Comment to add to image
string | character array | n-by-1 cell array of strings

Comment to add to the image, specified as the comma-separated pair
consisting of 'Comment' and a single string, a character array, or an
n-by-1 cell array of strings. imwrite writes each row of input as a
comment in the JPEG file.

Example: 'Comment',{'First line';'second line';'third
line'}

Data Types
char | cell

’Mode’ - Type of compression
'lossy' (default) | 'lossless'

Type of compression, specified as the comma-separated pair consisting
of 'Mode' and one of the following strings:

• 'lossy'

• 'lossless'

1-3246

imwrite

Example: 'Mode','lossless'

’Quality’ - Quality of output file
75 (default) | scalar in the range [0,100]

Quality of the output file, specified as the comma-separated pair
consisting of 'Quality' and a scalar in the range [0,100], where 0 is
lower quality and higher compression, and 100 is higher quality and
lower compression. A Quality value of 100 does not write a lossless
JPEG image. Instead, use the 'Mode','lossless' name-value pair
argument.

Example: 'Quality',100

JPEG 2000— Joint Photographic Experts Group 2000

’Comment’ - Comment to add to image
string | character array | cell array of strings

Comment to add to the image, specified as the comma-separated pair
consisting of 'Comment' and a single string, a character array, or a cell
array of strings. imwrite writes each row of input as a comment in
the JPEG 2000 file.

Example: 'Comment',{'First line';'second line';'third
line'}

Example: 'Comment',{'First line','second line','third
line'}

Data Types
cell | char

’CompressionRatio’ - Target compression ratio
1 (default) | scalar

Target compression ratio, specified as the comma-separated pair
consisting of 'CompressionRatio' and a real scalar greater than or
equal to 1. The compression ratio is the ratio of the input image size to
the output compressed size. For example, a value of 2.0 implies that the

1-3247

imwrite

output image size is half of the input image size or less. A higher value
implies a smaller file size and reduced image quality. The compression
ratio does not take into account the header size.

Specifying CompressionRatio is valid only when 'Mode' is 'lossy'.

Example: 'CompressionRatio',3

’Mode’ - Type of compression
'lossy' (default) | 'lossless'

Type of compression, specified as the comma-separated pair consisting
of 'Mode' and one of the following strings:

• 'lossy'

• 'lossless'

Example: 'Mode','lossless'

’ProgressionOrder’ - Order of packets in code stream
'LRCP' (default) | 'RLCP' | 'RPCL' | 'PCRL' | 'CPRL'

Order of packets in the code stream, specified as the comma-separated
pair consisting of 'ProgressionOrder' and one of the following strings:

• 'LRCP'

• 'RLCP'

• 'RPCL'

• 'PCRL'

• 'CPRL'

The characters in the text strings represent the following: L = layer, R
= resolution, C = component and P = position.

Example: 'ProgressionOrder','RLCP'

’QualityLayers’ - Number of quality layers
1 (default) | integer in the range [1,20]

1-3248

imwrite

Number of quality layers, specified as the comma-separated pair
consisting of 'QualityLayers' and an integer in the range [1,20].

Example: 'QualityLayers',8

’ReductionLevels’ - Number of reduction levels
4 (default) | integer in the range [1,8]

Number of reduction levels, or wavelet decomposition levels, specified
as the comma-separated pair consisting of 'ReductionLevels' and an
integer in the range [1,8].

Example: 'ReductionLevels',6

’TileSize’ - Tile height and width
image size (default) | two-element vector

Tile height and width, specified as the comma-separated pair consisting
of 'TileSize' and a two-element vector. The minimum size you can
specify is [128 128].

Example: 'TileSize',[130 130]

PBM-, PGM-, and PPM — Portable Bitmap, Graymap, Pixmap

’Encoding’ - Encoding
'rawbits' (default) | 'ASCII'

Encoding, specified as the comma-separated pair consisting of
'Encoding' and either 'rawbits' for binary encoding, or 'ASCII' for
plain encoding.

Example: 'Encoding','ASCII'

’MaxValue’ - Maximum gray or color value
scalar

Maximum gray or color value, specified as the comma-separated pair
consisting of 'MaxValue' and a scalar.

1-3249

imwrite

Available only for PGM and PPM files. For PBM files, this value is
always 1.

If the image array is uint16, then the default value for MaxValue is
65535. Otherwise, the default value is 255.

Example: 'MaxValue',510

PNG — Portable Network Graphics

In addition to the following name-value pair arguments, you can use
any parameter name that satisfies the PNG specification for keywords.
That is, the name uses only printable characters, contains 80 or fewer
characters, and does not contain leading or trailing spaces. The value
corresponding to these user-specified names must be a string that
contains no control characters other than linefeed.

’Alpha’ - Transparency of each pixel
matrix of values in the range [0,1]

Transparency of each pixel, specified as the comma-separated pair
consisting of 'Alpha' and a matrix of values in the range [0,1]. The
row and column dimensions of the Alpha matrix must be the same as
those of the image data array. You can specify Alpha only for grayscale
(m-by-n) and truecolor (m-by-n-by-3) image data.

Note You cannot specify both 'Alpha' and 'Transparency' at the
same time.

Data Types
double | uint8 | uint16

’Author’ - Author information
string

Author information, specified as the comma-separated pair consisting
of 'Author' and a string.

1-3250

imwrite

Example: "Author','Ann Smith'

Data Types
char

’Background’ - Background color when compositing transparent
pixels
scalar in the range [0,1] | integer in the range [1,P] | 3-element
vector in the range [0,1]

Background color when compositing transparent pixels, specified as
the comma-separated pair consisting of 'Background' and a value
dependent on the image data, as follows.

Image Type Form of Background Value

Grayscale images Scalar in the range [0,1].

Indexed images Integer in the range [1,P], where
P is the colormap length. For
example, 'Background',50 sets
the background color to the color
specified by the 50th index in the
colormap.

Truecolor images Three-element vector of RGB
intensities in the range [0,1].
For example, 'Background',[0
1 1] sets the background color to
cyan.

Data Types
double

’BitDepth’ - Number of bits per pixel
scalar

Number of bits per pixel, specified as the comma-separated pair
consisting of 'BitDepth' and a scalar. Depending on the output image,
the scalar can be one of the following values.

1-3251

imwrite

Image Type Allowed Values for BitDepth

Grayscale images 1, 2, 4, 8, or 16

Grayscale images with an alpha
channel

8 or 16

Indexed images 1, 2, 4, or 8

Truecolor images 8 or 16

• If the image is of class double or uint8, then the default bit depth
is 8 bits per pixel.

• If the image is uint16, then the default is 16 bits per pixel.

• If the image is logical, then the default is 1 bit per pixel.

Example: 'BitDepth',4

’Chromaticities’ - Reference white point and primary
chromaticities
8-element vector

Reference white point and primary chromaticities, specified as the
comma-separated pair consisting of 'Chromaticities' and an
8-element vector, [wx wy rx ry gx gy bx by]. The elements wx and
wy are the chromaticity coordinates of the white point, and the elements
rx, ry, gx, gy, bx, and by are the chromaticity coordinates of the three
primary colors.

If you specify Chromaticities, you should also specify the Gamma
name-value pair argument.

Example:
'Chromaticities',[0.312,0.329,0.002,0.002,0.001,0.001,0.115,0.312]

Data Types
double

’Comment’ - Comment to add to image
string

1-3252

imwrite

Comment to add to the image, specified as the comma-separated pair
consisting of 'Comment' and a string.

’Copyright’ - Copyright notice
string

Copyright notice, specified as the comma-separated pair consisting of
'Copyright' and a string.

’CreationTime’ - Time of original image creation
string

Time of original image creation, specified as a string.

’Description’ - Description of image
string

Description of the image, specified as the comma-separated pair
consisting of 'Description' and a string.

’Disclaimer’ - Legal disclaimer
string

Legal disclaimer, specified as the comma-separated pair consisting of
'Disclaimer' and a string.

’Gamma’ - File gamma
scalar

File gamma, specified as the comma-separated pair consisting of
'Gamma' and a scalar.

Example: 'Gamma',2.2

’ImageModTime’ - Time of last image modification
serial date number | date string

Time of the last image modification, specified as the comma-separated
pair consisting of 'ImageModTime' and a MATLAB serial date number

1-3253

imwrite

or a date string that can be converted to a date vector using the datevec
function. Values should be in Coordinated Universal Time (UTC).

The default ImageModTime value is the time when you call imwrite.

Example: 'ImageModTime','17-Jan-2013 11:23:10'

Data Types
double | char

’InterlaceType’ - Interlacing scheme
'none' (default) | 'adam7'

Interlacing scheme, specified as the comma-separated pair consisting of
'InterlaceType' and either 'none' for no interlacing, or 'adam7' to
use the Adam7 algorithm.

Example: 'InterlaceType','adam7'

’ResolutionUnit’ - Unit for image resolution
'unknown' (default) | 'meter'

Unit for image resolution, specified as the comma-separated pair
consisting of 'ResolutionUnit' and either 'unknown' or 'meter'.
If you specify ResolutionUnit, you must include at least one of the
XResolution and YResolution name-value pair arguments. When
the value of ResolutionUnit is 'meter', the XResolution and
YResolution values are interpreted in pixels per meter.

Example: 'ResolutionUnit','meter','XResolution',1000

’SignificantBits’ - Number of bits to regard as significant
[] (default) | scalar | vector

Number of bits in the data array to regard as significant, specified as
the comma-separated pair consisting of 'SignificantBits' and a
scalar or a vector in the range [1,BitDepth]. Depending on the output
image type, the value must be in the following form.

1-3254

imwrite

Image Type Form of SignificantBits
Value

Grayscale image without an
alpha channel

Scalar

Grayscale image with an alpha
channel

2-element vector

Indexed image 3-element vector

Truecolor image without an alpha
channel

3-element vector

Truecolor image with an alpha
channel

4-element vector

Example: 'SignificantBits',[2,3]

’Software’ - Software used to create the image
string

Software used to create the image, specified as the comma-separated
pair consisting of 'Software' and a string.

’Source’ - Device used to create the image
string

Device used to create the image, specified as the comma-separated pair
consisting of 'Source' and a string.

’Transparency’ - Pixels to consider transparent
[] (default) | scalar in the range [0,1] | vector

Pixels to consider transparent when no alpha channel is used, specified
as the comma-separated pair consisting of 'Transparency' and a scalar
or a vector. Depending on the output image, the value must be in the
following form.

1-3255

imwrite

Image Type Form of Transparency Value

Grayscale images Scalar in the range [0,1],
indicating the grayscale color to
be considered transparent.

Indexed images Q-element vector of values in
the range [0,1], where Q is no
larger than the colormap length
and each value indicates the
transparency associated with the
corresponding colormap entry. In
most cases, Q = 1.

Truecolor images 3-element vector of RGB
intensities in the range [0,1],
indicating the truecolor color to
consider transparent.

Note You cannot specify both 'Transparency' and 'Alpha' at the
same time.

Example: 'Transparency',[1 1 1]

Data Types
double

’Warning’ - Warning of nature of content
string

Warning of nature of content, specified as the comma-separated pair
consisting of 'Warning' and a string.

’XResolution’ - Image resolution in horizontal direction
scalar

1-3256

imwrite

Image resolution in the horizontal direction, in pixels/unit, specified as
the comma-separated pair consisting of 'XResolution' and a scalar.
Define the unit by specifying the ResolutionUnit name-value pair
argument.

If you do not also specify YResolution, then the XResolution value
applies to both the horizontal and vertical directions.

Example: 'XResolution',900

’YResolution’ - Image resolution in vertical direction
scalar

Image resolution in the vertical direction, in pixels/unit, specified as the
comma-separated pair consisting of 'XResolution' and a scalar. Define
the unit by specifying the ResolutionUnit name-value pair argument.

If you do not also specify XResolution, then the YResolution value
applies to both the horizontal and vertical directions.

Example: 'YResolution',900

RAS — Sun Raster Graphic

’Alpha’ - Transparency of each pixel
[] (default) | matrix

Transparency of each pixel, specified as the comma-separated pair
consisting of 'Alpha' and a matrix with row and column dimensions
the same as those of the image data array.

Valid only for truecolor (m-by-n-by-3) image data.

Data Types
double | single | uint8 | uint16

’Type’ - Image type
'standard' (default) | 'rgb' | 'rle'

Image type, specified as the comma-separated pair consisting of 'Type'
and one of the following strings.

1-3257

imwrite

Value of Type Description

'standard' (default) Uncompressed, B-G-R color order
for truecolor images

'rgb' Uncompressed, R-G-B color order
for truecolor images

'rle Run-length encoding of 1-bit and
8-bit images

Example: 'Type','rgb'

TIFF — Tagged Image File Format

’ColorSpace’ - Color space representing color data
'rgb' (default) | 'cielab' | 'icclab'

Color space representing the color data, specified as the
comma-separated pair consisting of 'ColorSpace' and one of the
following strings:

• 'rgb'

• 'cielab'

• 'icclab'

Valid only when the image data array, A, is truecolor (m-by-n-by-3). To
use the CMYK color space in a TIFF file, do not use the 'ColorSpace'
name-value pair argument. Instead, specify an m-by-n-by-4 image data
array.

imwrite can write color image data that uses the L*a*b* color space
to TIFF files. The 1976 CIE L*a*b* specification defines numeric
values that represent luminance (L*) and chrominance (a* and b*)
information. To store L*a*b* color data in a TIFF file, the values must
be encoded to fit into either 8-bit or 16-bit storage. imwrite can store
L*a*b* color data in a TIFF file using the following encodings:

• CIELAB encodings — 8-bit and 16-bit encodings defined by the TIFF
specification

1-3258

imwrite

• ICCLAB encodings — 8-bit and 16-bit encodings defined by the
International Color Consortium

The output class and encoding used by imwrite depends on the class
of the input image data array and the ColorSpace value, as shown in
the following table. (The 8-bit and 16-bit CIELAB encodings cannot be
input arrays because they use a mixture of signed and unsigned values
and cannot be represented as a single MATLAB array.)

Input Class and
Encoding

Value of
ColorSpace

Output Class and
Encoding

’icclab’ 8-bit ICCLAB8-bit ICCLAB

Values are
integers in the
range [0 255].
L* values are
multiplied by
255/100.
128 is added to
both the a* and b*
values.

’cielab’ 8-bit CIELAB

’icclab’ 16-bit ICCLAB16-bit ICCLAB

Values are
integers in the
range [0, 65280].
L* values are
multiplied by
65280/100.
32768 is added to
both the a* and
b* values, which
are represented

’cielab’ 16-bit CIELAB

1-3259

imwrite

Input Class and
Encoding

Value of
ColorSpace

Output Class and
Encoding

as integers in the
range [0,65535].

’icclab’ 8-bit ICCLABDouble-precision
1976 CIE L*a*b*
values

L* is in the
dynamic range
[0, 100]. a* and
b* can take any
value. Setting a*
and b* to 0 (zero)
produces a neutral
color (gray).

’cielab’ 8-bit CIELAB

Example: 'ColorSpace','cielab'

’Compression’ - Compression scheme
'packbits' | 'none' | 'lzw' | 'deflate' | 'jpeg' | 'ccitt' |
'fax3' | 'fax4'

Compression scheme, specified as the comma-separated pair consisting
of 'Compression' and one of the following strings:

• 'packbits' (default for nonbinary images)

• 'none'

• 'lzw'

• 'deflate'

• 'jpeg'

• 'ccitt' (binary images only, and the default for such images)

• 'fax3' (binary images only)

1-3260

imwrite

• 'fax4' (binary images only)

'jpeg' is a lossy compression scheme; other compression modes are
lossless. Also, if you specify 'jpeg' compression, you must specify the
'RowsPerStrip' parameter and the value must be a multiple of 8.

Example: 'Compression','none'

’Description’ - Image description
string

Image description, specified by the comma-separated pair consisting of
'Description' and a string. This is the text that imfinfo returns in
the ImageDescription field for the output image.

Example: 'Description','Sample 2A301'

’Resolution’ - X- and Y-resolution
72 (default) | scalar | two-element vector

X- and Y-resolution, specified as the comma-separated pair consisting of
'Resolution' and a scalar indicating both resolution, or a two-element
vector containing the X-Resolution and Y-Resolution.

Example: 'Resolution',80

Example: 'Resolution',[320,72]

Data Types
double

’RowsPerStrip’ - Number of rows to include in each strip
scalar

Number of rows to include in each strip, specified as the
comma-separated pair consisting of 'RowsPerStrip' and a scalar. The
default value is such that each strip is about 8 kilobytes.

You must specify RowsPerStrip if you specify 'jpeg' compression.
The value must be a multiple of 8.

Example: 'RowsPerStrip',16

1-3261

imwrite

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

’WriteMode’ - Writing mode
'overwrite' (default) | 'append'

Writing mode, specified as the comma-separated pair consisting of
'WriteMode' and either 'overwrite' or 'append'. In overwritemode,
imwrite overwrites an existing file. In append mode, imwrite adds
a page to the existing file.

Example: 'WriteMode','append'

Examples Resize and Save Image

Read the sample image, ngc6543a.jpg, and the resize it to 500-by-500.

A = imread('ngc6543a.jpg');
B = imresize(A,[500 500]);

Write the resized image data, B, to a file.

imwrite(B,'myNewFile.tif');

imwrite writes the file, myNewFile.tif, to the current folder.

Write Indexed Image Data to PNG

Write an indexed image array and its associated colormap to a PNG file.

Load sample image data from the file, clown.mat.

load clown.mat

The image array X and its associated colormap, map, are loaded into
the MATLAB workspace.

Write the data to a new PNG file.

imwrite(X,map,'myclown.png')

1-3262

imwrite

imwrite creates the file, myclown.png, in your current folder.

View the new file by opening it outside of MATLAB.

Write Indexed Image with MATLAB Colormap

Write image data to a new PNG file with the built-in MATLAB
colormap, copper.

Load sample image data from the file clown.mat.

load clown.mat

The image array X and its associated colormap, map, are loaded into the
MATLAB workspace. map is a matrix of 81 RGB vectors.

Define a copper-tone colormap with 81 RGB vectors. Then, write the
image data to a PNG file using the new colormap.

newmap = copper(81);

1-3263

imwrite

imwrite(X,newmap,'copperclown.png');

imwrite creates the file, copperclown.png, in your current folder.

View the new file by opening it outside of MATLAB.

Write Grayscale Image to PNG

Write a 50-by-50 array, A, of grayscale values to a PNG file.

A = rand(50,50);
imwrite(A,'myGray.png','png');

The third input, 'png', specifies that the output file is a PNG file.

Write Truecolor Image to JPEG

Create and write truecolor image data to a JPEG file.

Create a 49-by-49-by-3 array of random RGB values.

1-3264

imwrite

A = rand(49,49);
A(:,:,2) = rand(49,49);
A(:,:,3) = rand(49,49);

Write the image data to a JPEG file, specifying the output format using
the string, 'jpg'. Add a comment to the file using the 'Comment'
name-value pair argument.

imwrite(A,'newImage.jpg','jpg','Comment','My JPEG file')

View information about the new file.

imfinfo('newImage.jpg')

ans =

Filename: 'S:\newImage.jpg'
FileModDate: '25-Jan-2013 16:18:41'

FileSize: 2339
Format: 'jpg'

FormatVersion: ''
Width: 49

Height: 49
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3

CodingMethod: 'Huffman'
CodingProcess: 'Sequential'

Comment: {'My JPEG file'}

Write Multiple Images to TIFF File

Write multiple images to a single multipage TIFF file.

Create two sets of random image data, im1 and im2.

im1 = rand(50,40,3);
im2 = rand(50,50,3);

1-3265

imwrite

Write the first image to a new TIFF file. Then, append the second
image to the same file.

imwrite(im1,'myMultipageFile.tif');
imwrite(im2,'myMultipageFile.tif','WriteMode','append');

Write Animated GIF

Animate a series of plots and write the result to a GIF file.

Define the x-axis limits for the plot and specify the output file name.

x = 0:0.01:1;
figure
filename = 'testAnimated.gif';

Call frame2im to get image data from a single movie frame. Because
three-dimensional data is not supported for GIF files, call rgb2ind to
convert the RGB data in the image data, im, to an indexed image, A,
with a colormap, map. Call imwrite with the name-value pair argument,
'WriteMode','append', to append multiple images to the first image.

for n = 1:0.5:5
y = x.^n;
plot(x,y)
drawnow
frame = getframe(1);
im = frame2im(frame);
[A,map] = rgb2ind(im,256);
if n == 1;
imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',1);

else
imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',1);

end
end

imwrite writes the GIF file to your current folder. Name-value
pair 'LoopCount',Inf causes the animation to continuously loop.

1-3266

imwrite

'DelayTime',1 specifies a 1-second delay between the display of each
image in the animation.

Tips • For copyright information, see the libtiffcopyright.txt file.

See Also fwrite | getframe | imfinfo | imformats | imread | Tiff

1-3267

TriRep.incenters

Purpose (Will be removed) Incenters of specified simplices

Note incenters(TriRep) will be removed in a future release. Use
incenter(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax IC = incenters(TR,SI)
[IC RIC] = incenters(TR, SI)

Description IC = incenters(TR,SI) returns the coordinates of the incenter of each
specified simplex SI.

[IC RIC] = incenters(TR, SI) returns the incenters and the
corresponding radius of the inscribed circle/sphere.

Input
Arguments

TR Triangulation representation.

SI Column vector of simplex indices that index into
the triangulation matrix TR.Triangulation. If SI
is not specified the incenter information for the
entire triangulation is returned, where the incenter
associated with simplex i is the i’th row of IC.

Output
Arguments

IC m-by-n matrix, where m = length(SI), the number
of specified simplices, and n is the dimension of the
space where the triangulation resides. Each row
IC(i,:) represents the coordinates of the incenter of
simplex SI(i).

RIC Vector of length length(SI), the number of specified
simplices.

1-3268

TriRep.incenters

Definitions A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

Examples Example 1

Load a 3-D triangulation:

load tetmesh

Use TriRep to compute the incenters of the first five tetrahedra.

trep = TriRep(tet, X)
ic = incenters(trep, [1:5]')

Example 2

Query a 2-D triangulation created with DelaunayTri.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
dt = DelaunayTri(x,y);

Compute incenters of the triangles:

ic = incenters(dt);

Plot the triangles and incenters:

triplot(dt);
axis equal;
axis([-0.2 1.2 -0.2 1.2]);
hold on;
plot(ic(:,1),ic(:,2),'*r');
hold off;

1-3269

TriRep.incenters

See Also delaunayTriangulation | circumcenter | triangulation

1-3270

DelaunayTri.inOutStatus

Purpose (Will be removed) Status of triangles in 2-D constrained Delaunay
triangulation

Note inOutStatus(DelaunayTri) will be removed in a future release.
Use isInterior(delaunayTriangulation) instead.

DelaunayTri will be removed in a future release. Use
delaunayTriangulation instead.

Syntax IN = inOutStatus(DT)

Description IN = inOutStatus(DT) returns the in/out status of the triangles in a
2-D constrained Delaunay triangulation of a geometric domain. Given a
Delaunay triangulation that has a set of constrained edges that define
a bounded geometric domain. The i’th triangle in the triangulation is
classified as inside the domain if IN(i) = 1 and outside otherwise.

Note inOutStatus is only relevant for 2-D constrained Delaunay
triangulations where the imposed edge constraints bound a closed
geometric domain.

Input
Arguments

DT Delaunay triangulation.

Output
Arguments

IN Logical array of length equal to the number
of triangles in the triangulation. The
constrained edges in the triangulation define
the boundaries of a valid geometric domain.

1-3271

DelaunayTri.inOutStatus

Examples Create a geometric domain that consists of a square with a square hole:

outerprofile = [-5 -5; -3 -5; -1 -5; 1 -5; 3 -5; ...
5 -5; 5 -3; 5 -1; 5 1; 5 3;...
5 5; 3 5; 1 5; -1 5; -3 5; ...
-5 5; -5 3; -5 1; -5 -1; -5 -3;];

innerprofile = outerprofile.*0.5;
profile = [outerprofile; innerprofile];
outercons = [(1:19)' (2:20)'; 20 1;];
innercons = [(21:39)' (22:40)'; 40 21];
edgeconstraints = [outercons; innercons];

Create a constrained Delaunay triangulation of the domain:

dt = DelaunayTri(profile, edgeconstraints)
subplot(1,2,1);
triplot(dt);
hold on;
plot(dt.X(outercons',1), dt.X(outercons',2), ...

'-r', 'LineWidth', 2);
plot(dt.X(innercons',1), dt.X(innercons',2), ...

'-r', 'LineWidth', 2);
axis equal;
% Plot showing interior and exterior
% triangles with respect to the domain.
hold off;
subplot(1,2,2);
inside = inOutStatus(dt);
triplot(dt(inside, :), dt.X(:,1), dt.X(:,2));
hold on;
plot(dt.X(outercons',1), dt.X(outercons',2), ...

'-r', 'LineWidth', 2);
plot(dt.X(innercons',1), dt.X(innercons',2), ...

'-r', 'LineWidth', 2);
axis equal;
% Plot showing interior triangles only
hold off;

1-3272

DelaunayTri.inOutStatus

See Also delaunayTriangulation | triangulation | isInterior

1-3273

ind2rgb

Purpose Convert indexed image to RGB image

Syntax RGB = ind2rgb(X,map)

Description RGB = ind2rgb(X,map) converts the indexed image, X, and the
corresponding colormap, map, to the truecolor image, RGB. The indexed
image, X, is an m-by-n array of integers. The colormap, map, is a
three-column array of values in the range [0,1]. Each row of map is
a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap.

• If you specify X as an array of class unit8 or uint16, then the value 0
corresponds to the first color in the colormap.

• If you specify X as an array of class single or double, then the value
1 corresponds to the first color in the colormap.

The truecolor image output, RGB, is an m-by-n-by-3 array. For more
information on image types, see “Image Types”.

Class
Support

X can be of class uint8, uint16, single, or double. RGB is an
m-by-n-by-3 array of class double.

See Also image | imread

1-3274

ind2sub

Purpose Subscripts from linear index

Syntax [I,J] = ind2sub(siz,IND)
[I1,I2,I3,...,In] = ind2sub(siz,IND)

Description The ind2sub command determines the equivalent subscript values
corresponding to a single index into an array.

[I,J] = ind2sub(siz,IND) returns the matrices I and J containing
the equivalent row and column subscripts corresponding to each linear
index in the matrix IND for a matrix of size siz. siz is a vector with
ndim(A) elements (in this case, 2), where siz(1) is the number of rows
and siz(2) is the number of columns.

Note For matrices, [I,J] = ind2sub(size(A),find(A>5)) returns
the same values as [I,J] = find(A>5).

[I1,I2,I3,...,In] = ind2sub(siz,IND) returns n subscript arrays
I1,I2,...,In containing the equivalent multidimensional array
subscripts equivalent to IND for an array of size siz. siz is an n-element
vector that specifies the size of each array dimension.

The IND input can be single, double, or any integer type. The outputs
are always of class double.

Examples Example 1 — Two-Dimensional Matrices

The mapping from linear indexes to subscript equivalents for a 3-by-3
matrix is

1-3275

ind2sub

This code determines the row and column subscripts in a 3-by-3 matrix,
of elements with linear indices 3, 4, 5, 6.

IND = [3 4 5 6]
s = [3,3];
[I,J] = ind2sub(s,IND)

I =
3 1 2 3

J =
1 2 2 2

Example 2 — Three-Dimensional Matrices

The mapping from linear indexes to subscript equivalents for a
2-by-2-by-2 array is

1-3276

ind2sub

This code determines the subscript equivalents in a 2-by-2-by-2 array, of
elements whose linear indices 3, 4, 5, 6 are specified in the IND matrix.

IND = [3 4;5 6];
s = [2,2,2];
[I,J,K] = ind2sub(s,IND)

I =
1 2
1 2

J =
2 2
1 1

K =
1 1
2 2

Example 3 — Effects of Returning Fewer Outputs

When calling ind2sub for an N-dimensional matrix, you would typically
supply N output arguments in the call: one for each dimension of the
matrix. This example shows what happens when you return three, two,
and one output when calling ind2sub on a 3-dimensional matrix.

1-3277

ind2sub

The matrix is 2-by-2-by-2 and the linear indices are 1 through 8:

dims = [2 2 2];
indices = [1 2 3 4 5 6 7 8];

The 3-output call to ind2sub returns the expected subscripts for the
2-by-2-by-2 matrix:

[rowsub colsub pagsub] = ind2sub(dims, indices)
rowsub =

1 2 1 2 1 2 1 2
colsub =

1 1 2 2 1 1 2 2
pagsub =

1 1 1 1 2 2 2 2

If you specify only two outputs (row and column), ind2sub still returns
a subscript for each specified index, but drops the third dimension from
the matrix, returning subscripts for a 2-dimensional, 2-by-4 matrix
instead:

[rowsub colsub] = ind2sub(dims, indices)
rowsub =

1 2 1 2 1 2 1 2
colsub =

1 1 2 2 3 3 4 4

If you specify one output (row), ind2sub drops both the second and third
dimensions from the matrix, and returns subscripts for a 1-dimensional,
1-by-8 matrix instead:

[rowsub] = ind2sub(dims, indices)
rowsub =

1 2 3 4 5 6 7 8

See Also find | size | sub2ind

1-3278

Inf

Purpose Infinity

Syntax Inf
I = Inf(n)
I = Inf(sz1,...,szN)
I = Inf(sz)

I = Inf(classname)
I = Inf(n,classname)
I = Inf(sz1,...,szN,classname)
I = Inf(sz,classname)

I = Inf('like',p)
I = Inf(n,'like',p)
I = Inf(sz1,...szN,'like',p)
I = Inf(sz,'like',p)

Description Inf returns the IEEE arithmetic representation for positive infinity.
Infinity values result from operations like division by zero and
overflow, which lead to results too large to represent as conventional
floating-point values.

I = Inf(n) is an n-by-n matrix of Inf values.

I = Inf(sz1,...,szN) is a sz1-by-...-by-szN array of Inf values
where sz1,...,szN indicates the size of each dimension. For example,
Inf(3,4) returns a 3-by-4 array of Inf values.

I = Inf(sz) is an array of Inf values where the size vector, sz, defines
size(I). For example, Inf([3,4]) returns a 3-by-4 array of Inf values.

1-3279

Inf

Note The size inputs sz1,...,szN, as well as the elements of the
size vector sz, should be nonnegative integers. Negative integers are
treated as 0.

I = Inf(classname) returns an Inf value where the string, classname,
specifies the data type. classname can be either 'single' or 'double'.

I = Inf(n,classname) returns an n-by-n array of Inf values of data
type classname.

I = Inf(sz1,...,szN,classname) returns a sz1-by-...-by-szN array of
Inf values of data type classname.

I = Inf(sz,classname) returns an array of Inf values where the size
vector, sz, defines size(I) and classname defines class(I).

I = Inf('like',p) returns an array of Infs of the same data type,
sparsity, and complexity (real or complex) as the numeric variable, p.

I = Inf(n,'like',p) returns an n-by-n array of Inf values like p.

I = Inf(sz1,...szN,'like',p) returns a sz1-by-...-by-szN array of
Inf values like p.

I = Inf(sz,'like',p) returns an array of Inf values like p where the
size vector, sz, defines size(I).

Examples 1/0, 1.e1000, 2^2000, and exp(1000) all produce Inf.

log(0) produces -Inf.

Inf-Inf and Inf/Inf both produce NaN (Not-a-Number).

1-3280

Inf

See Also nan | isinf | isfinite | isfloat

Concepts • “Class Support for Array-Creation Functions”

1-3281

inferiorto

Purpose Specify inferior class relationship

Syntax inferiorto('class1','class2',...)

Description inferiorto('class1','class2',...) establishes that the class
invoking this function in its constructor has lower precedence than
the classes in the argument list. MATLAB uses this precedence to
determines which method or function MATLAB calls in any given
situation.

Use this function only from a constructor that calls the class function
to create objects (classes defined before MATLAB 7.6).

Examples Specify class precedence.

Suppose a is an object of class class_a, b is an object of class class_b,
and c is an object of class class_c. Suppose the constructor method of
class_c contains the statement:

inferiorto('class_a')

This function call establishes class_a as taking precedence over
class_c for function dispatching. Therefore, either of the following
two statements:

e = fun(a,c);
e = fun(c,a);

Invoke class_a/fun.

If you call a function with two objects having an unspecified relationship,
the two objects have equal precedence. In this case, MATLAB calls
the method of the left-most object. So fun(b, c) calls class_b/fun,
while fun(c, b) calls class_c/fun.

See Also superiorto

1-3282

info

Purpose Information about contacting MathWorks

Note info will be removed in a future release.

Syntax info

Description info displays in the Command Window, information about contacting
MathWorks.

See Also help | version

1-3283

inline

Purpose Construct inline object

Compatibility inline will be removed in a future release. Use “Anonymous Functions”
instead.

Syntax inline(expr)
inline(expr,arg1,arg2,...)
inline(expr,n)

Description inline(expr) constructs an inline function object from the MATLAB
expression contained in the string expr. The input argument to the
inline function is automatically determined by searching expr for an
isolated lower case alphabetic character, other than i or j, that is
not part of a word formed from several alphabetic characters. If no
such character exists, x is used. If the character is not unique, the one
closest to x is used. If two characters are found, the one later in the
alphabet is chosen.

inline(expr,arg1,arg2,...) constructs an inline function whose
input arguments are specified by the strings arg1, arg2,....
Multicharacter symbol names may be used.

inline(expr,n) where n is a scalar, constructs an inline function
whose input arguments are x, P1, P2,

Tips Three commands related to inline allow you to examine an inline
function object and determine how it was created.

char(fun) converts the inline function into a character array. This is
identical to formula(fun).

argnames(fun) returns the names of the input arguments of the inline
object fun as a cell array of strings.

formula(fun) returns the formula for the inline object fun.

A fourth command vectorize(fun) inserts a . before any ^, * or /’ in
the formula for fun. The result is a vectorized version of the inline
function.

1-3284

inline

Examples Example 1

This example creates a simple inline function to square a number.

g = inline('t^2')
g =

Inline function:
g(t) = t^2

You can convert the result to a string using the char function.

char(g)

ans =

t^2

Example 2

This example creates an inline function to represent the formula
f = 3sin(2x2). The resulting inline function can be evaluated with the
argnames and formula functions.

f = inline('3*sin(2*x.^2)')

f =
Inline function:
f(x) = 3*sin(2*x.^2)

argnames(f)

ans =
'x'

formula(f)
ans =

3*sin(2*x.^2)

1-3285

inline

Example 3

This call to inline defines the function f to be dependent on two
variables, alpha and x:

f = inline('sin(alpha*x)')

f =
Inline function:
f(alpha,x) = sin(alpha*x)

If inline does not return the desired function variables or if the
function variables are in the wrong order, you can specify the desired
variables explicitly with the inline argument list.

g = inline('sin(alpha*x)','x','alpha')

g =

Inline function:
g(x,alpha) = sin(alpha*x)

1-3286

inmem

Purpose Names of functions, MEX-files, classes in memory

Syntax M = inmem
[M,X] = inmem
[M,X,C] = inmem
[...] = inmem('-completenames')

Description M = inmem returns a cell array of strings containing the names of the
functions that are currently loaded.

[M,X] = inmem returns an additional cell array X containing the names
of the MEX-files that are currently loaded.

[M,X,C] = inmem also returns a cell array C containing the names of
the classes that are currently loaded.

[...] = inmem('-completenames') returns not only the names of
the currently loaded function and MEX-files, but the path and filename
extension for each as well. No additional information is returned for
loaded classes.

Examples Functions in Memory

List the functions that remain in memory after calling the magic
function.

clear all
magic(10);

M = inmem

M =
'workspacefunc'
'magic'

The function list includes magic and additional functions that are in
memory in your current session.

1-3287

inmem

MEX-Files in Memory

Call a sample MEX-function named arrayProduct, and then verify that
the MEX-function is in memory. You must have a supported C compiler
installed on your system to run this example.

clear all
sampleFolder = fullfile(matlabroot,'extern','examples','mex');
addpath(sampleFolder);
mex arrayProduct.c

s = 5;
A = [1.5, 2, 9];
B = arrayProduct(s,A);

[M,X] = inmem('-completenames');
X

X =
'matlabroot\extern\examples\mex\arrayProduct.mexw64'

See Also clear

1-3288

innerjoin

Purpose Inner join between two tables

Syntax C = innerjoin(A,B)
C = innerjoin(A,B,Name,Value)
[C,ia,ib] = innerjoin(___)

Description C = innerjoin(A,B) creates the table, C, as the inner join between
the tables A and B by matching up rows using all the variables with
the same name as key variables.

The inner join retains only the rows that match between A and B with
respect to the key variables. C contains all nonkey variables from A
and B.

C = innerjoin(A,B,Name,Value) performs the inner-join operation
with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify the variables to use as key variables.

[C,ia,ib] = innerjoin(___) also returns index vectors, ia and ib
indicating the correspondence between rows in C and those in A and B
respectively. You can use this syntax with any of the input arguments
in the previous syntaxes.

Input
Arguments

A,B - Input tables
tables

Input tables, specified as tables.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-3289

innerjoin

Example: 'Keys',2 uses the second variable in A and the second
variable in B as key variables.

’Keys’ - Variables to use as keys
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables to use as keys, specified as the comma-separated pair
consisting of 'Keys' and a positive integer, vector of positive integers,
variable name, cell array of variable names, or logical vector.

You cannot use the 'Keys' name-value pair argument with the
'LeftKeys' and 'RightKeys' name-value pair arguments.

Example: 'Keys',[1 3] uses the first and third variables in A and B
as a key variables.

’LeftKeys’ - Variables to use as keys in A
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables to use as keys in A, specified as the comma-separated pair
consisting of 'LeftKeys' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You must use the 'LeftKeys' name-value pair argument in conjunction
with the 'RightKeys' name-value pair argument. 'LeftKeys' and
'RightKeys' both must specify the same number of key variables.
innnerjoin pairs key values based on their order.

Example: 'LeftKeys',1 uses only the first variable in A as a key
variable.

’RightKeys’ - Variables to use as keys in B
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables to use as keys in B, specified as the comma-separated pair
consisting of 'RightKeys' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

1-3290

innerjoin

You must use the 'RightKeys' name-value pair argument in
conjunction with the 'LeftKeys' name-value pair argument.
'LeftKeys' and 'RightKeys' both must specify the same number of
key variables. innerjoin pairs key values based on their order.

Example: 'RightKeys',3 uses only the third variable in B as a key
variable.

’LeftVariables’ - Variables from A to include in C
positive integer | vector of positive integers | variable name | cell array
containing one or more variable names | logical vector

Variables from A to include in C, specified as the comma-separated pair
consisting of 'LeftVariables' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You can use 'LeftVariables' to include or exclude key variables, as
well as nonkey variables from the output, C.

By default, innerjoin includes all variables from A.

’RightVariables’ - Variables from B to include in C
positive integer | vector of positive integers | variable name | cell array
containing one or more variable names | logical vector

Variables from B to include in C, specified as the comma-separated pair
consisting of 'RightVariables' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You can use 'RightVariables' to include or exclude key variables, as
well as nonkey variables from the output, C.

By default, innerjoin includes all the variables from B except the key
variables.

Output
Arguments

C - Inner join from A and B
table

Inner join from A and B, returned as a table. The output table, C,
contains one row for each pair of rows in tables A and B that share the
same combination of values in the key variables. If A and B contain

1-3291

innerjoin

variables with the same name, innerjoin adds a unique suffix to the
corresponding variable names in C.

In general, if there are m rows in table A and n rows in table B that all
contain the same combination of values in the key variables, table C
contains m*n rows for that combination.

C is sorted by the values in the key variables and contains the horizontal
concatenation of A(ia,LeftVars) and B(ib,RightVars). By default,
LeftVars consists of all the variables of A, and RightVars consists of
all the nonkey variables from B. Otherwise, LefttVars consists of the
variables specified by the 'LeftVariables' name-value pair argument,
and RightVars is the variables specified by the 'RightVariables'
name-value pair argument.

You can store additional metadata such as descriptions, variable
units, variable names, and row names in the output table, C. For more
information, see Table Properties.

ia - Index to A
column vector

Index to A, returned as a column vector. Each element of ia identifies
the row in table A that corresponds to that row in the output table, C.

ib - Index to B
column vector

Index to B, returned as a column vector. Each element of ib identifies
the row in table B that corresponds to that row in the output table, C.

Definitions Key Variable

Variable used to match and combine data between the input tables,
A and B.

Examples Inner-Join Operation of Tables with One Variable in Common

Create a table, A.

1-3292

innerjoin

A = table([5;12;23;2;6],...
{'cereal';'pizza';'salmon';'cookies';'pizza'},...
'VariableNames',{'Age','FavoriteFood'})

A =

Age FavoriteFood
___ ____________

5 'cereal'
12 'pizza'
23 'salmon'
2 'cookies'
6 'pizza'

Create a table, B, with one variable in common with A.

B = table({'cereal';'cookies';'pizza';'salmon';'cake'},...
[110;160;140;367;243],...
{'A-';'D';'B';'B';'C-'},...
'VariableNames',{'FavoriteFood','Calories','NutritionGrade'})

B =

FavoriteFood Calories NutritionGrade
____________ ________ ______________

'cereal' 110 'A-'
'cookies' 160 'D'
'pizza' 140 'B'
'salmon' 367 'B'
'cake' 243 'C-'

Use theinnerjoin function to create a new table, C, with data from
tables A and B.

C = innerjoin(A,B)

1-3293

innerjoin

C =

Age FavoriteFood Calories NutritionGrade
___ ____________ ________ ______________

5 'cereal' 110 'A-'
2 'cookies' 160 'D'

12 'pizza' 140 'B'
6 'pizza' 140 'B'

23 'salmon' 367 'B'

Table C is sorted by the key variable, FavoriteFood.

Inner-Join Operation of Tables and Indices to Values

Create a table, A.

A = table({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
'VariableNames',{'Key1' 'Var1'})

A =

Key1 Var1
____ ____

'a' 1
'b' 2
'c' 3
'e' 11
'h' 17

Create a table, B, with common values in the variable Key1 between
tables A and B, but also containing rows with values of Key1 not present
in A.

B = table({'a' 'b' 'd' 'e'}',[4 5 6 7]',...
'VariableNames',{'Key1' 'Var2'})

1-3294

innerjoin

B =

Key1 Var2
____ ____

'a' 4
'b' 5
'd' 6
'e' 7

Use the innerjoin function to create a new table, C, with data from
tables A and B. Retain only rows whose values in the variable Key1
match.

Also, return index vectors, ia and ib indicating the correspondence
between rows in C and rows in A and B respectively.

[C,ia,ib] = innerjoin(A,B)

C =

Key1 Var1 Var2
____ ____ ____

'a' 1 4
'b' 2 5
'e' 11 7

ia =

1
2
4

ib =

1-3295

innerjoin

1
2
4

Table C is sorted by the values in the key variable, Key1, and contains
the horizontal concatenation of A(ia,:) and B(ib,'Var2') .

Inner-Join Operation of Tables Using Left and Right Keys

Create a table, A.

A = table([10;4;2;3;7],[5;4;9;6;1],[10;3;8;8;4])

A =

Var1 Var2 Var3
____ ____ ____

10 5 10
4 4 3
2 9 8
3 6 8
7 1 4

Create a table, B, with common values in the second variable as the first
variable of table A.

B = table([6;1;1;6;8],[2;3;4;5;6])

B =

Var1 Var2
____ ____

6 2
1 3
1 4
6 5
8 6

1-3296

innerjoin

Use the innerjoin function to create a new table, C, with data from
tables A and B. Use the first variable of A and the second variable of
B as key variables.

[C,ia,ib] = innerjoin(A,B,'LeftKeys',1,'RightKeys',2)

C =

Var1_A Var2 Var3 Var1_B
______ ____ ____ ______

2 9 8 6
3 6 8 1
4 4 3 1

ia =

3
4
2

ib =

1
2
3

Table C retains only the rows that match between A and B with respect
to the key variables.

Table C contains the horizontal concatenation of A(ia,:) and
B(ib,'Var1').

See Also join | outerjoin

1-3297

inpolygon

Purpose Points inside polygonal region

Syntax IN = inpolygon(X,Y,xv,yv)
[IN ON] = inpolygon(X,Y,xv,yv)

Description IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as
X and Y. Each element of IN is assigned the value 1 or 0 depending
on whether the point (X(p,q),Y(p,q)) is inside the polygonal region
whose vertices are specified by the vectors xv and yv. In particular:

IN(p,q) = 1 If (X(p,q),Y(p,q)) is inside the polygonal region or
on the polygon boundary

IN(p,q) = 0 If (X(p,q),Y(p,q)) is outside the polygonal region

[IN ON] = inpolygon(X,Y,xv,yv) returns a second matrix ON the
same size as X and Y. Each element of ON is assigned the value 1 or 0
depending on whether the point (X(p,q),Y(p,q)) is on the boundary
of the polygonal region whose vertices are specified by the vectors xv
and yv. In particular:

ON(p,q) = 1 If (X(p,q),Y(p,q)) is on the polygon boundary

ON(p,q) = 0 If (X(p,q),Y(p,q)) is inside or outside the polygon
boundary

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
x = randn(250,1); y = randn(250,1);
in = inpolygon(x,y,xv,yv);
plot(xv,yv,x(in),y(in),'r+',x(~in),y(~in),'bo')

1-3298

inpolygon

1-3299

input

Purpose Request user input

Syntax result = input(prompt)
str = input(prompt,'s')

Description result = input(prompt) displays the prompt string on the screen,
waits for input from the keyboard, evaluates any expressions in the
input, and returns the result. To evaluate expressions, the input
function can use variables in the current workspace.

• If you press the Return key without entering anything, then input
returns an empty matrix.

• If you enter an invalid expression at the prompt, then MATLAB
displays the relevant error message, and then redisplays the prompt.

str = input(prompt,'s') returns the entered text as a MATLAB
string, without evaluating expressions.

Input
Arguments

prompt - Query that requests input
string

Query that requests input, specified as a string.

To create a prompt that spans several lines, use '\n' to indicate each
new line. To include a backslash ('\') in the prompt, use '\\'.

Data Types
char

Output
Arguments

result - Result calculated from input
array

Result calculated from input, returned as an array. The type and
dimensions of the array depend upon the response to the prompt.

str - Exact text of input
string

1-3300

input

Exact text of input, returned as a string.

Data Types
char

Examples Numeric or Evaluated Input

Request a numeric input, and then multiply the input by 10.

prompt = 'What is the original value? ';
result = input(prompt)
largernum = result * 10

At the prompt, enter a numeric value or array, such as 42.

result =
42

largernum =
420

The input function also accepts expressions. For example, rerun the
code.

prompt = 'What is the original value? ';
result = input(prompt)
largernum = result * 10

At the prompt, enter magic(3).

result =
8 1 6
3 5 7
4 9 2

largernum =
80 10 60
30 50 70
40 90 20

1-3301

input

The expression does not need to return a numeric result. For example:

prompt = 'What color is the sun? ';
result = input(prompt)

At the prompt, type upper('yellow').

result =
YELLOW

Unprocessed Text Input

Request a simple text response that requires no evaluation.

prompt = 'Do you want more? Y/N [Y]: ';
str = input(prompt,'s');
if isempty(str)

str = 'Y';
end

The input function returns the text exactly as typed. If the input is
empty, this code assigns a default value, 'Y', to the output string, str.

See Also keyboard | inputdlg | menu | ginput | uicontrol

1-3302

inputdlg

Purpose Create and open input dialog box

Syntax answer = inputdlg(prompt)
answer = inputdlg(prompt,dlg_title)
answer = inputdlg(prompt,dlg_title,num_lines)
answer = inputdlg(prompt,dlg_title,num_lines,defAns)
answer = inputdlg(prompt,dlg_title,num_lines,defAns,options)

Description answer = inputdlg(prompt) creates a modal dialog box and returns
user input for multiple prompts in the cell array. prompt is a cell array
containing prompt strings.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

answer = inputdlg(prompt,dlg_title) dlg_title specifies a title
for the dialog box.

answer = inputdlg(prompt,dlg_title,num_lines) num_lines
specifies the number of lines for each user-entered value. num_lines
can be a scalar, column vector, or a m x 2 array.

• If num_lines is a scalar, it applies to all prompts.

• If num_lines is a column vector, each element specifies the number
of lines of input for a prompt.

• If num_lines is an array, it must be size m-by-2, where m is the
number of prompts on the dialog box. Each row refers to a prompt.
The first column specifies the number of lines of input for a prompt.
The second column specifies the width of the field in characters.

answer = inputdlg(prompt,dlg_title,num_lines,defAns) defAns
specifies the default value to display for each prompt. defAns must
contain the same number of elements as prompt and all elements must
be strings.

1-3303

inputdlg

answer =
inputdlg(prompt,dlg_title,num_lines,defAns,options) If
options is the string 'on', the dialog is made resizable in the
horizontal direction. If options is a structure, the fields shown in
the following table are recognized:

Field Description

Resize Can be 'on' or 'off' (default). If 'on', the window
is resizable horizontally.

WindowStyle Can be either 'normal' or 'modal' (default).

Interpreter Can be either 'none' (default) or 'tex'. If the value is
'tex', the prompt strings are rendered using LaTeX.

If the user clicks the Cancel button to close an inputdlg box, the dialog
returns an empty cell array:

answer =
{}

Tips inputdlg uses the uiwait function to suspend execution until the
user responds.

The returned variable answer is a cell array containing strings, one
string per text entry field, starting from the top of the dialog box.

To convert a member of the cell array to a number, use str2num. To do
this, you can add the following code to the end of any of the examples
below:

% Use curly bracket for subscript
[val status] = str2num(answer{1});
if ~status

% Handle empty value returned
% for unsuccessful conversion
% ...

end
% val is a scalar or matrix converted from the first input

1-3304

inputdlg

Users can enter scalar or vector values into inputdlg fields; str2num
converts space- and comma-delimited strings into row vectors, and
semicolon-delimited strings into column vectors. For example, if
answer{1} contains '1 2 3;4 -5 6+7i', the conversion produces:

val = str2num(answer{1})
val =

1.0000 2.0000 3.0000
4.0000 -5.0000 6.0000 + 7.0000i

Examples Example 1

Create a dialog box to input an integer and colormap name. Allow one
line for each value.

prompt = {'Enter matrix size:','Enter colormap name:'};
dlg_title = 'Input';
num_lines = 1;
def = {'20','hsv'};
answer = inputdlg(prompt,dlg_title,num_lines,def);

Example 2

Create a dialog box named to accept comma-separated numbers.
MATLAB stores accepts the input as a string, so convert the string to
numbers using str2num.

x = inputdlg('Enter space-separated numbers:',...

1-3305

inputdlg

'Sample', [1 50]);
data = str2num(x{:});

Example 3

Create a dialog box to display input fields of different widths.

x = inputdlg({'Name','Telephone','Account'},...
'Customer', [1 50; 1 12; 1 7]);

Example 4

Create a dialog box using the default options. Then, use the options to
make it resizable and not modal, and to interpret the text using LaTeX.

prompt={'Enter the matrix size for x^2:',...
'Enter the colormap name:'};

1-3306

inputdlg

name='Input for Peaks function';
numlines=1;
defaultanswer={'20','hsv'};
answer=inputdlg(prompt,name,numlines,defaultanswer);

options.Resize='on';
options.WindowStyle='normal';
options.Interpreter='tex';
answer=inputdlg(prompt,name,numlines,...

defaultanswer,options);

See Also dialog | errordlg | helpdlg | listdlg | msgbox | questdlg |
warndlg | input | figure | str2num | uiwait | uiresume

1-3307

inputname

Purpose Variable name of function input

Syntax inputname(argnum)

Description This command can be used only inside the body of a function.

inputname(argnum) returns the workspace variable name
corresponding to the argument number argnum. If the input argument
has no name (for example, if it is an expression instead of a variable),
the inputname command returns the empty string ('').

Examples Suppose the function myfun.m is defined as

function c = myfun(a,b)

fprintf('First calling variable is "%s"\n.', inputname(1))

Then

x = 5; y = 3; myfun(x,y)

produces

First calling variable is "x".

But

myfun(pi+1, pi-1)

produces

First calling variable is "".

See Also nargin | nargout | narginchk

1-3308

inputParser

Purpose Parse function inputs

Description The inputParser object allows you to manage inputs to a function by
creating an input scheme. To check the input, you can define validation
functions for required arguments, optional arguments, and name-value
pair arguments. Optionally, you can set properties to adjust the parsing
behavior, such as handling case sensitivity, structure array inputs, and
inputs that are not in the input scheme.

After calling the parse method to parse the inputs, the inputParser
saves names and values of inputs that match the input scheme (stored
in Results), names of inputs that are not passed to the function and,
therefore, are assigned default values (stored in UsingDefaults), and
names and values of inputs that do not match the input scheme (stored
in Unmatched).

Construction p = inputParser creates inputParser object p.

Properties CaseSensitive

Scalar logical value that indicates whether to match case when
checking argument names.

Possible values:

false (0) Names are not sensitive to case: 'a' matches
'A'.

true (1) Names are case sensitive: 'a' does not match
'A'.

Default: false

FunctionName

String that specifies the name of the function to include in error
messages. By specifying the FunctionName, the parse method
of the inputParser will throw error messages as if it were that

1-3309

inputParser

function. This allows the error to be attributed to the correct
function and allows easy access to function documentation
through the error message.

Default: The default value is an empty string, ''.

KeepUnmatched

Scalar logical value that indicates how to handle parameter name
and value inputs that are not in the input scheme.

Possible values:

false (0) Throw an error whenever inputs are not in
the scheme.

true (1) Store the parameter names and values of
unmatched inputs in the Unmatched property
of the inputParser object, and suppress the
error.

Default: false

PartialMatching

Scalar logical value that indicates whether partial matching of
parameter names will be accepted. Partial parameter matching
is supported by the addParameter method. If the value of
StructExpand is true, then PartialMatching is not supported for
structure field names corresponding to input parameter names.

Possible values:

1-3310

inputParser

true (1) Inputs that are leading substrings of
parameter names will be accepted and the
value matched to that parameter. If there are
multiple possible matches to the input string,
MATLAB throws an error.

false (0) Input names are required to match a
parameter name exactly (with respect to the
CaseSensitive property.)

Default: true

StructExpand

Scalar logical value that specifies whether to interpret a structure
array as a single input or as a set of parameter name and value
pairs.

true (1) Expand structures into separate inputs. Each
field name corresponds to an input parameter
name.

false (0) Regard a structure array as a single input
argument.

Default: true

Read Only Properties

Parameters

Cell array of strings that contains the names of arguments
currently defined in the input scheme.

Each method that adds an input argument to the scheme
(addRequired, addOptional, addParameter) updates the
Parameters property.

Results

1-3311

inputParser

Structure containing names and values of inputs that match the
function input scheme, populated by the parse method.

Each field of the Results structure corresponds to the name of an
input.

Unmatched

Structure array containing the names and values of inputs that
do not match the function input scheme, populated by the parse
method.

If KeepUnmatched is false (default) or all inputs match the
scheme, then Unmatched is a 1-by-1 structure with no fields.
Otherwise, each field of the structure corresponds to the name of
an input that did not match the scheme.

UsingDefaults

Cell array containing the names of inputs not passed explicitly to
the function and assigned default values, populated by the parse
method.

Methods
addOptional Add optional positional argument

to input parser scheme

addParameter Add optional parameter
name-value pair argument
to input parser scheme

addParamValue (Not recommended) Add
parameter name and value
argument to Input Parser scheme

addRequired Add required positional argument
to input parser scheme

createCopy Create copy of inputParser
object (to be removed)

parse Parse function inputs

1-3312

inputParser

You can define your scheme by calling addRequired, addOptional, and
addParameter in any order, but when you call your function that uses
the input parser, you should pass in required inputs first, followed by
any optional positional inputs, and, finally, any name-value pairs.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

The copy method creates another scheme with the same properties as
an existing inputParser object:

pNew = copy(pOld);

Examples Input Validation

Check the validity of required and optional function inputs.

Create a custom function with required and optional inputs in the file
findArea.m.

function a = findArea(width,varargin)
p = inputParser;
defaultHeight = 1;
defaultUnits = 'inches';
defaultShape = 'rectangle';
expectedShapes = {'square','rectangle','parallelogram'};

addRequired(p,'width',@isnumeric);
addOptional(p,'height',defaultHeight,@isnumeric);
addParameter(p,'units',defaultUnits);
addParameter(p,'shape',defaultShape,...

@(x) any(validatestring(x,expectedShapes)));

parse(p,width,varargin{:});
a = p.Results.width .* p.Results.height;

The input parser checks whether width and height are numeric, and
whether the shape matches a string in cell array expectedShapes. @

1-3313

inputParser

indicates a function handle, and the syntax @(x) creates an anonymous
function with input x.

Call the function with inputs that do not match the scheme. For
example, specify a nonnumeric value for the width input:

findArea('text')

Error using findArea (line 14)

The value of 'width' is invalid. It must satisfy the function: isnumeric.

Specify an unsupported value for shape:

findArea(4,'shape','circle')

Error using findArea (line 14)

The value of 'shape' is invalid. Expected input to match one of these strings:

square, rectangle, parallelogram

The input, ''circle'', did not match any of the valid strings.

Extra Parameter Value Inputs

Store parameter name and value inputs that are not in the input
scheme instead of throwing an error.

default = 0;
value = 1;

p = inputParser;
p.KeepUnmatched = true;
addOptional(p,'expectedInputName',default);
parse(p,'extraInput',value);

View the unmatched parameter name and value:

p.Unmatched

1-3314

inputParser

ans =

extraInput: 1

Case Sensitivity

Enforce case sensitivity when checking function inputs.

p = inputParser;
p.CaseSensitive = true;
defaultValue = 0;
addParameter(p,'InputName',defaultValue);

parse(p,'inputname',10)

'inputname' is not a recognized parameter. For a list of valid name-value pair arguments, see the do

Structure Array Inputs

Parse structure array inputs with the StructExpand property set to
true (default) or false.

Expand a structure array input into parameter name and value pairs
using the default true value of the StructExpand property.

s.input1 = 10;
s.input2 = 20;
default = 0;

p = inputParser;
addParameter(p,'input1',default);
addParameter(p,'input2',default);
parse(p,s);

p.Results

1-3315

inputParser

ans =

input1: 10
input2: 20

Explicitly specifying a parameter name and value pair overrides values
in the structure.

parse(p,s,'input2',300);
p.Results

ans =

input1: 10
input2: 300

Accept a structure array input as a single argument by setting the
StructExpand property to false.

s2.first = 1;
s2.random = rand(3,4,2);
s2.mytext = 'some text';

p = inputParser;
p.StructExpand = false;
addRequired(p,'structInput');
parse(p,s2);

results = p.Results
fieldList = fieldnames(p.Results.structInput)

results =

1-3316

inputParser

structInput: [1x1 struct]

fieldList =

'first'
'random'
'mytext'

Parse Inputs Using validateattributes

Create a function that parses information about people and, if parsing
passes, adds the information to a cell array.

Create a function, addPerson, that sets up an inputParser scheme
using validateAttributes. The function should accept the list of
people, modify the list if necessary and return the list. Use a persistent
inputParser to avoid construction of a new object with every function
call. If this is the first call to the function, add a titles row to the cell
array.

function mlist = addPerson(mlist,varargin)

persistent p

if isempty(p)

p = inputParser;

p.FunctionName = 'addPerson';

addRequired(p,'name',@(x)validateattributes(x,{'char'},...

{'nonempty'}));

addRequired(p,'id',@(x)validateattributes(x,{'numeric'},...

{'nonempty','integer','positive'}));

addOptional(p,'birthyear',9999,@(x)validateattributes(x,...

{'numeric'},{'nonempty'}));

addParameter(p,'nickname','-',@(x)validateattributes(x,...

{'char'},{'nonempty'}));

addParameter(p,'favColor','-',@(x)validateattributes(x,...

{'char'},{'nonempty'}));

1-3317

inputParser

end

parse(p,varargin{:});

if isempty(mlist)

mlist = fieldnames(p.Results)';

end

mlist = [mlist; struct2cell(p.Results)'];

end

Create an empty list, and add a person to it.

pList = {};

pList = addPerson(pList,78,'Joe');

Error using addPerson

The value of 'name' is invalid. Expected input to be one of these types:

char

Instead its type was double.

Error in addPerson (line 17)

parse(p,mlist,name,id,varargin{:});

The parsing failed because the function received the inputs in the
incorrect order and tried to assign name a value of 78. This entry was
not added to pList.

Add several more people to the list.

pList = addPerson(pList,'Joe',78);

pList = addPerson(pList,'Mary',3,1942,'favColor','red');

pList = addPerson(pList,'James',182,1970,'nickname','Jimmy')

pList =

'birthyear' 'favColor' 'id' 'name' 'nickname'

1-3318

inputParser

[9999] '-' [78] 'Joe' '-'

[1942] 'red' [3] 'Mary' '-'

[1970] '-' [182] 'James' 'Jimmy'

See Also validateattributes | validatestring | varargin | narginchk |
nargin

Concepts • “Input Parser Validation Functions”

1-3319

inspect

Purpose Open Property Inspector

Syntax inspect
inspect(h)
inspect([h1,h2,...])

Description inspect creates a separate Property Inspector window to enable the
display and modification of the properties of any object you select in the
figure window or Layout Editor. If no object is selected, the Property
Inspector is blank.

inspect(h) creates a Property Inspector window for the object whose
handle is h.

inspect([h1,h2,...]) displays properties that objects h1 and h2 have
in common, or a blank window if there are no such properties; any
number of objects can be inspected and edited in this way (for example,
handles returned by the bar command).

The Property Inspector has the following behaviors:

• Only one Property Inspector window is active at any given time;
when you inspect a new object, its properties replace those of the
object last inspected.

• When the Property Inspector is open and plot edit mode is on, clicking
any object in the figure window displays the properties of that object
(or set of objects) in the Property Inspector.

• When you select and inspect two or more objects of different types,
the Property Inspector only shows the properties that all objects have
in common.

• To change the value of any property, click on the property name
shown at the left side of the window, and then enter the new value
in the field at the right.

The Property Inspector provides two different views:

• List view — properties are ordered alphabetically (default); this is
the only view available for annotation objects.

1-3320

inspect

• Group view — properties are grouped under classified headings
(Handle Graphics objects only)

To view alphabetically, click the “AZ” Icon in the Property Inspector
toolbar. To see properties in groups, click

the “++” icon . When properties are grouped, the “-” and “+” icons are

enabled; click to expand all categories and click to collapse all
categories. You can also expand and collapse individual categories by
clicking on the “+” next to the category name. Some properties expand
and collapse

Notes To see a complete description of any property, right-click on
its name or value and select What’s This; a help window opens that
displays the reference page entry for it.

The Property Inspector displays most, but not all, properties of Handle
Graphics objects. For example, the parent and children of HG objects
are not shown.
inspect h displays a Property Inspector window that enables
modification of the string 'h', not the object whose handle is h.
If you modify properties at the MATLAB command line, you must
refresh the Property Inspector window to see the change reflected there.
Refresh the Property Inspector by reinvoking inspect on the object.

Examples Example 1

Create a surface mesh plot and view its properties with the Property
Inspector.

Z = peaks(30);
h = surf(Z);
inspect(h);

1-3321

inspect

In the Property Inspector, change the FaceAlpha property from 1.0 to
0.4 (equivalent to the command set(h,'FaceAlpha',0.4)). FaceAlpha
controls the transparency of patch faces.

1-3322

inspect

When you press Enter or click a different field, the FaceAlpha property
of the surface object updates.

1-3323

inspect

Example 2

Create a serial port object for COM1 on a Windows platform and use the
Property Inspector to peruse its properties:

s = serial('COM1');
inspect(s);

1-3324

inspect

Because COM objects do not define property groupings, the Property
Inspector enables only the alphabetical list view of COM object
properties.

Example 3

Create a COM Excel server and open a Property Inspector window
with inspect.

h = actxserver('excel.application');
inspect(h);

1-3325

inspect

Scroll down until you see the CalculationInterruptKey property,
which by default is xlAnyKey. Click on the down-arrow in the right
margin of the Property Inspector, and then select xlEscKey from the
drop-down menu.

Check this property in the MATLAB Command Window using get to
confirm that the property value changed.

get(h,'CalculationInterruptKey')

ans =

1-3326

inspect

xlEscKey

See Also get | set | isprop | guide | addproperty | deleteproperty

1-3327

instrcallback

Purpose Event information when event occurs

Syntax instrcallback(obj,event)

Description instrcallback(obj,event) displays a message that contains the event
type, event, the time the event occurred, and the name of the serial
port object, obj, that caused the event to occur.

For error events, the error message is also displayed. For pin status
events, the pin that changed value and its value are also displayed.

Tips Use instrcallback as a template to create callback functions that
suit your specific application needs.

Examples The following example creates the serial port object, s, on a Windows
platform. It configures s to execute instrcallback when an
output-empty event occurs. The event occurs after the *IDN? command
is written to the instrument.

s = serial('COM1');
set(s,'OutputEmptyFcn',@instrcallback)
fopen(s)
fprintf(s,'*IDN?','async')

OutputEmpty event occurred at 08:37:49 for the object:
Serial-COM1.

Read the identification information from the input buffer and end the
serial port session.

idn = fscanf(s);
fclose(s)
delete(s)
clear s

1-3328

instrfind

Purpose Read serial port objects from memory to MATLAB workspace

Syntax out = instrfind
out = instrfind('PropertyName',PropertyValue,...)
out = instrfind(S)
out = instrfind(obj,'PropertyName',PropertyValue,...)

Description out = instrfind returns all valid serial port objects as an array to out.

out = instrfind('PropertyName',PropertyValue,...) returns an
array of serial port objects whose property names and property values
match those specified.

out = instrfind(S) returns an array of serial port objects whose
property names and property values match those defined in the
structure S. The field names of S are the property names, while the field
values are the associated property values.

out = instrfind(obj,'PropertyName',PropertyValue,...)
restricts the search for matching property name/property value pairs to
the serial port objects listed in obj.

Tips Refer to “Displaying Property Names and Property Values” for a list of
serial port object properties that you can use with instrfind.

You must specify property values using the same format as the get
function returns. For example, if get returns the Name property value
as MyObject, instrfind will not find an object with a Name property
value of myobject. However, this is not the case for properties that
have a finite set of string values. For example, instrfind will find an
object with a Parity property value of Even or even.

You can use property name/property value string pairs, structures, and
cell array pairs in the same call to instrfind.

Examples Suppose you create the following two serial port objects on a Windows
platform.

s1 = serial('COM1');

1-3329

instrfind

s2 = serial('COM2');
set(s2,'BaudRate',4800)
fopen([s1 s2])

You can use instrfind to return serial port objects based on property
values.

out1 = instrfind('Port','COM1');
out2 = instrfind({'Port','BaudRate'},{'COM2',4800});

You can also use instrfind to return cleared serial port objects to the
MATLAB workspace.

clear s1 s2
newobjs = instrfind

Instrument Object Array
Index: Type: Status: Name:
1 serial open Serial-COM1
2 serial open Serial-COM2

To close both s1 and s2

fclose(newobjs)

See Also clear | get

1-3330

instrfindall

Purpose Find visible and hidden serial port objects

Syntax out = instrfindall
out = instrfindall('P1',V1,...)
out = instrfindall(s)
out = instrfindall(objs,'P1',V1,...)

Description out = instrfindall finds all serial port objects, regardless of the
value of the object’s ObjectVisibility property. The object or objects
are returned to out.

out = instrfindall('P1',V1,...) returns an array, out, of serial
port objects whose property names and corresponding property values
match those specified as arguments.

out = instrfindall(s) returns an array, out, of serial port objects
whose property names and corresponding property values match those
specified in the structure s, where the field names correspond to
property names and the field values correspond to the current value
of the respective property.

out = instrfindall(objs,'P1',V1,...) restricts the search for
objects with matching property name/value pairs to the serial port
objects listed in objs.

Note that you can use string property name/property value pairs,
structures, and cell array property name/property value pairs in the
same call to instrfindall.

Tips instrfindall differs from instrfind in that it finds objects whose
ObjectVisibility property is set to off.

Property values are case sensitive. You must specify property values
using the same format as that returned by the get function. For
example, if get returns the Name property value as 'MyObject',
instrfindall will not find an object with a Name property value of
'myobject'. However, this is not the case for properties that have a
finite set of string values. For example, instrfindall will find an
object with a Parity property value of 'Even' or 'even'.

1-3331

instrfindall

Examples Suppose you create the following serial port objects on a Windows
platform:

s1 = serial('COM1');
s2 = serial('COM2');
set(s2,'ObjectVisibility','off')

Because object s2 has its ObjectVisibility set to 'off', it is not
visible to commands like instrfind:

instrfind

Serial Port Object : Serial-COM1

However, instrfindall finds all objects regardless of the value of
ObjectVisibility:

instrfindall

Instrument Object Array
Index: Type: Status: Name:
1 serial closed Serial-COM1
2 serial closed Serial-COM2

The following statements use instrfindall to return objects with
specific property settings, which are passed as cell arrays:

props = {'PrimaryAddress','SecondaryAddress};
vals = {2,0};
obj = instrfindall(props,vals);

You can use instrfindall as an argument when you want to apply the
command to all objects, visible and invisible. For example, the following
statement makes all objects visible:

set(instrfindall,'ObjectVisibility','on')

See Also get | instrfind | ObjectVisibility

1-3332

int2str

Purpose Convert integer to string

Syntax str = int2str(N)

Description str = int2str(N) converts an integer to a string with integer format.
The input N can be a single integer or a vector or matrix of integers.
Noninteger inputs are rounded before conversion.

Examples int2str(2+3) is the string '5'.

One way to label a plot is

title(['case number ' int2str(n)])

For matrix or vector inputs, int2str returns a string matrix:

int2str(eye(3))

ans =

1 0 0
0 1 0
0 0 1

See Also fprintf | num2str | sprintf | cast

1-3333

int8

Purpose Convert to 8-bit signed integer

Syntax intArray = int8(array)

Description intArray = int8(array) converts the elements of an array into signed
8-bit (1-byte) integers of class int8.

Input
Arguments

array

Array of any numeric class, such as single or double. If array is
already of class int8, the int8 function has no effect.

Output
Arguments

intArray

Array of class int8. Values range from –27 to 27 – 1.

The int8 function maps any values in array that are outside the limit
to the nearest endpoint. For example,

int8(2^7) % 2^7 = 128

returns

ans =
127

Examples Convert a double array to int8:

mydata = int8(magic(10));

Alternatives When preallocating integer arrays, specify the class in the call to
functions that support a class name input (such as zeros, ones or eye),
rather than calling an integer conversion function. For example,

I = int8(zeros(100)); % Creates an intermediate array

is not as efficient as

I = zeros(100, 'int8'); % Preferred

1-3334

int8

See Also double | single | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | intmax | intmin

Tutorials • “Integers”

• “Arithmetic Operations on Integer Classes”

1-3335

int16

Purpose Convert to 16-bit signed integer

Syntax intArray = int16(array)

Description intArray = int16(array) converts the elements of an array into
signed 16-bit (2-byte) integers of class int16.

Input
Arguments

array

Array of any numeric class, such as single or double. If array is
already of class int16, the int16 function has no effect.

Output
Arguments

intArray

Array of class int16. Values range from –215 to 215 – 1.

The int16 function maps any values in array that are outside the limit
to the nearest endpoint. For example,

int16(2^15) % 2^15 = 32768

returns

ans =
32767

Examples Convert a double array to int16:

mydata = int16(magic(100));

Alternatives When preallocating integer arrays, specify the class in the call to
functions that support a class name input (such as zeros, ones or eye),
rather than calling an integer conversion function. For example,

I = int16(zeros(100)); % Creates an intermediate array

is not as efficient as

I = zeros(100, 'int16'); % Preferred

1-3336

int16

See Also double | single | int8 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | intmax | intmin

Tutorials • “Integers”

• “Arithmetic Operations on Integer Classes”

1-3337

int32

Purpose Convert to 32-bit signed integer

Syntax intArray = int32(array)

Description intArray = int32(array) converts the elements of an array into
signed 32-bit (4-byte) integers of class int32.

Input
Arguments

array

Array of any numeric class, such as single or double. If array is
already of class int32, the int32 function has no effect.

Output
Arguments

intArray

Array of class int32. Values range from –231 to 231 – 1.

The int32 function maps any values in array that are outside the limit
to the nearest endpoint. For example,

int32(2^31) % 2^31 = 2147483648

returns

ans =
2147483647

Examples Convert a double array to int32:

mydata = int32(magic(1000));

Alternatives When preallocating integer arrays, specify the class in the call to
functions that support a class name input (such as zeros, ones or eye),
rather than calling an integer conversion function. For example,

I = int32(zeros(100)); % Creates an intermediate array

is not as efficient as

I = zeros(100, 'int32'); % Preferred

1-3338

int32

See Also double | single | int8 | int16 | int64 | uint8 | uint16 | uint32 |
uint64 | intmax | intmin

Tutorials • “Integers”

• “Arithmetic Operations on Integer Classes”

1-3339

int64

Purpose Convert to 64-bit signed integer

Syntax intArray = int64(array)

Description intArray = int64(array) converts the elements of an array into
signed 64-bit (8-byte) integers of class int64.

Tips Double-precision floating-point numbers have only 52 bits in the
mantissa. Therefore, double values cannot represent all integers
greater than 253 correctly. Before performing arithmetic operations
on values larger than 253 in magnitude, convert the values to 64-bit
integers. For example,

x = int64(2^53+1); % Floating-point arithmetic, loses precision

is not as accurate as the 64-bit integer arithmetic operation:

x = int64(2^53) + 1; % Preferred

Input
Arguments

array

Array of any numeric class, such as single or double. If array is
already of class int64, the int64 function has no effect.

Output
Arguments

intArray

Array of class int64. Values range from –263 to 263 – 1.

The int64 function maps any values in array that are outside the limit
to the nearest endpoint. For example,

int64(2^63) % 2^63 = 9223372036854775808

returns

ans =
9223372036854775807

1-3340

int64

Examples Convert a literal value to int64:

x = int64(9007199254740993);

Alternatives When preallocating integer arrays, specify the class in the call to
functions that support a class name input (such as zeros, ones or eye),
rather than calling an integer conversion function. For example,

I = int64(zeros(100)); % Creates an intermediate array

is not as efficient as

I = zeros(100, 'int64'); % Preferred

See Also double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 |
uint64 | intmax | intmin

Tutorials • “Integers”

• “Arithmetic Operations on Integer Classes”

1-3341

integral

Purpose Numerically evaluate integral

Syntax q = integral(fun,xmin,xmax)
q = integral(fun,xmin,xmax,Name,Value)

Description q = integral(fun,xmin,xmax) approximates the integral of function
fun from xmin to xmax using global adaptive quadrature and default
error tolerances.

q = integral(fun,xmin,xmax,Name,Value) specifies additional
options with one or more Name,Value pair arguments.

Input
Arguments

fun - Integrand
function handle

Integrand, specified as a function handle, defines the function to be
integrated from xmin to xmax. For scalar-valued problems, the function
y = fun(x) must accept a vector argument, x, and return a vector
result, y. This generally means that fun must use array operators
instead of matrix operators. For example, use .* (times) rather than *
(mtimes). If you set the 'ArrayValued' option to true, fun must accept
a scalar and return an array of fixed size.

xmin - Lower limit of x
real number | complex number

Lower limit of x, specified as a real (finite or infinite) scalar value or
a complex (finite) scalar value. If either xmin or xmax are complex,
integral approximates the path integral from xmin to xmax over a
straight line path.

Data Types
double | single
Complex Number Support: Yes

xmax - Upper limit of x
real number | complex number

1-3342

integral

Upper limit of x, specified as a real (finite or infinite) scalar value or
a complex (finite) scalar value. If either xmin or xmax are complex,
integral approximates the path integral from xmin to xmax over a
straight line path.

Data Types
double | single
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'AbsTol',1e-12 sets the absolute error tolerance to
approximately 12 decimal places of accuracy.

’AbsTol’ - Absolute error tolerance
nonnegative real number

Absolute error tolerance, specified as the comma-separated pair
consisting of 'AbsTol' and a nonnegative real number. integral uses
the absolute error tolerance to limit an estimate of the absolute error,
|q – Q|, where q is the computed value of the integral and Q is the
(unknown) exact value. integral might provide more decimal places
of precision if you decrease the absolute error tolerance. The default
value is 1e-10.

Note AbsTol and RelTol work together. integral might satisfy
the absolute error tolerance or the relative error tolerance, but not
necessarily both. For more information on using these tolerances, see
the “Tips” on page 1-3345 section.

1-3343

integral

Example: 'AbsTol',1e-12 sets the absolute error tolerance to
approximately 12 decimal places of accuracy.

Data Types
single | double

’RelTol’ - Relative error tolerance
nonnegative real number

Relative error tolerance, specified as the comma-separated pair
consisting of 'RelTol' and a nonnegative real number. integral uses
the relative error tolerance to limit an estimate of the relative error,
|q – Q|/|Q|, where q is the computed value of the integral and Q is
the (unknown) exact value. integral might provide more significant
digits of precision if you decrease the relative error tolerance. The
default value is 1e-6.

Note RelTol and AbsTol work together. integral might satisfy
the relative error tolerance or the absolute error tolerance, but not
necessarily both. For more information on using these tolerances, see
the Tips section.

Example: 'RelTol',1e-9 sets the relative error tolerance to
approximately 9 significant digits.

Data Types
single | double

’ArrayValued’ - Array-valued function flag
false (default) | true | 0 | 1

Array-valued function flag, specified as the comma-separated pair
consisting of 'ArrayValued' and either false, true, 0, or 1. Set this
flag to true when you want to integrate over an array-valued function.
The shape of fun(x) can be a vector, matrix, or N-D array.

1-3344

integral

Example: 'ArrayValued',true indicates that the integrand is an
array-valued function.

’Waypoints’ - Integration waypoints
vector

Integration waypoints, specified as the comma-separated pair consisting
of 'Waypoints' and a vector of real or complex numbers. Use waypoints
to indicate any points in the integration interval you would like the
integrator to use. You can use waypoints to integrate efficiently
across discontinuities of the integrand. Specify the locations of the
discontinuities in the vector you supply.

You can specify waypoints when you want to perform complex contour
integration. If xmin, xmax, or any entry of the waypoints vector is
complex, the integration is performed over a sequence of straight line
paths in the complex plane.

Example: 'Waypoints',[1+1i,1-1i] specifies two complex waypoints
along the interval of integration.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

q - Computed integral
numeric value | numeric array

Computed integral of fun(x) between the limits xmin and xmax,
returned as a numeric value or numeric array.

Tips • Do not use waypoints to specify singularities. Instead, split the
interval and add the results of separate integrations with the
singularities at the endpoints.

• The integral function attempts to satisfy:

abs(q - Q) <= max(AbsTol,RelTol*abs(q))

1-3345

integral

where q is the computed value of the integral and Q is the (unknown)
exact value. The absolute and relative tolerances provide a way of
trading off accuracy and computation time. Usually, the relative
tolerance determines the accuracy of the integration. However if
abs(q) is sufficiently small, the absolute tolerance determines
the accuracy of the integration. You should generally specify both
absolute and relative tolerances together.

• If you specify a complex value for xmin, xmax, or any waypoint, all
of your limits and waypoints must be finite.

• If you are specifying single-precision limits of integration, or if fun
returns single-precision results, you might need to specify larger
absolute and relative error tolerances.

Examples Evaluate Improper Integral

Create the anonymous function f(x) = e-x2(ln x)2.

fun = @(x) exp(-x.^2).*log(x).^2;

Evaluate the integral from x=0 to x=Inf.

q = integral(fun,0,Inf)

q =

1.9475

Integrate Parameterized Function

Create the anonymous function f(x) = 1/(x3 – 2x – c) with one parameter,
c.

fun = @(x,c) 1./(x.^3-2*x-c);

Evaluate the integral from x=0 to x=2 at c=5.

q = integral(@(x)fun(x,5),0,2)

1-3346

integral

q =

-0.4605

Evaluate Integral with Singularity at the Lower Limit of
Integration

Create the anonymous function f(x) = ln(x).

fun = @(x)log(x);

Evaluate the integral from x=0 to x=1 with the default error tolerances.

format long
q1 = integral(fun,0,1)

q1 =

-1.000000010959678

Evaluate the integral again, specifying approximately 12 decimal places
of accuracy.

q2 = integral(fun,0,1,'RelTol',0,'AbsTol',1e-12)

q2 =

-1.000000000000010

Complex Contour Integration Using Waypoints

Specify waypoints [1+1i,1-1i] to integrate over the triangular path: 0
to 1+1i to 1-1i to 0.

Create the anonymous function f(z) = 1/(2z – 1).

fun = @(z) 1./(2*z-1);

1-3347

integral

Integrate in the complex plane over the triangular path from 0 to 1+1i
to 1-1i to 0.

q = integral(fun,0,0,'Waypoints',[1+1i,1-1i])

q =

0 - 3.1416i

Integrate Vector-Valued Function

Specify 'ArrayValued',true to evaluate the integral of an array-valued
or vector-valued function.

Create the anonymous vector-valued function f(x) = [sin x, sin 2x, sin 3x,
sin 4x, sin 5x] and integrate from x=0 to x=1.

fun = @(x)sin((1:5)*x);
q = integral(fun,0,1,'ArrayValued',true)

q =

0.4597 0.7081 0.6633 0.4134 0.1433

Improper Integral of an Oscillatory Function

Create the anonymous function f(x) = x5 e-x sin x.

fun = @(x)x.^5.*exp(-x).*sin(x);

Evaluate the integral from x=0 to x=Inf , adjusting the absolute and
relative tolerances.

format long
q = integral(fun,0,Inf,'RelTol',1e-8,'AbsTol',1e-13)

q =

-14.999999999998364

1-3348

integral

See Also integral2 | integral3 | function_handle | trapz

Concepts • “Parameterizing Functions”

1-3349

integral2

Purpose Numerically evaluate double integral

Syntax q = integral2(fun,xmin,xmax,ymin,ymax)
q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value)

Description q = integral2(fun,xmin,xmax,ymin,ymax) approximates the integral
of the function z = fun(x,y) over the planar region xmin ≤ x ≤ xmax
and ymin(x) ≤ y ≤ ymax(x).

q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value) specifies
additional options with one or more Name,Value pair arguments.

Input
Arguments

fun - Integrand
function handle

Integrand, specified as a function handle, defines the function
to be integrated over the planar region xmin ≤ x ≤ xmax and
ymin(x) ≤ y ≤ ymax(x). The function fun must accept two arrays of the
same size and return an array of corresponding values. It must perform
element-wise operations.

Data Types
function_handle

xmin - Lower limit of x
real number

Lower limit of x, specified as a real scalar value that is either finite
or infinite.

Data Types
double | single

xmax - Upper limit of x
real number

Upper limit of x, specified as a real scalar value that is either finite
or infinite.

1-3350

integral2

Data Types
double | single

ymin - Lower limit of y
real number | function handle

Lower limit of y, specified as a real scalar value that is either finite or
infinite. You can specify ymin to be a function handle (a function of x)
when integrating over a nonrectangular region.

Data Types
double | function_handle | single

ymax - Upper limit of y
real number | function handle

Upper limit of y, specified as a real scalar value that is either finite or
infinite. You also can specify ymax to be a function handle (a function of
x) when integrating over a nonrectangular region.

Data Types
double | function_handle | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'AbsTol',1e-12 sets the absolute error tolerance to
approximately 12 decimal places of accuracy.

’AbsTol’ - Absolute error tolerance
nonnegative real number

Absolute error tolerance, specified as the comma-separated pair
consisting of 'AbsTol' and a nonnegative real number. integral2
uses the absolute error tolerance to limit an estimate of the absolute
error, |q – Q|, where q is the computed value of the integral and Q is

1-3351

integral2

the (unknown) exact value. integral2 might provide more decimal
places of precision if you decrease the absolute error tolerance. The
default value is 1e-10.

Note AbsTol and RelTol work together. integral2 might satisfy
the absolute error tolerance or the relative error tolerance, but not
necessarily both. For more information on using these tolerances, see
the “Tips” on page 1-3354 section.

Example: 'AbsTol',1e-12 sets the absolute error tolerance to
approximately 12 decimal places of accuracy.

Data Types
double | single

’RelTol’ - Relative error tolerance
nonnegative real number

Relative error tolerance, specified as the comma-separated pair
consisting of 'RelTol' and a nonnegative real number. integral2 uses
the relative error tolerance to limit an estimate of the relative error,
|q – Q|/|Q|, where q is the computed value of the integral and Q is
the (unknown) exact value. integral2 might provide more significant
digits of precision if you decrease the relative error tolerance. The
default value is 1e-6.

Note RelTol and AbsTol work together. integral2 might satisfy
the relative error tolerance or the absolute error tolerance, but not
necessarily both. For more information on using these tolerances, see
the “Tips” on page 1-3354 section.

Example: 'RelTol',1e-9 sets the relative error tolerance to
approximately 9 significant digits.

1-3352

integral2

Data Types
double | single

’Method’ - Integration method
'auto' (default) | 'tiled' | 'iterated'

Integration method, specified as the comma-separated pair consisting of
'Method' and one of the methods described below.

Integration
Method

Description

'auto' For most cases, integral2 uses the 'tiled'
method. It uses the 'iterated' method when
any of the integration limits are infinite. This
is the default method.

'tiled' integral2 transforms the region of
integration to a rectangular shape and
subdivides it into smaller rectangular regions
as needed. The integration limits must be
finite.

'iterated' integral2 calls integral to perform
an iterated integral. The outer integral
is evaluated over xmin ≤ x ≤ xmax.
The inner integral is evaluated over
ymin(x) ≤ y ≤ ymax(x). The integration limits
can be infinite.

Example: 'Method','tiled' specifies the tiled integration method.

Output
Arguments

q - Computed integral
numeric value

Computed integral of fun(x,y) over the specified region, returned as a
numeric value.

1-3353

integral2

Tips • The integral2 function attempts to satisfy:

abs(q - Q) <= max(AbsTol,RelTol*abs(q))

where q is the computed value of the integral and Q is the (unknown)
exact value. The absolute and relative tolerances provide a way of
trading off accuracy and computation time. Usually, the relative
tolerance determines the accuracy of the integration. However if
abs(q) is sufficiently small, the absolute tolerance determines
the accuracy of the integration. You should generally specify both
absolute and relative tolerances together.

• The 'iterated' method can be more effective when your function
has discontinuities within the integration region. However, the best
performance and accuracy occurs when you split the integral at the
points of discontinuity and sum the results of multiple integrations.

• When integrating over nonrectangular regions, the best performance
and accuracy occurs when ymin, ymax, (or both) are function handles.
Avoid setting integrand function values to zero to integrate over
a nonrectangular region. If you must do this, specify 'iterated'
method.

• Use the 'iterated' method when ymin, ymax, (or both) are
unbounded functions.

• When paramaterizing anonymous functions, be aware that parameter
values persist for the life of the function handle. For example, the
function fun = @(x,y) x + y + a uses the value of a at the time
fun was created. If you later decide to change the value of a, you
must redefine the anonymous function with the new value.

• If you are specifying single-precision limits of integration, or if fun
returns single-precision results, you might need to specify larger
absolute and relative error tolerances.

Examples Integrate Triangular Region with Singularity at the Boundary

The function

1-3354

integral2

f x y
x y x y

(,)
() ()

1

1

is undefined when x and y are zero. integral2 performs best when
singularities are on the integration boundary.

Create the anonymous function.

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2)

Integrate over the triangular region bounded by 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1 – x.

ymax = @(x) 1 - x
q = integral2(fun,0,1,0,ymax)

q =

0.2854

Evaluate Double Integral in Polar Coordinates

Define the function

f r
r

r r r r

(,)

cos sin (cos sin)

 1 2

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2);
polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;

Define a function for the upper limit of r.

rmax = @(theta) 1./(sin(theta) + cos(theta));

Integrate over the region bounded by 0 ≤ θ ≤ π/2 and 0 ≤ r ≤ rmax.

q = integral2(polarfun,0,pi/2,0,rmax)

q =

1-3355

integral2

0.2854

Evaluate Double Integral of Parameterized Function with
Specific Method and Error Tolerance

Create the anonymous parameterized function f(x,y) = ax2 + by2 with
parameters a=3 and b=5.

a = 3; b = 5;
fun = @(x,y) a*x.^2 + b*y.^2;

Evaluate the integral over the region 0 ≤ x ≤ 5 and -5 ≤ y ≤ 0. Specify the
'iterated'method and approximately 10 significant digits of accuracy.

format long
q = integral2(fun,0,5,-5,0,'Method','iterated',...
'AbsTol',0,'RelTol',1e-10)

q =

1.666666666666666e+03

See Also integral | integral3 | function_handle | trapz

Concepts • “Parameterizing Functions”

1-3356

integral3

Purpose Numerically evaluate triple integral

Syntax q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax)
q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax,Name,Value)

Description q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax) approximates
the integral of the function z = fun(x,y,z) over the region
xmin ≤ x ≤ xmax, ymin(x) ≤ y ≤ ymax(x) and zmin(x,y) ≤ z ≤ zmax(x,y).

q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax,Name,Value)
specifies additional options with one or more Name,Value pair
arguments.

Input
Arguments

fun - Integrand
function handle

Integrand, specified as a function handle, defines the function to be
integrated over the region xmin ≤ x ≤ xmax, ymin(x) ≤ y ≤ ymax(x), and
zmin(x,y) ≤ z ≤ zmax(x,y). The function fun must accept three arrays
of the same size and return an array of corresponding values. It must
perform element-wise operations.

Data Types
function_handle

xmin - Lower limit of x
real number

Lower limit of x, specified as a real scalar value that is either finite
or infinite.

Example:

Data Types
double | single

xmax - Upper limit of x
real number

1-3357

integral3

Upper limit of x, specified as a real scalar value that is either finite
or infinite.

Data Types
double | single

ymin - Lower limit of y
real number | function handle

Lower limit of y, specified as a real scalar value that is either finite or
infinite. You also can specify ymin to be a function handle (a function of
x) when integrating over a nonrectangular region.

Example:

Data Types
double | function_handle | single

ymax - Upper limit of y
real number | function handle

Upper limit of y, specified as a real scalar value that is either finite or
infinite. You also can specify ymax to be a function handle (a function of
x) when integrating over a nonrectangular region.

Example:

Data Types
double | function_handle | single

zmin - Lower limit of z
real number | function handle

Lower limit of z, specified as a real scalar value that is either finite or
infinite. You also can specify zmin to be a function handle (a function of
x,y) when integrating over a nonrectangular region.

Data Types
double | function_handle | single

zmax - Upper limit of z

1-3358

integral3

real number | function handle

Upper limit of z, specified as a real scalar value that is either finite or
infinite. You also can specify zmax to be a function handle (a function of
x,y) when integrating over a nonrectangular region.

Data Types
double | function_handle | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'AbsTol',1e-12 sets the absolute error tolerance to
approximately 12 decimal places of accuracy.

’AbsTol’ - Absolute error tolerance
nonnegative real number

Absolute error tolerance, specified as the comma-separated pair
consisting of 'AbsTol' and a nonnegative real number. integral3
uses the absolute error tolerance to limit an estimate of the absolute
error, |q – Q|, where q is the computed value of the integral and Q is
the (unknown) exact value. integral3 might provide more decimal
places of precision if you decrease the absolute error tolerance. The
default value is 1e-10.

Note AbsTol and RelTol work together. integral3 might satisfy
the absolute error tolerance or the relative error tolerance, but not
necessarily both. For more information on using these tolerances, see
the “Tips” on page 1-3361 section.

Example: 'AbsTol',1e-12 sets the absolute error tolerance to
approximately 12 decimal places of accuracy.

1-3359

integral3

Data Types
double | single

’RelTol’ - Relative error tolerance
nonnegative real number

Relative error tolerance, specified as the comma-separated pair
consisting of 'RelTol' and a nonnegative real number. integral3 uses
the relative error tolerance to limit an estimate of the relative error,
|q – Q|/|Q|, where q is the computed value of the integral and Q is
the (unknown) exact value. integral3 might provide more significant
digits of precision if you decrease the relative error tolerance. The
default value is 1e-6.

Note RelTol and AbsTol work together. integral3 might satisfy
the relative error tolerance or the absolute error tolerance, but not
necessarily both. For more information on using these tolerances, see
the “Tips” on page 1-3361 section.

Example: 'RelTol',1e-9 sets the relative error tolerance to
approximately 9 significant digits.

Data Types
double | single

’Method’ - Integration method
'auto' (default) | 'tiled' | 'iterated'

Integration method, specified as the comma-separated pair consisting of
'Method' and one of the methods described below.

1-3360

integral3

Integration
Method

Description

'auto' For most cases, integral3 uses the 'tiled'
method. It uses the 'iterated' method when
any of the integration limits are infinite. This
is the default method.

'tiled' integral3 calls integral to integrate over
xmin ≤ x ≤ xmax. It calls integral2 with
the 'tiled' method to evaluate the double
integral over ymin(x) ≤ y ≤ ymax(x) and
zmin(x,y) ≤ z ≤ zmax(x,y).

'iterated' integral3 calls integral to integrate over
xmin ≤ x ≤ xmax. It calls integral2 with the
'iterated' method to evaluate the double
integral over ymin(x) ≤ y ≤ ymax(x) and
zmin(x,y) ≤ z ≤ zmax(x,y). The integration
limits can be infinite.

Example: 'Method','tiled' specifies the tiled integration method.

Output
Arguments

q - Computed integral
numeric value

Computed integral of fun(x,y,z) over the specified region, returned
as a numeric value.

Tips • The integral3 function attempts to satisfy:

abs(q - Q) <= max(AbsTol,RelTol*abs(q))

where q is the computed value of the integral and Q is the (unknown)
exact value. The absolute and relative tolerances provide a way of
trading off accuracy and computation time. Usually, the relative
tolerance determines the accuracy of the integration. However if
abs(q) is sufficiently small, the absolute tolerance determines

1-3361

integral3

the accuracy of the integration. You should generally specify both
absolute and relative tolerances together.

• The 'iterated' method can be more effective when your function
has discontinuities within the integration region. However, the best
performance and accuracy occurs when you split the integral at the
points of discontinuity and sum the results of multiple integrations.

• When integrating over nonrectangular regions, the best performance
and accuracy occurs when any or all of the limits: ymin, ymax, zmin,
zmax are function handles. Avoid setting integrand function values
to zero to integrate over a nonrectangular region. If you must do
this, specify 'iterated' method.

• Use the 'iterated' method when any or all of the limits: ymin(x),
ymax(x), zmin(x,y), zmax(x,y) are unbounded functions.

• When paramaterizing anonymous functions, be aware that parameter
values persist for the life of the function handle. For example, the
function fun = @(x,y,z) x + y + z + a uses the value of a at the
time fun was created. If you later decide to change the value of a, you
must redefine the anonymous function with the new value.

• If you are specifying single-precision limits of integration, or if fun
returns single-precision results, you may need to specify larger
absolute and relative error tolerances.

Examples Triple Integral with Finite Limits

Define the anonymous function f(x,y,z) = y sin x + z cos x.

fun = @(x,y,z) y.*sin(x)+z.*cos(x)

Integrate over the region 0 ≤ x ≤ π, 0 ≤ y ≤ 1, and -1 ≤ z ≤ 1.

q = integral3(fun,0,pi,0,1,-1,1)

q =

2.0000

1-3362

integral3

Integral Over the Unit Sphere in Cartesian Coordinates

Define the anonymous function f(x,y,z) = x cos y + x2 cos z.

fun = @(x,y,z) x.*cos(y) + x.^2.*cos(z)

Define the limits of integration.

xmin = -1;
xmax = 1;
ymin = @(x)-sqrt(1 - x.^2);
ymax = @(x) sqrt(1 - x.^2);
zmin = @(x,y)-sqrt(1 - x.^2 - y.^2);
zmax = @(x,y) sqrt(1 - x.^2 - y.^2);

Evaluate the definite integral with the 'tiled' method.

q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax,'Method','tiled')

q =

0.7796

Evaluate Improper Triple Integral of Parameterized Function

Define the anonymous parameterized function f(x,y,z) = 10/(x2 + y2 +
z2 + a).

a = 2;
f = @(x,y,z) 10./(x.^2 + y.^2 + z.^2 + a);

Evaluate the triple integral over the region -Inf ≤ x ≤ 0, -100 ≤ y ≤ 0,
and -100 ≤ z ≤ 0.

format long
q1 = integral3(f,-Inf,0,-100,0,-100,0)

q1 =

2.734244598320928e+03

1-3363

integral3

Evaluate the integral again and specify accuracy to approximately
9 significant digits.

q2 = integral3(f,-Inf,0,-100,0,-100,0,'AbsTol', 0,'RelTol',1e-9)

q2 =

2.734244599944285e+03

See Also integral | integral2 | function_handle | trapz

Concepts • “Parameterizing Functions”

1-3364

interfaces

Purpose List custom interfaces exposed by COM server object

Syntax customlist = h.interfaces
customlist = interfaces(h)

Description customlist = h.interfaces returns cell array of strings customlist
listing all custom interfaces implemented by the component in a specific
COM server object. The server is designated by input argument h, the
handle returned by the actxcontrol or actxserver function when
creating that server.

customlist = interfaces(h) is an alternate syntax.

The interfaces function only lists the custom interfaces exposed by
the object; it does not return interfaces. Use the invoke function to
return a handle to a specific custom interface.

COM functions are available on Microsoft Windows systems only.

See Also actxcontrol | actxserver | invoke | get (COM)

How To • “Custom Interfaces”

1-3365

interp1

Purpose 1-D data interpolation (table lookup)

If you pass nonuniformly spaced points and specify the 'v5cubic'
method, interp1 issues a warning. In addition, the following syntaxes
will be removed or changed in a future release:

• interp1(...,'cubic')

• pp = interp1(...'pp')

• interp1(X,Y,Xq,[],...)

For more information, and recommendations for updating your code,
see “Functionality being removed or changed”.

Syntax vq = interp1(x,v,xq)
vq = interp1(x,v,xq,method)
vq = interp1(x,v,xq,method,extrapolation)

vq = interp1(v,xq)
vq = interp1(v,xq,method)
vq = interp1(v,xq,method,extrapolation)

pp = interp1(x,v,method,'pp')

Description vq = interp1(x,v,xq) returns interpolated values of a 1-D function at
specific query points using linear interpolation. Vector x contains the
sample points, and v contains the corresponding values, v(x). Vector xq
contains the coordinates of the query points.

If you have multiple sets of data that are sampled at the same point
coordinates, then you can pass v as an array. Each column of array v
contains a different set of 1-D sample values.

vq = interp1(x,v,xq,method) specifies any of five strings
for choosing an alternative interpolation method: 'nearest',
'linear','spline','pchip', or 'cubic'. The default method is
'linear'.

1-3366

interp1

vq = interp1(x,v,xq,method,extrapolation) specifies a strategy for
evaluating points that lie outside the domain of x. Set extrapolation
to the string, 'extrap', when you want to use the method algorithm for
extrapolation. Alternatively, you can specify a scalar value, in which
case, interp1 returns that value for all points outside the domain of x.

vq = interp1(v,xq) returns interpolated values and assumes a
default set of sample point coordinates. The default points are the
sequence of numbers from 1 to n, where n depends on the shape of v:

• When v is a vector, the default points are 1:length(v).

• When v is an array, the default points are 1:size(v,1).
Use this syntax when you are not concerned about the absolute
distances between points.

vq = interp1(v,xq,method) specifies any of the five alternative
interpolation methods and uses the default sample points.

vq = interp1(v,xq,method,extrapolation) specifies an
extrapolation strategy and uses the default sample points.

pp = interp1(x,v,method,'pp') returns the piece-wise polynomial
form of v(x) using the method algorithm.

Input
Arguments

x - Sample points
vector

Sample points, specified as a row or column vector of real numbers. The
values in x must be strictly monotonic and increasing. Furthermore,
the length of x must conform to one of the following requirements:

• If v is a vector, then length(x) must equal length(v).

• If v is an array, then length(x) must equal size(v,1).

Example: [1 2 3 4 5 6 7 8 9 10]

1-3367

interp1

Example: 1:10

Example: [3 7 11 15 19 23 27 31]'

Data Types
single | double

v - Sample values
vector | matrix | array

Sample values, specified as a vector, matrix, or array of real or complex
numbers. If v is a matrix or an array, then each column contains a
separate set of 1-D values.

Example: rand(1,10)

Example: rand(10,1)

Example: rand(10,3)

Data Types
single | double
Complex Number Support: Yes

xq - Query points
scalar | vector | matrix | array

Query points, specified as a scalar, vector, matrix, or array of real
numbers.

Example: 5

Example: 1:0.05:10

Example: (1:0.05:10)'

Example: [0 1 2 7.5 10]

Data Types
single | double

method - Interpolation method
'linear' (default) | 'nearest' | 'spline' | 'pchip' | 'cubic'

1-3368

interp1

Interpolation method, specified as a string from the table below.

method
string

Description Continuity Comments

'linear' Linear interpolation.
The interpolated
value at a query point
is based on linear
interpolation of the
values at neighboring
grid points in each
respective dimension.
This is the default
interpolation method.

C0 • Requires a
minimum of 2
points.

• Requires more
memory and
computation time
than nearest
neighbor.

'nearest' Nearest neighbor
interpolation. The
interpolated value at
a query point is the
value at the nearest
sample grid point.

Discontinuous• Requires a
minimum of 2
points.

• Modest memory
requirements

• Fastest
computation time

'pchip' Shape-preserving
piecewise cubic
interpolation. The
interpolated value at
a query point is based
on a shape-preserving
piecewise cubic
interpolation of the
values at neighboring
grid points.

C1 • Requires at least 4
points.

• Requires more
memory and
computation time
than linear.

1-3369

interp1

method
string

Description Continuity Comments

'cubic' Same as 'pchip'. C1 This method
currently returns
the same result as
'pchip'. In a future
release, this method
will perform cubic
convolution.

'v5cubic' Cubic convolution
used in MATLAB 5.

C1 Points must be
uniformly spaced.
'cubic' will replace
'v5cubic' in a future
release.

'spline' Spline interpolation
using not-a-knot
end conditions. The
interpolated value
at a query point is
based on a cubic
interpolation of the
values at neighboring
grid points in each
respective dimension.

C2 • Requires at least 4
points.

• Requires more
memory and
computation time
than 'pchip'.

extrapolation - Extrapolation strategy
'extrap' | scalar value

Extrapolation strategy, specified as the string, 'extrap', or a real
scalar value.

• Specify 'extrap' when you want interp1 to evaluate points outside
the domain using the same method it uses for interpolation.

• Specify a scalar value when you want interp1 to return a specific
constant value for points outside the domain.

1-3370

interp1

The default behavior depends on the input arguments:

• If you specify the 'pchip' or 'spline' interpolation methods, then
the default behavior is 'extrap'.

• All other interpolation methods return NaN by default for query
points outside the domain.

Example: 'extrap'

Example: 5

Data Types
char | single | double

Output
Arguments

vq - Interpolated values
scalar | vector | matrix | array

Interpolated values, returned as a scalar, vector, matrix, or array. The
size of vq depends on the shape of v and xq.

Shape of
v

Shape of
xq

Size of Vq Example

Vector Vector size(xq) If size(v) = [1
100]
and size(xq) = [1
500],
then size(vq) = [1
500].

Vector Matrix
or N-D
Array

size(xq) If size(v) = [1
100]
and size(xq) = [50
30],
then size(vq) =
[50 30].

1-3371

interp1

Shape of
v

Shape of
xq

Size of Vq Example

Matrix
or N-D
Array

Vector [length(xq)
size(v,2),...,size(v,n)]

If size(v) = [100
3]
and size(xq) = [1
500],
then size(vq) =
[500 3].

Matrix
or N-D
Array

Matrix
or N-D
Array

[size(xq,1),...,size(xq,n),...
size(v,2),...,size(v,m)]

If size(v) = [4 5
6]
and size(xq) = [2
3 7],
then size(vq) = [2
3 7 5 6].

pp - Piecewise polynomial
structure

Piecewise polynomial, returned as a structure that you can pass to the
ppval function for evaluation.

Definitions Strictly Monotonic

A set of values that are always increasing or decreasing, without
reversals. For example, the sequence, a = [2 4 6 8] is strictly
monotonic and increasing. The sequence, b = [2 4 4 6 8] is not
strictly monotonic because there is no change in value between b(2)
and b(3). The sequence, c = [2 4 6 8 6] contains a reversal between
c(4) and c(5), so it is not monotonic at all.

Examples Interpolation of Coarsely Sampled Sine Function

Define the sample points, x, and corresponding sample values, v.

x = 0:pi/4:2*pi;
v = sin(x);

1-3372

interp1

Define the query points to be a finer sampling over the range of x.

xq = 0:pi/16:2*pi;

Interpolate the function at the query points and plot the result.

figure
vq1 = interp1(x,v,xq);
plot(x,v,'o',xq,vq1);
xlim([0 2*pi]);
title('(Default) Linear Interpolation');

1-3373

interp1

Now evaluate v at the same points using the 'spline' method.

figure
vq2 = interp1(x,v,xq,'spline');
plot(x,v,'o',xq,vq2);
xlim([0 2*pi]);
title('Spline Interpolation');

1-3374

interp1

Interpolation Without Specifying Points

Define a set of function values.

v = [0 1.41 2 1.41 0 -1.41 -2 -1.41 0];

Define a set of query points that fall between the default points, 1:9. In
this case, the default points are 1:9 because v contains 9 values.

xq = 1.5:8.5;

1-3375

interp1

Evaluate v at xq.

vq = interp1(v,xq);

Plot the result.

figure
plot((1:9),v,'o',xq,vq,'*');
legend('v','vq');

1-3376

interp1

Interpolation of Complex Values

Define a set of sample points.

x = 1:10;

Define the values of the function, , at the sample points.

v = (5*x)+(x.^2*1i);

1-3377

interp1

Define the query points to be a finer sampling over the range of x.

xq = 1:0.25:10;

Interpolate v at the query points.

vq = interp1(x,v,xq);

Plot the real part of the result in red and the imaginary part in blue.

figure
plot(x,real(v),'*r',xq,real(vq),'-r');
hold on
plot(x,imag(v),'*b',xq,imag(vq),'-b');

1-3378

interp1

Extrapolation Using Two Different Methods

Define the sample points, x, and corresponding sample values, v.

x = [1 2 3 4 5];
v = [12 16 31 10 6];

Specify the query points, xq, that extend beyond the domain of x.

xq = [0 0.5 1.5 5.5 6];

1-3379

interp1

Evaluate v at xq using the 'pchip' method.

vq1 = interp1(x,v,xq,'pchip')

vq1 =

19.3684 13.6316 13.2105 7.4800 12.5600

Next, evaluate v at xq using the 'linear' method.

vq2 = interp1(x,v,xq,'linear')

vq2 =

NaN NaN 14 NaN NaN

Now, use the 'linear' method with the 'extrap' option.

vq3 = interp1(x,v,xq,'linear','extrap')

vq3 =

8 10 14 4 2

'pchip' extrapolates by default, but 'linear' does not.

Designate Constant Value for All Queries Outside the
Domain of x

Define the sample points, x, and corresponding sample values, v.

1-3380

interp1

x = [-3 -2 -1 0 1 2 3];
v = 3*x.^2;

Specify the query points, xq, that extend beyond the domain of x.

xq = [-4 -2.5 -0.5 0.5 2.5 4];

Now evaluate v at xq using the 'pchip' method and assign any values
outside the domain of x to the value, 27.

vq = interp1(x,v,xq,'pchip',27)

vq =

27.0000 18.6563 0.9375 0.9375 18.6563 27.0000

Interpolate Multiple Sets of Data in One Pass

Define the sample points.

x = (-5:5)';

Sample three different parabolic functions at the points defined in x.

v1 = x.^2;
v2 = 2*x.^2 + 2;
v3 = 3*x.^2 + 4;

Create matrix v, whose columns are the vectors, v1, v2, and v3.

v = [v1 v2 v3];

Define a set of query points, xq, to be a finer sampling over the range
of x.

xq = -5:0.1:5;

1-3381

interp1

Evaluate all three functions at xq and plot the results.

vq = interp1(x,v,xq,'pchip');
figure
plot(x,v,'o',xq,vq);
set(gca,'XTick',-5:5);

The circles in the plot represent v, and the solid lines represent vq.

1-3382

interp1

See Also interp2 | interp3 | interpn | griddedInterpolant

1-3383

interp1q

Purpose Quick 1-D linear interpolation

Note interp1q is not recommended. Use interp1 instead.

Syntax yi = interp1q(x,Y,xi)

Description yi = interp1q(x,Y,xi) returns the value of the 1-D function Y at
the points of column vector xi using linear interpolation. The vector
x specifies the coordinates of the underlying interval. The length of
output yi is equal to the length of xi.

interp1q is quicker than interp1 on non-uniformly spaced data
because it does no input checking.

For interp1q to work properly,

• x must be a monotonically increasing column vector.

• Y must be a column vector or matrix with length(x) rows.

• xi must be a column vector

interp1q returns NaN for any values of xi that lie outside the
coordinates in x. If Y is a matrix, then the interpolation is performed for
each column of Y, in which case yi is length(xi)-by-size(Y,2).

Examples Linear Interpolation Using interp1q

Generate a coarse sine curve and interpolate over a finer abscissa.

x = (0:10)';
y = sin(x);
xi = (0:.25:10)';
yi = interp1q(x,y,xi);
plot(x,y,'o',xi,yi)

1-3384

interp1q

See Also interp1 | interp2 | interp3 | interpn

1-3385

interp2

Purpose Interpolation for 2-D gridded data in meshgrid format

In a future release, interp2 will not accept mixed combinations of
row and column vectors for the sample and query grids. For more
information, and recommendations for updating your code, see
“Functionality being removed or changed”.

Syntax Vq = interp2(X,Y,V,Xq,Yq)
Vq = interp2(V,Xq,Yq)
Vq = interp2(V)
Vq = interp2(V,k)

Vq = interp2(___ ,method)
Vq = interp2(___ ,method,extrapval)

Description Vq = interp2(X,Y,V,Xq,Yq) returns interpolated values of a function
of two variables at specific query points using linear interpolation. The
results always pass through the original sampling of the function. X
and Y contain the coordinates of the sample points. V contains the
corresponding function values at each sample point. Xq and Yq contain
the coordinates of the query points.

Vq = interp2(V,Xq,Yq) assumes a default grid of sample points. The
default grid points cover the rectangular region, X=1:n and Y=1:m,
where [m,n] = size(V). Use this syntax to when you want to conserve
memory and are not concerned about the absolute distances between
points.

Vq = interp2(V) returns the interpolated values on a refined grid
formed by dividing the interval between sample values once in each
dimension.

Vq = interp2(V,k) returns the interpolated values on a refined grid
formed by repeatedly dividing the intervals k times in each dimension.

1-3386

interp2

Vq = interp2(___ ,method) specifies an optional, trailing input
argument that you can pass with any of the previous syntaxes. The
method argument can be any of the following strings that specify
alternative interpolation methods: 'linear', 'nearest', 'cubic', or
'spline'. The default method is 'linear'.

Vq = interp2(___ ,method,extrapval) also specifies extrapval, a
scalar value that is assigned to all queries that lie outside the domain of
the sample points. If you omit the extrapval argument, then interp2
returns NaN values for queries outside the domain of the sample points.

Input
Arguments

X,Y - Sample grid points
matrices | vectors

Sample grid points, specified as real matrices or vectors.

• If X and Y are matrices, then they contain the coordinates of a full
grid (in meshgrid format). Use the meshgrid function to create the X
and Y matrices together. Both matrices must be the same size.

• If X and Y are vectors, then they are treated as a grid vectors. The
values in both vectors must be strictly monotonic and increasing.

Example: [X,Y] = meshgrid(1:30,-10:10)

Data Types
single | double

V - Sample values
matrix

Sample values, specified as a real or complex matrix. The size
requirements for V depend on the size of X and Y.

• If X and Y are matrices representing a full grid (in meshgrid format),
then V must be the same size as X and Y.

• If X and Y are grid vectors, then V must be a matrix containing
length(Y) rows and length(X) columns.

Example: rand(10,10)

1-3387

interp2

Data Types
single | double
Complex Number Support: Yes

Xq,Yq - Query points
scalars | vectors | matrices | arrays

Query points, specified as a real scalars, vectors, matrices, or arrays.

• If Xq and Yq are scalars, then they are the coordinates of a single
query point.

• If Xq and Yq are vectors of different orientations, then Xq and Yq are
treated as grid vectors.

• If Xq and Yq are vectors of the same size and orientation, then Xq and
Yq are treated as scattered points in 2-D space.

• If Xq and Yq are matrices, then they represent either a full grid of
query points (in meshgrid format) or scattered points.

• If Xq and Yq are N-D arrays, then they represent scattered points in
2-D space.

Example: [Xq,Yq] = meshgrid((1:0.1:10),(-5:0.1:0))

Data Types
single | double

k - Refinement factor
1 (default) | real, nonnegative, integer scalar

Refinement factor, specified as a real, nonnegative, integer scalar. This
value specifies the number of times to repeatedly divide the intervals of
the refined grid in each dimension. This results in 2^k-1 interpolated
points between sample values.

If k is 0, then Vq is the same as V.

interp2(V,1) is the same as interp2(V).

The following illustration shows the placement of interpolated values
(in red) among nine sample values (in black) for k=2.

1-3388

interp2

Example: interp2(V,2)

Data Types
single | double

method - Interpolation method
'linear' (default) | 'nearest' | 'cubic' | 'spline'

Interpolation method, specified as a string from this table.

Method Description Continuity Comments

'linear' The interpolated value at
a query point is based on
linear interpolation of the
values at neighboring grid
points in each respective
dimension. This is the
default interpolation
method.

C0 • Requires at least two grid
points in each dimension

• Requires more memory
than 'nearest'

'nearest' The interpolated value at
a query point is the value

Discontinuous • Requires two grid points
in each dimension.

1-3389

interp2

(Continued)

Method Description Continuity Comments

at the nearest sample grid
point. • Fastest computation

with modest memory
requirements

'cubic' The interpolated value at
a query point is based on
a cubic interpolation of the
values at neighboring
grid points in each
respective dimension. The
interpolation is based on a
cubic convolution.

C1 • Grid must have
uniform spacing in
each dimension, but
the spacing does not have
to be the same for all
dimensions

• Requires at least four
points in each dimension

• Requires more memory
and computation time
than 'linear'

'spline' The interpolated value at
a query point is based on
a cubic interpolation of the
values at neighboring
grid points in each
respective dimension. The
interpolation is based on a
cubic spline using not-a-knot
end conditions.

C2 • Requires four points in
each dimension

• Requires more memory
and computation time
than 'cubic'

extrapval - Function value outside domain of X and Y

1-3390

interp2

scalar

Function value outside domain of X and Y, specified as a real or complex
scalar. interp2 returns this constant value for all points outside the
domain of X and Y.

Example: 5

Example: 5+1i

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Vq - Interpolated values
scalar | vector | matrix

Interpolated values, returned as a real or complex scalar, vector, or
matrix. The size and shape of Vq depends on the syntax you use and, in
some cases, the size and value of the input arguments.

Syntaxes Special
Conditions

Size of Vq Example

interp2(X,Y,V,Xq,Yq)
interp2(V,Xq,Yq)
and variations of these
syntaxes that include
method or extrapval

Xq, Yq are
scalars

Scalar size(Vq) = [1 1]
when you pass Xq and
Yq as scalars.

Same as above Xq, Yq are
vectors of
the same
size and
orientation

Vector of same size and
orientation as Xq and Yq

If size(Xq) = [100 1]
and size(Yq) = [100
1],
then size(Vq) = [100
1].

1-3391

interp2

Syntaxes Special
Conditions

Size of Vq Example

Same as above Xq, Yq are
vectors
of mixed
orientation

Matrix in which the
number of rows is
length(Yq), and the
number of columns is
length(Xq)

If size(Xq) = [1 100]
and size(Yq) = [50
1],
then size(Vq) = [50
100].

Same as above Xq, Yq are
matrices
or arrays
of the same
size

Matrix or array of the
same size as Xq and Yq

If size(Xq) = [50 25]
and size(Yq) = [50
25],
then size(Vq) = [50
25].

interp2(V,k)
and variations of this
syntax that include
method or extrapval

None Matrix in which the
number of rows is:
2^k *
(size(V,1)-1)+1,

and the number of
columns is:
2^k *
(size(V,2)-1)+1

If size(V) = [10 20]
and k = 2,
then size(Vq) = [37
77].

Definitions Strictly Monotonic

A set of values that are always increasing or decreasing, without
reversals. For example, the sequence, a = [2 4 6 8] is strictly
monotonic and increasing. The sequence, b = [2 4 4 6 8] is not
strictly monotonic because there is no change in value between b(2)
and b(3). The sequence, c = [2 4 6 8 6] contains a reversal between
c(4) and c(5), so it is not monotonic at all.

Full Grid (in meshgrid Format)

For interp2, the full grid is a pair of matrices whose elements represent
a grid of points over a rectangular region. One matrix contains the
x-coordinates, and the other matrix contains the y-coordinates. The

1-3392

interp2

values in the x-matrix are strictly monotonic and increasing along the
rows. The values along its columns are constant. The values in the
y-matrix are strictly monotonic and increasing along the columns. The
values along its rows are constant. Use the meshgrid function to create
a full grid that you can pass to interp2.

For example, the following code creates a full grid for the region, –1 ≤
x ≤ 3 and 1 ≤ y ≤ 4:

[X,Y] = meshgrid(-1:3,(1:4))

X =

-1 0 1 2 3
-1 0 1 2 3
-1 0 1 2 3
-1 0 1 2 3

Y =

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

Grid Vectors

For interp2, grid vectors consist of a pair of mixed-orientation vectors
that define the x- and y-coordinates in a grid. One vector is a row vector,
and the other is a column vector.

For example, the following code creates the grid vectors that specify the
region, –1 ≤ x ≤ 3 and 1 ≤ y ≤ 4:

x = -1:3;
y = (1:4)';

1-3393

interp2

Scattered Points

For interp2, scattered points consist of a pair of arrays that define
a collection of points scattered in 2-D space. One array contains the
x-coordinates, and the other contains the y-coordinates.

For example, the following code specifies the points, (2,7), (5,3), (4,1),
and (10,9):

x = [2 5; 4 10];
y = [7 3; 1 9];

Examples Interpolate Over a Grid Using Default Method

Coarsely sample the peaks function.

[X,Y] = meshgrid(-3:3);
V = peaks(X,Y);

Plot the coarse sampling.

figure
surf(X,Y,V)
title('Original Sampling');

1-3394

interp2

Create the query grid with spacing of 0.25.

[Xq,Yq] = meshgrid(-3:0.25:3);

Interpolate at the query points.

Vq = interp2(X,Y,V,Xq,Yq);

Plot the result.

1-3395

interp2

figure
surf(Xq,Yq,Vq);
title('Linear Interpolation Using Finer Grid');

Interpolate Over a Grid Using Cubic Method

Coarsely sample the peaks function.

[X,Y] = meshgrid(-3:3);
V = peaks(7);

1-3396

interp2

Plot the coarse sampling.

figure
surf(X,Y,V)
title('Original Sampling');

Create the query grid with spacing of 0.25.

[Xq,Yq] = meshgrid(-3:0.25:3);

1-3397

interp2

Interpolate at the query points, and specify cubic interpolation.

Vq = interp2(X,Y,V,Xq,Yq,'cubic');

Plot the result.

figure
surf(Xq,Yq,Vq);
title('Cubic Interpolation Over Finer Grid');

1-3398

interp2

Refine Grayscale Image

Load some image data into the workspace.

load clown

Isolate a small region of the image and cast it to single.

V = single(X(1:124,75:225));

1-3399

interp2

Display the image.

figure
imagesc(V);
colormap gray
axis image
axis off
title('Original Image');

1-3400

interp2

Insert interpolated values by repeatedly dividing the intervals between
points of the refined grid five times in each dimension.

Vq = interp2(V,5);

Display the result.

figure
imagesc(Vq);
colormap gray
axis image
axis off
title('Linear Interpolation');

1-3401

interp2

Evaluate Outside the Domain of X and Y

Coarsely sample a function over the range, [-2, 2] in both dimensions.

[X,Y] = meshgrid(-2:0.75:2);
R = sqrt(X.^2 + Y.^2)+ eps;
V = sin(R)./(R);

Plot the coarse sampling.

1-3402

interp2

figure
surf(X,Y,V)
xlim([-4 4]);
ylim([-4 4]);
title('Original Sampling');

Create the query grid that extends beyond the domain of X and Y.

[Xq,Yq] = meshgrid(-3:0.2:3);

1-3403

interp2

Perform cubic interpolation within the domain of X and Y, and assign all
queries that fall outside to zero.

Vq = interp2(X,Y,V,Xq,Yq,'cubic',0);

Plot the result.

figure
surf(Xq,Yq,Vq);
title('Cubic Interpolation with Vq=0 Outside Domain of X and Y');

1-3404

interp2

See Also griddata | interp1 | interp3 | interpn | meshgrid |
griddedInterpolant

1-3405

interp3

Purpose Interpolation for 3-D gridded data in meshgrid format

In a future release, interp3 will not accept mixed combinations of
row and column vectors for the sample and query grids. For more
information, and recommendations for updating your code, see
“Functionality being removed or changed”.

Syntax Vq = interp3(X,Y,Z,V,Xq,Yq,Zq)
Vq = interp3(V,Xq,Yq,Zq)
Vq = interp3(V)
Vq = interp3(V,k)

Vq = interp3(___ ,method)
Vq = interp3(___ ,method,extrapval)

Description Vq = interp3(X,Y,Z,V,Xq,Yq,Zq) returns interpolated values of
a function of three variables at specific query points using linear
interpolation. The results always pass through the original sampling of
the function. X, Y, and Z contain the coordinates of the sample points. V
contains the corresponding function values at each sample point. Xq,
Yq, and Zq contain the coordinates of the query points.

Vq = interp3(V,Xq,Yq,Zq) assumes a default grid of sample points.
The default grid points cover the region, X=1:n, Y=1:m, Z=1:p, where
[m,n,p] = size(V). Use this syntax when you want to conserve
memory and are not concerned about the absolute distances between
points.

Vq = interp3(V) returns the interpolated values on a refined grid
formed by dividing the interval between sample values once in each
dimension.

Vq = interp3(V,k) returns the interpolated values on a refined grid
formed by repeatedly dividing the intervals k times in each dimension.

1-3406

interp3

Vq = interp3(___ ,method) specifies an optional, trailing input
argument that you can pass with any of the previous syntaxes. The
method argument can be any of the following strings that specify
alternative interpolation methods: 'linear', 'nearest', 'cubic', or
'spline'. The default method is 'linear'.

Vq = interp3(___ ,method,extrapval) also specifies extrapval, a
scalar value that is assigned to all queries that lie outside the domain of
the sample points. If you omit the extrapval argument, then interp3
returns NaN values for queries outside the domain of the sample points.

Input
Arguments

X,Y,Z - Sample grid points
arrays | vectors

Sample grid points, specified as real arrays or vectors.

• If X, Y, and Z are arrays, then they contain the coordinates of a full
grid (in meshgrid format). Use the meshgrid function to create the X,
Y, and Z arrays together. These arrays must be the same size.

• If X, Y, and Z are vectors, then they are treated as a grid vectors. The
values in these vectors must be strictly monotonic and increasing.

Example: [X,Y,Z] = meshgrid(1:30,-10:10,1:5)

Data Types
single | double

V - Sample values
array

Sample values, specified as a real or complex array. The size
requirements for V depend on the size of X, Y, and Z.

• If X, Y, and Z are arrays representing a full grid (in meshgrid format),
then the size of V matches the size of X, Y, or Z .

• If X, Y, and Z are grid vectors, then size(V) = [length(Y)
length(X) length(Z)].

Example: rand(10,10,10)

1-3407

interp3

Data Types
single | double
Complex Number Support: Yes

Xq,Yq,Zq - Query points
scalars | vectors | arrays

Query points, specified as a real scalars, vectors, or arrays.

• If Xq, Yq, and Zq are scalars, then they are the coordinates of a single
query point in R3.

• If Xq, Yq, and Zq are vectors of different orientations, then Xq, Yq, and
Zq are treated as grid vectors in R3.

• If Xq, Yq, and Zq are vectors of the same size and orientation, then Xq,
Yq, and Zq are treated as scattered points in R3.

• If Xq, Yq, and Zq are arrays of the same size, then they represent
either a full grid of query points (in meshgrid format) or scattered
points in R3.

Example: [Xq,Yq,Zq] = meshgrid((1:0.1:10),(-5:0.1:0),3:5)

Data Types
single | double

k - Refinement factor
1 (default) | real, nonnegative, integer scalar

Refinement factor, specified as a real, nonnegative, integer scalar. This
value specifies the number of times to repeatedly divide the intervals of
the refined grid in each dimension. This results in 2^k-1 interpolated
points between sample values.

If k is 0, then Vq is the same as V.

interp3(V,1) is the same as interp3(V).

The following illustration depicts k=2 in one plane of R3. There are 72
interpolated values in red and 9 sample values in black.

1-3408

interp3

Example: interp3(V,2)

Data Types
single | double

method - Interpolation method
'linear' (default) | 'nearest' | 'cubic' | 'spline'

Interpolation method, specified as a string from this table.

Method Description Continuity Comments

'linear' The interpolated value at
a query point is based on
linear interpolation of the
values at neighboring grid
points in each respective
dimension. This is the
default interpolation
method.

C0 • Requires at least two grid
points in each dimension

• Requires more memory
than 'nearest'

'nearest' The interpolated value at
a query point is the value

Discontinuous • Requires two grid points
in each dimension

1-3409

interp3

(Continued)

Method Description Continuity Comments

at the nearest sample grid
point. • Fastest computation

with modest memory
requirements

'cubic' The interpolated value at
a query point is based on
a cubic interpolation of the
values at neighboring
grid points in each
respective dimension. The
interpolation is based on a
cubic convolution.

C1 • Grid must have
uniform spacing in
each dimension, but
the spacing does not have
to be the same for all
dimensions

• Requires at least four
points in each dimension

• Requires more memory
and computation time
than 'linear'

'spline' The interpolated value at
a query point is based on
a cubic interpolation of the
values at neighboring
grid points in each
respective dimension. The
interpolation is based on a
cubic spline using not-a-knot
end conditions.

C2 • Requires four points in
each dimension

• Requires more memory
and computation time
than 'cubic'

extrapval - Function value outside domain of X, Y, and Z

1-3410

interp3

scalar

Function value outside domain of X, Y, and Z, specified as a real or
complex scalar. interp3 returns this constant value for all points
outside the domain of X, Y, and Z.

Example: 5

Example: 5+1i

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Vq - Interpolated values
scalar | vector | array

Interpolated values, returned as a real or complex scalar, vector, or
array. The size and shape of Vq depends on the syntax you use and, in
some cases, the size and value of the input arguments.

Syntaxes Special
Conditions

Size of Vq Example

interp3(X,Y,Z,V,Xq,Yq,Zq)
interp3(V,Xq,Yq,Zq)
and variations of these
syntaxes that include
method or extrapval

Xq, Yq,
and Zq are
scalars.

Scalar size(Vq) = [1 1]
when you pass Xq, Yq,
and Zq as scalars.

Same as above Xq, Yq,
and Zq are
vectors of
the same
size and
orientation.

Vector of same size and
orientation as Xq, Yq,
and Zq

If size(Xq) = [100 1],
and size(Yq) = [100
1],
and size(Zq) = [100
1],
then size(Vq) = [100
1].

1-3411

interp3

Syntaxes Special
Conditions

Size of Vq Example

Same as above Xq, Yq,
and Zq are
vectors
of mixed
orientation.

size(Vq) =
[length(Y) length(X)
length(Z)]

If size(Xq) = [1 100],
and size(Yq) = [50
1],
and size(Zq) = [1 5],
then size(Vq) = [50
100 5].

Same as above Xq, Yq,
and Zq are
arrays of
the same
size.

Array of the same size
as Xq, Yq, and Zq

If size(Xq) = [50 25],
and size(Yq) = [50
25],
and size(Zq) = [50
25],
then size(Vq) = [50
25].

interp3(V,k)
and variations of this
syntax that include
method or extrapval

None Array in which the
length of the ith
dimension is
2^k *
(size(V,i)-1)+1

If size(V) = [10 12
5],
and k = 3,
then size(Vq) = [73
89 33].

Definitions Strictly Monotonic

A set of values that are always increasing or decreasing, without
reversals. For example, the sequence, a = [2 4 6 8] is strictly
monotonic and increasing. The sequence, b = [2 4 4 6 8] is not
strictly monotonic because there is no change in value between b(2)
and b(3). The sequence, c = [2 4 6 8 6] contains a reversal between
c(4) and c(5), so it is not monotonic at all.

Full Grid (in meshgrid Format)

For interp3, a full grid consists of three arrays whose elements
represent a grid of points that define a region in R3. The first array
contains the x-coordinates, the second array contains the y-coordinates,
and the third array contains the z-coordinates.

1-3412

interp3

The values in the x-array are strictly monotonic, increasing, and vary
along the second dimension. The values in the y-array are strictly
monotonic, increasing, and vary along the first dimension. The values
in the z-array are strictly monotonic, increasing, and vary along the
third dimension. Use the meshgrid function to create a full grid that
you can pass to interp3.

Grid Vectors

For interp3, grid vectors consist of three vectors of mixed-orientation
that define the points on a grid in R3.

For example, the following code creates the grid vectors for the region,
1 ≤ x ≤ 3, 4 ≤ y ≤ 5, and 6 ≤ z ≤ 8:

x = 1:3;
y = (4:5)';
z = 6:8;

Scattered Points

For interp3, scattered points consist of three arrays or vectors, Xq, Yq,
and Zq, that define a collection of points scattered in R3. The ith array
contains the coordinates in the ith dimension.

For example, the following code specifies the points, (1, 19, 10), (6, 40,
1), (15, 33, 22), and (0, 61, 13).

Xq = [1 6; 15 0];
Yq = [19 40; 33 61];
Zq = [10 1; 22 13];

Examples Interpolate Using Default Method

Load the points and values of the flow function, sampled at 10 points
in each dimension.

[X,Y,Z,V] = flow(10);

1-3413

interp3

The flow function returns the grid in the arrays, X, Y, Z. The grid covers
the region, , , , and the spacing
is , , and .

Now, plot slices through the volume of the sample at: X=6, X=9, Y=2,
and Z=0.

figure
slice(X,Y,Z,V,[6 9],2,0);
shading flat

1-3414

interp3

Create a query grid with spacing of 0.25.

[Xq,Yq,Zq] = meshgrid(.1:.25:10,-3:.25:3,-3:.25:3);

Interpolate at the points in the query grid and plot the results using
the same slice planes.

Vq = interp3(X,Y,Z,V,Xq,Yq,Zq);
figure
slice(Xq,Yq,Zq,Vq,[6 9],2,0);
shading flat

1-3415

interp3

Interpolate Using Cubic Method

Load the points and values of the flow function, sampled at 10 points
in each dimension.

[X,Y,Z,V] = flow(10);

The flow function returns the grid in the arrays, X, Y, Z. The grid covers
the region, , , , and the spacing
is , , and .

1-3416

interp3

Plot slices through the volume of the sample at: X=6, X=9, Y=2, and Z =0.

figure
slice(X,Y,Z,V,[6 9],2,0);
shading flat

Create a query grid with spacing of 0.25.

[Xq,Yq,Zq] = meshgrid(.1:.25:10,-3:.25:3,-3:.25:3);

1-3417

interp3

Interpolate at the points in the query grid using the 'cubic'
interpolation method. Then plot the results.

Vq = interp3(X,Y,Z,V,Xq,Yq,Zq,'cubic');
figure
slice(Xq,Yq,Zq,Vq,[6 9],2,0);
shading flat

1-3418

interp3

Evaluate Outside the Domain of X, Y, and Z

Create the grid vectors, x, y, and z. These vectors define the points
associated with values in V.

x = 1:100;
y = (1:50)';
z = 1:30;

Define the sample values to be a 50-by-100-by-30 random number
array, V. Use the gallery function to create the array.

V = gallery('uniformdata',50,100,30,0);

Evaluate V at three points outside the domain of x, y, and z. Specify
extrapval = -1.

xq = [0 0 0];
yq = [0 0 51];
zq = [0 101 102];
vq = interp3(x,y,z,V,xq,yq,zq,'linear',-1)

vq =

-1 -1 -1

All three points evaluate to -1 because they are outside the domain of
x, y, and z.

See Also interp1 | interp2 | interpn | meshgrid

1-3419

interpft

Purpose 1-D interpolation using FFT method

Syntax y = interpft(x,n)
y = interpft(x,n,dim)

Description y = interpft(x,n) returns the vector y that contains the value of the
periodic function x resampled to n equally spaced points.

If length(x) = m, and x has sample interval dx, then the new sample
interval for y is dy = dx*m/n. Note that n cannot be smaller than m.

If X is a matrix, interpft operates on the columns of X, returning a
matrix Y with the same number of columns as X, but with n rows.

y = interpft(x,n,dim) operates along the specified dimension.

Algorithms The interpft command uses the FFT method. The original vector x
is transformed to the Fourier domain using fft and then transformed
back with more points.

Examples Interpolate a triangle-like signal using an interpolation factor of 5.
First, set up signal to be interpolated:

y = [0 .5 1 1.5 2 1.5 1 .5 0 -.5 -1 -1.5 -2 -1.5 -1 -.5 0];
N = length(y);

Perform the interpolation:

L = 5;
M = N*L;
x = 0:L:L*N-1;
xi = 0:M-1;
yi = interpft(y,M);
plot(x,y,'o',xi,yi,'*')
legend('Original data','Interpolated data')

See Also interp1

1-3420

interpn

Purpose Interpolation for 1-D, 2-D, 3-D, and N-D gridded data in ndgrid format

In a future release, interpn will not accept mixed combinations of
row and column vectors for the sample and query grids. For more
information, and recommendations for updating your code, see
“Functionality being removed or changed”.

Syntax Vq = interpn(X1,X2,...,Xn,V,Xq1,Xq2,...,Xqn)
Vq = interpn(V,Xq1,Xq2,...,Xqn)
Vq = interpn(V)
Vq = interpn(V,k)

Vq = interpn(___ ,method)
Vq = interpn(___ ,method,extrapval)

Description Vq = interpn(X1,X2,...,Xn,V,Xq1,Xq2,...,Xqn) returns
interpolated values of a function of n variables at specific query points
using linear interpolation. The results always pass through the original
sampling of the function. X1,X2,...,Xn contain the coordinates of the
sample points. V contains the corresponding function values at each
sample point. Xq1,Xq2,...,Xqn contain the coordinates of the query
points.

Vq = interpn(V,Xq1,Xq2,...,Xqn) assumes a default grid of sample
points. The default grid consists of the points, 1,2,3,...ni in each
dimension. The value of ni is the length of the ith dimension in V.
Use this syntax to when you want to conserve memory and are not
concerned about the absolute distances between points.

Vq = interpn(V) returns the interpolated values on a refined grid
formed by dividing the interval between sample values once in each
dimension.

Vq = interpn(V,k) returns the interpolated values on a refined grid
formed by repeatedly dividing the intervals k times in each dimension.

1-3421

interpn

Vq = interpn(___ ,method) specifies an optional, trailing input
argument that you can pass with any of the previous syntaxes.
The method argument can be any of the following strings that
specify alternative interpolation methods: 'linear', 'nearest',
'pchip','cubic', or 'spline'. The default method is 'linear'.

Vq = interpn(___ ,method,extrapval) also specifies extrapval, a
scalar value that is assigned to all queries that lie outside the domain of
the sample points. If you omit the extrapval argument, then interpn
returns NaN values for queries outside the domain of the sample points.

Input
Arguments

X1,X2,...,Xn - Sample grid points
arrays | vectors

Sample grid points, specified as real arrays or vectors.

• If X1,X2,...,Xn are arrays, then they contain the coordinates of a
full grid (in ndgrid format). Use the ndgrid function to create the
X1,X2,...,Xn arrays together. These arrays must be the same size.

• If X1,X2,...,Xn are vectors, then they are treated as grid vectors.
The values in these vectors must be strictly monotonic and increasing.

Example: [X1,X2,X3] = ndgrid(1:30,-10:10,1:5)

Data Types
single | double

V - Sample values
array

Sample values, specified as a real or complex array. The size
requirements for V depend on the size of X1,X2,...,Xn.

• If X1,X2,...,Xn are arrays representing a full grid (in ndgrid
format), then the size of V matches the size of any array,
X1,X2,...,Xn.

• If X1,X2,...,Xn are grid vectors, then V is an array whose ith
dimension is the same length as grid vector Xi, where i= 1,2,...n.

1-3422

interpn

Example: rand(10,5,3,2)

Data Types
single | double
Complex Number Support: Yes

Xq1,Xq2,...,Xqn - Query points
scalars | vectors | arrays

Query points, specified as a real scalars, vectors, or arrays.

• If Xq1,Xq2,...,Xqn are scalars, then they are the coordinates of a
single query point in Rn.

• If Xq1,Xq2,...,Xqn are vectors of different orientations, then
Xq1,Xq2,...,Xqn are treated as grid vectors in Rn.

• If Xq1,Xq2,...,Xqn are vectors of the same size and orientation,
then Xq1,Xq2,...,Xqn are treated as scattered points in Rn.

• If Xq1,Xq2,...,Xqn are arrays of the same size, then they represent
either a full grid of query points (in ndgrid format) or scattered
points in Rn.

Example: [X1,X2,X3,X4] = ndgrid(1:10,1:5,7:9,10:11)

Data Types
single | double

k - Refinement factor
1 (default) | real, nonnegative, integer scalar

Refinement factor, specified as a real, nonnegative, integer scalar. This
value specifies the number of times to repeatedly divide the intervals of
the refined grid in each dimension. This results in 2^k-1 interpolated
points between sample values.

If k is 0, then Vq is the same as V.

interpn(V,1) is the same as interpn(V).

The following illustration depicts k=2 in R2. There are 72 interpolated
values in red and 9 sample values in black.

1-3423

interpn

Example: interpn(V,2)

Data Types
single | double

method - Interpolation method
'linear' (default) | 'nearest' | 'pchip' | 'cubic' | 'spline'

Interpolation method, specified as a string from this table.

Method Description Continuity Comments

'linear' The interpolated value at
a query point is based on
linear interpolation of the
values at neighboring grid
points in each respective
dimension. This is the
default interpolation
method.

C0 • Requires at least two grid
points in each dimension

• Requires more memory
than 'nearest'

'nearest' The interpolated value at
a query point is the value

Discontinuous • Requires two grid points
in each dimension.

1-3424

interpn

(Continued)

Method Description Continuity Comments

at the nearest sample grid
point. • Fastest computation

with modest memory
requirements

'pchip' Shape-preserving piecewise
cubic interpolation (for 1-D
only). The interpolated
value at a query point is
based on a shape-preserving
piecewise cubic interpolation
of the values at neighboring
grid points.

C1 • Requires at least four
points

• Requires more memory
and computation time
than 'linear'

'cubic' The interpolated value at
a query point is based on
a cubic interpolation of the
values at neighboring
grid points in each
respective dimension. The
interpolation is based on a
cubic convolution.

C1 • Grid must have
uniform spacing in
each dimension, but
the spacing does not have
to be the same for all
dimensions

• Requires at least four
points in each dimension

1-3425

interpn

(Continued)

Method Description Continuity Comments

• Requires more memory
and computation time
than 'linear'

'spline' The interpolated value at
a query point is based on
a cubic interpolation of the
values at neighboring
grid points in each
respective dimension. The
interpolation is based on a
cubic spline using not-a-knot
end conditions.

C2 • Requires four points in
each dimension

• Requires more memory
and computation time
than 'cubic'

extrapval - Function value outside domain of X1,X2,...,Xn
scalar

Function value outside domain of X1,X2,...,Xn, specified as a real
or complex scalar. interpn returns this constant value for all points
outside the domain of X1,X2,...,Xn.

Example: 5

Example: 5+1i

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Vq - Interpolated values
scalar | vector | array

Interpolated values, returned as a real or complex scalar, vector, or
array. The size and shape of Vq depends on the syntax you use and, in
some cases, the size and value of the input arguments.

1-3426

interpn

Syntaxes Special
Conditions

Size of Vq Example

interpn(X1,...,Xn,V,Xq1,...,Xqn)
interpn(V,Xq1,...,Xqn)
and variations of these
syntaxes that include
method or extrapval

Xq1,...,Xqn
are scalars

Scalar size(Vq) = [1
1] when you pass
Xq1,...,Xqn as scalars.

Same as above Xq1,...,Xqn
are vectors
of the
same
size and
orientation

Vector of same size
and orientation as
Xq1,...,Xqn

In 3-D, if
size(Xq1) = [100 1],
and size(Xq2) = [100
1],
and size(Xq3) = [100
1],
then size(Vq) = [100
1].

Same as above Xq1,...,Xqn
are vectors
of mixed
orientation

size(Vq) =
[length(Xq1),...,length(Xqn)]

In 3-D, if
size(Xq1) = [1 100],
and size(Xq2) = [50
1],
and size(Xq3) = [1
5],
then size(Vq) = [100
50 5].

Same as above Xq1,...,Xqn
are arrays
of the
same size

Array of the same size
as Xq1,...,Xqn

In 3-D, if
size(Xq1) = [50 25],
and size(Xq2) = [50
25],
and size(Xq3) = [50
25],
then size(Vq) = [50
25].

interpn(V,k)
and variations of this

None Array in which the
length of the ith

In 3-D, if
size(V) = [10 12 5],

1-3427

interpn

Syntaxes Special
Conditions

Size of Vq Example

syntax that include
method or extrapval

dimension is
2^k *
(size(V,i)-1)+1,

and k = 3,
then size(Vq) = [73
89 33].

Definitions Strictly Monotonic

A set of values that are always increasing or decreasing, without
reversals. For example, the sequence, a = [2 4 6 8] is strictly
monotonic and increasing. The sequence, b = [2 4 4 6 8] is not
strictly monotonic because there is no change in value between b(2)
and b(3). The sequence, c = [2 4 6 8 6] contains a reversal between
c(4) and c(5), so it is not monotonic at all.

Full Grid (in ndgrid Format)

For interpn, the full grid consists of n arrays, X1,X2,...,Xn, whose
elements represent a grid of points in Rn. The ith array, Xi, contains
strictly monotonic, increasing values that vary most rapidly along the
ith dimension.

Use the ndgrid function to create a full grid that you can pass to
interpn. For example, the following code creates a full grid in R2 for
the region, 1 ≤ X1 ≤ 3, 1≤ X2 ≤ 4.

[X1,X2] = ndgrid(-1:3,(1:4))

X1 =

-1 -1 -1 -1
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

X2 =

1-3428

interpn

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Grid Vectors

For interpn, grid vectors consist of n vectors of mixed-orientation that
define the points of a grid in Rn.

For example, the following code creates the grid vectors in R3 for the
region, 1 ≤ x1 ≤ 3, 4 ≤ x2 ≤ 5, and 6 ≤x3≤ 8:

x1 = 1:3;
x2 = (4:5)';
x3 = 6:8;

Scattered Points

For interpn, scattered points consist of n arrays or vectors,
Xq1,Xq2,...,Xqn, that define a collection of points scattered in Rn. The
ith array, Xi, contains the coordinates in the ith dimension.

For example, the following code specifies the points, (1, 19, 10), (6, 40,
1), (15, 33, 22), and (0, 61, 13) in R3.

Xq1 = [1 6; 15 0];
Xq2 = [19 40; 33 61];
Xq3 = [10 1; 22 13];

Examples 1-D Interpolation

Define the sample points and values.

x = [1 2 3 4 5];
v = [12 16 31 10 6];

Define the query points, xq, and interpolate.

1-3429

interpn

xq = (1:0.1:5);
vq = interpn(x,v,xq,'cubic');

Plot the result.

figure
plot(x,v,'o',xq,vq,'-');
legend('Samples','Cubic Interpolation');

1-3430

interpn

2-D Interpolation

Create a set of grid points and corresponding sample values.

[X1,X2] = ndgrid((-5:1:5));
R = sqrt(X1.^2 + X2.^2)+ eps;
V = sin(R)./(R);

Interpolate over a finer grid using ntimes=1.

Vq = interpn(V,'cubic');
mesh(Vq);

1-3431

interpn

Evaluate Outside Domain of 3-D Function

Create the grid vectors, x1, x2, and x3. These vectors define the points
associated with the values in V.

x1 = 1:100;
x2 = (1:50)';
x3 = 1:30;

1-3432

interpn

Define the sample values to be a 100-by-50-by-30 random number
array, V. Use the gallery function to create the array.

V = gallery('uniformdata',100,50,30,0);

Evaluate V at three points outside the domain of x1, x2, and x3. Specify
extrapval = -1.

xq1 = [0 0 0];
xq2 = [0 0 51];
xq3 = [0 101 102];
vq = interpn(x1,x2,x3,V,xq1,xq2,xq3,'linear',-1)

vq =

-1 -1 -1

All three points evaluate to -1 because they are outside the domain of
x1, x2, and x3.

4-D Interpolation

Define an anonymous function that represents .

f = @(x,y,z,t) t.*exp(-x.^2 - y.^2 - z.^2);

Create a grid of points in . Then, pass the points through the
function to create the sample values, V.

[x,y,z,t] = ndgrid(-1:0.2:1,-1:0.2:1,-1:0.2:1,0:2:10);
V = f(x,y,z,t);

Now, create the query grid.

[xq,yq,zq,tq] = ...
ndgrid(-1:0.05:1,-1:0.08:1,-1:0.05:1,0:0.5:10);

1-3433

interpn

Interpolate V at the query points.

Vq = interpn(x,y,z,t,V,xq,yq,zq,tq);

Create a movie to show the results.

figure('renderer','zbuffer');
nframes = size(tq, 4);
for j = 1:nframes

slice(yq(:,:,:,j),xq(:,:,:,j),zq(:,:,:,j),...
Vq(:,:,:,j),0,0,0);

caxis([0 10]);
M(j) = getframe;

end
movie(M);

1-3434

interpn

See Also interp1 | interp2 | interp3 | ndgrid

1-3435

interpstreamspeed

Purpose Interpolate stream-line vertices from flow speed

Syntax interpstreamspeed(X,Y,Z,U,V,W,vertices)
interpstreamspeed(U,V,W,vertices)
interpstreamspeed(X,Y,Z,speed,vertices)
interpstreamspeed(speed,vertices)
interpstreamspeed(X,Y,U,V,vertices)
interpstreamspeed(U,V,vertices)
interpstreamspeed(X,Y,speed,vertices)
interpstreamspeed(speed,vertices)
interpstreamspeed(...,sf)
vertsout = interpstreamspeed(...)

Description interpstreamspeed(X,Y,Z,U,V,W,vertices) interpolates streamline
vertices based on the magnitude of the vector data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must
be monotonic, but do not need to be uniformly spaced. X, Y, and Z must
have the same number of elements, as if produced by meshgrid.

interpstreamspeed(U,V,W,vertices) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(U).

interpstreamspeed(X,Y,Z,speed,vertices) uses the 3-D array
speed for the speed of the vector field.

interpstreamspeed(speed,vertices) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p]=size(speed).

interpstreamspeed(X,Y,U,V,vertices) interpolates streamline
vertices based on the magnitude of the vector data U, V.

1-3436

interpstreamspeed

The arrays X and Y, which define the coordinates for U and V, must be
monotonic, but do not need to be uniformly spaced. X and Y must have
the same number of elements, as if produced by meshgrid.

interpstreamspeed(U,V,vertices) assumes X and Y are determined
by the expression

[X Y] = meshgrid(1:n,1:m)

where [M N]=size(U).

interpstreamspeed(X,Y,speed,vertices) uses the 2-D array speed
for the speed of the vector field.

interpstreamspeed(speed,vertices) assumes X and Y are
determined by the expression

[X Y] = meshgrid(1:n,1:m)

where [M,N]= size(speed).

interpstreamspeed(...,sf) uses sf to scale the magnitude of the
vector data and therefore controls the number of interpolated vertices.
For example, if sf is 3, then interpstreamspeed creates only one-third
of the vertices.

vertsout = interpstreamspeed(...) returns a cell array of vertex
arrays.

Examples This example draws streamlines using the vertices returned by
interpstreamspeed. Dot markers indicate the location of each vertex.
This example enables you to visualize the relative speeds of the flow
data. Streamlines having widely spaced vertices indicate faster flow;
those with closely spaced vertices indicate slower flow.

load wind
[sx sy sz] = meshgrid(80,20:1:55,5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.2);
sl = streamline(iverts);

1-3437

interpstreamspeed

set(sl,'Marker','.')
axis tight; view(2); daspect([1 1 1])

This example plots streamlines whose vertex spacing indicates the
value of the gradient along the streamline.

figure
z = membrane(6,30);
[u v] = gradient(z);
pcolor(z)
hold on
[verts averts] = streamslice(u,v);
iverts = interpstreamspeed(u,v,verts,15);
sl = streamline(iverts);
set(sl,'Marker','.')
shading interp
axis tight
view(2)

1-3438

interpstreamspeed

daspect([1,1,1])
hold off

See Also stream2 | stream3 | streamline | streamslice | streamparticles

1-3439

intersect

Purpose Set intersection of two arrays

Syntax C = intersect(A,B)
C = intersect(A,B,'rows')
[C,ia,ib] = intersect(A,B)
[C,ia,ib] = intersect(A,B,'rows')

[C,ia,ib] = intersect(___ ,setOrder)

[C,ia,ib] = intersect(A,B,'legacy')

[C,ia,ib] = intersect(A,B,'rows','legacy')

Description C = intersect(A,B) returns the data common to both A and B with
no repetitions.

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then intersect returns
the values common to both A and B. The values of C are in sorted
order.

• If A and B are tables, then intersect returns the set of rows common
to both tables. The rows of table C are in sorted order.

C = intersect(A,B,'rows') treats each row of A and each row of B
as single entities and returns the rows common to both A and B. The
rows of C are in sorted order.

The 'rows' option does not support cell arrays.

[C,ia,ib] = intersect(A,B) also returns index vectors ia and ib.

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then C = A(ia) and C =
B(ib).

• If A and B are tables, then C = A(ia,:) and C = B(ib,:).

1-3440

intersect

[C,ia,ib] = intersect(A,B,'rows') also returns index vectors ia
and ib, such that C = A(ia,:) and C = B(ib,:).

[C,ia,ib] = intersect(___ ,setOrder) returns C in a specific
order using any of the input arguments in the previous syntaxes.
setOrder='sorted' returns the values (or rows) of C in sorted order.
setOrder='stable' returns the values (or rows) of C in the same order
as A, and then B. If no value is specified, the default is 'sorted'.

[C,ia,ib] = intersect(A,B,'legacy') and [C,ia,ib] =
intersect(A,B,'rows','legacy') preserve the behavior of the
intersect function from R2012b and prior releases.

The 'legacy' option does not support categorical arrays or tables.

Input
Arguments

A,B - Input arrays
numeric arrays | logical arrays | character arrays | categorical arrays
| cell arrays of strings | tables

Input arrays, specified as numeric arrays, logical arrays, character
arrays, categorical arrays, cell arrays of strings, or tables.

A and B must be of the same class with the following exceptions:

• logical, char, and all numeric classes can combine with double
arrays.

• Cell arrays of strings can combine with char arrays.

• Categorical arrays can combine with cell arrays of strings or single
strings.

If A and B are both ordinal categorical arrays, they must have the same
sets of categories, including their order. If neither A nor B are ordinal,
they need not have the same sets of categories, and the comparison is
performed using the category names. In this case, the categories of C
are the sorted union of the categories from A and B.

If you specify the 'rows' option, A and B must have the same number
of columns.

1-3441

intersect

If A and B are tables, they must have the same variable names.
Conversely, the row names do not matter. Two rows that have the same
values, but different names, are considered equal.

Furthermore, A and B can be objects with the following class methods:

• sort (or sortrows for the 'rows' option)

• ne

The object class methods must be consistent with each other. These
objects include heterogeneous arrays derived from the same root class.

setOrder - Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of
the values (or rows) in C.

Order Flag Meaning

'sorted' The values (or rows) in C return
in sorted order. For example:
C = intersect([7 0 5],[7 1 5],'sorted') returns
C = [5 7].

'stable' The values (or rows) in C return
in the same order as they
appear in A and B. For example:
C = intersect([7 0 5],[7 1 5],'stable') returns
C = [7 5].

Output
Arguments

C - Data common to A and B
vector | matrix | table

Data common to A and B, returned as a vector, matrix, or table. If the
inputs A and B are tables, the order of the variables in the resulting
table, C, is the same as the order of the variables in A.

1-3442

intersect

The following describes the shape of C when the inputs are vectors or
matrices and when the 'legacy' flag is not specified:

• If the 'rows' flag is not specified, then C is a column vector unless
both A and B are row vectors.

• If the 'rows' flag is not specified and both A and B are row vectors,
then C is a row vector.

• If the 'rows' flag is specified, then C is a matrix containing the rows
in common from A and B.

• If A and B have no values (or rows) in common, then C is an empty
matrix.

The class of the inputs A and B determines the class of C:

• If the class of A and B are the same, then C is the same class.

• If you combine a char or nondouble numeric class with double, then
C is the same class as the nondouble input.

• If you combine a logical class with double, then C is double.

• If you combine a cell array of strings with char, then C is a cell array
of strings.

• If you combine a categorical array with a cell array of strings or
single string, then C is a categorical array.

ia - Index to A
column vector

Index to A, returned as a column vector when the 'legacy' flag is not
specified. ia identifies the values (or rows) in A that are common to B. If
there is a repeated value (or row) in A, then ia contains the index to the
first occurrence of the value (or row).

ib - Index to B
column vector

Index to B, returned as a column vector when the 'legacy' flag is not
specified. ib identifies the values (or rows) in B that are common to A. If

1-3443

intersect

there is a repeated value (or row) in B, then ib contains the index to the
first occurrence of the value (or row).

Examples Intersection of Two Vectors

Define two vectors with values in common.

A = [7 1 7 7 4]; B = [7 0 4 4 0];

Find the values common to both A and B.

C = intersect(A,B)

C =

4 7

Intersection of Two Tables

Define two tables with rows in common.

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))
B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

A =

Var1 Var2 Var3
---- ---- -----
1 A false
2 B true
3 C false
4 D true
5 E false

B =

Var1 Var2 Var3
---- ---- -----

1-3444

intersect

1 A false
3 C false
5 E false
7 G false
9 I false

Find the rows common to both A and B.

C = intersect(A,B)

C =

Var1 Var2 Var3
---- ---- -----
1 A false
3 C false
5 E false

Intersection of Two Vectors and Their Indices

Define two vectors with values in common.

A = [7 1 7 7 4]; B = [7 0 4 4 0];

Find the values common to both A and B, as well as the index vectors ia
and ib, such that C = A(ia) and C = B(ib).

[C,ia,ib] = intersect(A,B)

C =

4 7

ia =

5
1

1-3445

intersect

ib =

3
1

Intersection of Two Tables and Their Indices

Define a table, A, of gender, age, and height for five people.

A = table(['M';'M';'F';'M';'F'],[27;52;31;46;35],[74;68;64;61;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty' 'Bob' 'Judy'})

A =

Gender Age Height
------ --- ------

Ted M 27 74
Fred M 52 68
Betty F 31 64
Bob M 46 61
Judy F 35 64

Define a table, B, with rows in common with A.

B = table(['F';'M';'F';'F'],[31;47;35;23],[64;68;62;58],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Meg' 'Joe' 'Beth' 'Amy'})

B =

Gender Age Height
------ --- ------

Meg F 31 64
Joe M 47 68
Beth F 35 62
Amy F 23 58

1-3446

intersect

Find the rows common to both A and B, as well as the index vectors ia
and ib, such that C = A(ia,:) and C = B(ib,:).

[C,ia,ib] = intersect(A,B)

C =

Gender Age Height
------ --- ------

Betty F 31 64

ia =

3

ib =

1

Two rows that have the same values, but different names, are
considered equal. Therefore, we discover that Betty, A(3,:), and Meg,
B(1,:) have the same gender, age, and height.

Intersection of Rows in Two Matrices

Define two matrices with rows in common.

A = [2 2 2; 0 0 1; 1 2 3; 1 1 1];
B = [1 2 3; 2 2 2; 2 2 0];

Find the rows common to both A and B as well as the index vectors ia
and ib, such that C = A(ia,:) and C = B(ib,:).

[C,ia,ib] = intersect(A,B,'rows')

C =

1-3447

intersect

1 2 3
2 2 2

ia =

3
1

ib =

1
2

A and B do not need to have the same number of rows, but they must
have the same number of columns.

Intersection with Specified Output Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' if you want the values in C to have the same order
as in A.

A = [7 1 7 7 4]; B = [7 0 4 4 0];
[C,ia,ib] = intersect(A,B,'stable')

C =

7 4

ia =

1
5

1-3448

intersect

ib =

1
3

Alternatively, you can specify 'sorted' order.

[C,ia,ib] = intersect(A,B,'sorted')

C =

4 7

ia =

5
1

ib =

3
1

Intersection of Vectors Containing NaNs

Define two vectors containing NaN.

A = [5 NaN NaN]; B = [5 NaN NaN];

Find the values common to both A and B.

C = intersect(A,B)

C =

5

1-3449

intersect

intersect treats NaN values as distinct.

Cell Array of Strings with Trailing White Space

Create a cell array of strings, A.

A = {'dog','cat','fish','horse'};

Create a cell array of strings, B, where some of the strings have trailing
white space.

B = {'dog ','cat','fish ','horse'};

Find the strings common to both A and B.

[C,ia,ib] = intersect(A,B)

C =

'cat' 'horse'

ia =

2
4

ib =

2
4

intersect treats trailing white space in cell arrays of strings as distinct
characters.

Intersection of Arrays of Different Classes and Shapes

Create a column vector character array.

1-3450

intersect

A = ['A';'B';'C'], class(A)

A =

A
B
C

ans =

char

Create a 2-by-3 matrix containing elements of numeric type double.

B = [65 66 67;68 69 70], class(B)

B =

65 66 67
68 69 70

ans =

double

Find the values common to both A and B.

[C,ia,ib] = intersect(A,B)

C =

A

1-3451

intersect

B
C

ia =

1
2
3

ib =

1
3
5

intersect interprets B as a character array and returns a character
array, C.

class(C)

ans =

char

Intersection of Char and Cell Array of Strings

Create a character array containing animal names that have three
letters.

A = ['dog';'cat';'fox';'pig'];
class(A)

ans =

char

1-3452

intersect

Create a cell array of strings containing animal names of varying
lengths.

B = {'cat','dog','fish','horse'};
class(B)

ans =

cell

Find the strings common to both A and B.

C = intersect(A,B)

C =

'cat'
'dog'

The result, C, is a cell array of strings.

class(C)

ans =

cell

Preserve Legacy Behavior of intersect

Use the 'legacy' flag to preserve the behavior of intersect from
R2012b and prior releases in your code.

Find the intersection of A and B with the current behavior.

A = [7 1 7 7 4]; B = [7 0 4 4 0];
[C1,ia1,ib1] = intersect(A,B)

C1 =

1-3453

intersect

4 7

ia1 =

5
1

ib1 =

3
1

Find the unique elements of A and preserve the legacy behavior.

[C2,ia2,ib2] = intersect(A,B,'legacy')

C2 =

4 7

ia2 =

5 4

ib2 =

4 1

Tips • To find the intersection with respect to a subset of variables from a
table, you can use column subscripting. For example, you can use
intersect(A(:,vars),B(:,vars)), where vars is a positive integer,

1-3454

intersect

a vector of positive integers, a variable name, a cell array of variable
names, or a logical vector.

See Also unique | union | ismember | issorted | setdiff | setxor | sort

Concepts • “Combine Categorical Arrays”

1-3455

intmax

Purpose Largest value of specified integer type

Syntax v = intmax
v = intmax('classname')

Description v = intmax is the largest positive value that can be represented in
the MATLAB software with a 32-bit integer. Any value larger than
the value returned by intmax saturates to the intmax value when cast
to a 32-bit integer.

v = intmax('classname') is the largest positive value in the integer
class classname. Valid values for the string classname are

'int8' 'int16' 'int32' 'int64'

'uint8' 'uint16' 'uint32' 'uint64'

intmax('int32') is the same as intmax with no arguments.

Examples Find the maximum value for a 64-bit signed integer:

v = intmax('int64')
v =

9223372036854775807

Convert this value to a 32-bit signed integer:

x = int32(v)
x =

2147483647

Compare the result with the default value returned by intmax:

isequal(x, intmax)
ans =

1

See Also intmin | realmax | realmin | int8 | uint8 | isa | class

1-3456

intmin

Purpose Smallest value of specified integer type

Syntax v = intmin
v = intmin('classname')

Description v = intmin is the smallest value that can be represented in the
MATLAB software with a 32-bit integer. Any value smaller than the
value returned by intmin saturates to the intmin value when cast to a
32-bit integer.

v = intmin('classname') is the smallest positive value in the integer
class classname. Valid values for the string classname are

'int8' 'int16' 'int32' 'int64'

'uint8' 'uint16' 'uint32' 'uint64'

intmin('int32') is the same as intmin with no arguments.

Examples Find the minimum value for a 64-bit signed integer:

v = intmin('int64')
v =
-9223372036854775808

Convert this value to a 32-bit signed integer:

x = int32(v)
x =

2147483647

Compare the result with the default value returned by intmin:

isequal(x, intmin)
ans =

1

See Also intmax | realmin | realmax | int8 | uint8 | isa | class

1-3457

inv

Purpose Matrix inverse

Syntax Y = inv(X)

Description Y = inv(X) returns the inverse of the square matrix X. A warning
message is printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a
matrix. A frequent misuse of inv arises when solving the system of
linear equations Ax = b. One way to solve this is with x = inv(A)*b.
A better way, from both an execution time and numerical accuracy
standpoint, is to use the matrix division operator x = A\b. This produces
the solution using Gaussian elimination, without forming the inverse.
See mldivide (\) for further information.

Note MATLAB computes X^(-1) and inv(X) in the same manner, and
both are subject to the same limitations.

Examples Here is an example demonstrating the difference between solving a
linear system by inverting the matrix with inv(A)*b and solving it
directly with A\b. A random matrix A of order 500 is constructed so
that its condition number, cond(A), is 1.e10, and its norm, norm(A),
is 1. The exact solution x is a random vector of length 500 and the
right-hand side is b = A*x. Thus the system of linear equations is badly
conditioned, but consistent.

On a 300 MHz, laptop computer the statements

n = 500;
Q = orth(randn(n,n));
d = logspace(0,-10,n);
A = Q*diag(d)*Q';
x = randn(n,1);
b = A*x;
tic, y = inv(A)*b; toc
err = norm(y-x)

1-3458

inv

res = norm(A*y-b)

produce

elapsed_time =
1.4320

err =
7.3260e-006

res =
4.7511e-007

while the statements

tic, z = A\b, toc
err = norm(z-x)
res = norm(A*z-b)

produce

elapsed_time =
0.6410

err =
7.1209e-006

res =
4.4509e-015

It takes almost two and one half times as long to compute the solution
with y = inv(A)*b as with z = A\b. Both produce computed solutions
with about the same error, 1.e-6, reflecting the condition number of the
matrix. But the size of the residuals, obtained by plugging the computed
solution back into the original equations, differs by several orders of
magnitude. The direct solution produces residuals on the order of the
machine accuracy, even though the system is badly conditioned.

The behavior of this example is typical. Using A\b instead of inv(A)*b
is two to three times as fast and produces residuals on the order of
machine accuracy, relative to the magnitude of the data.

See Also det | lu | rref | mldivide

1-3459

invhilb

Purpose Inverse of Hilbert matrix

Syntax H = invhilb(n)

Description H = invhilb(n) generates the exact inverse of the exact Hilbert
matrix for n less than about 15. For larger n, invhilb(n) generates an
approximation to the inverse Hilbert matrix.

Limitations The exact inverse of the exact Hilbert matrix is a matrix whose elements
are large integers. These integers may be represented as floating-point
numbers without roundoff error as long as the order of the matrix, n,
is less than 15.

Comparing invhilb(n) with inv(hilb(n)) involves the effects of two
or three sets of roundoff errors:

• The errors caused by representing hilb(n)

• The errors in the matrix inversion process

• The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions
like 1/3 and 1/5 in floating-point, is the most significant.

Examples invhilb(4) is

16 -120 240 -140
-120 1200 -2700 1680
240 -2700 6480 -4200

-140 1680 -4200 2800

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear
Algebraic Systems, Prentice-Hall, 1967, Chapter 19.

See Also hilb

1-3460

invoke

Purpose Invoke method on COM object or interface, or display methods

Syntax S = h.invoke
S = h.invoke('methodname')
S = h.invoke('methodname',arg1,arg2, ...)
S = h.invoke('custominterfacename')
S = invoke(h,...)

Description S = h.invoke returns structure array S containing a list of all methods
supported by the object or interface, h, along with the prototypes for
these methods. If S is empty, either there are no properties or methods
in the object, or the MATLAB software cannot read the object’s type
library. Refer to the COM vendor’s documentation.

S = h.invoke('methodname') invokes the method specified in the
string methodname, and returns an output value, if any, in S. The data
type of the return value depends on the invoked method, which is
determined by the control or server.

S = h.invoke('methodname',arg1,arg2, ...) invokes the method
specified in the string methodname with input arguments arg1, arg2,
etc.

S = h.invoke('custominterfacename') returns an Interface
object S, which is a handle to a custom interface implemented by the
COM component. The h argument is a handle to the COM object.
The custominterfacename argument is a string returned by the
interfaces function.

S = invoke(h,...) is an alternate syntax. For Automation objects, if
the vendor provides documentation for specific properties or methods,
use the S = invoke(h, ...) syntax to call them.

If the method returns a COM interface, then invoke returns a new
MATLAB COM object that represents the interface returned. For a
description of how MATLAB converts COM types, see “Handling COM
Data in MATLAB Software”.

COM functions are available on Microsoft Windows systems only.

1-3461

invoke

Examples Invoke the Redraw method in the mwsamp control:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);
h.Radius = 100;
h.invoke('Redraw');

Call the method directly:

h.Redraw;

Display all mwsamp methods:

h.invoke

ans =
AboutBox = void AboutBox(handle)
Beep = void Beep(handle)
FireClickEvent = void FireClickEvent(handle)

.

.

Getting a Custom Interface Example

Once you have created a COM server, you can query the server
component to see if any custom interfaces are implemented. Use the
interfaces function to return a list of all available custom interfaces:

h = actxserver('mytestenv.calculator');
customlist = h.interfaces

customlist =
ICalc1
ICalc2
ICalc3

1-3462

invoke

To get a handle to the custom interface you want, use the invoke
function, specifying the handle returned by actxcontrol or actxserver
and also the name of the custom interface:

c1 = h.invoke('ICalc1')

c1 =
Interface.Calc_1.0_Type_Library.ICalc_Interface

You can now use this handle with most of the COM client functions to
access the properties and methods of the object through the selected
custom interface.

See Also methods | ismethod | interfaces

How To • “Handling COM Data in MATLAB Software”

• “Custom Interfaces”

1-3463

ipermute

Purpose Inverse permute dimensions of N-D array

Syntax A = ipermute(B,order)

Description A = ipermute(B,order) is the inverse of permute. ipermute
rearranges the dimensions of B so that permute(A,order) will produce
B. B has the same values as A but the order of the subscripts needed to
access any particular element are rearranged as specified by order. All
the elements of order must be unique.

Tips permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Consider the 2-by-2-by-3 array a:

a = cat(3,eye(2),2*eye(2),3*eye(2))

a(:,:,1) = a(:,:,2) =
1 0 2 0
0 1 0 2

a(:,:,3) =
3 0
0 3

Permuting and inverse permuting a in the same fashion restores the
array to its original form:

B = permute(a,[3 2 1]);
C = ipermute(B,[3 2 1]);
isequal(a,C)
ans=

1

See Also permute

1-3464

is*

Purpose Detect state

Description These functions detect the state of MATLAB entities:

isa Detect object of given MATLAB class or Java class

isappdata Determine if object has specific application-defined
data

iscategorical Determine whether input is categorical array

iscategory Test for categorical array categories

iscell Determine if input is cell array

iscellstr Determine if input is cell array of strings

ischar Determine if input is character array

iscolumn Determine whether input is column vector

iscom Determine if input is Component Object Model (COM)
object

isdir Determine if input is folder

isempty Determine if input is empty array

isequal Determine if arrays are numerically equal

isequaln Determine if arrays are numerically equal, treating
NaNs as equal

isevent Determine if input is Component Object Model (COM)
object event

isfield Determine if input is MATLAB structure array field

isfinite Detect finite elements of array

isfloat Determine if input is floating-point array

isglobal Determine if input is global variable

ishandle Detect valid graphics object handles

ishold Determine if graphics hold state is on

1-3465

is*

isinf Detect infinite elements of array

isinteger Determine if input is integer array

isinterface Determine if input is Component Object Model (COM)
interface

isjava Determine if input is Java object

iskeyword Determine if input is MATLAB keyword

isletter Detect elements that are alphabetic letters

islogical Determine if input is logical array

ismac Determine if running MATLAB for Macintosh OS X
platform

ismatrix Determine whether input is matrix

ismember Detect members of specific set

ismethod Determine if input is object method

ismissing Find table elements with missing values

isnan Detect elements of array that are not a number (NaN)

isnumeric Determine if input is numeric array

isobject Determine if input is MATLAB object

isordinal Determine whether input is ordinal categorical array

ispc Determine if running MATLAB for PC (Windows)
platform

isprime Detect prime elements of array

isprop Determine if input is object property

isprotected Determine whether categories of categorical array are
protected

isreal Determine if all array elements are real numbers

isrow Determine whether input is row vector

1-3466

is*

isscalar Determine if input is scalar

issorted Determine if set elements are in sorted order

isspace Detect space characters in array

issparse Determine if input is sparse array

isstrprop Determine if string is of specified category

isstruct Determine if input is MATLAB structure array

isstudent Determine if Student Version of MATLAB

istable Determine whether input is table

isundefined Find undefined elements in categorical array

1-3467

is*

isunix Determine if running MATLAB for UNIX4 platform.

isvarname Determine if input is valid variable name

isvector Determine if input is vector

See Also isa | exist

4. UNIX is a registered trademark of The Open Group in the United States and other
countries.

1-3468

isa

Purpose Determine if input is object of specified class

Syntax tf = isa(obj,ClassName)
tf = isa(obj,classCategory)

Description tf = isa(obj,ClassName) returns true if obj is an instance of the
class specified by ClassName, and false otherwise. isa also returns
true if obj is an instance of a class that is derived from ClassName.

obj can be any MATLAB variable.

ClassName can be any of the following:

• Name of any MATLAB class or fundamental type

• Name of a Java, or .NET class

MATLAB Fundamental Types

'single' Single-precision number

'double' Double-precision number

'int8' Signed 8-bit integer

'int16' Signed 16-bit integer

'int32' Signed 32-bit integer

'int64' Signed 64-bit integer

'uint8' Unsigned 8-bit integer

'uint16' Unsigned 16-bit integer

'uint32' Unsigned 32-bit integer

'uint64' Unsigned 64-bit integer

'logical' Logical true or false

'char' Character or string

'struct' Structure array

1-3469

isa

'cell' Cell array

'function_handle' function handle

tf = isa(obj,classCategory) returns true if obj is an instance of
any of the classes in the specified classCategory, and false otherwise.
isa also returns true if obj is an instance of a class that is derived from
any of the classes in classCategory.

classCategory can be 'numeric', 'float', or 'integer', representing
a category of numeric types:

Categories of Numeric Types

'numeric' Integer or floating-point array (double, single,
int8, uint8, int16, uint16, int32, uint32,
int64, uint64)

'float' Single- or double-precision floating-point array
(double, single)

'integer' Signed or unsigned integer array (int8, uint8,
int16, uint16, int32, uint32, int64, uint64)

To test for a sparse array, use issparse. To test for a complex array,
use ~isreal.

Examples These examples show the values returned by isa when passed different
types:

Determine if the value returned by the pi function is of class double:

isa(pi,'double')
ans =

1

More generally, determine if the value returned by the pi function is a
numeric value:

isa(pi,'numeric')

1-3470

isa

ans =
1

isa also returns true for the float category because the class double
is a floating-point type. However, pi does not return an integer type:

isa(pi,'integer')
ans =

0

Determine if the 2–by-3 array returned by true is of type logical:

isa(true(2,3),'logical')
ans =

1

Identify an instance of the MATLAB containers.Map class:

mapObj = containers.Map({'Color','RGB'},...
{'Yellow',uint8([255,255,0])});

isa(mapObj,'containers.Map')
ans =

1

The map key, RGB, references a uint8 array:

isa(mapObj('RGB'),'integer')
ans =

1

Specifying a particular integer class provides more specific testing:

if strcmp(mapObj('Color'),'Yellow') && isa(mapObj('RGB'),'uint8')
% The Color is Yellow and the RGB numbers are uint8 values
...

end

See Also class | is* | isnumeric | isfloat | isinteger | exist

1-3471

isappdata

Purpose True if application-defined data exists

Syntax isappdata(h,name)

Description isappdata(h,name) returns 1 if application-defined data with the
specified name exists on the object specified by handle h, and returns
0 otherwise.

Tips Application data is data that is meaningful to or defined by your
application which you attach to a figure or any GUI component (other
than ActiveX controls) through its AppData property. Only Handle
Graphics MATLAB objects use this property.

See Also getappdata | rmappdata | setappdata

1-3472

isbanded

Purpose Determine if matrix is within specific bandwidth

Syntax tf = isbanded(A,lower,upper)

Description tf = isbanded(A,lower,upper) returns logical 1 (true) if matrix A
is within the specified lower bandwidth, lower, and upper bandwidth,
upper; otherwise, it returns logical 0 (false).

Input
Arguments

A - Input array
numeric array

Input array, specified as a numeric array. isbanded returns logical 0
(false) if A has more than two dimensions.

Data Types
single | double
Complex Number Support: Yes

lower - Lower bandwidth
nonnegative integer scalar

Lower bandwidth, specified as a nonnegative integer scalar. The lower
bandwidth is the number of nonzero diagonals below the main diagonal.
isbanded returns logical 0 (false) if there are nonzero elements below
the boundary diagonal, diag(A,-lower).

upper - Upper bandwidth
nonnegative integer scalar

Upper bandwidth, specified as a nonnegative integer scalar. The upper
bandwidth is the number of nonzero diagonals above the main diagonal.
isbanded returns logical 0 (false) if there are nonzero elements above
the boundary diagonal, diag(A,upper).

Examples Test Square Matrix

Create a 5-by-5 square matrix.

A = [2 3 0 0 0 ; 1 -2 -3 0 0; 0 -1 2 3 0 ; 0 0 1 -2 -3; 0 0 0 -1 2]

1-3473

isbanded

A =

2 3 0 0 0
1 -2 -3 0 0
0 -1 2 3 0
0 0 1 -2 -3
0 0 0 -1 2

The result is a square matrix with nonzero diagonals above and below
the main diagonal.

Specify both bandwidths, lower and upper, as 1 to test if A is tridiagonal.

isbanded(A,1,1)

ans =

1

The result is logical 1 (true).

Test if A has nonzero elements below the main diagonal by specifying
lower as 0.

isbanded(A,0,1)

ans =

0

The result is logical 0 (false) because A has nonzero elements below
the main diagonal.

Test Nonsquare Matrix

Create a 3-by-5 matrix.

A = [1 0 0 0 0; 2 1 0 0 0; 3 2 1 0 0]

1-3474

isbanded

A =

1 0 0 0 0
2 1 0 0 0
3 2 1 0 0

The result is a rectangular matrix.

Test if A has nonzero elements above the main diagonal.

isbanded(A,2,0)

ans =

1

The result is logical 1 (true) because the elements above the main
diagonal are all zero.

Test Sparse Block Matrix

Create a 100-by-100 sparse block matrix.

B = kron(speye(25),ones(4));

Test if B has a lower and upper bandwidth of 1.

isbanded(B,1,1)

ans =

0

The result is logical 0 (false) because the nonzero blocks centered on
the main diagonal are larger than 2-by-2.

Test if B has a lower and upper bandwidth of 3.

isbanded(B,3,3)

1-3475

isbanded

ans =

1

The result is logical 1 (true). The matrix, B, has an upper and lower
bandwidth of 3 since the nonzero diagonal blocks are 4-by-4.

Tips • Use the bandwidth function to find the upper and lower bandwidths
of a given matrix.

• Use isbanded to test for several different matrix structures by
specifying appropriate upper and lower bandwidths. The table below
lists some common tests.

Lower
Bandwidth

Upper
Bandwidth

Function Call Tests for

0 0 isbanded(A,0,0)Diagonal
matrix

1 1 isbanded(A,1,1)Tridiagonal
matrix

0 size(A,2) isbanded(A,0,size(A,2))Upper
triangular
matrix

size(A,1) 0 isbanded(A,size(A,1),0)Lower
triangular
matrix

1 size(A,2) isbanded(A,1,size(A,2))Upper
Hessenberg
matrix

size(A,1) 1 isbanded(A,size(A,1),1)Lower
Hessenberg
matrix

See Also bandwidth | diag | isdiag | istriu | istril

1-3476

iscategorical

Purpose Determine whether input is categorical array

Syntax tf = iscategorical(A)

Description tf = iscategorical(A) returns logical 1 (true) if A is a categorical
array. Otherwise, iscategorical returns logical 0 (false).

Input
Arguments

A - Input variable
workspace variable

Input variable, specified as a workspace variable. A can be any data
type.

Examples Determine Whether Workspace Variable Is Categorical Array

Create a workspace variable, A.

A = categorical({'red' 'green' 'violet'; 'orange' 'red' 'yellow'})

A =

red green violet
orange red yellow

Verify that the workspace variable, A, is a categorical array.

tf = iscategorical(A)

tf =

1

A is a 2-by-3 categorical array.

See Also categorical | isnumeric | isobject | islogical | istable |
iscell | isstruct

1-3477

iscategory

Purpose Test for categorical array categories

Syntax tf = iscategory(A,catnames)

Description tf = iscategory(A,catnames) returns an array containing logical
1 (true) where the data in catnames is a category of A. Otherwise,
iscategory returns logical 0 (false).

tf is the same size as catnames.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

catnames - Category names
string | cell array of strings | categorical array

Category names, specified as a string, cell array of strings, or categorical
array.

Examples Test for Categories

Create an ordinal categorical array, A.

A = categorical({'shirt' 'pants'; 'pants' 'hat'; 'shirt' 'pants'})

A =

shirt pants
pants hat
shirt pants

A is a 1-by-5 categorical array.

Test if the articles of clothing, shirt, pants, socks, and shoes, are
categories of A.

1-3478

iscategory

catnames = {'shirt' 'pants' 'socks' 'shoes'};
tf = iscategory(A,catnames)

tf =

1 1 0 0

shirt and pants are categories of A, but socks, and shoes are not.

iscategory does not tell us anything about the category, hat, which
we did not include in catnames.

Test for Category with No Corresponding Data

Create a categorical array, A.

A = categorical({'plane' 'car' 'train' 'car' 'plane'},...
{'boat' 'car' 'plane' 'train'})

A =

plane car train car plane

A is a 1-by-5 categorical array.

Test to see if boat is a category in A.

tf = iscategory(A,'boat')

tf =

1

iscategory returns true, even though A does not contain any values
from the category boat.

See Also categories | categorical | removecats | mergecats | renamecats |
reordercats | ismember | unique

1-3479

iscell

Purpose Determine whether input is cell array

Syntax tf = iscell(A)

Description tf = iscell(A) returns logical 1 (true) if A is a cell array and logical
0 (false) otherwise.

Examples A{1,1} = [1 4 3; 0 5 8; 7 2 9];
A{1,2} = 'Anne Smith';
A{2,1} = 3+7i;
A{2,2} = -pi:pi/10:pi;

iscell(A)

ans =

1

See Also cell | istable | iscellstr | isstruct | isnumeric | islogical |
isobject | isa | is*

1-3480

iscellstr

Purpose Determine whether input is cell array of strings

Syntax tf = iscellstr(A)

Description tf = iscellstr(A) returns logical 1 (true) if A is a cell array of strings
(or an empty cell array), and logical 0 (false) otherwise. A cell array of
strings is a cell array where every element is a character array.

Examples A{1,1} = 'Thomas Lee';
A{1,2} = 'Marketing';
A{2,1} = 'Allison Jones';
A{2,2} = 'Development';

iscellstr(A)

ans =

1

See Also cellstr | istable | iscategorical | iscell | isstrprop | strings
| char | isstruct | isa | is*

1-3481

ischar

Purpose Determine whether item is character array

Syntax tf = ischar(A)

Description tf = ischar(A) returns logical 1 (true) if A is a character array and
logical 0 (false) otherwise.

Examples Given the following cell array,

C{1,1} = magic(3); % double array
C{1,2} = 'John Doe'; % char array
C{1,3} = 2 + 4i % complex double

C =

[3x3 double] 'John Doe' [2.0000+ 4.0000i]

ischar shows that only C{1,2} is a character array.

for k = 1:3
x(k) = ischar(C{1,k});
end

x

x =

0 1 0

See Also char | strings | isletter | isspace | isstrprop | iscellstr |
isnumeric | isa | is*

1-3482

iscolumn

Purpose Determine whether input is column vector

Syntax iscolumn(V)

Description iscolumn(V) returns logical 1 (true) if size(V) returns [n 1] with a
nonnegative integer value n, and logical 0 (false) otherwise.

Examples Determine if a vector is a column. This example is a row so iscolumn
returns 0:

V = rand(1,5);
iscolumn(V)
ans =

0

Transpose the vector to make it a column. iscolumn returns 1:

V1 = V';
iscolumn(V1)
ans =

1

See Also ismatrix | isrow | isscalar | isvector

1-3483

iscom

Purpose Determine whether input is COM or ActiveX object

Syntax tf = h.iscom
tf = iscom(h)

Description tf = h.iscom returns logical 1 (true) if handle h is a COM or Microsoft
ActiveX object. Otherwise, returns logical 0 (false).

tf = iscom(h) is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Test an instance of a Microsoft Excel application:

h = actxserver('Excel.Application');
h.iscom

MATLAB displays true, indicating object h is a COM object.

Test an Excel interface:

h = actxserver('Excel.Application');
%Create a workbooks object
w = h.get('workbooks');
w.iscom

MATLAB displays false, indicating object w is not a COM object.

How To • “MATLAB COM Integration”

1-3484

isdiag

Purpose Determine if matrix is diagonal

Syntax tf = isdiag(A)

Description tf = isdiag(A) returns logical 1 (true) if A is a diagonal matrix;
otherwise, it returns logical 0 (false).

Input
Arguments

A - Input array
numeric array

Input array, specified as a numeric array. isdiag returns logical 0
(false) if A has more than two dimensions.

Data Types
single | double
Complex Number Support: Yes

Examples Test Diagonal Matrix

Create a 4-by-4 identity matrix.

I = eye(4)

I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Test to see if the matrix is diagonal.

isdiag(I)

ans =

1

1-3485

isdiag

The result is logical 1 (true) because all of the nonzero elements in I
are on the main diagonal.

Test Banded Matrix

Create a matrix with nonzero elements on the main and first diagonals.

A = 3*eye(4) + diag([2 2 2],1)

A =

3 2 0 0
0 3 2 0
0 0 3 2
0 0 0 3

Test to see if the matrix is diagonal.

isdiag(A)

ans =

0

The matrix is not diagonal since there are nonzero elements above the
main diagonal.

Create a new matrix, B, from the main diagonal elements of A.

B = diag(diag(A));

Test to see if B is a diagonal matrix.

isdiag(B)

ans =

1

1-3486

isdiag

The result is logical 1 (true) because there are no nonzero elements
above or below the main diagonal of B.

Definitions Diagonal Matrix

A matrix is diagonal if all elements above and below the main diagonal
are zero. Any number of the elements on the main diagonal can also
be zero.

For example, the 4-by-4 identity matrix,

I4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

is a diagonal matrix. Diagonal matrices are typically, but not always,
square.

Tips • Use the diag function to produce diagonal matrices for which isdiag
returns logical 1 (true).

• The functions isdiag, istriu, and istril are special cases of
the function isbanded, which can perform all of the same tests
with suitably defined upper and lower bandwidths. For example,
isdiag(A) == isbanded(A,0,0).

See Also istril | istriu | tril | triu | diag

1-3487

isdir

Purpose Determine whether input is folder

Syntax tf = isdir('A')

Description tf = isdir('A') returns logical 1 (true) if A is a folder. Otherwise, it
returns logical 0 (false).

Examples Run:

tf=isdir('myfiles/results')

MATLAB returns

tf =
1

indicating that myfiles/results is a folder.

See Also dir | is*

1-3488

TriRep.isEdge

Purpose (Will be removed) Test if vertices are joined by edge

Note isEdge(TriRep) will be removed in a future release. Use
isConnected(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax TF = isEdge(TR, V1, V2)
TF = isEdge(TR, EDGE)

Description TF = isEdge(TR, V1, V2) returns an array of 1/0 (true/false) flags,
where each entry TF(i) is true if V1(i), V2(i) is an edge in the
triangulation. V1, V2 are column vectors representing the indices of the
vertices in the mesh, that is, indices into the vertex coordinate arrays.

TF = isEdge(TR, EDGE) specifies the edge start and end indices in
matrix format.

Input
Arguments

TR Triangulation representation.

V1, V2 Column vectors of mesh vertices.

EDGE Matrix of size n-by-2 where n is the number of query
edges.

Output
Arguments

TF Array of 1/0 (true/false) flags, where each entry
TF(i) is true if V1(i), V2(i) is an edge in the
triangulation.

Examples Example 1

Load a 2-D triangulation and use TriRep to query the presence of an
edge between pairs of points.

1-3489

TriRep.isEdge

load trimesh2d
trep = TriRep(tri, x,y);

Test if vertices 3 and 117 are connected by an edge

isEdge(trep, 3, 117)

Test if vertices 3 and 164 are connected by an edge

isEdge(trep, 3, 164)

Example 2

Direct query of a 3-D Delaunay triangulation created using
DelaunayTri.

X = rand(10,3)
dt = DelaunayTri(X)

Test if vertices 2 and 7 are connected by an edge

isEdge(dt, 2, 7);

See Also delaunayTriangulation | triangulation

1-3490

isempty

Purpose Determine whether array is empty

Syntax TF = isempty(A)

Description TF = isempty(A) returns logical 1 (true) if A is an empty array and
logical 0 (false) otherwise. An empty array has at least one dimension
of size zero, for example, 0-by-0 or 0-by-5.

Examples B = rand(2,2,2);
B(:,:,:) = [];

isempty(B)

ans = 1

See Also is*

1-3491

isempty (tscollection)

Purpose Determine whether tscollection object is empty

Syntax isempty(tsc)

Description isempty(tsc) returns a logical value for tscollection object tsc,
as follows:

• 1 — When tsc contains neither timeseries members nor a time
vector

• 0—When tsc contains either timeseries members or a time vector

See Also timeseries | tscollection | length (tscollection) | size
(tscollection)

1-3492

isequal

Purpose Determine array equality

Syntax tf = isequal(A,B)
tf = isequal(A1,A2,...,An)

Description tf = isequal(A,B) returns logical 1 (true) if A and B are the same size
and their contents are of equal value; otherwise, it returns logical 0
(false). The test compares both real and imaginary parts of numeric
arrays. isequal ignores the data type of the values in determining
whether they are equal. For cell arrays, categorical arrays, tables, or
structures, the function returns logical 1 (true) only when all elements
and properties are numerically equal. Undefined categorical elements
or NaN (not a number) values are considered to be unequal to other
elements, as well as themselves.

tf = isequal(A1,A2,...,An) returns logical 1 (true) if all the inputs
are numerically equal.

Input
Arguments

A,B - Inputs to be compared
numeric arrays | categorical arrays | cell arrays | tables | structures
| ...

Inputs to be compared, specified as numeric arrays, categorical arrays,
cell arrays, tables, or structures. Also, you can specify the inputs as
logical arrays, character arrays, or objects. The numeric types of A and
B do not have to match.

You can compare a categorical array to a cell array of strings of the
same size, or a single categorical element to a single string.

If inputs A and B are both

• Structures -- Fields need not be in the same order as long as the
contents are equal.

• Ordinal categorical arrays -- Must have the same sets of categories,
including their order.

1-3493

isequal

• Categorical arrays that are not ordinal -- Can have different sets of
categories, and isequal compares the category names of each pair
of elements.

• Objects of different classes -- isequal returns logical 0 (false). This
applies even when the objects have the same properties and their
values match.

A1,A2,...,An - Series of inputs to be compared
numeric arrays | categorical arrays | cell arrays | tables | structures
| ...

Series of inputs to be compared, specified as numeric arrays, categorical
arrays, cell arrays, tables, or structures. Also, you can specify the
inputs as logical arrays, character arrays, or objects. The numeric types
of the inputs do not have to match.

You can compare categorical arrays to cell arrays of strings of the same
size, or single categorical elements to single strings.

If the inputs are all

• Structures -- Fields need not be in the same order as long as the
contents are equal.

• Ordinal categorical arrays -- Must have the same sets of categories,
including their order.

• Categorical arrays that are not ordinal -- Can have different sets of
categories, and isequal compares the category names of each pair
of elements.

• Objects of different classes -- isequal returns logical 0 (false). This
applies even when the objects have the same properties and their
values match.

Examples Compare Two Numeric Matrices

Create two numeric matrices and compare them for equality.

A = zeros(3,3)+1e-20;

1-3494

isequal

B = zeros(3,3);
tf = isequal(A,B)

tf =

0

The function returns logical 0 (false) because the matrices differ by a
very small amount and are not exactly equal.

Compare Two Structures

Create two structures and specify the fields in a different order.

A = struct('field1',0.005,'field2',2500);
B = struct('field2',2500,'field1',0.005);

Compare the structures for equality.

tf = isequaln(A,B)

tf =

1

Even though the ordering of the fields in each structure is different,
isequal treats them as the same because the values are equal.

Comparing Numeric Values with Special Nonnumeric Values

Compare the logical value true to the double integer 1.

isequal(true,1)

ans =

1

1-3495

isequal

Notice that isequal does not consider data type when it tests for
equality.

Similarly, compare 'A' to the ASCII-equivalent integer, 65.

isequal('A',65)

ans =

1

The result is logical 1 (true) since double('A') equals 65.

Compare Vectors Containing NaN Values

Create three vectors containing NaN values.

A1 = [1 NaN NaN];
A2 = [1 NaN NaN];
A3 = [1 NaN NaN];

Compare the vectors for equality.

tf = isequal(A1,A2,A3)

tf =

0

The result is logical 0 (false) because isequal does not treat NaN
values as equal to each other.

Tips • When comparing handle objects, use == to test whether objects have
the same handle. Use isequal to determine if objects with different
handles have equal property values.

• Use isequaln if you want to test for equality and treat NaN values
as equal.

1-3496

isequal

See Also isequaln | eq | is* | isa* | strcmp | relational operators

1-3497

isequaln

Purpose Determine array equality, treating NaN values as equal

Syntax tf = isequaln(A,B)
tf = isequaln(A1,A2,...,An)

Description tf = isequaln(A,B) returns logical 1 (true) if A and B are the same
size and their contents are of equal value; otherwise, it returns logical 0
(false). The test compares both real and imaginary parts of numeric
arrays. isequaln ignores the data type of the values in determining
whether they are equal. For cell arrays, categorical arrays, tables, or
structures, the function returns logical 1 (true) only when all elements
and properties are numerically equal. Undefined categorical elements
or NaN (not a number) values are considered to be equal to other such
values.

tf = isequaln(A1,A2,...,An) returns logical 1 (true) if all the inputs
are numerically equal.

Input
Arguments

A,B - Inputs to be compared
numeric arrays | categorical arrays | cell arrays | tables | structures
| ...

Inputs to be compared, specified as numeric arrays, categorical arrays,
cell arrays, tables, or structures. Also, you can specify the inputs as
logical arrays, character arrays, or objects. The numeric types of A and
B do not have to match.

You can compare a categorical array to a cell array of strings of the
same size, or a single categorical element to a single string.

If inputs A and B are both

• Structures -- Fields need not be in the same order as long as the
contents are equal.

• Ordinal categorical arrays -- Must have the same sets of categories,
including their order.

1-3498

isequaln

• Categorical arrays that are not ordinal -- Can have different sets of
categories, and isequaln compares the category names of each pair
of elements.

• Objects of different classes -- isequaln returns logical 0 (false).
This applies even when the objects have the same properties and
their values match.

A1,A2,...,An - Series of inputs to be compared
numeric arrays | categorical arrays | cell arrays | tables | structures
| ...

Series of inputs to be compared, specified as numeric arrays, categorical
arrays, cell arrays, tables, or structures. Also, you can specify the
inputs as logical arrays, character arrays, or objects. The numeric types
of the inputs do not have to match.

You can compare categorical arrays to cell arrays of strings of the same
size, or single categorical elements to single strings.

If the inputs are all

• Structures -- Fields need not be in the same order as long as the
contents are equal.

• Ordinal categorical arrays -- Must have the same sets of categories,
including their order.

• Categorical arrays that are not ordinal -- Can have different sets of
categories, and isequaln compares the category names of each pair
of elements.

• Objects of different classes -- isequaln returns logical 0 (false).
This applies even when the objects have the same properties and
their values match.

Examples Compare Two Numeric Matrices

Create two numeric matrices and compare them for equality.

A = zeros(3,3)+1e-20;

1-3499

isequaln

B = zeros(3,3);
tf = isequaln(A,B)

tf =

0

The function returns logical 0 (false) because the matrices differ by a
very small amount and are not exactly equal.

Compare Two Structures

Create two structures and specify the fields in a different order.

A = struct('field1',0.005,'field2',2500);
B = struct('field2',2500,'field1',0.005);

Compare the structures for equality.

tf = isequaln(A,B)

tf =

1

Even though the ordering of the fields in each structure is different,
isequaln treats them as the same because the values are equal.

Comparing Numeric Values with Special Nonnumeric Values

Compare the logical value true to the double integer 1.

isequaln(true,1)

ans =

1

1-3500

isequaln

Notice that isequaln does not consider data type when it tests for
equality.

Similarly, compare 'A' to the ASCII-equivalent integer, 65.

isequaln('A',65)

ans =

1

The result is logical 1 (true) since double('A') equals 65.

Compare Vectors Containing NaN Values

Create three vectors containing NaN values.

A1 = [1 NaN NaN];
A2 = [1 NaN NaN];
A3 = [1 NaN NaN];

Compare the vectors for equality.

tf = isequaln(A1,A2,A3)

tf =

1

The result is logical 1 (true) because isequaln treats the NaN values
as equal to each other.

Tips • When comparing handle objects, use == to test whether objects have
the same handle. Use isequaln to treat NaN values as equal and
determine if objects with different handles have equal property
values.

• Use isequal if you want to test for equality and treat NaN values
as unequal.

1-3501

isequaln

See Also isequal | eq | is* | isa* | strcmp | relational operators

1-3502

isequal (MException)

Purpose Compare scalar MException objects for equality

Syntax TF = isequal(eObj1, eObj2)

Description TF = isequal(eObj1, eObj2) tests MException objects eObj1 and
eObj2 for equality, returning logical 1 (true) if the two objects are
identical, otherwise returning logical 0 (false).

See Also last(MException) | disp(MException) | ne(MException)
| eq(MException) | addCause(MException) |
throwAsCaller(MException) | rethrow(MException) |
throw(MException) | getReport(MException) | MException |
assert | error | try, catch

1-3503

isequalwithequalnans

Purpose Test arrays for equality, treating NaNs as equal

Note isequalwithequalnans is not recommended. Use isequaln
instead.

Syntax tf = isequalwithequalnans(A, B, ...)

Description tf = isequalwithequalnans(A, B, ...) returns logical 1 (true) if
the input arrays are the same type and size and hold the same contents,
and logical 0 (false) otherwise. NaN (Not a Number) values are
considered to be equal to each other. Numeric data types and structure
field order do not have to match.

Tips isequalwithequalnans is the same as isequal, except
isequalwithequalnans considers NaN (Not a Number) values to be
equal, and isequal does not.

isequalwithequalnans recursively compares the contents of cell arrays
and structures. If all the elements of a cell array or structure are
numerically equal, isequalwithequalnans returns logical 1.

Examples Arrays containing NaNs are handled differently by isequal and
isequalwithequalnans. isequal does not consider NaNs to be equal,
while isequalwithequalnans does.

A = [32 8 -29 NaN 0 5.7];
B = A;
isequal(A, B)
ans =

0

isequalwithequalnans(A, B)
ans =

1

1-3504

isequalwithequalnans

The position of NaN elements in the array does matter. If they
are not in the same position in the arrays being compared, then
isequalwithequalnans returns zero.

A = [2 4 6 NaN 8]; B = [2 4 NaN 6 8];
isequalwithequalnans(A, B)
ans =

0

See Also isequal | strcmp | isa | is* | relational operators | isequaln

1-3505

isevent

Purpose Determine whether input is COM object event

Syntax tf = h.isevent('eventname')
tf = isevent(h, 'eventname')

Description tf = h.isevent('eventname') returns logical 1 (true) if event_name
is an event recognized by COM object h. Otherwise, returns logical 0
(false). The event_name argument is not case sensitive.

tf = isevent(h, 'eventname') is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Test events in a MATLAB sample control object:

1 Create an instance of the mwsamp control and test DblClick:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.isevent('DblClick')

MATLAB displays true, indicating DblClick is an event.

2 Try the same test onRedraw:

h.isevent('Redraw')

MATLAB displays false, indicating Redraw is not an event; it is
a method.

Test events in a Microsoft Excel workbook object:

1 Create a Workbook object wb:

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = wbs.Add;

1-3506

isevent

2 Test Activate:

wb.isevent('Activate')

MATLAB displays true, indicating Activate is an event.

3 Test Save:

wb.isevent('Save')

MATLAB displays false, indicating Save is not an event; it is a
method.

See Also events (COM) | eventlisteners | registerevent

How To • “Exploring Events”

• “Functions for Working with Events”

1-3507

isfield

Purpose Determine whether input is structure array field

Syntax tf = isfield(S, 'fieldname')
tf = isfield(S, C)

Description tf = isfield(S, 'fieldname') examines structure S to see if it
includes the field specified by the quoted string 'fieldname'. Output
tf is set to logical 1 (true) if S contains the field, or logical 0 (false) if
not. If S is not a structure array, isfield returns false.

tf = isfield(S, C) examines structure S for multiple fieldnames as
specified in cell array of strings C, and returns an array of logical values
to indicate which of these fields are part of the structure. Elements of
output array tf are set to a logical 1 (true) if the corresponding element
of C holds a fieldname that belongs to structure S. Otherwise, logical
0 (false) is returned in that element. In other words, if structure
S contains the field specified in C{m,n}, isfield returns a logical 1
(true) in tf(m,n).

Note isfield returns false if the field or fieldnames input is empty.

Examples Example 1 — Single Fieldname Syntax

Given the following MATLAB structure,

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isfield identifies billing as a field of that structure.

isfield(patient,'billing')
ans =

1

1-3508

isfield

Example 2 — Multiple Fieldname Syntax

Check structure S for any of four possible fieldnames. Only the first is
found, so the first element of the return value is set to true:

S = struct('one', 1, 'two', 2);

fields = isfield(S, {'two', 'pi', 'One', 3.14})
fields =

1 0 0 0

See Also fieldnames | setfield | getfield | orderfields | rmfield | struct
| isstruct | iscell | isa | is*

How To • dynamic field names

1-3509

isfinite

Purpose Array elements that are finite

Syntax TF = isfinite(A)

Description TF = isfinite(A) returns an array the same size as A containing
logical 1 (true) where the elements of the array A are finite and logical
0 (false) where they are infinite or NaN. For a complex number z,
isfinite(z) returns 1 if both the real and imaginary parts of z are
finite, and 0 if either the real or the imaginary part is infinite or NaN.

For any real A, exactly one of the three quantities isfinite(A),
isinf(A), and isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2];
isfinite(1./a)
ans =

1 1 0 1 1
isfinite(0./a)
ans =

1 1 0 1 1

See Also isinf | isnan | is*

1-3510

isfloat

Purpose Determine if input is floating-point array

Syntax tf = isfloat(A)

Description tf = isfloat(A) returns true if A is a floating-point array and false
otherwise. The floating-point types are single and double, and
subclasses of single and double.

Examples

These examples show the values isfloat returns when passed specific
types:

% pi returns a floating-point value
isfloat(pi)
ans =

1
% Complex numbers are floating-point values
isfloat(3+7i)
ans =

1
% Single-precision numbers are floating-point values
isfloat(realmax('single'))
ans =

1
% isfloat returns a logical value
isfloat(isfloat(pi))
ans =

0

See Also isa | isinteger | double | single | isnumeric

1-3511

isglobal

Purpose Determine whether input is global variable

Note Support for the isglobal function will be removed in a future
release of the MATLAB software. See “Tips” on page 1-3512 below.

Syntax tf = isglobal(A)

Description tf = isglobal(A) returns logical 1 (true) if A has been declared to be
a global variable in the context from which isglobal is called, and
logical 0 (false) otherwise.

Tips isglobal is most commonly used in conjunction with conditional global
declaration. An alternate approach is to use a pair of variables, one
local and one declared global.

Instead of using

if condition
global x

end

x = some_value

if isglobal(x)
do_something

end

You can use

global gx
if condition

gx = some_value
else

x = some_value
end

1-3512

isglobal

if condition
do_something

end

If no other workaround is possible, you can replace the command

isglobal(variable)

with

~isempty(whos('global','variable'))

See Also global | isvarname | isa | is*

1-3513

ishandle

Purpose Test for valid graphics or Java object handle

Syntax ishandle(H)

Description ishandle(H) returns an array whose elements are 1 where the elements
of H are graphics or Java object handles, and 0 where they are not.

Note You should use the most specific function for your application
instead of ishandle, as described in the following sections.

MATLAB Object Handles

Use the isa function to determine the class of MATLAB objects and use
the isvalid handle class method to determine the validity of handle
objects. See “Testing Handle Validity” for information on testing for
MATLAB handle objects.

Graphics Object Handles

Use ishghandle for graphics objects.

Java Object Handles

Use isjava for Java objects.

See Also isa | isjava | ishghandle

1-3514

ishermitian

Purpose Determine if matrix is Hermitian or skew-Hermitian

Syntax tf = ishermitian(A)
tf = ishermitian(A,skewOption)

Description tf = ishermitian(A) returns logical 1 (true) if square matrix A is
Hermitian; otherwise, it returns logical 0 (false).

tf = ishermitian(A,skewOption) specifies the type of the test.
Specify skewOption as 'skew' to determine if A is skew-Hermitian.

Input
Arguments

A - Input matrix
numeric matrix

Input matrix, specified as a numeric matrix. If A is not square, then
ishermitian returns logical 0 (false).

Data Types
single | double
Complex Number Support: Yes

skewOption - Test type
'nonskew' (default) | 'skew'

Test type, specified as 'nonskew' (default) or 'skew'. Specify
'skew' to test whether A is skew-Hermitian. Specifying
ishermitian(A,'nonskew') is equivalent to ishermitian(A).

Data Types
char

Examples Test if Symmetric Matrix Is Hermitian

Create a 3-by-3 matrix.

A = [1 0 1i; 0 1 0; 1i 0 1]

A =

1-3515

ishermitian

1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 1.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 1.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

The matrix is symmetric with respect to its real-valued diagonal.

Test whether the matrix is Hermitian.

tf = ishermitian(A)

tf =

0

The result is logical 0 (false) because A is not Hermitian. In this case,
A is equal to its transpose, A.', but not its complex conjugate transpose,
A'.

Change the element in A(3,1) to be -1i.

A(3,1) = -1i;

Determine if the modified matrix is Hermitian.

tf = ishermitian(A)

tf =

1

The matrix, A, is now Hermitian because it is equal to its complex
conjugate transpose, A'.

Test if Matrix Is Skew-Hermitian

Create a 3-by-3 matrix.

A = [-1i -1 1-i;1 -1i -1;-1-i 1 -1i]

1-3516

ishermitian

A =

0.0000 - 1.0000i -1.0000 + 0.0000i 1.0000 - 1.0000i
1.0000 + 0.0000i 0.0000 - 1.0000i -1.0000 + 0.0000i

-1.0000 - 1.0000i 1.0000 + 0.0000i 0.0000 - 1.0000i

The matrix has pure imaginary numbers on the main diagonal.

Specify skewOption as 'skew' to determine whether the matrix is
skew-Hermitian.

tf = ishermitian(A,'skew')

tf =

1

The matrix, A, is skew-Hermitian since it is equal to the negation of its
complex conjugate transpose, -A'.

Definitions Hermitian Matrix

• A square matrix, A, is Hermitian if it is equal to its complex conjugate
transpose, A = A'.

In terms of the matrix elements, this means that

a ai j j i, , .

• The entries on the diagonal of a Hermitian matrix are always real.
Since real matrices are unaffected by complex conjugation, a real
matrix that is symmetric is also Hermitian. For example, the matrix

A

1
0

0
2

1
0

1 0 1

is both symmetric and Hermitian.

1-3517

ishermitian

• The eigenvalues of a Hermitian matrix are real.

Skew-Hermitian Matrix

• A square matrix, A, is skew-Hermitian if it is equal to the negation
of its complex conjugate transpose, A = -A'.

In terms of the matrix elements, this means that

a ai j j i, , .

• The entries on the diagonal of a skew-Hermitian matrix are always
pure imaginary or zero. Since real matrices are unaffected by
complex conjugation, a real matrix that is skew-symmetric is also
skew-Hermitian. For example, the matrix

A

0 1
1 0

is both skew-Hermitian and skew-symmetric.

• The eigenvalues of a skew-Hermitian matrix are purely imaginary
or zero.

See Also issymmetric | isreal | eig | transpose | ctranspose

1-3518

ishghandle

Purpose True for Handle Graphics object handles

Syntax ishghandle(h)

Description ishghandle(h) returns an array that contains 1’s where the elements
of h are handles to existing graphic objects and 0’s where they are not.
Differs from ishandle in that Simulink objects handles return false.

Examples Create a plot and find the valid handles:

x = [1:10];
y = [1:10];
p=plot(x,y);
ishghandle([x y p])
% This returns a 1-by-21 array of values
% with ones at the first, eleventh, and last values,
% if the figure handle is 1.

See Also isa | ishandle | findobj | gca | gcf | set

How To • “Accessing Object Handles”

1-3519

ishold

Purpose Current hold state

Syntax tf = ishold

Description tf = ishold returns 1 if hold is on, and 0 if it is off. When hold is on,
the current plot and most axis properties are held so that subsequent
graphing commands add to the existing graph.

A state of hold on implies that both figure and axes NextPlot
properties are set to add.

See Also hold | newplot

How To • “Controlling Graphics Output”

1-3520

isinf

Purpose Array elements that are infinite

Syntax TF = isinf(A)

Description TF = isinf(A) returns an array the same size as A containing logical 1
(true) where the elements of A are +Inf or -Inf and logical 0 (false)
where they are not. For a complex number z, isinf(z) returns 1 if
either the real or imaginary part of z is infinite, and 0 if both the real
and imaginary parts are finite or NaN.

For any real A, exactly one of the three quantities isfinite(A),
isinf(A), and isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2];

isinf(1./a)

ans =
0 0 1 0 0

isinf(0./a)

ans =
0 0 0 0 0

See Also isfinite | isnan | is*

1-3521

isinteger

Purpose Determine if input is integer array

Syntax tf = isinteger(A)

Description tf = isinteger(A) returns true if the array A is an integer type and
false otherwise.

An integer array is any of the following integer types and any subclasses
of those types:

MATLAB Integer Types

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

Examples These examples show the values isinteger returns when passed
specific types:

% uint8 is one of the integer types
isinteger(uint8(1:255))
ans =

1
% pi returns a double-precision value
isinteger(pi)
ans =

0
% Constants are double-precision by default
isinteger(3)

1-3522

isinteger

ans =
0

% isinteger returns a logical value
isinteger(isinteger(uint8(3)))
ans =

0

See Also isa | isnumeric | isfloat

1-3523

isinterface

Purpose Determine whether input is COM interface

Syntax tf = h.isinterface
tf = isinterface(h)

Description tf = h.isinterface returns logical 1 (true) if handle h is a COM
interface. Otherwise, returns logical 0 (false).

tf = isinterface(h) is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Test an instance of a Microsoft Excel application:

h = actxserver('Excel.Application');
h.isinterface

MATLAB displays false, indicating object h is not an interface.

Test a workbooks object:

w = h.get('workbooks');
w.isinterface

MATLAB displays true, indicating object w is an interface.

See Also iscom | interfaces

How To • “Exploring Interfaces”

1-3524

isjava

Purpose Determine if input is Java object

Syntax tf = isjava(A)

Description tf = isjava(A) returns logical 1 (true) if object A is a Java object.
Otherwise, it returns logical 0 (false).

Examples Test if java.util.Date Is Java Object

Create an instance of the Java Date class.

myDate = java.util.Date;
isjava(myDate)

ans =

1

myDate is a Java object.

However, myDate is not a MATLAB object.

isobject(myDate)

ans =

0

See Also isobject | javaArray | javaMethod | javaObject | isa | is*

1-3525

containers.Map.isKey

Purpose Determine if containers.Map object contains key

Syntax tf = isKey(mapObj,keySet)

Description tf = isKey(mapObj,keySet) looks for the specified keys in mapObj,
and returns logical true (1) for the keys that it finds, and logical false
(0) for those it does not. keySet is a scalar key or a cell array of keys.

Input
Arguments

mapObj

Object of class containers.Map.

keySet

Scalar value, string, or cell array that specifies keys to find in
mapObj.

Output
Arguments

tf

Array of logical values. If keySet is a scalar or a string, tf is
a scalar. Otherwise, tf has the same size and dimensions as
keySet.

Examples Find Keys in a Map

Construct a map that contains rainfall data for several months:

months = {'Jan', 'Feb', 'Mar', 'Apr'};
rainfall = [327.2, 368.2, 197.6, 178.4];
mapObj = containers.Map(months,rainfall);

Determine if keys Apr, May, and Jun are in the map:

keySet = {'Apr','May','Jun'};
tf = isKey(mapObj,keySet)

This code returns 1-by-3 vector tf:

tf =
1 0 0

1-3526

containers.Map.isKey

Find a Single Key

Determine if mapObj from the previous example contains key Feb:

keySet = 'Feb';
tf = isKey(mapObj,keySet)

This code returns scalar tf:

tf =
1

See Also containers.Map | keys | values | remove

1-3527

iskeyword

Purpose Determine whether input is MATLAB keyword

Syntax tf = iskeyword('str')
iskeyword str
iskeyword

Description tf = iskeyword('str') returns logical 1 (true) if the string str is a
keyword in the MATLAB language and logical 0 (false) otherwise.
MATLAB keywords cannot be used as variable names.

iskeyword str uses the MATLAB command format.

iskeyword returns a list of all MATLAB keywords.

Examples To test if the word while is a MATLAB keyword,

iskeyword while
ans =

1

To obtain a list of all MATLAB keywords,

iskeyword
'break'
'case'
'catch'
'classdef'
'continue'
'else'
'elseif'
'end'
'for'
'function'
'global'
'if'
'otherwise'
'parfor'
'persistent'

1-3528

iskeyword

'return'
'spmd'
'switch'
'try'
'while'

See Also isvarname | matlab.lang.makeValidName |
matlab.lang.makeUniqueStrings | is*

1-3529

isletter

Purpose Array elements that are alphabetic letters

Syntax tf = isletter('str')

Description tf = isletter('str') returns an array the same size as str
containing logical 1 (true) where the elements of str are letters of the
alphabet and logical 0 (false) where they are not.

Examples Find the letters in character array s.

s = 'A1,B2,C3';

isletter(s)
ans =

1 0 0 1 0 0 1 0

See Also ischar | isspace | isstrprop | iscellstr | isnumeric | char |
strings | isa | is*

1-3530

islogical

Purpose Determine if input is logical array

Syntax tf = islogical(A)

Description tf = islogical(A) returns true if A is a logical array and false
otherwise. islogical also returns true if A is an instance of a class
that is derived from the logical class.

Examples These examples show the values islogical returns when passed
specific types:

% Relational operators return logical values
islogical(5<7)
ans =

1

% true and false return logical values
islogical(true) & islogical(false)
ans =

1

% Constants are double-precision by default
islogical(1)
ans =

0

% logical creates logical values
islogical(logical(1))
ans =

1

See Also logical | isa | is*

Concepts • “Determine if Arrays Are Logical”

1-3531

ismac

Purpose Determine if version is for Mac OS X platform

Syntax tf = ismac

Description tf = ismac returns logical 1 (true) if the version of MATLAB software
is for the Apple Mac OS X platform. Otherwise, it returns logical 0
(false).

Tips • The isunix function also determines if version is for Mac OS X
platforms.

See Also isunix | ispc | computer | isstudent | is*

1-3532

ismatrix

Purpose Determine whether input is matrix

Syntax ismatrix(V)

Description ismatrix(V) returns logical 1 (true) if size(V) returns [m n] with
nonnegative integer values m and n, and logical 0 (false) otherwise.

Examples Create three vectors:

V1 = rand(5,1);
V2 = rand(5,1);
V3 = rand(5,1);

Concatenate the vectors and check that the result is a matrix. ismatrix
returns 1:

M = cat(2,V1,V2,V3);
ismatrix(M)
ans =

1

See Also iscolumn | isrow | isscalar | isvector

1-3533

ismember

Purpose Array elements that are members of set array

Syntax Lia = ismember(A,B)
Lia = ismember(A,B,'rows')
[Lia,Locb] = ismember(A,B)
[Lia,Locb] = ismember(A,B,'rows')

[Lia,Locb] = ismember(___ ,'legacy')

Description Lia = ismember(A,B) returns an array containing 1 (true) where the
data in A is found in B. Elsewhere, it returns 0 (false).

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then ismember returns
a logical value for each element of A. The output, Lia, is an array of
the same size as A.

• If A and B are tables, then ismember returns a logical value for each
row of A. The output, Lia, is a column vector with the same number
of rows as A.

Lia = ismember(A,B,'rows') treats each row of A and each row of B as
single entities and returns a column vector containing 1 (true) where
the rows of A are also rows of B. Elsewhere, it returns 0 (false).

A and B must have the same number of columns when you use the
'rows' option. Furthermore, the 'rows' option does not support cell
arrays.

[Lia,Locb] = ismember(A,B) also returns an array, Locb.

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then Locb contains the
lowest index in B for each value in A that is a member of B. The output
array, Locb, contains 0 wherever A is not a member of B.

1-3534

ismember

• If A and B are tables, then Locb contains the lowest index in B for each
row in A that is also a row in B. The output vector, Locb, contains
0 whenever A is not a row of B.

[Lia,Locb] = ismember(A,B,'rows') also returns a column vector,
Locb, containing the lowest index in B for each row in A that is also a row
in B. The output vector, Locb, contains 0 wherever A is not a row of B.

[Lia,Locb] = ismember(___ ,'legacy') preserves the behavior of
the ismember function from R2012b and prior releases using any of the
input arguments in previous syntaxes.

The 'legacy' option does not support categorical arrays or tables.

Input
Arguments

A - Query array
numeric array | logical array | character array | categorical array |
cell array of strings | table

Query array, specified as a numeric array, logical array, character
array, categorical array, cell array of strings, or a table.

A must belong to the same class as B with the following exceptions:

• logical, char, and all numeric classes can combine with double
arrays.

• Cell arrays of strings can combine with char arrays.

• Categorical arrays can combine with cell arrays of strings or single
strings.

If A and B are both ordinal categorical arrays, they must have the same
sets of categories, including their order. If neither A nor B are ordinal,
they need not have the same sets of categories, and the comparison is
performed using the category names.

If you specify the 'rows' option, A must have the same number of
columns as B.

1-3535

ismember

If A is a table, it must have the same variable names as B. Conversely,
the row names do not matter. Two rows that have the same values, but
different names, are considered equal.

Furthermore, A can be an object with the following class methods:

• sort (or sortrows for the 'rows' option)

• eq

• ne

The object class methods must be consistent with each other. These
objects include heterogeneous arrays derived from the same root class.

B - Set array
numeric array | logical array | character array | categorical array |
cell array of strings | table

Set array, specified as a numeric array, logical array, character array,
categorical array, cell array of strings, or a table.

B must belong to the same class as A with the following exceptions:

• logical, char, and all numeric classes can combine with double
arrays.

• Cell arrays of strings can combine with char arrays.

• Categorical arrays can combine with cell arrays of strings or single
strings.

If A and B are both ordinal categorical arrays, they must have the same
sets of categories, including their order. If neither A nor B are ordinal,
they need not have the same sets of categories, and the comparison is
performed using the category names.

If you specify the 'rows' option, B must have the same number of
columns as A.

If B is a table, it must have the same variable names as A. Conversely,
the row names do not matter. Two rows that have the same values, but
different names, are considered equal.

1-3536

ismember

Furthermore, B can be an object with the following class methods:

• sort (or sortrows for the 'rows' option)

• eq

• ne

The object class methods must be consistent with each other. These
objects include heterogeneous arrays derived from the same root class.

Output
Arguments

Lia - Logical index to A
vector | matrix | N-D array

Logical index to A, returned as a vector, matrix or N-D array containing
1 (true) wherever the values (or rows) in A are members of B. Elsewhere,
it returns 0 (false).

Lia is an array of the same size as A, unless you specify the 'rows' flag.

If the 'rows' flag is specified or if A is a table, Lia is a column vector
with the same number of rows as A.

Locb - Locations in B
vector | matrix | N-D array

Locations in B, returned as a vector, matrix, or N-D array. If the
'legacy' flag is not specified, Locb contains the lowest indices to the
values (or rows) in B that are found in A. Locb contains 0 wherever A is
not a member of B.

Locb is an array of the same size as A unless you specify the 'rows' flag.

If the 'rows' flag is specified or if A is a table, Locb is a column vector
with the same number of rows as A.

Examples Values That Are Members of Set

Define two vectors with values in common.

A = [5 3 4 2]; B = [2 4 4 4 6 8];

1-3537

ismember

Determine which elements of A are also in B.

Lia = ismember(A,B)

Lia =

0 0 1 1

A(3) and A(4) are found in B.

Table Rows Found in Another Table

Define two tables with rows in common.

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))
B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

A =

Var1 Var2 Var3
---- ---- -----
1 A false
2 B true
3 C false
4 D true
5 E false

B =

Var1 Var2 Var3
---- ---- -----
1 A false
3 C false
5 E false
7 G false
9 I false

1-3538

ismember

Determine which rows of A are also in B.

Lia = ismember(A,B)

Lia =

1
0
1
0
1

A(1,:), A(3,:), and A(5,:) are found in B.

Members of Set and Indices to Values

Define two vectors with values in common.

A = [5 3 4 2]; B = [2 4 4 4 6 8];

Determine which elements of A are also in B as well as their
corresponding locations in B.

[Lia,Locb] = ismember(A,B)

Lia =

0 0 1 1

Locb =

0 0 2 1

The lowest index to A(3) is B(2).

A(4) is found in B(1).

Rows of Another Table and Their Location

Define a table, A, of gender, age, and height for five people.

1-3539

ismember

A = table(['M';'M';'F';'M';'F'],[27;52;31;46;35],[74;68;64;61;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty' 'Bob' 'Judy'})

A =

Gender Age Height
------ --- ------

Ted M 27 74
Fred M 52 68
Betty F 31 64
Bob M 46 61
Judy F 35 64

Define a table, B, with rows in common with A.

B = table(['M';'F';'F';'F'],[47;31;35;23],[68;64;62;58],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Joe' 'Meg' 'Beth' 'Amy'})

B =

Gender Age Height
------ --- ------

Meg F 31 64
Joe M 47 68
Beth F 35 62
Amy F 23 58

Determine which rows of A are also in B, as well as their corresponding
locations in B.

[Lia,Locb] = ismember(A,B)

Lia =

0
0

1-3540

ismember

1
0
0

Locb =

0
0
2
0
0

Two rows that have the same values, but different names, are
considered equal. The same data for Betty is found in B(2,:), which
corresponds to Meg.

Rows That Belong to a Set

Define two matrices with a row in common.

A = [1 3 5 6; 2 4 6 8];
B = [2 4 6 8; 1 3 5 7; 2 4 6 8];

Determine which rows of A are also in B as well as their corresponding
locations in B.

[Lia, Locb] = ismember(A,B, 'rows')

Lia =

0
1

Locb =

0

1-3541

ismember

1

The lowest index to A(2,:) is B(1,:).

Members of Set Containing NaN Values

Define two vectors containing NaN.

A = [5 NaN NaN]; B = [5 NaN NaN];

Determine which elements of A are also in B as well as their
corresponding locations in B.

[Lia,Locb] = ismember(A,B)

Lia =

1 0 0

Locb =

1 0 0

ismember treats NaN values as distinct.

Cell Array of Strings with Trailing White Space

Create a cell array of strings, A.

A = {'dog','cat','fish','horse'};

Create a cell array of strings, B, where some of the strings have trailing
white space.

B = {'dog ','cat','fish ','horse'};

Determine which strings of A can be found in B.

[Lia,Locb] = ismember(A,B)

1-3542

ismember

Lia =

0 1 0 1

Locb =

0 2 0 4

ismember treats trailing white space in cell arrays of strings as distinct
characters.

Members of Char and Cell Array of Strings

Create a character array, A.

A = ['cat';'dog';'fox';'pig'];

Create a cell array of strings, B.

B = {'dog','cat','fish','horse'};

Determine which strings of A can be found in B.

[Lia,Locb] = ismember(A,B)

Lia =

1
1
0
0

Locb =

2
1
0

1-3543

ismember

0

Preserve Legacy Behavior of ismember

Use the 'legacy' flag to preserve the behavior of ismember from
R2012b and prior releases in your code.

Find the members of B with the current behavior.

A = [5 3 4 2]; B = [2 4 4 4 6 8];
[Lia1,Locb1] = ismember(A,B)

Lia1 =

0 0 1 1

Locb1 =

0 0 2 1

Find the members of B, and preserve the legacy behavior.

[Lia2,Locb2] = ismember(A,B,'legacy')

Lia2 =

0 0 1 1

Locb2 =

0 0 4 1

Tips • To find the rows from table A that are found in B with respect to a
subset of variables, you can use column subscripting. For example,
you can use ismember(A(:,vars),B(:,vars)), where vars is a
positive integer, a vector of positive integers, a variable name, a cell
array of variable names, or a logical vector.

1-3544

ismember

See Also unique | intersect | union | issorted | setdiff | setxor | sort

1-3545

ismethod

Purpose Determine if method of object

Syntax tf = ismethod(h, 'methodName')

Description tf = ismethod(h, 'methodName') returns logical 1 (true) if the
specified methodName is a public method of object obj. Otherwise,
returns logical 0 (false).

Examples Determine if objects support equality testing:

if ismethod(obj1,'eq') && ismethod(obj2,'eq')
tf = obj1 == obj2;

end

See Also methods | isprop | isobject | class

Tutorials • “Methods”

1-3546

ismethod (COM)

Purpose Determine whether input is COM object method

Syntax tf = h.ismethod('methodname')
tf = ismethod(h,'methodname')

Description tf = h.ismethod('methodname') returns logical 1 (true) if the
specified methodname is a method you can call on COM object h.
Otherwise, returns logical 0 (false).

tf = ismethod(h,'methodname') is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Test members of an instance of a Microsoft Excel application:

h = actxserver ('Excel.Application');
ismethod(h,'SaveWorkspace')

MATLAB returns true, SaveWorkspace is a method.

Try the same test on UsableWidth:

ismethod(h,'UsableWidth')

MATLAB returns false, UsableWidth is not a method; it is a property.

See Also methods | methodsview | isprop | isevent | isobject | class

How To • “Exploring Methods”

1-3547

ismissing

Purpose Find table elements with missing values

Syntax TF = ismissing(A)
TF = ismissing(A,id)

Description TF = ismissing(A) returns a logical array, TF, that indicates which
elements in the table A contain a missing value. The size of TF is the
same as the size of A.

Indicators for missing data depend on the data type:

• NaN for numeric arrays

• <undefined> for categorical arrays

• empty string, {''}, for cell arrays of strings

• blank string, [' '], for character arrays
ismissing ignores other data types.

TF = ismissing(A,id) treats the values in id as missing value
indicators. You must include NaN (for floating-point variables), the
empty string (for variables that are cell arrays of strings or character
arrays), or the string '<undefined>' (for categorical variables) to have
ismissing recognize them as missing value indicators.

Input
Arguments

A - Input table
table

Input table, specified as a table.

id - Missing value indicators
numeric vector | string | cell array containing numeric values and
strings

Missing value indicators, specified as a numeric vector, string, or cell
array containing numeric values and strings. Use strings to identify
categories in categorical variables that you want to treat as missing
values.

1-3548

ismissing

You must include NaN (for floating-point variables), the empty string
(for variables that are cell arrays of strings or character arrays), or the
string '<undefined>' (for categorical variables) to have ismissing
recognize them as missing value indicators.

Example: TF = ismissing(A,-99) recognizes only -99 as a missing
value.

Data Types
double | char | cell

Examples Missing Values in Table with Various Data Types

Create a table with variables of different data types where each
contains a missing value.

dblVar = [NaN;3;5;7;9];
singleVar = single([1;NaN;5;7;9]);
cellstrVar = {'one';'three';'';'seven';'nine'};
charVar = ['A';'C';'E';' ';'I'];
categoryVar = categorical({'red';'yellow';'blue';'violet';''});

A = table(dblVar,singleVar,cellstrVar,charVar,categoryVar)

A =

dblVar singleVar cellstrVar charVar categoryVar
______ _________ __________ _______ ___________

NaN 1 'one' A red
3 NaN 'three' C yellow
5 5 '' E blue
7 7 'seven' violet
9 9 'nine' I <undefined>

Find the table elements with missing values.

TF = ismissing(A)

1-3549

ismissing

TF =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

The size of TF is the same as the size of A.

Specify Indicators for Missing Values in Table

Create a table where 'NA', ''-99, NaN, and Inf represent missing
values.

dblVar = [NaN;3;Inf;7;9];
int8Var = int8([1;3;5;7;-99]);
cellstrVar = {'one';'three';'';'NA';'nine'};
charVar = ['A';'C';'E';' ';'I'];

A = table(dblVar,int8Var,cellstrVar,charVar)

A =

dblVar int8Var cellstrVar charVar
______ _______ __________ _______

NaN 1 'one' A
3 3 'three' C

Inf 5 '' E
7 7 'NA'
9 -99 'nine' I

Find the missing values in the table A.

id = {'NA' '' -99 NaN Inf};
TF = ismissing(A,id)

TF =

1-3550

ismissing

1 0 0 0
0 0 0 0
1 0 1 0
0 0 1 1
0 1 0 0

ismissing recognizes data in the each variable of the table, A as
missing values. ismissing ignores trailing white space in character
arrays. Therefore, since the empty string, '', is specified as a missing
value indicator, ismissing identifies the empty string in the cell arrays
of strings, A.cellstrVar, as well as the blank space in character array,
A.charVar as missing values.

Algorithms ismissing treats leading and trailing white space differently for cell
arrays of strings, character arrays, and categorical arrays.

• For cell arrays of strings, ismissing does not ignore white space.
All strings must match exactly.

• For character arrays, ismissing ignores trailing white space.
Therefore, when you specify the empty string, '', as a missing value
indicator, ismissing identifies the empty string in cell arrays of
strings, '', and the blank space in character arrays, ' ', as missing
values.

• For categorical arrays, ismissing ignores leading and trailing white
space.

Tips • You can use A(~any(TF,2),:) to return only complete rows from
A and A(:,~any(TF,1)) to return only the variables from A with
no missing values.

• Integer variables cannot store NaN; therefore, you must use a special
integer value (otherwise unused) to indicate missing integer data.
For example, -99.

See Also standardizeMissing | isnan | isempty | isundefined | table

1-3551

isnan

Purpose Array elements that are NaN

Syntax TF = isnan(A)

Description TF = isnan(A) returns an array the same size as A containing logical
1 (true) where the elements of A are NaNs and logical 0 (false) where
they are not. For a complex number z, isnan(z) returns 1 if either the
real or imaginary part of z is NaN, and 0 if both the real and imaginary
parts are finite or Inf.

For any real A, exactly one of the three quantities isfinite(A),
isinf(A), and isnan(A) is equal to one.

Examples A = [-2 -1 0 1 2];

isnan(1./A)
ans =

0 0 0 0 0

isnan(0./A)
ans =

0 0 1 0 0

See Also isfinite | isinf | is* | nan

1-3552

isnumeric

Purpose Determine if input is numeric array

Syntax tf = isnumeric(A)

Description tf = isnumeric(A) returns true if A is a numeric array and false
otherwise.

A numeric array is any of the following numeric types and any
subclasses of those types:

MATLAB Numeric Types

single Single-precision floating-point array

double Double-precision floating-point array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

Examples These examples show the values isnumeric returns when passed
specific types:

% pi returns a numeric value
isnumeric(pi)
ans =

1
% Complex numbers are numeric
isnumeric(3+7i)
ans =

1-3553

isnumeric

1
% Integers are numeric
isnumeric(uint8(1:255))
ans =

1
% isnumeric returns a logical value
isnumeric(isnumeric(pi))
ans =

0

See Also isfloat | isinteger | isnan | isreal | isprime | isfinite | isinf
| isa | is*

1-3554

isobject

Purpose Determine if input is MATLAB object

Syntax tf = isobject(A)

Description tf = isobject(A) returns true if A is an object of a MATLAB class.
Otherwise, it returns false.

Handle Graphics objects return false. Use ishghandle to test for
Handle Graphics objects.

Instances of MATLAB fundamental classes return false. Use isa to
test for any of these types. See “Fundamental MATLAB Classes” for
more on these classes.

Examples These examples show the values isobject returns when passed specific
types:

Define the following MATLAB class:

classdef button < handle
properties

UiHandle
end
methods

function obj = button(pos)
obj.UiHandle = uicontrol('Position',pos,...

'Style','pushbutton');
end

end
end

Determine which objects are MATLAB objects. For example:

h = button([20 20 60 60]);
isobject(h)
ans =

1
isobject(h.UiHandle)

1-3555

isobject

ans =
0

Use isjava to test for Java objects in MATLAB, where it returns false
for MATLAB objects:

isjava(h)
ans =

0

Create an object that is a MATLAB numeric type:

a = pi;
isa(a,'double')
ans =

1
isobject(a)
ans =

0

See Also class | isa | is*

Tutorials • “Class Syntax Fundamentals”

1-3556

isocaps

Purpose Compute isosurface end-cap geometry

Syntax fvc = isocaps(X,Y,Z,V,isovalue)
fvc = isocaps(V,isovalue)
fvc = isocaps(...,'enclose')
fvc = isocaps(...,'whichplane')
[f,v,c] = isocaps(...)
isocaps(...)

Description fvc = isocaps(X,Y,Z,V,isovalue) computes isosurface end-cap
geometry for the volume data V at isosurface value isovalue. The
arrays X, Y, and Z define the coordinates for the volume V.

The struct fvc contains the face, vertex, and color data for the end-caps
and can be passed directly to the patch command.

fvc = isocaps(V,isovalue) assumes the arrays X, Y, and Z are defined
as [X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isocaps(...,'enclose') specifies whether the end-caps
enclose data values above or below the value specified in isovalue. The
string enclose can be either above (default) or below.

fvc = isocaps(...,'whichplane') specifies on which planes to draw
the end-caps. Possible values for whichplane are all (default), xmin,
xmax, ymin, ymax, zmin, or zmax.

[f,v,c] = isocaps(...) returns the face, vertex, and color data for
the end-caps in three arrays instead of the struct fvc.

isocaps(...) without output arguments draws a patch with the
computed faces, vertices, and colors.

Examples This example uses a data set that is a collection of MRI slices of a
human skull. It illustrates the use of isocaps to draw the end-caps
on this cutaway volume.

The red isosurface shows the outline of the volume (skull) and the
end-caps show what is inside of the volume.

1-3557

isocaps

The patch created from the end-cap data (p2) uses interpolated
face coloring, which means the gray colormap and the light sources
determine how it is colored. The isosurface patch (p1) used a flat red
face color, which is affected by the lights, but does not use the colormap.

load mri
D = squeeze(D);
D(:,1:60,:) = [];
p1 = patch(isosurface(D, 5),'FaceColor','red',...
'EdgeColor','none');

p2 = patch(isocaps(D, 5),'FaceColor','interp',...
'EdgeColor','none');

view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight left; camlight; lighting gouraud
isonormals(D,p1)

1-3558

isocaps

See Also isosurface | isonormals | smooth3 | subvolume | reducevolume
| reducepatch

How To • “Isocaps Add Context to Visualizations”

1-3559

isocolors

Purpose Calculate isosurface and patch colors

Syntax nc = isocolors(X,Y,Z,C,vertices)
nc = isocolors(X,Y,Z,R,G,B,vertices)
nc = isocolors(C,vertices)
nc = isocolors(R,G,B,vertices)
nc = isocolors(...,PatchHandle)
isocolors(...,PatchHandle)

Description nc = isocolors(X,Y,Z,C,vertices) computes the colors of isosurface
(patch object) vertices (vertices) using color values C. Arrays X, Y, Z
define the coordinates for the color data in C and must be monotonic
vectors that represent a Cartesian, axis-aligned grid (as if produced by
meshgrid). The colors are returned in nc. C must be 3-D (index colors).

nc = isocolors(X,Y,Z,R,G,B,vertices) uses R, G, B as the red,
green, and blue color arrays (true color).

nc = isocolors(C,vertices), and nc =
isocolors(R,G,B,vertices) assume X, Y, and Z are determined by
the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(C).

nc = isocolors(...,PatchHandle) uses the vertices from the patch
identified by PatchHandle.

isocolors(...,PatchHandle) sets the FaceVertexCData property of
the patch specified by PatchHandle to the computed colors.

Examples Indexed Color Data

This example displays an isosurface and colors it with random data
using indexed color. (See “Interpolating in Indexed Color Versus
Truecolor” for information on how patch objects interpret color data.)

[x y z] = meshgrid(1:20,1:20,1:20);

1-3560

isocolors

data = sqrt(x.^2 + y.^2 + z.^2);
cdata = smooth3(rand(size(data)),'box',7);
p = patch(isosurface(x,y,z,data,10));
isonormals(x,y,z,data,p);
isocolors(x,y,z,cdata,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);axis tight
camlight; lighting phong;

True Color Data

This example displays an isosurface and colors it with true color (RGB)
data.

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(x,y,z,data,20));
isonormals(x,y,z,data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);

1-3561

isocolors

isocolors(x,y,z,r/20,g/20,b/20,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

Modified True Color Data

This example uses isocolors to calculate the true color data using the
isosurface’s (patch object’s) vertices, but then returns the color data in
a variable (c) in order to modify the values. It then explicitly sets the
isosurface’s FaceVertexCData to the new data (1-c).

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(data,20));
isonormals(data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);
c = isocolors(r/20,g/20,b/20,p);
set(p,'FaceVertexCData',1-c)

1-3562

isocolors

set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

See Also isosurface | isocaps | smooth3 | subvolume | reducevolume |
reducepatch | isonormals

1-3563

isonormals

Purpose Compute normals of isosurface vertices

Syntax n = isonormals(X,Y,Z,V,vertices)
n = isonormals(V,vertices)
n = isonormals(V,p) and n = isonormals(X,Y,Z,V,p)
n = isonormals(...,'negate')
isonormals(V,p) and isonormals(X,Y,Z,V,p)

Description n = isonormals(X,Y,Z,V,vertices) computes the normals of the
isosurface vertices from the vertex list, vertices, using the gradient of
the data V. The arrays X, Y, and Z define the coordinates for the volume
V. The computed normals are returned in n.

n = isonormals(V,vertices) assumes the arrays X, Y, and Z are
defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] =
size(V).

n = isonormals(V,p) and n = isonormals(X,Y,Z,V,p) compute
normals from the vertices of the patch identified by the handle p.

n = isonormals(...,'negate') negates (reverses the direction of)
the normals.

isonormals(V,p) and isonormals(X,Y,Z,V,p) set the
VertexNormals property of the patch identified by the handle p to the
computed normals rather than returning the values.

Examples This example compares the effect of different surface normals on the
visual appearance of lit isosurfaces. In one case, the triangles used to
draw the isosurface define the normals. In the other, the isonormals
function uses the volume data to calculate the vertex normals based on
the gradient of the data points. The latter approach generally produces
a smoother-appearing isosurface.

Define a 3-D array of volume data (cat, interp3):

data = cat(3, [0 .2 0; 0 .3 0; 0 0 0], ...
[.1 .2 0; 0 1 0; .2 .7 0],...
[0 .4 .2; .2 .4 0;.1 .1 0]);

1-3564

isonormals

data = interp3(data,3,'cubic');

Draw an isosurface from the volume data and add lights. This
isosurface uses triangle normals (patch, isosurface, view, daspect,
axis, camlight, lighting, title):

subplot(1,2,1)
p1 = patch(isosurface(data,.5),...
'FaceColor','red','EdgeColor','none');
view(3); daspect([1,1,1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Triangle Normals')

Draw the same lit isosurface using normals calculated from the volume
data:

subplot(1,2,2)
p2 = patch(isosurface(data,.5),...

'FaceColor','red','EdgeColor','none');
isonormals(data,p2)
view(3); daspect([1 1 1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Data Normals')

These isosurfaces illustrate the difference between triangle and data
normals:

1-3565

isonormals

See Also interp3 | isosurface | isocaps | smooth3 | subvolume |
reducevolume | reducepatch

1-3566

isordinal

Purpose Determine whether input is ordinal categorical array

Syntax tf = isordinal(A)

Description tf = isordinal(A) returns logical 1 (true) if A is an ordinal categorical
array. Otherwise, isordinal returns logical 0 (false).

If a categorical array is ordinal, you can use relational operations for
inequality comparisons, such as greater and less than, in addition to
tests for equality.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

Examples Determine Whether Categorical Array Is Ordinal

Create a categorical array containing the sizes of 10 objects. Use the
names small, medium, and large for the values 'S', 'M', and 'L'.

A = categorical({'M';'L';'S';'S';'M';'L';'M';'L';'M';'S'},...
{'S','M','L'},{'small','medium','large'})

A =

medium
large
small
small
medium
large
medium
large
medium
small

1-3567

isordinal

Determine if the categories of A have a mathematical ordering.

isordinal(A)

ans =

0

A is not ordinal. You must use the 'Ordinal',true name-value pair
argument in the function categorical to create an ordinal categorical
array.

Tips • To convert a categorical array, A, from nonordinal to ordinal, use A =
categorical(A,'Ordinal',true).

• To convert a categorical array, A, from ordinal to nonordinal, use A =
categorical(A,'Ordinal',false).

See Also categorical | categories

Concepts • “Ordinal Categorical Arrays”

1-3568

isosurface

Purpose Extract isosurface data from volume data

Syntax fv = isosurface(X,Y,Z,V,isovalue)
fv = isosurface(V,isovalue)
fvc = isosurface(...,colors)
fv = isosurface(...,'noshare')
fv = isosurface(...,'verbose')
[f,v] = isosurface(...)
[f,v,c] = isosurface(...)
isosurface(...)

Description fv = isosurface(X,Y,Z,V,isovalue) computes isosurface data from
the volume data V at the isosurface value specified in isovalue. That
is, the isosurface connects points that have the specified value much the
way contour lines connect points of equal elevation.

The arrays X, Y, and Z represent a Cartesian, axis-aligned grid. V
contains the corresponding values at these grid points. The coordinate
arrays (X, Y, and Z) must be monotonic and conform to the format
produced by meshgrid. V must be a 3D volume array of the same size
as X, Y, and Z.

The struct fv contains the faces and vertices of the isosurface, which
you can pass directly to the patch command.

fv = isosurface(V,isovalue) assumes the arrays X, Y, and Z are
defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] =
size(V).

fvc = isosurface(...,colors) interpolates the array colors
onto the scalar field and returns the interpolated values in the
facevertexcdata field of the fvc structure. The size of the colors
array must be the same as V. The colors argument enables you to
control the color mapping of the isosurface with data different from that
used to calculate the isosurface (e.g., temperature data superimposed
on a wind current isosurface).

1-3569

isosurface

fv = isosurface(...,'noshare') does not create shared vertices.
This is faster, but produces a larger set of vertices.

fv = isosurface(...,'verbose') prints progress messages to the
command window as the computation progresses.

[f,v] = isosurface(...) or [f,v,c] = isosurface(...) returns
the faces and vertices (and faceVertexcCData) in separate arrays
instead of a struct.

isosurface(...) with no output arguments, creates a patch in the
current axes with the computed faces and vertices. If no current axes
exists, a new axes is created with a 3-D view and appropriate lighting.

Special Case Behavior — isosurface Called with No Output
Arguments

If there is no current axes and you call isosurface with without
assigning output arguments, MATLAB creates a new axes, sets it to a
3-D view, and adds lighting to the isosurface graph.

Tips You can pass the fv structure created by isosurface directly to the
patch command, but you cannot pass the individual faces and vertices
arrays (f, v) to patch without specifying property names. For example,

patch(isosurface(X,Y,Z,V,isovalue))

or

[f,v] = isosurface(X,Y,Z,V,isovalue);
patch('Faces',f,'Vertices',v)

Examples Example 1

This example uses the flow data set, which represents the speed profile
of a submerged jet within an infinite tank (type help flow for more
information). The isosurface is drawn at the data value of -3. The
statements that follow the patch command prepare the isosurface for
lighting by

1-3570

isosurface

• Recalculating the isosurface normals based on the volume data
(isonormals)

• Setting the face and edge color (set, FaceColor, EdgeColor)

• Specifying the view (daspect, view)

• Adding lights (camlight, lighting)

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
set(p,'FaceColor','red','EdgeColor','none');
daspect([1,1,1])
view(3); axis tight
camlight
lighting gouraud

1-3571

isosurface

Example 2

Visualize the same flow data as above, but color-code the surface
to indicate magnitude along the X-axis. Use a sixth argument to
isosurface, which provides a means to overlay another data set by
coloring the resulting isosurface. The colors variable is a vector
containing a scalar value for each vertex in the isosurface, to be
portrayed with the current color map. In this case, it is one of the

1-3572

isosurface

variables that define the surface, but it could be entirely independent.
You can apply a different color scheme by changing the current figure
color map.

[x,y,z,v] = flow;
[faces,verts,colors] = isosurface(x,y,z,v,-3,x);
patch('Vertices', verts, 'Faces', faces, ...

'FaceVertexCData', colors, ...
'FaceColor','interp', ...
'edgecolor', 'interp');

view(30,-15);
axis vis3d;
colormap copper

See Also isonormals | shrinkfaces | smooth3 | subvolume

How To • “Connecting Equal Values with Isosurfaces”

1-3573

ispc

Purpose Determine if version is for Windows (PC) platform

Syntax tf = ispc

Description tf = ispc returns logical 1 (true) if the version of MATLAB software
is for the Microsoft Windows platform. Otherwise, it returns logical 0
(false).

See Also isunix | ismac | computer | isstudent | is*

1-3574

ispref

Purpose Test for existence of preference

Syntax ispref('group','pref')
ispref('group')
ispref('group',{'pref1','pref2',...'prefn'})

Description ispref('group','pref') returns 1 if the preference specified by group
and pref exists, and 0 otherwise.

ispref('group') returns 1 if the GROUP exists, and 0 otherwise.

ispref('group',{'pref1','pref2',...'prefn'}) returns a logical
array the same length as the cell array of preference names, containing
1 where each preference exists, and 0 elsewhere.

Examples addpref('mytoolbox','version','1.0')
ispref('mytoolbox','version')

ans =
1.0

See Also addpref | getpref | rmpref | setpref | uigetpref | uisetpref

1-3575

isprime

Purpose Determine which array elements are prime

Syntax TF = isprime(X)

Description TF = isprime(X) returns a logical array the same size as X. The value
at TF(i) is true when X(i) is a prime number. Otherwise, the value is
false.

Input
Arguments

X - Input values
scalar, vector, or array of real, nonnegative integer values

Input values, specified as a scalar, vector, or array of real, nonnegative
integer values.

Example: 17

Example: [1 2 3 4]

Example: int16([127 255 4095])

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Examples Determine if Double Integer Values Are Prime

tf = isprime([2 3 0 6 10])

tf =

1 1 0 0 0

2 and 3 are prime, but 0, 6, and 10 are not.

Determine if Unsigned Integer Values Are Prime

x = uint16([333 71 99]);
tf = isprime(x)

tf =

1-3576

isprime

0 1 0

71 is prime, but 333 and 99 are not.

See Also is* | primes

1-3577

isprop

Purpose Determine if property of object

Syntax tf = isprop(obj,'PropertyName')

Description tf = isprop(obj,'PropertyName') returns true if the specified
PropertyName is a property of object obj. Otherwise, isprop returns
logical false.

If obj is an array, isprop returns a logical array the same size as obj.
Each true element of tf corresponds to an element of obj that has the
property, PropertyName.

Note If obj is an empty object or an array of empty objects, isprop
returns an empty logical array, even if PropertyName is a property
of obj.

While isprop returns true if the class of an object defines a property
of that name, classes can control access to property values by defining
property attributes. Property access can be defined as:

• Readable and writable

• Read only

• Write only

• Accessible only to certain class methods

Therefore, isprop might indicate that a property exists, but you might
not be able to access that property. For more information, see “Getting
Information About Properties”.

Examples This example uses isprop to determine if XDataSource is a property of
object h before attempting to set the property value:

h = plot(1:10);
if isprop(h,'XDataSource')

set(h,'XDataSource','x')

1-3578

isprop

else
error(['XDataSource not a property of class ',class(h)])

end

Since XDataSource is a property of h, its value is set to 'x'.

See Also properties | ismethod

Tutorials • “Properties”

1-3579

isprop (COM)

Purpose Determine whether input is COM object property

Syntax tf = h.isprop('propertyname')
tf = isprop(h, 'propertyname')

Description tf = h.isprop('propertyname') returns logical 1 (true) if the
specified name is a property of COM object h. Otherwise, returns logical
0 (false).

tf = isprop(h, 'propertyname') is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Test a property of an instance of a Microsoft Excel application:

h = actxserver('Excel.Application');
isprop(h,'UsableWidth')

MATLAB returns true, UsableWidth is a property.

Try the same test on SaveWorkspace:

isprop(h,'SaveWorkspace')

MATLAB returns false. SaveWorkspace is not a property; it is a
method.

See Also inspect | ismethod | isevent

How To • “Exploring Properties”

1-3580

isprotected

Purpose Determine whether categories of categorical array are protected

Syntax tf = isprotected(A)

Description tf = isprotected(A) returns logical 1 (true) if the categories of A are
protected. Otherwise, isprotected returns logical 0 (false).

• true — When you assign new values to B, the values must belong
to one of the existing categories. Therefore, you only can combine
arrays that have the same categories. To add new categories to B, you
must use the addcats function.

• false — When you assign new values to B, the categories update
automatically. Therefore, you can combine (nonordinal) categorical
arrays that have different categories. The categories can update to
include the categories from both arrays.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

The categories of ordinal categorical arrays are always protected.

Examples Determine Whether Categories Are Protected

Create a categorical array containing the sizes of 10 objects. Use the
names small, medium, and large for the values 'S', 'M', and 'L'.

valueset = {'S','M','L'};
catnames = {'small','medium','large'};

A = categorical({'M';'L';'S';'S';'M';'L';'M';'L';'M';'S'},...
valueset,catnames,'Ordinal',true)

A =

medium

1-3581

isprotected

large
small
small
medium
large
medium
large
medium
small

A is a 10-by-1 categorical array.

Display the categories of A.

categories(A)

ans =

'small'
'medium'
'large'

Determine whether the categories of A are protected.

tf = isprotected(A)

tf =

1

Since A is an ordinal categorical array, the categories are protected. If
you try to add a new value that does not belong to one of the existing
categories, for example A(11) = 'xlarge', then MATLAB returns an
error.

First, use addcats to add a new category for xlarge.

A = addcats(A,'xlarge','After','large');

1-3582

isprotected

Since A is protected, you can now add a value for xlarge since it has
an existing category.

A(11) = 'xlarge'

A =

medium
large
small
small
medium
large
medium
large
medium
small
xlarge

A is now a 11-by-1 categorical array with four categories, such that
small < medium < large < xlarge.

See Also categorical | categories

Related
Examples

• “Work with Protected Categorical Arrays”

1-3583

isreal

Purpose Determine if array is real

Syntax tf = isreal(A)

Description tf = isreal(A) returns logical 1 (true) if A does not have an imaginary
part. Otherwise, it returns logical 0 (false).

If A has a stored imaginary part with value 0, then isreal(A) returns
logical 0 (false).

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array.

• For numeric data types, if A does not have an imaginary part, isreal
returns true; if A does have an imaginary part isreal returns false.

• For logical and char data types, isreal always returns true.

• For table, cell, struct, function_handle, and object data types,
isreal always returns false.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char | struct | table
| cell | function_handle
Complex Number Support: Yes

Examples Determine If Matrix Contains All Real Values

Define a 3-by-4 matrix, A.

A = [7 3+4i 2 5i;...
2i 1+3i 12 345;...
52 108 78 3];

Determine if the array is real.

1-3584

isreal

tf = isreal(A)

tf =

0

Since A contains complex elements, isreal returns false.

Define Complex Number with Zero-Valued Imaginary Part

Use the complex function to create a scalar, A, with zero-valued
imaginary part.

A = complex(12)

A =

12.0000 + 0.0000i

Determine if A is real.

tf = isreal(A)

tf =

0

A is not real because it has an imaginary part, even though the value
of the imaginary part is 0.

Determine if A contains any elements with zero-valued imaginary part.

~any(imag(A))

ans =

1

A contains elements with zero-valued imaginary part.

1-3585

isreal

Computation Resulting in Zero-Valued Imaginary Part

Define two complex scalars, x and y.

x=3+4i;
y=5-4i;

Determine if the addition of two complex scalars, x and y, is real.

A = x+y

A =

8

MATLAB drops the zero imaginary part.

isreal(A)

ans =

1

A is real since it does not have an imaginary part.

Find Real Elements in Cell Array

Create a cell array.

C{1,1} = pi; % double
C{2,1} = 'John Doe'; % char array
C{3,1} = 2 + 4i; % complex double
C{4,1} = ispc; % logical
C{5,1} = magic(3); % double array
C{6,1} = complex(5,0) % complex double

C =

[3.1416]
'John Doe'

1-3586

isreal

[2.0000 + 4.0000i]
[1]
[3x3 double]
[5.0000 + 0.0000i]

C is a 1-by-6 cell array.

Loop over the elements of a cell array to distinguish between real and
complex elements.

for k = 1:6
x(k,1) = isreal(C{k,1});
end

x

x =

1
1
0
1
1
0

All but C{3,1} and C{6,1} are real arrays.

Tips • isreal(complex(A)) always returns false, even when the
imaginary part is all zeros.

• ~isreal(x) detects arrays that have an imaginary part, even if it
is all zeros.

See Also complex | isnumeric | isnan | isprime | isfinite | isinf | isa

Concepts • “Complex Numbers”

1-3587

isrow

Purpose Determine whether input is row vector

Syntax isrow(V)

Description isrow(V) returns logical 1 (true) if size(V) returns [1 n] with a
nonnegative integer value n, and logical 0 (false) otherwise.

Examples Determine if a vector is a row. This example is a column so isrow
returns 0:

V = rand(5,1);
isrow(V)
ans =

0

Transpose the vector to make it a row. isrow returns 1:

V1 = V';
isrow(V1)
ans =

1

See Also iscolumn | ismatrix | isscalar | isvector

1-3588

isscalar

Purpose Determine whether input is scalar

Syntax isscalar(A)

Description isscalar(A) returns logical 1 (true) if size(A) returns [1 1], and logical
0 (false) otherwise.

Examples Test matrix A and one element of the matrix:

A = rand(5);

isscalar(A)
ans =

0

isscalar(A(3,2))
ans =

1

See Also isvector | ismatrix | isrow | iscolumn | islogical | ischar |
isa | is*

1-3589

issorted

Purpose Determine whether set elements are in sorted order

Syntax TF = issorted(A)
TF = issorted(A, 'rows')

Description TF = issorted(A) returns logical 1 (true) if the elements of A are in
sorted order, and logical 0 (false) otherwise. Input A can be a vector or
an N-by-1 or 1-by-N cell array of strings. A is considered to be sorted if A
and the output of sort(A) are equal.

TF = issorted(A, 'rows') returns logical 1 (true) if the rows of
two-dimensional matrix A are in sorted order, and logical 0 (false)
otherwise. Matrix A is considered to be sorted if A and the output of
sortrows(A) are equal.

Note Only the issorted(A) syntax supports A as a cell array of strings.

The issorted(A,'rows') syntax supports A as a categorical array,
but not as a cell array of strings.

Tips For character arrays, issorted uses ASCII, rather than alphabetical,
order.

You cannot use issorted on arrays of greater than two dimensions.

Examples Example 1 — Using issorted on a vector

A = [5 12 33 39 78 90 95 107 128 131];

issorted(A)
ans =

1

Example 2 — Using issorted on a matrix

A = magic(5)

1-3590

issorted

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

issorted(A, 'rows')
ans =

0

B = sortrows(A)
B =

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
17 24 1 8 15
23 5 7 14 16

issorted(B)
ans =

1

Example 3 — Using issorted on a cell array

x = {'one'; 'two'; 'three'; 'four'; 'five'};
issorted(x)
ans =

0

y = sort(x)
y =

'five'
'four'
'one'
'three'
'two'

1-3591

issorted

issorted(y)

See Also sort | sortrows | ismember | unique | intersect | union | setdiff
| setxor | is*

1-3592

isspace

Purpose Array elements that are space characters

Syntax tf = isspace('str')

Description tf = isspace('str') returns an array the same size as 'str'
containing logical 1 (true) where the elements of str are
Unicode®-represented whitespace characters, and logical 0 (false)
where they are not.

Whitespace characters for which isspace returns true include tab, line
feed, vertical tab, form feed, carriage return, and space, in addition to
a number of other Unicode characters. To see all characters for which
isspace returns true, enter the following command, and then look up
the returned decimal codes in a Unicode reference:

find(isspace(char(1):char(intmax('uint16'))))

Examples isspace(' Find spa ces ')
Columns 1 through 13

1 1 0 0 0 0 1 0 0 0 1 0 0
Columns 14 through 15

0 1

See Also isletter | isstrprop | ischar | strings | isa | is*

1-3593

issparse

Purpose Determine whether input is sparse

Syntax TF = issparse(S)

Description TF = issparse(S) returns logical 1 (true) if the storage class of S is
sparse and logical 0 (false) otherwise.

See Also is* | sparse | full

1-3594

isstr

Purpose Determine whether input is character array

Note isstr is not recommended. Use ischar instead.

See Also ischar | isa | is*

1-3595

isstrprop

Purpose Determine whether string is of specified category

Syntax tf = isstrprop('str', 'category')

Description tf = isstrprop('str', 'category') returns a logical array the same
size as str containing logical 1 (true) where the elements of str belong
to the specified category, and logical 0 (false) where they do not.

The str input can be a character array, cell array, or any MATLAB
numeric type. If str is a cell array, then the return value is a cell array
of the same shape as str.

The category input can be any of the strings shown in the left column
below:

Category Description

alpha True for those elements of str that are alphabetic

alphanum True for those elements of str that are alphanumeric

cntrl True for those elements of str that are control
characters (for example, char(0:20))

digit True for those elements of str that are numeric digits

graphic True for those elements of str that are graphic
characters. These are all values that represent any
characters except for the following:

unassigned, space, line separator,
paragraph separator, control characters,
Unicode format control characters,
private user-defined characters,
Unicode surrogate characters,
Unicode other characters

lower True for those elements of str that are lowercase letters

print True for those elements of str that are graphic
characters, plus char(32)

1-3596

isstrprop

Category Description

punct True for those elements of str that are punctuation
characters

wspace True for those elements of str that are white-space
characters. This range includes the ANSI® C definition
of white space, {' ','\t','\n','\r','\v','\f'}, in
addition to a number of other Unicode characters.

upper True for those elements of str that are uppercase
letters

xdigit True for those elements of str that are valid
hexadecimal digits

Tips Numbers of type double are converted to int32 according to MATLAB
rules of double-to-integer conversion. Numbers of type int64 and
uint64 bigger than int32(inf) saturate to int32(inf).

MATLAB classifies the elements of the str input according to the
Unicode definition of the specified category. If the numeric value of an
element in the input array falls within the range that defines a Unicode
character category, then this element is classified as being of that
category. The set of Unicode character codes includes the set of ASCII
character codes, but also covers a large number of languages beyond the
scope of the ASCII set. The classification of characters is dependent on
the global location of the platform on which MATLAB is installed.

Whitespace characters for which the wspace option returns true include
tab, line feed, vertical tab, form feed, carriage return, and space, in
addition to a number of other Unicode characters. To see all characters
for which the wspace option returns true, enter the following command,
and then look up the returned decimal codes in a Unicode reference:

find(isstrprop(char(1):char(intmax('uint16')), 'wspace'))

Examples Test for alphabetic characters in a string:

A = isstrprop('abc123def', 'alpha')

1-3597

isstrprop

A =
1 1 1 0 0 0 1 1 1

Test for numeric digits in a string:

A = isstrprop('abc123def', 'digit')
A =

0 0 0 1 1 1 0 0 0

Test for hexadecimal digits in a string:

A = isstrprop('abcd1234efgh', 'xdigit')
A =

1 1 1 1 1 1 1 1 1 1 0 0

Test for numeric digits in a character array:

A = isstrprop(char([97 98 99 49 50 51 101 102 103]), ...
'digit')

A =
0 0 0 1 1 1 0 0 0

Test for alphabetic characters in a two-dimensional cell array:

A = isstrprop({'abc123def';'456ghi789'}, 'alpha')
A =

[1x9 logical]
[1x9 logical]

A{:,:}
ans =

1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0

Test for white-space characters in a string:

A = isstrprop(sprintf('a bc\n'), 'wspace')
A =

0 1 0 0 1

1-3598

isstrprop

See Also strings | ischar | isletter | isspace | iscellstr | isnumeric
| isa | is*

1-3599

isstruct

Purpose Determine whether input is structure array

Syntax tf = isstruct(A)

Description tf = isstruct(A) returns logical 1 (true) if A is a MATLAB structure
and logical 0 (false) otherwise.

Examples patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isstruct(patient)

ans =

1

See Also struct | istable | isfield | iscell | ischar | isobject |
isnumeric | islogical | isa | is*

How To • dynamic field names

1-3600

isstudent

Purpose Determine if version is Student Version

Syntax tf = isstudent

Description tf = isstudent returns logical 1 (true) if the version of MATLAB
software is the Student Version, and returns logical 0 (false) for
commercial versions.

See Also ver | version | license | ispc | isunix | is*

1-3601

issymmetric

Purpose Determine if matrix is symmetric or skew-symmetric

Syntax tf = issymmetric(A)
tf = issymmetric(A,skewOption)

Description tf = issymmetric(A) returns logical 1 (true) if square matrix A is
symmetric; otherwise, it returns logical 0 (false).

tf = issymmetric(A,skewOption) specifies the type of the test.
Specify skewOption as 'skew' to determine if A is skew-symmetric.

Input
Arguments

A - Input matrix
numeric matrix

Input matrix, specified as a numeric matrix. If A is not square, then
issymmetric returns logical 0 (false).

Data Types
single | double
Complex Number Support: Yes

skewOption - Test type
'nonskew' (default) | 'skew'

Test type, specified as 'nonskew' (default) or 'skew'. Specify
'skew' to test whether A is skew-symmetric. Specifying
issymmetric(A,'nonskew') is equivalent to issymmetric(A).

Data Types
char

Examples Test if Hermitian Matrix Is Symmetric

Create a 3-by-3 matrix.

A = [1 0 1i; 0 1 0;-1i 0 1]

A =

1-3602

issymmetric

1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 1.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 - 1.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

The matrix is Hermitian and has a real-valued diagonal.

Test whether the matrix is symmetric.

tf = issymmetric(A)

tf =

0

The result is logical 0 (false) because A is not symmetric. In this case, A
is equal to its complex conjugate transpose, A', but not its nonconjugate
transpose, A.'.

Change the element in A(3,1) to be 1i.

A(3,1) = 1i;

Determine whether the modified matrix is symmetric.

tf = issymmetric(A)

tf =

1

The matrix, A, is now symmetric because it is equal to its nonconjugate
transpose, A.'.

Test if Matrix Is Skew-Symmetric

Create a 4-by-4 matrix.

A = [0 1 -2 5; -1 0 3 -4; 2 -3 0 6; -5 4 -6 0]

1-3603

issymmetric

A =

0 1 -2 5
-1 0 3 -4
2 -3 0 6

-5 4 -6 0

The matrix is real and has a diagonal of zeros.

Specify skewOption as 'skew' to determine whether the matrix is
skew-symmetric.

tf = issymmetric(A,'skew')

tf =

1

The matrix, A, is skew-symmetric since it is equal to the negation of
its nonconjugate transpose, -A.'.

Definitions Symmetric Matrix

• A square matrix, A, is symmetric if it is equal to its nonconjugate
transpose, A = A.'.

In terms of the matrix elements, this means that

a ai j j i, , .

• Since real matrices are unaffected by complex conjugation, a real
matrix that is symmetric is also Hermitian. For example, the matrix

A

1
0

0
2

1
0

1 0 1

is both symmetric and Hermitian.

1-3604

issymmetric

Skew-Symmetric Matrix

• A square matrix, A, is skew-symmetric if it is equal to the negation of
its nonconjugate transpose, A = -A.'.

In terms of the matrix elements, this means that

a ai j j i, , .

• Since real matrices are unaffected by complex conjugation, a real
matrix that is skew-symmetric is also skew-Hermitian. For example,
the matrix

A

0 1
1 0

is both skew-symmetric and skew-Hermitian.

See Also ishermitian | isreal | transpose | ctranspose

1-3605

Tiff.isTiled

Purpose Determine if tiled image

Syntax bool = tiffobj.isTiled()

Description bool = tiffobj.isTiled() returns true if the image has a tiled
organization and false if the image has a stripped organization.

Examples Determine if Image Has Tiled Organization

Open a Tiff object and check if the image in the TIFF file has a tiled
or stripped organization.

t = Tiff('example.tif','r');
tf = t.isTiled()

tf =

1

The image has a tiled organization.

Close the Tiff object.

t.close();

References This method corresponds to the TIFFIsTiled function in the LibTIFF
C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-3606

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

istable

Purpose Determine whether input is table

Syntax tf = istable(T)

Description tf = istable(T) returns logical 1 (true) if T is a table. Otherwise, it
returns logical 0 (false) otherwise.

Input
Arguments

T - Input variable
workspace variable

Input variable, specified as a workspace variable. T can be any data
type.

Examples Determine if Workspace Variable Is Table

Create a workspace variable, T.

T = table(['M';'F';'M'],[45 45;41 32;40 34],...
{'NY';'CA';'MA'},[true;false;false])

T =

Var1 Var2 Var3 Var4
____ ______________ ____ _____

M 45 45 'NY' true
F 41 32 'CA' false
M 40 34 'MA' false

Verify that the workspace variable, T, is a table.

istable(T)

ans =

1

T is a table.

1-3607

istable

Determine if Subset of Table Is Table

Create a table, T.

T = table(['M';'F';'M'],[45 45;41 32;40 34],...
{'NY';'CA';'MA'},[true;false;false])

T =

Var1 Var2 Var3 Var4
____ ______________ ____ _____

M 45 45 'NY' true
F 41 32 'CA' false
M 40 34 'MA' false

Determine if the subset of table T that contains only the second and
fourth variables is a table.

istable(T{:,[2 4]})

ans =

0

Conversely, accessing data with curly braces, T{:,[2 4]}, returns
a matrix and not a table.

See Also table | iscell | isstruct | isnumeric | isobject | islogical

1-3608

istril

Purpose Determine if matrix is lower triangular

Syntax tf = istril(A)

Description tf = istril(A) returns logical 1 (true) if A is a lower triangular
matrix; otherwise, it returns logical 0 (false).

Input
Arguments

A - Input array
numeric array

Input array, specified as a numeric array. istril returns logical 0
(false) if A has more than two dimensions.

Data Types
single | double
Complex Number Support: Yes

Examples Test Lower Triangular Matrix

Create a 5-by-5 matrix.

D = tril(magic(5))

D =

17 0 0 0 0
23 5 0 0 0
4 6 13 0 0

10 12 19 21 0
11 18 25 2 9

Test D to see if it is lower triangular.

istril(D)

ans =

1

1-3609

istril

The result is logical 1 (true) because all elements above the main
diagonal are zero.

Test Matrix of Zeros

Create a 5-by-5 matrix of zeros.

Z = zeros(5);

Test Z to see if it is lower triangular.

istril(Z)

ans =

1

The result is logical 1 (true) because a lower triangular matrix can
have any number of zeros on its main diagonal.

Definitions Lower Triangular Matrix

A matrix is lower triangular if all elements above the main diagonal are
zero. Any number of the elements on the main diagonal can also be zero.

For example, the matrix

A

1 0 0 0
1 1 0 0
2 2 1 0
3 3 3 1

is lower triangular. A diagonal matrix is both upper and lower
triangular.

Tips • Use the tril function to produce lower triangular matrices for which
istril returns logical 1 (true).

1-3610

istril

• The functions isdiag, istriu, and istril are special cases of
the function isbanded, which can perform all of the same tests
with suitably defined upper and lower bandwidths. For example,
istril(A) == isbanded(A,size(A,1),0).

See Also isdiag | istriu | diag | triu | tril

1-3611

istriu

Purpose Determine if matrix is upper triangular

Syntax tf = istriu(A)

Description tf = istriu(A) returns logical 1 (true) if A is an upper triangular
matrix; otherwise, it returns logical 0 (false).

Input
Arguments

A - Input array
numeric array

Input array, specified as a numeric array. istriu returns logical 0
(false) if A has more than two dimensions.

Data Types
single | double
Complex Number Support: Yes

Examples Test Upper Triangular Matrix

Create a 5-by-5 matrix.

A = triu(magic(5))

A =

17 24 1 8 15
0 5 7 14 16
0 0 13 20 22
0 0 0 21 3
0 0 0 0 9

Test A to see if it is upper triangular.

istriu(A)

ans =

1

1-3612

istriu

The result is logical 1 (true) because all elements below the main
diagonal are zero.

Test Matrix of Zeros

Create a 5-by-5 matrix of zeros.

Z = zeros(5);

Test Z to see if it is upper triangular.

istriu(Z)

ans =

1

The result is logical 1 (true) because an upper triangular matrix can
have any number of zeros on the main diagonal.

Definitions Upper Triangular Matrix

A matrix is upper triangular if all elements below the main diagonal are
zero. Any number of the elements on the main diagonal can also be zero.

For example, the matrix

A

1 1 1 1
0 1 2 2
0 0 1 3
0 0 0 1

is upper triangular. A diagonal matrix is both upper and lower
triangular.

Tips • Use the triu function to produce upper triangular matrices for which
istriu returns logical 1 (true).

1-3613

istriu

• The functions isdiag, istriu, and istril are special cases of
the function isbanded, which can perform all of the same tests
with suitably defined upper and lower bandwidths. For example,
istriu(A) == isbanded(A,0,size(A,2)).

See Also isdiag | istril | diag | triu | tril

1-3614

isundefined

Purpose Find undefined elements in categorical array

Syntax TF = isundefined(A)

Description TF = isundefined(A) returns a logical array, TF, that indicates
which elements in the categorical array, A, contain undefined values.
isundefined returns logical 1 (true) for undefined elements; otherwise
it returns logical 0 (false). The size of TF is the same as the size of A.

Any elements in A without a corresponding category are undefined.
Undefined values are similar to NaN in numeric arrays.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

Examples Categorical Array with Undefined Values

Create a categorical array, A, from numeric values where 1, 2, and 3
represent red, green, and blue respectively.

A = categorical([4 1; 2 3; 2 1; 3 4; 1 1],1:3,{'red','green','blue'})

A =

<undefined> red
green blue
green red
blue <undefined>
red red

A is a 5-by-2 categorical array with three categories: red, green, and
blue. Array elements corresponding to the numeric value 4 in the input
array to the categorical function do not have a corresponding category.
Therefore, they are undefined in the output categorical array, A.

1-3615

isundefined

Find undefined elements in A.

TF = isundefined(A)

TF =

1 0
0 0
0 0
0 1
0 0

A(1,1) and A(4,2) are undefined.

See Also ismember

1-3616

isunix

Purpose Determine if version is for UNIX platform

Syntax tf = isunix

Description tf = isunix returns logical 1 (true) if the version of MATLAB software
is for the UNIX platform or the Apple Mac OS X platform. Otherwise, it
returns logical 0 (false).

See Also ispc | ismac | computer | isstudent | is*

1-3617

isvalid (handle)

Purpose Is object valid handle class object

Syntax Hl = isvalid(Hobj)

Description Hl = isvalid(Hobj) returns a logical array (or scalar if Hobj is scalar)
in which each element is true if the corresponding element in Hobj is
a valid handle. This method is Sealed, so you cannot override it in a
handle subclass.

Note This method does not work with Handle Graphics objects. To
determine the validity of a Handle Graphics object handle, use the
ishghandle function.

See Also delete (handle) | handle

How To • “Testing Handle Validity”

1-3618

isvalid (serial)

Purpose Determine whether serial port objects are valid

Syntax out = isvalid(obj)

Description out = isvalid(obj) returns the logical array out, which contains a 0
where the elements of the serial port object, obj are invalid serial port
objects and a 1 where the elements of obj are valid serial port objects.

Tips obj becomes invalid after it is removed from memory with the delete
function. Because you cannot connect an invalid serial port object to
the device, you should remove it from the workspace with the clear
command.

Examples Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM1');

s2 becomes invalid after it is deleted.

delete(s2)

isvalid verifies that s1 is valid and s2 is invalid.

sarray = [s1 s2];
isvalid(sarray)

ans =
1 0

See Also clear | delete

1-3619

isvarname

Purpose Determine whether input is valid variable name

Syntax tf = isvarname('str')
isvarname str

Description tf = isvarname('str') returns logical 1 (true) if the string str is a
valid MATLAB variable name and logical 0 (false) otherwise. A valid
variable name is a character string of letters, digits, and underscores,
totaling not more than namelengthmax characters and beginning with
a letter.

MATLAB keywords are not valid variable names. Type the command
iskeyword with no input arguments to see a list of MATLAB keywords.

isvarname str uses the MATLAB command format.

Examples This variable name is valid:

isvarname foo
ans =

1

This one is not because it starts with a number:

isvarname 8th_column
ans =

0

If you are building strings from various pieces, place the construction
in parentheses.

d = date;

isvarname(['Monday_', d(1:2)])
ans =

1

1-3620

isvarname

See Also matlab.lang.makeValidName | matlab.lang.makeUniqueStrings |
isglobal | iskeyword | namelengthmax | is*

1-3621

isvector

Purpose Determine whether input is vector

Syntax isvector(A)

Description isvector(A) returns logical 1 (true) if size(A) returns [1 n] or [n 1]
with a nonnegative integer value n, and logical 0 (false) otherwise.

Examples Test matrix A and its row and column vectors:

A = rand(5);

isvector(A)
ans =

0

isvector(A(3, :))
ans =

1

isvector(A(:, 2))
ans =

1

See Also iscolumn | ismatrix | isrow | isscalar | isempty | isnumeric |
islogical | ischar | isa | is*

1-3622

j

Purpose Imaginary unit

Syntax 1j
z = a + bj
z = x + 1j*y

Description 1j returns the basic imaginary unit. j is equivalent to sqrt(-1).

You can use j to enter complex numbers. You also can use the character
i as the imaginary unit. To create a complex number without using i
and j, use the complex function.

z = a + bj returns a complex numerical constant, z.

z = x + 1j*y returns a complex array, z.

Input
Arguments

a - Real component of complex scalar
scalar

Real component of a complex scalar, specified as a scalar.

Data Types
single | double

b - Imaginary component of complex scalar
scalar

Imaginary component of a complex scalar, specified as a scalar.

If b is double, you can use the character, j, without a multiplication
sign as a suffix in forming the complex numerical constant.

Example: 7j

If b is single, you must use a multiplication sign when forming the
complex numerical constant.

Example: single(7)*j

1-3623

j

Data Types
single | double

x - Real component of complex array
scalar | vector | matrix | multidimensional array

Real component of a complex array, specified as a scalar, vector, matrix,
or mulitdimensional array.

The size of x must match the size of y, unless one is a scalar. If either
x or y is a scalar, MATLAB expands the scalar to match the size of
the other input.

single can combine with double.

Data Types
single | double

y - Imaginary component of complex array
scalar | vector | matrix | multidimensional array

Imaginary component of a complex array, specified as a scalar, vector,
matrix, or mulitdimensional array.

The size of x must match the size of y, unless one is a scalar. If either
x or y is a scalar, MATLAB expands the scalar to match the size of
the other input.

single can combine with double.

Data Types
single | double

Output
Arguments

z - Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a scalar, vector, matrix, or multidimensional
array.

The size of z is the same as the input arguments.

1-3624

j

z is single if at least one input argument is single. Otherwise, z is
double.

Examples Complex Scalar

Create a complex scalar and use the character, j, without a
multiplication sign as a suffix in forming a complex numerical constant.

z = 1+2j

z =

1.0000 + 2.0000i

Complex Vector

Create a complex vector from two 4-by-1 vectors of real numbers.

x = [1:4]';
y = [8:-2:2]';

z = x+1j*y

z =

1.0000 + 8.0000i
2.0000 + 6.0000i
3.0000 + 4.0000i
4.0000 + 2.0000i

z is a 4-by-1 complex vector.

Complex Exponential

Create a complex scalar representing a complex vector with radius, r,
and angle from the origin, theta.

r = 4;
theta = pi/4;

1-3625

j

z = r*exp(1j*theta)

z =

2.8284 + 2.8284i

Tips • For speed and improved robustness in complex arithmetic, use 1i
and 1j instead of i and j.

• Since j is a function, it can be overridden and used as a variable.
However, it is best to avoid using i and j for variable names if you
intend to use them in complex arithmetic.

• Use the complex function to create a complex output in the following
cases:

- When the names i and j might be used for other variables (and
do not equal sqrt(-1))

- When the inputs are not double or single

- When the imaginary component is all zeros

See Also conj | complex | imag | i | real

Concepts • “Complex Numbers”

1-3626

javaaddpath

Purpose Add entries to dynamic Java class path

Syntax javaaddpath(dpath)
javaaddpath(dpath,'-end')

Description javaaddpath(dpath) adds one or more folders or Java Archive (JAR)
files to the beginning of the current dynamic class path.

javaaddpath(dpath,'-end') adds files or folders to the end of the path.

Tips • MATLAB calls the clear java command whenever you change
the dynamic path. This command clears the definitions of all Java
classes defined by files on the dynamic class path, removes all global
variables and variables from the base workspace, and removes all
compiled scripts, functions, and MEX-functions from memory.

• To add folders to the static path, which MATLAB loads at startup,
create a javaclasspath.txt file, as described in “The Static Path”.

• MATLAB does not support JAR files generated by the MATLAB
Builder for Java® product.

Input
Arguments

dpath - Folder or JAR file
string | cell array of strings

Folder or JAR file, specified as a string or cell array of strings, to add
to the dynamic path. When you add a folder to the path, MATLAB
includes all files in that folder as part of the path.

Data Types
char | cell

Examples Add Folder to Dynamic Class Path

Display the current dynamic path.

javaclasspath('-dynamic')

1-3627

javaaddpath

DYNAMIC JAVA PATH

<empty>

The output reflects your configuration.

Add the current folder.

javaaddpath(pwd)

Display the dynamic path.

p = javaclasspath

p =
'c:\work\Java'

The output reflects your current folder.

Append URL to Dynamic Class Path

javaaddpath('http://www.example.com','-end')
p = javaclasspath

p =
'c:\work\Java'
'http://www.example.com'

See Also javaclasspath | javarmpath | clear

Concepts • “Bringing Java Classes into MATLAB Workspace”

1-3628

javaArray

Purpose Construct Java array object

Syntax ObjArr = javaArray(PackageName.ClassName,x1,...,xN)

Description ObjArr = javaArray(PackageName.ClassName,x1,...,xN)
constructs an empty Java array object for objects of the specified
PackageName.ClassName class.

Input
Arguments

PackageName.ClassName - Name of Java class
string

Name of Java class, including package name, specified as a string.

Data Types
char

x1,...,xN - Dimensions of the array
integer

Dimensions of the array, specified as integer.

Data Types
double

Output
Arguments

ObjArr - Java array
Java array

Java array with dimensions x1,...,xN.

Definitions Java Array Object

A Java array object is an object with Java dimensionality.

Tips • The array created by javaArray is equivalent to the array created by
the following Java code:

A = new PackageName.ClassName[x1]...[xN];

1-3629

javaArray

• To create an array of primitive Java types, create an array of the
equivalent MATLAB type, shown in the Conversion of MATLAB
Types to Java Types table. See “Conversion of MATLAB Argument
Data”.

Examples Create 4-By-5 Array

Create 4-by-5 array of java.lang.Double type.

x1 = 4; x2 = 5;
dblArray = javaArray ('java.lang.Double',x1,x2);

Fill in values.

for m = 1:x1
for n = 1:x2

dblArray(m,n) = java.lang.Double((m*10) + n);
end

end

Display results.

dblArray

dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

See Also javaObjectEDT | javaMethodEDT | class | methodsview | isjava |

Concepts • “Working with Java Arrays”

1-3630

javachk

Purpose Error message based on Java feature support

Syntax MSG = javachk(feature)
javachk(feature,component)

Description MSG = javachk(feature) returns a generic error message if the
specified Java feature is not available in the current MATLAB session.

javachk(feature,component) also names the specified component in
the error message.

Input
Arguments

feature - Java feature
'awt' | 'desktop' | 'jvm' | 'swing'

Java feature, specified as one of these values:

'awt' Java GUI components in the
Abstract Window Toolkit (AWT)
components are available.

'desktop' MATLAB interactive desktop is
running.

'jvm' Java Virtual Machine software
(JVM™) is running.

'swing' Swing components (Java
lightweight GUI components in
the Java Foundation Classes) are
available.

component - Identifier
string

Identifier, specified as a string, to display in the error message.

Data Types
char

1-3631

javachk

Output
Arguments

MSG - Error message
structure

Error message, returned as a structure with these fields:

If it is available, javachk returns an error structure with empty
message and identifier fields.

message - Message
string | empty

Message, specified as a string.

identifier - Identifier
string | empty

Identifier, specified as a string.

Examples Generate Error

if isempty(javachk('jvm'))
scalar = java.lang.Double(5);

end
% Check that JVM is available & JavaFigures are supported
error(javachk('jvm'))
error(javachk('awt'))

Generate Error in User-Defined Script

If you write a script, myFile, that displays a Java Frame and want it to
error gracefully if a frame cannot be displayed, do the following:

error(javachk('awt','myFile'));
myFrame = java.awt.Frame;
myFrame.setVisible(1);

If the script cannot display a frame, it displays this error:

myFile is not supported on this platform.

1-3632

javachk

See Also usejava | error

1-3633

javaclasspath

Purpose Return Java class path or specify dynamic path

Syntax javaclasspath
javaclasspath('-dynamic')
javaclasspath('-static')

dpath = javaclasspath
spath = javaclasspath('-static')
jpath = javaclasspath('-all')

javaclasspath(dpath)
javaclasspath(dpath1,dpath2)

javaclasspath(statusmsg)

Description javaclasspath displays the static and dynamic segments of the Java
class path.

javaclasspath('-dynamic') displays the dynamic path.

javaclasspath('-static') displays the static path.

dpath = javaclasspath returns the dynamic path, dpath.

spath = javaclasspath('-static') returns the static path, spath.

jpath = javaclasspath('-all') returns the entire path, jpath. The
returned cell array contains first the static segment of the path, and
then the dynamic segment.

javaclasspath(dpath) changes the dynamic path to dpath. Use this
syntax to reload Java classes.

1-3634

javaclasspath

javaclasspath(dpath1,dpath2) changes the dynamic path to the
concatenation of paths dpath1,dpath2.

javaclasspath(statusmsg) enables or disables the display of status
messages.

Input
Arguments

dpath - Path entries
string | cell array of strings

Path entries, specified as a string or cell array of strings, to specify for
the dynamic path. Converts relative paths to absolute paths.

Example: javaclasspath(’http://domain.com’)

Data Types
char | cell

dpath1,dpath2 - Path entries
string | cell array of strings

Path entries, specified as a string or cell array of strings, concatenated,
to specify for the dynamic path.

Data Types
char | cell

statusmsg - Message flag
’-v0’ (default) | ’-v1’

Message flag, specified as one of these values:

'-v0' Does not display status messages while loading the
Java path from the file system.

'-v1' Displays status messages.

Controls status message display from the javaclasspath, javaaddpath,
and javarmpath functions.

1-3635

javaclasspath

Output
Arguments

dpath - Dynamic path entries
cell array of strings

Dynamic path entries for the current path, returned as a cell array of
strings. If no path entries are defined, dpath is an empty cell array.

spath - Static path entries
cell array of strings

Static path entries for the current path, returned as a cell array of
strings. If no path entries are defined, spath is an empty cell array.

jpath - All path entries
cell array of strings

All path entries, returned as a cell array of strings. If no path entries
are defined, jpath is an empty cell array.

Tips • MATLAB searches the static path before the dynamic path.

• Java classes on the static path should not have dependencies on
classes on the dynamic path. Such dependencies produce run-time
errors.

• MATLAB calls the clear java command whenever you change
the dynamic path. This command clears the definitions of all Java
classes defined by files on the dynamic class path, removes all global
variables and variables from the base workspace, and removes all
compiled scripts, functions, and MEX-functions from memory.

• MATLAB displays a warning if you add an entry to the dynamic path
that is already specified on the static path.

Definitions Static Path

The static path is a segment of the Java path which is loaded at the
start of each MATLAB session from the MATLAB built-in Java path
and the file javaclasspath.txt.

The static Java path offers better Java class-loading performance than
the dynamic Java path. However, to modify the static Java path you

1-3636

javaclasspath

need to edit the file javaclasspath.txt and restart MATLAB. For
more information, see “The Static Path”.

Dynamic Path

The dynamic path is a segment of the Java path which is loaded any
time during a MATLAB session using the javaclasspath function.

You can define the dynamic path (using javaclasspath), modify the
path (using javaaddpath and javarmpath), and refresh the Java class
definitions for all classes on the dynamic path (using clear java)
without restarting MATLAB. For more information, see “The Dynamic
Path”.

Examples Modify Path Using Cell Array

Create a cell array with two path values.

dpath = {'http://domain.com','http://some.domain.com/jarfile.jar'};

Set message flag to display class-loading messages.

javaclasspath('-v1')

Modify path.

javaclasspath(dpath)

Loading following class path(s) from local file system:
* http://domain.com
* http://some.domain.com/jarfile.jar

Display updated dynamic path.

javaclasspath('-dynamic')

DYNAMIC JAVA PATH

http://domain.com

1-3637

javaclasspath

http://some.domain.com/jarfile.jar

MATLAB adds folders from dpath to the existing path.

Capture Contents of Dynamic Path

Create a cell array, p, with the entries of the dynamic path.

javaclasspath('-v0') %Suppress display of class-loading messages
p = javaclasspath

p =

{}

If there are no entries on the dynamic path, MATLAB creates an empty
cell array.

See Also javaaddpath | javarmpath | clear

Concepts • “The Java Class Path”

1-3638

matlab.exception.JavaException

Purpose Capture error information for Java exception

Description Process information from a matlab.exception.JavaException object
to handle Java errors thrown from Java methods called from MATLAB.
This class is derived from MException.

Construction e = matlab.exception.JavaException(msgID,errMsg,excObj)
constructs instance e of matlab.exception.JavaException class.

Input Arguments

msgID

message identifier

errMsg

error message string

excObj

java.lang.Throwable object that caused the exception

Output Arguments

e

Instance of matlab.exception.JavaException class

Properties ExceptionObject

Java exception object that caused the error.

Tips • You do not typically construct a matlab.exception.JavaException
object explicitly. MATLAB automatically constructs a JavaException
object whenever Java throws an exception. The JavaException
object wraps the original Java exception.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-3639

matlab.exception.JavaException

Examples try
java.lang.Class.forName('foo');

catch e
e.message
if(isa(e, 'matlab.exception.JavaException'))

ex = e.ExceptionObject;
assert(isJava(ex));
ex.printStackTrace;

end
end

Concepts • “Capture Information About Exceptions”
• “Throw an Exception”

1-3640

javaMethod

Purpose Call Java method

Syntax javaMethod(MethodName,JavaObj,x1,...,xN)
javaMethod(StaticMethodName,ClassName,x1,...,xN)

Description javaMethod(MethodName,JavaObj,x1,...,xN) calls the method in
the class of the Java object array with the signature matching the
arguments x1,...,xN.

javaMethod(StaticMethodName,ClassName,x1,...,xN) calls the
static method in class ClassName.

Input
Arguments

MethodName - Name of nonstatic Java method
string

Name of nonstatic Java method, specified as a string.

Data Types
char

JavaObj - Array
Java object

Array, specified as a Java object of the class containing the method.

x1,...,xN - Java method input arguments
any type

Java method input arguments, 1 through N (if any), required by
MethodName or StaticMethodName, specified by any type. The
argument type is specified by the method argument list.

StaticMethodName - Name of static Java method
string

Name of static Java method, specified as a string.

Data Types
char

1-3641

javaMethod

ClassName - Name of Java class
string

Name of Java class, specified as a string, containing
StaticMethodName.

Data Types
char

Tips • In most cases, use either MATLAB or Java syntax to call methods
on Java objects:

% MATLAB syntax
method(object,arg1,...,argn)

/* Java syntax */
object.method(arg1,...,argn)

• Use javaMethod to call methods having names that exceed the
maximum length of a MATLAB identifier. (Call the namelengthmax
function to obtain the maximum identifier length.)

This is the only way you can call such a method in MATLAB. For
example, if you have the following function:

javaMethod('DataDefinitionAndDataManipulationTransactions',T);

• Use javaMethod when you want to specify the method name as a
variable, to be invoked at runtime. When calling a static method, you
also can use a variable in place of the class name argument. For
example, see “Call Method Specified at Runtime” on page 1-3643.

Examples Call Method on Java Object

Create a java.util.Date object, myDate, and change the month to 3.

myDate = java.util.Date;
javaMethod('setMonth',myDate,3);

1-3642

javaMethod

Call Static Method

Call java.lang.Double static method, isNaN, to test variable num.

num = 2.2;
if javaMethod('isNaN','java.lang.Double',num)

disp('This is not a number')
end

Since num contains a number, no message is displayed.

Call Method Specified at Runtime

This example, searching for a text pattern in a string, uses variables for
the pattern and for the search method. These variables could be set at
runtime from user input.

Choose method, startsWith, and identify pattern, str.

fnc = 'startsWith';
str = java.lang.String('Four score');

Identify text to search.

gAddress = java.lang.String('Four score and seven years ago');

Search gAddress.

javaMethod(fnc,gAddress,str)

ans =
1

gAddress starts with the words Four score.

See Also javaArray | javaObject | import | methods | isjava |
javaMethodEDT |

Concepts • “Calling Syntax”

1-3643

javaMethodEDT

Purpose Call Java method from Event Dispatch Thread (EDT)

Syntax javaMethodEDT(MethodName,JavaObj,x1,...,xN)
javaMethodEDT(StaticMethodName,ClassName,x1,...,xN)

Description javaMethodEDT(MethodName,JavaObj,x1,...,xN) calls the method
in the class of the Java object array with the signature matching the
arguments x1,...,xN from the Event Dispatch Thread (EDT)

javaMethodEDT(StaticMethodName,ClassName,x1,...,xN) calls the
static method in class ClassName.

Input
Arguments

MethodName - Name of nonstatic Java method
string

Name of nonstatic Java method, specified as a string.

Data Types
char

JavaObj - Array
Java object

Array, specified as a Java object of the class containing the method.

x1,...,xN - Java method input arguments
any type

Java method input arguments, 1 through N (if any), required by
MethodName or StaticMethodName, specified by any type. The
argument type is specified by the method argument list.

StaticMethodName - Name of static Java method
string

Name of static Java method, specified as a string.

Data Types
char

1-3644

javaMethodEDT

ClassName - Name of Java class
string

Name of Java class, specified as a string, containing
StaticMethodName.

Data Types
char

Definitions EDT

The EDT is the Event Dispatch Thread, used in Java.

Examples Call Method from EDT

Create a java.util.Vector object, v, and add a string element.

v = java.util.Vector;
javaMethodEDT('add',v,'string');

See Also javaMethod | javaObjectEDT | import | methods | isjava

1-3645

javaObject

Purpose Call Java constructor

Syntax JavaObj = javaObject(ClassName,x1,...,xN)

Description JavaObj = javaObject(ClassName,x1,...,xN) returns Java object
array, JavaObj, created by the Java constructor for the class with the
argument list matching x1,...,xN.

Input
Arguments

ClassName - Name of Java class
string

Name of Java class, specified as a string.

Data Types
char

x1,...,xN - Java constructor input arguments
any type

Java constructor input arguments, 1 through N (if any), required by
ClassName, specified by any type. The argument type is specified by
the class constructor argument list.

Examples Create Java Object

Create a Java object, strObj, of class java.lang.String.

strObj = javaObject('java.lang.String','hello');

See Also javaArray | javaMethod | import | methods | javaObjectEDT

Concepts • “Using the javaObjectEDT Function”

1-3646

javaObjectEDT

Purpose Call Java constructor on Event Dispatch Thread (EDT)

Syntax JavaObj = javaObjectEDT(ClassName,x1,...,xN)

Description JavaObj = javaObjectEDT(ClassName,x1,...,xN) returns Java
object array, JavaObj, created from the EDT by the Java constructor for
the class with the signature matching the arguments x1,...,xN.

Input
Arguments

ClassName - Name of Java class
string

Name of Java class, specified as a string.

Data Types
char

x1,...,xN - Java constructor input arguments
any type

Java constructor input arguments, 1 through N (if any), required by
ClassName, specified by any type. The argument type is specified by
the class constructor argument list.

Tips • MATLAB calls methods on JavaObj from the EDT.

• Static methods on the specified class or Java object run on the
MATLAB thread unless called using the javaMethodEDT function.

Definitions EDT

The EDT is the Event Dispatch Thread, used in Java.

Examples Construct Java Object Array from the EDT

f = javaObjectEDT('javax.swing.JFrame','New Title');

Call Method on Java Object

Create a JOptionPane on the EDT.

1-3647

javaObjectEDT

optPane = javaObjectEDT('javax.swing.JOptionPane');

Call the createDialog method on the EDT.

dlg = optPane.createDialog([],'Sample Dialog');

See Also javaMethodEDT | javaObject | import | methods

1-3648

javarmpath

Purpose Remove entries from dynamic Java class path

Syntax javarmpath(dpath1,...,dpathN)

Description javarmpath(dpath1,...,dpathN) removes one or more files or folders
from the current dynamic class path.

Input
Arguments

dpath1,...,dpathN - Folders or JAR files
string

Folders or JAR files, specified as strings, to remove from path.

Data Types
char

Tips • MATLAB calls the clear java command whenever you change
the dynamic path. This command clears the definitions of all Java
classes defined by files on the dynamic class path, removes all global
variables and variables from the base workspace, and removes all
compiled scripts, functions, and MEX-functions from memory.

Examples Remove Folder from Dynamic Path

In order to preserve the state of the dynamic path on your system, this
example first adds folders to the path, then removes one of these folders.

Create a variable that points to the MATLAB examples folder.

expath = fullfile(matlabroot,'extern','examples')

expath =

C:\Program Files\MATLAB\R2012b\extern\examples

The path reflects the folder to your MATLAB installation.

Add two folders to the path.

javaclasspath({...

1-3649

javarmpath

expath,...
'http://www.example.com'})

javaclasspath('-dynamic')

DYNAMIC JAVA PATH

C:\Program Files\MATLAB\R2012b\extern\examples
http://www.example.com

The output displays these new folders on your existing path.

Remove one folder.

javarmpath(expath)
javaclasspath('-dynamic')

DYNAMIC JAVA PATH

http://www.example.com

The path no longer contains the examples folder.

See Also

Functions javaclasspathjavaaddpathclear

Concepts • “Bringing Java Classes into MATLAB Workspace”

1-3650

join

Purpose Merge two tables by matching up rows using key variables

Syntax C = join(A,B)
C = join(A,B,Name,Value)
[C,ib] = join(___)

Description C = join(A,B) merges tables A and B by matching up rows using all
the variables with the same name as key variables. The key values
must be common to both A and B, except for order.

join retains all the variables from A and appends the corresponding
contents from the nonkey variables of B.

C = join(A,B,Name,Value) joins the tables with additional options
specified by one or more Name,Value pair arguments.

For example, you can specify the variables to use as key variables.

[C,ib] = join(___) also returns an index vector, ib, such that each
element of ib identifies the row in B that corresponds to that row in
the output table, C. You can use this syntax with any of the input
arguments of the previous syntaxes.

Input
Arguments

A,B - Input tables
tables

Input tables, specified as tables. For all key variables, each row of A
must match exactly one row in B.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-3651

join

Example: 'Keys',2 uses the second variable in A and the second
variable in B as key variables.

’Keys’ - Variables to use as keys
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector | 'RowNames'

Variables to use as keys, specified as the comma-separated pair
consisting of 'Keys' and a positive integer, vector of positive integers,
variable name, cell array of variable names, logical vector, or
'RowNames'.

If you specify the string 'RowNames', then join uses the row names of
A and row names of B as keys. In this case, there must be a row in B
for every row in A.

You cannot use the 'Keys' name-value pair argument with the
'LeftKeys' and 'RightKeys' name-value pair arguments.

Example: 'Keys',[1 3] uses the first and third variables from A and
B as a key variables.

’LeftKeys’ - Variables to use as keys in A
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables to use as keys in A, specified as the comma-separated pair
consisting of 'LeftKeys' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You must use the 'LeftKeys' name-value pair argument in conjunction
with the 'RightKeys' name-value pair argument. 'LeftKeys' and
'RightKeys' both must specify the same number of key variables. join
pairs key values based on their order.

Example: 'LeftKeys',1 uses only the first variable in A as a key
variable.

’RightKeys’ - Variables to use as keys in B

1-3652

join

positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables to use as keys in B, specified as the comma-separated pair
consisting of 'RightKeys' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You must use the 'RightKeys' name-value pair argument in
conjunction with the 'LeftKeys' name-value pair argument.
'LeftKeys' and 'RightKeys' both must specify the same number of
key variables. join pairs values in A and B based on their order.

Example: 'RightKeys',3 uses only the third variable in B as a key
variable.

’LeftVariables’ - Variables from A to include in C
positive integer | vector of positive integers | variable name | cell array
containing one or more variable names | logical vector

Variables from A to include in C, specified as the comma-separated pair
consisting of 'LeftVariables' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You can use 'LeftVariables'to include or exclude key variables, as
well as nonkey variables from the output, C.

By default, join includes all variables from A.

’RightVariables’ - Variables from B to include in C
positive integer | vector of positive integers | variable name | cell array
containing one or more variable names | logical vector

Variables from B to include in C, specified as the comma-separated pair
consisting of 'RightVariables' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You can use 'RightVariables' to include or exclude key variables, as
well as nonkey variables from the output, C.

By default, join includes all the variables from B except the key
variables.

1-3653

join

’KeepOneCopy’ - Variables for which join retains only the copy
from A
variable name | cell array containing one or more variable names

Variables for which join retains only the copy from A, specified as the
comma-separated pair consisting of 'KeepOneCopy' and a variable
name or a cell array containing one or more variable names.

Key variables appear once in C, but if nonkey variables with identical
names occur in A and B, then join retains both copies in C by default.
You must use the 'KeepOneCopy' name-value pair to retain only the
copy from A.

Example: 'KeepOneCopy',Var2 keeps only the copy from A of the
nonkey variable Var2.

Output
Arguments

C - Merged data from A and B
table

Merged data from A and B, returned as a table. The table, C, contains
one row for each row in A, appearing in the same order. If A and B
contain nonkey variables with the same name, join adds a unique
suffix to the corresponding variable names in C, unless you specify the
'KeepOneCopy' name-value pair argument.

join creates C by horizontally concatenating A(:,LeftVars) and
B(ib,RightVars). By default, LeftVars is all the variables of A, and
RightVars is all the nonkey variables from B. Otherwise, LefttVars
consists of the variables specified by the 'LeftVariables' name-value
pair argument, and RightVars consists of the variables specified by the
'RightVariables' name-value pair argument.

You can store additional metadata such as descriptions, variable
units, variable names, and row names in the output table, C. For more
information, see Table Properties.

ib - Index to B
column vector

1-3654

join

Index to B, returned as a column vector. Each element of ib identifies
the row in B that corresponds to that row in the output table, C.

Definitions Key Variable

Variable used to match and combine data between the input tables,
A and B.

Key Value

Entry in a key variable of A.

Algorithms The join function first finds one or more key variables. Then, join
uses the key variables to find the row in input table B that matches
each row in input table A, and combines those rows to create a row in
output table C.

• If there is a one-to-one mapping between key values in A and B, then
join sorts the data in B and appends it to table A.

• If there is a many-to-one mapping between key values in A and B, then
join sorts and repeats the data in B before appending it to table A.

• If there is data in a key variable of B that does not map to a key value
in A, then join does not include that data in the output table, C.

Examples Append Values from One Table to Another

Create a table, A.

A = table({'John','Jane','Jim','Jerry','Jill'}',[1;2;1;2;1],...
'VariableNames',{'Employee' 'Department'})

A =

Employee Department
________ __________

'John' 1
'Jane' 2

1-3655

join

'Jim' 1
'Jerry' 2
'Jill' 1

Create a table, B, with a variable in common with A.

B = table([1 2]',{'Mary' 'Mike'}',...
'VariableNames',{'Department' 'Manager'})

B =

Department Manager
__________ _______

1 'Mary'
2 'Mike'

Create a new table, C, containing data from tables A and B. Use the join
function to repeat and append Manager data from table B to the data
from table A based on the key variable, Department.

C = join(A,B)

C =

Employee Department Manager
________ __________ _______

'John' 1 'Mary'
'Jane' 2 'Mike'
'Jim' 1 'Mary'
'Jerry' 2 'Mike'
'Jill' 1 'Mary'

Merge Tables with One Variable in Common

Create a table, A.

A = table([5;12;23;2;6],...

1-3656

join

{'cereal';'pizza';'salmon';'cookies';'pizza'},...
'VariableNames',{'Age','FavoriteFood'},...
'RowNames',{'Amy','Bobby','Holly','Harry','Sally'})

A =

Age FavoriteFood
___ ____________

Amy 5 'cereal'
Bobby 12 'pizza'
Holly 23 'salmon'
Harry 2 'cookies'
Sally 6 'pizza'

Create a table, B, with one variable in common with A.

B = table({'cereal';'cookies';'pizza';'salmon';'cake'},...
[110;160;140;367;243],...
{'B';'D';'B-';'A';'C-'},...
'VariableNames',{'FavoriteFood','Calories','NutritionGrade'})

B =

FavoriteFood Calories NutritionGrade
____________ ________ ______________

'cereal' 110 'B'
'cookies' 160 'D'
'pizza' 140 'B-'
'salmon' 367 'A'
'cake' 243 'C-'

Create a new table, C, with data from tables A and B. Use FavoriteFood
as a key variable to the join function.

C = join(A,B)

1-3657

join

C =

Age FavoriteFood Calories NutritionGrade
___ ____________ ________ ______________

Amy 5 'cereal' 110 'B'
Bobby 12 'pizza' 140 'B-'
Holly 23 'salmon' 367 'A'
Harry 2 'cookies' 160 'D'
Sally 6 'pizza' 140 'B-'

Table C does not include information from the last row of table B about
'cake' since there is no corresponding entry in table A.

Merge Tables by Specifying One Key Variable

Create a table, A.

A = table([10;4;2;3;7],[5;4;9;6;1],[10;3;8;8;4])

A =

Var1 Var2 Var3
____ ____ ____

10 5 10
4 4 3
2 9 8
3 6 8
7 1 4

Create a table, B, giving Var2 the same contents as Var2 from table A.

B = table([6;1;1;6;8],[5;4;9;6;1])

B =

Var1 Var2

1-3658

join

____ ____

6 5
1 4
1 9
6 6
8 1

Create a new table, C, containing data from tables A and B. Use Var1 in
table A and Var2 in table B as key variables to the join function.

C = join(A,B,'Keys','Var2')

C =

Var1_A Var2 Var3 Var1_B
______ ____ ____ ______

10 5 10 6
4 4 3 1
2 9 8 1
3 6 8 6
7 1 4 8

join adds a unique suffix to the nonkey variable Var1 to distinguish
the data from tables A and B.

Keep One Copy of Nonkey Variables

Create a new table with data from tables A and B. If any nonkey
variables have the same name in both tables, keep only the copy from
table A.

Create a table, A.

A = table([10;4;2;3;7],[5;4;9;6;1])

A =

1-3659

join

Var1 Var2
____ ____

10 5
4 4
2 9
3 6
7 1

Create a table, B, giving Var2 the same contents as Var2 from table A.

B = table([6;1;1;6;8],[5;4;9;6;1],[10;3;8;8;4])

B =

Var1 Var2 Var3
____ ____ ____

6 5 10
1 4 3
1 9 8
6 6 8
8 1 4

Create a new table, C, with data from tables A and B. Use Var2 as a
key variable to the join function and keep only the copy of Var1 from
table A.

C = join(A,B,'Keys','Var2','KeepOneCopy','Var1')

C =

Var1 Var2 Var3
____ ____ ____

10 5 10
4 4 3
2 9 8

1-3660

join

3 6 8
7 1 4

C does not contain the Var1 data from table B.

Merge Tables Using Row Names as Keys

Create a table, A.

A = table(['M';'M';'F';'F';'F'],[38;43;38;40;49],...
'VariableNames',{'Gender' 'Age'},...
'RowNames',{'Smith' 'Johnson' 'Williams' 'Jones' 'Brown'})

A =

Gender Age
______ ___

Smith M 38
Johnson M 43
Williams F 38
Jones F 40
Brown F 49

Create a table, B, such that there is a one-to-one correspondence
between the rows of A and the rows of B.

B = table([64;69;67;71;64],...
[119;163;133;176;131],...
[122 80; 109 77; 117 75; 124 93; 125 83],...
'VariableNames',{'Height' 'Weight' 'BloodPressure'},...
'RowNames',{'Brown' 'Johnson' 'Jones' 'Smith' 'Williams'})

B =

Height Weight BloodPressure
______ ______ _______________

1-3661

join

Brown 64 119 122 80
Johnson 69 163 109 77
Jones 67 133 117 75
Smith 71 176 124 93
Williams 64 131 125 83

Create a new table, C, with data from tables A and B. Use the row names
as keys to the join function.

C = join(A,B,'Keys','RowNames')

C =

Gender Age Height Weight BloodPressure
______ ___ ______ ______ _______________

Smith M 38 71 176 124 93
Johnson M 43 69 163 109 77
Williams F 38 64 131 125 83
Jones F 40 67 133 117 75
Brown F 49 64 119 122 80

The rows of C are in the same order as A.

Merge Tables Using Left and Right Keys

Create a table, A.

A = table([10;4;2;3;7],[5;4;9;6;1],[10;3;8;8;4])

A =

Var1 Var2 Var3
____ ____ ____

10 5 10
4 4 3
2 9 8
3 6 8

1-3662

join

7 1 4

Create a table, B, giving Var2 the same contents as Var1 from table
A, except for order.

B = table([6;1;1;6;8],[2;3;4;7;10])

B =

Var1 Var2
____ ____

6 2
1 3
1 4
6 7
8 10

Create a new table, C, containing data from tables A and B. Use Var1
from table Awith Var2 from table B as key variables to the join function.

[C,ib] = join(A,B,'LeftKeys',1,'RightKeys',2)

C =

Var1_A Var2 Var3 Var1_B
______ ____ ____ ______

10 5 10 8
4 4 3 1
2 9 8 6
3 6 8 1
7 1 4 6

ib =

5

1-3663

join

3
1
2
4

C is the horizontal concatenation of A and B(ib,2).

See Also innerjoin | outerjoin

1-3664

keyboard

Purpose Input from keyboard

Syntax keyboard

Description keyboard , when placed in a program .m file, stops execution of the file
and gives control to the keyboard. The special status is indicated by a
K appearing before the prompt. You can examine or change variables;
all MATLAB commands are valid. This keyboard mode is useful for
debugging your functions.

To terminate the keyboard mode, type return, and then press Enter.
To terminate keyboard mode and exit the function, type dbquit, and
press Enter.

See Also dbstop | input | quit | pause | return

1-3665

containers.Map.keys

Purpose Identify keys of containers.Map object

Syntax keySet = keys(mapObj)

Description keySet = keys(mapObj) returns cell array keySet, which contains
all of the keys in mapObj.

Input
Arguments

mapObj

Object of class containers.Map.

Output
Arguments

keySet

1-by-n cell array, where n is the number of keys in mapObj.

Examples Get the Keys in a Map

Create a map, and view the keys in the map:

myKeys = {'a','b','c'};
myValues = [1,2,3];
mapObj = containers.Map(myKeys,myValues);

keySet = keys(mapObj)

This code returns 1-by-3 cell array keySet:

keySet =
'a' 'b' 'c'

See Also containers.Map | isKey | values | remove

1-3666

kron

Purpose Kronecker tensor product

Syntax K = kron(A,B)

Description K = kron(A,B) returns the Kronecker tensor product of matrices A and
B. If A is an m-by-n matrix and B is a p-by-q matrix, then kron(A,B) is
an m*p-by-n*q matrix formed by taking all possible products between
the elements of A and the matrix B.

Input
Arguments

A,B - Input matrices
scalars | vectors | matrices

Input matrices, specified as scalars, vectors, or matrices. If either A or B
is sparse, then kron multiplies only nonzero elements and the result
is also sparse.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical
Complex Number Support: Yes

Examples Block Diagonal Matrix

Create a block diagonal matrix.

Create a 4-by-4 identity matrix and a 2-by-2 matrix that you want to
be repeated along the diagonal.

A = eye(4);
B = [1 -1;-1 1];

Use kron to find the Kronecker tensor product.

K = kron(A,B)

K =

1 -1 0 0 0 0 0 0
-1 1 0 0 0 0 0 0

1-3667

kron

0 0 1 -1 0 0 0 0
0 0 -1 1 0 0 0 0
0 0 0 0 1 -1 0 0
0 0 0 0 -1 1 0 0
0 0 0 0 0 0 1 -1
0 0 0 0 0 0 -1 1

The result is an 8-by-8 block diagonal matrix.

Repeat Matrix Elements

Expand the size of a matrix by repeating elements.

Create a 2-by-2 matrix of ones and a 2-by-3 matrix whose elements
you want to repeat.

A = [1 2 3; 4 5 6];
B = ones(2);

Calculate the Kronecker tensor product using kron.

K = kron(A,B)

K =

1 1 2 2 3 3
1 1 2 2 3 3
4 4 5 5 6 6
4 4 5 5 6 6

The result is a 4-by-6 block matrix.

Sparse Laplacian Operator Matrix

This example visualizes a sparse Laplacian operator matrix.

The matrix representation of the discrete Laplacian operator on a
two-dimensional, n-by- n grid is a n*n-by- n*n sparse matrix. There are
at most five nonzero elements in each row or column. You can generate

1-3668

kron

the matrix as the Kronecker product of one-dimensional difference
operators. In this example n = 5.

n = 5;
I = speye(n,n);
E = sparse(2:n,1:n-1,1,n,n);
D = E+E'-2*I;
A = kron(D,I)+kron(I,D);

Visualize the sparsity pattern with spy.

spy(A,'k')

1-3669

kron

Definitions Kronecker Tensor Product

If A is an m-by-n matrix and B is a p-by-q matrix, then the Kronecker
tensor product of A and B is a large matrix formed by multiplying B
by each element of A

1-3670

kron

A B

a B a B a B
a B a B a B

a B a B a B

n

n

m m mn

11 12 1

21 22 2

1 2

.

For example, two simple 2-by-2 matrices produce

A B

A B

1 2
1 0

4 3
2 3

1 4 1 3 2 4 2 3
1 2 1 3 2 2

,

2 3

1 4 1 3 0 4 0 3
1 2 1 3 0 2 0 3

4 3 8 6
2 3 4

6
4 3 0 0
2 3 0 0

.

See Also hankel | toeplitz | dot | cross

1-3671

last (MException)

Purpose Last uncaught exception

Syntax exception = MException.last
MException.last('reset')

Description exception = MException.last displays the contents of the
MException object representing your most recent uncaught error. This
is a static method of the MException class; it is not a method of an
MException instance.

Note Use this method from the MATLAB command line only, and
not within a function.

MException.last('reset') sets the identifier and message
properties of the exception retrieved by MException.last to the empty
string, the stack property to a 0-by-1 structure, and cause property to
an empty cell array.

MException.last is not set if an exception is caught by a try, catch
statement.

Examples This example displays the last error that was caught during this
MATLAB session:

A = 25;
A(2)
??? Index exceeds matrix dimensions.

MException.last
ans =

MException object with properties:

identifier: 'MATLAB:badsubscript'
message: 'Index exceeds matrix dimensions.'

1-3672

last (MException)

stack: [0x1 struct]
cause: {}

See Also addCause(MException) | throwAsCaller(MException)
| rethrow(MException) | throw(MException) |
getReport(MException) | MException | assert | error |
try, catch

1-3673

Tiff.lastDirectory

Purpose Determine if current IFD is last in file

Syntax bool = tiffobj.lastDirectory()

Description bool = tiffobj.lastDirectory() returns true if the current image
file directory (IFD) is the last IFD in the TIFF file; otherwise, false. If
the file contains only one image, the current IFD is the last.

Examples Determine if Current Directory is the Last Directory

Open a Tiff object and determine if the current directory is the last
directory in the file.

t = Tiff('example.tif','r');
tf = t.lastDirectory()

tf =

0

The current directory is not the last directory in the file.

Close the Tiff object.

t.close();

References This method corresponds to the TIFFLastDirectory function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.setDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-3674

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

lasterr

Purpose Last error message

Note lasterr will be removed in a future version. You can obtain
information about any error that has been generated by catching an
MException. See “Capture Information About Exceptions” in the
Programming Fundamentals documentation.

Syntax msgstr = lasterr
[msgstr, msgid] = lasterr
lasterr('new_msgstr')
lasterr('new_msgstr', 'new_msgid')
[msgstr, msgid] = lasterr('new_msgstr', 'new_msgid')

Description msgstr = lasterr returns the last error message generated by the
MATLAB software.

[msgstr, msgid] = lasterr returns the last error in msgstr and
its message identifier in msgid. If the error was not defined with
an identifier, lasterr returns an empty string for msgid. See
“Message Identifiers” in the MATLAB Programming Fundamentals
documentation for more information on the msgid argument and how
to use it.

lasterr('new_msgstr') sets the last error message to a new string,
new_msgstr, so that subsequent invocations of lasterr return the new
error message string. You can also set the last error to an empty string
with lasterr('').

lasterr('new_msgstr', 'new_msgid') sets the last error message
and its identifier to new strings new_msgstr and new_msgid,
respectively. Subsequent invocations of lasterr return the new error
message and message identifier.

[msgstr, msgid] = lasterr('new_msgstr', 'new_msgid') returns
the last error message and its identifier, also changing these values
so that subsequent invocations of lasterr return the message and
identifier strings specified by new_msgstr and new_msgid respectively.

1-3675

lasterr

Examples Example 1

Here is a function that examines the lasterr string and displays its
own message based on the error that last occurred. This example deals
with two cases, each of which is an error that can result from a matrix
multiply:

function matrix_multiply(A, B)

try

A * B

catch

errmsg = lasterr;

if(strfind(errmsg, 'Inner matrix dimensions'))

disp('** Wrong dimensions for matrix multiply')

else

if(strfind(errmsg, 'not defined for variables of class'))

disp('** Both arguments must be double matrices')

end

end

end

If you call this function with matrices that are incompatible for matrix
multiplication (e.g., the column dimension of A is not equal to the
row dimension of B), MATLAB catches the error and uses lasterr to
determine its source:

A = [1 2 3; 6 7 2; 0 -1 5];
B = [9 5 6; 0 4 9];

matrix_multiply(A, B)
** Wrong dimensions for matrix multiply

Example 2

Specify a message identifier and error message string with error:

error('MyToolbox:angleTooLarge', ...
'The angle specified must be less than 90 degrees.');

1-3676

lasterr

In your error handling code, use lasterr to determine the message
identifier and error message string for the failing operation:

[errmsg, msgid] = lasterr
errmsg =

The angle specified must be less than 90 degrees.
msgid =

MyToolbox:angleTooLarge

See Also error | lasterror | rethrow | warning | lastwarn

1-3677

lasterror

Purpose Last error message and related information

Note lasterror will be removed in a future version. You can obtain
information about any error that has been generated by catching an
MException. See “Capture Information About Exceptions” in the
Programming Fundamentals documentation.

Syntax s = lasterror
s = lasterror(err)
s = lasterror('reset')

Description s = lasterror returns a structure s containing information about
the most recent error issued by the MATLAB software. The return
structure contains the following fields:

Fieldname Description

message Character array containing the text of the error
message.

identifier Character array containing the message identifier
of the error message. If the last error issued by
MATLAB had no message identifier, then the
identifier field is an empty character array.

stack Structure providing information on the location of
the error. The structure has fields file, name, and
line, and is the same as the structure returned by
the dbstack function. If lasterror returns no stack
information, stack is a 0-by-1 structure having the
same three fields.

Note The lasterror return structure might contain additional fields
in future versions of MATLAB.

1-3678

lasterror

The fields of the structure returned in stack are

Fieldname Description

file Name of the file in which the function generating the
error appears. This field is the empty string if there
is no file.

name Name of the function in which the error occurred.
If this is the primary function in the file, and the
function name differs from the file name, name is set
to the file name.

line Line number of the file at which the error occurred.

See “Message Identifiers” in the MATLAB Programming Fundamentals
documentation for more information on the syntax and usage of
message identifiers.

s = lasterror(err) sets the last error information to the error
message and identifier specified in the structure err. Subsequent
invocations of lasterror return this new error information. The
optional return structure s contains information on the previous error.

s = lasterror('reset') sets the last error information to the default
state. In this state, the message and identifier fields of the return
structure are empty strings, and the stack field is a 0-by-1 structure.

Tips MathWorks is gradually transitioning MATLAB error handling to an
object-oriented scheme that is based on the MException class. Although
support for lasterror is expected to continue, using the static last
method of MException is preferable.

Warning

lasterror and MException.last are not guaranteed to always
return identical results. For example, MException.last updates
its error status only on uncaught errors, where lasterror can
update its error status on any error, whether it is caught or not.

1-3679

lasterror

Examples Example 1

Save the following MATLAB code in a file called average.m:

function y = average(x)

% AVERAGE Mean of vector elements.

% AVERAGE(X), where X is a vector, is the mean of vector elements.

% Nonvector input results in an error.

check_inputs(x)

y = sum(x)/length(x); % The actual computation

function check_inputs(x)

[m,n] = size(x);

if (~((m == 1) || (n == 1)) || (m == 1 && n == 1))

error('AVG:NotAVector', 'Input must be a vector.')

end

Now run the function. Because this function requires vector input,
passing a scalar value to it forces an error. The error occurs in
subroutine check_inputs:

average(200)
Error using average>check_inputs (line 11)
Input must be a vector.

Error in average (line 5)
check_inputs(x)

Get the three fields from lasterror:

err = lasterror
err =

message: [1x61 char]
identifier: 'AVG:NotAVector'

stack: [2x1 struct]

Display the text of the error message:

msg = err.message

1-3680

lasterror

msg =
Error using average>check_inputs (line 11)
Input must be a vector.

Display the fields containing the stack information. err.stack is
a 2-by-1 structure because it provides information on the failing
subroutine check_inputs and also the outer, primary function average:

st1 = err.stack(1,1)
st1 =

file: 'd:\matlab_test\average.m'
name: 'check_inputs'
line: 11

st2 = err.stack(2,1)
st2 =

file: 'd:\matlab_test\average.m'
name: 'average'
line: 5

Note As a rule, the name of your primary function should be the same
as the name of the file that contains that function. If these names differ,
MATLAB uses the file name in the name field of the stack structure.

Example 2

lasterror is often used in conjunction with the rethrow function in
try, catch statements. For example,

try
do_something

catch
do_cleanup
rethrow(lasterror)

end

1-3681

lasterror

See Also dbstack | lastwarn | rethrow | assert | error | MException |
last(MException) | try, catch

1-3682

lastwarn

Purpose Last warning message

Syntax msgstr = lastwarn
[msgstr, msgid] = lastwarn
lastwarn('new_msgstr')
lastwarn('new_msgstr', 'new_msgid')
[msgstr, msgid] = lastwarn('new_msgstr', 'new_msgid')

Description msgstr = lastwarn returns the last warning message generated by the
MATLAB software.

[msgstr, msgid] = lastwarn returns the last warning in msgstr and
its message identifier in msgid. If the warning was not defined with an
identifier, lastwarn returns an empty string for msgid.

lastwarn('new_msgstr') sets the last warning message to a new
string, new_msgstr, so that subsequent invocations of lastwarn return
the new warning message string. You can also set the last warning to
an empty string with lastwarn('').

lastwarn('new_msgstr', 'new_msgid') sets the last warning
message and its identifier to new strings new_msgstr and new_msgid,
respectively. Subsequent invocations of lastwarn return the new
warning message and message identifier.

[msgstr, msgid] = lastwarn('new_msgstr', 'new_msgid') returns
the last warning message and its identifier, also changing these values
so that subsequent invocations of lastwarn return the message and
identifier strings specified by new_msgstr and new_msgid, respectively.

Tips lastwarn does not return warnings that are reported during the parsing
of MATLAB commands. (Warning messages that include the failing file
name and line number are parse-time warnings.)

Examples Write a short function that generates a warning message. At the start
of the function, enable any warnings that have a message identifier
called TestEnv:InvalidInput:

1-3683

lastwarn

function myfun(p1)
warning on TestEnv:InvalidInput;

exceedMax = find(p1 > 5000);
if any(exceedMax)

warning('TestEnv:InvalidInput', ...
'%d values in the "%s" array exceed the maximum.', ...
length(exceedMax), inputname(1))

end

Pass an invalid value to the function:

dataIn = magic(10) - 2;

myfun(dataIn)
Warning: 2 values in the "dataIn" array exceed the maximum.
> In myfun at 4

Use lastwarn to determine the message identifier and error message
string for the operation:

[warnmsg, msgid] = lastwarn
warnmsg =

2 values in the "dataIn" array exceed the maximum.
msgid =

TestEnv:InvalidInput

See Also warning | error

Related
Examples

• “Issue Warnings and Errors”
• “Suppress Warnings”
• “Restore Warnings”

1-3684

lcm

Purpose Least common multiple

Syntax L = lcm(A,B)

Description L = lcm(A,B) returns the least common multiples of the elements of
A and B.

Input
Arguments

A,B - Input values
scalars, vectors, or arrays of real, positive integer values

Input values, specified as scalars, vectors, or arrays of real, positive
integer values. A and B can be any numeric type, and they can be of
different types within certain limitations:

• If A or B is of type single, then the other can be of type single or
double.

• If A or B belongs to an integer class, then the other must belong to the
same class or it must be a double scalar value.

A and B must be the same size or one must be a scalar.

Example: [20 3 13],[10 6 7]

Example: int16([100 30 200]),int16([20 15 9])

Example: int16([100 30 200]),20

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output
Arguments

L - Least common multiple
real, positive integer values

Least common multiple, returned as an array of real positive integer
values. L is the same size as A and B, and it has the same type as A and
B. If A and B are of different types, then L is returned as the nondouble
type.

1-3685

lcm

Examples Least Common Multiples of Double Array and a Scalar

A = [5 17; 10 60];
B = 45;
L = lcm(A,B)

L =

45 765
90 180

Least Common Multiples of Unsigned Integers

A = uint16([255 511 15]);
B = uint16([15 127 1023]);
L = lcm(A,B)

L =

255 64897 5115

See Also gcd

1-3686

ldl

Purpose Block LDL’ factorization for Hermitian indefinite matrices

Syntax L = ldl(A)
[L,D] = ldl(A)
[L,D,P] = ldl(A)
[L,D,p] = ldl(A,'vector')
[U,D,P] = ldl(A,'upper')
[U,D,p] = ldl(A,'upper','vector')
[L,D,P,S] = ldl(A)
[L,D,P,S] = LDL(A,THRESH)
[U,D,p,S] = LDL(A,THRESH,'upper','vector')

Description L = ldl(A) returns only the "psychologically lower triangular matrix"
L as in the two-output form. The permutation information is lost, as is
the block diagonal factor D. By default, ldl references only the diagonal
and lower triangle of A, and assumes that the upper triangle is the
complex conjugate transpose of the lower triangle. Therefore [L,D,P]
= ldl(TRIL(A)) and [L,D,P] = ldl(A)both return the exact same
factors. Note, this syntax is not valid for sparse A.

[L,D] = ldl(A) stores a block diagonal matrix D and a "psychologically
lower triangular matrix" (i.e a product of unit lower triangular and
permutation matrices) in L such that A = L*D*L'. The block diagonal
matrix D has 1-by-1 and 2-by-2 blocks on its diagonal. Note, this syntax
is not valid for sparse A.

[L,D,P] = ldl(A) returns unit lower triangular matrix L, block
diagonal D, and permutation matrix P such that P'*A*P = L*D*L'. This
is equivalent to [L,D,P] = ldl(A,'matrix').

[L,D,p] = ldl(A,'vector') returns the permutation information as a
vector, p, instead of a matrix. The p output is a row vector such that
A(p,p) = L*D*L'.

[U,D,P] = ldl(A,'upper') references only the diagonal and upper
triangle of A and assumes that the lower triangle is the complex
conjugate transpose of the upper triangle. This syntax returns a unit
upper triangular matrix U such that P'*A*P = U'*D*U (assuming that

1-3687

ldl

A is Hermitian, and not just upper triangular). Similarly, [L,D,P] =
ldl(A,'lower') gives the default behavior.

[U,D,p] = ldl(A,'upper','vector') returns the
permutation information as a vector, p, as does [L,D,p] =
ldl(A,'lower','vector'). A must be a full matrix.

[L,D,P,S] = ldl(A) returns unit lower triangular matrix L, block
diagonal D, permutation matrix P, and scaling matrix S such that
P'*S*A*S*P = L*D*L'. This syntax is only available for real sparse
matrices, and only the lower triangle of A is referenced. ldl uses MA57
for sparse real symmetric A.

[L,D,P,S] = LDL(A,THRESH) uses THRESH as the pivot tolerance in
MA57. THRESH must be a double scalar lying in the interval [0, 0.5].
The default value for THRESH is 0.01. Using smaller values of THRESH
may give faster factorization times and fewer entries, but may also
result in a less stable factorization. This syntax is available only for
real sparse matrices.

[U,D,p,S] = LDL(A,THRESH,'upper','vector') sets the pivot
tolerance and returns upper triangular U and permutation vector p
as described above.

Examples These examples illustrate the use of the various forms of the ldl
function, including the one-, two-, and three-output form, and the use of
the vector and upper options. The topics covered are:

• “Example 1 — Two-Output Form of ldl” on page 1-3689

• “Example 2 — Three Output Form of ldl” on page 1-3689

• “Example 3 — The Structure of D” on page 1-3690

• “Example 4 — Using the ’vector’ Option” on page 1-3690

• “Example 5 — Using the ’upper’ Option” on page 1-3691

• “Example 6 — linsolve and the Hermitian indefinite solver” on page
1-3691

1-3688

ldl

Before running any of these examples, you will need to generate the
following positive definite and indefinite Hermitian matrices:

A = full(delsq(numgrid('L', 10)));
B = gallery('uniformdata',10,0);
M = [eye(10) B; B' zeros(10)];

The structure of M here is very common in optimization and fluid-flow
problems, and M is in fact indefinite. Note that the positive definite
matrix A must be full, as ldl does not accept sparse arguments.

Example 1 — Two-Output Form of ldl

The two-output form of ldl returns L and D such that A-(L*D*L') is
small, L is "psychologically unit lower triangular" (i.e., a permuted unit
lower triangular matrix), and D is a block 2-by-2 diagonal. Note also
that, because A is positive definite, the diagonal of D is all positive:

[LA,DA] = ldl(A);
fprintf(1, ...
'The factorization error ||A - LA*DA*LA''|| is %g\n', ...
norm(A - LA*DA*LA'));
neginds = find(diag(DA) < 0)

Given a b, solve Ax=b using LA, DA:

bA = sum(A,2);
x = LA'\(DA\(LA\bA));
fprintf(...
'The absolute error norm ||x - ones(size(bA))|| is %g\n', ...
norm(x - ones(size(bA))));

Example 2 — Three Output Form of ldl

The three output form returns the permutation matrix as well, so that
L is in fact unit lower triangular:

[Lm, Dm, Pm] = ldl(M);
fprintf(1, ...
'The error norm ||Pm''*M*Pm - Lm*Dm*Lm''|| is %g\n', ...

1-3689

ldl

norm(Pm'*M*Pm - Lm*Dm*Lm'));
fprintf(1, ...
'The difference between Lm and tril(Lm) is %g\n', ...
norm(Lm - tril(Lm)));

Given b, solve Mx=b using Lm, Dm, and Pm:

bM = sum(M,2);
x = Pm*(Lm'\(Dm\(Lm\(Pm'*bM))));
fprintf(...
'The absolute error norm ||x - ones(size(b))|| is %g\n', ...
norm(x - ones(size(bM))));

Example 3 — The Structure of D

D is a block diagonal matrix with 1-by-1 blocks and 2-by-2 blocks.
That makes it a special case of a tridiagonal matrix. When the input
matrix is positive definite, D is almost always diagonal (depending on
how definite the matrix is). When the matrix is indefinite however, D
may be diagonal or it may express the block structure. For example,
with A as above, DA is diagonal. But if you shift A just a bit, you end
up with an indefinite matrix, and then you can compute a D that has
the block structure.

figure; spy(DA); title('Structure of D from ldl(A)');
[Las, Das] = ldl(A - 4*eye(size(A)));
figure; spy(Das);
title('Structure of D from ldl(A - 4*eye(size(A)))');

Example 4 — Using the ’vector’ Option

Like the lu function, ldl accepts an argument that determines whether
the function returns a permutation vector or permutation matrix. ldl
returns the latter by default. When you select 'vector', the function
executes faster and uses less memory. For this reason, specifying
the 'vector' option is recommended. Another thing to note is that
indexing is typically faster than multiplying for this kind of operation:

[Lm, Dm, pm] = ldl(M, 'vector');

1-3690

ldl

fprintf(1, 'The error norm ||M(pm,pm) - Lm*Dm*Lm''|| is %g\n', ...

norm(M(pm,pm) - Lm*Dm*Lm'));

% Solve a system with this kind of factorization.

clear x;

x(pm,:) = Lm'\(Dm\(Lm\(bM(pm,:))));

fprintf('The absolute error norm ||x - ones(size(b))|| is %g\n', ...

norm(x - ones(size(bM))));

Example 5 — Using the ’upper’ Option

Like the chol function, ldl accepts an argument that determines which
triangle of the input matrix is referenced, and also whether ldl returns
a lower (L) or upper (L') triangular factor. For dense matrices, there are
no real savings with using the upper triangular version instead of the
lower triangular version:

Ml = tril(M);

[Lml, Dml, Pml] = ldl(Ml, 'lower'); % 'lower' is default behavior.

fprintf(1, ...

'The difference between Lml and Lm is %g\n', norm(Lml - Lm));

[Umu, Dmu, pmu] = ldl(triu(M), 'upper', 'vector');

fprintf(1, ...

'The difference between Umu and Lm'' is %g\n', norm(Umu - Lm'));

% Solve a system using this factorization.

clear x;

x(pm,:) = Umu\(Dmu\(Umu'\(bM(pmu,:))));

fprintf(...

'The absolute error norm ||x - ones(size(b))|| is %g\n', ...

norm(x - ones(size(bM))));

When specifying both the 'upper' and 'vector' options, 'upper' must
precede 'vector' in the argument list.

Example 6 — linsolve and the Hermitian indefinite solver

When using the linsolve function, you may experience better
performance by exploiting the knowledge that a system has a symmetric

1-3691

ldl

matrix. The matrices used in the examples above are a bit small to see
this so, for this example, generate a larger matrix. The matrix here
is symmetric positive definite, and below we will see that with each
bit of knowledge about the matrix, there is a corresponding speedup.
That is, the symmetric solver is faster than the general solver while the
symmetric positive definite solver is faster than the symmetric solver:

Abig = full(delsq(numgrid('L', 30)));
bbig = sum(Abig, 2);
LSopts.POSDEF = false;
LSopts.SYM = false;
tic; linsolve(Abig, bbig, LSopts); toc;
LSopts.SYM = true;
tic; linsolve(Abig, bbig, LSopts); toc;
LSopts.POSDEF = true;
tic; linsolve(Abig, bbig, LSopts); toc;

Algorithms ldl uses the MA57 routines in the Harwell Subroutine Library (HSL)
for real sparse matrices.

References [1] Ashcraft, C., R.G. Grimes, and J.G. Lewis. “Accurate Symmetric
Indefinite Linear Equations Solvers.” SIAM J. Matrix Anal. Appl. Vol.
20. Number 2, 1998, pp. 513–561.

[2] Duff, I. S. "MA57 — A new code for the solution of sparse symmetric
definite and indefinite systems." Technical Report RAL-TR-2002-024,
Rutherford Appleton Laboratory, 2002.

See Also chol | lu | qr

1-3692

ldivide, .\

Purpose Left array division

Syntax x = B.\A
x = ldivide(B,A)

Description x = B.\A divides each element of A by the corresponding element of B.

• If A and B are arrays, then they must be the same size.

• If either A or B is a scalar, then MATLAB expands the scalar value
into an appropriately sized array.

x = ldivide(B,A) is an alternative way to divide A by B, but is rarely
used. It enables operator overloading for classes.

Input
Arguments

A - Numerator
numeric array | sparse numeric array

Numerator, specified as a full or sparse numeric array. If B is an integer
data type, then A must be the same integer type or a scalar double.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

B - Denominator
numeric array | sparse numeric array

Denominator, specified as a full or sparse numeric array. If A is an
integer data type, then B must be the same integer type or a scalar
double.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

1-3693

ldivide, .\

Output
Arguments

x - Solution
numeric array | sparse numeric array

Solution, returned as a sparse or full numeric array. If either A or B are
integer data types, then x is that same integer data type.

Examples Divide Two Numeric Arrays

A = ones(2, 3);
B = [1 2 3; 4 5 6];
x = B.\A

x =

1.0000 0.5000 0.3333
0.2500 0.2000 0.1667

Divide a Scalar by a Numeric Array

C = 2;
D = [1 2 3; 4 5 6];
x = D.\C

x =

2.0000 1.0000 0.6667
0.5000 0.4000 0.3333

Tips • MATLAB does not support complex integer division.

See Also rdivide | mldivide | mrdivide

1-3694

le, <=

Purpose Determine less than or equal to

Syntax A <= B
le(A,B)

Description A <= B returns a logical array with elements set to logical 1 (true)
where A is less than or equal to B; otherwise, it returns logical 0 (false).
The test compares only the real part of numeric arrays. le returns
logical 0 (false) where A or B have NaN or undefined categorical
elements.

le(A,B) is an alternate way to execute A <= B, but is rarely used. It
enables operator overloading for classes.

Input
Arguments

A - Left array
numeric array | logical array | character array | ordinal categorical
array

Left array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is an ordinal categorical array, the other input can be an
ordinal categorical array, a cell array of strings, or a single string. A
single string expands into a cell array of strings of the same size as the
other input. If both inputs are ordinal categorical arrays, they must
have the same sets of categories, including their order. See “Compare
Categorical Array Elements” for more details.

B - Right array
numeric array | logical array | character array | ordinal categorical
array

Right array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one

1-3695

le, <=

is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is an ordinal categorical array, the other input can be an
ordinal categorical array, a cell array of strings, or a single string. A
single string expands into a cell array of strings of the same size as the
other input. If both inputs are ordinal categorical arrays, they must
have the same sets of categories, including their order. See “Compare
Categorical Array Elements” for more details.

Examples Test Vector Elements

Find which vector elements are less than or equal to a given value.

Create a numeric vector.

A = [1 12 18 7 9 11 2 15];

Test the vector for elements that are less than or equal to 12.

A <= 12

ans =

1 1 0 1 1 1 1 0

The result is a vector with values of logical 1 (true) where the elements
of A satisfy the expression.

Use the vector of logical values as an index to view the values in A that
are less than or equal to 12.

A(A <= 12)

ans =

1 12 7 9 11 2

The result is a subset of the elements in A.

1-3696

le, <=

Replace Elements of Matrix

Create a matrix.

A = magic(4)

A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Replace all values less than or equal to 9 with the value 10.

A(A <= 9) = 10

A =

16 10 10 13
10 11 10 10
10 10 10 12
10 14 15 10

The result is a new matrix whose smallest element is 10.

Compare Values in Categorical Array

Create an ordinal categorical array.

A = categorical({'large' 'medium' 'small'; 'medium' ...
'small' 'large'},{'small' 'medium' 'large'},'Ordinal',1)

A =

large medium small
medium small large

The array has three categories: 'small', 'medium', and 'large'.

1-3697

le, <=

Find all values less than or equal to the category 'medium'.

A <= 'medium'

ans =

0 1 1
1 1 0

A value of logical 1 (true) indicates a value less than or equal to the
category 'medium'.

Compare the rows of A.

A(1,:) <= A(2,:)

ans =

0 0 1

The function returns logical 1 (true) where the first row has a category
value less than or equal to the second row.

Test Complex Numbers

Create a vector of complex numbers.

A = [1+i 2-2i 1+3i 1-2i 5-i];

Find the values that are less than or equal to 3.

A(A <= 3)

ans =

1.0000 + 1.0000i 2.0000 - 2.0000i 1.0000 + 3.0000i 1.0000 - 2.00

le compares only the real part of the elements in A.

Use abs to find which elements are within a radius of 3 from the origin.

1-3698

le, <=

A(abs(A) <= 3)

ans =

1.0000 + 1.0000i 2.0000 - 2.0000i 1.0000 - 2.0000i

The result has one less element. The element 1.0000 + 3.0000i is not
within a radius of 3 from the origin.

Tips • Some floating-point numbers cannot be represented exactly in binary
form. This leads to small differences in results that the <= operator
reflects. For more information, see “Avoiding Common Problems
with Floating-Point Arithmetic”.

See Also eq | ge | gt | lt | ne

Concepts • “Ordinal Categorical Arrays”

1-3699

legend

Purpose Graph legend for lines and patches

Syntax legend('string1','string2',...)
legend(h,'string1','string2',...)
legend(M)
legend(h,M)
legend(M,'parameter_name','parameter_value',...)
legend(h,M,'parameter_name','parameter_value',...)
legend(axes_handle,...)
legend('off')
legend(axes_handle,'off')
legend('toggle')
legend(axes_handle,'toggle')
legend('hide')
legend(axes_handle,'hide')
legend('show')
legend(axes_handle,'show')
legend('boxoff')
legend(axes_handle,'boxoff')
legend('boxon')
legend(axes_handle,'boxon')
legend_handle = legend(...)
legend(...,'Location','location')
legend(...,'Orientation','orientation')
[legend_h,object_h,plot_h,text_strings] = legend(...)

Description The legend function places a legend on various types of graphs (line
plots, bar graphs, pie charts, etc.). For each line plotted, the legend
shows a sample of the line type, marker symbol, and color beside the text
label you specify. When plotting filled areas (patch or surface objects),
the legend contains a sample of the face color next to the text label.

The font size and font name for the legend strings match the axes
FontSize and FontName properties.

legend('string1','string2',...) displays a legend in the current
axes using the specified strings to label each set of data.

1-3700

legend

legend(h,'string1','string2',...) displays a legend on the plot
containing the objects identified by the handles in the vector h and
uses the specified strings to label the corresponding graphics object
(line, barseries, etc.).

legend(M) adds a legend containing the rows of the matrix or
cell array of strings M as labels. For matrices, this is the same as
legend(M(1,:),M(2,:),...).

legend(h,M) associates each row of the matrix or cell array of strings M
with the corresponding graphics object (patch or line) in the vector of
handles h.

legend(M,'parameter_name','parameter_value',...) and
legend(h,M,'parameter_name','parameter_value',...) allow
parameter/value pairs to be set when creating a legend (you can also
assign them with set or with the Property Editor or Property Inspector).
M must be a cell array of names. Legends inherit the properties of axes,
although not all of them are relevant to legend objects.

legend(axes_handle,...) displays the legend for the axes specified
by axes_handle.

legend('off') removes the legend in the current axes.

legend(axes_handle,'off') removes the legend in the axes specified
by axes_handle.

legend('toggle') toggles the legend visibility. If a legend does not
exist, then one is created using default strings. If a legend exists, then
toggling its state to invisible does not remove the legend.

legend(axes_handle,'toggle') toggles the legend visibility in the
axes specified by axes_handle.

The default string for an object is the value of the object’s DisplayName
property, if you have defined a value for DisplayName (which you can do
using the Property Editor or calling set). Otherwise, legend constructs
a string of the form data1, data2, etc. Setting display names is useful
when you are experimenting with legends and might forget how objects
in a lineseries, for example, are ordered.

1-3701

legend

When you specify legend strings in a legend command, their respective
DisplayNames are set to these strings. If you delete a legend and
then create a new legend without specifying labels for it, the values of
DisplayName are (re)used as label names. Naturally, the associated
plot objects must have a DisplayName property for this to happen: all
_series and _group plot objects have a DisplayName property; Handle
Graphics primitives, such as line and patch, do not.

Legends for graphs that contain groups of objects such as lineseries,
barseries, contourgroups, etc. created by high-level plotting commands
such as plot, bar, contour, etc., by default display a single legend entry
for the entire group, regardless of how many member objects it contains.
However, you can customize such legends to show individual entries for
all or selected member objects and assign a unique DisplayName to
any of them. You control how groups appear in the legend by setting
values for their Annotation and DisplayName properties with code. For
information and examples about customizing legends in this manner,
see “Control Legend Content” in the MATLAB Graphics documentation.

You can specify EdgeColor and TextColor as RGB triplets or as
ColorSpecs. You cannot set these colors to 'none'. To hide the box
surrounding a legend, set the Box property to 'off'. To allow the
background to show through the legend box, set the legend’s Color
property to 'none', for example,

set(legend_handle, 'Box', 'off')
set(legend_handle, 'Color', 'none')

This is similar to the effect of the command legend boxoff, except that
boxoff also hides the legend’s border.

You can use a legend’s handle to set text properties for all the strings
in a legend at once with a cell array of strings, rather than looping
through each of them. See the last line of the example below, which
demonstrates setting a legend’s Interpreter property. In that
example, you could reset the String property of the legend as follows:

set(h,'String',{'cos(x)','sin(x)'})

1-3702

legend

See the documentation for Text Properties for additional details.

legend('hide') makes the legend in the current axes invisible.

legend(axes_handle,'hide') makes the legend in the axes specified
by axes_handle invisible.

legend('show') makes the legend in the current axes visible. A legend
is created if one did not exist previously. Legends created automatically
are limited to depict only the first 20 lines in the plot; if you need more
legend entries, you can manually create a legend for them all with
legend('string1','string2',...) syntax.

legend(axes_handle,'show') makes the legend in the axes specified
by axes_handle visible.

legend('boxoff') removes the box from the legend in the current axes
and makes its background transparent.

legend(axes_handle,'boxoff') removes the box from the legend
in the axes specified by axes_handle and makes its background
transparent.

legend('boxon') adds a box with an opaque background to the legend
in the current axes.

legend(axes_handle,'boxon') adds a box with an opaque background
to the legend in the axes specified by axes_handle.

You can also type the above six commands using the syntax

legend keyword

If the keyword is not recognized, it is used as legend text, creating a
legend or replacing the current legend.

legend_handle = legend(...) returns the handle to the legend on
the current axes, or [] if no legend exists.

legend(...,'Location','location') uses location to determine
where to place the legend. location can be either be a 1-by-4 position
vector ([left,bottom,width,height]) or one of the following strings.

1-3703

legend

Specifier Location in Axes

North Inside plot box near top

South Inside bottom

East Inside right

West Inside left

NorthEast Inside top right (default for 2-D plots)

NorthWest Inside top left

SouthEast Inside bottom right

SouthWest Inside bottom left

NorthOutside Outside plot box near top

SouthOutside Outside bottom

EastOutside Outside right

WestOutside Outside left

NorthEastOutside Outside top right (default for 3-D plots)

NorthWestOutside Outside top left

SouthEastOutside Outside bottom right

SouthWestOutside Outside bottom left

Best Least conflict with data in plot

BestOutside Least unused space outside plot

Using one of the ...Outside values for ‘Location’ ensures that the
legend does not overlap the plot, whereas overlaps can occur when you
specify any of the other cardinal values. The location property applies
to colorbars and legends, but not to axes.

1-3704

legend

Note You can set the legend location by passing the 4-element position
vector to the legend function using the `Location' option. To define
the position of an existing legend, use the set function to assign the
4-element position vector to the `Position' property. You cannot use
the Location option with the set function.

Obsolete Location Values

The first column of the following table shows the now-obsolete specifiers
for legend locations that were in use prior to Version 7, along with a
description of the locations and their current equivalent syntaxes.

Note Support for these numeric specifiers will be removed in a future
release. Use the supported string specifiers instead.

Obsolete
Specifier Location in Axes Current Specifier

-1 Outside axes on right side NorthEastOutside

0 Inside axes Best

1 Upper right corner of axes NorthEast

2 Upper left corner of axes NorthWest

3 Lower left corner of axes SouthWest

4 Lower right corner of axes SouthEast

legend(...,'Orientation','orientation') creates a legend with
the legend items arranged in the specified orientation. orientation
can be vertical (the default) or horizontal.

[legend_h,object_h,plot_h,text_strings] = legend(...) returns

• legend_h — Handle of the legend axes

1-3705

legend

• object_h — Handles of the line, patch, and text graphics objects
used in the legend

• plot_h— Handles of the lines and other objects used in the plot

• text_strings— Cell array of the text strings used in the legend

Relationship to Axes

legend associates strings with the objects in the axes in the same order
that they are listed in the axes Children property. By default, the
legend annotates the current axes.

You can only display one legend per axes. legend positions the legend
based on a variety of factors, such as what objects the legend obscures.

The properties that legends do not share with axes are

• Location

• Orientation

• EdgeColor

• TextColor

• Interpreter

• String

Tips Using Keywords as Legend Labels

To use legend keywords like 'Location', `Orientation', `Off',
'Hide', or property names as legend labels, pass the string in a cell
array to the legend function as,

l = legend({'Location'});

Examples Add a legend to a graph showing a sine and cosine function. The default
location is upper right, within the axes:

figure
x = -pi:pi/20:pi;
plot(x,cos(x),'-ro',x,sin(x),'-.b')

1-3706

legend

hleg1 = legend('cos_x','sin_x');

The legend reflects that plot specified a solid, red line ('-ro') for the
cosine function and a dash-dot, blue line ('-.b') for the sine function.

Update the legend. Use the returned legend handle, hleg1, to move the
legend to the upper left. Also turn off the TeX interpreter to render
underscores in legend text literally rather than as subscripts:

set(hleg1,'Location','NorthWest')
set(hleg1,'Interpreter','none')

1-3707

legend

Setting the position of the legend at a particular position.

set(hleg1, 'Position', [.1,.2,.1,.2]);

1-3708

legend

Use besselj to plot Bessel functions for orders 1, 2, and 3. Add a legend
for the lines at the upper right, outside the axes.

figure
x = 0:.2:12;
plot(x,besselj(1,x),x,besselj(2,x),x,besselj(3,x));
hleg = legend('First','Second','Third',...

'Location','NorthEastOutside')
% Make the text of the legend italic and color it brown

1-3709

legend

set(hleg,'FontAngle','italic','TextColor',[.3,.2,.1])

Create a bar graph and overlay a line plot on it by setting hold on.
Create a legend that reflects both graphs and locate it to the lower
right, outside the axes:

figure
stream = RandStream('mrg32k3a','Seed',4);
y1 = rand(stream,10,5);

1-3710

legend

hb = bar(y1,'stacked');
colormap(summer);

hold on
y2 = rand(stream,10,1);
hp = plot(1:10,y2,...

'marker','square',...
'markersize',12,...
'markeredgecolor','y',...
'markerfacecolor',[.6,0,.6],...
'linestyle','-',...
'color','r',...
'linewidth',2);

hold off
legend([hb,hp],'Carrots','Peas','Peppers','Green Beans',...

'Cucumbers','Eggplant',...
'Location','SouthEastOutside')

1-3711

legend

Alternatives Add a legend to a selected axes on a graph with the Insert Legend tool

on the figure toolbar, or use Insert > Legend from the figure
menu. Use the Property Editor to modify the position, font, and other
properties of a legend.

1-3712

legend

Moving the Legend

Move the legend by pressing the left mouse button while the cursor
is over the legend and dragging the legend to a new location.
Double-clicking a label allows you to edit the label.

See Also LineSpec | plot | Text Properties

How To • “Add Legend to Graph Using Plot Tools”

1-3713

legendre

Purpose Associated Legendre functions

Syntax P = legendre(n,X)
S = legendre(n,X,'sch')
N = legendre(n,X,'norm')

Description P = legendre(n,X) computes the associated Legendre functions of
degree n and order m = 0,1,...,n, evaluated for each element of X.
Argument n must be a scalar integer, and X must contain real values
in the domain −1 ≤ x ≤ 1.

If X is a vector, then P is an (n+1)-by-q matrix, where q = length(X).
Each element P(m+1,i) corresponds to the associated Legendre
function of degree n and order m evaluated at X(i).

In general, the returned array P has one more dimension than X, and
each element P(m+1,i,j,k,...) contains the associated Legendre
function of degree n and order m evaluated at X(i,j,k,...). Note
that the first row of P is the Legendre polynomial evaluated at X, i.e.,
the case where m = 0.

S = legendre(n,X,'sch') computes the “Schmidt Seminormalized
Associated Legendre Functions” on page 1-3715.

N = legendre(n,X,'norm') computes the “Fully Normalized
Associated Legendre Functions” on page 1-3715.

Definitions Associated Legendre Functions

The Legendre functions are defined by

P x x
d

dx
P xn

m m m
m

m n() () () (),/= − −1 1 2 2

where

P xn()

is the Legendre polynomial of degree n:

1-3714

legendre

P x
n

d

dx
xn n

n

n
n()

!
()= −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2
12

Schmidt Seminormalized Associated Legendre Functions

The Schmidt seminormalized associated Legendre functions are related

to the nonnormalized associated Legendre functions P xn
m () by

P x m

S x
n m

n m
P x m

n

n
m

n
mm

() ,

() ()
()!

()!
() .

 for

 for

0

1
2

0

Fully Normalized Associated Legendre Functions

The fully normalized associated Legendre functions are normalized
such that

−∫ () =
1

1 2
1N x dxn

m ()

and are related to the unnormalized associated Legendre functions

P xn
m () by

N
n n m

n m
P xn

m m
n
m= −

+ −

+
()

()()!

()!
()1

1
2

Examples Example 1

The statement legendre(2,0:0.1:0.2) returns the matrix

1-3715

legendre

x = 0 x = 0.1 x = 0.2

m = 0 -0.5000 -0.4850 -0.4400

m = 1 0 -0.2985 -0.5879

m = 2 3.0000 2.9700 2.8800

Example 2

Given,

X = rand(2,4,5);
n = 2;
P = legendre(n,X)

then

size(P)
ans =

3 2 4 5

and

P(:,1,2,3)
ans =

-0.2475
-1.1225
2.4950

is the same as

legendre(n,X(1,2,3))
ans =

-0.2475
-1.1225
2.4950l

Algorithms legendre uses a three-term backward recursion relationship in
m. This recursion is on a version of the Schmidt seminormalized

1-3716

legendre

associated Legendre functions
P x x

d

dx
P xn

m m m
m

m n() () () (),/= − −1 1 2 2
,

which are complex spherical harmonics. These functions are
related to the standard Abramowitz and Stegun [1] functions

P x x
d

dx
P xn

m m m
m

m n() () () (),/= − −1 1 2 2
by

P x x
d

dx
P xn

m m m
m

m n() () () (),/= − −1 1 2 2

They are related to the Schmidt form given previously by

P x x
d

dx
P xn

m m m
m

m n() () () (),/= − −1 1 2 2

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, Ch.8.

[2] Jacobs, J. A., Geomagnetism, Academic Press, 1987, Ch.4.

1-3717

length

Purpose Length of vector or largest array dimension

Syntax numberOfElements = length(array)

Description numberOfElements = length(array) finds the number of elements
along the largest dimension of an array. array is an array of any
MATLAB data type and any valid dimensions. numberOfElements is a
whole number of the MATLAB double class.

For nonempty arrays, numberOfElements is equivalent to
max(size(array)). For empty arrays, numberOfElements is zero.

Examples Create a 1-by-8 array X and use length to find the number of elements
in the second (largest) dimension:

X = [5, 3.4, 72, 28/4, 3.61, 17 94 89];

length(X)
ans =

8

Create a 4-dimensional array Y in which the third dimension is the
largest. Use length to find the number of elements in that dimension:

Y = rand(2, 5, 17, 13);

length(Y)
ans =

17

Create a struct array S with character and numeric fields of different
lengths. Use the structfun function to apply length to each field of S:

S = struct('f1', 'Name:', 'f2', 'Charlie', ...
'f3', 'DOB:', 'f4', 1917)

1-3718

length

S =
f1: 'Name:'
f2: 'Charlie'
f3: 'DOB:'
f4: 1917

structfun(@(field)length(field), S)
ans =

5
7
4
1

See Also numel | size | ndims

1-3719

containers.Map.length

Purpose Length of containers.Map object

Syntax mapLength = length(mapObj)

Description mapLength = length(mapObj) returns the number of key-value pairs
in mapObj.

Input
Arguments

mapObj

Object of class containers.Map.

Output
Arguments

mapLength

Scalar numeric value that indicates the number of key-value pairs
in mapObj. This number is equivalent to size(mapObj,1) and
to mapObj.Count.

Examples Determine the Length of a Map

Create a map, and determine the number of key-value pairs:

myKeys = {'a','b','c'};
myValues = [1,2,3];
mapObj = containers.Map(myKeys,myValues);

mapLength = length(mapObj)

This code returns

mapLength =
3

See Also containers.Map | isKey | keys | size | values

1-3720

length (serial)

Purpose Length of serial port object array

Syntax length(obj)

Description length(obj) returns the length of the serial port object, obj. It is
equivalent to the command max(size(obj)).

See Also size

1-3721

length (tscollection)

Purpose Length of time vector

Syntax length(tsc)

Description length(tsc) returns an integer that represents the length of the time
vector for the tscollection object tsc.

See Also tscollection | isempty (tscollection) | size (tscollection)

1-3722

libfunctions

Purpose Return information on functions in shared library

Syntax libfunctions libname

m = libfunctions(libname)
___ = libfunctions(___ ,'-full')

Description libfunctions libname displays names of functions defined in library,
libname. If you called loadlibrary using the alias option, then you
must use the alias name for the libname argument.

m = libfunctions(libname) returns names of functions in cell array m.

___ = libfunctions(___ ,'-full') returns function signatures.

Input
Arguments

libname - Name of shared library
string

Name of shared library, specified as a string. If you call loadlibrary
using the alias option, then you must use the alias name for the
libname argument.

Data Types
char

Output
Arguments

m - Function names
cell array

Functions names, returned as a cell array.

Examples Display Function Signatures

Load the example library, shrlibsample, and list the functions.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot,'extern','examples','shrlib'))
loadlibrary('shrlibsample')

1-3723

libfunctions

end
m = libfunctions('shrlibsample','-full')

m =

'[double, doublePtr] addDoubleRef(double, doublePtr, double)'
'double addMixedTypes(int16, int32, double)'
'[double, c_structPtr] addStructByRef(c_structPtr)'
'double addStructFields(c_struct)'
'c_structPtrPtr allocateStruct(c_structPtrPtr)'
'voidPtr deallocateStruct(voidPtr)'
'lib.pointer exportedDoubleValue'
'lib.pointer getListOfStrings'
'doublePtr multDoubleArray(doublePtr, int32)'
'[lib.pointer, doublePtr] multDoubleRef(doublePtr)'
'int16Ptr multiplyShort(int16Ptr, int32)'
'doublePtr print2darray(doublePtr, int32)'
'printExportedDoubleValue'
'cstring readEnum(Enum1)'
'[cstring, cstring] stringToUpper(cstring)'

Limitations • Use with libraries that are loaded using the loadlibrary function.

See Also loadlibrary | libfunctionsview | calllib

1-3724

libfunctionsview

Purpose Display shared library function signatures in window

Syntax libfunctionsview libname

Description libfunctionsview libname displays information about functions in
library, libname, in a new window.

Input
Arguments

libname - Name of shared library
string

Name of shared library, specified as a string. If you call loadlibrary
using the alias option, then you must use the alias name for the
libname argument.

Data Types
char

Limitations • Use with libraries that are loaded using the loadlibrary function.

Examples Display Function Signatures for Library libmx

if not(libisloaded('libmx'))
hfile = fullfile(matlabroot,'extern','include','matrix.h');
loadlibrary('libmx',hfile)

end
libfunctionsview libmx

MATLAB creates a new window displaying function signatures.

See Also libfunctions | calllib

1-3725

libisloaded

Purpose Determine if shared library is loaded

Syntax tf = libisloaded(libname)

Description tf = libisloaded(libname) returns logical 1 (true) if the shared
library, libname, is loaded. Otherwise, it returns logical 0 (false).

Input
Arguments

libname - Name of shared library
string

Name of shared library, specified as a string. If you call loadlibrary
using the alias option, then you must use the alias name for the
libname argument.

Data Types
char

Examples Load Functions in Library

Load example library, shrlibsample, if it is not already loaded.

if ~libisloaded('shrlibsample')
loadlibrary('shrlibsample')

end

See Also loadlibrary | unloadlibrary

1-3726

libpointer

Purpose Pointer object for use with shared library

Syntax p = libpointer
p = libpointer(DataType)
p = libpointer(DataType,Value)

Description p = libpointer creates NULL pointer p of type voidPtr.

p = libpointer(DataType) creates NULL pointer of specified DataType.

p = libpointer(DataType,Value) creates pointer initialized to a
copy of Value.

Limitations • Use with libraries that are loaded using the loadlibrary function.

Input
Arguments

DataType - Type of pointer
string

Type of pointer, specified as a string, of any MATLAB numeric type,
structure defined in the library, or enumeration defined in the library.
For a list of valid MATLAB numeric types, refer to these tables in “C
and MATLAB Equivalent Types”.

• MATLAB Primitive Types

• MATLAB Extended Types

Example: 'int16Ptr'

Data Types
char

Value - Value for pointer object
any valid value

Value, specified as any valid value for given type.

1-3727

libpointer

Tips • This is an advanced feature for experienced C programmers.
MATLAB automatically converts data passed to and from external
library functions to the data type expected by the external function.
Use a lib.pointer object instead of automatic conversion in the
following situations.

- You want to modify the data in the input arguments.

- You are passing large amounts of data, and you want to control
when MATLAB makes copies of the data.

- The library stores and uses the pointer for a period of time so
you want the MATLAB function to control the lifetime of the
lib.pointer object.

See Also lib.pointer | calllib | libstruct

Related
Examples

• “Multilevel Pointers”

Concepts • “Working with Pointer Arguments”

1-3728

lib.pointer

Purpose Pointer object compatible with C pointer

Description MATLAB automatically converts arguments that are passed by
reference to a function in an external library. Use a pointer object
instead of automatic conversion in the following situations.

• The function modifies data in an input argument.

• You are passing large amounts of data, and you want to control when
MATLAB makes copies of the data.

• The library stores and uses the pointer for a period of time so you
want the MATLAB function to control the lifetime of the lib.pointer
object.

Construction To create a lib.pointer object, use the MATLAB libpointer function.

A library function can return a lib.pointer object. Use the setdatatype
method to manually convert the argument to use in MATLAB.

Properties DataType

Type of pointer, specified as a string, of any MATLAB numeric
type, structure defined in the library, or enumeration defined in
the library. For a list of valid MATLAB numeric types, refer to
these tables in “C and MATLAB Equivalent Types”.

• MATLAB Primitive Types

• MATLAB Extended Types

Value

Value, specified as any valid value for given type.

Methods disp Display lib.pointer type

isNull Points to NULL pointer

1-3729

lib.pointer

plus + (plus) operator for pointer
arithmetic

reshape Reshape lib.pointer array

setdatatype Initialize type and size of
lib.pointer object

Definitions A passed-by-reference argument in the function signature has type
names ending with Ptr or PtrPtr.

Examples Create Pointer

Create a pointer, pv, of type int16, initialized to 485.

pv = libpointer('int16Ptr',485);

Display the properties of pv.

get(pv)

Value: 485
DataType: 'int16Ptr'

See Also libpointer

Concepts • “Working with Pointer Arguments”

1-3730

lib.pointer.disp

Purpose Display lib.pointer type

Syntax disp(h)

Description disp(h) displays type for lib.pointer object, h.

Input
Arguments

h - lib.pointer object.
handle

lib.pointer object, specified as a handle.

Examples Display lib.pointer Type

Create a double pointer set to 15.

xp = libpointer('doublePtr',15);

Display pointer data type.

disp(xp)

libpointer

1-3731

lib.pointer.isNull

Purpose Points to NULL pointer

Syntax tf = isNull(h)

Description tf = isNull(h) returns true if h is a lib.pointer object.

Input
Arguments

h - lib.pointer object.
handle

lib.pointer object, specified as a handle.

Examples Create Null lib.pointer Object

nullp = libpointer('doublePtr',[]);
isNull(nullp)

1-3732

lib.pointer.plus

Purpose + (plus) operator for pointer arithmetic

Syntax hout = plus(h,offset)
hout = h + offset

Description hout = plus(h,offset) returns pointer hout. Pointer hout is valid
only as long as the original pointer, h, exists.

hout = h + offset is an alternative syntax.

Input
Arguments

h - lib.pointer object.
handle

lib.pointer object, specified as a handle.

offset - Scalar increment
uint64

Scalar increment, specified as uint64, from h.

Related
Examples

• “Iterate Through an Array”

1-3733

lib.pointer.reshape

Purpose Reshape lib.pointer array

Syntax reshape(h,xdim,ydim)

Description reshape(h,xdim,ydim) creates an xdim-by-ydim matrix from
lib.pointer object h.

Input
Arguments

h - lib.pointer object.
handle

lib.pointer object, specified as a handle.

xdim - Size of x dimension
double

Size of x dimension, specified as double.

ydim - Size of y dimension
double

Size of y dimension, specified as double.

1-3734

lib.pointer.setdatatype

Purpose Initialize type and size of lib.pointer object

Syntax setdatatype(h,type,size)

Description setdatatype(h,type,size) sets data type, type, of size, to
lib.pointer, h.

Input
Arguments

h - lib.pointer object.
handle

lib.pointer object, specified as a handle.

type - Data type
string

Data type, specified as a string.

size - Size
double

Size, specified as double.

Examples Set Size and Type of lib.pointer Output Variable

Load the shrlibsample library.

if ~libisloaded('shrlibsample')
addpath(fullfile(matlabroot,'extern','examples','shrlib'))
loadlibrary('shrlibsample')

end

The multDoubleRef function takes a scalar value specified as
doubleptr. Create variable xp as a lib.pointer object, and call the
function.

xp = libpointer('doublePtr',99);
[xobj,xval] = calllib('shrlibsample','multDoubleRef',xp);

To use the variable xobj, set its size and data type.

1-3735

lib.pointer.setdatatype

setdatatype(xobj,'doublePtr',1,1)
xobj.Value

ans =

495

1-3736

libstruct

Purpose Convert MATLAB structure to C-style structure for use with shared
library

Syntax S = libstruct(structtype)
S = libstruct(structtype,mlstruct)

Description S = libstruct(structtype) creates NULL pointer to MATLAB
libstruct object S.

S = libstruct(structtype,mlstruct) creates pointer initialized to
mlstruct.

Limitations • Use with libraries that are loaded using the loadlibrary function.

• You can only use the libstruct function on scalar structures.

• When converting a MATLAB structure to a libstruct object, the
structure must adhere to the requirements listed in “Structure
Argument Requirements”.

Input
Arguments

structtype - C structure
structure

C structure defined in shared library.

mlstruct - MATLAB structure
structure

MATLAB structure used to initialize the fields in S.

Data Types
struct

Output
Arguments

S - Pointer
MATLAB libstruct object

Pointer, returned as MATLAB libstruct object.

1-3737

libstruct

Examples Call Function with c_struct Input Argument

Call the addStructFields function by creating a variable of type
c_struct.

Load the shrlibsample library, which contains the c_struct type.

if ~libisloaded('shrlibsample')
addpath(fullfile(matlabroot,'extern','examples','shrlib'))
loadlibrary('shrlibsample')

end

Display function signatures for shrlibsample and search the list for
the addStructFields entry.

libfunctionsview shrlibsample

double addStructFields(c_struct)

The input argument is a pointer to a c_struct data type.

Create a MATLAB structure, sm.

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

Construct a libstruct object sc from the c_struct type.

sc = libstruct('c_struct',sm)

The fields of sc contain the values of the MATLAB structure, sm.

Call the addStructFields function.

calllib('shrlibsample','addStructFields',sc)

ans =
1177

To clean up, first clear the libstruct object, and then unload the
library.

1-3738

libstruct

clear sc
unloadlibrary shrlibsample

Tips • If a function in the shared library has a structure argument, use
libstruct to create the argument. The libstruct function creates a
C-style structure that you pass to functions in the library. You handle
this structure in MATLAB as you would a true MATLAB structure.

See Also loadlibrary | libfunctionsview

Concepts • “Working with Structure Arguments”

1-3739

license

Purpose Return license number or perform licensing task

Syntax license
license('inuse')
S = license('inuse')
S = license('inuse', feature)
license('test',feature)
license('test',feature,toggle)
[TF errmsg] = license('checkout',feature)

Description license returns the license number for this MATLAB product. The
return value is always a string but is not guaranteed to be a number.
The following table lists text strings that license can return.

String Description

'demo' MATLAB is a demonstration version

'student' MATLAB is the student version

'unknown' License number cannot be determined

license('inuse') returns a list of licenses checked out in the current
MATLAB session. In the list, products are listed alphabetically by their
license feature names, i.e., the text string used to identify products in
the INCREMENT lines in a License File (license.dat). Note that the
feature names returned in the list contain only lower-case characters.

S = license('inuse') returns an array of structures, where each
structure represents a checked-out license. The structures contains two
fields: feature and user. The feature field contains the license feature
name. The user field contains the username of the person who has the
license checked out.

S = license('inuse', feature) checks if the product specified by the
text string feature is checked out in the current MATLAB session. If
the product is checked out, the license function returns the product
name and the username of the person who has it checked out in the

1-3740

license

structure S. If the product is not currently checked out, the fields in
the structure are empty.

The feature string must be a license feature name, spelled exactly as
it appears in the INCREMENT lines in a License File. For example, the
string 'Identification_Toolbox' is the feature name for the System
Identification Toolbox™. The feature string is not case-sensitive and
must not exceed 27 characters.

license('test',feature) tests if a license exists for the product
specified by the text string feature. The license command returns 1 if
the license exists and 0 if the license does not exist. The feature string
identifies a product, as described in the previous syntax.

Note Testing for a license only confirms that the license exists. It
does not confirm that the license can be checked out. For example,
license will return 1 if a license exists, even if the license has expired
or if a system administrator has excluded you from using the product
in an options file. The existence of a license does not indicate that the
product is installed.

license('test',feature,toggle) enables or disables testing of the
product specified by the text string feature, depending on the value of
toggle. The parameter toggle can have either of two values:

'enable' The syntax license('test',feature) returns 1 if the
product license exists and 0 if the product license does
not exist.

'disable'The syntax license('test',feature) always returns 0
(product license does not exist) for the specified product.

1-3741

license

Note Disabling a test for a particular product can impact other tests
for the existence of the license, not just tests performed using the
license command.

[TF errmsg] = license('checkout',feature) checks out a license
for the product specified by the text string feature, returning 1 if it
could check out a license or 0 if it could not check out a license. If you
specify the optional second output argument, errmsg, the license
function returns the text of any error message encountered, or an empty
string if the checkout succeeded.

Examples Get the license number for this MATLAB.

license

Get a list of licenses currently being used. Note that the products appear
in alphabetical order by their license feature name in the list returned.

license('inuse')

image_toolbox
map_toolbox
matlab

Get a list of licenses in use with information about who is using the
license.

S = license('inuse');

S(1)

ans =

feature: 'image_toolbox'
user: 'juser'

1-3742

license

Determine if the license for MATLAB is currently in use.

S = license('inuse','MATLAB')

S =

feature: 'matlab'
user: 'jsmith'

Determine if a license exists for the Mapping Toolbox™.

license('test','map_toolbox')

ans =

1

Check out a license for the Control System Toolbox™.

license('checkout','control_toolbox')

ans =

1

Determine if the license for the Control System Toolbox is checked out.

license('inuse')

control_toolbox
image_toolbox
map_toolbox
matlab

See Also isstudent

1-3743

light

Purpose Create light object

Syntax light('PropertyName',propertyvalue,...)
handle = light(...)

Properties For a list of properties, see Light Properties.

Description light creates a light object in the current axes. Lights affect only patch
and surface objects.

light('PropertyName',propertyvalue,...) creates a light object
using the specified values for the named properties. For a description of
the properties, see Light Properties. The MATLAB software parents
the light to the current axes unless you specify another axes with the
Parent property.

handle = light(...) returns the handle of the light object created.

Tips You cannot see a light object per se, but you can see the effects of the
light source on patch and surface objects. You can also specify an
axes-wide ambient light color that illuminates these objects. However,
ambient light is visible only when at least one light object is present and
visible in the axes.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see set and get for examples of how
to specify these data types).

See also the patch and surface AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, SpecularColorReflectance,
and VertexNormals properties. Also see the lighting and material
commands.

Examples Light the peaks surface plot with a light source located at infinity
and oriented along the direction defined by the vector [1 0 0], that
is, along the x-axis.

h = surf(peaks);

1-3744

light

set(h,'FaceLighting','phong','FaceColor','interp',...
'AmbientStrength',0.5)

light('Position',[1 0 0],'Style','infinite');

Setting
Default
Properties

You can set default light properties on the axes, figure, and root
object levels:

set(0,'DefaultLightProperty',PropertyValue...)
set(gcf,'DefaultLightProperty',PropertyValue...)
set(gca,'DefaultLightProperty',PropertyValue...)

where Property is the name of the light property and PropertyValue is
the value you are specifying. Use set and get to access light properties.

Tutorials For more information about lighting, see “Lighting Overview”.

See Also lighting | material | patch | surface | Light Properties

1-3745

Light Properties

Purpose Light properties

Creating
Light
Objects

Use light to create light objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “Customize Objects in Graph” is an interactive tool that enables you
to see and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Light
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

1-3746

Light Properties

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
function handle

This property is not used on lights.

Children
handles

The empty matrix; light objects have no children.

Clipping
on | off

Clipping mode. This property has no effect on light objects.

Color
ColorSpec

1-3747

Light Properties

Light color. Defines the color of the light emanating from the light
object. Use a three-element RGB vector or one of the MATLAB
predefined names. Default value is [1 1 1] (white). See the
ColorSpec reference page for more information on specifying
color.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Executes when
MATLAB creates a light object. You must define this property
as a default value for lights or in a call to the light function to
create a new light object. For example, the following statement:

set(0,'DefaultLightCreateFcn',@light_create)

defines a default value for the line CreateFcn property on the root
level that sets the current figure colormap to gray and uses a
reddish light color whenever you create a light object.

function light_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
set(src,'Color',[.9 .2 .2])
set(gcbf,'Colormap',gray)

end

MATLAB executes this function after setting all light properties.
Setting this property on an existing light object has no effect.
The function must define at least two input arguments (handle
of light object created and an event structure, which is empty
for this property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

1-3748

Light Properties

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Delete light callback function. Executes when you delete the light
object (for example, when you issue a delete command or clear
the axes cla or figure clf).

For example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property).

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

1-3749

Light Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

1-3750

Light Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

This property is not used by light objects.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

1-3751

Light Properties

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

Parent
handle of parent axes

Parent of light object. This property contains the handle of the
light object’s parent. The parent of a light object is the axes object
that contains it.

Note that light objects cannot be parented to hggroup or
hgtransform objects.

Position
[x,y,z] in axes data units

Location of light object. Vector defining the location of the light
object. The vector is defined from the origin to the specified x-,
y-, and z-coordinates. The placement of the light depends on the
setting of the Style property:

1-3752

Light Properties

• If the Style property is local, Position specifies the actual
location of the light (which is then a point source that radiates
from the location in all directions).

• If the Style property is infinite, Position specifies the
direction from which the light shines in parallel rays.

Selected
on | off

This property is not used by light objects.

SelectionHighlight
{on} | off

This property is not used by light objects.

Style
{infinite} | local

Parallel or divergent light source.

• infinite— MATLAB places the light object at infinity (light
rays are parallel).

• local — MATLAB places the light object at the location
specified by the Position property (light rays diverge in all
directions).

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

Type
string (read-only)

1-3753

Light Properties

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For light objects, Type is always
’light’.

UIContextMenu
handle of uicontextmenu object

This property is not used by light objects.

UserData
matrix

User-specified data. Data you want to associate with the light
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

Visible
{on} | off

Light visibility. While light objects themselves are not visible,
you can see the light on patch and surface objects. When you
set Visible to off, the light emanating from the source is not
visible. There must be at least one light object in the axes whose
Visible property is on for any lighting features to be enabled
(including the axes AmbientLightColor and patch and surface
AmbientStrength).

See Also light

1-3754

lightangle

Purpose Create or position light object in spherical coordinates

Syntax lightangle(az,el)
light_handle = lightangle(az,el)
lightangle(light_handle,az,el)
[az,el] = lightangle(light_handle)

Description lightangle(az,el) creates a light at the position specified by azimuth
and elevation. az is the azimuthal (horizontal) rotation and el is the
vertical elevation (both in degrees). The interpretation of azimuth and
elevation is the same as that of the view command.

light_handle = lightangle(az,el) creates a light and returns the
handle of the light in light_handle.

lightangle(light_handle,az,el) sets the position of the light
specified by light_handle.

[az,el] = lightangle(light_handle) returns the azimuth and
elevation of the light specified by light_handle.

Tips By default, when a light is created, its style is infinite. If the light
handle passed in to lightangle refers to a local light, the distance
between the light and the camera target is preserved as the position
is changed.

Examples surf(peaks)
axis vis3d
h = light;
for az = -50:10:50
lightangle(h,az,30)
drawnow

end

See Also light | camlight | view

How To • “Lighting Overview”

1-3755

lighting

Purpose Specify lighting algorithm

Syntax lighting flat
lighting gouraud
lighting phong
lighting none

Description lighting selects the algorithm used to calculate the effects of light
objects on all surface and patch objects in the current axes. In order
for the lighting command to have any effects, however, you must
create a lighting object by using the light function.

lighting flat produces uniform lighting across each of the faces of
the object. Select this method to view faceted objects.

lighting gouraud calculates the vertex normals and interpolates
linearly across the faces. Select this method to view curved surfaces.

lighting phong interpolates the vertex normals across each face and
calculates the reflectance at each pixel. Select this choice to view
curved surfaces. Phong lighting generally produces better results than
Gouraud lighting, but it takes longer to render.

lighting none turns off lighting.

Tips The surf, mesh, pcolor, fill, fill3, surface, and patch functions
create graphics objects that are affected by light sources. The lighting
command sets the FaceLighting and EdgeLighting properties of
surfaces and patches appropriately for the graphics object.

See Also fill | fill3 | light | material | mesh | patch | pcolor | shading
| surface

How To • “Lighting Overview”

1-3756

lin2mu

Purpose Convert linear audio signal to mu-law

Syntax mu = lin2mu(y)

Description mu = lin2mu(y) converts linear audio signal amplitudes in the range
-1 Y 1 to mu-law encoded “flints” in the range 0 u 255.

See Also auwrite | mu2lin

1-3757

line

Purpose Create line object

Syntax line
line(X,Y)
line(X,Y,Z)
line(X,Y,Z,'PropertyName',propertyvalue,...)
line('XData',x,'YData',y,'ZData',z,...)
h = line(...)

Properties For a list of properties, see Line Properties.

Description line creates a line object in the current axes with default values x =
[0 1] and y = [0 1]. You can specify the color, width, line style, and
marker type, as well as other characteristics.

The line function has two forms:

• Automatic color and line style cycling. When you specify multiple
line coordinate data as a column array using the informal syntax
(i.e., the first three arguments are interpreted as the coordinates),

line(X,Y,Z)

MATLAB cycles through the axes ColorOrder and LineStyleOrder
property values the way the plot function does. However, unlike
plot, line does not call the newplot function.

• Purely low-level behavior. When you call line with only property
name/property value pairs,

line('XData',x,'YData',y,'ZData',z)

MATLAB draws a line object in the current axes using the default
line color (see the colordef function for information on color
defaults). Note that you cannot specify matrix coordinate data with
the low-level form of the line function.

line(X,Y) adds the line defined in vectors X and Y to the current axes.
If X and Y are matrices of the same size, line draws one line per column.

1-3758

line

line(X,Y,Z) creates lines in three-dimensional coordinates.

line(X,Y,Z,'PropertyName',propertyvalue,...) creates a line
using the values for the property name/property value pairs specified
and default values for all other properties. For a description of the
properties, see Line Properties.

See the LineStyle and Marker properties for a list of supported values.

line('XData',x,'YData',y,'ZData',z,...) creates a line in the
current axes using the property values defined as arguments. This is
the low-level form of the line function, which does not accept matrix
coordinate data as the other informal forms described above.

h = line(...) returns a column vector of handles corresponding to
each line object the function creates.

Tips In its informal form, the line function interprets the first three
arguments (two for 2-D) as the X, Y, and Z coordinate data, allowing you
to omit the property names. You must specify all other properties as
name/value pairs. For example,

line(X,Y,Z,'Color','r','LineWidth',4)

The low-level form of the line function can have arguments that are
only property name/property value pairs. For example,

line('XData',x,'YData',y,'ZData',z,...
'Color','r','LineWidth',4)

Line properties control various aspects of the line object and are
described in Line Properties. You can also set and query property
values after creating the line using set and get.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see the set and get reference pages
for examples of how to specify these data types).

Unlike high-level functions such as plot, line does not respect the
settings of the figure and axes NextPlot properties. It simply adds line
objects to the current axes. However, axes properties that are under

1-3759

line

automatic control, such as the axis limits, can change to accommodate
the line within the current axes.

Connecting the dots

The coordinate data is interpreted as vectors of corresponding x, y, and
z values:

X = [x(1) x(2) x(3)...x(n)]
Y = [y(1) y(2) y(3)...y(n)]
Z = [z(1) z(2) z(3)...z(n)]

where a point is determined by the corresponding vector elements:

p1(x(i),y(i),z(i))

For example, to draw a line from the point located at x = .3 and y =
.4 and z = 1 to the point located at x = .7 and y = .9 and z = 1, use
the following data:

axis([0 1 0 1])
line([.3 .7],[.4 .9],[1 1],'Marker','.','LineStyle','-')

Examples This example uses the line function to add a shadow to plotted data.
First, plot some data and save the line’s handle:

t = 0:pi/20:2*pi;
hline1 = plot(t,sin(t),'k');

Next, add a shadow by offsetting the x-coordinates. Make the shadow
line light gray and wider than the default LineWidth:

hline2 = line(t+.06,sin(t),...
'LineWidth',4,'Color',[.8 .8 .8]);

Finally, pull the first line to the front:

set(gca,'Children',[hline1 hline2])

1-3760

line

Drawing Lines Interactively

You can use the ginput function to select points from a figure. For
example:

[x,y] = ginput(5);
line(x,y)

Drawing with mouse motion

You can use the axes CurrentPoint property and the figure
WindowButtonDownFcn and WindowButtonMotionFcn properties to
select a point with a mouse click and draw a line to another point by
dragging the mouse, like a simple drawing program. The following

1-3761

line

example illustrates a few useful techniques for doing this type of
interactive drawing.

Click to view in editor — This example enables you to click and drag
the cursor to draw lines.

Click to run example — Click the left mouse button in the axes and
move the cursor, left-click to define the line end point, right-click to
end drawing mode.

Input Argument Dimensions — Informal Form

This statement reuses the one-column matrix specified for ZData to
produce two lines, each having four points.

line(rand(4,2),rand(4,2),rand(4,1))

If all the data has the same number of columns and one row each,
MATLAB transposes the matrices to produce data for plotting. For
example,

line(rand(1,4),rand(1,4),rand(1,4))

is changed to

line(rand(4,1),rand(4,1),rand(4,1))

This also applies to the case when just one or two matrices have one
row. For example, the statement

line(rand(2,4),rand(2,4),rand(1,4))

is equivalent to

line(rand(4,2),rand(4,2),rand(4,1))

Setting
Default
Properties

You can set default line properties on the axes, figure, and root object
levels:

set(0,'DefaultLinePropertyName',PropertyValue,...)
set(gcf,'DefaultLinePropertyName',PropertyValue,...)

1-3762

line

set(gca,'DefaultLinePropertyName',PropertyValue,...)

Where PropertyName is the name of the line property and
PropertyValue is the value you are specifying. Use set and get to
access line properties.

See Also annotation | axes | newplot | plot | plot3 | Line Properties

1-3763

Line Properties

Purpose Line properties

Creating
Line
Objects

Use line to create line objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “Customize Objects in Graph” is an interactive tool that enables you
to see and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See Core Graphics Objects for general information about this type of
object.

Line
Property
Descriptions

Annotation
hg.Annotation object (read-only)

Handle of Annotation object. The Annotation property enables
you to specify whether this line object is represented in a figure
legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the line object
is displayed in a figure legend:

1-3764

Line Properties

IconDisplayStyle
Value

Purpose

on Represent this line object in a legend
(default)

off Do not include this line object in a legend

children Same as on because line objects do not have
children

Setting the IconDisplayStyle property

Set the IconDisplayStyle of a graphics object with handle hobj
to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

1-3765

Line Properties

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press a
mouse button while the pointer is over the line object. The default
is an empty array.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle

1-3766

Line Properties

of line associated with the button down event and an event
structure, which is empty for this property).

The following example shows how to access the callback object’s
handle as well as the handle of the figure that contains the object
from the callback function.

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a line object and the button_down
function is on your MATLAB path. The following statement
assigns the button_down function to the ButtonDownFcn property:

set(h,'ButtonDownFcn',@button_down)

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
vector of handles

The empty matrix; line objects have no children.

1-3767

Line Properties

Clipping
{on} | off

Clipping mode. MATLAB clips lines to the axes plot box by
default. If you set Clipping to off, lines are displayed outside the
axes plot box. This occurs if you create a line, set hold to on, freeze
axis scaling (set axis to manual), and then create a longer line.

Color
ColorSpec

Line color. A three-element RGB vector, or one of the MATLAB
predefined names, specifying the line color. See the ColorSpec
reference page for more information on specifying color.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Executes when
MATLAB creates a line object. The default is an empty array.

You must specify the callback during the creation of the line or in
a call to the line function to create a new line object.

For example, the statement:

set(0,'DefaultLineCreateFcn',@line_create)

defines a default value for the line CreateFcn property on the root
level that sets the axes LineStyleOrder whenever you create
a line object. The following callback function must be on your
MATLAB path when you execute the above statement.

function line_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
axh = get(src,'Parent');
set(axh,'LineStyleOrder','-.|--')

1-3768

Line Properties

end

MATLAB executes this function after setting all line properties.
Setting this property on an existing line object has no effect.

The function must define at least two input arguments (handle
of line object created and an event structure, which is empty for
this property).

The handle of the object whose CreateFcn is being executed is
MATLAB as the first argument to the callback function and is
also accessible only through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Delete line callback function. Executes when you delete the line
object. This happens when you call the delete command on the
object, its parent axes, or the figure containing it. The default
is an empty array.

For example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

1-3769

Line Properties

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle of
line object being deleted and an event structure, which is empty
for this property).

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the line object in the legend. The default is an
empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

1-3770

Line Properties

See “Control Legend Content” for more information and examples.

The following code shows how to use the DisplayName property
from the command line or in a file.

t = 0:.1:2*pi;
a(:,1)=sin(t); a(:,2)=cos(t);
h = plot(a);
set(h,{'DisplayName'},{'Sine','Cosine'}')
legend show

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase line objects. Alternative erase modes are useful for creating
animated sequences, where control of the way individual objects
are redrawn is necessary to improve performance and obtain the
desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase the line when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it, because MATLAB stores
no information about its former location.

• xor— Draw and erase the line by performing an exclusive OR
(XOR) with the color of the screen beneath it. This mode does
not damage the color of the objects beneath the line. However,
the line’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the line by drawing it in the axes
background Color, or the figure background Color if the axes

1-3771

Line Properties

Color is none. This damages objects that are behind the erased
line, but lines are always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object handle. Determine when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

1-3772

Line Properties

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

For more information, see “HandleVisibility Property”, “Functions
Affected by Handle Visibility”, and “Properties Affected by Handle
Visibility”.

HitTest
{on} | off

Selectable by mouse click. Determines if the line can become the
current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the line.
If HitTest is off, clicking the line selects the object below it
(which might be the axes containing it).

Interruptible
off | {on}

Callback routine interruption

1-3773

Line Properties

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

1-3774

Line Properties

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

Use LineStyle none when you want to place a marker at each
point but do not want the points connected with a line (see the
Marker property).

LineWidth
scalar

Width of the line . Specify this value in points. The default value
is 0.5 points.

1-3775

Line Properties

Marker
character (see table)

Marker symbol. Specifies marks displayed at data points. You
can set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

1-3776

Line Properties

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto— Use same color as the line Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Fill color for closed-shape markers. The fill color for markers that
are closed shapes (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Sets the fill color to the axes Color property. If the axes
Color property is none, sets the fill color to the figure Color.

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of axes, hggroup, or hgtransform

1-3777

Line Properties

Parent of line object. Handle of the line object’s parent. The parent
of a line object is the axes that contains it. You can reparent line
objects to other axes, hggroup, or hgtransform objects.

Selected
on | off

Selection status When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Object highlighted when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing handles at
each vertex. When SelectionHighlight is off, MATLAB does
not draw the handles.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use this property when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

Type
string (read-only)

1-3778

Line Properties

Class of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given type
within a plotting hierarchy. For line objects, Type is always ’line’.

UIContextMenu
handle of uicontextmenu object

Associate context menu with line. Assign this property the handle
of a uicontextmenu object created in the same figure as the line.
Use the uicontextmenu function to create the context menu.
MATLAB displays the context menu whenever you right-click
over the line.

UserData
matrix

User-specified data. Data you want to associate with the line
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

Note Setting the UserData property more than once erases
previous entries.

Visible
{on} | off

Line visibility.

• on — All lines are visible.

• off— Line is not visible, but still exists, and you can get and
set its properties.

XData
vector

1-3779

Line Properties

x-coordinates of line. Vector of x-coordinates defining the line.
The default is [0 1].

YData and ZData, if set, must be the same length and have the
same number of rows.
Create a line using the line function, then change its XData
property:

mylin = line(rand(1,10),rand(1,10));
set(mylin,'XData',rand(1,15));
% A warning because you did not set YData
set(mylin,'XData',rand(1,15),...

'YData',rand(1,15));
% No warning appears and the plot draws as expected.

YData
vector

y-coordinates of line. Vector of y-coordinates defining the line.
The default is [0 1]. XData and ZData, if set, must be the same
length and have the same number of rows.
Create a line using the line function, then change its YData
property:

mylin = line(rand(1,10),rand(1,10));
set(mylin,'YData',rand(1,15));
% A warning because you did not set YData
set(mylin,'YData',rand(1,15),'XData',rand(1,15));
% No warning appears and the plot draws as expected.

ZData
vector

z-coordinates of line. Vector of z-coordinates defining the line.
The default is [] (empty). XData and YData must have the same
number of rows.
Create a line using the line function, then change its ZData
property:

1-3780

Line Properties

mylin = line(rand(1,10),rand(1,10),rand(1,10));
view(3)
set(mylin,'ZData',rand(1,15));
% A warning because you did not set YData
set(mylin,'XData',rand(1,15),...

'YData',rand(1,15),...
'ZData',rand(1,15));

% No warning appears and the plot draws as expected.

See Also line

1-3781

Lineseries Properties

Purpose Description of lineseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

See “Plot Objects” for more information on lineseries objects.

Note that you cannot define default properties for lineseries objects.

Lineseries
Property
Descriptions

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of lineseries objects in legends. Specifies
whether this lineseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the lineseries
object is displayed in a figure legend.

IconDisplayStyle
Value

Purpose

on Include the lineseries object in a legend as
one entry, but not its children objects

off Do not include the lineseries or its children
in a legend (default)

children Include only the children of the lineseries as
separate entries in the legend

1-3782

Lineseries Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the

1-3783

Lineseries Properties

running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press a
mouse button while the pointer is over this object, but not over
another graphics object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
vector of handles

1-3784

Lineseries Properties

The empty matrix; line objects have no children.

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color. See “Adding Arrows and Lines to Graphs”.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

1-3785

Lineseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the lineseries object in the legend. The default
is an empty string.

1-3786

Lineseries Properties

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

1-3787

Lineseries Properties

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

1-3788

Lineseries Properties

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

1-3789

Lineseries Properties

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on
the line. If HitTest is off, clicking this object selects the object
below it (which is usually the axes containing it).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

1-3790

Lineseries Properties

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of lineseries object.

1-3791

Lineseries Properties

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

Use LineStyle none when you want to place a marker at each
point but do not want the points connected with a line (see the
Marker property).

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Marker
character (see table)

Marker symbol. Specifies marks that display at data points. You
can set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

1-3792

Lineseries Properties

Specifier Marker Type

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto— Uses same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Fill color for closed-shape markers. The fill color for markers that
are closed shapes (circle, square, diamond, pentagram, hexagram,
and the four triangles).

1-3793

Lineseries Properties

• ColorSpec — User-defined color.

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Sets the fill color to the axes Color property. If the axes
Color property is none, sets the fill color to the figure Color.

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

1-3794

Lineseries Properties

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, use findobj to
find the object’s handle. The following statement changes the
FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read-only)

Class of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For lineseries objects, Type is
always the string line.

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu

1-3795

Lineseries Properties

function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
vector | matrix

x-axis values for graph. The x-axis values for graphs are specified
by the X input argument. If XData is a vector, length(XData)
must equal length(YData) and must be monotonic. If XData is a
matrix, size(XData) must equal size(YData) and each column
must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the X input

1-3796

Lineseries Properties

argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after specifying XData, MATLAB
resets the x-axis ticks to 1:size(YData,1) or to the column
indices of the ZData, overwriting any previous values for XData.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

set(h,'XDataSource','xdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector | matrix

Y-coordinates. A vector of y-coordinates defining the values along
the y-axis for the graph. XData and ZData must be the same
length and have the same number of rows.

1-3797

Lineseries Properties

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

set(h,'YDataSource','Ydatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector

Z-coordinates. A vector defining the z-coordinates for the graph.
XData and YData must be the same length and have the same
number of rows.

ZDataSource
MATLAB variable, as a string

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData. The default value is an empty array.

1-3798

Lineseries Properties

set(h,'ZDataSource','zdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
ZDataSource does not change the object’s ZData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

1-3799

LineSpec (Line Specification)

Purpose Line specification string syntax

Description Plotting functions accept string specifiers as arguments and modify the
graph generated accordingly. Three components can be specified in the
string specifiers along with the plotting command. They are:

• Line style

• Marker symbol

• Color

For example:

plot(x,y,'-.or')

plots y versus x using a dash-dot line (-.), places circular markers (o)
at the data points, and colors both line and marker red (r). Specify the
components (in any order) as a quoted string after the data arguments.
Note that linespecs are single strings, not property-value pairs.

Plotting Data Points with No Line

If you specify a marker, but not a line style, only the markers are
plotted. For example:

plot(x,y,'d')

Line Style Specifiers

You indicate the line styles, marker types, and colors you want to
display using string specifiers, detailed in the following tables:

Specifier LineStyle

’-’ Solid line (default)

’--’ Dashed line

1-3800

LineSpec (Line Specification)

Specifier LineStyle

’:’ Dotted line

’-.’ Dash-dot line

Marker Specifiers

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

Note The point (.) marker type does not change size when the specified
value is less than 5.

1-3801

LineSpec (Line Specification)

Color Specifiers

Specifier Color

r Red

g Green

b Blue

c Cyan

m Magenta

y Yellow

k Black

w White

Related
Properties

This page also describes how to specify the properties of lines used
for plotting. MATLAB graphics give you control over these visual
characteristics:

• LineWidth— Specifies the width (in points) of the line.

• MarkerEdgeColor — Specifies the color of the marker or the
edge color for filled markers (circle, square, diamond, pentagram,
hexagram, and the four triangles).

• MarkerFaceColor— Specifies the color of the face of filled markers.

• MarkerSize — Specifies the size of the marker in points (must be
greater than 0).

In addition, you can specify the LineStyle, Color, and Marker
properties instead of using the symbol string. This is useful if you
want to specify a color that is not in the list by using RGB values. See
Lineseries Properties for details on these properties and ColorSpec for
more information on color.

Examples Plot the sine function over three different ranges using different line
styles, colors, and markers.

1-3802

LineSpec (Line Specification)

figure
t = 0:pi/20:2*pi;
plot(t,sin(t),'-.r*')
hold on
plot(t,sin(t-pi/2),'--mo')
plot(t,sin(t-pi),':bs')
hold off

Create a plot illustrating how to set line properties:

1-3803

LineSpec (Line Specification)

figure
plot(t,sin(2*t),'-mo',...

'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',10)

See Also axes | line | plot | patch | set | surface | ColorSpec | Lineseries
Properties

1-3804

linkaxes

Purpose Synchronize limits of specified 2-D axes

Syntax linkaxes(axes_handles)
linkaxes(axes_handles,'option')

Description Use linkaxes to synchronize the individual axis limits across several
figures or subplots within a figure. Calling linkaxes makes all input
axes have identical limits. Linking axes is best when you want to zoom
or pan in one subplot and display the same range of data in another
subplot.

linkaxes(axes_handles) links the x- and y-axis limits of the axes
specified in the vector axes_handles. You can link any number of
existing plots or subplots. The axes_handles input should be a vector
of the handles for each plot or subplot. Entering an array of values
results in an error message.

linkaxes(axes_handles,'option') links the axes’ axes_handles
according to the specified option. The option argument can be one of
the following strings:

x Link x-axis only.

y Link y-axis only.

xy Link x-axis and y-axis.

off Remove linking.

See the linkprop function for more advanced capabilities that allow
you to link object properties on any graphics object.

Tips The first axes you supply to linkaxes determines the x- and y-limits for
all linked axes. This can cause plots to partly or entirely disappear if
their limits or scaling are very different. To override this behavior, after
calling linkaxes, specify the limits of the axes that you want to control
with the set command, as the third example illustrates.

1-3805

linkaxes

Note linkaxes is not designed to be transitive across multiple
invocations. If you have three axes, ax1, ax2, and ax3 and want to
link them together, call linkaxes with [ax1, ax2, ax3] as the first
argument. Linking ax1 to ax2, then ax2 to ax3, "unbinds" the ax1-ax2
linkage.

Examples You can use interactive zooming or panning (selected from the figure
toolbar) to see the effect of axes linking. For example, pan in one graph
and notice how the x-axis also changes in the other. The axes responds
in the same way to zoom and pan directives you type in the Command
Window.

This example loads three vectors of data and creates a subplot for
each vector. After a three-second pause, it then calls linkaxes with
the argument 'xy' to synchronize both the x and y axes limits. By
specifying the third subplot first to linkaxes, you establish its y-limit
for all the subplots:

load count.dat % Contains a 3-column vector named count
figure
ax(1) = subplot(3,1,1);
bar(ax(1),count(:,1),'g');
ax(2) = subplot(3,1,2);
bar(ax(2),count(:,2),'b');
ax(3) = subplot(3,1,3);
bar(ax(3),count(:,3),'m');

1-3806

linkaxes

Base the y-axis limits on the bottom subplot.

% Wait three seconds and then link the axes
pause(3)
linkaxes([ax(3) ax(2) ax(1)],'xy');

1-3807

linkaxes

Click the Zoom in icon to enter Zoom mode, and click the mouse
near the middle of the top axes. You observe all three axes respond the
same. If you pan in any of the axes, all of them also respond the same.

1-3808

linkaxes

Create two subplots containing related bar graphs. Call linkaxes
to link only the x-axis limits of the two axes. Unlike in the previous
example, the y-limits of the graphs remain unchanged. The example
shows the effect of restricting the x-values to a range of 5 units and then
manually panning either subplot:

load count.dat
figure
ax(1) = subplot(2,1,1);

1-3809

linkaxes

bar(ax(1),count(:,1),'g');
ax(2) = subplot(2,1,2);
bar(ax(2),count(:,2),'b');
linkaxes(ax,'x');
% Restrict either axis to show 5 values
set(ax(1),'XLim',[4.5 9.5])

1-3810

linkaxes

Choose the Pan tool (Tools > Pan) (or type pan on). Drag the top axes.
Both axes pan uniformly in x, but only the one you pan moves in the
y direction.

Create two subplots containing data having different ranges. The first
axes handle passed to linkaxes determines the data range for all other
linked axes. In this example, calling set for the lower axes overrides
the x-limits established by the call to linkaxes:

a1 = subplot(2,1,1);

% Plot 10 numbers on top

plot(randn(10,1));

a2 = subplot(2,1,2);

% Plot 100 numbers below

plot(a2,randn(100,1))

% Link the axes; subplot 2 now out of range

linkaxes([a1 a2], 'x');

1-3811

linkaxes

In order to display the full range of x-values, override the axes limits
that linkaxes established.

set(a2,'xlimmode','auto');

Now both x-axes run from 1 to 100. You could also use
set(a2,'xlim',[1 100]).

1-3812

linkaxes

See Also linkdata | linkprop | pan | zoom

1-3813

linkdata

Purpose Automatically update graphs when variables change

Syntax linkdata on
linkdata off
linkdata
linkdata(figure_handle,...)
linkobj = linkdata(figure_handle)

Description linkdata on turns on data linking for the current figure.

linkdata off turns data linking off.

linkdata by itself toggles the state of data linking.

linkdata(figure_handle,...) applies the function to the specified
figure handle.

linkobj = linkdata(figure_handle) returns a linkdata object for the
specified figure. The object has one read-only property, Enable, the
string 'on' or 'off', depending on the linked state of the figure.

Data linking connects graphs in figure windows to variables in the base
or a function’s workspace via their XDataSource, YDataSource, and
ZDataSource properties. When you turn on data linking for a figure,
MATLAB compares variables in the current (base or function caller)
workspace with the XData, YData, and ZData properties of graphs in
the affected figure to try to match them. When a match is found, the
appropriate XDataSource, YDataSource and/or ZDataSource for the
graph are set to strings that name the matching variables.

Any subsequent changes to linked variables are reflected in graphs
that use them as data sources and in the Variables editor, if the linked
variables are displayed there. Conversely, any changes to plotted data
values made at the command line, in the Variables editor, or with the
Brush tool (such as deleting or replacing data points), are immediately
reflected in the workspace variables linked to the data points.

When a figure containing graphs is linked and any variable identified as
XDataSource, YDataSource, and/or ZDataSource changes its values in
the workspace, all graphs displaying it in that and other linked figures

1-3814

linkdata

automatically update. This operation is equivalent to automatically
calling the refreshdata function on the corresponding figure when
a variable changes.

Linked figure windows identify themselves by the appearance of the
Linked Plot information bar at the top of the window. When linkdata
is off for a figure, the Linked Plot information bar is removed. If
linkdata cannot unambiguously identify data sources for a graph in a
linked figure, it reports this via the Linked Plot information bar, which
gives the user an opportunity to identify data sources. The information
bar displays a warning icon and a message, No graphics have data
sources and also prompts fix it. Clicking fix it opens the Specify Data
Source Properties dialog box for identifying variable names and ranges
of data sources used in the graph.

Tips • “Types of Variables You Can Link” on page 1-3815

• “Restoring Links that Break” on page 1-3815

• “Linking Rapidly Changing Data” on page 1-3816

• “Linking Brushed Graphs” on page 1-3816

Types of Variables You Can Link

You can use linkdata to connect a graph with scalar, vector and matrix
numeric variables of any class (including complex, if the graphing
function can plot it) — essentially any data for which isnumeric equals
true. See “Example 3” on page 1-3819 for instructions on linking
complex variables. You can also link plots to numeric fields within
structures. You can specify MATLAB expressions as data sources, for
example, sqrt(y)+1.

Restoring Links that Break

Refreshing data on a linked plot fails if the strings in the XDataSource,
YDataSource, or ZDataSource properties, when evaluated, are
incompatible with what is in the current workspace, such that the
corresponding XData, YData, or ZData are unable to respond. The
visual appearance of the object in the graph is not affected by such
failures, so graphic objects show no indication of broken links. Instead,

1-3815

linkdata

a warning icon and the message Failing links appear on the Linked
Plot information bar along with an Edit button that opens the Specify
Data Sources dialog box.

Linking Rapidly Changing Data

linkdata buffers updates to data and dispatches them to plots at
roughly half-second intervals. This makes data linking not suitable for
smoothly animating changes in data values unless they are updated in
loops that are forced to execute two times per second or less.

One consequence of buffering link updates is that linkdata might
not detect changes in data streams it monitors. If you are running a
function that uses assignin or evalin to update workspace variables,
linkdata can sometimes fail to process updates that change values but
not the size and class of workspace variables. Such failures only happen
when the function itself updates the plot.

Linking Brushed Graphs

If you link data sources to graphs that have been brushed, their
brushing marks can change or vanish. This is because the workspace
variables in those graphs now dictate which, if any, observations are
brushed, superseding any brushing annotations that were applied to
their graphical data (YData, etc.). For more details, see “How Data
Linking Affects Data Brushing” on page 1-595 in the brush reference
page.

Examples Example 1

Create two variables, graph them as areaseries, and link the plot to
them:

x = 1:20;
y = rand(20,3);
area(x,y)
linkdata on

1-3816

linkdata

Change values for linked variable y in the workspace:

y(10,:) = 0;

The area graph immediately updates.

1-3817

linkdata

Example 2

Delete a figure if it is not linked, based on a returned linkdata object:

fig = figure;
ld = linkdata(fig)

ld =
graphics.linkdata

if strcmp(ld.Enable,'off')
delete(fig)

end

1-3818

linkdata

Example 3

If a graphing function can display a complex variable, you can link such
plots. To do so, you need to describe the data sources as expressions to
separate the real and imaginary parts of the variable. For example,

x = eig(randn(20,20));
whos

Name Size Bytes Class Attributes
x 20x1 320 double complex

yields a complex vector. You can use plot to display the real portion as
x and the imaginary portion as y, then link the graph to the variable:

plot(x)
linkdata

However, linkdata cannot unambiguously identify the graph’s data
sources, and you must tell it by typing real(x) and imag(x) into the
Specify Data Source Properties dialog box that displays when you click
fix it in the Linked Plot information bar.

1-3819

linkdata

To avoid having to type the data source names in the dialog box, you
can specify them when you plot:

plot(x,'XDataSource','real(x)','YDataSource','imag(x)')

If you subsequently change values of x programmatically or manually,
the plot updates accordingly.

1-3820

linkdata

Note Although you can use data brushing on linked plots of complex
data, your brush marks only appear in the plot you are brushing, not
in other plots or in the Variables editor. This is because function calls,
such as real(x) and imag(x), that you specify as data sources are not
interpreted when brushing graphed data.

See Also brush | linkaxes | linkprop | refreshdata

How To • “Making Graphs Responsive with Data Linking”

1-3821

linkprop

Purpose Keep same value for corresponding properties of graphics objects

Syntax hlink = linkprop(obj_handles,'PropertyName')
hlink = linkprop(obj_handles,{'PropertyName1','PropertyName2',...})

Description Use linkprop to maintain the same values for the corresponding
properties of different graphics objects.

Note Use linkprop only with Handle Graphics objects.

hlink = linkprop(obj_handles,'PropertyName') maintains the
same value for the property PropertyName on all objects whose handles
appear in obj_handles. linkprop returns the link object in hlink. See
“About Link Objects” on page 1-3823 for more information.

hlink =
linkprop(obj_handles,{'PropertyName1','PropertyName2',...})
maintains the same respective values for all properties passed as a cell
array on all objects whose handles appear in obj_handles.

MATLAB updates the linked properties of all linked objects immediately
when linkprop is called. The first object in the list obj_handles
determines the property values for the other objects.

A set of graphics objects can have only one link object connecting their
properties at any given time. Calling linkprop creates a new link
object. This new link object replaces any existing link object that is
associated with the objects specified in obj_handles. However, you
can manage which properties and which objects are linked by calling
methods on that object:

• To add an object to the list of linked objects, use the addtarget
method.

• To link new properties of currently-linked objects, use the addprop
method.

• To stop linking an object, use the removetarget method.

1-3822

linkprop

• To stop properties from linking, use the removeprop method.

About
Link
Objects

The link object that linkprop returns stores the mechanism that links
the properties of different graphics objects. Therefore, the link object
must exist within the context where you want property linking to occur
(such as in the base workspace if users are to interact with the objects
from the command line or figure tools).

The following list describes ways to maintain a reference to the link
object.

• Return the link object as an output argument from a function and
keep it in the base workspace while interacting with the linked
objects.

• Make the hlink variable global.

• Store the hlink variable in an object’s UserData property or in
application data. See the “Examples” on page 1-3824 section for an
example that uses application data.

Updating
a Link
Object

If you want to change either the graphics objects or the properties that
are linked, you need to use the link object methods designed for that
purpose. These methods are functions that operate only on link objects.
To use them, you must first create a link object using linkprop.

Method Purpose

addtarget Add specified graphics object to the link
object’s targets.

removetarget Remove specified graphics object from the link
object’s targets.

addprop Add specified property to the linked properties.

removeprop Remove specified property from the linked
properties.

1-3823

linkprop

Method Syntax

ddtarget(hlink,obj_handles)
removetarget(hlink,obj_handles)
addprop(hlink,'PropertyName')
removeprop(hlink,'PropertyName')

Method Arguments

• hlink — Link object returned by linkprop

• obj_handles— One or more graphic object handles

• PropertyName— Name of a property common to all target objects

Examples This example creates four isosurface graphs of fluid flow data,
each displaying a different isovalue. The CameraPosition and
CameraUpVector properties of each subplot axes are linked so that the
user can rotate all subplots in unison.

After running the example, select Rotate 3D from the figure Tools
menu and observe how all subplots rotate together.

Note You can run this example or open it in the MATLAB editor.

The property linking code is in step 3.

1 Define the data using flow and specify property values for the
isosurface (which is a patch object).

[x,y,z,v] = flow;
isoval = [-3,-1,0,1];
props.FaceColor = [0,0,0.5];
props.EdgeColor = 'none';
props.AmbientStrength = 1;
props.FaceLighting = 'gouraud';

1-3824

linkprop

2 Create four subplot axes and add an isosurface graph to each one.
Add a title and set viewing and lighting parameters. MATLAB
functions used are subplot, patch, isosurface, title, and num2str.
Also set the viewing and lighting parameters for each axes to be the
same by calling view, axis, and camlight.

figure
% Preallocate h
h = zeros(1,4);
for k = 1:4

h(k) = subplot(2,2,k);
patch(isosurface(x,y,z,v,isoval(k)),props)
title(h(k),['Isovalue = ',num2str(k)])
% Set the view and add lighting
view(h(k),3); axis(h(k),'tight','equal')
camlight left; camlight right
% Make axes invisible and title visible
axis(h(k),'off')
set(get(h(k),'title'),'Visible','on')

end

3 Link the CameraPosition and CameraTarget properties of all subplot
axes. Since this code already is completed executing when you
rotate the subplots, the link object is stored in the first subplot axes
application data. See setappdata for more information on using
application data.

if ishghandle(h)
hlink = linkprop(h,{'CameraPosition','CameraUpVector'});
key = 'graphics_linkprop';
% Store link object on first subplot axes
setappdata(h(1),key,hlink);

end

1-3825

linkprop

4 Turn on the Rotate 3D tool. Click any object in the figure and rotate
it. As you turn it, all three other subplots turn in the same manner.

rotate3d on

Linking an Additional Property

Suppose you want to add the axes PlotBoxAspectRatio to the linked
properties in the previous example. You can do this by modifying the
link object that is stored in the first subplot axes’ application data.

1-3826

linkprop

1 First click the first subplot axes to make it the current axes (since its
handle was saved only within the creating function). Then get the
link object’s handle from application data (getappdata).

hlink = getappdata(gca,'graphics_linkprop');

2 Use the addprop method to add a new property to the link object.

addprop(hlink,'PlotBoxAspectRatio')

Since hlink is a reference to the link object (i.e., not a copy), addprop
can change the object that is stored in application data.

See Also getappdata | ishghandle | linkaxes | linkdata | setappdata

1-3827

linsolve

Purpose Solve linear system of equations

Syntax X = linsolve(A,B)
X = linsolve(A,B,opts)

Description X = linsolve(A,B) solves the linear system A*X = B using LU
factorization with partial pivoting when A is square and QR
factorization with column pivoting otherwise. The number of rows of
A must equal the number of rows of B. If A is m-by-n and B is m-by-k,
then X is n-by-k. linsolve returns a warning if A is square and ill
conditioned or if it is not square and rank deficient.

[X, R] = linsolve(A,B) suppresses these warnings and returns R,
which is the reciprocal of the condition number of A if A is square, or the
rank of A if A is not square.

X = linsolve(A,B,opts) solves the linear system A*X = B or A'*X
= B, using the solver that is most appropriate given the properties of
the matrix A, which you specify in opts. For example, if A is upper
triangular, you can set opts.UT = true to make linsolve use a solver
designed for upper triangular matrices. If A has the properties in opts,
linsolve is faster than mldivide, because linsolve does not perform
any tests to verify that A has the specified properties.

Notes If A does not have the properties that you specify in opts,
linsolve returns incorrect results and does not return an error
message. If you are not sure whether A has the specified properties,
use mldivide instead.

For small problems, there is no speed benefit in using linsolve on
triangular matrices as opposed to using the mldivide function.

The TRANSA field of the opts structure specifies the form of the linear
system you want to solve:

1-3828

linsolve

• If you set opts.TRANSA = false, linsolve(A,B,opts) solves A*X
= B.

• If you set opts.TRANSA = true, linsolve(A,B,opts) solves A'*X
= B.

The following table lists all the field of opts and their corresponding
matrix properties. The values of the fields of opts must be logical and
the default value for all fields is false.

Field Name Matrix Property

LT Lower triangular

UT Upper triangular

UHESS Upper Hessenberg

SYM Real symmetric or complex Hermitian

POSDEF Positive definite

RECT General rectangular

TRANSA Conjugate transpose — specifies whether the
function solves A*X = B or A'*X = B

The following table lists all combinations of field values in opts that are
valid for linsolve. A true/false entry indicates that linsolve accepts
either true or false.

LT UT UHESS SYM POSDEF RECT TRANSA

true false false false false true/false true/false

false true false false false true/false true/false

false false true false false false true/false

false false false true true/falsefalse true/false

false false false false false true/false true/false

1-3829

linsolve

Examples The following code solves the system A'x = b for an upper triangular
matrix A using both mldivide and linsolve.

A = triu(rand(5,3)); x = [1 1 1 0 0]'; b = A'*x;
y1 = (A')\b
opts.UT = true; opts.TRANSA = true;
y2 = linsolve(A,b,opts)

y1 =

1.0000
1.0000
1.0000

0
0

y2 =

1.0000
1.0000
1.0000

0
0

Note If you are working with matrices having different properties, it
is useful to create an options structure for each type of matrix, such as
opts_sym. This way you do not need to change the fields whenever you
solve a system with a different type of matrix A.

See Also mldivide

1-3830

linspace

Purpose Generate linearly spaced vectors

Syntax y = linspace(a,b)
y = linspace(a,b,n)

Description The linspace function generates linearly spaced vectors. It is similar to
the colon operator ":", but gives direct control over the number of points.

y = linspace(a,b) generates a row vector y of 100 points linearly
spaced between and including a and b.

y = linspace(a,b,n) generates a row vector y of n points linearly
spaced between and including a and b. For n = 1, linspace returns b.

Examples Create a vector of 100 linearly spaced numbers from 1 to 500:

A = linspace(1,500);

Create a vector of 12 linearly spaced numbers from 1 to 36:

A = linspace(1,36,12);

See Also logspace | colon operator

1-3831

RandStream.list

Purpose Random number generator algorithms

Class RandStream

Syntax RandStream.list

Description RandStream.list lists all the generator algorithms that may be
used when creating a random number stream with RandStream or
RandStream.create. The available generator algorithms and their
properties are given in the following table.

Keyword Generator Multiple
Stream and
Substream
Support

Approximate
Period In Full
Precision

mt19937ar Mersenne
twister (used by
default stream
at MATLAB
startup)

No
2 119937

mcg16807 Multiplicative
congruential
generator

No
2 231 −

mlfg6331_64 Multiplicative
lagged
Fibonacci
generator

Yes
2124

mrg32k3a Combined
multiple
recursive
generator

Yes
2127

1-3832

RandStream.list

Keyword Generator Multiple
Stream and
Substream
Support

Approximate
Period In Full
Precision

shr3cong Shift-register
generator
summed
with linear
congruential
generator

No
264

swb2712 Modified
subtract
with borrow
generator

No
21492

See “Choosing a Random Number Generator” for
details about these generator algorithms. See
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for a full
description of the Mersenne twister algorithm.

1-3833

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

listdlg

Purpose Create and open list-selection dialog box

Syntax [Selection,ok] = listdlg('ListString',S)

Description [Selection,ok] = listdlg('ListString',S) creates a modal dialog
box that enables you to select one or more items from a list. Selection
is a vector of indices of the selected strings (in single selection mode,
its length is 1). Selection is [] when ok is 0. ok is 1 if you click the
OK button, or 0 if you click the Cancel button or close the dialog box.
Double-clicking on an item or pressing Return when multiple items are
selected has the same effect as clicking the OK button. The dialog box
has a Select all button (when in multiple selection mode) that enables
you to select all list items.

Inputs are in parameter/value pairs:

Parameter Description

'ListString' Cell array of strings that specify the list box
items.

'SelectionMode' String indicating whether one or many items
can be selected: 'single' or 'multiple' (the
default).

'ListSize' List box size in pixels, specified as a two-element
vector [width height]. Default is [160 300].

'InitialValue' Vector of indices of the list box items that are
initially selected. Default is 1, the first item.

'Name' String for the dialog box’s title. Default is ’’.

'PromptString' String matrix or cell array of strings that appears
as text above the list box. Default is {}.

'OKString' String for the OK button. Default is 'OK'.

'CancelString' String for the Cancel button. Default is ’Cancel’.

’uh' Uicontrol button height, in pixels. Default is 18.

1-3834

listdlg

Parameter Description

'fus' Frame/uicontrol spacing, in pixels. Default is 8.

'ffs' Frame/figure spacing, in pixels. Default is 8.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

Examples This example displays a dialog box that enables the user to select a
file from the current directory. The function returns a vector. Its first
element is the index to the selected file; its second element is 0 if no
selection is made, or 1 if a selection is made.

d = dir;
str = {d.name};
[s,v] = listdlg('PromptString','Select a file:',...

'SelectionMode','single',...
'ListString',str)

1-3835

listdlg

See Also dialog | errordlg | helpdlg | inputdlg | msgbox | questdlg |
warndlg | dir | figure | uiwait | uiresume

1-3836

listfonts

Purpose List available system fonts

Syntax c = listfonts
c = listfonts(h)

Description c = listfonts returns sorted list of available system fonts.

c = listfonts(h) returns sorted list of available system fonts and
includes the FontName property of the object with handle h.

Tips Calling listfonts returns a list of all fonts on your system, possibly
including fonts that you cannot use with MATLAB. Consider using the
uisetfont utility (a GUI) to preview fonts to use; it only displays fonts
that MATLAB can render in figures and GUIs. Like uisetfont, the
Custom Fonts pane of MATLAB Preferences also previews available
fonts and only shows those that MATLAB can render.

Examples Example 1

This example returns a list of available system fonts similar in format
to the one shown.

list = listfonts

list =
'Agency FB'
'Algerian'
'Arial'
...
'ZapfChancery'
'ZapfDingbats'
'ZWAdobeF'

Example 2

This example returns a list of available system fonts with the value of
the FontName property, for the object with handle h, included and sorted
in the list.

1-3837

listfonts

h = uicontrol('Style','text','String',...
'My Font','FontName','MyFont');

list = listfonts(h)

list =
'Agency FB'
'Algerian'
'Arial'
...
'MyFont'
...
'ZapfChancery'
'ZapfDingbats'
'ZWAdobeF'

See Also uisetfont

1-3838

load

Purpose Load variables from file into workspace

Syntax load(filename)
load(filename,variables)
load(filename,'-ascii')
load(filename,'-mat')
load(filename,'-mat',variables)

S = load(___)

load filename

Description load(filename) loads data from filename.

• If filename is a MAT-file, then load(filename) loads variables in
the MAT-File into the MATLAB workspace.

• If filename is an ASCII file, then load(filename) creates a
double-precision array containing data from the file.

load(filename,variables) loads the specified variables from the
MAT-file, filename.

load(filename,'-ascii') treats filename as an ASCII file, regardless
of the file extension.

load(filename,'-mat') treats filename as a MAT-file, regardless
of the file extension.

load(filename,'-mat',variables) loads the specified variables from
filename.

S = load(___) loads data into S, using any of the input arguments in
the previous syntax group.

• If filename is a MAT-file, then S is a structure array.

1-3839

load

• If filename is an ASCII file, then S is a double-precision array
containing data from the file.

load filename is the command form of the syntax. Command form
requires fewer special characters. You do not need to type parentheses
or enclose input strings in single quotes. Separate inputs with spaces
instead of commas.

For example, to load a file named durer.mat, these statements are
equivalent:

load durer.mat % command form
load('durer.mat') % function form

You can include any of the inputs described in previous syntaxes. For
example, to load the variable named X:

load durer.mat X % command form
load('durer.mat','X') % function form

Do not use command form when any of the inputs, such as filename,
are variables.

Input
Arguments

filename - Name of file
matlab.mat (default) | string

Name of file, specified as a string. If you do not specify filename, the
load function searches for a file named matlab.mat.

filename can include a file extension and a full or partial path. If
filename has no extension (that is, no text after a period), load looks
for a file named filename.mat. If filename has an extension other
than .mat, the load function treats the file as ASCII data.

When using the command form of load, it is unnecessary to enclose
input strings in single quotes. However, if filename contains a space,
you must enclose the argument in single quotes. For example, load
'filename withspace.mat'.

1-3840

load

ASCII files must contain a rectangular table of numbers, with an equal
number of elements in each row. The file delimiter (the character
between elements in each row) can be a blank, comma, semicolon, or tab
character. The file can contain MATLAB comments (lines that begin
with a percent sign, %).

Example: 'myFile.mat'

Data Types
char

variables - Names of variables to load
string

Names of variables to load, specified as one or more strings. When using
the command form of load, you do not need to enclose input strings in
single quotes. variables can be in one of the following forms.

Form of variables Input Variables to Load

var1,...,varN Load the listed variables, specified as
individual strings.
Use the '*' wildcard to
match patterns. For example,
load('filename.mat','A*') or load
filename.mat A* loads all variables
in the file whose names start with A.

'-regexp',expr1,...,exprN Load only the variables or
fields whose names match the
regular expressions, specified
as strings. For example,
load('filename.mat','-regexp','^Mon','^Tue
or load filename.mat -regexp
^Mon ^Tues loads only the variables
in the file whose names begin with
Mon or Tues.

1-3841

load

Data Types
char

Output
Arguments

S - Loaded variables or data
structure array | m-by-n array

Loaded variables, returned as a structure array, if filename is a
MAT-File.

Loaded data, returned as an m-by-n array of type double, if filename is
an ASCII file. m is equal to the number of lines in the file, and n is equal
to the number of values on a line.

Examples Load All Variables from MAT-File

Load all variables from the example MAT-file, gong.mat. Check the
contents of the workspace before and after the load operation.

disp('Contents of workspace before loading file:')
whos

disp('Contents of gong.mat:')
whos('-file','gong.mat')

load('gong.mat')
disp('Contents of workspace after loading file:')
whos

You also can use command syntax to load the variables. Clear the
previously loaded variables and repeat the load operation.

clear y Fs

load gong.mat

1-3842

load

Load Specific Variable From MAT-File

Load only variable y from example file handel.mat. If the workspace
already contains variable y, the load operation overwrites it with data
from the file.

load('handel.mat','y')

You also can use command syntax to load the variable, y.

load handel.mat y

Use Regular Expressions to Load Specific Variables

View the contents of the example file, accidents.mat.

whos -file accidents.mat

Name Size Bytes Class Attributes

datasources 3x1 2724 cell
hwycols 1x1 8 double
hwydata 51x17 6936 double
hwyheaders 1x17 2758 cell
hwyidx 51x1 408 double
hwyrows 1x1 8 double
statelabel 51x1 6596 cell
ushwydata 1x17 136 double
uslabel 1x1 138 cell

Use function syntax to load all variables with names not beginning
with 'hwy', from the file.

load('accidents.mat', '-regexp', '^(?!hwy)...')

Alternatively, use command syntax to load the same variables.

load accidents.mat -regexp '^(?!hwy)...'

1-3843

load

Load List of Variables into Structure Array

The file, durer.mat, contains variables X, caption, and map. Create a
cell array of variable names to load.

filename = 'durer.mat';
myVars = {'X','caption'};
S = load(filename,myVars{:})

S =

X: [648x509 double]
caption: [2x28 char]

Only the variables X and caption are loaded into the structure array, S.

Load ASCII File

Create an ASCII file from several 4-column matrices, and load the data
back into a double-precision array.

a = magic(4);
b = ones(2, 4) * -5.7;
c = [8 6 4 2];
save -ascii mydata.dat a b c
clear a b c

load mydata.dat -ascii

load creates an array of type double named mydata.

View information about mydata.

whos mydata

Name Size Bytes Class Attributes

mydata 7x4 224 double

1-3844

load

Algorithms If you do not specify an output for the load function, MATLAB creates
a variable named after the loaded file (minus any file extension). For
example, the command

load mydata.dat

reads data into a variable called mydata.

To create the variable name, load precedes any leading underscores
or digits in filename with an X and replaces any other nonalphabetic
characters with underscores. For example, the command

load 10-May-data.dat

creates a variable called X10_May_data.

See Also clear | importdata | matfile | regexp | save | uiimport | whos

Concepts • “Supported File Formats for Import and Export”
• “Save, Load, and Delete Workspace Variables”
• “Ways to Import Text Files”
• “Loading Variables within a Function”
• “Import or Export a Sequence of Files”
• “Command vs. Function Syntax”

1-3845

load (COM)

Purpose Initialize control object from file

Syntax h.load('filename')
load(h, 'filename')

Description h.load('filename') initializes the COM object associated with the
interface represented by the MATLAB COM object h from file specified
in the string filename. The file must have been created previously by
serializing an instance of the same control.

load(h, 'filename') is an alternate syntax for the same operation.

Note The COM load function is only supported for controls at this time.

Tips COM functions are available on Microsoft Windows systems only.

Examples Create an mwsamp control and save its original state to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get

MATLAB displays the original values:

ans =

1-3846

load (COM)

Label: 'Label'
Radius: 20

See Also save (COM) | actxcontrol | actxserver | release | delete (COM)

1-3847

load (serial)

Purpose Load serial port objects and variables into MATLAB workspace

Syntax load filename
load filename obj1 obj2...

Description load filename returns all variables from the file specified by filename
into the MATLAB workspace.

load filename obj1 obj2... returns the serial port objects specified
by obj1 obj2 ... from the file filename into the MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified
serial port objects from the file filename as a structure to out instead
of directly loading them into the workspace. The field names in out
match the names of the loaded serial port objects.

Tips Values for read-only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. To
determine if a property is read-only, examine its reference pages.

Examples
Note This example is based on a Windows platform.

Suppose you create the serial port objects s1 and s2, configure a few
properties for s1, and connect both objects to their instruments:

s1 = serial('COM1');
s2 = serial('COM2');
set(s1,'Parity','mark','DataBits',7);
fopen(s1);
fopen(s2);

Save s1 and s2 to the file MyObject.mat, and then load the objects
back into the workspace:

save MyObject s1 s2;
load MyObject s1;

1-3848

load (serial)

load MyObject s2;

get(s1, {'Parity', 'DataBits'})

ans =
'mark' [7]

get(s2, {'Parity', 'DataBits'})

ans =
'none' [8]

See Also save | Status

1-3849

loadlibrary

Purpose Load shared library into MATLAB

Syntax loadlibrary(libname,hfile)
loadlibrary(libname)
loadlibrary(libname,hfile,Name,Value)

loadlibrary(libname,@protofile)

[notfound,warnings] = loadlibrary(___)

Description loadlibrary(libname,hfile) loads functions from shared library,
libname, defined in header file, hfile, into MATLAB.

loadlibrary(libname) loads the library if the name of the header file
is the same as the name of the library file.

loadlibrary(libname,hfile,Name,Value) loads the library with one
or more Name,Value arguments.

loadlibrary(libname,@protofile) uses a prototype file, protofile,
in place of a header file.

[notfound,warnings] = loadlibrary(___) returns warning
information, and can include any of the input arguments in previous
syntaxes.

Limitations • You must have a supported C compiler and Perl must be available.

• Do not call loadlibrary if the library is already in memory. To test
this condition, call libisloaded.

• loadlibrary does not support libraries generated by the MATLAB
Compiler™ product.

• The MATLAB Shared Library interface does not support library
functions with function pointer inputs.

1-3850

loadlibrary

Input
Arguments

libname - Name of shared library
string

Name of shared library, specified as a string. The name is case-sensitive
and must match the file on your system.

On Microsoft Windows systems, libname refers to the name of a shared
library (.dll) file. On Linux systems, it refers to the name of a shared
object (.so) file. On Apple Macintosh systems, it refers to a dynamic
shared library (.dylib).

If you do not include a file extension with the libname argument,
loadlibrary attempts to find the library with either the appropriate
platform MEX-file extension or the appropriate platform library
extension. For a list of MEX-file extensions, use mexext.

Data Types
char

hfile - Name of C header file
string

Name of C header file, specified as a string. The name is case-sensitive
and must match the file on your system. If you do not include a file
extension in the file name, loadlibrary uses .h for the extension.

Data Types
char

protofile - Name of prototype file
string

Name of prototype file, specified as a string. The name is case-sensitive
and must match the file on your system. The string @protofile
specifies a function handle to the prototype file. When using a prototype
file, the only valid Name,Value pair argument is alias.

Data Types
char

1-3851

loadlibrary

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

’addheader’ - Header file
string

Header file, specified as the comma-separated pair consisting of
’addheader’ and a string. Specify the file name without a file extension.

Each file specified by addheader must have a corresponding #include
statement in the base header file. To load only the functions defined in
the header file that you want to use in MATLAB, use addheader.

MATLAB does not verify the existence of header files and ignores any
that are not needed.

’alias’ - Alternative name for library
string

Alternative name for library, specified as the comma-separated pair
consisting of ’alias’ and a string. Associates the specified name with
the library. All subsequent calls to MATLAB functions that reference
this library must use this alias until the library is unloaded.

’includepath’ - More search path for subordinate header files
string

more search path for subordinate header files—header files within
header files, specified as the comma-separated pair consisting of
’includepath’ and a string.

’mfilename’ - Prototype file
string

1-3852

loadlibrary

Prototype file, specified as the comma-separated pair consisting of
’mfilename’ and a string. Generates a prototype file in the current
folder. The prototype file name must be different from the library name.
Use this file in place of a header file when loading the library.

’thunkfilename’ - Thunk file
string

Thunk file, specified as the comma-separated pair consisting of
’thunkfilename’ and a string. Overrides the default thunk file name.

Output
Arguments

notfound - Names of functions
cell array

Names of functions found in header files but missing from the library,
returned as cell array.

Data Types
cell

warnings - Warnings
character array

Warnings produced while processing the header file, returned as
character array.

Examples Load Functions in shrlibsample Library

Add path to examples folder.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

Load shrlibsample.

loadlibrary('shrlibsample')

Cleanup.

unloadlibrary shrlibsample

1-3853

loadlibrary

Load Library Using Header File

The header file for the libmx library is matrix.h.

hfile = fullfile(matlabroot,'extern','include','matrix.h');
loadlibrary('libmx',hfile)

Cleanup.

unloadlibrary libmx

Load Library Using Multiple Header Files

Suppose that you have a library, mylib, with the header file, mylib.h.
The header file contains the statement, #include header2.h. To use
functions defined in header2.h, call loadlibrary with the addheader
option.

loadlibrary('mylib','mylib.h','addheader','header2')

Load Library Using an Alias Name

Create an alias, lib, for library, shrlibsample.

loadlibrary('shrlibsample','alias','lib')

Use the alias name, lib, to call a function in the library.

str = 'This was a Mixed Case string';
calllib('lib','stringToUpper',str)

ans =
THIS WAS A MIXED CASE STRING

Cleanup.

unloadlibrary lib

1-3854

loadlibrary

Search Alternative Paths for Header Files

Add path to folder containing shrlibsample and its header file,
shrlibsample.h.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

The shrlibsample.h header file includes the header file, shrhelp.h.
If shrhelp.h is in a different folder, for example, c:\work, use the
'includepath' option to tell MATLAB where to find the file.

loadlibrary('shrlibsample','shrlibsample.h','includepath','c:\work')

Cleanup.

unloadlibrary shrlibsample

Tips • If you have more than one library file of the same name, load the
first using the library file name. Then load the additional libraries
using the alias option.

Definitions Prototype File

A prototype file is a file of MATLAB commands which you can modify
and use in place of a header file.

Thunk File

A thunk file is a compatibility layer to a 64-bit library generated by
MATLAB. The name of the thunk file is BASENAME_thunk_COMPUTER.c
where BASENAME is either the name of the shared library or, if specified,
the mfilename prototype name. COMPUTER is the string returned by the
computer function.

MATLAB compiles this file and creates the file
BASENAME_thunk_COMPUTER.LIBEXT, where LIBEXT is the
platform-dependent default shared library extension, for example,
dll on Windows.

1-3855

loadlibrary

See Also mex | unloadlibrary | libisloaded | libfunctions | computer
| calllib | mexext

Related
Examples

• “Create Alias Function Name Using Prototype File”

External
Web Sites

• Supported and Compatible Compilers

1-3856

http://www.mathworks.com/support/compilers/current_release/

loadobj

Purpose Modify load process for object

Syntax b = loadobj(a)

Description b = loadobj(a) is called by the load function if the class of a defines a
loadobj method. load returns b as the value loaded from a MAT-file.

Define a loadobj method when objects of the class require special
processing when loaded from MAT-files. If you define a saveobj
method, then define a loadobj method to restore the object to the
desired state. Define loadobj as a static method so it can accept as an
argument whatever object or structure that you saved in the MAT-file.
See “Implement loadobj as a Static Method”.

When loading a subclass object, load calls only the subclass loadobj
method. If a superclass defines a loadobj method, the subclass inherits
this method. However, it is possible that the inherited method does not
perform the necessary operations to load the subclass object. Consider
overriding superclass loadobj methods.

If any superclass in a class hierarchy defines a loadobj method, then
the subclass loadobj method must ensure that the subclass and
superclass objects load properly. Ensure proper loading by calling
the superclass loadobj (or other methods) from the subclass loadobj
method. See “Saving and Loading Objects from Class Hierarchies”.

Input
Arguments

a

The input argument, a, can be:

• The object as loaded from the MAT-file.

• A structure created by load (if load cannot resolve the object).

• A struct returned by the saveobj method.

See Also load | save | saveobj

Tutorials • “Control Save and Load”

1-3857

localfunctions

Purpose Function handles to all local functions in MATLAB file

Syntax fcns = localfunctions

Description fcns = localfunctions returns a cell array of function handles, fcns,
to all local functions in the current file.

You cannot define local functions in the context of the command line,
scripts, or anonymous functions, so when you call localfunctions
from these contexts, you get an empty cell array. Within the cell array,
localfunctions returns the function handles in an undefined order.

Examples Display Handles to Local Functions in File

Create a new file, fileWithLocalFunctions.m, in your MATLAB path.
In the main function, call and display the results of localfunctions.
In the same file, create two local functions.

function fileWithLocalFunctions

fcns = localfunctions;
display(fcns);

function alocalfunction

function anotherlocalfunction

From the command line, call your function.

fileWithLocalFunctions

fcns =

@alocalfunction
@anotherlocalfunction

See Also functiontests

1-3858

localfunctions

Concepts • “Local Functions”

1-3859

log

Purpose Natural logarithm

Syntax Y = log(X)

Description Y = log(X) returns the natural logarithm of each element in array X.
The function accepts both real and complex inputs. For real values of X
in the interval (0, Inf), log returns real values in the interval (-Inf ,Inf).
For complex and negative real values of X, log returns complex values.

Input
Arguments

X - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types
single | double
Complex Number Support: Yes

Examples Calculate Scalar Natural Logarithm Values

Examine several common values of the natural logarithm function.

Calculate the natural logarithm of 1.

log(1)

ans =

0

The result is 0, which is the x-intercept of the function.

Calculate the natural logarithm of Euler’s number, e.

log(exp(1))

ans =

1-3860

log

1

The result is 1 because log is the inverse of exp.

Calculate the natural logarithm of -1.

log(-1)

ans =

0.0000 + 3.1416i

The result is equal to iπ.

Calculate the natural logarithm of 0.

log(0)

ans =

-Inf

The result is -Inf because log is a monotonically increasing function

over the real domain (,)0 .

Plot Real-Valued Natural Logarithm

Define the domain.

X = (0.25:0.25:5)';

Calculate the natural logarithm of the vector, X.

Y = log(X)

Y =

-1.3863

1-3861

log

-0.6931
-0.2877

0
0.2231
0.4055
0.5596
0.6931
0.8109
0.9163
1.0116
1.0986
1.1787
1.2528
1.3218
1.3863
1.4469
1.5041
1.5581
1.6094

The result is a vector of natural logarithm values.

Plot the function values.

plot(X,Y,'LineWidth',1.5);
grid on;
xlabel('X'); ylabel('Y');
title('Real-Valued Natural Logarithm');

1-3862

log

The real-valued natural logarithm maps values in the domain to
the range .

Plot Branches of Complex Logarithm

Define a grid of values for the (X,Y) domain.

[X,Y] = meshgrid(-4:0.25:4,-4:0.25:4);

Calculate the complex logarithm on the grid.

1-3863

log

Z = log(X+1i*Y);

Make a surface plot of the imaginary portion of the function.

surf(X,Y,imag(Z))
grid on; hold on;
title('Principal Branch of Im[$\log(X+iY)$]','Interpreter','latex')
xlabel('X'); ylabel('Y'); zlabel('Z');
view(44,42)

1-3864

log

On the complex plane, the natural logarithm is a multivalued function
that winds around the origin.

To obtain a different branch of the function, add to the Z values.

z2 = Z + 2*pi*1i;
surf(X,Y,imag(z2))
title('Two Branches of the Complex Logarithm')
view(45,22)

1-3865

log

In this plot, the branches are stacked on top of each other and meet
along the negative real axis.

Algorithms For complex or negative inputs, log computes the complex logarithm
log(abs(z)) + 1i*atan2(y,x).

See Also log1p | log2 | log10 | exp | logm | reallog | loglog | semilogx
| semilogy

1-3866

log10

Purpose Common (base 10) logarithm

Syntax Y = log10(X)

Description The log10 function operates element-by-element on arrays. Its domain
includes complex numbers, which may lead to unexpected results if
used unintentionally.

Y = log10(X) returns the base 10 logarithm of the elements of X.

Examples log10(realmax) is 308.2547

and

log10(eps) is -15.6536

See Also exp | log | log2 | logm

1-3867

log1p

Purpose Compute log(1+x) accurately for small values of x

Syntax y = log1p(x)

Description y = log1p(x) computes log(1+x), compensating for the roundoff in
1+x. log1p(x) is more accurate than log(1+x) for small values of x. For
small x, log1p(x) is approximately x, whereas log(1+x) can be zero.

See Also log | expm1

1-3868

log2

Purpose Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

Syntax Y = log2(X)
[F,E] = log2(X)

Description Y = log2(X) computes the base 2 logarithm of the elements of X.

[F,E] = log2(X) returns arrays F and E. Argument F is an array of
real values, usually in the range 0.5 <= abs(F) < 1. For real X, F
satisfies the equation: X = F.*2.^E. Argument E is an array of integers
that, for real X, satisfy the equation: X = F.*2.^E.

Tips This function corresponds to the ANSI C function frexp() and the
IEEE floating-point standard function logb(). Any zeros in X produce F
= 0 and E = 0.

Examples For IEEE arithmetic, the statement [F,E] = log2(X) yields the values:

X F E

1 1/2 1

pi pi/4 2

-3 -3/4 2

eps 1/2 -51

realmax 1-eps/2 1024

realmin 1/2 -1021

See Also log | pow2

1-3869

logical

Purpose Convert numeric values to logicals

Syntax L = logical(A)

Description L = logical(A) converts numeric input A into an array of logical
values. Any nonzero element of input A is converted to logical 1 (true)
and zeros are converted to logical 0 (false). Complex values and NaNs
cannot be converted to logical values and result in a conversion error.

Input
Arguments

A - Numeric input
scalar | vector | matrix | multidimensional array

Numeric input, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

Examples Pick Odd Elements from Numeric Matrix

Pick out the odd-numbered elements of a numeric matrix.

Create a numeric matrix.

A = [1 -3 2;5 4 7;-8 1 3];

Find the modulus, mod(A,2), and convert it to a logical array for
indexing.

L = logical(mod(A,2))

L =

1 1 0
1 0 1
0 1 1

The array has logical 1 (true) values where A is odd.

1-3870

logical

Use L as a logical index to pick out the odd elements of A.

A(L)

ans =

1
5

-3
1
7
3

The result is a vector containing all odd elements of A.

Use the logical NOT operator, ~, on L to find the even elements of A.

A(~L)

ans =

-8
4
2

Tips • Most arithmetic operations involving logical arrays return double
values. For example, adding zero to a logical array returns a double
array.

• Logical arrays also are created by the relational operators (==,<,>,~,
etc.) and functions like any, all, isnan, isinf, and isfinite.

See Also islogical | false | true

Concepts • “Using Logicals in Array Indexing”
• “Determine if Arrays Are Logical”

1-3871

loglog

Purpose Log-log scale plot

Syntax loglog(Y)
loglog(X1,Y1,...)
loglog(X1,Y1,LineSpec,...)
loglog(...,'PropertyName',PropertyValue,...)
h = loglog(...)

Description loglog(Y) plots the columns of Y versus their index if Y contains
real numbers. If Y contains complex numbers, loglog(Y) and
loglog(real(Y),imag(Y)) are equivalent. loglog ignores the
imaginary component in all other uses of this function.

loglog(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or
Yn is a matrix, loglog plots the vector argument versus the rows or
columns of the matrix, along the dimension of the matrix whose length
matches the length of the vector. If the matrix is square, its columns
plot against the vector if their lengths match.

loglog(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples, where LineSpec determines line type, marker
symbol, and color of the plotted lines. You can mix Xn,Yn,LineSpec
triples with Xn,Yn pairs, for example,

loglog(X1,Y1,X2,Y2,LineSpec,X3,Y3)

loglog(...,'PropertyName',PropertyValue,...) sets property
values for all lineseries properties graphics objects created by loglog.

h = loglog(...) returns a column vector of lineseries handles, one
handle per line.

If you do not specify a color when plotting more than one line, loglog
automatically cycles through the colors and line styles in the order
specified by the current axes.

1-3872

loglog

If you attempt to add a loglog, semilogx, or semilogy plot to a linear
axis mode graph with hold on, the axis mode remains as it is and the
new data plots as linear.

Renderer Support

The OpenGL renderer does not support logarithmic-scale axes.
MATLAB automatically selects a different renderer when using
logarithmic scaling. If you set the figure Renderer property to opengl,
axis scales become linear. See the figure Renderer property for more
information on renderers.

Examples Logarithmic Scale for Both Axes

Create a plot using a logarithmic scale for both the x-axis and the
y-axis. Set the LineSpec string so that loglog plots using a line with
square markers. Display the grid.

x = logspace(-1,2);
y = exp(x);

figure
loglog(x,y,'-s');
grid on

1-3873

loglog

See Also LineSpec | plot | semilogx | semilogy

1-3874

logm

Purpose Matrix logarithm

Syntax L = logm(A)
[L, exitflag] = logm(A)

Description L = logm(A) is the principal matrix logarithm of A, the inverse of
expm(A). L is the unique logarithm for which every eigenvalue has
imaginary part lying strictly between –π and π. If A is singular or has
any eigenvalues on the negative real axis, the principal logarithm is
undefined. In this case, logm computes a nonprincipal logarithm and
returns a warning message.

[L, exitflag] = logm(A) returns a scalar exitflag that describes
the exit condition of logm:

• If exitflag = 0, the algorithm was successfully completed.

• If exitflag = 1, too many matrix square roots had to be computed.
However, the computed value of L might still be accurate.

The input A can have class double or single.

Tips If A is real symmetric or complex Hermitian, then so is logm(A).

Some matrices, like A = [0 1; 0 0], do not have any logarithms, real
or complex, so logm cannot be expected to produce one.

Limitations For most matrices:

logm(expm(A)) = A = expm(logm(A))

These identities may fail for some A. For example, if the computed
eigenvalues of A include an exact zero, then logm(A) generates infinity.
Or, if the elements of A are too large, expm(A) may overflow.

Examples Suppose A is the 3-by-3 matrix

1 1 0
0 0 2

1-3875

logm

0 0 -1

and Y = expm(A) is

Y =
2.7183 1.7183 1.0862

0 1.0000 1.2642
0 0 0.3679

Then A = logm(Y) produces the original matrix A.

Y =
1.0000 1.0000 0.0000

0 0 2.0000
0 0 -1.0000

But log(A) involves taking the logarithm of zero, and so produces

ans =
0.0000 0 -35.5119
-Inf -Inf 0.6931
-Inf -Inf 0.0000 + 3.1416i

Algorithms The algorithm logm uses is described in [1].

References [1] Davies, P. I. and N. J. Higham, “A Schur-Parlett algorithm for
computing matrix functions,” SIAM J. Matrix Anal. Appl., Vol. 25,
Number 2, pp. 464-485, 2003.

[2] Cheng, S. H., N. J. Higham, C. S. Kenney, and A. J. Laub,
“Approximating the logarithm of a matrix to specified accuracy,” SIAM
J. Matrix Anal. Appl., Vol. 22, Number 4, pp. 1112-1125, 2001.

[3] Higham, N. J., “Evaluating Pade approximants of the matrix
logarithm,” SIAM J. Matrix Anal. Appl., Vol. 22, Number 4, pp.
1126-1135, 2001.

1-3876

logm

[4] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns
Hopkins University Press, 1983, p. 384.

[5] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to
Compute the Exponential of a Matrix,” SIAM Review 20, 1978, pp.
801-836.

See Also expm | funm | sqrtm

1-3877

logspace

Purpose Generate logarithmically spaced vectors

Syntax y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,pi)

Description The logspace function generates logarithmically spaced vectors.
Especially useful for creating frequency vectors, it is a logarithmic
equivalent of linspace and the “:” or colon operator.

y = logspace(a,b) generates a row vector y of 50 logarithmically
spaced points between decades 10^a and 10^b.

y = logspace(a,b,n) generates n points between decades 10^a and
10^b.

y = logspace(a,pi) generates the points between 10^a and pi, which
is useful for digital signal processing where frequencies over this
interval go around the unit circle.

Tips All the arguments to logspace must be scalars.

See Also linspace | colon operator

1-3878

lookfor

Purpose Search for keyword in all help entries

Alternatives As an alternative to the lookfor function, use the Function Browser.

Syntax lookfor topic
lookfor topic -all

Description lookfor topic searches for the string topic in the first comment line
(the H1 line) of the help text in all MATLAB program files found on the
search path. For all files in which a match occurs, lookfor displays
the H1 line.

lookfor topic -all searches the entire first comment block of a
MATLAB program file looking for topic.

Examples For example:

lookfor inverse

finds at least a dozen matches, including H1 lines containing "inverse
hyperbolic cosine," "two-dimensional inverse FFT," and "pseudoinverse."
Contrast this with

which inverse

or

what inverse

These functions run more quickly, but probably fail to find anything
because MATLAB does not have a function inverse.

In summary, what lists the functions in a given folder, which finds the
folder containing a given function or file, and lookfor finds all functions
in all folders that might have something to do with a given keyword.

Even more extensive than the lookfor function are the find features
in the Current Folder browser. For example, you can look for all
occurrences of a specified word in all the MATLAB program files in

1-3879

lookfor

the current folder and its subfolders. For more information, see “Find
Files and Folders”.

See Also dir | doc | filebrowser | strfind | help | regexp | what | which |
who

How To • “Find Functions to Use”

• “Search Syntax and Tips”

1-3880

lower

Purpose Convert string to lowercase

Syntax t = lower('str')
B = lower(A)

Description t = lower('str') returns the string formed by converting any
uppercase characters in str to the corresponding lowercase characters
and leaving all other characters unchanged.

B = lower(A) when A is a cell array of strings, returns a cell array the
same size as A containing the result of applying lower to each string
within A.

Examples lower('MathWorks') is mathworks.

Tips Character sets supported:

• PC: Latin-1 for the Microsoft Windows operating system

• Other: ISO Latin-1 (ISO 8859-1)

See Also upper

1-3881

ls

Purpose List folder contents

Syntax ls
ls name
list = ls(name)

Description ls lists the contents of the current folder.

ls name lists the files and folders in the current folder that match the
specified name. You can use wildcards.

list = ls(name) returns the files and folders in the current folder that
match the specified name to list.

Tips • On UNIX platforms, you can add any flags to ls that the operating
system supports.

Input
Arguments

name

A string value specifying a file or folder name.

Output
Arguments

list

• On UNIX platforms, list is a character row vector of names
separated by tab and space characters.

• On Microsoft Windows platforms, list is an m-by-n character
array of names—m is the number of names and n is the number of
characters in the longest name. MATLAB pads names shorter than n
characters with space characters.

Examples List all the files and folders in the current folder:

ls

List all the files and folders in the current folder that begin with the
letter h:

1-3882

ls

ls h*

Return the list of all the files and folders in the current folder to mylist:

mylist = ls;

Alternatives • View files and folders in the Current Folder browser.

Open the Current Folder browser by issuing the filebrowser
command.

See Also dir | pwd

1-3883

lscov

Purpose Least-squares solution in presence of known covariance

Syntax x = lscov(A,b)
x = lscov(A,b,w)
x = lscov(A,b,V)
x = lscov(A,b,V,alg)
[x,stdx] = lscov(...)
[x,stdx,mse] = lscov(...)
[x,stdx,mse,S] = lscov(...)

Description x = lscov(A,b) returns the ordinary least squares solution to the
linear system of equations A*x = b, i.e., x is the n-by-1 vector that
minimizes the sum of squared errors (b - A*x)'*(b - A*x), where A
is m-by-n, and b is m-by-1. b can also be an m-by-k matrix, and lscov
returns one solution for each column of b. When rank(A) < n, lscov
sets the maximum possible number of elements of x to zero to obtain a
"basic solution".

x = lscov(A,b,w), where w is a vector length m of real positive
weights, returns the weighted least squares solution to the linear
system A*x = b, that is, x minimizes (b - A*x)'*diag(w)*(b - A*x).
w typically contains either counts or inverse variances.

x = lscov(A,b,V), where V is an m-by-m real symmetric positive
definite matrix, returns the generalized least squares solution to the
linear system A*x = b with covariance matrix proportional to V, that is,
x minimizes (b - A*x)'*inv(V)*(b - A*x).

More generally, V can be positive semidefinite, and lscov returns x that
minimizes e'*e, subject to A*x + T*e = b, where the minimization is
over x and e, and T*T' = V. When V is semidefinite, this problem has a
solution only if b is consistent with A and V (that is, b is in the column
space of [A T]), otherwise lscov returns an error.

By default, lscov computes the Cholesky decomposition of V and, in
effect, inverts that factor to transform the problem into ordinary least
squares. However, if lscov determines that V is semidefinite, it uses an
orthogonal decomposition algorithm that avoids inverting V.

1-3884

lscov

x = lscov(A,b,V,alg) specifies the algorithm used to compute x when
V is a matrix. alg can have the following values:

• 'chol' uses the Cholesky decomposition of V.

• 'orth' uses orthogonal decompositions, and is more appropriate
when V is ill-conditioned or singular, but is computationally more
expensive.

[x,stdx] = lscov(...) returns the estimated standard errors of
x. When A is rank deficient, stdx contains zeros in the elements
corresponding to the necessarily zero elements of x.

[x,stdx,mse] = lscov(...) returns the mean squared error. If b is
assumed to have covariance matrix σ2V (or (σ2)×diag(1./W)), then mse
is an estimate of σ2.

[x,stdx,mse,S] = lscov(...) returns the estimated covariance
matrix of x. When A is rank deficient, S contains zeros in the rows and
columns corresponding to the necessarily zero elements of x. lscov
cannot return S if it is called with multiple right-hand sides, that is, if
size(B,2) > 1.

The standard formulas for these quantities, when A and V are full rank,
are

• x = inv(A'*inv(V)*A)*A'*inv(V)*B

• mse = B'*(inv(V) -
inv(V)*A*inv(A'*inv(V)*A)*A'*inv(V))*B./(m-n)

• S = inv(A'*inv(V)*A)*mse

• stdx = sqrt(diag(S))

However, lscov uses methods that are faster and more stable, and are
applicable to rank deficient cases.

lscov assumes that the covariance matrix of B is known only up to a
scale factor. mse is an estimate of that unknown scale factor, and lscov
scales the outputs S and stdx appropriately. However, if V is known to
be exactly the covariance matrix of B, then that scaling is unnecessary.

1-3885

lscov

To get the appropriate estimates in this case, you should rescale S and
stdx by 1/mse and sqrt(1/mse), respectively.

Algorithms The vector x minimizes the quantity (A*x-b)'*inv(V)*(A*x-b). The
classical linear algebra solution to this problem is

x = inv(A'*inv(V)*A)*A'*inv(V)*b

but the lscov function instead computes the QR decomposition of A
and then modifies Q by V.

Examples Example 1 — Computing Ordinary Least Squares

The MATLAB backslash operator (\) enables you to perform linear
regression by computing ordinary least-squares (OLS) estimates of the
regression coefficients. You can also use lscov to compute the same
OLS estimates. By using lscov, you can also compute estimates of the
standard errors for those coefficients, and an estimate of the standard
deviation of the regression error term:

x1 = [.2 .5 .6 .8 1.0 1.1]';
x2 = [.1 .3 .4 .9 1.1 1.4]';
X = [ones(size(x1)) x1 x2];
y = [.17 .26 .28 .23 .27 .34]';

a = X\y
a =

0.1203
0.3284

-0.1312

[b,se_b,mse] = lscov(X,y)
b =

0.1203
0.3284

-0.1312
se_b =

0.0643

1-3886

lscov

0.2267
0.1488

mse =
0.0015

Example 2 — Computing Weighted Least Squares

Use lscov to compute a weighted least-squares (WLS) fit by providing a
vector of relative observation weights. For example, you might want to
downweight the influence of an unreliable observation on the fit:

w = [1 1 1 1 1 .1]';

[bw,sew_b,msew] = lscov(X,y,w)
bw =

0.1046
0.4614

-0.2621
sew_b =

0.0309
0.1152
0.0814

msew =
3.4741e-004

Example 3 — Computing General Least Squares

Use lscov to compute a general least-squares (GLS) fit by providing
an observation covariance matrix. For example, your data may not
be independent:

V = .2*ones(length(x1)) + .8*diag(ones(size(x1)));

[bg,sew_b,mseg] = lscov(X,y,V)
bg =

0.1203
0.3284

-0.1312
sew_b =

1-3887

lscov

0.0672
0.2267
0.1488

mseg =
0.0019

Example 4 — Estimating the Coefficient Covariance Matrix

Compute an estimate of the coefficient covariance matrix for either
OLS, WLS, or GLS fits. The coefficient standard errors are equal to the
square roots of the values on the diagonal of this covariance matrix:

[b,se_b,mse,S] = lscov(X,y);

S
S =

0.0041 -0.0130 0.0075
-0.0130 0.0514 -0.0328
0.0075 -0.0328 0.0221

[se_b sqrt(diag(S))]
ans =

0.0643 0.0643
0.2267 0.2267
0.1488 0.1488

References [1] Strang, G., Introduction to Applied Mathematics,
Wellesley-Cambridge, 1986, p. 398.

See Also lsqnonneg | qr

1-3888

lsqnonneg

Purpose Solve nonnegative least-squares constraints problem

Equation Solves nonnegative least-squares curve fitting problems of the form

min , .
x

C x d x⋅ − ≥2
2 0 where

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d)
subject to x >= 0. C and d must be real.

x = lsqnonneg(C,d,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. lsqnonneg uses these
options structure fields:

Display Level of display. 'off' displays no output; 'final'
displays just the final output; 'notify' (default)
displays output only if the function does not converge.

TolX Termination tolerance on x.

[x,resnorm] = lsqnonneg(...) returns the value of the squared
2-norm of the residual: norm(C*x-d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual,
d-C*x.

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg:

1-3889

lsqnonneg

>0 Indicates that the function converged to a solution x.

0 Indicates that the iteration count was exceeded.
Increasing the tolerance (TolX parameter in options)
may lead to a solution.

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns
a structure output that contains information about the operation in
the following fields:

algorithm 'active-set'

iterations The number of iterations taken

message Exit message

[x,resnorm,residual,exitflag,output,lambda] =
lsqnonneg(...) returns the dual vector (Lagrange multipliers) lambda,
where lambda(i)<=0 when x(i) is (approximately) 0, and lambda(i) is
(approximately) 0 when x(i)>0.

Examples Compare the unconstrained least squares solution to the lsqnonneg
solution for a 4-by-2 problem:

C = [
0.0372 0.2869
0.6861 0.7071
0.6233 0.6245
0.6344 0.6170];

d = [
0.8587
0.1781
0.0747
0.8405];

[C\d lsqnonneg(C,d)] =
-2.5627 0
3.1108 0.6929

[norm(C*(C\d)-d) norm(C*lsqnonneg(C,d)-d)] =
0.6674 0.9118

1-3890

lsqnonneg

The solution from lsqnonneg does not fit as well (has a larger residual),
as the least squares solution. However, the nonnegative least squares
solution has no negative components.

Algorithms lsqnonneg uses the algorithm described in [1]. The algorithm starts
with a set of possible basis vectors and computes the associated dual
vector lambda. It then selects the basis vector corresponding to the
maximum value in lambda in order to swap out of the basis in exchange
for another possible candidate. This continues until lambda <= 0.

References [1] Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23, p. 161.

See Also optimset

1-3891

lsqr

Purpose LSQR method

Syntax x = lsqr(A,b)
lsqr(A,b,tol)
lsqr(A,b,tol,maxit)
lsqr(A,b,tol,maxit,M)
lsqr(A,b,tol,maxit,M1,M2)
lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,tol,maxit,M1,M2,x0)

Description x = lsqr(A,b) attempts to solve the system of linear equations A*x=b
for x if A is consistent, otherwise it attempts to solve the least squares
solution x that minimizes norm(b-A*x). The m-by-n coefficient matrix A
need not be square but it should be large and sparse. The column vector
b must have length m. You can specify A as a function handle, afun,
such that afun(x,'notransp') returns A*x and afun(x,'transp')
returns A'*x.

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If lsqr converges, a message to that effect is displayed. If lsqr fails
to converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

lsqr(A,b,tol) specifies the tolerance of the method. If tol is [], then
lsqr uses the default, 1e-6.

lsqr(A,b,tol,maxit) specifies the maximum number of iterations.

lsqr(A,b,tol,maxit,M) and lsqr(A,b,tol,maxit,M1,M2) use
n-by-n preconditioner M or M = M1*M2 and effectively solve the system

1-3892

lsqr

A*inv(M)*y = b for y, where y = M*x. If M is [] then lsqr applies no
preconditioner. M can be a function mfun such that mfun(x,'notransp')
returns M\x and mfun(x,'transp') returns M'\x.

lsqr(A,b,tol,maxit,M1,M2,x0) specifies the n-by-1 initial guess. If
x0 is [], then lsqr uses the default, an all zero vector.

[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns a
convergence flag.

Flag Convergence

0 lsqr converged to the desired tolerance tol within maxit
iterations.

1 lsqr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 lsqr stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during lsqr became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if you specify the flag output.

[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns
an estimate of the relative residual norm(b-A*x)/norm(b). If flag is
0, relres <= tol.

[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0) also
returns the iteration number at which x was computed, where 0 <=
iter <= maxit.

[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns a vector of the residual norm estimates at each iteration,
including norm(b-A*x0).

[x,flag,relres,iter,resvec,lsvec] =
lsqr(A,b,tol,maxit,M1,M2,x0) also returns a vector of estimates
of the scaled normal equations residual at each iteration:

1-3893

lsqr

norm((A*inv(M))'*(B-A*X))/norm(A*inv(M),'fro'). Note that the
estimate of norm(A*inv(M),'fro') changes, and hopefully improves,
at each iteration.

Examples Example 1

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = lsqr(A,b,tol,maxit,M1,M2);

displays the following message:

lsqr converged at iteration 11 to a solution with relative
residual 3.5e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to
a matrix-vector product function afun. The example is contained in
a function run_lsqr that

• Calls lsqr with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_lsqr
are available to afun.

The following shows the code for run_lsqr:

function x1 = run_lsqr
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);

1-3894

lsqr

tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = lsqr(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

y = 4 * x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1=run_lsqr;

MATLAB software displays the message

lsqr converged at iteration 11 to a solution with relative
residual 3.5e-009

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, "LSQR: An Algorithm for Sparse
Linear Equations And Sparse Least Squares," ACM Trans. Math. Soft.,
Vol.8, 1982, pp. 43-71.

See Also bicg | bicgstab | cgs | gmres | minres | norm | pcg | qmr | symmlq
| function_handle

1-3895

lt, <

Purpose Determine less than

Syntax A < B
lt(A,B)

Description A < B returns an array with elements set to logical 1 (true) where A is
less than B; otherwise, it returns logical 0 (false). The test compares
only the real part of numeric arrays. lt returns logical 0 (false) where
A or B have NaN or undefined categorical elements.

lt(A,B) is an alternate way to execute A < B, but is rarely used. It
enables operator overloading for classes.

Input
Arguments

A - Left array
numeric array | logical array | character array | ordinal categorical
array

Left array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is an ordinal categorical array, the other input can be an
ordinal categorical array, a cell array of strings, or a single string. A
single string expands into a cell array of strings of the same size as the
other input. If both inputs are ordinal categorical arrays, they must
have the same sets of categories, including their order. See “Compare
Categorical Array Elements” for more details.

B - Right array
numeric array | logical array | character array | ordinal categorical
array

Right array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

1-3896

lt, <

If one input is an ordinal categorical array, the other input can be an
ordinal categorical array, a cell array of strings, or a single string. A
single string expands into a cell array of strings of the same size as the
other input. If both inputs are ordinal categorical arrays, they must
have the same sets of categories, including their order. See “Compare
Categorical Array Elements” for more details.

Examples Test Vector Elements

Determine if vector elements are less than a given value.

Create a numeric vector.

A = [1 12 18 7 9 11 2 15];

Test the vector for elements that are less than 12.

A < 12

ans =

1 0 0 1 1 1 1 0

The result is a vector with values of logical 1 (true) where the elements
of A satisfy the expression.

Use the vector of logical values as an index to view the values in A that
are less than 12.

A(A < 12)

ans =

1 7 9 11 2

The result is a subset of the elements in A.

1-3897

lt, <

Replace Elements of Matrix

Create a matrix.

A = magic(4)

A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Replace all values less than 9 with the value 10.

A(A < 9) = 10

A =

16 10 10 13
10 11 10 10
9 10 10 12

10 14 15 10

The result is a new matrix whose smallest element is 9.

Compare Values in Categorical Array

Create an ordinal categorical array.

A = categorical({'large' 'medium' 'small'; 'medium' ...
'small' 'large'},{'small' 'medium' 'large'},'Ordinal',1)

A =

large medium small
medium small large

The array has three categories: 'small', 'medium', and 'large'.

1-3898

lt, <

Find all values less than the category 'medium'.

A < 'medium'

ans =

0 0 1
0 1 0

A value of logical 1 (true) indicates a value less than the category
'medium'.

Compare the rows of A.

A(1,:) < A(2,:)

ans =

0 0 1

The function returns logical 1 (true) where the first row has a category
value less than the second row.

Test Complex Numbers

Create a vector of complex numbers.

A = [1+i 2-2i 1+3i 1-2i 5-i];

Find the values that are less than 3.

A(A < 3)

ans =

1.0000 + 1.0000i 2.0000 - 2.0000i 1.0000 + 3.0000i 1.0000 - 2

lt compares only the real part of the elements in A.

Use abs to find which elements are within a radius of 3 from the origin.

1-3899

lt, <

A(abs(A) < 3)

ans =

1.0000 + 1.0000i 2.0000 - 2.0000i 1.0000 - 2.0000i

The result has one less element. The element 1.0000 + 3.0000i is not
within a radius of 3 from the origin.

See Also eq | ge | gt | le | ne

Concepts • “Ordinal Categorical Arrays”

1-3900

lu

Purpose LU matrix factorization

Syntax Y = lu(A)
[L,U] = lu(A)
[L,U,P] = lu(A)
[L,U,P,Q] = lu(A)
[L,U,P,Q,R] = lu(A)
[...] = lu(A,'vector')
[...] = lu(A,thresh)
[...] = lu(A,thresh,'vector')

Description The lu function expresses a matrix A as the product of two essentially
triangular matrices, one of them a permutation of a lower triangular
matrix and the other an upper triangular matrix. The factorization
is often called the LU, or sometimes the LR, factorization. A can be
rectangular.

Y = lu(A) returns matrix Y that, for sparse A, contains the strictly
lower triangular L, i.e., without its unit diagonal, and the upper
triangular U as submatrices. That is, if [L,U,P] = lu(A), then Y =
U+L-eye(size(A)). For nonsparse A, Y is the output from the LAPACK
dgetrf or zgetrf routine. The permutation matrix P is not returned.

[L,U] = lu(A) returns an upper triangular matrix in U and a permuted
lower triangular matrix in L such that A = L*U. Return value L is a
product of lower triangular and permutation matrices.

[L,U,P] = lu(A) returns an upper triangular matrix in U, a lower
triangular matrix L with a unit diagonal, and a permutation matrix P,
such that L*U = P*A. The statement lu(A,'matrix') returns identical
output values.

[L,U,P,Q] = lu(A) for sparse nonempty A, returns a unit lower
triangular matrix L, an upper triangular matrix U, a row permutation
matrix P, and a column reordering matrix Q, so that P*A*Q = L*U. If A
is empty or not sparse, lu displays an error message. The statement
lu(A,'matrix') returns identical output values.

1-3901

lu

[L,U,P,Q,R] = lu(A) returns unit lower triangular matrix L, upper
triangular matrix U, permutation matrices P and Q, and a diagonal
scaling matrix R so that P*(R\A)*Q = L*U for sparse non-empty A.
Typically, but not always, the row-scaling leads to a sparser and more
stable factorization. The statement lu(A,'matrix') returns identical
output values.

[...] = lu(A,'vector') returns the permutation information in two
row vectors p and q. You can specify from 1 to 5 outputs. Output p is
defined as A(p,:)=L*U, output q is defined as A(p,q)=L*U, and output R
is defined as R(:,p)\A(:,q)=L*U.

[...] = lu(A,thresh) controls pivoting. This syntax applies to
sparse matrices only. The thresh input is a one- or two-element vector
of type single or double that defaults to [0.1, 0.001]. If A is a square
matrix with a mostly symmetric structure and mostly nonzero diagonal,
MATLAB uses a symmetric pivoting strategy. For this strategy, the
diagonal where

A(i,j) >= thresh(2) * max(abs(A(j:m,j)))

is selected. If the diagonal entry fails this test, a pivot entry below the
diagonal is selected, using thresh(1). In this case, L has entries with
absolute value 1/min(thresh) or less.

If A is not as described above, MATLAB uses an asymmetric strategy.
In this case, the sparsest row i where

A(i,j) >= thresh(1) * max(abs(A(j:m,j)))

is selected. A value of 1.0 results in conventional partial pivoting.
Entries in L have an absolute value of 1/thresh(1) or less. The second
element of the thresh input vector is not used when MATLAB uses
an asymmetric strategy.

Smaller values of thresh(1) and thresh(2) tend to lead to sparser
LU factors, but the solution can become inaccurate. Larger values
can lead to a more accurate solution (but not always), and usually
an increase in the total work and memory usage. The statement
lu(A,thresh,'matrix') returns identical output values.

1-3902

lu

[...] = lu(A,thresh,'vector') controls the pivoting strategy and
also returns the permutation information in row vectors, as described
above. The thresh input must precede 'vector' in the input argument
list.

Note In rare instances, incorrect factorization results in P*A*Q ≠ L*U.
Increase thresh, to a maximum of 1.0 (regular partial pivoting), and
try again.

Tips Most of the algorithms for computing LU factorization are variants of
Gaussian elimination. The factorization is a key step in obtaining the
inverse with inv and the determinant with det. It is also the basis for
the linear equation solution or matrix division obtained with \ and /.

Arguments A Rectangular matrix to be factored.

thresh Pivot threshold for sparse matrices. Valid values are in
the interval [0,1]. If you specify the fourth output Q, the
default is 0.1. Otherwise, the default is 1.0.

L Factor of A. Depending on the form of the function, L is
either a unit lower triangular matrix, or else the product
of a unit lower triangular matrix with P'.

U Upper triangular matrix that is a factor of A.

P Row permutation matrix satisfying the equation L*U =
P*A, or L*U = P*A*Q. Used for numerical stability.

Q Column permutation matrix satisfying the equation
P*A*Q = L*U. Used to reduce fill-in in the sparse case.

R Row-scaling matrix

1-3903

lu

Examples Example 1

Start with

A = [1 2 3
4 5 6
7 8 0];

To see the LU factorization, call lu with two output arguments.

[L1,U] = lu(A)

L1 =
0.1429 1.0000 0
0.5714 0.5000 1.0000
1.0000 0 0

U =
7.0000 8.0000 0

0 0.8571 3.0000
0 0 4.5000

Notice that L1 is a permutation of a lower triangular matrix: if you
switch rows 2 and 3, and then switch rows 1 and 2, the resulting matrix
is lower triangular and has 1s on the diagonal. Notice also that U is
upper triangular. To check that the factorization does its job, compute
the product

L1*U

which returns the original A. The inverse of the example matrix, X =
inv(A), is actually computed from the inverses of the triangular factors

X = inv(U)*inv(L1)

Using three arguments on the left side to get the permutation matrix
as well,

[L2,U,P] = lu(A)

1-3904

lu

returns a truly lower triangular L2, the same value of U, and the
permutation matrix P.

L2 =

1.0000 0 0
0.1429 1.0000 0
0.5714 0.5000 1.0000

U =
7.0000 8.0000 0

0 0.8571 3.0000
0 0 4.5000

P =
0 0 1
1 0 0
0 1 0

Note that L2 = P*L1.

P*L1

ans =

1.0000 0 0
0.1429 1.0000 0
0.5714 0.5000 1.0000

To verify that L2*U is a permuted version of A, compute L2*U and
subtract it from P*A:

P*A - L2*U

ans =
0 0 0
0 0 0
0 0 0

1-3905

lu

In this case, inv(U)*inv(L) results in the permutation of inv(A) given
by inv(P)*inv(A).

The determinant of the example matrix is

d = det(A)

d = 27

It is computed from the determinants of the triangular factors

d = det(L)*det(U)

The solution to Ax = b is obtained with matrix division

x = A\b

The solution is actually computed by solving two triangular systems

y = L\b
x = U\y

Example 2

The 1-norm of their difference is within roundoff error, indicating that
L*U = P*B*Q.

Generate a 60-by-60 sparse adjacency matrix of the connectivity graph
of the Buckminster-Fuller geodesic dome.

B = bucky;

Use the sparse matrix syntax with four outputs to get the row and
column permutation matrices.

[L,U,P,Q] = lu(B);

Apply the permutation matrices to B, and subtract the product of the
lower and upper triangular matrices.

Z = P*B*Q - L*U;

1-3906

lu

norm(Z,1)

ans =
7.9936e-015

Example 3

This example illustrates the benefits of using the 'vector' option. Note
how much memory is saved by using the lu(F,'vector') syntax.

F = gallery('uniformdata',[1000 1000],0);
g = sum(F,2);
[L,U,P] = lu(F);
[L,U,p] = lu(F,'vector');
whos P p

Name Size Bytes Class Attributes
P 1000x1000 8000000 double
p 1x1000 8000 double

The following two statements are equivalent. The first typically
requires less time:

x = U\(L\(g(p,:)));
y = U\(L\(P*g));

See Also cond | det | inv | ilu | qr | rref

1-3907

magic

Purpose Magic square

Syntax M = magic(n)

Description M = magic(n) returns an n-by-n matrix constructed from the integers 1
through n^2 with equal row and column sums. The order n must be a
scalar greater than or equal to 3.

Tips A magic square, scaled by its magic sum, is doubly stochastic.

Examples The magic square of order 3 is

M = magic(3)

M =

8 1 6
3 5 7
4 9 2

This is called a magic square because the sum of the elements in each
column is the same.

sum(M) =

15 15 15

And the sum of the elements in each row, obtained by transposing
twice, is the same.

sum(M')' =

15
15
15

This is also a special magic square because the diagonal elements have
the same sum.

1-3908

magic

sum(diag(M)) =

15

The value of the characteristic sum for a magic square of order n is

sum(1:n^2)/n

which, when n = 3, is 15.

Algorithms There are three different algorithms:

• n odd

• n even but not divisible by four

• n divisible by four

To make this apparent, type

for n = 3:20
A = magic(n);
r(n) = rank(A);

end

For n odd, the rank of the magic square is n. For n divisible by 4, the
rank is 3. For n even but not divisible by 4, the rank is n/2 + 2.

[(3:20)',r(3:20)']
ans =

3 3
4 3
5 5
6 5
7 7
8 3
9 9

10 7
11 11
12 3

1-3909

magic

13 13
14 9
15 15
16 3
17 17
18 11
19 19
20 3

Plotting A for n = 18, 19, 20 shows the characteristic plot for each
category.

Limitations If you supply n less than 3, magic returns either a nonmagic square, or
else the degenerate magic squares 1 and [].

See Also ones | rand

1-3910

makehgtform

Purpose Create 4-by-4 transform matrix

Syntax M = makehgtform
M = makehgtform('translate',[tx ty tz])
M = makehgtform('scale',s)
M = makehgtform('scale',[sx,sy,sz])
M = makehgtform('xrotate',t)
M = makehgtform('yrotate',t)
M = makehgtform('zrotate',t)
M = makehgtform('axisrotate',[ax,ay,az],t)

Description Use makehgtform to create transform matrices for translation, scaling,
and rotation of graphics objects. Apply the transform to graphics
objects by assigning the transform to the Matrix property of a parent
hgtransform object. See Examples for more information.

M = makehgtform returns an identity transform.

M = makehgtform('translate',[tx ty tz]) or M =
makehgtform(’translate’,tx,ty,tz) returns a transform that translates
along the x-axis by tx, along the y-axis by ty, and along the z-axis by tz.

M = makehgtform('scale',s) returns a transform that scales
uniformly along the x-, y-, and z-axes.

M = makehgtform('scale',[sx,sy,sz]) returns a transform that
scales along the x-axis by sx, along the y-axis by sy, and along the
z-axis by sz.

M = makehgtform('xrotate',t) returns a transform that rotates
around the x-axis by t radians.

M = makehgtform('yrotate',t) returns a transform that rotates
around the y-axis by t radians.

M = makehgtform('zrotate',t) returns a transform that rotates
around the z-axis by t radians.

M = makehgtform('axisrotate',[ax,ay,az],t) Rotate around axis
[ax ay az] by t radians.

1-3911

makehgtform

Note that you can specify multiple operations in one call to makehgtform
and the MATLAB software returns a transform matrix that is the result
of concatenating all specified operations. For example,

m = makehgtform('xrotate',pi/2,'yrotate',pi/2);

is the same as

mx = makehgtform('xrotate',pi/2);
my = makehgtform('yrotate',pi/2);
m = mx*my;

See Also hggroup | hgtransform | Hgtransform Properties

How To • “Group Objects”

1-3912

containers.Map

Purpose Map values to unique keys

Description A Map object is a data structure that allows you to retrieve values using
a corresponding key. Keys can be real numbers or text strings and
provide more flexibility for data access than array indices, which must
be positive integers. Values can be scalar or nonscalar arrays.

Construction mapObj = containers.Map constructs an empty Map container mapObj.

mapObj = containers.Map(keySet,valueSet) constructs a Map that
contains one or more values and a unique key for each value.

mapObj =
containers.Map(keySet,valueSet,'UniformValues',isUniform)
specifies whether all values must be uniform (either all scalars of the
same data type, or all strings). Possible values for isUniform are
logical true (1) or false (0).

mapObj = containers.Map('KeyType',kType,'ValueType',vType)
constructs an empty Map object and sets the KeyType and ValueType
properties. The order of the key type and value type argument pairs
is not important, but both pairs are required.

Input Arguments

keySet

1-by-n array that specifies n unique keys for the map.

All keys in a Map object are real numeric values or all keys are
strings. If n > 1 and the keys are strings, keySet must be a cell
array. The number of keys in keySet must equal the number
of values in valueSet.

valueSet

1-by-n array of any class that specifies n values for the map. The
number of values in valueSet must equal the number of keys
in keySet.

’UniformValues’

1-3913

containers.Map

Parameter string to use with the isUniform argument.

isUniform

Logical value that specifies whether all values are uniform. If
isUniform is true (1), all values must be scalars of the same data
type, or all values must be strings. If isUniform is false (0), then
containers.Map sets the ValueType to 'any'.

Default: true for empty Map objects, otherwise determined by the
data types of values in valueSet.

’KeyType’

Parameter string to use with the kType argument.

kType

String that specifies the data type for the keys. Possible values
are 'char', 'double', 'single', 'int32', 'uint32', 'int64', or
'uint64'.

Default: 'char' for empty Map objects, otherwise determined by
the data types of keys in keySet. If you specify keys of different
numeric types, kType is 'double'.

’ValueType’

Literal string parameter to use with the vType argument.

vType

String that specifies the data type for the values. Possible values
are 'any', 'char', 'logical', 'double', 'single', 'int8',
'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', or
'uint64'.

Default: 'any' when you create an empty Map object or when you
specify values of different sizes or types, otherwise determined
by the data type of valueSet.

1-3914

containers.Map

Properties Count

Unsigned 64-bit integer that represents the total number of
key-value pairs contained in the Map object. Read only.

KeyType

Character array that indicates the data type of all keys in the
Map object. The default KeyType for empty Map objects is 'char'.
Otherwise, KeyType is determined from the data type of the
keySet inputs. Read only.

ValueType

Character array that indicates the data type of all values in the
Map object. If you construct an empty Map object or specify values
with different data types, then the value of ValueType is 'any'.
Otherwise, ValueType is determined from the data type of the
valueSet inputs. Read only.

Methods
isKey Determine if containers.Map

object contains key

keys Identify keys of containers.Map
object

length Length of containers.Map object

remove Remove key-value pairs from
containers.Map object

size Size of containers.Map object

values Identify values in
containers.Map object

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-3915

containers.Map

Examples Construct a Map and View Properties

Construct a Map object that contains rainfall data for several months:

keySet = {'Jan', 'Feb', 'Mar', 'Apr'};
valueSet = [327.2, 368.2, 197.6, 178.4];
mapObj = containers.Map(keySet,valueSet)

This code returns a description of the map, including the property
values:

mapObj =

containers.Map handle
Package: containers

Properties:
Count: 4

KeyType: 'char'
ValueType: 'double'

Methods, Events, Superclasses

Get a specific property using dot notation, such as

mapObj.Count

which returns

ans =
4

Look Up Values in a Map

Use the map created in the previous example to find the rainfall data
for February:

rainFeb = mapObj('Feb')

This code returns

1-3916

containers.Map

rainFeb =
368.2000

Add a Single Value and Key to a Map

Add data for the month of May to the map created in the first example:

mapObj('May') = 100.0;

Add Multiple Values and Keys by Concatenating Maps

Create a map that contains rainfall data for June, July, and August,
and add the data to mapObj (from previous examples):

keySet = {'Jun','Jul','Aug'};
valueSet = [69.9, 32.3, 37.3];
newMap = containers.Map(keySet,valueSet);

mapObj = [mapObj; newMap];

Map objects only support vertical concatenation (that is, adding columns
with a semicolon, ;). When concatenating maps, the data type of all
values must be consistent with the ValueType of the leftmost map. In
this example, both maps have the a ValueType of double.

Get the Keys or Values in a Map

Determine all the keys of mapObj (from previous examples) by calling
the keys method:

allKeys = keys(mapObj)

This method returns the keys in alphabetical order:

allKeys =
'Apr' 'Aug' 'Feb' 'Jan' 'Jul' 'Jun' 'Mar' 'Ma

Get multiple values from the map by calling the values method.
Like the keys method, you can request all values with the syntax
values(mapObj). Alternatively, request values for specific keys. For
example, view the values for March, April, and May in mapObj:

1-3917

containers.Map

springValues = values(mapObj,{'Mar','Apr','May'})

This method returns the values in a cell array, in the order
corresponding to the specified keys:

springValues =
[197.6000] [178.4000] [100]

Remove Keys and Values

Remove the data for March and April from mapObj (from previous
examples) by calling the remove method, and view the remaining keys:

remove(mapObj,{'Mar','Apr'});
keys(mapObj)

This code returns

ans =
'Aug' 'Feb' 'Jan' 'Jul' 'Jun' 'May'

Create a Map with Nonscalar Values

Map integer keys to nonscalar arrays, and view the value for one of
the keys:

keySet = [5,10,15];
valueSet = {magic(5),magic(10),magic(15)};
mapObj = containers.Map(keySet,valueSet);
mapObj(5)

This code returns

ans =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

1-3918

containers.Map

Construct an Empty Map

Construct a map with no values, but set the KeyType and ValueType
properties:

mapObj = containers.Map('KeyType','char','ValueType','int32')

This code returns

mapObj =

containers.Map handle
Package: containers

Properties:
Count: 0

KeyType: 'char'
ValueType: 'int32'

Methods, Events, Superclasses

Specify Whether Values Are Uniform

Construct a map with numeric values, and specify that the values do
not have to be uniform:

keySet = {'a','b','c'};
valueSet = {1,2,3};
mapObj = containers.Map(keySet,valueSet,'UniformValues',false);

This map allows nonnumeric values, so

mapObj('d') = 'OK';
values(mapObj)

returns

ans =
[1] [2] [3] 'OK'

1-3919

containers.Map

See Also keys | isKey | values

1-3920

mat2cell

Purpose Convert array to cell array with potentially different sized cells

Syntax C = mat2cell(A,dim1Dist,...,dimNDist)
C = mat2cell(A,rowDist)

Description C = mat2cell(A,dim1Dist,...,dimNDist) divides array A into
smaller arrays within cell array C. Vectors dim1Dist,...dimNDist
specify how to divide the rows, columns, and (when applicable) higher
dimensions of A.

C = mat2cell(A,rowDist) divides array A into an n-by-1 cell array
C, where n == numel(rowDist).

Input
Arguments

A

Any type of array.

dim1Dist,...,dimNDist

Numeric vectors that describe how to divide each dimension of A. For
example, this command

c = mat2cell(x, [10, 20, 30], [25, 25])

divides a 60-by-50 array into six arrays contained in a cell array.

1-3921

mat2cell

For the kth dimension, sum(dimkDist) == size(A, k).

If the kth dimension of A is zero, set the corresponding dimkDist to
the empty array, []. For example,

a = rand(3, 0, 4);
c = mat2cell(a, [1, 2], [], [2, 1, 1]);

rowDist

Numeric vector that describes how to divide the rows of A. When you do
not specify distributions for any other dimension, the mat2cell function
creates an n-by-1 cell array C, where n == numel(rowDist).

Output
Arguments

C

Cell array. The kth dimension of array C is given by size(C, k) ==
numel(dimkDist). The kth dimension of the ith cell of C is given by
size(C{i}, k) == dimkDist(i).

Examples Divide the 5-by-4 matrix X into 2-by-3 and 2-by-2 matrices contained
in a cell array.

X = reshape(1:20,5,4)'
C = mat2cell(X, [2 2], [3 2])
celldisp(C)

This code returns

X =
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

C =
[2x3 double] [2x2 double]
[2x3 double] [2x2 double]

1-3922

mat2cell

C{1,1} =
1 2 3
6 7 8

C{2,1} =
11 12 13
16 17 18

C{1,2} =
4 5
9 10

C{2,2} =
14 15
19 20

Divide X (created in the previous example) into a 2-by-1 cell array.

C = mat2cell(X, [1 3])
celldisp(C)

This code returns

C =
[1x5 double]
[3x5 double]

C{1} =
1 2 3 4 5

C{2} =
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

See Also cell2mat | num2cell

1-3923

mat2str

Purpose Convert matrix to string

Syntax str = mat2str(A)
str = mat2str(A,n)
str = mat2str(A, 'class')
str = mat2str(A, n, 'class')

Description str = mat2str(A) converts matrix A into a string. This string is
suitable for input to the eval function such that eval(str) produces
the original matrix to within 15 digits of precision.

str = mat2str(A,n) converts matrix A using n digits of precision.

str = mat2str(A, 'class') creates a string with the name of the
class of A included. This option ensures that the result of evaluating str
will also contain the class information.

str = mat2str(A, n, 'class') uses n digits of precision and includes
the class information.

Limitations The mat2str function is intended to operate on scalar, vector,
or rectangular array inputs only. An error will result if A is a
multidimensional array.

Examples Example 1

Consider the matrix

x = [3.85 2.91; 7.74 8.99]
x =

3.8500 2.9100
7.7400 8.9900

The statement

A = mat2str(x)

produces

1-3924

mat2str

A =
[3.85 2.91;7.74 8.99]

where A is a string of 21 characters, including the square brackets,
spaces, and a semicolon.

eval(mat2str(x)) reproduces x.

Example 2

Create a 1-by-6 matrix of signed 16-bit integers, and then use mat2str
to convert the matrix to a 1-by-33 character array, A. Note that output
string A includes the class name, int16:

x1 = int16([-300 407 213 418 32 -125]);

A = mat2str(x1, 'class')
A =

int16([-300 407 213 418 32 -125])

class(A)
ans =

char

Evaluating the string A gives you an output x2 that is the same as the
original int16 matrix:

x2 = eval(A);

if isnumeric(x2) && isa(x2, 'int16') && all(x2 == x1)
disp 'Conversion back to int16 worked'

end

Conversion back to int16 worked

See Also num2str | int2str | str2num | sprintf | fprintf

1-3925

material

Purpose Control reflectance properties of surfaces and patches

Syntax material shiny
material dull
material metal
material([ka kd ks])
material([ka kd ks n])
material([ka kd ks n sc])
material default

Description material sets the lighting characteristics of surface and patch objects.

material shiny sets the reflectance properties so that the object has a
high specular reflectance relative to the diffuse and ambient light, and
the color of the specular light depends only on the color of the light
source.

material dull sets the reflectance properties so that the object
reflects more diffuse light and has no specular highlights, but the color
of the reflected light depends only on the light source.

material metal sets the reflectance properties so that the object has a
very high specular reflectance, very low ambient and diffuse reflectance,
and the color of the reflected light depends on both the color of the light
source and the color of the object.

material([ka kd ks]) sets the ambient/diffuse/specular strength of
the objects.

material([ka kd ks n]) sets the ambient/diffuse/specular strength
and specular exponent of the objects.

material([ka kd ks n sc]) sets the ambient/diffuse/specular
strength, specular exponent, and specular color reflectance of the
objects.

material default sets the ambient/diffuse/specular strength, specular
exponent, and specular color reflectance of the objects to their defaults.

1-3926

material

Tips The material command sets the AmbientStrength,
DiffuseStrength, SpecularStrength, SpecularExponent,
and SpecularColorReflectance properties of all surface and patch
objects in the axes. There must be visible light objects in the axes for
lighting to be enabled. Look at the materal.m file to see the actual
values set (enter the command type material).

See Also light | lighting | patch | surface

How To • “Lighting Overview”

1-3927

matfile

Purpose Access and change variables directly in MAT-files, without loading into
memory

Syntax m = matfile(filename)
m = matfile(filename,'Writable',isWritable)

Description m = matfile(filename) creates a MAT-file object, m, connected to the
MAT-file named filename. The object allows you to access and change
variables directly in a MAT-file, without having to load the variables
into memory.

The partial loading and saving that the matfile function provides
requires less memory than the load and save commands, which always
operate on entire variables.

m = matfile(filename,'Writable',isWritable) enables or disables
write access to the file.

Input
Arguments

filename - Name of MAT-file
string

Name of a MAT-file, specified as a string. If the file is not in the current
folder, filename must include a full or a relative path. If filename does
not include an extension, then matfile appends .mat.

If the file does not exist, then matfile creates a Version 7.3 MAT-file on
the first assignment to a variable.

matfile only supports efficient partial loading and saving for MAT-files
in Version 7.3 format. If you index into a variable in a Version 7 (the
current default) or earlier MAT-file, MATLAB warns and temporarily
loads the entire contents of the variable.

Example: 'myFile.mat'

Data Types
char

isWritable - Write access to MAT-file

1-3928

matfile

true | false

Write access to the MAT-file, specified as either true or false.

• true enables saving to the MAT-file. If the file is read only, MATLAB
changes the system permissions with the fileattrib function.

• false disables saving to the MAT-file. MATLAB does not change
the system permissions.

The default value is true for new files, and false for existing files.

Data Types
logical

Output
Arguments

m - MAT-file object
matlab.io.MatFile object

MAT-file object connected to a MAT-file.

Access variables in the MAT-file with dot notation similar to accessing
fields of structure arrays:

• To load part of variable varName from the MAT-file corresponding to
m, call:

loadedData = m.varName(indices);

• To save part of variable varName to the MAT-file corresponding to
m, call:

m.varName(indices) = dataToSave;

When accessing variables, specify indices for all dimensions. Indices
can be a single value, an equally spaced range of increasing values, or
a colon (:); for example:

m.varName(100:500,200:600)
m.varName(:,501:1000)
m.varName(1:2:1000,80)

1-3929

matfile

Examples Load Entire Variable

Load variable topo from the example file, topography.mat.

Open the example MAT-file, topography.mat.

filename = 'topography.mat';
m = matfile(filename);

Read the variable topo from the MAT-file.

topo = m.topo;

MATLAB loads the entire variable, topo, into the workspace.

Save Entire Variable to Existing MAT-file

Generate a 20-by-20 example array, x, and save it to a MAT-file called
myFile.mat.

x = magic(20);
save('myFile.mat','x');

Create a MAT-file object connected to the existing MAT-file named
myFile.mat. Enable write access to the MAT-file by setting Writable
to true.

m = matfile('myFile.mat','Writable',true);

Generate a 15-by-15 example array, y.

y = magic(15);

Save y to the MAT-file. Specify the variable in the MAT-file using dot
notation similar to accessing fields of structure arrays.

m.y = y;

MATLAB adds a variable named y to the file.

Display all variables stored in the MAT-file, myFile.mat.

1-3930

matfile

whos('-file','myFile.mat')

Name Size Bytes Class Attributes

x 20x20 3200 double
y 15x15 1800 double

Load and Save Parts of Variables

Access specific elements of a MAT-file variable.

Open a new MAT-file, myFile2.mat.

m = matfile('myFile2.mat');

Save a 20-by-20 example array to part of a variable, y, in myFile2.mat.
Specify the variable in the MAT-file using dot notation similar to
accessing fields of structure arrays.

m.y(81:100,81:100) = magic(20);

MATLAB inserts the 20-by-20 array into the elements of y specified
by the indices (81:100,81:100).

Read a subset of array y into a new workspace variable, z.

z = m.y(85:94,85:94);

MATLAB reads the 10-by-10 subarray specified by the indices
(85:94,85:94) from the MAT-file into workspace variable z.

Determine Size of Variables

Determine the size of a variable, and then calculate the average of each
column.

Open the example MAT-file, stocks.mat.

filename = 'stocks.mat';
m = matfile(filename);

1-3931

matfile

Determine the size of the variable, stocks, in stocks.mat.

[nrows,ncols] = size(m,'stocks');

Compute the average of each column of the variable stocks.

avgs = zeros(1,ncols);
for i = 1:ncols

avgs(i) = mean(m.stocks(:,i));
end

Enable Write Access to MAT-file

Enable write access to the MAT-file, myFile.mat, by setting Writable
to true when you open the MAT-file.

filename = 'myFile.mat';
m = matfile(filename,'Writable',true);

Alternatively, set Properties.Writable in a separate step after you
open the MAT-file.

m.Properties.Writable = true;

Tips • Using the end keyword as part of an index causes MATLAB to load
the entire variable into memory. For very large variables, this load
operation results in Out of Memory errors. Rather than using end,
determine the extent of a variable, myVar, with the size method,
such as:

sizeMyVar = size(m,'myVar')

Limitations • matfile does not support linear indexing. You must specify indices
for all dimensions.

• matfile does not support indexing into:

- Variables of tables

- Cells of cell arrays

1-3932

matfile

- Fields of structure arrays

- User-defined classes

- Sparse arrays

• You cannot assign complex values to an indexed portion of a real
array.

• You cannot evaluate function handles using the m output. For
example, if your MAT-file contains function handle myfunc, the
syntax m.myfunc() attempts to index into the function handle, and
does not invoke the function.

• Efficient partial loading and saving requires Version 7.3 MAT-files.
To create a Version 7.3 MAT-file, call the save function with the
'-v7.3' option. For example, to convert and existing MAT-file
named durer.mat to Version 7.3, call:

load('durer.mat');
save('mycopy_durer.mat','-v7.3');

See Also load | save | size | whos

Concepts • “Load Parts of Variables from MAT-Files”
• “Save Parts of Variables to MAT-Files”
• MAT-File Versions

1-3933

matlab.codetools.requiredFilesAndProducts

Purpose List dependencies of MATLAB program files

Syntax fList = matlab.codetools.requiredFilesAndProducts(files)
[fList, pList] =
matlab.codetools.requiredFilesAndProducts(files)
[fList, pList] =
matlab.codetools.requiredFilesAndProducts(___ ,

'toponly')

Description fList = matlab.codetools.requiredFilesAndProducts(files)
returns a list of the MATLAB program files required to run the program
files specified by files.

[fList, pList] =
matlab.codetools.requiredFilesAndProducts(files) also returns
a list of the MathWorks products required to run the program files
specified by files.

[fList, pList] =
matlab.codetools.requiredFilesAndProducts(___ , 'toponly')
indicates that for a file or product to be included in the output, it must
be used directly by at least one file specified in files. The
'toponly' input string is case insensitive.

Input
Arguments

files - List of files for analysis
string or cell array of strings

List of files for analysis, specified as a string or cell array of strings.
Each string is the name of a single MATLAB program file. For example,
files is a list of MATLAB program files that you intend to provide
to other users. The matlab.codetools.requiredFilesAndProducts
function provides you with requirements information to pass along
with your files.

To ensure an accurate dependency report, files
and dependencies must be on the MATLAB path.

1-3934

matlab.codetools.requiredFilesAndProducts

matlab.codetools.requiredFilesAndProducts does not
return information about dependent files not on the path.

Example: 'myFile.m' or 'C:\Program
Files\MATLAB\R2014a\my_work\myFile.m'

Example: {'myFile.m','myOtherFile.m'}

Example: cellstr(ls('*.m'))

Output
Arguments

fList - List of user-authored MATLAB program files
cell array of strings

List of user-authored MATLAB program files required by files,
returned as a cell array of strings. Each string indicates the full path of
the required file. fList does not include built-in MATLAB files, since
these files are installed with the products listed in pList.

pList - List of MathWorks products
structure or array of structures

List of MathWorks products required by files, returned as a structure
or array of structures. Each required product is described by name (Name
field), version (Version field) and product number (ProductNumber
field).

The matlab.codetools.requiredFilesAndProducts function is
intended to provide you with information to pass on to consumers of
your MATLAB program files. The version numbers indicate the version
of the products you have installed when you execute the function.
Version is not an indicator of backward compatibility.

Examples Identify Required Files and Products for MATLAB Toolbox
Function

Determine the required files and products for the edge function in the
Image Processing Toolbox.

[fList,pList] = matlab.codetools.requiredFilesAndProducts('edge.m')

1-3935

matlab.codetools.requiredFilesAndProducts

fList =

{}

pList =

1x2 struct array with fields:

Name
Version
ProductNumber

There are no required MATLAB files, but there are two required
products.

List the required products.

{pList.Name}'

ans =

'MATLAB'
'Image Processing Toolbox'

Identify Required Files and Products for Your MATLAB
Program Files

In your current working folder, create a function in the file
getRandomNumber.m.

function a = getRandomNumber
rng('shuffle')
a = rand;

end

Now, at the command line, determine the required files and products
for getRandomNumber.m.

1-3936

matlab.codetools.requiredFilesAndProducts

[fList,pList] = matlab.codetools.requiredFilesAndProducts('getRandomNu

fList =

'C:\work\getRandomNumber.m'

pList =

Name: 'MATLAB'
Version: '8.3'

ProductNumber: 1

The only file required to run the getRandomNumber function is the
function file itself. The only required MathWorks product is MATLAB.

In your current working folder, create a function in the file
displayNumber.m.

function displayNumber
a = getRandomNumber;
disp(['Your number is ' num2str(a)]);

end

Now, at the command line, determine the required files and products
for displayNumber.m.

[fList,pList] = matlab.codetools.requiredFilesAndProducts('displayNumb

fList =

'C:\work\displayNumber.m' 'C:\work\getRandomNumber.m'

pList =

Name: 'MATLAB'
Version: '8.3'

1-3937

matlab.codetools.requiredFilesAndProducts

ProductNumber: 1

In addition to the function file itself, the displayNumber function
requires the getRandomNumber.m file. The only required MathWorks
product is MATLAB.

Identify Top-Level Dependencies Only

In your current working folder, create a handle class in the file
ExampleHandle.m.

classdef ExampleHandle < handle
% class content

end

In your current working folder, create a class in the file
AnotherExampleHandle.m that inherits from ExampleHandle.

classdef AnotherExampleHandle < ExampleHandle
% class content

end

In your current working folder, create a function in the file
getHandles.m that instantiates AnotherExampleHandle objects.

function [h1,h2] = getHandles()
h1 = AnotherExampleHandle;
h2 = AnotherExampleHandle;

end

Now, at the command line, determine the required files for
getHandles.m.

[fList,~] = matlab.codetools.requiredFilesAndProducts('getHandles.m');
fList'

ans =

'C:\work\AnotherExampleHandle.m'

1-3938

matlab.codetools.requiredFilesAndProducts

'C:\work\ExampleHandle.m'
'C:\work\getHandles.m'

Determine the required files that are directly required for
getHandles.m.

[fList,~] = matlab.codetools.requiredFilesAndProducts('getHandles.m',

fList =

'C:\work\AnotherExampleHandle.m' 'C:\work\getHandles.m'

Although AnotherExampleHandle.m requires ExampleHandle.m, that
file is not a direct requirement for getHandles.m.

Concepts • “Identify Program Dependencies”

1-3939

matlab.io.MatFile

Purpose Load and save parts of variables in MAT-files

Description The matfile function constructs a matlab.io.MatFile object that
corresponds to a MAT-File, such as

matObj = matfile('myFile.mat')

Access variables in the MAT-file as properties of matObj, with dot
notation similar to accessing fields of structs. The syntax for loading
and saving part of variable varName in the MAT-file corresponding to
matObj is:

loadedData = matObj.varName(indices); % Load into workspace
matObj.varName(indices) = dataToSave; % Save to file

When indexing, specify indices for all dimensions. Indices can be a
single value, an equally spaced range of increasing values, or a colon
(:), such as

matObj.varName(100:500, 200:600)
matObj.varName(:, 501:1000)
matObj.varName(1:2:1000, 80)

Limitations

• Using the end keyword as part of an index causes MATLAB to load
the entire variable into memory. For very large variables, this load
operation results in Out of Memory errors. Rather than using end,
determine the extent of a variable with the size method, such as:

sizeMyVar = size(matObj,'myVar')

• matfile does not support linear indexing. You must specify indices
for all dimensions.

• matfile does not support indexing into:

- Cells of cell arrays

- Fields of structs

1-3940

matlab.io.MatFile

- User-defined classes

- Sparse arrays

• You cannot assign complex values to an indexed portion of a real
array.

• You cannot evaluate function handles using a MatFile object. For
example, if your MAT-file contains function handle myfunc, the
syntax matObj.myfunc() attempts to index into the function handle,
and does not invoke the function.

Construction matObj = matfile(filename) constructs a matlab.io.MatFile object
that can load or save parts of variables in MAT-file filename. MATLAB
does not load any data from the file into memory when creating the
object.

matObj = matfile(filename,'Writable',isWritable) enables or
disables write access to the file for object matObj. Possible values for
isWritable are logical true (1) or false (0).

Input Arguments

filename

String enclosed in single quotation marks that specifies the name
of a MAT-file.

filename can include a full or partial path, otherwise matfile
searches for the file along the MATLAB search path. If filename
does not include an extension, matfile appends .mat.

If the file does not exist, matfile creates a Version 7.3 MAT-file
on the first assignment to a variable.

matfile only supports partial loading and saving for MAT-files
in Version 7.3 format (described in MAT-File Versions). If you
index into a variable in a Version 7 (the current default) or earlier
MAT-file, MATLAB warns and temporarily loads the entire
contents of the variable.

’Writable’

1-3941

matlab.io.MatFile

Parameter to use with the isWritable argument.

isWritable

Logical value that specifies whether to allow saving to the file.
Possible values:

true
(1)

Enable saving. If the file is read only, change the
system permissions with fileattrib.

false
(0)

Disable saving with matfile. MATLAB does not
change the system permissions.

Default: true for new files, false for existing files

Properties Properties.Source

String that contains the fully qualified path to the file. Read only.

Properties.Writable

Logical value that specifies whether to allow saving to the file.
Possible values:

true
(1)

Enable saving. If the file is read only, change the
system permissions with fileattrib.

false
(0)

Disable saving with matfile. MATLAB does not
change the system permissions.

Default: true for new files, false for existing files

Methods
size Array dimensions

who Names of variables in MAT-file

whos Names, sizes, and types of
variables in MAT-file

1-3942

matlab.io.MatFile

You cannot access help for these methods using the help command.
Find help on the methods from the command line using the doc
command, such as doc matlab.io.MatFile/size.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create myFile.mat in a temporary folder and save data to part of
variable savedVar:

filename = fullfile(tempdir,'myFile.mat');
matObj = matfile(filename);
matObj.savedVar(81:100,81:100) = magic(20);

Load part of the data into variable loadVar:

loadVar = matObj.savedVar(85:94,85:94);

Load or save an entire variable by omitting the indices. For example,
load variable topo from topography.mat:

filename = 'topography.mat';
matObj = matfile(filename);
topo = matObj.topo;

Determine the dimensions of a variable, and process one part of the
variable at a time. In this case, calculate and store the average of each
column of variable stocks in the example file stocks.mat:

filename = 'stocks.mat';
matObj = matfile(filename);
[nrows, ncols] = size(matObj,'stocks');

avgs = zeros(1,ncols);
for idx = 1:ncols

1-3943

matlab.io.MatFile

avgs(idx) = mean(matObj.stocks(:,idx));
end

By default, matfile only supports loading data from existing files.
To enable saving, set Writable to true either during construction of
the object,

filename = 'myFile.mat';
matObj = matfile(filename,'Writable',true);

or in a separate step, by setting Properties.Writable:

filename = 'myFile.mat';
matObj = matfile(filename);
matObj.Properties.Writable = true;

See Also load | save | size | whos

1-3944

matlab.io.fits.closeFile

Purpose Close FITS file

Syntax closeFile(fptr)

Description closeFile(fptr) closes an open FITS file.

This function corresponds to the fits_close_file (ffclos) function
in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits','READONLY');
fits.closeFile(fptr);

See Also createFile | openFile

1-3945

matlab.io.fits.createFile

Purpose Create FITS file

Syntax fptr = createFile(filename)

Description fptr = createFile(filename) creates a FITS file. An error will
be returned if the specified file already exists, unless the filename
is prefixed with an exclamation point (!). In that case CFITSIO will
overwrite (delete) any existing file with the same name.

This function corresponds to the fits_create_file (ffinit) function
in the CFITSIO library C API.

Examples Create a new FITS file, overwriting any existing file by the same name.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'uint8',[256 512]);
fits.closeFile(fptr);
fitsdisp('myfile.fits');

See Also openFile | closeFile | createImg | createTbl

1-3946

matlab.io.fits.deleteFile

Purpose Delete FITS file

Syntax deleteFile(fptr)

Description deleteFile(fptr) closes and deletes an open FITS file. This can be
useful if a FITS file cannot be properly closed.

This function corresponds to the fits_delete_file (ffdelt) function
in the CFITSIO library C API.

Examples import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fptr = fits.openFile('myfile.fits','readwrite');
fits.deleteFile(fptr);
fptrs = fits.getOpenFiles()

See Also createFile | closeFile

1-3947

matlab.io.fits.fileName

Purpose Name of FITS file

Syntax name = fileName(fptr)

Description name = fileName(fptr) returns the name of the FITS file associated
with the file handle.

This function corresponds to the fits_file_name (ffflnm) function in
the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits','READONLY');
name = fits.fileName(fptr);
fits.closeFile(fptr);

See Also createFile | openFile

1-3948

matlab.io.fits.fileMode

Purpose I/O mode of FITS file

Syntax mode = fileMode(fptr)

Description mode = fileMode(fptr) returns the I/O mode of the opened FITS file.
Possible values returned for mode are 'READONLY' or 'READWRITE'.

This function corresponds to the fits_file_mode (ffflmd) function in
the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
mode = fits.fileMode(fptr);
fits.closeFile(fptr);

See Also createFile | openFile

1-3949

matlab.io.fits.openFile

Purpose Open FITS file

Syntax fptr = openFile(filename)
fptr = openFile(filename,mode)

Description fptr = openFile(filename) opens a existing FITS file in read-only
mode and returns a file pointer, fptr, which references the primary
array (first header data unit, or "HDU").

fptr = openFile(filename,mode) opens a existing FITS file according
to the mode, which describes the type of access. mode may be either
'READONLY' or 'READWRITE'.

This function corresponds to the fits_open_file (ffopen) function in
the CFITSIO library C API.

Examples Open a file in read-only mode and read image data from the primary
array.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
imagedata = fits.readImg(fptr);
fits.closeFile(fptr);

Open a file in read-write mode and add a comment to the primary array.

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fptr = fits.openFile('myfile.fits','readwrite');
fits.writeComment(fptr,'This is just a comment.');
fits.closeFile(fptr);

See Also createFile | closeFile

1-3950

matlab.io.fits.createImg

Purpose Create FITS image

Syntax createImg(fptr,bitpix,naxes)

Description createImg(fptr,bitpix,naxes) creates a new primary image or
image extension with a specified datatype bitpix and size naxes. If the
FITS file is currently empty then a primary array is created, otherwise
a new image extension is appended to the file.

The first two elements of naxes correspond to the NAXIS2 and NAXIS1
keywords, while any additional elements correspond to the NAXIS3,
NAXIS4 ... NAXISn keywords.

The datatype bitpix may be given as either a CFITSIO name or as the
corresponding MATLAB datatype.

'byte_img' 'uint8'

'short_img' 'int16'

'long_img' 'int32'

'longlong_img' 'int64'

'float_img' 'single'

'double_img' 'double'

This function corresponds to the fits_create_imgll (ffcrimll)
function in the CFITSIO library C API.

Examples Create two images in a new FITS file. There are 100 rows (NAXIS2
keyword) and 200 columns (NAXIS1 keyword) in the first image, and
256 rows (NAXIS2 keyword), 512 columns (NAXIS1 keyword), and 3
planes (NAXIS3 keyword) in the second image.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'int16',[100 200]);
fits.createImg(fptr,'byte_img',[256 512 3]);
fits.closeFile(fptr);

1-3951

matlab.io.fits.createImg

fitsdisp('myfile.fits');

See Also insertImg | createTbl | readImg | writeImg | setCompressionType

1-3952

matlab.io.fits.getImgSize

Purpose Size of image

Syntax imagesize = getImgSize(fptr)

Description imagesize = getImgSize(fptr) returns the number of rows
and columns of an image. This function corresponds to the
fits_get_img_size (ffgisz) function in the CFITSIO library C API.

Examples import matlab.io.*;
fptr = fits.openFile('tst0012.fits');
hdus = [1 3 4];
for j = hdus;

htype = fits.movAbsHDU(fptr,j);
sz = fits.getImgSize(fptr);
fprintf('HDU %d: "%s", [', j, htype);
for k = 1:numel(sz)

fprintf(' %d ', sz(k));
end
fprintf(']\n');

end
fits.closeFile(fptr);

See Also createImg | getImgType

1-3953

matlab.io.fits.getImgType

Purpose Data type of image

Syntax datatype = getImgType(fptr)

Description datatype = getImgType(fptr) gets the data type of an image.
datatype can be one of the following strings:

'BYTE_IMG'

'SHORT_IMG'

'LONG_IMG'

'LONGLONG_IMG'

'FLOAT_IMG'

'DOUBLE_IMG'

This function corresponds to the fits_get_img_type (ffgidt)
function in the CFITSIO library C API.

Examples fptr = fits.openFile('tst0012.fits');
hdus = [1 3 4];
for j = hdus;

htype = fits.movAbsHDU(fptr,j);
dtype = fits.getImgType(fptr);
fprintf('HDU %d: "%s", "%s"\n', j, htype, dtype);

end
fits.closeFile(fptr);

See Also getImgSize

1-3954

matlab.io.fits.insertImg

Purpose Insert FITS image after current image

Syntax insertImage(fptr,bitpix,naxes)

Description insertImage(fptr,bitpix,naxes) inserts a new image extension
immediately following the current HDU. If the file has just been
created, a new primary array is inserted at the beginning of the file.
Any following extensions in the file will be shifted down to make room
for the new extension. If the current HDU is the last HDU in the file,
then the new image extension will be appended to the end of the file.

This function corresponds to the fits_insert_imgll (ffiimgll)
function in the CFITSIO library C API.

Examples Create a 150x300 image between the 1st and 2nd images in a FITS file.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.createImg(fptr,'byte_img',[200 400]);
fits.movAbsHDU(fptr,1);
fits.insertImg(fptr,'byte_img',[150 300]);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','min');

See Also createImg

1-3955

matlab.io.fits.readImg

Purpose Read image data

Syntax imgdata = readImg(fptr)
imgdata = readImg(fptr,fpixel,lpixel)
imgdata = readImg(fptr,fpixel,lpixel,inc)

Description imgdata = readImg(fptr) reads the entire current image. The
number of rows in imgdata will correspond to the value of the NAXIS2
keyword, while the number of columns will correspond to the value
of the NAXIS1 keyword. Any further dimensions of imgdata will
correspond to NAXIS3, NAXIS4, and so on.

imgdata = readImg(fptr,fpixel,lpixel) reads the subimage
defined by pixel coordinates fpixel and lpixel. The fpixel argument
is the coordinate of the first pixel and lpixel is the coordinate of the
last pixel. fpixel and lpixel are one-based.

imgdata = readImg(fptr,fpixel,lpixel,inc) reads the subimage
defined by fpixel, lpixel, and inc. The inc argument denotes the
inter- element spacing along each extent.

This function corresponds to the fits_read_subset (ffgsv) function
in the CFITSIO library C API.

Examples Read an entire image.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
data = fits.readImg(fptr);
fits.closeFile(fptr);

Read a 70x80 image subset.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
img = fits.readImg(fptr,[11 11],[80 90]);
fits.closeFile(fptr);

1-3956

matlab.io.fits.readImg

See Also createImg | writeImg

1-3957

matlab.io.fits.setBscale

Purpose Reset image scaling

Syntax setBscale(fptr,BSCALE,BZERO)

Description setBscale(fptr,BSCALE,BZERO) resets the scaling factors in the
primary array or image extension according to the equation

output = (FITS array) * BSCALE + BZERO

The inverse formula is used when writing data values to the FITS file.

This only affects the automatic scaling performed when the data
elements are read. It does not change the BSCALE and BZERO
keyword values.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.setBscale(fptr,2.0,0.5);
data = fits.readImg(fptr);
fits.closeFile(fptr);

See Also readImg

1-3958

matlab.io.fits.writeImg

Purpose Write to FITS image

Syntax writeImg(fptr,data)
writeImg(fptr,data,fpixel)

Description writeImg(fptr,data) writes an entire image to the FITS data array.
The number of rows and columns in data must equal the values of the
NAXIS2 and NAXIS1 keywords, respectively. Any further extents must
correspond to the NAXIS3, NAXIS4 ... NAXISn keywords respectively.

writeImg(fptr,data,fpixel) writes a subset of an image to the FITS
data array. fpixel gives the coordinate of the first pixel in the image
region.

This function corresponds to the fits_write_subset (ffpss) function
in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'long_img',[256 512]);
data = reshape(1:256*512,[256 512]);
data = int32(data);
fits.writeImg(fptr,data);
fits.closeFile(fptr);

Create an 80x40 uint8 image and set all but the outermost pixels to 1.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'uint8',[80 40]);
data = ones(78,38);
fits.writeImg(fptr,data,[1 1]);
fits.closeFile(fptr);

See Also readImg | createImg

1-3959

matlab.io.fits.deleteKey

Purpose Delete key by name

Syntax deleteKey(fptr,keyname)

Description deleteKey(fptr,keyname) deletes a keyword by name.

This function corresponds to the fits_delete_key (ffdrec) function
in the CFITSIO library C API.

Examples import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fprintf('Before key deletion...\n');
fitsdisp('myfile.fits','index',1);
fptr = fits.openFile('myfile.fits','readwrite');
fits.deleteKey(fptr,'DATE');
fits.closeFile(fptr);
fprintf('\n\n\nAfter key deletion...\n');
fitsdisp('myfile.fits','index',1);

See Also deleteRecord | writeKey

1-3960

matlab.io.fits.deleteRecord

Purpose Delete key by record number

Syntax deleteRecord(fptr,keynum)

Description deleteRecord(fptr,keynum) deletes a keyword by record number.

This function corresponds to the fits_delete_record (ffdrec)
function in the CFITSIO library C API.

Examples Delete the 18th keyword ("ORIGIN") in a primary array.

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fptr = fits.openFile('myfile.fits','readwrite');
card = fits.readRecord(fptr,18);
fits.deleteRecord(fptr,18);
fits.closeFile(fptr);

See Also readRecord | deleteKey

1-3961

matlab.io.fits.getHdrSpace

Purpose Number of keywords in header

Syntax [nkeys,morekeys] = fits.getHdrSpace(fptr)

Description [nkeys,morekeys] = fits.getHdrSpace(fptr) returns the number of
existing keywords (not counting the END keyword) and the amount of
space currently available for more keywords. It returns morekeys =
-1 if the header has not yet been closed. Note that the CFITSIO library
will dynamically add space if required when writing new keywords to a
header so in practice there is no limit to the number of keywords that
can be added to a header.

This function corresponds to the fits_get_hdrspace (ffghsp)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
[nkeys,morekeys] = fits.getHdrSpace(fptr);
fits.closeFile(fptr);

1-3962

matlab.io.fits.readCard

Purpose Header record of keyword

Syntax card = readCard(fptr,keyname)

Description card = readCard(fptr,keyname) returns the entire 80-character
header record of the keyword, with any trailing blank characters
stripped off.

This function corresponds to the fits_read_card (ffgcrd) function in
the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n

fits.movAbsHDU(fptr,j);
card = fits.readCard(fptr,'NAXIS');
fprintf('HDU %d: ''%s''\n', j, card);

end
fits.closeFile(fptr);

See Also readRecord | readKey

1-3963

matlab.io.fits.readKey

Purpose Keyword

Syntax [value,comment] = readKey(fptr,keyname)

Description [value,comment] = readKey(fptr,keyname) returns the specified
key and comment. value is returned as a string.

This function corresponds to the fits_read_key_str (ffgkys)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n

fits.movAbsHDU(fptr,j);
[key,comment] = fits.readKey(fptr,'NAXIS');
fprintf('HDU %d: NAXIS %s, "%s"\n', j, key, comment);

end
fits.closeFile(fptr);

See Also readKeyCmplx | readKeyDbl | readKeyLongLong

1-3964

matlab.io.fits.readKeyCmplx

Purpose Keyword as complex scalar value

Syntax [value,comment] = readKeyCmplx(fptr,keyname)

Description [value,comment] = readKeyCmplx(fptr,keyname) returns the
specified key and comment. value is returned as a double precision
complex scalar value.

This function corresponds to the fits_read_key_dblcmp" (ffgkym)
function in the CFITSIO library C API.

See Also readKey | readKeyDbl | readKeyLongLong

1-3965

matlab.io.fits.readKeyDbl

Purpose Keyword as double precision value

Syntax [value,comment] = readKeyDbl(fptr,keyname)

Description [value,comment] = readKeyDbl(fptr,keyname) returns the specified
key and comment.

This function corresponds to the fits_read_key_dbl (ffgkyd)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n

fits.movAbsHDU(fptr,j);
[key,comment] = fits.readKeyDbl(fptr,'NAXIS');
fprintf('HDU %d: NAXIS %s, "%s"\n', j, key, comment);

end
fits.closeFile(fptr);

See Also readKey | readKeyCmplx | readKeyLongLong

1-3966

matlab.io.fits.readKeyLongLong

Purpose Keyword as int64

Syntax [value,comment] = readKeyLongLong(fptr,keyname)

Description [value,comment] = readKeyLongLong(fptr,keyname) returns the
specified key and comment. value is returned an int64 scalar value.

This function corresponds to the fits_read_key_lnglng (ffgkyjj)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n

fits.movAbsHDU(fptr,j);
[key,comment] = fits.readKeyLongLong(fptr,'NAXIS');
fprintf('HDU %d: NAXIS %d, "%s"\n', j, key, comment);

end
fits.closeFile(fptr);

See Also readKey | readKeyCmplx | readKeyDbl

1-3967

matlab.io.fits.readKeyLongStr

Purpose Long string value

Syntax [value,comment] = readKeyLongStr(fptr,keyname)

Description [value,comment] = readKeyLongStr(fptr,keyname) returns the
specified long string value and comment.

This function corresponds to the fits_read_key_longstr (ffgkls)
function in the CFITSIO library C API.

Examples import matlab.io.*
idata = repmat(char(97:106),1,10);
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeKey(fptr,'mykey',idata);
odata1 = fits.readKey(fptr,'mykey');
odata2 = fits.readKeyLongStr(fptr,'mykey');
fits.closeFile(fptr);

See Also readKey

1-3968

matlab.io.fits.readKeyUnit

Purpose Physical units string from keyword

Syntax units = readKeyUnit(fptr,keyname)

Description units = readKeyUnit(fptr,keyname) returns the physical units
string from an existing keyword. If no units are defined, units is
returned as an empty string.

This function corresponds to the fits_read_key_unit" (ffgunt)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'long_img',[10 20]);
fits.writeKey(fptr,'VELOCITY',12.3,'orbital speed');
fits.writeKeyUnit(fptr,'VELOCITY','km/s');
units = fits.readKeyUnit(fptr,'VELOCITY');
fits.closeFile(fptr);

See Also readKey | writeKeyUnit

1-3969

matlab.io.fits.readRecord

Purpose Header record specified by number

Syntax card = readRecord(fptr,keynum)

Description card = readRecord(fptr,keynum) returns the entire 80-character
header record identified by the numeric keynum. Trailing blanks are
truncated.

This function corresponds to the fits_read_record (ffgrec) function
in the CFITSIO library C API.

Examples Read the second record in each HDU.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getHdrSpace(fptr);
for j = 1:n

card = fits.readRecord(fptr,j);
fprintf('record %d: "%s"\n', j, card);

end
fits.closeFile(fptr);

See Also deleteRecord | readKey | readCard

1-3970

matlab.io.fits.writeComment

Purpose Write or append COMMENT keyword to CHU

Syntax writeComment(fptr,comment)

Description writeComment(fptr,comment) writes (appends) a COMMENT keyword
to the CHU. The comment string will be continued over multiple
keywords if it is longer than 70 characters.

This function corresponds to the fits_write_comment (ffpcom)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeComment(fptr,'this is a comment');
fits.writeComment(fptr,'this is another comment');
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also writeHistory | writeDate

1-3971

matlab.io.fits.writeDate

Purpose Write DATE keyword to CHU

Syntax writeDate(FPTR)

Description writeDate(FPTR) writes the DATE keyword to the CHU.

This function corresponds to the fits_write_date (ffpdat) function
in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeDate(fptr);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also writeComment | writeHistory

1-3972

matlab.io.fits.writeKey

Purpose Update or add new keyword into current HDU

Syntax writeKey(fptr,keyname,value,comment)
writeKey(fptr,keyname,value,comment,decimals)

Description writeKey(fptr,keyname,value,comment) adds a new record in the
current HDU, or updates it if it already exists. comment is optional.

writeKey(fptr,keyname,value,comment,decimals) adds a new
floating point keyword in the current HDU, or updates it if it already
exists. You must use this syntax to write a keyword with imaginary
components. decimals is ignored otherwise.

If a character value exceeds 68 characters in length, the LONGWARN
convention is automatically employed.

This function corresponds to the fits_write_key (ffpky) and
fits_update_key (ffuky) family of functions in the CFITSIO library
C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeKey(fptr,'mykey1','a char value','with a comment');
fits.writeKey(fptr,'mykey2',int32(1));
fits.writeKey(fptr,'mykey3',5+7*j,'with another comment');
fits.writeKey(fptr,'mykey4',4/3,'with yet another comment',2);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also readKey | deleteKey | readRecord

1-3973

matlab.io.fits.writeKeyUnit

Purpose Write physical units string

Syntax writeKeyUnit(fptr,keyname,unit)

Description writeKeyUnit(fptr,keyname,unit) writes a physical units string
into an existing keyword.

This function corresponds to the fits_write_key_unit (ffpunt)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myFitsFile.fits');
fits.createImg(fptr,'long_img',[10 20]);
fits.writeKey(fptr,'VELOCITY',12.3,'orbital speed');
fits.writeKeyUnit(fptr,'VELOCITY','km/s');
fits.closeFile(fptr);

See Also readKeyUnit

1-3974

matlab.io.fits.writeHistory

Purpose Write or append HISTORY keyword to CHU

Syntax writeHistory(fptr,history)

Description writeHistory(fptr,history) writes (appends) a HISTORY keyword
to the CHU. The history string is continued over multiple keywords
if it is longer than 70 characters.

This function corresponds to the fits_write_history (ffphis)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'byte_img',[100 200]);
fits.writeHistory(fptr,'this is a history keyword');
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also writeComment | writeDate

1-3975

matlab.io.fits.copyHDU

Purpose Copy current HDU from one file to another

Syntax copyHDU(infptr,outfptr)

Description copyHDU(infptr,outfptr) copies the current HDU from the FITS
file associated with infptr and appends it to the end of the FITS file
associated with outfptr.

This function corresponds to the fits_copy_hdu (ffcopy) function in
the CFITSIO library C API.

Examples Copy the first, third, and fifth HDUs from one file to another.

import matlab.io.*
infptr = fits.openFile('tst0012.fits');
outfptr = fits.createFile('myfile.fits');
fits.copyHDU(infptr,outfptr);
fits.movAbsHDU(infptr,3);
fits.copyHDU(infptr,outfptr);
fits.movAbsHDU(infptr,5);
fits.copyHDU(infptr,outfptr);
fits.closeFile(infptr);
fits.closeFile(outfptr);
fitsdisp('tst0012.fits','mode','min','index',[1 3 5]);
fitsdisp('myfile.fits','mode','min');

See Also deleteHDU

1-3976

matlab.io.fits.deleteHDU

Purpose Delete current HDU in FITS file

Syntax HDU_TYPE = deleteHDU(fptr)

Description HDU_TYPE = deleteHDU(fptr) deletes the current HDU in the FITS
file. Any following HDUs will be shifted forward in the file, filling the
gap created by the deleted HDU. In the case of deleting the primary
array (the first HDU in the file) then the current primary array will
be replaced by a null primary array containing the minimum set
of required keywords and no data. If there are more HDUs in the
file following the HDU being deleted, then the current HDU will be
redefined to point to the following HDU. If there are no following HDUs
then the current HDU will be redefined to point to the previous HDU.
HDU_TYPE returns the type of the new current HDU.

This function corresponds to the fits_delete_hdu (ffdhdu) function
in the CFITSIO library C API.

Examples Delete the second HDU in a FITS file.

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fitsdisp('myfile.fits','mode','min');
fptr = fits.openFile('myfile.fits','readwrite');
fits.movAbsHDU(fptr,2);
new_current_hdu = fits.deleteHDU(fptr);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','min');

See Also copyHDU

1-3977

matlab.io.fits.getHDUnum

Purpose Number of current HDU in FITS file

Syntax N = getHDUnum(fptr)

Description N = getHDUnum(fptr) returns the number of the current HDU in the
FITS file. The primary array has HDU number 1.

This function corresponds to the fits_get_hdu_num (ffghdn) function
in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getHDUnum(fptr);
fits.closeFile(fptr);

See Also getNumHDUs | getHDUtype

1-3978

matlab.io.fits.getHDUtype

Purpose Type of current HDU

Syntax htype = getHDUtype(fptr)

Description htype = getHDUtype(fptr) returns the type of the current HDU in
the FITS file. The possible values for htype are:

'IMAGE_HDU'

'ASCII_TBL'

'BINARY_TBL'

This function corresponds to the fits_get_hdu_type (ffghdt)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n

fits.getHDUtype(fptr);
end
fits.closeFile(fptr);

See Also getHDUnum

1-3979

matlab.io.fits.getNumHDUs

Purpose Total number of HDUs in FITS file

Syntax N = getNumHDUs(fptr)

Description N = getNumHDUs(fptr) returns the number of completely defined
HDUs in a FITS file. If a new HDU has just been added to the FITS file,
then that last HDU will only be counted if it has been closed, or if data
has been written to the HDU. The current HDU remains unchanged
by this routine.

This function corresponds to the fits_get_num_hdus (ffthdu)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
fits.closeFile(fptr);

See Also getHDUnum

1-3980

matlab.io.fits.movAbsHDU

Purpose Move to absolute HDU number

Syntax htype = fits.movAbsHDU(fptr,HDUNUM)

Description htype = fits.movAbsHDU(fptr,HDUNUM) moves to a specified absolute
HDU number (starting with 1 for the primary array) in the FITS file.
The possible values for htype are:

'IMAGE_HDU'

'ASCII_TBL'

'BINARY_TBL'

This function corresponds to the fits_move_abs_hdu function in the
CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n

htype = fits.movAbsHDU(fptr,j);
fprintf('HDU %d: "%s"\n',j,htype);

end
fits.closeFile(fptr);

See Also getNumHDUs | movRelHDU | movNamHDU

1-3981

matlab.io.fits.movNamHDU

Purpose Move to first HDU having specific type and keyword values

Syntax movNamHDU(fptr,hdutype,EXTNAME,EXTVER)

Description movNamHDU(fptr,hdutype,EXTNAME,EXTVER) moves to the first HDU
which has the specified extension type and EXTNAME and EXTVER
keyword values (or HDUNAME and HDUVER keywords).

The hdutype parameter may have a value of:

'IMAGE_HDU'

'ASCII_TBL'

'BINARY_TBL'

'ANY_HDU'

If hdutype is 'ANY_HDU', only the EXTNAME and EXTVER values are used
to locate the correct extension. If the input value of EXTVER is 0, then
the EXTVER keyword is ignored and the first HDU with a matching
EXTNAME (or HDUNAME) keyword will be found.

This function corresponds to the fits_movnam_hdu (ffmnhd) function
in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movNamHDU(fptr,'IMAGE_HDU','quality',1);
fits.closeFile(fptr);

See Also movAbsHDU | movRelHDU

1-3982

matlab.io.fits.movRelHDU

Purpose Move relative number of HDUs from current HDU

Syntax htype = moveRelHDU(fptr,nmove)

Description htype = moveRelHDU(fptr,nmove) moves a relative number of HDUs
forward or backward from the current HDU and returns the HDU type,
htype, of the resulting HDU. The possible values for htype are:

'IMAGE_HDU'

'ASCII_TBL'

'BINARY_TBL'

This function corresponds to the fits_movrel_hdu (ffmrhd) function
in the CFITSIO library C API.

Examples Move through each HDU in succession, then move backwards twice
by two HDUs.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
n = fits.getNumHDUs(fptr);
for j = 1:n

htype = fits.movAbsHDU(fptr,j);
fprintf('HDU %d: "%s"\n',j,htype);

end
htype = fits.movRelHDU(fptr,-2);
n = fits.getHDUnum(fptr);
fprintf('HDU %d: "%s"\n',n,htype);
htype = fits.movRelHDU(fptr,-2);
n = fits.getHDUnum(fptr);
fprintf('HDU %d: "%s"\n',n,htype);
fits.closeFile(fptr);

See Also movAbsHDU | movNamHDU

1-3983

matlab.io.fits.writeChecksum

Purpose Compute and write checksum for current HDU

Syntax writeChecksum(fptr)

Description writeChecksum(fptr) computes and writes the DATASUM and CHECKSUM
keyword values for the current HDU into the current header. If the
keywords already exist, their values are updated only if necessary (for
example, if the file has been modified since the original keyword values
were computed).

This function corresponds to the fits_write_chksum (ffpcks)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'long_img',[10 20]);
fits.writeChecksum(fptr)
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also fitsdisp

1-3984

matlab.io.fits.imgCompress

Purpose Compress HDU from one file into another

Syntax imgCompress(infptr,outfptr)

Description imgCompress(infptr,outfptr) initializes the output HDU, copies all
the keywords, and loops through the input image, compressing the data
and writing the compressed data to the output HDU.

This function corresponds to the fits_img_compress function in the
CFITSIO library C API.

Examples import matlab.io.*
infptr = fits.openFile('tst0012.fits');
outfptr = fits.createFile('myfile.fits');
fits.setCompressionType(outfptr,'rice');
fits.imgCompress(infptr,outfptr);
fits.closeFile(infptr);
fits.closeFile(outfptr);

See Also setCompressionType

1-3985

matlab.io.fits.isCompressedImg

Purpose Determine if current image is compressed

Syntax TF = isCompressedImg(fptr)

Description TF = isCompressedImg(fptr) returns true if the image in the current
HDU is compressed.

This function corresponds to the fits_is_compressed_image function
in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
bool = fits.isCompressedImg(fptr);
fits.closeFile(fptr);

See Also setCompressionType

1-3986

matlab.io.fits.setCompressionType

Purpose Set image compression type

Syntax setCompressionType(fptr,comptype)

Description setCompressionType(fptr,comptype) specifies the image compression
algorithm that should be used when writing a FITS image.

Supported values for comptype include:

'GZIP'

'GZIP2'

'RICE'

'PLIO'

'HCOMPRESS'

'NOCOMPRESS'

This function corresponds to the fits_set_compression_type function
in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.setCompressionType(fptr,'GZIP2');
fits.createImg(fptr,'long_img',[256 512]);
data = reshape(1:256*512,[256 512]);
data = int32(data);
fits.writeImg(fptr,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also setTileDim | createImg

1-3987

matlab.io.fits.setHCompScale

Purpose Set scale parameter for HCOMPRESS algorithm

Syntax setHCompScale(fptr,scale)

Description setHCompScale(fptr,scale) sets the scale parameter to be used with
the HCOMPRESS compression algorithm. Setting the scale parameter
causes the algorithm to operate in lossy mode.

This function corresponds to the fits_set_hcomp_scale function in
the CFITSIO library C API.

Examples import matlab.io.*
data = 50*ones(256,512,'double') + 10 * rand([256 512]);
fptr = fits.createFile('myfile.fits');
fits.setCompressionType(fptr,'HCOMPRESS_1');
fits.setHCompScale(fptr,2.5);
fits.createImg(fptr,'double_img',[256 512]);
fits.writeImg(fptr,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also setHCompSmooth | setCompressionType

1-3988

matlab.io.fits.setHCompSmooth

Purpose Set smoothing for images compressed with HCOMPRESS

Syntax setHCompSmooth(fptr,smooth)

Description setHCompSmooth(fptr,smooth) sets the smoothing to be used when
compressing an image with the HCOMPRESS algorithm. Setting either
the scale or smoothing parameter causes the algorithm to operate in
lossy mode.

This function corresponds to the fits_set_hcomp_smooth function in
the CFITSIO library C API.

Examples import matlab.io.*
data = int32(50*ones(256,512,'double') + 10 * rand([256 512]));
fptr = fits.createFile('myfile.fits');
fits.setCompressionType(fptr,'HCOMPRESS');
fits.setHCompSmooth(fptr,1);
fits.createImg(fptr,'long_img',[256 512]);
fits.writeImg(fptr,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also setHCompScale | setCompressionType

1-3989

matlab.io.fits.setTileDim

Purpose Set tile dimensions

Syntax fits.setTileDim(fptr,tiledims)

Description fits.setTileDim(fptr,tiledims) specifies the size of the image
compression tiles to be used when creating a compressed image.

This function corresponds to the fits_set_tile_dim function in the
CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.setCompressionType(fptr,'RICE_1');
fits.setTileDim(fptr,[64 128]);
fits.createImg(fptr,'byte_img',[256 512]);
data = ones(256,512,'uint8');
fits.writeImg(fptr,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','full');

See Also setCompressionType

1-3990

matlab.io.fits.createTbl

Purpose Create new ASCII or binary table extension

Syntax fptr = createTbl(fptr,tbltype,nrows,ttype,tform,tunit,extname)

Description fptr =
createTbl(fptr,tbltype,nrows,ttype,tform,tunit,extname)
creates a new ASCII or bintable table extension. ttype must be either
'binary' or 'ascii'. The nrows argument gives the initial
number of rows to be created in the table and should normally be
zero. tunit specifies the units for each column, but can be an
empty cell array if no units are desired. extname specifies the
extension name, but can be omitted.

tform specifies the format of the column. For binary tables, the values
should be in the form of 'rt', where 'r' is the repeat count and 't' is
one of the following letters.

'A' ASCII character

'B' Byte or uint8

'C' Complex (single precision)

'D' Double precision

'E' Single precision

'I' int16

'J' int32

'K' int64

'L' Logical

'M' Complex (double precision)

'X' Bit (int8 zeros and ones)

A column can also be specified as having variable-width if the tform
value has the form '1Pt' or '1Qt', where 't' specifies the data type
as above.

1-3991

matlab.io.fits.createTbl

For ASCII tables, the tform values take the form:

Iw int16 column with width 'w'

Aw ASCII column with width 'w'

Fww.dd Fixed point

Eww.dd Single precision with width 'ww'
and precision 'dd'

Dww.dd Double precision with width 'ww'
and precision 'dd'

This function corresponds to the fits_create_tbl (ffcrtb) function
in the CFITSIO library C API.

Examples Create a binary table. The first column contains strings of nine
characters each. The second column contains four-element sequences
of bits. The third column contains three-element sequences of uint8
values. The fourth column contains double-precision scalars.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2','Col3','Col4'};
tform = {'9A','4X','3B','1D'};
tunit = {'m/s','kg','kg/m^3','candela'};
fits.createTbl(fptr,'binary',10,ttype,tform,tunit,'my-table');
fits.closeFile(fptr);
fitsdisp('myfile.fits');

Create a two-column table where the first column has a single
double-precision value, but the second column has a variable-length
double-precision value.

import matlab.io.*
fptr = fits.createFile('myfile2.fits');
ttype = {'Col1','Col2'};

1-3992

matlab.io.fits.createTbl

tform = {'1D','1PD'};
fits.createTbl(fptr,'binary',0,ttype,tform);
fits.closeFile(fptr);
fitsdisp('myfile2.fits');

See Also insertATbl | insertBTbl | readCol | writeCol | createImg

1-3993

matlab.io.fits.deleteCol

Purpose Delete column from table

Syntax deleteCol(fptr,colnum)

Description deleteCol(fptr,colnum) deletes the column from an ASCII or binary
table.

This function corresponds to the fits_delete_col (ffdcol) function
in the CFITSIO library C API.

Examples Delete the second column in a binary table.

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits');
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fprintf('Before: '); fitsdisp('myfile.fits','index',2,'mode','min');
fptr = fits.openFile('myfile.fits','readwrite');
fits.movAbsHDU(fptr,2);
fits.deleteCol(fptr,2);
fits.closeFile(fptr);
fprintf('After : '); fitsdisp('myfile.fits','index',2,'mode','min');

See Also deleteRows

1-3994

matlab.io.fits.deleteRows

Purpose Delete rows from table

Syntax deleteRows(fptr,firstrow,nrows)

Description deleteRows(fptr,firstrow,nrows) deletes rows from an ASCII or
binary table.

This function corresponds to the fits_delete_rows (ffdrow) function
in the CFITSIO library C API.

Examples Delete the second, third, and fourth rows in a binary table (second
HDU).

import matlab.io.*
srcFile = fullfile(matlabroot,'toolbox','matlab','demos','tst0012.fits
copyfile(srcFile,'myfile.fits');
fileattrib('myfile.fits','+w');
fprintf('Before: '); fitsdisp('myfile.fits','index',2,'mode','min');
fptr = fits.openFile('myfile.fits','readwrite');
fits.movAbsHDU(fptr,2);
fits.deleteRows(fptr,2,2);
fits.closeFile(fptr);
fprintf('After : '); fitsdisp('myfile.fits','index',2,'mode','min');

See Also deleteCol | insertRows

1-3995

matlab.io.fits.insertRows

Purpose Insert rows into table

Syntax insertRows(fptr,firstrow,nrows)

Description insertRows(fptr,firstrow,nrows) inserts rows into an ASCII or
binary table. firstrow is a one-based number.

This function corresponds to the fits_insert_rows (ffirow) function
in the CFITSIO library C API.

Examples Insert five rows into an empty table.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2'};
tform = {'3A','1D'};
tunit = {'m/s','candela'};
fits.createTbl(fptr,'binary',0,ttype,tform,tunit,'my-table');
fits.insertRows(fptr,1,5);
fits.closeFile(fptr);
fitsdisp('myfile.fits','index',2);

See Also insertCol | deleteRows

1-3996

matlab.io.fits.getAColParms

Purpose ASCII table information

Syntax [ttype,tbcol,tunit,tform,scale,zero,nulstr,tdisp] = getAColParms(fptr,
colnum)

Description [ttype,tbcol,tunit,tform,scale,zero,nulstr,tdisp] =
getAColParms(fptr, colnum) gets information about an existing
ASCII table column.

This function corresponds to the fits_get_acolparms (fffacl)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,5);
[ttype,tbcol,tunit,tform,scale,zero,nulstr,tdisp] = fits.getAColParms(
fits.closeFile(fptr);

See Also getBColParms

1-3997

matlab.io.fits.getBColParms

Purpose Binary table information

Syntax [ttype,tunit,typechar,repeat,scale,zero,nulval,
tdisp] = getBColParms(fptr,colnum)

Description [ttype,tunit,typechar,repeat,scale,zero,nulval, tdisp] =
getBColParms(fptr,colnum) gets information about an existing binary
table column.

This function corresponds to the fits_get_bcolparms (ffgbcl)
function in the CFITSIO library C API.

Examples Get information about the second column in a binary table.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[ttype,tunit,typechar,repeat,scale,zero,nulval,tdisp]= fits.getBColParms(
fits.closeFile(fptr);

See Also getAColParms

1-3998

matlab.io.fits.getColName

Purpose Table column name

Syntax [colnum,colname] = getColNum(fptr,templt,casesen)

Description [colnum,colname] = getColNum(fptr,templt,casesen) gets the
table column numbers and names of the columns whose names match
an input template name. If casesen is true, then the column name
match is case-sensitive. casesen defaults to false.

The input column name template may be either the exact name of the
column to be searched for, or it may contain wildcard characters (*, ?, or
#), or it may contain the integer number of the desired column (with the
first column = 1). The '*' wildcard character matches any sequence of
characters (including zero characters) and the '?' character matches
any single character. The # wildcard matches any consecutive string of
decimal digits (0-9).

Examples Return all the columns starting with the letter 'C'.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[nums,names] = fits.getColName(fptr,'C*');
fits.closeFile(fptr);

See Also getAColParms | getBColParms

1-3999

matlab.io.fits.getColType

Purpose Scaled column data type, repeat value, width

Syntax [dtype,repeat,width] = getColType(fptr,colnum)

Description [dtype,repeat,width] = getColType(fptr,colnum) returns the
data type, vector repeat value, and the width in bytes of a column in
an ASCII or binary table.

This function corresponds to the fits_get_coltypell (ffgtclll)
function in the CFITSIO library C API.

Examples Get information about the ’FLUX’ column in the second HDU.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[dtype,repeat,width] = fits.getColType(fptr,5);
fits.closeFile(fptr);

See Also getEqColType

1-4000

matlab.io.fits.getEqColType

Purpose Column data type, repeat value, width

Syntax [dtype,repeat,width] = getColType(fptr,colnum)

Description [dtype,repeat,width] = getColType(fptr,colnum) returns the
scaled data type needed to store the scaled column data type, the vector
repeat value, and the width in bytes of a column in an ASCII or binary
table.

This function corresponds to the fits_get_eqcoltypell (ffeqtyll)
function in the CFITSIO library C API.

Examples Get information about the ’FLUX’ column in the second HDU.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[dtype,repeat,width] = fits.getEqColType(fptr,5);
fits.closeFile(fptr);

See Also getColType

1-4001

matlab.io.fits.getNumCols

Purpose Number of columns in table

Syntax ncols = getNumCols(fptr)

Description ncols = getNumCols(fptr) gets the number of columns in the current
FITS table. This function corresponds to the fits_get_num_cols
(ffgncl) function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
ncols = fits.getNumCols(fptr);
nrows = fits.getNumRows(fptr);
fits.closeFile(fptr);

See Also getNumRows

1-4002

matlab.io.fits.getNumRows

Purpose Number of rows in table

Syntax nrows = getNumRows(fptr)

Description nrows = getNumRows(fptr) gets the number of rows in the current
FITS table. This function corresponds to the fits_get_num_rowsll
(ffgnrwll) function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
ncols = fits.getNumCols(fptr);
nrows = fits.getNumRows(fptr);
fits.closeFile(fptr);

See Also getNumCols

1-4003

matlab.io.fits.insertCol

Purpose Insert column into table

Syntax insertCol(fptr,colnum,ttype,tform)

Description insertCol(fptr,colnum,ttype,tform) inserts a column into an
ASCII or binary table.

This function corresponds to the fits_insert_col (fficol) function
in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2'};
tform = {'3A','1D'};
tunit = {'m/s','candela'};
fits.createTbl(fptr,'binary',0,ttype,tform,tunit,'my-table');
fits.insertCol(fptr,3,'Col3','3D');
fits.closeFile(fptr);
fitsdisp('myfile.fits','index',2);

See Also insertRows

1-4004

matlab.io.fits.insertATbl

Purpose Insert ASCII table after current HDU

Syntax insertATbl(fptr,rowlen,nrows,ttype,tbcol,tform,tunit,extname)

Description insertATbl(fptr,rowlen,nrows,ttype,tbcol,tform,tunit,extname)
inserts a new ASCII table extension immediately following the current
HDU. Any following extensions are shifted down to make room for the
new extension. If there are no other following extensions, then the new
table extension is simply appended to the end of the file. If the FITS file
is currently empty then this routine creates a dummy primary array
before appending the table to it. The new extension becomes the
current HDU. If rowlen is 0, then CFITSIO calculates the default
rowlen based on the tbcol and ttype values.

tform can take the following forms. In each case, 'w' and 'ww'
represent the widths of the ASCII columns.

Iw int16 column

Aw ASCII column

Fww.dd Fixed point with 'dd' digits after
the decimal point

Eww.dd Single precision with 'dd' digits
of precision

Dww.dd Double precision with 'dd' digits
of precision

Binary tables are recommended instead of ASCII tables.

This function corresponds to the fits_insert_atbl (ffitab) function
in the CFITSIO library C API.

Examples Create an ASCII table between two images.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
fits.createImg(fptr,'uint8',[20 30]);

1-4005

matlab.io.fits.insertATbl

fits.createImg(fptr,'int16',[30 40]);
fits.movRelHDU(fptr,-1);
ttype = {'Name','Short','Fix','Double'};
tbcol = [1 17 28 43];
tform = {'A15','I10','F14.2','D12.4'};
tunit = {'','m**2','cm','km/s'};
fits.insertATbl(fptr,0,0,ttype,tbcol,tform,tunit,'my-table');
fits.writeCol(fptr,1,1,char('abracadabra','hocus-pocus'));
fits.writeCol(fptr,2,1,int16([0; 1]));
fits.writeCol(fptr,3,1,[12.4; 4/3]);
fits.writeCol(fptr,4,1,[12.4; 4e8/3]);
fits.closeFile(fptr);
fitsdisp('myfile.fits','mode','min');

See Also createTbl | insertBTbl

1-4006

matlab.io.fits.insertBTbl

Purpose Insert binary table after current HDU

Syntax insertBTbl(fptr,nrows,ttype,tform,tunit,extname,pcount)

Description insertBTbl(fptr,nrows,ttype,tform,tunit,extname,pcount)
inserts a new binary table extension immediately following the current
HDU. Any following extensions are shifted down to make room for the
new extension. If there are no other following extensions then the new
table extension is simply appended to the end of the file. If the FITS file
is currently empty then this routine creates a dummy primary array
before appending the table to it. The new extension becomes the CHDU.
If there are following extensions in the file and if the table contains
variable-length array columns then pcount must specify the expected
final size of the data heap. Otherwise, pcount must be zero.

This function corresponds to the fits_insert_btbl (ffibin) function
in the CFITSIO library C API.

Examples Create a table following the primary array. Then, insert a new table
just before it.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2'};
tform = {'9A','1D'};
tunit = {'m/s','candela'};
fits.createTbl(fptr,'binary',10,ttype,tform,tunit,'my-table');
fits.movRelHDU(fptr,-1);
fits.insertBTbl(fptr,5,ttype,tform,tunit,'my-new-table',0);
fits.closeFile(fptr);
fitsdisp('myfile.fits');

See Also createTbl | insertATbl

1-4007

matlab.io.fits.readATblHdr

Purpose Read header information from current ASCII table

Syntax [rowlen,nrows,ttype,tbcol,tform,tunit,extname] = readATblHdr(fptr)

Description [rowlen,nrows,ttype,tbcol,tform,tunit,extname] =
readATblHdr(fptr) reads header information for the current ASCII
table.

This function corresponds to the fits_read_atblhdrll (ffghtbll)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,5);
[rowlen,nrows,ttype,tbcol,tform,tunit,extname] = fits.readATblHdr(fptr);
fits.closeFile(fptr);

See Also readBTblHdr

1-4008

matlab.io.fits.readBTblHdr

Purpose Read header information from current binary table

Syntax [nrows,ttype,tform,tunit,extname,pcount] = readBTblHdr(fptr)

Description [nrows,ttype,tform,tunit,extname,pcount] =
readBTblHdr(fptr) reads header information for the current
binary table.

This function corresponds to the fits_read_btblhdrll (ffghbnll)
function in the CFITSIO library C API.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
[nrows,ttype,tform,tunit,extname,pcount] = fits.readBTblHdr(fptr);
fits.closeFile(fptr);

See Also readATblHdr

1-4009

matlab.io.fits.readCol

Purpose Read rows of ASCII or binary table column

Syntax [coldata,nullval] = readCol(fptr,colnum)
[coldata,nullval] = readCol(fptr,colnum,firstrow,numrows)

Description [coldata,nullval] = readCol(fptr,colnum) reads an entire column
from an ASCII or binary table column. nullval is a logical array
specifying if a particular element of coldata should be treated as
undefined. It is the same size as coldata.

[coldata,nullval] = readCol(fptr,colnum,firstrow,numrows)
reads a subsection of rows from an ASCII or binary table column.

The MATLAB data type returned by readCol corresponds to the data
type returned by getEqColType.

This function corresponds to the fits_read_col (ffgcv) function in
the CFITSIO library C API.

Examples Read an entire column.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
colnum = fits.getColName(fptr,'flux');
fluxdata = fits.readCol(fptr,colnum);
fits.closeFile(fptr);

Read the first five rows in a column.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
colnum = fits.getColName(fptr,'flux');
fluxdata = fits.readCol(fptr,colnum,1,5);
fits.closeFile(fptr);

1-4010

matlab.io.fits.readCol

See Also writeCol

1-4011

matlab.io.fits.setTscale

Purpose Reset image scaling

Syntax setTscale(fptr,colnum,tscale,tzero)

Description setTscale(fptr,colnum,tscale,tzero) resets the scaling factors for
a table column according to the equation:

output = (FITS array) * tscale + tzero

The inverse formula is used when writing data values to the FITS file.

This only affects the automatic scaling performed when the data
elements are read. It does not change the tscale and tzero keyword
values.

Examples Turn off automatic scaling in a table column where the tscale and
tzero keywords are present.

import matlab.io.*
fptr = fits.openFile('tst0012.fits');
fits.movAbsHDU(fptr,2);
scaled_data = fits.readCol(fptr,3);
fits.setTscale(fptr,3,1.0,0.0);
unscaled_data = fits.readCol(fptr,3);
fits.closeFile(fptr);

See Also readImg

1-4012

matlab.io.fits.writeCol

Purpose Write elements into ASCII or binary table column

Syntax writeCol(fptr,colnum,firstrow,coldata)

Description writeCol(fptr,colnum,firstrow,coldata) writes elements into an
ASCII or binary table extension column.

When writing rows of data to a variable length field, coldata must
be a cell array.

This function corresponds to the fits_write_col" (ffpcl) function in
the CFITSIO library C API.

Examples Write to a table with ASCII, uint8, double-precision, and
variable-length double-precision columns.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2','Col3','Col4'};
tform = {'3A','3B','1D','1PD'};
tunit = {'m/s','kg/m^3','candela','parsec'};
fits.createTbl(fptr,'binary',0,ttype,tform,tunit,'my-table');
fits.writeCol(fptr,1,1,['dog'; 'cat']);
fits.writeCol(fptr,2,1,[0 1 2; 3 4 5; 6 7 8; 9 10 11]);
fits.writeCol(fptr,3,1,[1; 2; 3; 4]);
fits.writeCol(fptr,4,1,{1;[1 2];[1 2 3];[1 2 3 4]});
fits.closeFile(fptr);
fitsdisp('myfile.fits','index',2,'mode','full');

Write to a table with logical, bit, double precision, and variable-length
complex single-precision columns.

import matlab.io.*
fptr = fits.createFile('myfile.fits');
ttype = {'Col1','Col2','Col3','Col4'};
tform = {'2L','3X','1D','1PC'};

1-4013

matlab.io.fits.writeCol

tunit = {'','kg/m^3','candela','parsec'};
fits.createTbl(fptr,'binary',0,ttype,tform,tunit,'my-table');
fits.writeCol(fptr,1,1,[false false; true false]);
fits.writeCol(fptr,2,1,int8([0 1 1; 1 1 1; 1 1 1; 1 0 1]));
fits.writeCol(fptr,3,1,[1; 2; 3; 4]);
data = cell(4,1);
data{1} = single(1);
data{2} = single(1+2j);
data{3} = single([1j 2 3+j]);
data{4} = single([1 2+3j 3 4]);
fits.writeCol(fptr,4,1,data);
fits.closeFile(fptr);
fitsdisp('myfile.fits','index',2,'mode','full');

See Also createTbl | readCol

1-4014

matlab.io.fits.getConstantValue

Purpose Numeric value of named constant

Syntax N = getConstantValue(name)

Description N = getConstantValue(name) returns the numeric value
corresponding to the named CFITSIO constant.

Examples import matlab.io.*
n = fits.getConstantValue('BYTE_IMG');

1-4015

matlab.io.fits.getVersion

Purpose Revision number of the CFITSIO library

Syntax V = getVersion()

Description V = getVersion() returns the revision number of the CFITSIO library.
This function corresponds to the fits_get_version (ffvers) function
in the CFITSIO library C API.

Examples import matlab.io.*
v = fits.getVersion();

1-4016

matlab.io.fits.getOpenFiles

Purpose List of open FITS files

Syntax fptrs = getOpenFiles()

Description fptrs = getOpenFiles() returns a list of file pointers of all open
FITS files.

Examples import matlab.io.*
fptr = fits.openFile('tst0012.fits');
clear fptr;
fptr = fits.getOpenFiles();
fits.closeFile(fptr);

See Also openFile | closeFile

1-4017

matlab.io.hdf4.sd

Purpose Interact directly with HDF4 multifile scientific data set (SD) interface

Description To use these MATLAB functions, you should be familiar with the
HDF SD C API. In most cases, the syntax of the MATLAB function is
similar to the syntax of the corresponding HDF library function. The
functions are implemented as the package matlab.io.hdf4.sd. To use
this package, prefix the function name with a package path, or use the
import function to add the package to the current import list, prior to
calling the function, for example,

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','read');

Access

matlab.io.hdf4.sd.close Terminate access to SD interface

matlab.io.hdf4.sd.endAccess Terminate access to data set

matlab.io.hdf4.sd.getFilename Name of file

matlab.io.hdf4.sd.select Identifier of data set with
specified index

matlab.io.hdf4.sd.setExternalFile Store data in external file

matlab.io.hdf4.sd.start Open HDF file and initialize SD
interface

Read/Write

matlab.io.hdf4.sd.create Create new data set

matlab.io.hdf4.sd.readData Read subsample of data

matlab.io.hdf4.sd.setFillMode Set current fill mode of file

matlab.io.hdf4.sd.writeData Write to data set

1-4018

matlab.io.hdf4.sd

Inquiry

matlab.io.hdf4.sd.fileInfo Number of data sets and global
attributes in file

matlab.io.hdf4.sd.getCompInfo Information about data set
compression

matlab.io.hdf4.sd.getFillValue Fill value for data set

matlab.io.hdf4.sd.getInfo Information about data set

matlab.io.hdf4.sd.idToRef Reference number corresponding
to data set identifier

matlab.io.hdf4.sd.idType Type of object

matlab.io.hdf4.sd.isCoordVar Determine if data set is a
coordinate variable

matlab.io.hdf4.sd.isRecord Determine if data set is
appendable

matlab.io.hdf4.sd.nameToIndex Index value of named data set

matlab.io.hdf4.sd.nameToIndices List of data sets with same name

matlab.io.hdf4.sd.refToIndex Index of data set corresponding to
reference number

Dimensions

matlab.io.hdf4.sd.dimInfo Information about dimension

matlab.io.hdf4.sd.getDimID Dimension identifier

matlab.io.hdf4.sd.getDimScale Scale data for dimension

matlab.io.hdf4.sd.setDimName Associate name with dimension

matlab.io.hdf4.sd.setDimScale Set scale values for dimension

1-4019

matlab.io.hdf4.sd

User-defined Attributes

matlab.io.hdf4.sd.attrInfo Information about attribute

matlab.io.hdf4.sd.findAttr Index of specified attribute

matlab.io.hdf4.sd.readAttr Read attribute value

matlab.io.hdf4.sd.setAttr Write attribute value

Predefined Attributes

matlab.io.hdf4.sd.getCal Data set calibration information

matlab.io.hdf4.sd.getDataStrs Predefined attribute strings for
data set

matlab.io.hdf4.sd.getDimStrs Predefined attribute strings for
dimension

matlab.io.hdf4.sd.getFillValue Fill value for data set

matlab.io.hdf4.sd.getRange Maximum and minimum range
values

matlab.io.hdf4.sd.setCal Set data set calibration
information

matlab.io.hdf4.sd.setDataStrs Set predefined attributes for data
set

matlab.io.hdf4.sd.setDimStrs Set label, unit, and format
attribute strings

matlab.io.hdf4.sd.setFillValue Set fill value for data set

matlab.io.hdf4.sd.setRange Set maximum and minimum
range value for data set

1-4020

matlab.io.hdf4.sd

Chunking/Tiling Operations

matlab.io.hdf4.sd.getChunkInfo Chunk size for data set

matlab.io.hdf4.sd.readChunk Read chunk from data set

matlab.io.hdf4.sd.setChunk Set chunk size and compression
method of data set

matlab.io.hdf4.sd.writeChunk Write chunk to data set

Compression

matlab.io.hdf4.sd.setCompress Set compression method of data
set

matlab.io.hdf4.sd.setNBitDataSet Specify nonstandard bit length
for data set values

1-4021

matlab.io.hdf4.sd.attrInfo

Purpose Information about attribute

Syntax [name,datatype,nelts] = attrInfo(objID,idx)

Description [name,datatype,nelts] = attrInfo(objID,idx) returns the name,
data type, and number of elements in the specified attribute. The
attribute is specified by its zero-based index value. objID can be either
an SD interface identifier, a data set identifier, or a dimension identifier.

This function corresponds to the SDattrinfo function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.findAttr(sdID,'creation_date');
[name,datatype,nelts] = sd.attrInfo(sdID,idx);
data = sd.readAttr(sdID,idx);
sd.close(sdID);

See Also sd.findAttr

1-4022

matlab.io.hdf4.sd.close

Purpose Terminate access to SD interface

Syntax sd.close(sdID)

Description sd.close(sdID) closes the file identified by sdID.

This function corresponds to the SDend function in the HDF C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.start

1-4023

matlab.io.hdf4.sd.create

Purpose Create new data set

Syntax sdsID = create(sdID,name,datatype,dims)

Description sdsID = create(sdID,name,datatype,dims) creates a data set with
the given name name, data type datatype, and dimension sizes dims.

To create a data set with an unlimited dimension, the last value in
dims should be set to 0.

This function corresponds to the SDcreate function in the HDF library
C API, but because MATLAB uses FORTRAN-style ordering, the dims
parameter is reversed with respect to the C library API.

Examples Create a 3D data set with an unlimited dimension.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20 0]);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.endAccess

1-4024

matlab.io.hdf4.sd.dimInfo

Purpose Information about dimension

Syntax [name,dimlen,datatype,nattrs] = dimInfo(dimID)

Description [name,dimlen,datatype,nattrs] = dimInfo(dimID) returns the
name, length, data type, and number of attributes of the specified
dimension.

This function corresponds to the SDdiminfo function in the HDF library
C API.

Examples Read a 2-by-3 portion of a data set.

import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'latitude');
sdsID = sd.select(sdID,idx);
dimID = sd.getDimID(sdsID,0);
[name,dimlen,datatype,nattrs] = sd.dimInfo(dimID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.getDimID

1-4025

matlab.io.hdf4.sd.endAccess

Purpose Terminate access to data set

Syntax sd.endAccess(sdsID)

Description sd.endAccess(sdsID) terminates access to the data set identified by
sdsID. Failing to call this function after all operations on the specified
data set are complete may result in loss of data.

This function corresponds to the SDendaccess function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.select | sd.close

1-4026

matlab.io.hdf4.sd.fileInfo

Purpose Number of data sets and global attributes in file

Syntax [ndatasets,ngatts] = fileInfo(sdID)

Description [ndatasets,ngatts] = fileInfo(sdID) returns the number of data
sets ndatasets and the number of global attributes ngatts in the file
identified by sdID.

ndatasets includes the number of coordinate variable data sets.

This function corresponds to the SDfileinfo function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
[ndatasets,ngatts] = sd.fileInfo(sdID);
sd.close(sdID);

See Also sd.getInfo

1-4027

matlab.io.hdf4.sd.findAttr

Purpose Index of specified attribute

Syntax idx = findAttr(objID,attrname)

Description idx = findAttr(objID,attrname) returns the index of the attribute
specified by attrname. The objID input can be either an SD interface
identifier, a data set identifier, or a dimension identifier.

The function corresponds to the SDfindattr function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.findAttr(sdID,'creation_date');
data = sd.readAttr(sdID,idx);
sd.close(sdID);

See Also sd.start | sd.select | sd.getDimID | sd.readAttr

1-4028

matlab.io.hdf4.sd.getCal

Purpose Data set calibration information

Syntax [cal,calErr,offset,offsetErr,datatype] = getCal(sdsID)

Description [cal,calErr,offset,offsetErr,datatype] = getCal(sdsID)
retrieves the calibration information associated with a data set.

This function corresponds to the SDgetcal function in the HDF library
C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
[cal,calErr,offset,offsetErr,dtype] = sd.getCal(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setCal

1-4029

matlab.io.hdf4.sd.getChunkInfo

Purpose Chunk size for data set

Syntax chunkDims = getChunkInfo(sdsID)

Description chunkDims = getChunkInfo(sdsID) returns the chunk size for the
data set specified by sdsID. If a data set is chunked, the dimensions of
the chunks is returned in chunkDims. Otherwise chunkDims is [].

This function corresponds to the SDgetchunkinfo function in the HDF
library C API, but because MATLAB uses FORTRAN-style ordering,
the chunkDims parameter is reversed with respect to the C library API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
cdims = sd.getChunkInfo(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setChunk | sd.getCompInfo

1-4030

matlab.io.hdf4.sd.getCompInfo

Purpose Information about data set compression

Syntax [comptype,compparms] = getCompType(sdsID)

Description [comptype,compparms] = getCompType(sdsID) retrieves the
compression type and compression information for a data set. comptype
can be one of the following strings.

'none' No compression

'rle' Run-length encoding

'nbit' NBIT compression

'skphuff' Skipping Huffman compression

'deflate' GZIP compression

'szip' SZIP compression

If comptype is 'none' or 'rle', then compparms is [].

If comptype is 'nbit', then compparms is a 4-element array.

compparm(1) sign_ext

compparm(2) fill_one

compparm(3) start_bit

compparm(4) bit_len

If comptype is 'deflate', then compparms contains the deflation value,
a number between 0 and 9.

If comptype is 'szip', them compparms is a 5-element array. Consult
the HDF Reference Manual for details on SZIP compression.

This function corresponds to the SDgetcompinfo function in the HDF
library C API.

1-4031

matlab.io.hdf4.sd.getCompInfo

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[100 50]);
sd.setCompress(sdsID,'deflate',5);
[comptype,compparm] = sd.getCompInfo(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setCompress | sd.setNBitDataSet

1-4032

matlab.io.hdf4.sd.getDataStrs

Purpose Predefined attribute strings for data set

Syntax [label,unit,format,coordsys] = getDataStrs(sdsID)
[label,unit,format,coordsys] = getDataStrs(sdsID,maxlen)

Description [label,unit,format,coordsys] = getDataStrs(sdsID) returns the
label, unit, format, and coordsys attributes for the data set identified by
sdsID.

[label,unit,format,coordsys] = getDataStrs(sdsID,maxlen)
returns the label, unit, format, and coordsys attributes for the data set
identified by sdsID. The maxlen input is the maximum length of any of
the attribute strings. It defaults to 1000 if not specified.

This function corresponds to the SDgetdatastrs function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
[label,unit,fmt,coordsys] = sd.getDataStrs(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setDataStrs

1-4033

matlab.io.hdf4.sd.getDimID

Purpose Dimension identifier

Syntax dimID = getDimID(sdsID,dimnumber)

Description dimID = getDimID(sdsID,dimnumber) returns the identifier of the
dimension given its index.

Note Note: MATLAB uses Fortran-style indexing while the HDF
library uses C-style indexing. The order of the dimension identifiers
retrieved with sd.getDimID are reversed from what would be retrieved
via the C API.

This function corresponds to the SDgetdimid function in the HDF
library C API.

Examples Read an entire data set.

import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
dimID0 = sd.getDimID(sdsID,0);
dimID1 = sd.getDimID(sdsID,1);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setDimName

1-4034

matlab.io.hdf4.sd.getDimScale

Purpose Scale data for dimension

Syntax scale = getDimScale(dimID)

Description scale = getDimScale(dimID) returns the scale values of the
dimension identified by dimID.

This function corresponds to the SDgetdimscale function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',20);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'x');
sd.setDimScale(dimID,0:5:95);
sd.endAccess(sdsID);
sd.close(sdID);
sdID = sd.start('myfile.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
dimID = sd.getDimID(sdsID,0);
scale = sd.getDimScale(dimID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.dimInfo | sd.setDimScale

1-4035

matlab.io.hdf4.sd.getDimStrs

Purpose Predefined attribute strings for dimension

Syntax [label,unit,format] = getDimStrs(dimID)

Description [label,unit,format] = getDimStrs(dimID) returns the label, unit,
and format attributes for the dimension identified by dimID.

This function corresponds to the SDgetdimstrs function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',20);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'x');
sd.setDimStrs(dimID,'xdim','none','%d');
sd.endAccess(sdsID);
sd.close(sdID);
sdID = sd.start('myfile.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
dimID = sd.getDimID(sdsID,0);
[label,unit,fmt] = sd.getDimStrs(dimID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setDimStrs

1-4036

matlab.io.hdf4.sd.getFilename

Purpose Name of file

Syntax filename = getFilename(sdID)

Description filename = getFilename(sdID) retrieves the name of a file previously
opened with the sd package with identifier sdID.

This function corresponds to the SDgetfilename function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
filename = sd.getFilename(sdID);
sd.close(sdID);

See Also sd.start | sd.getInfo

1-4037

matlab.io.hdf4.sd.getFillValue

Purpose Fill value for data set

Syntax fillvalue = getFillValue(sdsID)

Description fillvalue = getFillValue(sdsID) returns the fill value for a data
set.

This function corresponds to the SDgetfillvalue function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
fillvalue = sd.getFillValue(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setFillValue

1-4038

matlab.io.hdf4.sd.getInfo

Purpose Information about data set

Syntax [name,dims,datatype,nattrs] = getInfo(sdsID)

Description [name,dims,datatype,nattrs] = getInfo(sdsID) returns the name,
extents, and number of attributes of the data set identified by sdsID.

This function corresponds to the SDgetinfo function in the HDF library
C API, but because MATLAB uses FORTRAN-style ordering, the dims
parameter is reversed with respect to the C library API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
[name,dims,datatype,nattrs] = sd.getInfo(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.dimInfo | sd.attrInfo | sd.fileInfo

1-4039

matlab.io.hdf4.sd.getRange

Purpose Maximum and minimum range values

Syntax [maxval,minval] = getRange(sdsID)

Description [maxval,minval] = getRange(sdsID) retrieves the "valid_range"
two-element attribute value.

This function corresponds to the SDgetrange function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
[maxval,minval] = sd.getRange(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setRange

1-4040

matlab.io.hdf4.sd.idToRef

Purpose Reference number corresponding to data set identifier

Syntax ref = idToRef(sdsID)

Description ref = idToRef(sdsID) returns the reference number corresponding
to the data set.

This function corresponds to the SDidtoref function in the HDF library
C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
ref = sd.idToRef(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.refToIndex |

1-4041

matlab.io.hdf4.sd.idType

Purpose Type of object

Syntax objtype = idType(objID)

Description objtype = idType(objID) returns the type of object that objID
represents. Possible values for objtype are:

'NOT_SDAPI_ID' The object is not an HDF SD
identifier.

'SD_ID' The object is an SD identifier (file
handle) .

'SDS_ID' The object is a data set identifier.

'DIM_ID' The object is a dimension
identifier.

This function corresponds to the SDidtype function in the HDF library
C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
objType = sd.idType(sdID);
sd.close(sdID);

1-4042

matlab.io.hdf4.sd.isCoordVar

Purpose Determine if data set is a coordinate variable

Syntax TF = isCoordVar(sdsID)

Description TF = isCoordVar(sdsID) returns true if a data set is a coordinate
variable and returns false otherwise.

This function corresponds to the SDiscoordvar function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
ndataset = sd.fileInfo(sdID);
for idx = 0:ndataset-1
sdsID = sd.select(sdID,idx);
sdsName = sd.getInfo(sdsID);
fprintf('%s (index %d) ', sdsName, idx);
if (sd.isCoordVar(sdsID))
fprintf('is a coordinate variable.\n');

else
fprintf('is not a coordinate variable.\n');

end
sd.endAccess(sdsID);

end
sd.close(sdID);

See Also sd.isRecord

1-4043

matlab.io.hdf4.sd.isRecord

Purpose Determine if data set is appendable

Syntax TF = isRecord(sdsID)

Description TF = isRecord(sdsID) determines if the data set specified by sdsID is
appendable, meaning that the slowest changing dimension is unlimited.

This function corresponds to the SDisrecord function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
ndataset = sd.fileInfo(sdID);
for idx = 0:ndataset-1

sdsID = sd.select(sdID,idx);
sdsName = sd.getInfo(sdsID);
if sd.isRecord(sdsID)

fprintf('%s is a record variable.\n',sdsName);
else

fprintf('%s is not a record variable.\n',sdsName);
end
sd.endAccess(sdsID);

end
sd.close(sdID);

See Also sd.isCoordVar

1-4044

matlab.io.hdf4.sd.nameToIndex

Purpose Index value of named data set

Syntax idx = nameToIndex(sdID,sdsname)

Description idx = nameToIndex(sdID,sdsname) returns the index of the data set
with the name specified by sdsname. If there is more than one data set
with the same name, the routine returns the index of the first one.

This function corresponds to the SDnametoindex function in the HDF
C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf','read');
idx = sd.nameToIndex(sdID,'temperature');
sd.close(sdID);

See Also sd.select

1-4045

matlab.io.hdf4.sd.nameToIndices

Purpose List of data sets with same name

Syntax varstruct = nameToIndices(sdID,sdsname)

Description varstruct = nameToIndices(sdID,sdsname) returns a structure
array for all data sets with the same name. Each element of varstruct
has two fields.

'index' Index of data set

'type' Type of data set, either 'SDSVAR',
'COORDVAR', or 'UNKNOWN'

This function corresponds to the SDnametoindices function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
varlist = sd.nameToIndices(sdID,'latitude');
sd.close(sdID);

See Also sd.setDimScale | sd.isCoordVar

1-4046

matlab.io.hdf4.sd.readAttr

Purpose Read attribute value

Syntax data = readAttr(objID,idx)

Description data = readAttr(objID,idx) reads the value of the attribute specified
by index idx. The objID input can be an SD interface identifier, a data
set identifier, or a dimension identifier. idx is a zero-based index.

This function corresponds to the SDreadattr function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.findAttr(sdID,'creation_date');
data = sd.readAttr(sdID,idx);
sd.close(sdID);

See Also sd.findAttr | sd.setAttr

1-4047

matlab.io.hdf4.sd.readChunk

Purpose Read chunk from data set

Syntax datachunk = readChunk(sdsID,origin)

Description datachunk = readChunk(sdsID,origin) reads an entire chunk of data
from the data set identified by sdsID. The origin input specifies the
location of the chunk in zero-based chunking coordinates, not in data
set coordinates.

This function corresponds to the SDreadchunk function in the HDF
library C API, but because MATLAB uses FORTRAN-style ordering,
the origin parameter is reversed with respect to the C library API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
dataChunk = sd.readChunk(sdsID,[0 1]);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.writeChunk | sd.writeData

1-4048

matlab.io.hdf4.sd.readData

Purpose Read subsample of data

Syntax data = readData(sdsID)
data = readData(sdsID,start,count)
data = readData(sdsID,start,count,stride)

Description data = readData(sdsID) reads all of the data for the data set
identified by sdsID.

data = readData(sdsID,start,count) reads a contiguous hyperslab
of data from the data set identified by sdsID. The start input specifies
the starting position from where the hyperslab is read. count specifies
the number of values to read along each data set dimension.

data = readData(sdsID,start,count,stride) reads a strided
hyperslab of data from the data set identified by sdsID.

start, count, and stride use zero-based indexing.

This function corresponds to the SDreaddata function in the HDF
library C API, but because MATLAB uses FORTRAN-style ordering,
the start, count, and stride parameters are reversed with respect
to the C library API.

Examples Read an entire data set.

import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
data = sd.readData(sdsID);
sd.endAccess(sdsID);
sd.close(sdID);

Read a 2-by-3 portion of a data set.

import matlab.io.hdf4.*

1-4049

matlab.io.hdf4.sd.readData

sdID = sd.start('sd.hdf');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
data = sd.readData(sdsID,[0 0],[2 3]);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.writeData

1-4050

matlab.io.hdf4.sd.refToIndex

Purpose Index of data set corresponding to reference number

Syntax idx = refToIndex(sdID,ref)

Description idx = refToIndex(sdID,ref) returns the index of the data set
identified by its reference number ref. The idx output can then be
passed to sd.select, to obtain a data set identifier.

This function corresponds to the SDreftoindex function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf','read');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
ref = sd.idToRef(sdsID);
idx2 = sd.refToIndex(sdID,ref);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.idToRef | sd.select

1-4051

matlab.io.hdf4.sd.select

Purpose Identifier of data set with specified index

Syntax sdsID = select(sdID,IDX)

Description sdsID = select(sdID,IDX) returns the identifier of the data set
specified by its index.

This function corresponds to the SDselect function in the HDF C
library.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf','read');
idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.endAccess | sd.nametoIndex

1-4052

matlab.io.hdf4.sd.setAttr

Purpose Write attribute value

Syntax setAttr(objID,name,value)

Description setAttr(objID,name,value) attaches an attribute to the object
specified by objID. If objID is the SD interface identifier, then a global
attribute is created. If a data identifier is specified, then the attribute is
attached to the data set. If a dimension identifier is specified, then the
attribute is attached to the dimension.

This function corresponds to the SDsetattr function in the HDF library
C API.

Examples Attach attributes to a file, a data set, and to a dimension.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sd.setAttr(sdID,'creation_date',datestr(now));
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setAttr(sdsID,'long_name','Temperature in sunlight.');
dimID0 = sd.getDimID(sdsID,0);
sd.setAttr(dimID0,'long_name','latitude');
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.readAttr | sd.findAttr

1-4053

matlab.io.hdf4.sd.setCal

Purpose Set data set calibration information

Syntax setCal(sdsID,cal,calErr,offset,offsetErr,datatype)

Description setCal(sdsID,cal,calErr,offset,offsetErr,datatype) sets the
calibration information for a data set.

This function corresponds to the SDsetcal function in the HDF library
C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setDataStrs(sdsID,'Temperature','degrees_kelvin','%.3f','spherical');
sd.setCal(sdsID,1,0,273,0,'double');
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.getCal

1-4054

matlab.io.hdf4.sd.setChunk

Purpose Set chunk size and compression method of data set

Syntax setChunk(sdsID,chunkSize,comptype,compparm)

Description setChunk(sdsID,chunkSize,comptype,compparm) makes the data
set specified by sdsID a chunked data set with chunk size given by
chunkSize and compression specified by comptype and compparm. The
comptype input can be one of the following strings.

'none' No compression

'skphuff' Skipping Huffman compression

'deflate' GZIP compression

'rle' Run-length encoding

• If comptype is 'none' or 'rle', then compparm need not be specified.

• If comptype is 'skphuff', then compparm is the skipping size.

• If comptype is 'deflate', then compparm is the deflate level, which
must be between 0 and 9.

This function corresponds to the SDsetchunk function in the HDF
library C API, but because MATLAB uses FORTRAN-style ordering,
the chunkSize parameter is reversed with respect to the C library API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[200 100]);
sd.setChunk(sdsID,[20 10],'skphuff',16);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.readChunk | sd.writeChunk

1-4055

matlab.io.hdf4.sd.setCompress

Purpose Set compression method of data set

Syntax setCompress(sdsID,comptype,compparm)

Description setCompress(sdsID,comptype,compparm) sets the compression
scheme for the specified data set. The compression must be done before
writing the data set. comptype can be one of the following strings.

'none' No compression

'skphuff' Skipping Huffman compression

'deflate' GZIP compression

'rle' Run-length encoding

• If comptype is 'none' or 'rle', then compparm need not be specified.

• If comptype is 'skphuff', then compparm is the skipping size.

• If comptype is 'deflate', then compparm is the deflate level, which
must be between 0 and 9.

This function corresponds to the SDsetcompress function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[200 100]);
sd.setCompress(sdsID,'deflate',5);
data = rand(200,100);
sd.writeData(sdsID,[0 0],data);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setChunk

1-4056

matlab.io.hdf4.sd.setDataStrs

Purpose Set predefined attributes for data set

Syntax setDataStrs(sdsID,label,unit,format,coordsys)

Description setDataStrs(sdsID,label,unit,format,coordsys) sets the
predefined attributes 'long_name', 'units', 'format', and
'coordsys' for a data set.

This function corresponds to the SDsetdatastrs function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setDataStrs(sdsID,'degrees_celsius','degrees_east','','geo');
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.getDataStrs | sd.setDimStrs

1-4057

matlab.io.hdf4.sd.setDimName

Purpose Associate name with dimension

Syntax setDimName(dimID,dimname)

Description setDimName(dimID,dimname) sets the name of the dimension identified
by dimID to dimname.

This function corresponds to the SDsetdimname function in the HDF
library C API.

Examples Create a 2D data set with dimensions 'lat' and 'lon'.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'lat');
dimID = sd.getDimID(sdsID,1);
sd.setDimName(dimID,'lon');
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.dimInfo

1-4058

matlab.io.hdf4.sd.setDimScale

Purpose Set scale values for dimension

Syntax setDimScale(dimID,scaledata)

Description setDimScale(dimID,scaledata) sets the scale values for a dimension.

This function corresponds to the SDsetdimscale function in the HDF
library C API.

Examples Create a 2D data set with dimensions 'lat' and 'lon'.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'lat');
sd.setDimScale(dimID,0:10:90);
dimID = sd.getDimID(sdsID,1);
sd.setDimName(dimID,'lon');
sd.setDimScale(dimID, -180:18:179);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.getDimScale

1-4059

matlab.io.hdf4.sd.setDimStrs

Purpose Set label, unit, and format attribute strings

Syntax setDimStrs(dimID,label,unit,format)

Description setDimStrs(dimID,label,unit,format) sets the label, unit, and
format attributes for the dimension identified by dimID.

This function corresponds to the SDsetdimstrs function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
dimID = sd.getDimID(sdsID,0);
sd.setDimName(dimID,'lat');
dimID = sd.getDimID(sdsID,1);
sd.setDimName(dimID,'lon');
sd.setDimStrs(dimID,'Degrees of Longitude','degrees_east','%.2f');
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.getDimStrs

1-4060

matlab.io.hdf4.sd.setExternalFile

Purpose Store data in external file

Syntax setExternalFile(sdsID,extfile,offset)

Description setExternalFile(sdsID,extfile,offset) moves data values (not
metadata) into the external data file extfile starting at the byte offset,
offset.

Data can only be moved once for any given data set. The external file
should be kept with the main file.

This function corresponds to the SDsetexternalfile function in the
HDF library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setExternalFile(sdsID,'myExternalFile.dat',0);
sd.writeData(sdsID,[0 0],rand(10,20));
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.create | sd.writeData

1-4061

matlab.io.hdf4.sd.setFillMode

Purpose Set current fill mode of file

Syntax prevmode = setFillMode(sdID,fillmode)

Description prevmode = setFillMode(sdID,fillmode) returns the previous fill
mode of a file and resets it to fillmode. This setting applies to all data
sets contained in the file identified by sdID.

Possible values of fillmode are 'fill', and 'nofill'. 'fill' is the
default mode and indicates that fill values will be written when the data
set is created. 'nofill' indicates that the fill values will not be written.

When a fixed-size data set is created, the first call to sd.writeData
will fill the entire data set with the default or user-defined fill value if
fillmode is 'fill'. In data sets with an unlimited dimension, if a new
write operation takes place along the unlimited dimension beyond the
last location of the previous write operation, the array locations between
these written areas will be initialized to the user-defined fill value, or
the default fill value if a user-defined fill value has not been specified.

If it is certain that all data set values will be written before any read
operation takes place, there is no need to write the fill values. Calling
sd.setFillMode with 'nofill' can improve performance in this case.

This function corresponds to the SDsetfillmode function in the HDF
library C API.

Examples Write two partial records. Write the first in 'nofill' mode, and the
second with 'fill' mode.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sd.setFillMode(sdID,'nofill');
sdsID = sd.create(sdID,'temperature','double',[10 10 0]);
sd.writeData(sdsID,[0 0 0], rand(5,5));
sd.setFillMode(sdID,'fill');
sd.setFillValue(sdsID,-999);
sd.writeData(sdsID,[0 0 1], rand(5,5));
sd.endAccess(sdsID);

1-4062

matlab.io.hdf4.sd.setFillMode

sd.close(sdID);

See Also sd.setFillValue | sd.getFillValue

1-4063

matlab.io.hdf4.sd.setFillValue

Purpose Set fill value for data set

Syntax setFillValue(sdsID,fillValue)

Description setFillValue(sdsID,fillValue) sets the fill value for a data set. The
fill value must have the same data type as the data set.

This function corresponds to the SDsetfillvalue function in the HDF
library C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setFillValue(sdsID,-999);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.getFillValue

1-4064

matlab.io.hdf4.sd.setNBitDataSet

Purpose Specify nonstandard bit length for data set values

Syntax setNBitDataSet(sdsID,startBit,bitlen,ext,fillone)

Description setNBitDataSet(sdsID,startBit,bitlen,ext,fillone) specifies
that the integer data set identified by sdsID contains data of a
non-standard length defined by startBit and bitlen.

Any length between 1 and 32 bits can be specified. After
setNBitDataset has been called for the data set array, any read or
write operation will involve conversion between the new data length of
the data set array and the data length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field
starting with 0. In a bit field containing the values 01111011, bits 2 and
7 are set to 0 and all the other bits are set to 1. The least significant
bit is bit 0.

The startBit parameter specifies the left-most position of the
variable-length bit field to be written. For example, in the bit field
described in the preceding paragraph a startBit parameter set to 4
would correspond to the fourth bit value of 1 from the right.

The parameter bitlen specifies the number of bits of the variable-length
bit field to be written. This number includes the starting bit and
the count proceeds toward the right end of the bit field - toward the
lower-bit numbers. For example, starting at bit 5 and writing 4 bits of
the bit field described in the preceding paragraph would result in the
bit field 1110 being written to the data set. This would correspond to a
startBit value of 5 and a bitlen value of 4.

The parameter ext specifies whether to use the left-most bit of the
variable-length bit field to sign-extend to the left-most bit of the data
set data. For example, if 9-bit signed integer data is extracted from bits
17-25 and the bit in position 25 is 1, then when the data is read back
from disk, bits 26-31 will be set to 1. Otherwise bit 25 will be 0 and bits
26-31 will be set to 0. The ext parameter can be set to true (or 1) or
false (or 0); specify true to sign-extend.

1-4065

matlab.io.hdf4.sd.setNBitDataSet

The parameter fillone specifies whether to fill the "background" bits
with the value 1 or 0. This parameter is also set to either true (or 1)
or false (or 0).

The "background" bits of a non-standard length data set are the bits
that fall outside of the non-standard length bit field stored on disk. For
example, if five bits of an unsigned 16-bit integer data set located in bits
5 to 9 are written to disk with the parameter fillone set to true (or 1),
then when the data is reread into memory bits 0 to 4 and 10 to 15 would
be set to 1. If the same 5-bit data was written with a fillone value of
false (or 0), then bits 0 to 4 and 10 to 15 would be set to 0.

The operation on fillone is performed before the operation on ext. For
example, using the ext example above, bits 0 to 16 and 26 to 31 will
first be set to the background bit value, and then bits 26 to 31 will be
set to 1 or 0 based on the value of the 25th bit.

This function corresponds to the SDsetnbitdataset in the HDF library
C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','int32',[10 20]);
sd.setNBitDataSet(sdsID,6,4,0,0);
data = int32([1:200]);
data = reshape(data,10,20);
sd.writeData(sdsID,[0 0],data);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.setCompress

1-4066

matlab.io.hdf4.sd.setRange

Purpose Set maximum and minimum range value for data set

Syntax setRange(sdsID,maxval,minval)

Description setRange(sdsID,maxval,minval) sets the maximum and minimum
range values of the data set identified by sdsID. These values form the
"valid_range" attribute for sdsID.

The actual maximum and minimum values of the data set are not
computed. The "valid_range" attribute is for informational purposes
only.

This function corresponds to the SDsetrange function in the HDF
library C interface.

Examples import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
sd.setDataStrs(sdsID,'Temperature','degrees_celsius','%.2f','');
sd.setRange(sdsID,1000,-273.15);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.getRange

1-4067

matlab.io.hdf4.sd.start

Purpose Open HDF file and initialize SD interface

Syntax sdID = start(filename)
sdID = start(filename,access)

Description sdID = start(filename) opens the file filename in read-only mode.
This routine must be called for each file before any other sd calls can
be made on that file.

sdID = start(filename,access) opens the file filename with the
access mode specified by access. This routine must be called before any
other SD interface operations can be made on that file. access can be
one of the following strings:

• 'read'

• 'write'

• 'create'

access defaults to 'read' if not supplied.

This function corresponds to the SDstart function in the HDF library
C API.

Examples import matlab.io.hdf4.*
sdID = sd.start('sd.hdf');
sd.close(sdID);

See Also sd.close

1-4068

matlab.io.hdf4.sd.writeChunk

Purpose Write chunk to data set

Syntax writeChunk(sdsID,origin,dataChunk)

Description writeChunk(sdsID,origin,dataChunk) writes an entire chunk of
data to the data set identified by sdsID. The origin input specifies
the location of the chunk in chunking coordinates, not in data set
coordinates.

This function corresponds to the SDwritechunk function in the HDF
library C API, but because MATLAB uses FORTRAN-style ordering,
the origin parameter is reversed with respect to the C library API.

Examples Write to a 2D chunked and compressed data set. The chunked layout
constitutes a 10-by-5 grid.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[100 50]);
sd.setChunk(sdsID,[10 10],'deflate',5);
for j = 0:9

for k = 0:4
origin = [j k];
data = (1:100) + k*1000 + j*10000;
data = reshape(data,10,10);
sd.writeChunk(sdsID,origin,data);

end
end
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.readChunk | sd.writeData

1-4069

matlab.io.hdf4.sd.writeData

Purpose Write to data set

Syntax writeData(sdsID,data)
writeData(sdsID,start,data)
writeData(sdsID,start,stride,data)

Description writeData(sdsID,data) writes all the data to the data set identified
by sdsID.

writeData(sdsID,start,data) writes a contiguous hyperslab to the
data set. start specifies the zero-based starting index. The number of
values along each dimension is inferred from the size of data.

writeData(sdsID,start,stride,data) writes a strided hyperslab of
data to a grid datafield. The number of elements to write along each
dimension is inferred either from the size of data or from the data set
itself.

start and stride use zero-based indexing.

This function corresponds to the SDreadchunk function in the HDF
library C API, but because MATLAB uses FORTRAN-style ordering,
the start and stride parameters are reversed with respect to the C
library API.

Examples Write to a 2D data set.

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 20]);
data = rand(10,20);
sd.writeData(sdsID,[0 0],data);
sd.endAccess(sdsID);
sd.close(sdID);

Write to a 2D unlimited data set.

1-4070

matlab.io.hdf4.sd.writeData

import matlab.io.hdf4.*
sdID = sd.start('myfile.hdf','create');
sdsID = sd.create(sdID,'temperature','double',[10 0]);
data = rand(10,20);
sd.writeData(sdsID,[0 0],data);
data = rand(10,30);
sd.writeData(sdsID,[0 20],data);
sd.endAccess(sdsID);
sd.close(sdID);

See Also sd.readData

1-4071

matlab.io.hdfeos.gd

Purpose Low-level access to HDF-EOS grid data

Description To use these MATLAB functions, you must be familiar with the
HDF-EOS library C interface. In most cases, the syntax of the MATLAB
function is similar to the syntax of the corresponding HDF-EOS
library function. The functions are implemented as the package
matlab.io.hdfeos.gd. To use this package, prefix the function name
with a package path, or use the import function to add the package to
the current import list, prior to calling the function, for example,

import matlab.io.hdfeos.*
gfid = gd.open(filename,'read');

Access

matlab.io.hdfeos.gd.attach Attach to existing grid

matlab.io.hdfeos.gd.close Close HDF-EOS grid file

matlab.io.hdfeos.gd.detach Detach from existing grid

matlab.io.hdfeos.gd.open Open grid file

Definition

matlab.io.hdfeos.gd.create Create new grid structure

matlab.io.hdfeos.gd.defComp Set grid field compression

matlab.io.hdfeos.gd.defDim Define new dimension within grid

matlab.io.hdfeos.gd.defField Define new data field within grid

matlab.io.hdfeos.gd.defOrigin Define origin of pixels in grid

matlab.io.hdfeos.gd.defPixReg Define pixel registration within
grid

matlab.io.hdfeos.gd.defProj Define grid projection

matlab.io.hdfeos.gd.writeBlkSomOffsetWrite Block SOM offset

1-4072

matlab.io.hdfeos.gd

Basic I/O

matlab.io.hdfeos.gd.getFillValue Fill value for specified field

matlab.io.hdfeos.gd.readAttr Read grid attribute

matlab.io.hdfeos.gd.readField Read data from grid field

matlab.io.hdfeos.gd.setFillValue Set fill value for specified field

matlab.io.hdfeos.gd.writeAttr Write grid attribute

matlab.io.hdfeos.gd.writeField Write data to grid field

Inquiry

matlab.io.hdfeos.gd.compInfo Compression information for field

matlab.io.hdfeos.gd.dimInfo Length of dimension

matlab.io.hdfeos.gd.fieldInfo Information about data field

matlab.io.hdfeos.gd.gridInfo Position and size of grid

matlab.io.hdfeos.gd.inqAttrs Names of grid attributes

matlab.io.hdfeos.gd.inqDims Information about dimensions
defined in grid

matlab.io.hdfeos.gd.inqFields Information about data fields
defined in grid

matlab.io.hdfeos.gd.inqGrid Names of grids in file

matlab.io.hdfeos.gd.nEntries Number of specified objects

matlab.io.hdfeos.gd.originInfo Origin code

matlab.io.hdfeos.gd.pixRegInfo Pixel registration code

matlab.io.hdfeos.gd.projInfo GCTP projection information
about grid

matlab.io.hdfeos.gd.readBlkSomOffsetRead Block SOM offset

1-4073

matlab.io.hdfeos.gd

Subsetting

matlab.io.hdfeos.gd.defBoxRegion Define region of interest by
latitude and longitude

matlab.io.hdfeos.gd.defVrtRegion Define vertical subset region

matlab.io.hdfeos.gd.extractRegion Read region of interest from field

matlab.io.hdfeos.gd.getPixels Pixel rows and columns for
latitude/longitude pairs

matlab.io.hdfeos.gd.getPixValues Read data values for specified
pixels

matlab.io.hdfeos.gd.regionInfo Information about subsetted
region

Tiling

matlab.io.hdfeos.gd.defTile Define tiling parameters

matlab.io.hdfeos.gd.readTile Read single tile of data from field

matlab.io.hdfeos.gd.setTileComp Set tiling and compression for
field with fill value

matlab.io.hdfeos.gd.tileInfo Tile size of grid field

matlab.io.hdfeos.gd.writeTile Write tile to field

Utility

matlab.io.hdfeos.gd.ij2ll Convert row and column space to
latitude and longitude

matlab.io.hdfeos.gd.ll2ij Convert latitude and longitude to
row and column space

1-4074

matlab.io.hdfeos.gd

matlab.io.hdfeos.gd.sphereCodeToNameName corresponding to GCTP
sphere code

matlab.io.hdfeos.gd.sphereNameToCodeNumeric GCTP code
corresponding to sphere name

1-4075

matlab.io.hdfeos.gd.attach

Purpose Attach to existing grid

Syntax gridID = attach(gfID,gridName)

Description gridID = attach(gfID,gridName) attaches to the grid dataset
identified by gridName in the file identified by gfID. The gridID output
is the identifier for the grid dataset.

This function corresponds to the GDattach function in the HDF-EOS
library C API.

Examples Attach to the grid named 'PolarGrid' in the file 'grid.hdf'.

import matlab.io.hdfeos.*
gfID = gd.open('grid.hdf');
gridID = gd.attach(gfID,'PolarGrid');
gd.detach(gridID);
gd.close(gfID);

See Also gd.detach | gd.readField | gd.inqGrid

1-4076

matlab.io.hdfeos.gd.close

Purpose Close HDF-EOS grid file

Syntax close(gfID)

Description close(gfID) closes an HDF-EOS grid file identified by gfID.

This function corresponds to the GDclose function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
gfID = gd.open('grid.hdf');
gd.close(gfID);

See Also gd.open | gd.create

1-4077

matlab.io.hdfeos.gd.compInfo

Purpose Compression information for field

Syntax [compCode,parms] = compInfo(gridID,fieldname)

Description [compCode,parms] = compInfo(gridID,fieldname) returns the
compression code and compression parameters for a given field. Refer
to gd.defComp for a description of various compression schemes and
parameters.

This function corresponds to the GDcompinfo function in the HDF-EOS
library C API.

Examples Define a 'Pressure' field with run-length encoding compression and
an 'Opacity' field with gzip compression.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[compCode,compParms] = gd.compInfo(gridID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also gd.defComp

1-4078

matlab.io.hdfeos.gd.create

Purpose Create new grid structure

Syntax gridID = create(gfID,gridName,xdim,ydim,upLeft,lowRight)

Description gridID = create(gfID,gridName,xdim,ydim,upLeft,lowRight)
creates a new grid structure where gfID is the grid file identifier.
gridName is the name of the new grid. xdim and ydim define the size of
the grid. upLeft is a two-element vector containing the location of the
upper left pixel, and lowRight is a two-element vector containing the
location of the lower right pixel.

Note upLeft and lowRight are in units of meters for all GCTP
projections other than the geographic and bcea projections, which
should have units of packed degrees.

Note For certain projections, upLeft and lowRight can be given as [].

• Polar Stereographic projection of an entire hemisphere.

• Goode Homolosine projection of the entire globe.

• Lambert Azimuthal entire polar or equatorial projection.

Note MATLAB uses Fortran-style ordering, but the HDF-EOS library
uses C-style ordering.

This function corresponds to the GDcreate function in the HDF-EOS
library C API.

1-4079

matlab.io.hdfeos.gd.create

Examples Create a polar stereographic grid of the northern hemisphere.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
gd.detach(gridID);
gd.close(gfid);

Create a UTM grid bounded by 54 E to 60 E longitude and 20 N to
30 N latitude. Divide the grid into 120 bins along the x-axis and 200
bins along the y-axis.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
uplft = [210584.50041 3322395.95445];
lowrgt = [813931.10959 2214162.53278];
gridID = gd.create(gfid,'UTMGrid',120,200,uplft,lowrgt);
gd.detach(gridID);
gd.close(gfid);

See Also gd.detach | gd.defProj | gd.gridInfo

1-4080

matlab.io.hdfeos.gd.defBoxRegion

Purpose Define region of interest by latitude and longitude

Syntax regionID = defBoxRegion(gridID,cornerLat,cornerLon)

Description regionID = defBoxRegion(gridID,cornerLat,cornerLon) defines a
latitude-longitude box region as a subset region for a grid. regionID
can be used to read all the entries of a data field within the region.

This function corresponds to the GDdefboxregion function in the
HDF-EOS library C API.

Examples Define a region of interest between 20 and 50 degrees latitude and
between -90 and -60 degrees longitude.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
cornerlat = [20 50];
cornerlon = [-90 -60];
regionID = gd.defBoxRegion(gridID,cornerlat,cornerlon);
data = gd.extractRegion(gridID,regionID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also gd.extractRegion

1-4081

matlab.io.hdfeos.gd.defComp

Purpose Set grid field compression

Syntax defComp(gridID,compscheme,compparm)

Description defComp(gridID,compscheme,compparm) sets the HDF field
compression for subsequent field definitions. The compression scheme
does not apply to one-dimensional fields. compscheme can be one of
the following strings.

'rle' Run-length encoding

'skphuff' Skipping Huffman

'deflate' Gzip deflate

'none' No compression

When the compression scheme is 'deflate', compparm is the deflate
compression level, an integer between 0 and 9. compparm can be omitted
for the other compression schemes.

If a field is defined with compression, it must be written with a single
call to gd.writeField. If this is not possible, you should consider using
tiling.

This function corresponds to the GDdefcomp function in the HDF-EOS
library C API.

Examples Create a grid with a polar stereographic Pressure field using run-length
encoding, and then an Opacity field with deflate compression.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
projparm = zeros(1,13);
projparm(6) = 90000000;
gd.defProj(gridID,'ps',[],'WGS 84',projparm);
dims = { 'XDim', 'YDim' };
gd.defComp(gridID,'rle');

1-4082

matlab.io.hdfeos.gd.defComp

gd.defField(gridID,'Pressure',dims,'float');
gd.defComp(gridID,'deflate',5);
gd.defField(gridID,'Opacity',dims,'float');
gd.detach(gridID);
gd.close(gfid);

See Also gd.defField | gd.defTile

1-4083

matlab.io.hdfeos.gd.defDim

Purpose Define new dimension within grid

Syntax defDim(gridID,dimname,dimlen)

Description defDim(gridID,dimname,dimlen) defines a new dimension named
dimname with length dimlen in the grid structure identified by gridID.

To specify an unlimited dimension, you can use either 0 or 'unlimited'
for dimlen.

This function corresponds to the GDdefdim function in the HDF-EOS
library C API.

Examples Define a dimension 'Band' with length of 15 and an unlimited
dimension 'Time'.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
gd.defDim(gridID,'Band',15);
gd.defDim(gridID,'Time',0);
gd.detach(gridID);
gd.close(gfid);

See Also gd.defField | gd.dimInfo

1-4084

matlab.io.hdfeos.gd.defField

Purpose Define new data field within grid

Syntax defField(gridID,fieldname,dimlist,dtype)
defField(gridID,fieldname,dimlist,dtype,mergeCode)

Description defField(gridID,fieldname,dimlist,dtype) defines data fields for a
grid specified by gridID. The fieldname input is the name of the new
field. dimlist is a cell array of geolocation dimensions and should be
listed in FORTRAN-style order, that is, the fastest varying dimension
should be listed first. dimlist can also be a string if there is only one
dimension. dtype is the data type of the field.

defField(gridID,fieldname,dimlist,dtype,mergeCode) defines
a data field with a specific merge code. mergeCode can be either
'nomerge' or 'automerge'. The mergeCode input defaults to 'nomerge'
if not provided.

This function corresponds to the GDdeffield function in the HDF
library C API, but because MATLAB uses FORTRAN-style ordering,
the dimlist parameter is reversed with respect to the C library API.

Examples Define a single precision grid field 'Temperature' with dimensions
'XDim' and 'YDim'. Then define a single precision field 'Spectra' with
dimensions 'XDim', 'YDim', and 'Bands'.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
xdim = 120; ydim = 200;
gridID = gd.create(gfid,'geo',xdim,ydim,[],[]);
gd.defProj(gridID,'geo',[],[],[]);
dimlist = {'XDim','YDim'};
gd.defField(gridID,'Temperature',dimlist,'single');
gd.defDim(gridID,'Bands',3);
dimlist = {'XDim','YDim','Bands'};
gd.defField(gridID,'Spectra',dimlist,'uint8');
gd.detach(gridID);
gd.close(gfid);

1-4085

matlab.io.hdfeos.gd.defField

See Also gd.create | gd.defDim

1-4086

matlab.io.hdfeos.gd.defOrigin

Purpose Define origin of pixels in grid

Syntax defOrigin(gridID,originCode)

Description defOrigin(gridID,originCode) defines the origin of pixels in a grid.
gridID is the identifier of the grid, and originCode can be one of the
following four strings.

'ul' Upper-left

'ur' Upper-right

'll' Lower-left

'lr' Lower-right

You can select any corner of the grid pixel as the origin. If this routine
is not invoked, the grid defaults to using the upper-left corner for the
origin.

This function corresponds to the GDdeforigin function in the HDF-EOS
library C API.

Examples Create a polar stereographic grid with the origin of the grid pixel in the
lower right corner.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
projparm = zeros(1,13);
projparm(6) = 90000000;
gd.defProj(gridID,'ps',[],'WGS 84',projparm);
gd.defOrigin(gridID,'lr');
gd.detach(gridID);
gd.close(gfid);

See Also gd.originInfo | gd.defPixReg

1-4087

matlab.io.hdfeos.gd.defPixReg

Purpose Define pixel registration within grid

Syntax defPixReg(gridID,pixRegCode)

Description defPixReg(gridID,pixRegCode) defines whether the pixel center
or pixel corner is used when requesting the location (longitude and
latitude) of a given pixel. pixRegCode can be one of the following strings.

'center' Center of pixel cell

'corner' Corner of pixel cell

If this routine is not invoked, the pixel registration is 'center'.

This function corresponds to the GDdefpixreg function in the HDF-EOS
library.

Examples Define a grid with pixel registration in the center.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
projparm = zeros(1,13);
projparm(6) = 90000000;
gd.defProj(gridID,'ps',[],'WGS 84',projparm);
gd.defPixReg(gridID,'corner');
gd.detach(gridID);
gd.close(gfid);

See Also gd.defOrigin | gd.pixRegInfo

1-4088

matlab.io.hdfeos.gd.defProj

Purpose Define grid projection

Syntax defProj(gridID,projCode,zoneCode,sphereCode,projParm)

Description defProj(gridID,projCode,zoneCode,sphereCode,projParm) defines
a GCTP projection on the grid specified by gridID. The projCode
argument can be one of the following strings.

'geo' Geographic

'utm' Universal Transverse Mercator

'albers' Albers Canonical Equal Area

'lamcc' Lambert Conformal Conic

'ps' Polar Stereographic

'polyc' Polyconic

'tm' Transverse Mercator

'lamaz' Lambert Azimuthal Equal Area

'snsoid' Sinusoidal

'hom' Hotine Oblique Mercator

'som' Space Oblique Mercator

'good' Interrupted Goode Homolosine

'cea' Cylindrical Equal Area

'bcea' Behrmann Cylindrical Equal
Area

'isinus' Integerized Sinusoidal

If projCode is 'geo', then zoneCode, sphereCode, and projParm should
be specified as []. Any other values for these parameters are ignored.

zoneCode is the Universal Transverse Mercator zone code. It should be
specified as -1 for other projections.

1-4089

matlab.io.hdfeos.gd.defProj

sphereCode is the name of the GCTP spheroid or the corresponding
numeric code.

projParm is a vector of up to 13 elements containing projection-specific
parameters. For more details about projCode, zoneCode, sphereCode,
and projParm, see Chapter 6 of HDF-EOS Library Users Guide for the
ECS Project, Volume 1: Overview and Examples.

This function corresponds to the GDdefproj function in the HDF library
C API.

Examples Create a UTM grid bounded by 54 E to 60 E longitude and 20 N to 30 N
latitude (zone 40). Divide the grid into 120 bins along the x-axis and
200 bins along the y-axis.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
uplft = [210584.50041 3322395.95445];
lowrgt = [813931.10959 2214162.53278];
gridID = gd.create(gfid,'UTMGrid',120,200,uplft,lowrgt);
gd.defProj(gridID,'utm',40,'Clarke 1866',[]);
gd.detach(gridID);
gd.close(gfid);

Add a polar stereographic projection of the northern hemisphere with
true scale at 90 N, 0 longitude below the pole using the WGS 84
spheroid.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'PolarGrid',100,100,[],[]);
projparm = zeros(1,13);
projparm(6) = 90000000;
gd.defProj(gridID,'ps',[],'WGS 84',projparm);
gd.detach(gridID);
gd.close(gfid);

1-4090

matlab.io.hdfeos.gd.defProj

See Also gd.projInfo | gd.create | gd.sphereCodeToName

1-4091

matlab.io.hdfeos.gd.defTile

Purpose Define tiling parameters

Syntax defTile(gridID,tileDims)

Description defTile(gridID,tileDims) defines tiling dimensions for subsequent
field definitions. If tileDims is [], then subsequently defined fields
will have no tiling.

This function corresponds to the GDdeftile function in the HDF-EOS
library C API, but because MATLAB uses FORTRAN-style ordering,
the tileDims parameter is reversed with respect to the C library API.

Examples Define a field with tiling, then a subsequent field with no tiling.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
gridID = gd.create(gfid,'GeoGrid',120,200,[],[]);
gd.defDim(gridID,'Bands',3);
gd.defProj(gridID,'geo',[],[],[]);
gd.defTile(gridID,[30 50 1]);
dimlist = {'XDim','YDim','Bands'};
gd.defField(gridID,'Spectra',dimlist,'float');
gd.defTile(gridID,[]);
dimlist = {'XDim','YDim'};
gd.defField(gridID,'Temperature',dimlist,'int32');
gd.detach(gridID);
gd.close(gfid);

See Also gd.tileInfo | gd.defField

1-4092

matlab.io.hdfeos.gd.defVrtRegion

Purpose Define vertical subset region

Syntax out_RID = defVrtRegion(gridID,regionID,vobj,vRange)

Description out_RID = defVrtRegion(gridID,regionID,vobj,vRange) defines
a vertical subset region and can be used on either a monotonic field or
contiguous elements of a dimension.

regionID should be 'noprevsub' if no prior subsetting has occurred.
Otherwise it should be a value as returned from a previous subsetting
routine.

vobj is the name of either the dimension or field to subset. If vobj is a
dimension, it should be prefixed with 'DIM:'.

vRange is the minimum and maximum range for the vertical subset.

This function corresponds to the GDdefvrtregion function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
range = [333 667];
regionID = gd.defVrtRegion(gridID,'noprevsub','Height',range);
data = gd.extractRegion(gridID,regionID,'pressure');
gd.detach(gridID);
gd.close(gfid);

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
range = [3 5];
regionID = gd.defVrtRegion(gridID,'noprevsub','DIM:Height',range);
data = gd.extractRegion(gridID,regionID,'pressure');
gd.detach(gridID);
gd.close(gfid);

1-4093

matlab.io.hdfeos.gd.defVrtRegion

See Also gd.extractRegion

1-4094

matlab.io.hdfeos.gd.detach

Purpose Detach from existing grid

Syntax detach(gridID)

Description detach(gridID) detaches from the grid identified by gridID.

This function corresponds to the GDdetach function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
gfID = gd.open('grid.hdf');
gridID = gd.attach(gfID,'PolarGrid');
gd.detach(gridID);
gd.close(gfID);

See Also gd.attach

1-4095

matlab.io.hdfeos.gd.dimInfo

Purpose Length of dimension

Syntax dimlen = diminfo(gridID,dimname)

Description dimlen = diminfo(gridID,dimname) retrieves the length of the
specified user-defined dimension.

Please note that the two extents used to create the grid are not
considered user-defined dimensions. To retrieve the length of XDim and
YDim, use gd.gridInfo. This function corresponds to the GDdiminfo
function in the HDF-EOS library C API.

Examples Inquire about a 'Bands' dimension.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
dimlen = gd.dimInfo(gridID,'Height');
gd.detach(gridID);
gd.close(gfid);

See Also gd.defDim | gd.gridInfo

1-4096

matlab.io.hdfeos.gd.extractRegion

Purpose Read region of interest from field

Syntax data = extractRegion(gridID,regionID,fieldname)

Description data = extractRegion(gridID,regionID,fieldname) extract data
from a subsetted region.

This routine corresponds to the GDextractregion function in the
HDF-EOS library C API.

Examples Define and extract a region of interest between 20 and 50 degrees
latitude and between -90 and -60 degrees longitude.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
cornerlat = [20 50];
cornerlon = [-90 -60];
regionID = gd.defBoxRegion(gridID,cornerlat,cornerlon);
data = gd.extractRegion(gridID,regionID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also gd.defBoxRegion | gd.defVrtRegion

1-4097

matlab.io.hdfeos.gd.fieldInfo

Purpose Information about data field

Syntax [dims,ntype,dimlist] = fieldInfo(gridID,fieldname)

Description [dims,ntype,dimlist] = fieldInfo(gridID,fieldname) returns
information about a specific geolocation or data field in the grid. dims is
a vector containing the dimension sizes of the field. ntype is a string
containing the HDF number type of the field. dimlist is a cell array of
strings containing the list of dimension names.

This function corresponds to the GDfieldinfo function in the HDF-EOS
library C API, but because MATLAB uses FORTRAN-style ordering,
the dimlist parameter is reversed with respect to the C library API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
[dims,ntype,dimlist] = gd.fieldInfo(gridID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also gd.defField

1-4098

matlab.io.hdfeos.gd.getFillValue

Purpose Fill value for specified field

Syntax fillvalue = getFillValue(gridID,fieldname)

Description fillvalue = getFillValue(gridID,fieldname) retrieves the fill
value for the specified field.

This function corresponds to the GDgetfillvalue function in the
HDF-EOS library C API.

Examples Return the fill value for the 'ice_temp' field in the 'PolarGrid' grid.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
fillvalue = gd.getFillValue(gridID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also gd.setFillValue

1-4099

matlab.io.hdfeos.gd.getPixels

Purpose Pixel rows and columns for latitude/longitude pairs

Syntax [row,col] = getPixels(gridID,lat,lon)

Description [row,col] = getPixels(gridID,lat,lon) converts latitude/longitude
pairs into zero-based pixel row and column coordinates. The origin is
the upper left-hand corner of the grid pixel. If the latitude/longitude
pairs are outside the grid, then row and col are -1.

This function corresponds to the GDgetpixels function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
cornerlat = [20 50];
cornerlon = [-90 -60];
[row,col] = gd.getPixels(gridID,cornerlat,cornerlon);
gd.detach(gridID);
gd.close(gfid);

See Also gd.getPixValues

1-4100

matlab.io.hdfeos.gd.getPixValues

Purpose Read data values for specified pixels

Syntax data = getPixValues(gridID,rows,cols,fieldname)

Description data = getPixValues(gridID,rows,cols,fieldname) reads data
values for the pixels specified by the zero-based rows and cols
coordinates. All entries along the non-geographic dimensions, i.e. NOT
XDim and YDim, are returned.

This function corresponds to the GDgetpixvalues function in the
HDF-EOS library C API.

Examples Read the grid field’s corner values.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
rows = [0 99 99 0];
cols = [0 0 99 99];
data = gd.getPixValues(gridID,rows,cols,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also gd.getPixels | gd.readField | gd.defBoxRegion |
gd.extractRegion

1-4101

matlab.io.hdfeos.gd.gridInfo

Purpose Position and size of grid

Syntax [xDim,yDim,upLeft,lowRight] = gridInfo(gridID)

Description [xDim,yDim,upLeft,lowRight] = gridInfo(gridID) returns the size
of a grid as well as the upper left and lower right corners of the grid.

Note upLeft and lowRight are in units of meters for all GCTP
projections other than the geographic and bcea projections, which will
have units of packed degrees.

This function corresponds to the GDgridinfo function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[xdimsize,ydimsize,upleft,lowright] = gd.gridInfo(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also gd.create

1-4102

matlab.io.hdfeos.gd.ij2ll

Purpose Convert row and column space to latitude and longitude

Syntax [lat,lon] = ij2ll(gridID,row,col)

Description [lat,lon] = ij2ll(gridID,row,col) converts a grid’s row and
column coordinates to latitude and longitude in decimal degrees.

row and col are zero-based and defined such that col increases
monotonically with the XDim dimension and row increases monotonically
with the YDim dimension in the HD-EOS library.

This routine corresponds to the GDij2ll function in the HDF-EOS C
API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[xdim,ydim] = gd.gridInfo(gridID);
r = 0:(xdim-1);
c = 0:(ydim-1);
[Col,Row] = meshgrid(c,r);
[lat,lon] = gd.ij2ll(gridID,Row,Col);
gd.detach(gridID);
gd.close(gfid);

See Also gd.ll2ij | gd.readField

1-4103

matlab.io.hdfeos.gd.inqAttrs

Purpose Names of grid attributes

Syntax attrList = inqAttrs(gridID)

Description attrList = inqAttrs(gridID) returns the list of grid attribute
names. attrList is a cell array.

This function corresponds to the GDinqattrs function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
attrList = gd.inqAttrs(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also gd.readAttr | gd.writeAttr

1-4104

matlab.io.hdfeos.gd.inqDims

Purpose Information about dimensions defined in grid

Syntax [dimnames,dimlens] = inqDims(gridID)

Description [dimnames,dimlens] = inqDims(gridID) returns the names of the
dimensions dimnames in a cell array and their respective lengths
dimlens. This does not include the grid extent dimensions XDim and
YDim.

This function corresponds to the GDinqdims function in the HDF-EOS
library C API, but because MATLAB uses FORTRAN-style ordering,
the dimnames and dimlens parameters are reversed with respect to the
C library API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
[dims,dimlens] = gd.inqDims(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also gd.defDim

1-4105

matlab.io.hdfeos.gd.inqFields

Purpose Information about data fields defined in grid

Syntax [fldList,fldRank,fldType] = inqFields(gridID)

Description [fldList,fldRank,fldType] = inqFields(gridID) returns the list
of fields fldList as a cell array. fldRank contains the rank of each data
field. fldType is a cell array containing the data type of each data field.

This function corresponds to the GDinqfields function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[fldlist,fldrank,fldtype] = gd.inqFields(gridID);
gd.detach(gridID);
gd.close(gfid);
for j = 1:numel(fldrank)

fprintf('%s: Rank %d, datatype %s\n', fldlist{j},fldrank(j),fldtype{j
end

See Also gd.defField

1-4106

matlab.io.hdfeos.gd.inqGrid

Purpose Names of grids in file

Syntax grids = inqGrid(filename)

Description grids = inqGrid(filename) returns the names of all grids in the
given file. grids is a cell array.

This function corresponds to the GDinqgrid function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
grids = gd.inqGrid('grid.hdf');

See Also gd.create | sw.inqSwath

1-4107

matlab.io.hdfeos.gd.ll2ij

Purpose Convert latitude and longitude to row and column space

Syntax [row,col] = ll2ij(gridID,lat,lon)

Description [row,col] = ll2ij(gridID,lat,lon) converts latitude and longitude
coordinates to a pre-defined grid’s row and column coordinates.

row and col are zero-based and defined such that col increases
monotonically with the XDim dimension and row increases monotonically
with the YDim dimension in the HD-EOS library.

This routine corresponds to the GDll2ij function in the HDF-EOS C
API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
lat = [46 46 42 42];
lon = [-71 -67 -67 -71];
[row,col] = gd.ll2ij(gridID,lat,lon);
gd.detach(gridID);
gd.close(gfid);

See Also gd.ij2ll

1-4108

matlab.io.hdfeos.gd.nEntries

Purpose Number of specified objects

Syntax nentries = nEntries(gridID,entType)

Description nentries = nEntries(gridID,entType) returns the number of
specified objects in a grid. entType can be either 'dims' or 'fields'.

This function corresponds to the GDnentries function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
fid = gd.open('grid.hdf');
gridID = gd.attach(fid,'PolarGrid');
ndims = gd.nEntries(gridID,'dims');
nflds = gd.nEntries(gridID,'fields');
gd.detach(gridID);
gd.close(fid);
fprintf('The number of dimensions is %d.\n', ndims);
fprintf('The number of fields is %d.\n', nflds);

See Also gd.inqGrid

1-4109

matlab.io.hdfeos.gd.open

Purpose Open grid file

Syntax gfid = open(filename,access)

Description gfid = open(filename,access) opens or creates an HDF-EOS grid
file identified by filename and returns a file ID. access can be one of
the following string values:

'read' Read-only

'rdwr' Read-write

'create' Creates a file, deleting it if it
already exists

If access is not provided, it defaults to 'read'.

This function corresponds to the GDopen function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gd.close(gfid);

See Also gd.attach | gd.close

1-4110

matlab.io.hdfeos.gd.originInfo

Purpose Origin code

Syntax originCode = originInfo(gridID)

Description originCode = originInfo(gridID) retrieves the origin code for the
grid specified by gridID. The originCode output is one of the following
four string values.

'ul' Upper-left

'ur' Upper-right

'll' Lower-left

'lr' Lower-right

This function corresponds to the GDorigininfo routine in the HDF-EOS
library.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
origin = gd.originInfo(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also gd.defOrigin

1-4111

matlab.io.hdfeos.gd.pixRegInfo

Purpose Pixel registration code

Syntax pixRegCode = pixRegInfo(gridID)

Description pixRegCode = pixRegInfo(gridID) retrieve the pixel registration
code for the grid identified by gridID. The pixRegCode output can be
one of the following strings.

'center' Center of pixel cell

'corner' Corner of pixel cell

This function corresponds to the GDpixreginfo routine in the HDF-EOS
library.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
code = gd.pixRegInfo(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also gd.defPixReg

1-4112

matlab.io.hdfeos.gd.projInfo

Purpose GCTP projection information about grid

Syntax [projCode,zoneCode,sphereName,projParm] = projInfo(gridID)

Description [projCode,zoneCode,sphereName,projParm] = projInfo(gridID)
returns the GCTP projection code, zone code, spheroid, and projection
parameters for the grid identified by gridID.

zoneCode is -1 if projCode is anything other than 'UTM'.

This function corresponds to the GDprojinfo function in the HDF-EOS
library C API.

For details about the GCTP projection code, zone code, spheroid code,
and projection parameters, please consult the HDF-EOS User’s Guide.

Examples import matlab.io.hdfeos.*
fid = gd.open('grid.hdf');
gridID = gd.attach(fid,'PolarGrid');
[projCode,zoneCode,sphereCode,projParm] = gd.projInfo(gridID);
gd.detach(gridID);
gd.close(fid);

See Also gd.defProj | gd.sphereNameToCode | gd.sphereCodeToName

1-4113

matlab.io.hdfeos.gd.readAttr

Purpose Read grid attribute

Syntax data = readAttr(gridID,attrname)

Description data = readAttr(gridID,attrname) reads a grid attribute.

This function corresponds to the GDreadattr function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
data = gd.readAttr(gridID,'creation_date');
gd.detach(gridID);
gd.close(gfid);

See Also gd.writeAttr

1-4114

matlab.io.hdfeos.gd.readBlkSomOffset

Purpose Read Block SOM offset

Syntax offset = readBlkSomOffset(GID)

Description offset = readBlkSomOffset(GID) reads the block SOM offset values,
in pixels, from a standard SOM (Space Oblique Mercator) projection.
offset is a vector of offset values for SOM projection data. This routine
can only be used with grids that use the SOM projection.

This function corresponds to the GDblkSOMoffset function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
lowright = [30521379.68485 1152027.64253];
upleft = [-11119487.42844 8673539.24806];
gridID = gd.create(gfid,'SOM',120,60,upleft,lowright);
projparm(1) = 6378137;
projparm(2) = 0.006694348;
projparm(4) = 98096360; % 98.161 in DDDMMMSSS
projparm(5) = 87069061; % 87.112 in DDDMMMSSS
projparm(9) = 0.068585416*1440;
projparm(10) = 0.0;
projparm(12) = 6;
gd.defProj(gridID,'som',[],[],projparm);
gd.writeBlkSomOffset(gridID,[5 10 12 8 2]);
gd.detach(gridID);
gd.close(gfid);
gfid = gd.open('myfile.hdf');
gridID = gd.attach(gfid,'SOM');
blk = gd.readBlkSomOffset(gridID);
gd.detach(gridID);
gd.close(gfid);

See Also gd.writeBlkSomOffset

1-4115

matlab.io.hdfeos.gd.readField

Purpose Read data from grid field

Syntax data = readField(gridID,fieldname)
data = readField(gridID,fieldname,start,count)
data = readField(gridID,fieldname,start,count,stride)
[data,lat,lon] = readField(___)

Description data = readField(gridID,fieldname) reads the entire grid field
identified by fieldname in the grid identified by gridID.

data = readField(gridID,fieldname,start,count) reads a
contiguous hyperslab of data from the field. start specifies the
zero-based starting index of the hyperslab. count specifies the number
of values to read along each dimension.

data = readField(gridID,fieldname,start,count,stride) reads
a strided hyperslab of data from the field. stride specifies the
inter-element spacing along each dimension.

[data,lat,lon] = readField(___) reads the data and the associated
geo-coordinates from the grid field. This syntax is only allowed when
the leading two dimensions of the grid are 'XDim' and 'YDim'.

This function corresponds to the GDreadfield function in the HDF-EOS
library C API.

Examples Read the data, latitude, and longitude for the 'ice_temp' field.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[data,lat,lon] = gd.readField(gridID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

Read only the first 4x4 hyperslab of data, latitude, and longitude for
the 'ice_temp' field.

1-4116

matlab.io.hdfeos.gd.readField

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
[data2,lat2,lon2] = gd.readField(gridID,'ice_temp',[0 0], [4 4]);
gd.detach(gridID);
gd.close(gfid);

See Also gd.writeField

1-4117

matlab.io.hdfeos.gd.readTile

Purpose Read single tile of data from field

Syntax data = readTile(gridID,fieldname,tileCoords)

Description data = readTile(gridID,fieldname,tileCoords) reads a single of
data from a field. If the data is to be read tile by tile, this routine is more
efficient than gd.readField. In all other cases, use gd.readField. The
tileCoords argument has the form [rownum colnum] and is defined in
terms of the tile coordinates, not the data elements.

This function corresponds to the GDreadtile function in the HDF-EOS
library C API, but because MATLAB uses FORTRAN-style ordering,
the tileCoords parameter is reversed with respect to the C library API.

Examples Define a field with a 2-by-3 tiling scheme.

import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
for h = 0:9

data = gd.readTile(gridID,'pressure',[0 0 h]);
end
gd.detach(gridID);
gd.close(gfid);

See Also gd.writeTile | gd.tileInfo

1-4118

matlab.io.hdfeos.gd.regionInfo

Purpose Information about subsetted region

Syntax [dims,upLeft,lowRight] = regionInfo(gridID,regionID,fieldname)

Description [dims,upLeft,lowRight] =
regionInfo(gridID,regionID,fieldname) returns the dimensions
and corner points for the specified field of a subsetted region identified
by regionID in the grid identified by gridID.

This function corresponds to the GDregioninfo function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf','read');
gridID = gd.attach(gfid,'PolarGrid');
cornerlat = [20 50];
cornerlon = [-90 -60];
regionID = gd.defBoxRegion(gridID,cornerlat,cornerlon);
[dims,upleft,lowright] = gd.regionInfo(gridID,regionID,'ice_temp');
data = gd.extractRegion(gridID,regionID,'ice_temp');
gd.detach(gridID);
gd.close(gfid);

See Also gd.defBoxRegion | gd.defVrtRegion

1-4119

matlab.io.hdfeos.gd.setFillValue

Purpose Set fill value for specified field

Syntax setFillValue(gridID,fieldname,fillvalue)

Description setFillValue(gridID,fieldname,fillvalue) sets the fill value for
the specified field. The fill value should have the same data type as
the field.

This function corresponds to the GDsetfillvalue function in the
HDF-EOS library C API.

Examples Create a new double-precision field with a fill value of -1.

import matlab.io.hdfeos.*
srcFile = fullfile(matlabroot,'toolbox','matlab','imagesci','grid.hdf');
copyfile(srcFile,'myfile.hdf');
fileattrib('myfile.hdf','+w');
gfid = gd.open('myfile.hdf','rdwr');
gridID = gd.attach(gfid,'PolarGrid');
gd.defComp(gridID,'none');
gd.defField(gridID,'newfield',{'XDim','YDim'},'double');
gd.setFillValue(gridID,'newfield',-1);
gd.detach(gridID);
gd.close(gfid);

See Also gd.getFillValue

1-4120

matlab.io.hdfeos.gd.setTileComp

Purpose Set tiling and compression for field with fill value

Syntax setTileComp(gridID,fieldname,tilesize,compCode,compParm)

Description setTileComp(gridID,fieldname,tilesize,compCode,compParm)
sets the tiling and compression for a field that had a fill value. This
function must be applied after gd.defField and gd.setFillValue. The
compCode argument can be one of the following strings.

'rle' Run-length encoding

'skphuff' Skipping Huffman

'deflate' Deflate

'none' No compression

compParm need only be specified when the compression scheme is
'deflate', and then must be an integer between 0 and 9.

This function corresponds to the GDsettilecomp function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the tilesize parameter is reversed with respect to the C
library API.

Examples Define a temperature field with a 2-by-2 tiling scheme, a fill value of
-999, and deflate compression.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
upleft = [210584.50041 3322395.95445];
lowright = [813931.10959 2214162.53278];
gridID = gd.create(gfid,'UTMGrid',120,200,upleft,lowright);
spherecode = 0; zonecode = 40;
projparm = zeros(1,13);
gd.defProj(gridID,'utm',zonecode,spherecode,projparm);
gd.defDim(gridID,'Time',10);
gd.defField(gridID,'Pollution',{'XDim','YDim','Time'},'float');
gd.setFillValue(gridID,'Pollution',single(7));

1-4121

matlab.io.hdfeos.gd.setTileComp

gd.setTileComp(gridID,'Pollution',[40 20 1],'deflate',5);
gd.detach(gridID);
gd.close(gfid);

See Also gd.defTile | gd.defComp

1-4122

matlab.io.hdfeos.gd.sphereCodeToName

Purpose Name corresponding to GCTP sphere code

Syntax name = sphereCodeToName(code)

Description name = sphereCodeToName(code) returns the name for the spheroid
corresponding to the spheroid code. The list of supported GCTP
spheroids is as follows:

GCTP Spheroid Code Spheroid Name

0 Clarke 1866

1 Clarke 1880

2 Bessel

3 International 1967

4 International 1909

5 WGS 72

6 Everest

7 WGS 66

8 GRS 1980

9 Airy

10 Modified Airy

11 Modified Everest

12 WGS 84

13 Southeast Asia

14 Australian National

15 Krassovsky

16 Hough

17 Mercury 1960

1-4123

matlab.io.hdfeos.gd.sphereCodeToName

GCTP Spheroid Code Spheroid Name

18 Modified Mercury 1968

19 Sphere of radius 6370997m

20 Sphere of radius 6371228m

21 Sphere of radius 6371007.181m

See Also gd.defProj | gd.sphereNameToCode

1-4124

matlab.io.hdfeos.gd.sphereNameToCode

Purpose Numeric GCTP code corresponding to sphere name

Syntax code = sphereCodeToName(name)

Description code = sphereCodeToName(name) returns the numeric GCTP code
corresponding to the named spheroid. The list of supported GCTP
spheroids is as follows:

GCTP Spheroid Code Spheroid Name

0 Clarke 1866

1 Clarke 1880

2 Bessel

3 International 1967

4 International 1909

5 WGS 72

6 Everest

7 WGS 66

8 GRS 1980

9 Airy

10 Modified Airy

11 Modified Everest

12 WGS 84

13 Southeast Asia

14 Australian National

15 Krassovsky

16 Hough

17 Mercury 1960

1-4125

matlab.io.hdfeos.gd.sphereNameToCode

GCTP Spheroid Code Spheroid Name

18 Modified Mercury 1968

19 Sphere of radius 6370997m

20 Sphere of radius 6371228m

21 Sphere of radius 6371007.181m

See Also gd.defProj | gd.sphereCodeToName

1-4126

matlab.io.hdfeos.gd.tileInfo

Purpose Tile size of grid field

Syntax tileDims = tileInfo(gridID,fieldname)

Description tileDims = tileInfo(gridID,fieldname) returns the tile dimensions
of the field specified by fieldname in the grid specified by gridID. If the
field is not tiled, then tileDims is [].

This function corresponds to the GDtileinfo function in the HDF-EOS
library C API, but because MATLAB uses FORTRAN-style ordering,
the tileDims parameter is reversed with respect to the C library API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('grid.hdf');
gridID = gd.attach(gfid,'PolarGrid');
tileDims = gd.tileInfo(gridID,'pressure');
gd.detach(gridID);
gd.close(gfid);

See Also gd.defTile

1-4127

matlab.io.hdfeos.gd.writeAttr

Purpose Write grid attribute

Syntax writeAttr(gridID,attrname,data)

Description writeAttr(gridID,attrname,data) writes an attribute to a grid. If
the attribute does not exist, it is created. If the attribute exists, it can
be modified in place, but it cannot be recreated with a different data
type or length.

This function corresponds to the GDwriteattr function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
srcFile = fullfile(matlabroot,'toolbox','matlab','imagesci','grid.hdf');
copyfile(srcFile,'myfile.hdf');
fileattrib('myfile.hdf','+w');
gfid = gd.open('myfile.hdf','rdwr');
gridID = gd.attach(gfid,'PolarGrid');
gd.writeAttr(gridID,'modification_date',datestr(now));
gd.detach(gridID);
gd.close(gfid);

See Also gd.readAttr

1-4128

matlab.io.hdfeos.gd.writeBlkSomOffset

Purpose Write Block SOM offset

Syntax writeBlkSomOffset(gridID,offset)

Description writeBlkSomOffset(gridID,offset) writes the block SOM offset
values n pixels for a standard Solar Oblique Mercator (SOM) projection.
offset is a vector of offset values for SOM projection data. This routine
can only be used with grids that use the SOM projection. You must
take care to use this function properly in conjunction with gd.defProj.
The 12th element of the projection parameters must be set to the total
number of blocks to be defined. offset starts by listing the offset to the
second block, so the 12th element of the projection parameters is always
one more than the length of offset.

All fields defined after writing the block SOM offset values will
automatically include "SOMBlockDim" as the slowest varying
dimension.

This function corresponds to the GDblkSOMoffset function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
lowright = [30521379.68485 1152027.64253];
upleft = [-11119487.42844 8673539.24806];
gridID = gd.create(gfid,'SOM',120,60,upleft,lowright);
projparm(1) = 6378137;
projparm(2) = 0.006694348;
projparm(4) = 98096360; % 98.161 in DDDMMMSSS
projparm(5) = 87069061; % 87.112 in DDDMMMSSS
projparm(9) = 0.068585416*1440;
projparm(10) = 0.0;
projparm(12) = 6;
gd.defProj(gridID,'som',[],[],projparm);
gd.writeBlkSomOffset(gridID,[5 10 12 8 2]);
gd.detach(gridID);
gd.close(gfid);

1-4129

matlab.io.hdfeos.gd.writeBlkSomOffset

See Also gd.readBlkSomOffset

1-4130

matlab.io.hdfeos.gd.writeField

Purpose Write data to grid field

Syntax writeField(gridID,fieldname,data)
writeField(gridID,fieldname,start,data)
writeField(gridID,fieldname,start,stride,data)

Description writeField(gridID,fieldname,data) writes all the data to a grid
field. The field is identified by fieldname and the grid is identified
by gridID.

writeField(gridID,fieldname,start,data) writes a contiguous
hyperslab to the grid field. start specifies the zero-based starting index.

writeField(gridID,fieldname,start,stride,data) writes a strided
hyperslab of data to a grid data field. stride specifies the inter-element
spacing along each dimension. The number of elements to write along
each dimension is inferred from the size of data.

This function corresponds to the GDwritefield function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the start and stride parameters are reversed with respect
to the C library API.

Examples Write all the data to a grid field.

import matlab.io.hdfeos.*
srcFile = fullfile(matlabroot,'toolbox','matlab','imagesci','grid.hdf
copyfile(srcFile,'myfile.hdf');
fileattrib('myfile.hdf','+w');
gfid = gd.open('myfile.hdf','rdwr');
gridID = gd.attach(gfid,'PolarGrid');
data = zeros(100,100,'uint16');
gd.writeField(gridID,'ice_temp',data);
gd.detach(gridID);
gd.close(gfid);

See Also gd.readField

1-4131

matlab.io.hdfeos.gd.writeTile

Purpose Write tile to field

Syntax writeTile(gridID,fieldname,tileCoords,data)

Description writeTile(gridID,fieldname,tileCoords,data) writes a single tile
of data to a field. If the field data can be arranged tile by tile, this
routine is more efficient than gd.writeField. In all other cases, use
gd.writeField. The tileCoords argument has the form [rownum
colnum] and is defined in terms of the tile coordinates, not the data
elements.

This function corresponds to the GDwritetile function in the HDF-EOS
library C API, but because MATLAB uses FORTRAN-style ordering,
the tileCoords parameter is reversed with respect to the C library API.

Examples Define a field with a 2-by-3 tiling scheme.

import matlab.io.hdfeos.*
gfid = gd.open('myfile.hdf','create');
xdim = 200; ydim = 180;
gridID = gd.create(gfid,'PolarGrid',xdim,ydim,[],[]);
zonecode = 40;
spherecode = 0;
projParm = zeros(1,13);
projParm(6) = 90000000;
gd.defProj(gridID,'ps',[],spherecode,projParm);
tileSize = [100 60];
gd.defTile(gridID,tileSize);
dimlist = {'XDim','YDim'};
gd.defField(gridID,'Pressure',dimlist,'int32');
for c = 0:2

for r = 0:1
data = (r+c)*ones(tileSize,'int32');
gd.writeTile(gridID,'Pressure',[r c],data);

end
end
gd.detach(gridID);

1-4132

matlab.io.hdfeos.gd.writeTile

gd.close(gfid);

See Also gd.readTile

1-4133

matlab.io.hdfeos.sw

Purpose Low-level access to HDF-EOS swath files

Description To use these MATLAB functions, you must be familiar with the
HDF-EOS library C interface. In most cases, the syntax of the MATLAB
function is similar to the syntax of the corresponding HDF-EOS
library function. The functions are implemented as the package
matlab.io.hdfeos.sw. To use this package, prefix the function name
with a package path, or use the import function to add the package to
the current import list, prior to calling the function, for example,

import matlab.io.hdfeos.*
fileId = sw.open(filename);

Access

matlab.io.hdfeos.sw.attach Attach to swath data set

matlab.io.hdfeos.sw.close Close swath file

matlab.io.hdfeos.sw.create Create new swath structure

matlab.io.hdfeos.sw.detach Detach from swath

matlab.io.hdfeos.sw.open Open swath file

Definition

matlab.io.hdfeos.sw.defComp Set grid field compression

matlab.io.hdfeos.sw.defDataField Define new data field within
swath

matlab.io.hdfeos.sw.defDim Define new dimension within
swath

1-4134

matlab.io.hdfeos.sw

matlab.io.hdfeos.sw.defDimMap Define mapping between
geolocation and data dimensions

matlab.io.hdfeos.sw.defGeoField Define new data field within
swath

Basic I/O

matlab.io.hdfeos.sw.getFillValue Fill value for specified field

matlab.io.hdfeos.sw.readAttr Read swath attribute

matlab.io.hdfeos.sw.readField Read data from swath field

matlab.io.hdfeos.sw.setFillValue Set fill value for the specified field

matlab.io.hdfeos.sw.writeAttr Write swath attribute

matlab.io.hdfeos.sw.writeField Write data to swath field

Inquiry

matlab.io.hdfeos.sw.compInfo Compression information for field

matlab.io.hdfeos.sw.dimInfo Size of dimension

matlab.io.hdfeos.sw.fieldInfo Information about swath field

matlab.io.hdfeos.sw.geoMapInfo Type of dimension mapping for
named dimension

matlab.io.hdfeos.sw.idxMapInfo Indexed array of geolocation
mapping

matlab.io.hdfeos.sw.inqAttrs Names of swath attributes

matlab.io.hdfeos.sw.inqDataFields Information about geolocation
fields

matlab.io.hdfeos.sw.inqDims Information about dimensions
defined in swath

1-4135

matlab.io.hdfeos.sw

matlab.io.hdfeos.sw.inqGeoFields Information about geolocation
fields

matlab.io.hdfeos.sw.inqIdxMaps Information about swath indexed
geolocation mapping

matlab.io.hdfeos.sw.inqMaps Information about swath
geolocation relations

matlab.io.hdfeos.sw.inqSwath Names of swaths in file

matlab.io.hdfeos.sw.mapInfo Offset and increment of specific
geolocation mapping

matlab.io.hdfeos.sw.nEntries Number of entries for specific
type

Subsetting

matlab.io.hdfeos.sw.defBoxRegion Define latitude-longitude region
for swath

matlab.io.hdfeos.sw.defTimePeriod Define time period of interest

matlab.io.hdfeos.sw.defVrtRegion Subset on monotonic field or
dimension

matlab.io.hdfeos.sw.extractPeriod Read data from subsetted time
period

matlab.io.hdfeos.sw.extractRegion Read subsetted region

matlab.io.hdfeos.sw.periodInfo Information about subsetted
period

matlab.io.hdfeos.sw.regionInfo Information about subsetted
region

1-4136

matlab.io.hdfeos.sw.attach

Purpose Attach to swath data set

Syntax swathID = attach(swfID,swathname)

Description swathID = attach(swfID,swathname) attaches to the swath identified
by swathname in the file identified by swfID. The swathID output is
the identifier for the named swath.

This function corresponds to the SWattach function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
sw.detach(swathID);
sw.close(swfid);

See Also sw.detach

1-4137

matlab.io.hdfeos.sw.close

Purpose Close swath file

Syntax close(swfID)

Description close(swfID) closes an HDF-EOS swath file identified by swfID.

This function corresponds to the SWclose function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'ExampleSwath');
sw.detach(swathID);
sw.close(swfid);

See Also sw.open | sw.create

1-4138

matlab.io.hdfeos.sw.compInfo

Purpose Compression information for field

Syntax [code,parms] = compInfo(swathID,fieldname)

Description [code,parms] = compInfo(swathID,fieldname) returns the
compression code and compression parameters for a given field. Refer
to sw.defComp for a description of various compression schemes and
parameters.

This function corresponds to the SWcompinfo function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[compCode,parms] = sw.compInfo(swathID,'Spectra');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defComp

1-4139

matlab.io.hdfeos.sw.create

Purpose Create new swath structure

Syntax swathID = create(swfID,swathname)

Description swathID = create(swfID,swathname) creates a new swath structure
where swfID is the swath file identifier and swathname is the name of
the new swath. The swath is created as a Vgroup with the HDF file
with the name swathname and HDF Vgroup class 'SWATH'.

This function corresponds to the SWcreate function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'ExampleSwath');
sw.detach(swathID);
sw.close(swfid);

See Also sw.detach

1-4140

matlab.io.hdfeos.sw.defBoxRegion

Purpose Define latitude-longitude region for swath

Syntax regionID = defBoxRegion(swathID,lat,lon,mode)

Description regionID = defBoxRegion(swathID,lat,lon,mode) defines a
latitude-longitude box region for a swath. lat and lon are two-element
arrays containing the latitude and longitude in decimal degrees of
the box corners. A cross track is determined to be within the box if a
condition is met according to the value of mode:

'MIDPOINT' The cross track midpoint is within
the box.

'ENDPOINT' Either endpoint is within the box.

'ANYPOINT' Any point of the cross track is
within the box.

All elements of a cross track are within the region if the condition is
met. The swath must have both Longitude and Latitude (or Colatitude)
defined.

regionID is an identifier to be used by sw.extractRegion to read all
the entries of a data field within the region.

This function corresponds to the SWdefboxregion and SWregionindex
functions in the HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
lat = [34 44];
lon = [16 24];
regionID = sw.defBoxRegion(swathID,lat,lon,'MIDPOINT');
data = sw.extractRegion(swathID,regionID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

1-4141

matlab.io.hdfeos.sw.defBoxRegion

See Also sw.extractRegion

1-4142

matlab.io.hdfeos.sw.defComp

Purpose Set grid field compression

Syntax defComp(swathID,compscheme,compparm)

Description defComp(swathID,compscheme,compparm) sets the field compression
for subsequent definitions. The compression scheme does not apply to
one-dimensional fields. compscheme can be one of the following strings.

'rle' Run-length encoding

'skphuff' Skipping Huffman

'deflate' Gzip compression

'none' No compression

When the compression scheme is 'deflate', the compparm input is the
deflate compression level, an integer between 0 and 9. compparm can
be omitted for the other compression schemes.

Fields defined with compression must be written with a single call to
sw.writeField.

This function corresponds to the SWdefcomp function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'Track',4000);
sw.defDim(swathID,'Xtrack',2000);
sw.defDim(swathID,'Bands',3);
sw.defComp(swathID,'rle');
dims = {'Xtrack','Track'};
sw.defDataField(swathID,'Pressure',dims,'float');
sw.defComp(swathID,'deflate',5);
sw.defDataField(swathID,'Opacity',dims,'float');
sw.defComp(swathID,'skphuff');
dims = {'Xtrack','Track','Bands'};

1-4143

matlab.io.hdfeos.sw.defComp

sw.defDataField(swathID,'Spectra',dims,'float');
sw.defComp(swathID,'none');
dims = {'Xtrack','Track'};
sw.defDataField(swathID,'Temperature',dims,'float');
sw.detach(swathID);
sw.close(swfid);

See Also sw.compInfo

1-4144

matlab.io.hdfeos.sw.defDataField

Purpose Define new data field within swath

Syntax defDataField(swathID,fieldname,dimlist,dtype)
defDataField(swathID,fieldname,dimlist,dtype,mergeCode)

Description defDataField(swathID,fieldname,dimlist,dtype) defines a data
field to be stored in the swath identified by swathID. The dimlist input
can be a cell array of dimension names, or a single char if there is only
one dimension. dtype is the data type of the field and can be one of
the following strings.

• 'double'

• 'single'

• 'int32'

• 'uint32'

• 'int16'

• 'uint16'

• 'int8'

• 'uint8'

• 'char'

dimlist should be ordered such that the fastest varying dimension is
listed first. This is opposite from the order in which the dimensions are
listed in the C API.

defDataField(swathID,fieldname,dimlist,dtype,mergeCode)
defines a data field that can be merged with other data fields according
to the value of mergeCode. The mergeCode input can be one of two
strings, 'automerge' and 'nomerge'. If mergeCode is 'automerge',
then the HDF-EOS library will attempt to merge swath fields into a
single object. This should not be done if you wish to access the swath
fields individually with the another interface. By default, mergeCode is
'nomerge'.

1-4145

matlab.io.hdfeos.sw.defDataField

Note To assure that the fields defined by sw.defDataField are
properly established in the file, the swath should be detached and then
reattached before writing to any fields.

This function corresponds to the SWdefdatafield function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the dimlist parameter is reversed with respect to the C
library API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.defDim(swathID,'Bands',3);
sw.defDimMap(swathID,'GeoTrack','DataTrack',0,2);
sw.defDimMap(swathID,'GeoXtrack','DataXtrack',1,2);
dims = {'GeoXtrack','GeoTrack'};
sw.defGeoField(swathID,'Longitude',dims,'float');
sw.defGeoField(swathID,'Latitude',dims,'float');
dims = {'DataXtrack','DataTrack','Bands'};
sw.defDataField(swathID,'Spectra',dims,'float');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defGeoField | sw.inqDataFields

1-4146

matlab.io.hdfeos.sw.defDim

Purpose Define new dimension within swath

Syntax defDim(swathID,dimname,dimlen)

Description defDim(swathID,dimname,dimlen) defines a new dimension named
dimname with length dimlen in the swath structure identified by
swathID.

To specify an unlimited dimension, use either 0 or 'unlimited' for
dimlen.

This function corresponds to the SWdefdim function in the HDF-EOS
library.

Examples Define a dimension 'Band' with length of 15 and an unlimited
dimension 'Time'.

import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.detach(swathID);
sw.close(swfid);

See Also sw.dimInfo

1-4147

matlab.io.hdfeos.sw.defDimMap

Purpose Define mapping between geolocation and data dimensions

Syntax defDimMap(swathID,geoDim,dataDim,offset,increment)

Description defDimMap(swathID,geoDim,dataDim,offset,increment) defines
a monotonic mapping between the geolocation and data dimensions,
which usually have differing lengths. offset gives the index of the data
element corresponding to the first geolocation element, and increment
gives the number of data elements to skip for each geolocation element.
If the geolocation dimension begins "before" the data dimension, then
offset is negative. Similarly, if the geolocation dimension has higher
resolution than the data dimension, then increment is negative.

This function corresponds to the SWdefdimmap function in the HDF-EOS
library.

Examples Create a dimension mapping such that the first element of the
GeoTrack dimension corresponds to the first element of the DataTrack
Dimension and such that the data dimension has twice the resolution
as the geolocation dimension. Also create a dimension mapping such
that the first element of the GeoXtrack dimension corresponds to the
second element of the DataXtrack dimensions and such that the data
dimension has twice the resolution as the geolocation dimension.

import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.defDimMap(swathID,'GeoTrack','DataTrack',0,2);
sw.defDimMap(swathID,'GeoXtrack','DataXtrack',1,2);
sw.detach(swathID);
sw.close(swfid);

See Also sw.defDim | sw.mapInfo

1-4148

matlab.io.hdfeos.sw.defGeoField

Purpose Define new data field within swath

Syntax defGeoField(swathID,fieldname,dimlist,dtype)
defGeoField(swathID,fieldname,dimlist,dtype,mergeCode)

Description defGeoField(swathID,fieldname,dimlist,dtype) defines a
geolocation field to be stored in the swath identified by swathID. The
dimlist argument can be a cell array of dimension names or a single
char if there is only one dimension. dtype is the data type of the field

dimlist should be ordered such that the fastest varying dimension is
listed first. This is opposite from the order in which the dimensions are
listed in the C API.

defGeoField(swathID,fieldname,dimlist,dtype,mergeCode)
defines a geolocation field that may be merged with other geolocation
fields according to the value of mergeCode. The mergeCode argument
can be one of two strings, 'automerge' and 'nomerge'. If mergeCode is
'automerge', then the HDF-EOS library will attempt to merge swath
fields into a single object. This should not be done if you wish to access
the swath fields individually with the another interface. By default,
mergeCode is 'nomerge'.

This function corresponds to the SWdefgeofield function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the dimlist parameter is reversed with respect to the C
library API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.defDimMap(swathID,'GeoTrack','DataTrack',0,2);
sw.defDimMap(swathID,'GeoXtrack','DataXtrack',1,2);
dims = {'GeoXtrack','GeoTrack'};

1-4149

matlab.io.hdfeos.sw.defGeoField

sw.defGeoField(swathID,'Longitude',dims,'float');
sw.defGeoField(swathID,'Latitude',dims,'float');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defDataField | sw.inqGeoFields

1-4150

matlab.io.hdfeos.sw.defTimePeriod

Purpose Define time period of interest

Syntax outpID = defTimePeriod(swathID,start,stop,mode)

Description outpID = defTimePeriod(swathID,start,stop,mode) defines a time
period for a swath. outpID is a swath period ID that can be used to
read all the entries of a data field within the time period. The swath
structure must have the 'Time' field defined. A cross track is within a
time period if a condition is met according to the value of mode:

'MIDPOINT' The midpoint is within the time
period.

'ENDPOINT' Either endpoint is within the
time period.

This function corresponds to the SWdeftimeperiod function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
starttime = 25;
stoptime = 425;
periodID = sw.defTimePeriod(swathID,starttime,stoptime,'MIDPOINT');
data = sw.extractPeriod(swathID,periodID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defBoxRegion | sw.defVrtRegion | sw.extractPeriod

1-4151

matlab.io.hdfeos.sw.defVrtRegion

Purpose Subset on monotonic field or dimension

Syntax regionID_out = defVrtRegion(swathID,regionID,vertObj,range)

Description regionID_out = defVrtRegion(swathID,regionID,vertObj,range)
subsets on a monotonic field or contiguous elements of a dimension.
Whereas defBoxRegion and defTimePeriod subset along the 'Track'
dimension, this routine allows the user to subset along any dimension.
regionID specifies the subsetted region from a previous call. vertObj
specifies the dimension by which to subset. range specifies the
minimum and maximum values for vertObj.

If there is no current subsetted region, regionID should be
'noprevsub'.

vertObj can be either a dimension or a field. If it is a dimension, then
range should consist of dimension indices. If vertObj corresponds to a
field, then range should consist of the minimum and maximum field
values. vertObj must be one-dimensional in this case, and the its
values must be monotonic.

This function corresponds to the SWdefvrtregion function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
regionID = sw.defVrtRegion(swathID,'noprevsub','Bands',[450 600]);
data = sw.extractRegion(swathID,regionID,'Spectra');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defBoxRegion | sw.defTimePeriod

1-4152

matlab.io.hdfeos.sw.detach

Purpose Detach from swath

Syntax detach(swathID)

Description detach(swathID) detaches from the swath identified by swathID.

This function corresponds to the SWdetach function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
sw.detach(swathID);
sw.close(swfid);

See Also sw.attach | sw.create

1-4153

matlab.io.hdfeos.sw.dimInfo

Purpose Size of dimension

Syntax dimlen = dimInfo(swathID,dimname)

Description dimlen = dimInfo(swathID,dimname) returns the length of the
specified dimension.

This function corresponds to the SWdiminfo function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
dimlen = sw.dimInfo(swathID,'GeoTrack');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defDim

1-4154

matlab.io.hdfeos.sw.extractPeriod

Purpose Read data from subsetted time period

Syntax data = extractPeriod(swathID,periodID,fieldname)

Description data = extractPeriod(swathID,periodID,fieldname) reads data
for the given field for the time period specified by periodID.

This routine corresponds to the SWextractperiod function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
starttime = 25;
stoptime = 425;
periodID = sw.defTimePeriod(swathID,starttime,stoptime,'MIDPOINT');
data = sw.extractPeriod(swathID,periodID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defTimePeriod

1-4155

matlab.io.hdfeos.sw.extractRegion

Purpose Read subsetted region

Syntax data = extractRegion(swathID,regionID,fieldname)

Description data = extractRegion(swathID,regionID,fieldname) reads data
for a specified field from a subsetted region identified by regionID.

This function corresponds to the SWextractregion function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
lat = [34 44];
lon = [16 24];
regionID = sw.defBoxRegion(swathID,lat,lon,'MIDPOINT');
data = sw.extractRegion(swathID,regionID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defBoxRegion | sw.defVrtRegion

1-4156

matlab.io.hdfeos.sw.fieldInfo

Purpose Information about swath field

Syntax [dimsizes,ntype,dimlist] = fieldInfo(swathID,fieldname)

Description [dimsizes,ntype,dimlist] = fieldInfo(swathID,fieldname)
returns the size, data type, and list of named dimensions for the
specified swath geolocation or data field.

This function corresponds to the SWfieldinfo function in the HDF-EOS
library C API, but because MATLAB uses FORTRAN-style ordering,
the dimlist parameter is reversed with respect to the C library API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[fieldSize,ntype,dimlist] = sw.fieldInfo(swathID,'Spectra');
sw.detach(swathID);
sw.close(swfid);

See Also sw.inqGeoFields | sw.inqDataFields

1-4157

matlab.io.hdfeos.sw.geoMapInfo

Purpose Type of dimension mapping for named dimension

Syntax mappingType = geoMapInfo(swathID,dimname)

Description mappingType = geoMapInfo(swathID,dimname) returns the type of
dimension mapping for the named dimension. mappingType is one of
'indexed', 'regular', or 'unmapped'.

This routine corresponds to the SWgeomapinfo function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
maptype = sw.geoMapInfo(swathID,'GeoTrack');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defDimMap

1-4158

matlab.io.hdfeos.sw.getFillValue

Purpose Fill value for specified field

Syntax fillvalue = getFillValue(swathID,fieldname)

Description fillvalue = getFillValue(swathID,fieldname) returns the fill
value for the specified field.

This function corresponds to the SWgetfillvalue function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
fv = sw.getFillValue(swathID,'Spectra');
sw.detach(swathID);
sw.close(swfid);

See Also sw.setFillValue

1-4159

matlab.io.hdfeos.sw.idxMapInfo

Purpose Indexed array of geolocation mapping

Syntax idx = idxMapInfo(swathID,geodim,datadim)

Description idx = idxMapInfo(swathID,geodim,datadim) retrieves the indexed
elements of the geolocation mapping between geodim and datadim.

This function corresponds to the SWidxmapinfo function in the
HDF-EOS C library API.

See Also sw.geoMapInfo

1-4160

matlab.io.hdfeos.sw.inqAttrs

Purpose Names of swath attributes

Syntax attrlist = inqAttrs(swathID)

Description attrlist = inqAttrs(swathID) returns the list of swath attribute
names. attrlist is a cell array.

This function corresponds to the SWinqattrs function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
attrList = sw.inqAttrs(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also sw.readAttr | sw.writeAttr

1-4161

matlab.io.hdfeos.sw.inqDataFields

Purpose Information about geolocation fields

Syntax [fields,rank,datatype] = inqDataFields(swathID)

Description [fields,rank,datatype] = inqDataFields(swathID) returns the
list of geolocation field names, the rank of each field, and the data type
of each field.

This function corresponds to the SWinqdatafields function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the fields parameter is reversed with respect to the C library
API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[fields,rank,datatype] = sw.inqDataFields(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also sw.defDataField | sw.inqGeoFields

1-4162

matlab.io.hdfeos.sw.inqDims

Purpose Information about dimensions defined in swath

Syntax [dimnames,dimlens] = inqDims(swathID)

Description [dimnames,dimlens] = inqDims(swathID) returns the names of the
dimensions dimnames as a cell array. The length of each respective
dimension is returned in dimlens.

This function corresponds to the SWinqdims routine in the HDF-EOS
library.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[dimnames,dimlens] = sw.inqDims(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also sw.defDim

1-4163

matlab.io.hdfeos.sw.inqGeoFields

Purpose Information about geolocation fields

Syntax [fields,rank,datatype] = inqGeoFields(swathID)

Description [fields,rank,datatype] = inqGeoFields(swathID) returns the list
of geolocation fields fields, the rank of each field, and the data type
of each field.

This function corresponds to the SWinqgeofields function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the fields parameter is reversed with respect to the C library
API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[fields,rank,datatypes] = sw.inqGeoFields(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also sw.defGeoField | sw.inqDataFields

1-4164

matlab.io.hdfeos.sw.inqIdxMaps

Purpose Information about swath indexed geolocation mapping

Syntax [idxMap,idxSize] = inqIdxMaps(swathID)

Description [idxMap,idxSize] = inqIdxMaps(swathID) retrieves all indexed
geolocation/data mappings defined in the swath. idxMap is a cell array
with each element consisting of the names of the dimensions of a
mapping, separated by a '/'. idxSize contains the size of the index
arrays corresponding to each mapping.

This function corresponds to the SWinqidxmaps routine in the HDF-EOS
library.

See Also sw.inqMaps

1-4165

matlab.io.hdfeos.sw.inqMaps

Purpose Information about swath geolocation relations

Syntax [map,offset,increment] = inqMaps(swathID)

Description [map,offset,increment] = inqMaps(swathID) returns the dimension
mapping list, the offset of each geolocation relation, and the increment
of each geolocation relation. These mappings are not indexed. map is a
cell array where each element contains the names of the dimensions for
each mapping, separated by a slash. offset and increment contain the
offset and increment of each geolocation relation.

This function corresponds to the SWinqmaps routine in the HDF-EOS
library.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
[dimmap,offset,increment] = sw.inqMaps(swathID);
sw.detach(swathID);
sw.close(swfid);

See Also sw.inqDims | sw.defDimMap | sw.inqIdxMaps

1-4166

matlab.io.hdfeos.sw.inqSwath

Purpose Names of swaths in file

Syntax swaths = inqSwath(filename)

Description swaths = inqSwath(filename) returns a cell array containing the
names of all the swaths in a file.

This function corresponds to the SWinqswath function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swaths = sw.inqSwath('swath.hdf');

See Also gd.inqGrid

1-4167

matlab.io.hdfeos.sw.mapInfo

Purpose Offset and increment of specific geolocation mapping

Syntax [offset,increment] = mapInfo(swathID,geodim,datadim)

Description [offset,increment] = mapInfo(swathID,geodim,datadim) retrieves
the offset and increment of the geolocation mapping between the
specified geolocation dimension and the specified data dimension.

This function corresponds to the SWmapinfo function in the HDF-EOS
C library API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
sw.defDimMap(swathID,'GeoTrack','DataTrack',0,2);
sw.defDimMap(swathID,'GeoXtrack','DataXtrack',1,2);
sw.detach(swathID);
sw.close(swfid);
swfid = sw.open('myfile.hdf','read');
swathID = sw.attach(swfid,'MySwath');
[offset,increment] = sw.mapInfo(swathID,'GeoTrack','DataTrack');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defDimMap

1-4168

matlab.io.hdfeos.sw.nEntries

Purpose Number of entries for specific type

Syntax nEnts = nEntries(swathID,type)

Description nEnts = nEntries(swathID,type) returns the number of entries in a
swath. Valid inputs for type include:

'dims' or 'HDFE_NENTDIM'

'maps' or 'HDFE_NENTMAP'

'imaps' or 'HDFE_NENTIMAP'

'geofields' or 'HDFE_NENTGFLD'

'datafields' or 'HDFE_NENTFLD'

This function corresponds to the SWnentries function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'GeoTrack',2000);
sw.defDim(swathID,'GeoXtrack',1000);
sw.defDim(swathID,'DataTrack',4000);
sw.defDim(swathID,'DataXtrack',2000);
ndims = sw.nEntries(swathID,'dims');
sw.detach(swathID);
sw.close(swfid);

1-4169

matlab.io.hdfeos.sw.open

Purpose Open swath file

Syntax swfID = open(filename)
swfID = open(filename,access)

Description swfID = open(filename) opens an HDF-EOS swath file for read-only
access.

swfID = open(filename,access) opens or creates an HDF-EOS swath
file identified by filename and returns a file ID. access can be one of
the following string values.

'read' (default) Read-only

'rdwr' Read-write

'create' Creates a file, deleting it if it
already exists

This routine corresponds to the SWopen function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
sw.close(swfid);

See Also sw.close

1-4170

matlab.io.hdfeos.sw.periodInfo

Purpose Information about subsetted period

Syntax [datatype,dims] = periodInfo(swathID,periodID,fieldname)

Description [datatype,dims] = periodInfo(swathID,periodID,fieldname)
retrieves information about the period defined for the given field.
datatype is the data type of the field. dims is the dimensions of the
subsetted region.

This function corresponds to the SWperiodinfo function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the dims parameter is reversed with respect to the C library
API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
starttime = 25;
stoptime = 425;
periodID = sw.defTimePeriod(swathID,starttime,stoptime,'MIDPOINT');
[ntype,dims] = sw.periodInfo(swathID,periodID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defTimePeriod | sw.extractPeriod

1-4171

matlab.io.hdfeos.sw.readAttr

Purpose Read swath attribute

Syntax data = readAttr(swathID,attrname)

Description data = readAttr(swathID,attrname) reads a swath attribute.

This function corresponds to the SWreadAttr function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
value = sw.readAttr(swathID,'creation_date');
sw.detach(swathID);
sw.close(swfid);

See Also sw.writeAttr

1-4172

matlab.io.hdfeos.sw.readField

Purpose Read data from swath field

Syntax data = readField(swathID,fieldname)
data = readField(swathID,fieldname,start,count)
data = readField(swathID,fieldname,start,count,stride)

Description data = readField(swathID,fieldname) reads an entire swath field.

data = readField(swathID,fieldname,start,count) reads a
contiguous hyperslab of data from the swath field fieldname. The
start input specifies the zero-based index of the first element to be read.
count specifies the number of elements along each dimension to read.

data = readField(swathID,fieldname,start,count,stride) reads
a strided hyperslab of data from the swath field fieldname. The stride
input specifies the inter-element spacing along each dimension.

This function corresponds to the SWreadfield function in the HDF-EOS
library C API, but because MATLAB uses FORTRAN-style ordering,
the start, count, and stride parameters are reversed with respect
to the C library API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
data = sw.readField(swathID,'Longitude');
sw.detach(swathID);
sw.close(swfid);

See Also sw.writeField

1-4173

matlab.io.hdfeos.sw.regionInfo

Purpose Information about subsetted region

Syntax [datatype,extent] = regionInfo(swathID,regionID,fieldname)

Description [datatype,extent] = regionInfo(swathID,regionID,fieldname)
returns the data type and extent of a subsetted region of a field.
regionID is the identifier for the subsetted region.

This function corresponds to the SWregioninfo function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the extent parameter is reversed with respect to the C library
API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('swath.hdf');
swathID = sw.attach(swfid,'Example Swath');
lat = [34 44];
lon = [16 24];
regionID = sw.defBoxRegion(swathID,lat,lon,'MIDPOINT');
[ntype,dims] = sw.regionInfo(swathID,regionID,'Temperature');
sw.detach(swathID);
sw.close(swfid);

See Also sw.defBoxRegion | sw.defVrtRegion

1-4174

matlab.io.hdfeos.sw.setFillValue

Purpose Set fill value for the specified field

Syntax setFillValue(swathID,fieldname,fillvalue)

Description setFillValue(swathID,fieldname,fillvalue) sets the fill value for
the specified field. The field must have more than two dimensions.

This function corresponds to the SWsetfillvalue function in the
HDF-EOS library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.defDim(swathID,'Track',400);
sw.defDim(swathID,'Xtrack',200);
dims = {'Track','Xtrack'};
sw.defDataField(swathID,'Temperature',dims,'float');
sw.setFillValue(swathID,'Temperature',single(-999));
sw.detach(swathID);
sw.close(swfid);

See Also sw.getFillValue

1-4175

matlab.io.hdfeos.sw.writeAttr

Purpose Write swath attribute

Syntax writeAttr(swathID,attrname,data)

Description writeAttr(swathID,attrname,data) writes an attribute to a swath. If
the attribute does not exist, it is created. If the attribute exists, it can
be modified in place, but it cannot be recreated with a different data
type or length.

This function corresponds to the SWwriteattr function in the HDF-EOS
library C API.

Examples import matlab.io.hdfeos.*
swfid = sw.open('myfile.hdf','create');
swathID = sw.create(swfid,'MySwath');
sw.writeAttr(swathID,'creation_date', datestr(now));
sw.detach(swathID);
sw.close(swfid);

See Also sw.readAttr

1-4176

matlab.io.hdfeos.sw.writeField

Purpose Write data to swath field

Syntax writeField(swathID,fieldname,data)
writeField(swathID,fieldname,start,data)
writeField(swathID,fieldname,start,stride,data)

Description writeField(swathID,fieldname,data) writes an entire swath data
field.

writeField(swathID,fieldname,start,data) writes a contiguous
hyperslab to a swath field. start specifies the index of the first element
to write. The number of elements along each dimension is inferred from
either the size of data or from the swath field itself.

writeField(swathID,fieldname,start,stride,data) writes a
strided hyperslab to a swath field. stride specifies the inter-element
spacing along each dimension.

This function corresponds to the SWwritefield function in the
HDF-EOS library C API, but because MATLAB uses FORTRAN-style
ordering, the start and stride parameters are reversed with respect
to the C library API.

Examples Write data to a geolocation field 'Longitude'.

lon = [-50:49];
data = repmat(lon(:),1,100);
data = single(data);
import matlab.io.hdfeos.*
srcFile = fullfile(matlabroot,'toolbox','matlab','imagesci','swath.hdf
copyfile(srcFile,'myfile.hdf');
fileattrib('myfile.hdf','+w');
swfid = sw.open('myfile.hdf','rdwr');
swathID = sw.attach(swfid,'Example Swath');
sw.writeField(swathID,'Longitude',data);
sw.detach(swathID);
sw.close(swfid);

1-4177

matlab.io.hdfeos.sw.writeField

See Also sw.readField

1-4178

matlab.io.saveVariablesToScript

Purpose Save workspace variables to MATLAB script

Syntax matlab.io.saveVariablesToScript(filename)
matlab.io.saveVariablesToScript(filename,varnames)
matlab.io.saveVariablesToScript(filename,Name,Value)
[r1,r2] = matlab.io.saveVariablesToScript(filename)

Description matlab.io.saveVariablesToScript(filename) saves variables in
the current workspace to a MATLAB script named filename.m. The
filename can include the .m suffix. If you do not include it, the function
adds it when it creates the file.

Variables that MATLAB cannot generate code for are saved to a
MAT-file named filename.mat.

If a file with the same name already exists, it is overwritten.

matlab.io.saveVariablesToScript(filename,varnames) saves only
workspace variables specified by varnames to the MATLAB script.

matlab.io.saveVariablesToScript(filename,Name,Value) uses
additional options specified by one or more Name,Value pair
arguments.

[r1,r2] = matlab.io.saveVariablesToScript(filename)
additionally returns two cell arrays:

• r1 for variables that were saved to the MATLAB script

• r2 for variables that were saved to a MAT-file

Input
Arguments

filename - Name of MATLAB script for saving variables
filename | variable

Name of MATLAB script for saving variables, specified as a string
giving a file name or a variable containing the file name.

Example: matlab.io.saveVariablesToScript('myVariables.m')

1-4179

matlab.io.saveVariablesToScript

varnames - Name of variables to save
string | cell array

Name of variables to save, specified as a string or a cell array.

Example: {'X','Y','Z'}

Data Types
char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'MaximumArraySize',500,'MATFileVersion','v4'
specifies that the maximum number of array elements to save is 500
using MATLAB version 4 syntax.

’MATFileVersion’ - MATLAB version whose syntax to use
'v7.3' (default) | 'v4' | 'v6' | 'v7'

MATLAB version whose syntax to use for saving MAT-files, specified
as the comma-separated pair consisting of 'MATFileVersion' and one
of the following version numbers:

• 'v4'

• 'v6'

• 'v7'

• 'v7.3'

Example: 'MATFileVersion','v6'

Data Types
char

’MaximumArraySize’ - Maximum array elements to save

1-4180

matlab.io.saveVariablesToScript

1000 (default) | integer

Maximum array elements to save, specified as the comma-separated
pair consisting of 'MaximumArraySize' and an integer in the range
of 1 to 10,000.

Example: 'MaximumArraySize',1050

’MaximumNestingLevel’ - Maximum number of object levels or
array hierarchies to save
20 (default) | integer

Maximum number of object levels or array hierarchies to save, specified
as the comma-separated pair consisting of 'MaximumNestingLevel'
and an integer in the range of 1 to 200.

Example: 'MaximumNestingLevel',67

’MaximumTextWidth’ - Text wrap width during save
76 (default) | integer

Text wrap width during save, specified as the comma-separated pair
consisting of 'MaximumTextWidth' and an integer in the range of 32
to 256.

Example: 'MaximumTextWidth',82

’MultidimensionalFormat’ - Dimensions of 2-D slices that
represent n-D arrays of char, logic, or numeric data
'rowvector' (default) | integer cell array

Dimensions of 2-D slices that represent n-D arrays of char, logic, or
numeric data, specified as the comma-separated pair consisting of
'MultidimensionalFormat' and one of these values:

• 'rowvector' — Save multidimensional variables as a single row
vector.

• integer cell array — Save a 2-D slice of multidimensional
variables, where the dimensions satisfy all the following criteria:

- Two positive integers represent dimensions.

1-4181

matlab.io.saveVariablesToScript

- The two integers are less than or equal to the dimensions of the
n-D array.

- The second integer is greater than the first.

Example: 'MultidimensionalFormat',[1,3]

’RegExp’ - Regular expression for matching
string

Regular expression for matching, specified as the comma-separated pair
consisting of 'RegExp' and one or more expressions given as a string.

Example: 'RegExp','level*'

Data Types
char

’SaveMode’ - Mode to save MATLAB script
'create' (default) | 'update' | 'append'

Mode to save MATLAB script, specified as the comma-separated pair
consisting of SaveMode and one of these values:

• 'create'— Save variables to a new MATLAB script.

• 'update' — Only update variables that are already present in a
MATLAB script.

• 'append'— Update variables that are already present in a MATLAB
script and append new variables to the end of the script.

Example: 'SaveMode','Update'

Output
Arguments

r1 - Variables that were saved to a MATLAB script
cell array

Variables that were saved to a MATLAB script, returned as a cell array
of variable names.

r2 - Variables that were saved to a MAT-file
cell array

1-4182

matlab.io.saveVariablesToScript

Variables that were saved to a MAT-file, returned as a cell array of
variable names.

Examples Save Workspace Variables to MATLAB Script

Save variables from a workspace to a MATLAB script, test.m.

matlab.io.saveVariablesToScript('test.m')

Save Specific Workspace Variables to MATLAB Script

Create and save variable myVar from a workspace to a MATLAB script,
test.m.

myVar = 55.3;
matlab.io.saveVariablesToScript('test.m','myVar')

Append Specific Variables to Existing MATLAB Script

Create two variables, a and b, and save them to an existing MATLAB
script abfile.m.

a = 72.3;
b = pi;
matlab.io.saveVariablesToScript('abfile.m',{'a','b'},...
'SaveMode','append')

Update Specific Variables in Existing MATLAB Script

Update and save two variables, y and z, to an existing MATLAB script
yzfile.m.

y = 15.7;
z = 3 * pi;
matlab.io.saveVariablesToScript('yzfile.m',{'y','z'},...
'SaveMode','update')

Specify MATLAB Script Configuration for Saving Variable

Update and save variable resistance to an existing MATLAB script
designData.m while specifying the configuration of the script file.

1-4183

matlab.io.saveVariablesToScript

resistance = [10 20.5 11 13.7 15.1 7.7];
matlab.io.saveVariablesToScript('designData.m','resistance',...
'SaveMode','Update','MaximumArraySize',5,...
'MaximumNestingLevel',5,'MaximumTextWidth',30)

Specify 2-D Slice for Saving 3-D Array in MATLAB Script

Specify a 2-D slice for the output of the 3-D array my3Dtable, such that
the 2-D slice expands along the first and third dimensions. Save the
2-D slice in the MATLAB script sliceData.m.

level1 = [1 2; 3 4];

level2 = [5 6; 7 8];

my3Dtable(:, :, 1) = level1;

my3Dtable(:, :, 2) = level2;

matlab.io.saveVariablesToScript('sliceData.m','MultidimensionalFormat',[1,3])

The resulting MATLAB code is similar to the following:

level1 = ...
[1 2;
3 4];

level2 = ...
[5 6;
7 8];

my3Dtable = zeros(2, 2, 2);
my3Dtable(:,1,:) = ...
[1 5;
3 7];

my3Dtable(:,2,:) = ...
[2 6;
4 8];

Save Variables Matching a Regular Expression

Save variables that match the expression autoL* to a MATLAB script
autoVariables.m.

1-4184

matlab.io.saveVariablesToScript

matlab.io.saveVariablesToScript('autoVariables.m','RegExp','autoL*')

Save Variables to Version 7.3 MATLAB Script

Create two variables, p and q, and save them to a version 7.3 MATLAB
script version73.m.

p = 49;
q = 35.5;
matlab.io.saveVariablesToScript('version73.m','p','q',...
'MATFileVersion','v7.3')

Return Variables Saved to MATLAB Script

Save variables that were saved to a MATLAB script to the variable r1,
and those that were saved to a MAT-file to the variable r2.

[r1,r2] = matlab.io.saveVariablesToScript('mydata.m')

r1 =

'level1'
'level2'
'level3'
'my3Dtable'

r2 =

Empty cell array: 0-by-1

Limitations • matlab.io.saveVariablesToScript does not save the following
variables to a MATLAB script or a MAT-file.

- Java objects

- .NET objects

• matlab.io.saveVariablesToScript saves the following variables
only to a MAT-file.

1-4185

matlab.io.saveVariablesToScript

- MATLAB objects

- Function handles

- Anonymous functions

1-4186

matlab.lang.makeUniqueStrings

Purpose Construct unique strings from input strings

Syntax U = matlab.lang.makeUniqueStrings(S)

U = matlab.lang.makeUniqueStrings(S,excludedStrings)
U = matlab.lang.makeUniqueStrings(S,whichStrings)
U = matlab.lang.makeUniqueStrings(S, ___ , maxStringLength)

[U, modified] = matlab.lang.makeUniqueStrings(___)

Description U = matlab.lang.makeUniqueStrings(S) constructs unique strings,
U, from input strings, S, by appending an underscore and a number
to duplicate strings.

U = matlab.lang.makeUniqueStrings(S,excludedStrings)
constructs strings that are unique within U and with respect to
excludedStrings. The makeUniqueStrings function does not check
excludedStrings for uniqueness.

U = matlab.lang.makeUniqueStrings(S,whichStrings) specifies the
subset of S to make unique within the entire set. makeUniqueStrings
makes the strings in S(whichStrings) unique among themselves and
with respect to the remaining strings. makeUniqueStrings returns
the remaining strings unmodified in U. Use this syntax when you have
an array of strings, and need to check that only some elements of the
array are unique.

U = matlab.lang.makeUniqueStrings(S, ___ , maxStringLength)
specifies the maximum length, maxStringLength, of strings in U.
If makeUniqeStrings cannot make elements in S unique without
exceeding maxStringLength, it returns an error. You can use this
syntax with any of the input arguments of the previous syntaxes.

[U, modified] = matlab.lang.makeUniqueStrings(___) returns a
logical array, modified, indicating modified strings.

1-4187

matlab.lang.makeUniqueStrings

Input
Arguments

S - Input strings
string or cell array of strings

Input strings, specified as a string or cell array of strings.

excludedStrings - Strings to exclude
string or cell array of strings

Strings to exclude from U, specified as a string or cell array of strings.

Example: 'dontDuplicateThisString',
{'excludeS1','excludeS2'}, who

whichStrings - Subset of strings to make unique
range of linear indices or logical array

Subset of strings, S, to make unique within the entire set, specified
as a range of linear indices or as a logical array with the same size
and shape as S. If there are duplicates in S, the makeUniqueStrings
function only modifies those specified by whichStrings.

If whichStrings is a logical array, strings are checked for uniqueness
when the array element in the same position has a value of true.

Example: 1:5, logical([1 0 1]), [true false true]

maxStringLength - Maximum length of output strings
integer

Maximum length of output strings in U, specified as an integer. If
makeUniqueStrings cannot make elements in S unique without
exceeding maxStringLength, it returns an error.

Output
Arguments

U - Unique strings
string | cell array of strings

Unique strings, returned as a string or cell array of strings. The output
has the same dimension as the input, S.

modified - Indicator of modified strings
logical scalar | logical array

1-4188

matlab.lang.makeUniqueStrings

Indicator of modified strings, returned as a logical scalar or array and
having the same dimension as the input, S. A value of 1 (true) indicates
that makeUniqeStrings modified the input string in the corresponding
location. A value of 0 (false) indicates that makeUniqeStrings did not
need to modify the input string in the corresponding location.

Examples Construct Unique Strings

Create an array of strings and make each element unique.

S = {'John' 'Sue' 'Nick' 'John' 'Campion' 'John' 'Jason'};
U = matlab.lang.makeUniqueStrings(S)

U =

'John' 'Sue' 'Nick' 'John_1' 'Campion' 'John_2'

The makeUniqueStrings function appends the duplicate strings in
elements 3 and 5 with underscores and incrementing numbers.

Construct Unique Strings and Specify Exclusions

Without specifying excluded strings, make the strings in U unique.

S = {'John' 'Sue' 'Nick' 'John' 'Campion' 'John' 'Jason'};
U = matlab.lang.makeUniqueStrings(S)

U =

'John' 'Sue' 'Nick' 'John_1' 'Campion' 'John_2'

Specify that the string, 'Nick', should be excluded from the output.

U = matlab.lang.makeUniqueStrings(S, 'Nick')

1-4189

matlab.lang.makeUniqueStrings

U =

'John' 'Sue' 'Nick_1' 'John_1' 'Campion' 'John_2' '

makeUniqueStrings excludes 'Nick' from U and instead modifies the
first duplicate string, found in element 3, to be 'Nick_1'.

Exclude workspace variables from the unique string array.

Sue = 42;
U = matlab.lang.makeUniqueStrings(S, who)

U =

'John' 'Sue_1' 'Nick' 'John_1' 'Campion' 'John_2' '

Since 'Sue' exists in the workspace, makeUniqueStrings makes this
string unique by appending an underscore and number.

Construct Unique Strings for Specified Array Elements

Create an array of strings and make only the first four elements unique.

S = {'quiz' 'quiz' 'quiz' 'exam' 'quiz' 'exam'};
U = matlab.lang.makeUniqueStrings(S, 1:4)

U =

'quiz_1' 'quiz_2' 'quiz_3' 'exam_1' 'quiz' 'exam'

1-4190

matlab.lang.makeUniqueStrings

The first four elements in U are unique among themselves, and
among the remaining strings in elements 5 and 6 ('quiz' and
'exam'). Alternatively, you can use a logical array instead
of a range of linear indices to achieve the same results: U =
matlab.lang.makeUniqueStrings(S, [true true true true false
false]) or U = matlab.lang.makeUniqueStrings(S, logical([1
1 1 1 0 0])).

Append a duplicate 'quiz' onto the end of S and make the first four
elements unique.

S{end+1} = 'quiz'
U = matlab.lang.makeUniqueStrings(S, 1:4)

S =

'quiz' 'quiz' 'quiz' 'exam' 'quiz' 'exam' 'quiz

U =

'quiz_1' 'quiz_2' 'quiz_3' 'exam_1' 'quiz' 'exam'

The strings that makeUniqueStrings checks are still unique
among themselves and among the remaining strings. Since
makeUniqueStrings does not check any elements after element 4,
duplicate strings remain.

Construct Unique Strings with Maximum Length

Create an array from S where the first three elements are unique and
the maximum length of each string is 5.

S = {'sampleData' 'sampleData' 'sampleData' 'sampleData'};
U = matlab.lang.makeUniqueStrings(S, 1:3, 5)

1-4191

matlab.lang.makeUniqueStrings

U =

'sampl' 'sam_1' 'sam_2' 'sampleData'

The first element is truncated to 5 characters. The second and third
elements are truncated to 3 characters to allow makeUniqueStrings to
append an underscore and number, and still not exceed 5 characters.

Determine Modified Strings

S = {'a%name', 'name_1', '2_name'};
[N, modified] = matlab.lang.makeValidName(S)

N =

'a_name' 'name_1' 'x2_name'

modified =

1 0 1

makeValidName did not modify the second element.

Tips • To ensure strings are valid and unique,
use matlab.lang.makeValidName before
matlab.lang.makeUniqueStrings.

S = {'my.Name','my_Name','my_Name'};
validStrings = matlab.lang.makeValidName(S)
validUniqueStrings = matlab.lang.makeUniqueStrings(validStrings,...

{},namelengthmax)

validStrings =

1-4192

matlab.lang.makeUniqueStrings

'my_Name' 'my_Name' 'my_Name'

validUniqueStrings =

'my_Name' 'my_Name_1' 'my_Name_2'

See Also matlab.lang.makeValidName | namelengthmax | who

1-4193

matlab.lang.makeValidName

Purpose Construct valid MATLAB identifiers from input strings

Syntax N = matlab.lang.makeValidName(S)
N = matlab.lang.makeValidName(S,Name,Value)
[N, modified] = matlab.lang.makeValidName(___)

Description N = matlab.lang.makeValidName(S) constructs valid MATLAB
identifiers, N, from input strings, S. The makeValidName function does
not guarantee the strings in N are unique.

A valid MATLAB identifier is a string of alphanumerics (A–Z, a–z, 0–9)
and underscores, such that the first character is a letter and the length
of the string is less than or equal to namelengthmax.

makeValidName deletes any whitespace characters prior to replacing any
characters that are not alphanumerics or underscores. If a whitespace
character is followed by a lowercase letter, makeValidName converts the
letter to the corresponding uppercase character.

N = matlab.lang.makeValidName(S,Name,Value) includes additional
options specified by one or more Name,Value pair arguments.

[N, modified] = matlab.lang.makeValidName(___) returns a
logical array, modified, indicating modified strings. You can use this
syntax with any of the input arguments of the previous syntaxes.

Input
Arguments

S - Input strings
string or cell array of strings

Input strings, specified as a string or cell array of strings. If S is a cell
array of strings, it must be a 1xN or Nx1 cell array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

1-4194

matlab.lang.makeValidName

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ReplacementStyle','delete' deletes invalid characters.

’ReplacementStyle’ - Replacement style
'underscore' (default) | 'delete' | 'hex'

Replacement style, specified as a string. The value controls how
MATLAB replaces nonalphanumeric characters.

ReplacementStyle
Value

Description

'underscore'
(default)

Replaces all characters that are not
alphanumerics or underscores with underscores.
'underscore' deletes whitespace characters
and changes a lowercase letter following a
whitespace to uppercase.

'hex' Replaces each character that is not an
alphanumeric or underscore with its
corresponding hexadecimal representation.
'hex' deletes whitespace characters and changes
a lowercase letter following a whitespace to
uppercase.

'delete' Deletes all characters that are not alphanumerics
or underscores. 'delete' deletes whitespace
characters and changes any lowercase letter
following a whitespace to uppercase.

’Prefix’ - Character to prefix
'x' (default) | string

Character to prefix to input strings that do not begin with a letter
after makeValidName replaces nonalphanumeric characters, specified
as a string. A valid prefix must start with a letter, contain only
alphanumeric characters and underscores, and not be longer than the
value of namelengthmax.

1-4195

matlab.lang.makeValidName

Output
Arguments

N - Valid MATLAB identifiers
string | cell array of strings

Valid MATLAB identifiers, returned as a string or cell array of strings.
The output has the same number of dimensions as the input, S.

modified - Indicator of modified strings
logical scalar | logical array

Indicator of modified strings, returned as a logical scalar or array
and having the same number of dimensions as the input, S. A
value of 1 (true) indicates that makeValidName modified the input
string in the corresponding location. A value of 0 (false) indicates
that makeValidName did not need to modify the input string in the
corresponding location.

Examples Construct Valid MATLAB Identifiers

S = {'Item_#','Price/Unit','1st order','Contact'};
N = matlab.lang.makeValidName(S)

N =

'Item__' 'Price_Unit' 'x1stOrder' 'Contact'

In the first and second strings, makeValidName replaced the
invalid characters (# and /), with underscores. In the third string,
makeValidName appended a prefix because the string doesn’t begin
with a letter, deleted the empty space, and capitalized the character
following the deleted space.

Construct Valid MATLAB Identifiers Using Specified
Replacement Style

Replace invalid characters with the corresponding hexadecimal
representation.

1-4196

matlab.lang.makeValidName

S = {'Item_#','Price/Unit','1st order','Contact'};
N = matlab.lang.makeValidName(S,'ReplacementStyle','hex')

N =

'Item_0x23' 'Price0x2FUnit' 'x1stOrder' 'Contact'

In the first and second strings, makeValidName replaced the invalid
characters (# and /), with their hexadecimal representation. In the
third string, makeValidName appended a prefix because the string
doesn’t begin with a letter, deleted the empty space, and capitalized the
character following the deleted space.

Delete invalid characters.

N = matlab.lang.makeValidName(S,'ReplacementStyle','delete')

N =

'Item_' 'PriceUnit' 'x1stOrder' 'Contact'

makeValidName deleted the invalid characters (# and /). In the third
string, makeValidName appended a prefix because the string doesn’t
begin with a letter, deleted the empty space, and capitalized the
character following the deleted space.

Construct Valid MATLAB Identifiers Using Specified Prefix

S = {'1stMeasurement','2ndMeasurement','Control'};
N = matlab.lang.makeValidName(S,'Prefix','m_')

N =

1-4197

matlab.lang.makeValidName

'm_1stMeasurement' 'm_2ndMeasurement' 'Control'

Only the strings that do not start with a letter are prepended with a
prefix.

Determine Modified Strings

S = {'a%name', 'name_1', '2_name'};
[N, modified] = matlab.lang.makeValidName(S)

N =

'a_name' 'name_1' 'x2_name'

modified =

1 0 1

makeValidName did not modify the second element.

Tips • To ensure strings are valid and unique,
use matlab.lang.makeUniqueStrings after
matlab.lang.makeValidName.

S = {'my.Name','my_Name','my_Name'};
validStrings = matlab.lang.makeValidName(S)
validUniqueStrings = matlab.lang.makeUniqueStrings(validStrings,{},...

namelengthmax)

validStrings =

'my_Name' 'my_Name' 'my_Name'

1-4198

matlab.lang.makeValidName

validUniqueStrings =

'my_Name' 'my_Name_1' 'my_Name_2'

• To customize an invalid character replacement, first use functions
such as strrep or regexprep to convert to valid characters. For
example, convert '@' characters in the string, S, to 'At' using
strrep(S,'@','At'). Then, use matlab.lang.makeValidName to
ensure that all characters in the strings are valid.

See Also matlab.lang.makeUniqueStrings | isvarname | iskeyword |
isletter | namelengthmax | who | strrep | regexp | regexprep

1-4199

matlabrc

Purpose Startup file for MATLAB program

Description At startup time, MATLAB automatically executes the file matlabrc.m.
This function establishes the MATLAB path, sets the default figure
size, and sets some uicontrol defaults.

On multiuser or networked systems, system administrators can put
messages, definitions, or other code that applies to all users in their
matlabrc.m file.

The file matlabrc.m invokes the startup.m file, if it exists on the search
path MATLAB uses.

Individual users should use the startup.m file to customize
MATLAB startup. The matlabrc.m file, located in the
matlabroot/toolbox/local folder, is reserved for system
administrators.

Algorithms MATLAB invokes matlabrc at startup. matlabrc.m contains the
statements

if exist('startup') == 2
startup

end

that invokes startup.m, if it exists. Extend this process to create
additional startup files, if required.

Tips You can also start MATLAB using options you define at the Command
Window prompt or in your Microsoft Windows shortcut for MATLAB.

Examples Turning Off the Figure Window Toolbar

If you do not want the toolbar to appear in the figure window, remove
the comment marks from the following line in the matlabrc.m file, or
create a similar line in your own startup.m file.

% set(0,'defaultfiguretoolbar','none')

1-4200

matlabrc

See Also matlabroot | quit | restoredefaultpath | startup

How To • Startup Options

1-4201

matlabroot

Purpose Root folder

Syntax matlabroot
mr = matlabroot

Description matlabroot returns the name of the folder where the MATLAB
software is installed. Use matlabroot to create a path to MATLAB and
toolbox folders that does not depend on a specific platform, MATLAB
version, or installation location.

mr = matlabroot returns the name of the folder in which the MATLAB
software is installed and assigns it to mr.

Tips matlabroot as Folder Name

The term matlabroot also refers to the folder where MATLAB files are
installed. For example, “save to matlabroot/toolbox/local” means
save to the toolbox/local folder in the MATLAB root folder.

Using $matlabroot as a Literal

In some files, $matlabroot is literal. In those files, MATLAB interprets
$matlabroot as the full path to the MATLAB root folder. For example,
including the line:

$matlabroot/toolbox/local/myfile.jar

in javaclasspath.txt, adds myfile.jar, which is located in the
toolbox/local folder, to the static Java class path.

Sometimes, particularly in older code examples, the term $matlabroot
or $MATLABROOT is not meant to be interpreted literally but is used to
represent the value returned by the matlabroot function.

matlabroot on Macintosh Platforms

In R2008b (V7,7) and more recent versions, running matlabroot on
Apple Macintosh platforms returns

1-4202

matlabroot

/Applications/MATLAB_R2008b.app

In versions prior to R2008b (V7.7), such as R2008a (V7.6), running
matlabroot on Macintosh platforms returns, for example

/Applications/MATLAB_R2008a

When you use GUIs on Macintosh platforms, you cannot directly view
the contents of the MATLAB root folder. For more information, see
“Navigating Within the MATLAB Root Folder on Macintosh Platforms”.

Examples Get the location where MATLAB is installed:

matlabroot

MATLAB returns:

C:\Program Files\MATLAB\R2009a

Produce a full path to the toolbox/matlab/general folder that is
correct for the platform on which it is executed:

fullfile(matlabroot,'toolbox','matlab','general')

Change the current folder to the MATLAB root folder:

cd(matlabroot)

To add the folder myfiles to the MATLAB search path, run

addpath([matlabroot '/toolbox/local/myfiles'])

See Also fullfile | path | toolboxdir

1-4203

matlab (UNIX)

Purpose Start MATLAB program (UNIX platforms)

Syntax matlab
matlab helpOption
matlab envDispOption
matlab archOption
matlab dispOption
matlab modeOption
matlab -c licensefile
matlab -debug
matlab -Ddebugger options
matlab -jdb portnumber
matlab -logfile filename
matlab -mwvisual visualid
matlab -noFigureWindows
matlab -nosplash
matlab -nouserjavapath
matlab -r "command"
matlab -singleCompThread

Note You can enter more than one of these options in the same matlab
command. If you use -Ddebugger to start MATLAB in debug mode, the
first option in the command must be -Ddebugger.

Description matlab is a Bourne shell script that starts the MATLAB executable
on UNIX platforms. (In this document, matlab refers to this script;
MATLAB refers to the application program). Before actually initiating
the execution of MATLAB, this script configures the run-time
environment by:

• Determining the MATLAB root folder

• Determining the host machine architecture

• Processing any command-line options

• Reading the MATLAB startup file, .matlab7rc.sh

1-4204

matlab (UNIX)

• Setting MATLAB environment variables

There are two ways in which you can control the way the matlab script
works:

• By specifying command-line options

• By assigning values in the MATLAB startup file, .matlab7rc.sh

Specifying Options at the Command Line

Note On Apple Macintosh platforms, the matlab script is located
inside the MATLAB application package:

/Applications/MATLAB_R2012b.app/bin/matlab

To run the matlab script from Terminal, specify the full path, or cd to
the bin folder within the application package and preface the command
with ./ characters. For example:

./matlab -nojvm -nodisplay -nosplash -r "myfun(10,30)"

Options that you can enter at the command line are as follows:

matlab helpOption displays information that matches the specified
helpOption argument without starting MATLAB. helpOption can be
any one of the keywords shown in the following table. Enter only one
helpOption keyword in a matlab command.

Values for helpOption

Option Description

-help Display matlab command usage.

-h The same as -help.

1-4205

matlab (UNIX)

matlab envDispOption displays the values of environment
variables passed to MATLAB or their values when exiting MATLAB.
envDispOption can be either one of the options shown in the following
table.

Values for envDispOption

Option Description

-n Display all the final values of the environment
variables and arguments passed to the MATLAB
executable as well as other diagnostic information.
Does not start MATLAB.

-e Display all environment variables and their values
before exiting. This argument must have been parsed
before exiting for anything to be displayed. The last
possible exiting point is just before the MATLAB
image would have been executed and a status of 0 is
returned. If the exit status is not 0 on return, then
the variables and values might not be correct. Does
not start MATLAB.

matlab archOption starts MATLAB and assumes that you are running
on the system architecture specified by arch, or using the MATLAB
version specified by variant, or both. The values for the archOption
argument are shown in the following table. Enter only one of these
options in a matlab command.

1-4206

matlab (UNIX)

Values for archOption

Option Description

-arch Run MATLAB assuming this architecture rather
than the actual architecture of the machine you
are using. Replace the term arch with a string
representing a recognized system architecture.
For example:

matlab -glnx86

v=variant Execute the version of MATLAB found in
the folder bin/$ARCH/variant instead of
bin/$ARCH. Replace the term variant with a
string representing a MATLAB version.

v=arch/variant Execute the version of MATLAB found in the
folder bin/arch/variant instead of bin/$ARCH.
Replace the terms arch and variant with
strings representing a specific architecture and
MATLAB version.

matlab dispOption starts MATLAB using one of the display options
shown in the following table. Enter only one of these options in a
matlab command.

Values for dispOption

Option Description

-display xDisp Send X commands to X Window Server display
xDisp. This option supersedes the value of the
DISPLAY environment variable.

On Macintosh platforms, this option is ignored.

-nodisplay Start the Oracle JVM software, but do not
start the MATLAB desktop. Do not display

1-4207

matlab (UNIX)

(Continued)

Option Description

any X commands, and ignore the DISPLAY
environment variable.

On Macintosh platforms, start the JVM in
headless mode, and prevent all windows from
being displayed.

matlab modeOption starts MATLAB without its usual desktop
component. Enter only one of the options shown in the following table.

Values for modeOption

Option Description

-desktop Allow the MATLAB desktop to be started by a
process without a controlling terminal. This
is usually a required command-line argument
when attempting to start MATLAB from a
window manager menu or desktop icon.

-nodesktop Start MATLAB without bringing up the
MATLAB desktop. The JVM software is
started. To enter commands, use the current
window in the operating system. Use this
option to run in batch processing mode. If
you pipe to MATLAB using the > constructor,
the nodesktop option is used automatically.
With nodesktop, MATLAB does not save
statements to the Command History. With
nodesktop, you can still use most development
environment tools by starting them via a
function. For example, use preferences
to open the Preferences dialog box and
doc to open the Help browser. Do not use
nodesktop to provide a CommandWindow-only

1-4208

matlab (UNIX)

(Continued)

Option Description

interface; instead, select Desktop > Desktop
Layout > Command Window Only.

-nojvm Start MATLAB without the JVM software.
To enter commands, use the current window.
The MATLAB desktop does not open. Any
tools that require Java software, such as the
desktop tools, cannot be used. Handle Graphics
and related functionality are not supported;
MATLAB produces a warning when you use
them.

matlab -c licensefile starts MATLAB using the specified license
file. The licensefile argument can have the form port@host or it
can be a colon-separated list of license filenames. This option causes
the LM_LICENSE_FILE and MLM_LICENSE_FILE environment variables to
be ignored.

matlab -debug starts MATLAB and displays debugging information
that can be useful, especially for X based problems. Use this option
only when working with a Technical Support Representative from The
MathWorks, Inc.

matlab -Ddebugger options starts MATLAB in debug mode, using
the named debugger (for example, dbx, gdb, xdb, cvd, lldb). A full
path can be specified for debugger.

Notes for -Ddebugger Argument

• The options argument can include only those options that follow
the debugger name in the syntax of the actual debug command. For
most debuggers, there is a limited number of such options. Use
options that would normally be passed to the MATLAB executable
as parameters of a command inside the debugger (like run). Do not
use options when running the matlab script.

1-4209

matlab (UNIX)

• If any other matlab command options are placed before the
-Ddebugger argument, they will be handled as if they were part of
the options after the -Ddebugger argument and are treated as illegal
options by most debuggers. The MATLAB_DEBUG environment variable
is set to the filename part of the debugger argument.

• To customize your debugging session, use a startup file. See your
debugger documentation for details.

• For certain debuggers like gdb, the SHELL environment variable is
always set to /bin/sh.

matlab -jdb portnumber starts MATLAB, enabling use of the Java
debugger. If you specify a port number, the Java debugger uses that
port to communicate with MATLAB. You can specify any port number
in the range 0-65535 that is not reserved or currently in use by another
application on your system. By default, MATLAB uses port 4444. If
you are running multiple MATLAB sessions and want to use the Java
debugger, be sure to specify a port number.

matlab -logfile filename starts MATLAB and makes a copy of any
output to the Command Window in file log. The output includes all
crash reports.

matlab -mwvisual visualid starts MATLAB and uses visualid as the
default X visual for figure windows. visualid is a hexadecimal number
that can be found using xdpyinfo.

matlab -noFigureWindows starts MATLAB, but disables the display of
any figure windows in MATLAB.

matlab -nosplash starts MATLAB but does not display the splash
screen during startup.

matlab -nouserjavapath disables javaclasspath.txt and
javalibrarypath.txt files.

matlab -r "command" starts MATLAB and executes the specified
MATLAB command. Include the command in double quotation marks
("command"). If command is the name of a MATLAB function or script,

1-4210

matlab (UNIX)

do not specify the file extension. To separate multiple statements, use
semicolons or commas.

matlab -singleCompThread limits MATLAB to a single computational
thread. By default, MATLAB uses the multithreading capabilities of
the computer on which it is running.

Specifying Options in the MATLAB Startup File

The .matlab7rc.sh shell script contains definitions for a number of
variables that the matlab script uses. These variables are defined
within the matlab script, but can be redefined in .matlab7rc.sh. When
invoked, matlab looks for the first occurrence of .matlab7rc.sh in the
current folder, in the home folder ($HOME), and in the matlabroot/bin
folder, where the template version of .matlab7rc.sh is located.

You can edit the template file to redefine information used by the matlab
script. If you do not want your changes applied system-wide, copy the
edited version of the script to your current or home folder. Ensure that
you edit the section that applies to your machine architecture.

The following table lists the variables defined in the.matlab7rc.sh
file. See the comments in the .matlab7rc.sh file for more information
about these variables.

Variable Options for Startup File

Variable
Definition and Standard Assignment
Behavior

ARCH The machine architecture.

The value ARCH passed with the -arch or
-arch/ext argument to the script is tried first,
then the value of the environment variable
MATLAB_ARCH is tried next, and finally it is
computed. The first one that gives a valid
architecture is used.

DISPLAY Linux platforms only. The hostname of the X
Window display MATLAB uses for output.

1-4211

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

The value of Xdisplay passed with the
-display argument to the script is used;
otherwise, the value in the environment is used.
MATLAB ignores DISPLAY if the -nodisplay
argument is passed.

LD_LIBRARY_PATH
on Linux platforms.

DYLD_LIBRARY_PATH
on Macintosh
platforms.

Final Load library path. The name
LD_LIBRARY_PATH is platform-dependent.

The final value is normally a colon-separated
list of four sublists, each of which could
be empty. The first sublist is defined in
.matlab7rc.sh as LDPATH_PREFIX. The second
sublist is computed in the script and includes
folders inside the MATLAB root folder and
relevant Java folders. The third sublist contains
any nonempty value of LD_LIBRARY_PATH
from the environment possibly augmented in
.matlab7rc.sh. The final sublist is defined in
.matlab7rc.sh as LDPATH_SUFFIX.

LM_LICENSE_FILE The FLEX lm license variable.

The license file value passed with the -c
argument to the script is used; otherwise it is
the value set in .matlab7rc.sh. In general,
the final value is a colon-separated list of
license files and/or port@host entries. The
shipping .matlab7rc.sh file starts out the
value by prepending LM_LICENSE_FILE in the
environment to a default license.file.

Later in the matlab script, if the -c option is not
used, the matlabroot/etc folder is searched
for the files that start with license.dat.DEMO.
These files are assumed to contain demo

1-4212

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

licenses and are added automatically to the end
of the current list.

MATLAB The MATLAB root folder.

The default computed by the script is
used unless MATLABdefault is reset in
.matlab7rc.sh.

Currently MATLABdefault is not reset in the
shipping .matlab7rc.sh.

MATLAB_DEBUG Normally set to the name of the debugger.

The -Ddebugger argument passed to the script
sets this variable. Otherwise, a nonempty value
in the environment is used.

MATLAB_JAVA The path to the root of the Java Runtime
Environment.

The default set in the script is used unless
MATLAB_JAVA is already set. Any nonempty
value from .matlab7rc.sh is used first, then
any nonempty value from the environment.
Currently there is no value set in the shipping
.matlab67rc.sh, so that environment alone is
used.

MATLABPATH The MATLAB search path.

The final value is a colon-separated list with the
MATLABPATH from the environment prepended
to a list of computed defaults. You can add
subfolders of userpath to theMATLAB search
path upon startup. See userpath for details.

1-4213

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

SHELL The shell to use when the “!” or unix command
is issued in MATLAB. This value is taken
from the environment unless SHELL is reset in
.matlab7rc.sh.

Another environment variable called
MATLAB_SHELL takes precedence over SHELL.
MATLAB checks internally for MATLAB_SHELL
first and, if empty or not defined, then checks
SHELL. If SHELL is also empty or not defined,
MATLAB uses /bin/sh. Use an absolute path
for the value of MATLAB_SHELL, that is, /bin/sh,
not simply sh.

Currently, the shipping .matlab7rc.sh file
does not reset SHELL and also does not reference
or set MATLAB_SHELL.

TOOLBOX Path of the toolbox folder.

A nonempty value in the environment is
used first. Otherwise, matlabroot/toolbox,
computed by the script, is used unless TOOLBOX
is reset in .matlab7rc.sh. Currently TOOLBOX
is not reset in the shipping .matlab7rc.sh.

1-4214

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

XAPPLRESDIR The X application resource folder (Linux
systems only).

A nonempty value in the environment is
used first unless XAPPLRESDIR is reset in
.matlab7rc.sh.

XKEYSYMDB The X keysym database file (Linux systems
only).

A nonempty value in the environment is
used first unless XKEYSYMDB is reset in
.matlab7rc.sh.

The matlab script determines the path of the MATLAB root folder by
looking up the folder tree from the matlabroot/bin folder (where the
matlab script is located). The MATLAB variable is then used to locate all
files within the MATLAB folder tree.

You can change the definition of MATLAB if, for example, you want to
run a different version of MATLAB or if, for some reason, the path
determined by the matlab script is not correct. (This can happen when
your system uses certain types of automounting schemes.)

See Also matlab (Windows) | mex

How To • “Start MATLAB on Linux Platforms”

• “Start MATLAB on Macintosh Platforms”

• “Startup Options”

1-4215

matlab (Windows)

Purpose Start MATLAB program (Windows platforms)

Syntax matlab
matlab helpOption
matlab -automation
matlab -c licensefile
matlab -jdb portnumber
matlab -logfile filename
matlab -noFigureWindows
matlab -nosplash
matlab -nouserjavapath
matlab -r "statement"
matlab -regserver
matlab -sd "startdir"
matlab shieldOption
matlab -singleCompThread
matlab -unregserver
matlab -wait

Note You can enter more than one of these options in the same matlab
command.

Description matlab is a script that runs the MATLAB executable on Microsoft
Windows platforms. (In this document, the term matlab refers to the
script, and MATLAB refers to the executable). Before actually initiating
the execution of MATLAB, it configures the run-time environment by:

• Determining the MATLAB root folder.

• Determining the host machine architecture.

• Selectively processing command line options with the rest passed to
MATLAB.

• Setting certain MATLAB environment variables.

There are two ways in which you can control the way matlab works:

1-4216

matlab (Windows)

• By specifying command line options.

• By setting environment variables before calling the program.

Specifying Options at the Command Line

Options that you can enter at the command line are as follows:

matlab helpOption displays information that matches the specified
helpOption argument without starting MATLAB. helpOption can be
any one of the keywords shown in the table below. Enter only one
helpOption keyword in a matlab statement.

Values for helpOption

Option Description

-help Display matlab command usage.

-h The same as -help.

-? The same as -help.

matlab -automation starts MATLAB as an automation server. The
server window is minimized, and the MATLAB splash screen does not
display on startup.

matlab -c licensefile starts MATLAB using the specified license
file. The licensefile argument can have the form port@host.
This option causes MATLAB to ignore the LM_LICENSE_FILE and
MLM_LICENSE_FILE environment variables.

matlab -jdb portnumber starts MATLAB, enabling use of the Java
debugger. If you specify a port number, the Java debugger uses that
port to communicate with MATLAB. You can specify any port number
in the range 0-65535 that is not reserved or currently in use by another
application on your system. By default, MATLAB uses port 4444. If
you are running multiple MATLAB sessions and want to use the Java
debugger, be sure to specify a port number.

1-4217

matlab (Windows)

matlab -logfile filename starts MATLAB and makes a copy of any
output to the Command Window in filename. This includes all crash
reports.

matlab -noFigureWindows starts MATLAB, but disables the display of
any figure windows in MATLAB.

matlab -nosplash starts MATLAB, but does not display the splash
screen during startup.

matlab -nouserjavapath disables javaclasspath.txt and
javalibrarypath.txt files.

matlab -r "statement" starts MATLAB and executes the specified
MATLAB statement. If statement is the name of a MATLAB function
or script, do not specify the file extension. Any required file must be on
the MATLAB search path or in the startup folder.

matlab -regserver registers MATLAB as a Component Object Model
(COM) server.

matlab -sd "startdir" specifies the startup folder for MATLAB (the
current folder in MATLAB after startup). The -sd option has been
deprecated. For information about alternatives, see “Startup Folder on
Windows Platforms”.

matlab shieldOption provides the specified level of protection of the
address space used by MATLAB during startup on Windows 32–bit
platforms. It attempts to help ensure the largest contiguous block of
memory available after startup, which is useful for processing large data
sets. The shieldOption does this by ensuring resources such as DLLs,
are loaded into locations that will not fragment the address space. With
shieldOption set to a value other than none, address space is protected
up to or after the processing of matlabrc. Use higher levels of protection
to secure larger initial blocks of contiguous memory, however a higher
level might not always provide a larger size block and might cause
startup problems. Therefore, start with a lower level of protection, and
if successful, try the next higher level. You can use the memory function
after startup to see the size of the largest contiguous block of memory;
this helps you determine the actual effect of the shieldOption setting

1-4218

matlab (Windows)

you used. If your matlabrc (or startup.m) requires significant memory,
a higher level of protection for shieldOption might cause startup to
fail; in that event try a lower level. Values for shieldOption can be any
one of the keywords shown in the table below.

Option Description

-shield minimum This is the default setting. It protects the
range 0x50000000 to 0x70000000 during
MATLAB startup until just before startup
processes matlabrc. It ensures there is at
least approximately 500 MB of contiguous
memory up to this point.

Start with this, the default value. To use the
default, do not specify a shield option upon
startup.

If MATLAB fails to start successfully using
the default option, -shield minimum, instead
use -shield none.

If MATLAB starts successfully with the
default value for shieldOption and you want
to try to ensure an even larger contiguous
block after startup, try using the -shield
medium option.

-shield medium This protects the same range as for minimum,
0x50000000 to 0x70000000, but protects
the range until just after startup processes
matlabrc. It ensures there is at least
approximately 500 MB of contiguous memory
up to this point.

If MATLAB fails to start successfully with
the -shield medium option, instead use the
default option (-shield minimum).

1-4219

matlab (Windows)

Option Description

If MATLAB starts successfully with the
-shield medium option and you want to try
to ensure an even larger contiguous block
after startup, try using the -shield maximum
option.

-shield maximum This protects the maximum possible range,
which can be up to approximately 1.5 GB,
until just after startup processes matlabrc.

If MATLAB fails to start successfully with
the -shield maximum option, instead use the
-shield medium option.

-shield none This completely disables address shielding.
Use this if MATLAB fails to start successfully
with the default (-shield minimum) option.

matlab -singleCompThread limits MATLAB to a single computational
thread. By default, MATLAB makes use of the multithreading
capabilities of the computer on which it is running.

matlab -unregserver removes all MATLAB COM server entries from
the registry.

matlab -wait MATLAB is started by a separate starter program
which normally launches MATLAB and then immediately quits. Using
this option tells the starter program not to quit until MATLAB has
terminated. This option is useful when you need to process the results
from MATLAB in a script. Calling MATLAB with this option blocks the
script from continuing until the results are generated.

Setting Environment Variables

You can set the following environment variables before starting
MATLAB.

1-4220

matlab (Windows)

Variable Name Description

LM_LICENSE_FILE This variable specifies the License File
to use. If you use the -c argument to
specify the License File it overrides this
variable. The value of this variable can
be a list of License Files, separated by
semi-colons, or port@host entries.

See Also matlab (UNIX) | mex | userpath

How To • “Start MATLAB on Windows Platforms”

• “Startup Options”

1-4221

max

Purpose Largest elements in array

Syntax C = max(A)
C = max(A,[],dim)
[C,I] = max(...)

C = max(A,B)

Description C = max(A) returns the largest elements along different dimensions
of an array.

If A is a vector, max(A) returns the largest element in A.

If A is a matrix, max(A) treats the columns of A as vectors, returning a
row vector containing the maximum element from each column.

If A is a multidimensional array, max(A) treats the values along the
first non-singleton dimension as vectors, returning the maximum value
of each vector.

C = max(A,[],dim) returns the largest elements along the dimension
of A specified by scalar dim. For example, max(A,[],1) produces the
maximum values along the first dimension of A.

[C,I] = max(...) finds the indices of the maximum values of A, and
returns them in output vector I. If there are several identical maximum
values, the index of the first one found is returned.

C = max(A,B) returns an array the same size as A and B with the
largest elements taken from A or B. The dimensions of A and B must
match, or they may be scalar.

Examples Return the maximum of a 2-by-3 matrix from each column:

X = [2 8 4; 7 3 9];
max(X,[],1)
ans =

1-4222

max

7 8 9

Return the maximum from each row:

max(X,[],2)
ans =

8
9

Compare each element of X to a scalar:

max(X,5)
ans =

5 8 5
7 5 9

Tips For complex input A, max returns the complex number with the largest
complex modulus (magnitude), computed with max(abs(A)). Then
computes the largest phase angle with max(angle(x)), if necessary.

The max function ignores NaNs.

See Also isnan | mean | median | min | sort

1-4223

MaximizeCommandWindow

Purpose Open Automation server window

Syntax IDL Method Signature

HRESULT MaximizeCommandWindow(void)

Microsoft Visual Basic Client

MaximizeCommandWindow

MATLAB Client
h.MaximizeCommandWindow
MaximizeCommandWindow(h)

Description h.MaximizeCommandWindow displays the window for the server attached
to handle h, and makes it the currently active window on the desktop.

MaximizeCommandWindow(h) is an alternate syntax.

MaximizeCommandWindow restores the window to the size it had at
the time it was minimized, not to the maximum size on the desktop.
If the server window was not previously in a minimized state,
MaximizeCommandWindow does nothing.

Examples From a Visual Basic .NET client, modify the size of the command
window in a MATLAB Automation server:

Dim Matlab As Object

Matlab = CreateObject("matlab.application")
Matlab.MinimizeCommandWindow

'Now return the server window to its former state on
'the desktop and make it the currently active window.

Matlab.MaximizeCommandWindow

See Also MinimizeCommandWindow

1-4224

maxNumCompThreads

Purpose Control maximum number of computational threads

Note maxNumCompThreads will be removed in a future version. You
can set the -singleCompThread option when starting MATLAB to
limit MATLAB to a single computational thread. By default, MATLAB
makes use of the multithreading capabilities of the computer on which
it is running.

Syntax N = maxNumCompThreads
LASTN = maxNumCompThreads(N)
LASTN = maxNumCompThreads('automatic')

Description N = maxNumCompThreads returns the current maximum number of
computational threads N.

LASTN = maxNumCompThreads(N) sets the maximum number of
computational threads to N, and returns the previous maximum number
of computational threads, LASTN.

LASTN = maxNumCompThreads('automatic') sets the maximum
number of computational threads using what the MATLAB software
determines to be the most desirable. It additionally returns the previous
maximum number of computational threads, LASTN.

Currently, the maximum number of computational threads is equal to
the number of computational cores on your machine.

Note Setting the maximum number of computational threads using
maxNumCompThreads does not propagate to your next MATLAB session.

1-4225

mean

Purpose Average or mean value of array

Syntax M = mean(A)
M = mean(A,dim)
M = mean(___ ,type)

Description M = mean(A) returns the mean value along the first array dimension
of A whose size does not equal 1.

• If A is a vector, then mean(A) returns the mean of the elements.

• If A is a nonempty, nonvector matrix, then mean(A) treats the
columns of A as vectors and returns a row vector whose elements are
the mean of each column.

• If A is an empty 0-by-0 matrix, then mean(A) returns NaN.

• If A is a multidimensional array, then mean(A) treats the values
along the first array dimension whose size does not equal 1 as vectors
and returns an array of row vectors. The size of this dimension
becomes 1 while the sizes of all other dimensions remain the same.

M = mean(A,dim) returns the mean along dimension dim. For example,
if A is a matrix, then mean(A,2) is a column vector containing the mean
of each row.

M = mean(___ ,type) returns the mean in the class specified by type,
using any of the input arguments in the previous syntaxes. type can be
'double', 'native', or 'default'.

Input
Arguments

A - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

If A contains NaN, then M returns NaN.

1-4226

mean

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The
size(M,dim) is 1, while the sizes of all other dimensions remain the
same.

Consider a two-dimensional input array, A.

• If dim = 1, then mean(A,1) returns a row vector containing the
mean of the elements in each column.

• If dim = 2, then mean(A,2) returns a column vector containing the
mean of the elements in each row.

mean returns A if dim is greater than ndims(A).

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

type - Output class

1-4227

mean

'default' (default) | 'double' | 'native'

Output class, specified as 'default', 'double', or 'native', and
which defines the data type of the output, M.

type Output data type

'default' double, unless the input data type is single. In
which case, the output data type is single.

'double' double

'native' same data type as the input array, A

Examples Mean of Matrix Columns

Define a 4-by-3 matrix.

A = [0 1 1; 2 3 2; 1 3 2; 4 2 2]

A =

0 1 1
2 3 2
1 3 2
4 2 2

Find the mean value of each column.

M = mean(A)

M =

1.7500 2.2500 1.7500

Mean of Matrix Rows

Define a 2-by-3 matrix.

A = [0 1 1; 2 3 2]

1-4228

mean

A =

0 1 1
2 3 2

Find the mean value of each row.

M = mean(A,2)

M =

0.6667
2.3333

Mean of 3-D array

Create a 1-by-3-by-4 array of integers between 1 and 10.

A = gallery('integerdata',10,[1,3,4],1)

A(:,:,1) =

10 8 10

A(:,:,2) =

6 9 5

A(:,:,3) =

9 6 1

A(:,:,4) =

4 9 5

1-4229

mean

Find the mean values of this 3-D array along the second dimension.

M = mean(A)

M(:,:,1) =

9.3333

M(:,:,2) =

6.6667

M(:,:,3) =

5.3333

M(:,:,4) =

6

This operation produces a 1-by-1-by-4 array by computing the mean of
the three values along the second dimension. The size of the second
dimension is reduced to 1.

Compute the mean along the first dimension of A.

M = mean(A,1);
isequal(A,M)

ans =

1

This operation returns the same array as A because the size of the first
dimension is 1.

1-4230

mean

Mean of 8-bit Integer Array

Define a 1-by-4 vector of 8-bit integers.

A = int8(1:4)

A =

1 2 3 4

Compute the mean value.

M = mean(A),
class(M)

M =

2.5000

ans =

double

M is the mean value returned as double. This operation returns the
same result as M = mean(A,'default').

Specify type as 'native' to return the mean value as an 8–bit integer.

M = mean(A,'native'),
class(M)

M =

3

ans =

1-4231

mean

int8

See Also corrcoef | cov | max | median | min | mode | std | var

1-4232

median

Purpose Median value of array

Syntax M = median(A)
M = median(A,dim)

Description M = median(A) returns the median value of A.

• If A is a vector, then median(A) returns the median value of A.

• If A is a nonempty matrix, then median(A) treats the columns of A as
vectors and returns a row vector of median values.

• If A is an empty 0-by-0 matrix, median(A) returns NaN.

• If A is a multidimensional array, then median(A) acts along the first
nonsingleton dimension and returns an array of median values.
The size of this dimension reduces to 1 while the sizes of all other
dimensions remain the same.

median computes natively in the numeric class of A, such that class(M)
= class(A).

M = median(A,dim) returns the median of elements along dimension
dim. For example, if A is a matrix, then median(A,2) is a column vector
containing the median value of each row.

Input
Arguments

A - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

If A contains NaN, then M returns NaN.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

dim - Dimension to operate along
positive integer scalar

1-4233

median

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The
size(M,dim) is 1, while the sizes of all other dimensions remain the
same.

Consider a two-dimensional input array, A.

• If dim = 1, then median(A,1) returns a row vector containing the
median of the elements in each column.

• If dim = 2, then median(A,2) returns a column vector containing the
median of the elements in each row.

median returns A if dim is greater than ndims(A).

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Definitions First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array
whose size is not equal to 1.

For example:

• If X is a 1-by-n row vector, then the second dimension is the first
nonsingleton dimension of X.

1-4234

median

• If X is a 1-by-0-by-n empty array, then the second dimension is the
first nonsingleton dimension of X.

• If X is a 1-by-1-by-3 array, then the third dimension is the first
nonsingleton dimension of X.

Examples Median of Matrix Columns

Define a 4-by-3 matrix.

A = [0 1 1; 2 3 2; 1 3 2; 4 2 2]

A =

0 1 1
2 3 2
1 3 2
4 2 2

Find the median value of each column.

M = median(A)

M =

1.5000 2.5000 2.0000

For each column, the median value is the mean of the middle two
numbers in sorted order.

Median of Matrix Rows

Define a 2-by-3 matrix.

A = [0 1 1; 2 3 2]

A =

0 1 1

1-4235

median

2 3 2

Find the median value of each row.

M = median(A,2)

M =

1
2

For each row, the median value is the middle number in sorted order.

Median of 3-D Array

Create a 1-by-3-by-4 array of integers between 1 and 10.

A = gallery('integerdata',10,[1,3,4],1)

A(:,:,1) =

10 8 10

A(:,:,2) =

6 9 5

A(:,:,3) =

9 6 1

A(:,:,4) =

4 9 5

Find the median values of this 3-D array along the second dimension.

1-4236

median

M = median(A)

M(:,:,1) =

10

M(:,:,2) =

6

M(:,:,3) =

6

M(:,:,4) =

5

This operation produces a 1-by-1-by-4 array by computing the median
of the three values along the second dimension. The size of the second
dimension is reduced to 1.

Compute the median along the first dimension of A.

M = median(A,1);
isequal(A,M)

ans =

1

This returns the same array as A because the size of the first dimension
is 1.

1-4237

median

Median of 8-bit Integer Array

Define a 1-by-4 vector of 8-bit integers.

A = int8(1:4)

A =

1 2 3 4

Compute the median value.

M = median(A),
class(M)

M =

3

ans =

int8

M is the mean of the middle two numbers in sorted order returned as
an 8-bit integer.

See Also corrcoef | cov | max | mean | min | mode | std | var

1-4238

memmapfile

Purpose Create memory map to a file

Syntax m = memmapfile(filename)
m = memmapfile(filename,Name,Value)

Description m = memmapfile(filename) maps an existing file, filename, to
memory and returns the memory map, m.

Memory-mapping is a mechanism that maps a portion of a file, or an
entire file, on disk to a range of memory addresses within the MATLAB
address space. Then, MATLAB can access files on disk in the same
way it accesses dynamic memory, accelerating file reading and writing.
Memory-mapping allows you to work with data in a file as if it were a
MATLAB array.

m = memmapfile(filename,Name,Value) specifies the properties of m
using one or more name-value pair arguments. For example, you can
specify the format of the data in the file.

Input
Arguments

filename - Name of file to map
string

Name of the file to map including the file extension, specified as a
string. The filename argument cannot include any wildcard characters
(for example, * or ?).

Example: 'myFile.dat'

Data Types
char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-4239

memmapfile

Example: m =
memmapfile('myFile.dat','Format','int32','Offset',255)
maps int32 data in the file, myFile.dat, to memory starting
from the 256th byte.

’Writable’ - Type of access allowed to mapped region
false (default) | true

Type of access allowed to the mapped region, specified as the
comma-separated pair consisting of 'Writable' and either true or
false. If the Writable property is set to false, the mapped region is
read-only. If true, then write access is allowed.

Example: 'Writeable',true

Data Types
logical

’Offset’ - Number of bytes from start of file to start of mapped
region
0 (default) | nonnegative integer

Number of bytes from the start of the file to the start of the mapped
region, specified as the comma-separated pair consisting of 'Offset'
and a nonnegative integer. This value is zero-based. That is, an Offset
value of 0 represents the start of the file.

Example: 'Offset',1024

Data Types
double

’Format’ - Format of mapped region
'uint8' (default) | string | n-by-3 cell array

Format of the mapped region contents, specified as the comma-separated
pair consisting of 'Format' and a single string or an n-by-3 cell array.

• If the file region you are mapping contains data of only one type,
specify the Format value as a string identifying that type.
Example:'int16'

1-4240

memmapfile

• To specify an array shape to apply to the data read or written to the
mapped file, and a field name to reference this array, specify the
Format value as a 1-by-3 cell array. The first cell contains a string
identifying the data type to apply to the mapped region. The second
cell contains the array dimensions to apply to the region. The third
cell contains a string specifying the field name to use in the Data
structure array of the memory map.
Example: {'uint64',[30 4 10],'x'}

• If the region you are mapping is composed of segments of varying
data types or array shapes, you can specify an individual format for
each segment using an n-by-3 cell array, where n is the number of
segments.
Example: {'uint64',[30 4 10],'x'; 'uint32',[30 4 6],'y'}

You can use any of the following data types when you specify a Format
value:

• 'int8'

• 'int16'

• 'int32'

• 'int64'

• 'uint8'

• 'uint16'

• 'uint32'

• 'uint64'

• 'single'

• 'double'

Data Types
char | cell

’Repeat’ - Number of times to apply Format parameter
Inf (default) | positive integer

1-4241

memmapfile

Number of times to apply the Format parameter to the mapped region
of the file, specified as the comma-separated pair consisting of 'Repeat'
and a positive integer. If the value of Repeat is Inf, then memmapfile
applies the Format parameter until the end of the file.

Example: 'Repeat',2000

Data Types
double

Output
Arguments

m - Memory map
memmapfile object

Memory map, returned as a memmapfile object with the following
properties.

Property Description

Filename Path and name of the mapped file

Writable Type of access allowed to the mapped region

Offset Number of bytes from the start of the file to
the start of the mapped region

Format Format of the contents of the mapped region,
including data type, array size, and field
name by which to access the data

Repeat Number of times to apply the pattern specified
by the Format property to the mapped region
of the file

Data Memory-mapped data from the file. Data can
be a numeric array or a structure array with
field names specified in the Format property

The values for any property (except for Data) are set at the time you call
memmapfile, using name-value pair arguments.

1-4242

memmapfile

Access any property of m with dot notation similar to accessing fields
of a structure array. For example, to access the memory-mapped data
in the Data property, do one of the following:

• If Data is a numeric array, call m.Data.

• If Data is a scalar (1-by-1) structure array, call m.Data.fieldname,
where fieldname is the name of a field.

• If Data is a nonscalar structure array, call m.Data(index).fieldname
where index is the index for the element in the structure array,
and fieldname is the name of a field. For example, to access the
file data in the temperature field of the first element of Data, call
m.Data(1).temperature.

After you create a memory map, m, you can change the value of any of
its properties, except for Data. To assign a new value, use dot notation.
For example, to set a new Offset value for m, type:

m.Offset = 2048;

Examples Map Entire File of uint8 Data

At the command prompt, create a sample file in your current folder
called records.dat, containing 10 uint8 values.

myData = uint8(1:10)';

fileID = fopen('records.dat','w');
fwrite(fileID, myData,'uint8');
fclose(fileID);

Create a map for records.dat. When using memmapfile, the default
data format is uint8 so the file name is the only required input
argument in this case.

m = memmapfile('records.dat')

m =

1-4243

memmapfile

Filename: 'd:\matlab\records.dat'
Writable: false

Offset: 0
Format: 'uint8'
Repeat: Inf

Data: 10x1 uint8 array

MATLAB maps the entire records.dat file to memory, setting all
properties of the memory map to their default values. The memory map
is assigned to the variable, m. In this example, the command maps the
entire file as a sequence of unsigned 8-bit integers and gives the caller
read-only access to its contents.

View the mapped data by accessing the Data property of m.

m.Data

ans =

1
2
3
4
5
6
7
8
9

10

Map Entire File of Double-Precision Data

Create a memory map for double-precision data. The syntax is similar
when specifying other data types.

At the command prompt, create a sample file in your current folder
called records.dat, containing 10 double values.

myData = (1:10)';

1-4244

memmapfile

fileID = fopen('records.dat','w');
fwrite(fileID,myData,'double');
fclose(fileID);

Create a memory map for records.dat, and set the Format property
for the output to 'double'.

m = memmapfile('records.dat','Format','double')

m =

Filename: 'd:\matlab\records.dat'
Writable: false

Offset: 0
Format: 'double'
Repeat: Inf

Data: 10x1 double array

The Data property contains the 10 double-precision values in
records.dat.

Map and Change Part of a File

Create a memory map for a large array of int32 data. Specify write
access, and nondefault Format and Offset values.

At the command prompt, create a sample file in your current folder
called records.dat, containing 10,000 int32 values.

myData = int32([1:10000]);

fileID = fopen('records.dat','w');
fwrite(fileID,myData,'int32');
fclose(fileID);

Create a memory map for records.dat, and set the Format property for
the output to int32. Also, set the Offset property to disregard the first
9000 bytes in the file, and the Writable property to permit write access.

1-4245

memmapfile

m = memmapfile('records.dat',...
'Offset',9000,...
'Format','int32',...
'Writable',true);

An Offset value of 9000 indicates that the first 9000 bytes of
records.dat are not mapped.

Type the name of the memory map to see the current settings for all
properties.

m

m =
Filename: 'd:\matlab\records.dat'
Writable: true

Offset: 9000
Format: 'int32'
Repeat: Inf

Data: 7750x1 int32 array

The Format property indicates that any read or write operation made
via the memory map reads and writes the file contents as a sequence of
signed 32-bit integers. The Data property contains only 7750 elements
because the first 9000 bytes of records.dat, representing the first 2250
values in the file, are not mapped.

View the first five elements of the mapped data by accessing the Data
property of m.

m.Data(1:5)

ans =

2251
2252
2253
2254

1-4246

memmapfile

2255

Map Region of File to Specific Array Shape

Create a memory map for a region of a file containing 100
double-precision values.

At the command prompt, create a sample file in your current folder
called mybinary.bin, containing 100 double-precision values.

randData = gallery('uniformdata',[100,1],0,'double');

fileID = fopen('mybinary.bin','w');
fwrite(fileID,randData,'double');
fclose(fileID);

Map the first 75 values in mybinary.bin to a 5-by-5-by-3 array of
double-precision values that can be referenced in the structure of the
memory map using the field name x. Specify these parameters with the
Format name-value pair argument.

m = memmapfile('mybinary.bin',...
'Format',{'double',[5 5 3],'x'})

m =

Filename: 'd:\matlab\mybinary.bin'
Writable: false

Offset: 0
Format: {'double' [5 5 3] 'x'}
Repeat: Inf

Data: 1x1 struct array with fields:
x

The Data property is a structure array that contains the mapped values
in the field, x.

Assign the mapped data to a variable, A. Because the Data property is a
structure array, you must index into the field, x, to access the data.

1-4247

memmapfile

A = m.Data.x;

View information about A.

whos A

Name Size Bytes Class Attributes

A 5x5x3 600 double

Map Segments of File to Multiple Arrays

Map segments of a file with different array shapes and data types to
memory.

At the command prompt, create a sample file in your current folder
called mybinary.bin. Write uint16 data and double-precision data
representing sample pressure, temperature, and volume values into
the file. In this case, each of the uint16 arrays are 50-by-1 and the
double-precision arrays are 5-by-10. k is a sample scaling factor.

k = 8.21;
[pres1,temp1] = gallery('integerdata',[1,300],[50,1],0,'uint16');
vol1 = double(reshape(k*temp1./pres1,5,10));
[pres2,temp2] = gallery('integerdata',[5,500],[50,1],5,'uint16');
vol2 = double(reshape(k*temp2./pres2,5,10));

fileID = fopen('mybinary.bin','w');
fwrite(fileID,pres1,'uint16');
fwrite(fileID,temp1,'uint16');
fwrite(fileID,vol1,'double');
fwrite(fileID,pres2,'uint16');
fwrite(fileID,temp2,'uint16');
fwrite(fileID,vol2,'double');
fclose(fileID);

Map the file to arrays accessible by unique names. Define a field,
pressure, containing a 50-by-1 array of uint16 values, followed by a
field, temperature, containing 50-by-1 uint16 values. Define a field,

1-4248

memmapfile

volume, containing a 5-by-10 array of double-precision values. Use a
cell array to define the format of the mapped region and repeat the
pattern twice.

m = memmapfile('mybinary.bin',...
'Format',{'uint16',[50 1],'pressure';...
'uint16',[50,1],'temperature';...
'double',[5,10],'volume'},'Repeat',2)

m =

Filename: 'd:\matlab\mybinary.bin'
Writable: false

Offset: 0
Format: {'uint16' [50 1] 'pressure'

'uint16' [50 1] 'temperature'
'double' [5 10] 'volume'}

Repeat: 2
Data: 2x1 struct array with fields:
pressure

temperature
volume

The Data property of the memory map, m, is a 2-by-1 structure array
because the Format is applied twice.

Copy the Data property to a variable, A. Then, view the last block of
double data, which you can access using the field name, volume.

A = m.Data;
myVolume = A(2).volume

myVolume =

2 13 32 5 5 16 4 22 3 8
2 9 53 38 13 19 23 85 2 120

29 10 6 1 2 5 6 58 20 11
7 15 4 1 5 18 1 4 14 8

1-4249

memmapfile

9 8 4 2 0 9 8 6 3 3

Tips • You can map only an existing file. You cannot create a new file and
map that file to memory in one operation. Use the MATLAB file I/O
functions to create the file before attempting to map it to memory.

• After memmapfile locates the file, MATLAB stores the file’s absolute
pathname internally, and then uses this stored path to locate the file
from that point on. As a result, you can work in other directories
outside your current work directory and retain access to the mapped
file.

• memmapfile does not expand or append to a mapped file. Use instead
standard file I/O functions like fopen and fwrite.

Algorithms The actual mapping of a file to the MATLAB address space does not take
place when you construct a memmapfile object. A memory map, based
on the information currently stored in the mapped object, is generated
the first time you reference or modify the Data property for that object.

Related
Examples

• “Map File to Memory”

Concepts • “Overview of Memory-Mapping”

1-4250

memory

Purpose Display memory information

Syntax memory
userview = memory
[userview systemview] = memory

Limitations • The memory function is available only on Microsoft Windows systems.
Results are dependant on your computer hardware and the load on
your computer.

Description memory displays information showing how much memory is available
and how much the MATLAB software is currently using. The
information displayed at your computer screen includes the following
items, each of which is described in a section below:

• “Maximum Possible Array” on page 1-4252

• “Memory Available for All Arrays” on page 1-4253

• “Memory Used By MATLAB” on page 1-4254

• “Total Physical Memory (RAM)” on page 1-4254

userview = memory returns user-focused information on memory use
in structure userview. The information returned in userview includes
the following items, each of which is described in a section below:

• “Maximum Possible Array” on page 1-4252

• “Memory Available for All Arrays” on page 1-4253

• “Memory Used By MATLAB” on page 1-4254

[userview systemview] = memory returns both user- and
system-focused information on memory use in structures userview
and systemview, respectively. The userview structure is described in
the command syntax above. The information returned in systemview
includes the following items, each of which is described in a section
below:

• “Virtual Address Space” on page 1-4255

1-4251

memory

• “System Memory” on page 1-4255

• “Physical Memory” on page 1-4256

Output
Arguments

Each of the sections below describes a value that is displayed or
returned by the memory function.

Maximum Possible Array

Maximum Possible Array is the size of the largest contiguous free
memory block. As such, it is an upper bound on the largest single array
MATLAB can create at this time.

MATLAB derives this number from the smaller of the following two
values:

• The largest contiguous memory block found in the MATLAB virtual
address space

• The total available system memory

To see how many array elements this number represents, divide by the
number of bytes in the array class. For example, for a double array,
divide by 8. The actual number of elements MATLAB can create is
always fewer than this number.

When you enter the memory command without assigning its output,
MATLAB displays this information as a string. When you do assign
the output, MATLAB returns the information in a structure field. See
the table below.

Command Returned in

memory String labelled Maximum possible array:

user = memory Structure field user.MaxPossibleArrayBytes

All values are double-precision and in units of bytes.

Footnotes
When you enter the memory command without specifying any outputs,
MATLAB may also display one of the following footnotes. 32-bit systems

1-4252

memory

show either the first or second footnote; 64-bit systems show only the
second footnote:

Limited by contiguous virtual address space available.
There is sufficient system memory to allow mapping of all virtual
addresses in the largest available block of the MATLAB process.
The maximum amount of total MATLAB virtual address space
is either 2 GB or 3 GB, depending on whether the /3GB switch
is in effect or not.

Limited by System Memory (physical + swap file) available.
There is insufficient system memory to allow mapping of all
virtual addresses in the largest available block of the MATLAB
process.

Memory Available for All Arrays

Memory Available for All Arrays is the total amount of memory
available to hold data. The amount of memory available is guaranteed
to be at least as large as this field.

MATLAB derives this number from the smaller of the following two
values:

• The total available MATLAB virtual address space

• The total available system memory

When you enter the memory command without assigning its output,
MATLAB displays this information as a string. When you do assign
the output, MATLAB returns the information in a structure field. See
the table below.

Command Returned in

memory String labelled Memory available for all arrays:

user = memory Structure field user.MemAvailableAllArrays

Footnotes
When you enter the memory command without specifying any outputs,
MATLAB may also display one of the following footnotes. 32-bit systems

1-4253

memory

show either the first or second footnote; 64-bit systems show only the
latter footnote:

Limited by virtual address space available.
There is sufficient system memory to allow mapping of all
available virtual addresses in the MATLAB process virtual
address space to system memory. The maximum amount of total
MATLAB virtual address space is either 2 GB or 3 GB, depending
on whether the /3GB switch is in effect or not.

Limited by System Memory (physical + swap file) available.
There is insufficient system memory to allow mapping of all
available virtual addresses in the MATLAB process.

Memory Used By MATLAB

Memory Used By MATLAB is the total amount of system memory
reserved for the MATLAB process. It is the sum of the physical memory
and potential swap file usage.

When you enter the memory command without assigning its output,
MATLAB displays this information as a string. When you do assign
the output, MATLAB returns the information in a structure field. See
the table below.

Command Returned in

memory String labelled Memory used by MATLAB:

user = memory Structure field user.MemUsedMATLAB

Total Physical Memory (RAM)

Physical Memory (RAM) is the total physical memory (or RAM) in the
computer.

When you enter the memory command without assigning its output,
MATLAB displays this information as a string. See the table below.

1-4254

memory

Command Returned in

memory String labelled Physical Memory (RAM):

Virtual Address Space

Virtual Address Space is the amount of available and total virtual
memory for the MATLAB process. MATLAB returns the information in
two fields of the return structure: Available and Total.

Command Return Value Returned in Structure Field

Available
memory

sys.VirtualAddressSpace.Available[user,sys] =
memory

Total memory sys.VirtualAddressSpace.Total

You can monitor the difference:

VirtualAddressSpace.Total - VirtualAddressSpace.Available

as the Virtual Bytes counter in the WindowsPerformance program. (e.g.,
Windows XP Control Panel/Administrative Tool/Performance program).

System Memory

System Memory is the amount of available system memory on your
computer system. This number includes the amount of available
physical memory and the amount of available swap file space on the
computer running MATLAB. MATLAB returns the information in the
SystemMemory field of the return structure.

Command Return Value Returned in Structure Field

[user,sys] =
memory

Available
memory

sys.SystemMemory

This is the same as the difference:

limit - total (in bytes)

1-4255

memory

found in the Windows Task Manager: Performance/Commit Charge.

Physical Memory

Physical Memory is the available and total amounts of physical memory
(RAM) on the computer running MATLAB. MATLAB returns the
information in two fields of the return structure: Available and Total.

Command Value Returned in Structure Field

Available
memory

sys.PhysicalMemory.Available[user,sys] =
memory

Total memory sys.PhysicalMemory.Total

Available physical memory is the same as:

Available (in bytes)

found in the Windows Task Manager: Performance/Physical Memory

The total physical memory is the same as

Total (in bytes)

found in the Windows Task Manager: Performance/Physical Memory

You can use the amount of available physical memory as a measure of
how much data you can access quickly.

Tips Details on Memory Used By MATLAB

MATLAB computes the value for Memory Used By MATLAB by
walking the MATLAB process memory structures and summing all
the sections that have physical storage allocated in memory or in the
paging file on disk.

Using the Windows Task Manager, you have for the MATLAB.exe
image:

Mem Usage < MemUsedMATLAB < Mem Usage + VM Size (in bytes)

1-4256

memory

where both of the following are true:

• Mem Usage is the working set size in kilobytes.

• VM Size is the page file usage, or private bytes, in kilobytes.

The working set size is the portion of the MATLAB virtual address
space that is currently resident in RAM and can be referenced without
a memory page fault. The page file usage gives the portion of the
MATLAB virtual address space that requires a backup that doesn’t
already exist. Another name for page file usage is private bytes. It
includes all MATLAB variables and workspaces. Since some of the
pages in the page file may also be part of the working set, this sum is
an overestimate of MemUseMATLAB. Note that there are virtual pages in
the MATLAB process space that already have a backup. For example,
code loaded from EXEs and DLLs and memory-mapped files. If any
part of those files is in memory when the memory builtin is called, that
memory will be counted as part of MemUsedMATLAB.

Reserved Addresses

Reserved addresses are addresses sets aside in the process virtual
address space for some specific future use. These reserved addresses
reduce the size of MemAvailableAllArrays and can reduce the size of
the current or future value of MaxPossibleArrayBytes.

Example 1 — Java Virtual Machine (JVM)
At MATLAB startup, part of the MATLAB virtual address space is
reserved by the Java Virtual Machine (JVM) and cannot be used for
storing MATLAB arrays.

Example 2 — Standard Windows Heap Manager
MATLAB, by default, uses the standard Windows heap manager except
for a set of small preselected allocation sizes. One characteristic of this
heap manager is that its behavior depends upon whether the requested
allocation is less than or greater than the fixed number of 524,280 bytes.
For, example, if you create a sequence of MATLAB arrays, each less
than 524,280 bytes, and then clear them all, the MemUsedMATLAB value
before and after shows little change, and the MemAvailableAllArrays
value is now smaller by the total space allocated.

1-4257

memory

The result is that, instead of globally freeing the extra memory, the
memory becomes reserved. It can only be reused for arrays less than
524,280 bytes. You cannot reclaim this memory for a larger array
except by restarting MATLAB.

Examples Display memory statistics on a 32-bit Windows system:

memory

Maximum possible array: 677 MB (7.101e+008 bytes) *

Memory available for all arrays: 1601 MB (1.679e+009 bytes) **

Memory used by MATLAB: 446 MB (4.681e+008 bytes)

Physical Memory (RAM): 3327 MB (3.489e+009 bytes)

* Limited by contiguous virtual address space available.

** Limited by virtual address space available.

Return in the structure userview, information on the largest array
MATLAB can create at this time, how much memory is available to
hold data, and the amount of memory currently being used by your
MATLAB process:

userview = memory

userview =
MaxPossibleArrayBytes: 710127616
MemAvailableAllArrays: 1.6792e+009

MemUsedMATLAB: 468127744

Assign the output to two structures, user and sys, to obtain the
information shown here:

[user sys] = memory;

% --- Largest array MATLAB can create ---
user.MaxPossibleArrayBytes
ans =

710127616

1-4258

memory

% --- Memory available for data ---
user.MemAvailableAllArrays
ans =

1.6797e+009

% --- Memory used by MATLAB process ---
user.MemUsedMATLAB
ans =

467603456

% --- Virtual memory for MATLAB process ---
sys.VirtualAddressSpace
ans =

Available: 1.6797e+009
Total: 2.1474e+009

% --- Physical memory and paging file ---
sys.SystemMemory
ans =

Available: 4.4775e+009

% --- Computer's physical memory ---
sys.PhysicalMemory
ans =

Available: 2.3941e+009
Total: 3.4889e+009

See Also clear | pack | whos | inmem | save | load | mlock | munlock

Tutorials • “Memory Allocation”

• “Strategies for Efficient Use of Memory”

• “Resolving “Out of Memory” Errors”

1-4259

menu

Purpose Generate menu of choices for user input

Syntax choice = menu('mtitle','opt1','opt2',...,'optn')
choice = menu('mtitle',options)

Description choice = menu('mtitle','opt1','opt2',...,'optn') displays the
menu whose title is in the string variable 'mtitle' and whose choices
are string variables 'opt1', 'opt2', and so on. The menu opens in a
modal dialog box. menu returns the number of the selected menu item,
or 0 if the user clicks the close button on the window.

choice = menu('mtitle',options) , where options is a 1-by-N cell
array of strings containing the menu choices.

If the user’s terminal provides a graphics capability, menu displays
the menu items as push buttons in a figure window (Example 1).
Otherwise. they will be given as a numbered list in the Command
Window (Example 2).

Tips To call menu from a uicontrol or other ui object, set that object’s
Interruptible property to 'on'. For more information, see
Uicontrol Properties.

Examples Example 1

On a system with a display, menu displays choices as buttons in a dialog
box:

choice = menu('Choose a color','Red','Blue','Green')

displays the following dialog box.

1-4260

menu

The number entered by the user in response to the prompt is returned
as choice (i.e., choice = 2 implies that the user selected Blue).

After input is accepted, the dialog box closes, returning the output in
choice. You can use choice to control the color of a graph:

t = 0:.1:60;
s = sin(t);
color = ['r','b','g']
plot(t,s,color(choice))

Example 2

On a system without a display, menu displays choices in the Command
Window:

choice = menu('Choose a color','Red','Blue','Green')

displays the following text.

----- Choose a color -----
1) Red
2) Blue
3) Green
Select a menu number:

See Also guide | input | uicontrol | uimenu

1-4261

mergecats

Purpose Merge categories in categorical array

Syntax B = mergecats(A,oldcats)
B = mergecats(A,oldcats,newcat)

Description B = mergecats(A,oldcats) merges two or more categories in A into
the first category, oldcats(1). Any values in A from oldcats become
oldcats(1) in B.

B = mergecats(A,oldcats,newcat) merges oldcats into a single new
category, newcat. Any values in A from oldcats become newcat in B.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

oldcats - Categories to merge
cell array of strings

Categories to merge, specified as a cell array of strings. If A is ordinal,
the categories to merge must be consecutive.

newcat - New category
oldcats(1) (default) | string

New category, specified as a string.

Examples Merge Two Categories into One

Create a categorical array containing various colors.

A = categorical({'red';'blue';'pink';'red';'blue';'red'})

A =

red

1-4262

mergecats

blue
pink
red
blue
red

A is a 6-by-1 categorical array.

Display the categories of A.

categories(A)

ans =

'blue'
'pink'
'red'

The three categories are in alphabetical order.

Merge the categories red and pink into the category red. Specify red
first in oldcats to use it as the merged category.

oldcats = {'red','pink'};
B = mergecats(A,oldcats)

B =

red
blue
red
red
blue
red

mergecats replaces the value pink from A(3) with red.

Display the categories of B.

1-4263

mergecats

categories(B)

ans =

'blue'
'red'

B has two categories instead of three.

Merge Alphabetically Listed Categories

Create a categorical array containing various items.

A = categorical({'shirt' 'pants'; 'shoes' 'shirt'; 'dress' 'belt'})

A =

shirt pants
shoes shirt
dress belt

Display the categories of A.

categories(A)

ans =

'belt'
'dress'
'pants'
'shirt'
'shoes'

The five categories are in alphabetical order.

Merge the categories belt and shoes into a new category called other.

B = mergecats(A,{'belt' 'shoes'},'other')

B =

1-4264

mergecats

shirt pants
other shirt
dress other

The value other replaces all instances of belt and shoes.

Display the categories of B.

categories(B)

ans =

'other'
'dress'
'pants'
'shirt'

B has four categories and the order is no longer alphabetical. other
appears in place of belt.

Merge Categories of Ordinal Categorical Array

Create an ordinal categorical array.

A = categorical([1 2 3 2 1],1:3,{'poor','fair','good'},'Ordinal',true)

A =

poor fair good fair poor

Display the categories of A.

categories(A)

ans =

'poor'
'fair'

1-4265

mergecats

'good'

Since A is ordinal, the categories have the mathematical ordering poor
< fair < good.

Consider all fair or poor values to be bad. Since A is ordinal, the
categories to merge must be consecutive.

B = mergecats(A,{'fair' 'poor'},'bad')

B =

bad bad good bad bad

The value bad replaces all instances of fair and poor.

Display the categories of B.

categories(B)

ans =

'bad'
'good'

B has two categories with the mathematical ordering: bad < good.

See Also categories | addcats | removecats | iscategory | renamecats
| reordercats

1-4266

mesh

Purpose Mesh plot

Syntax mesh(X,Y,Z)
mesh(Z)
mesh(...,C)
mesh(...,'PropertyName',PropertyValue,...)
mesh(axes_handles,...)
h = mesh(...)

Description mesh(X,Y,Z) draws a wireframe mesh with color determined by Z, so
color is proportional to surface height. If X and Y are vectors, length(X)
= n and length(Y) = m, where [m,n] = size(Z). In this case, (X(j),
Y(i), Z(i,j)) are the intersections of the wireframe grid lines; X and
Y correspond to the columns and rows of Z, respectively. If X and Y
are matrices, (X(i,j), Y(i,j), Z(i,j)) are the intersections of the
wireframe grid lines.

mesh(Z) draws a wireframe mesh using X = 1:n and Y = 1:m, where
[m,n] = size(Z). The height, Z, is a single-valued function defined
over a rectangular grid. Color is proportional to surface height.

mesh(...,C) draws a wireframe mesh with color determined by matrix
C. MATLAB performs a linear transformation on the data in C to obtain
colors from the current colormap. If X, Y, and Z are matrices, they must
be the same size as C.

mesh(...,'PropertyName',PropertyValue,...) sets the value of the
specified surface property. Multiple property values can be set with
a single statement.

mesh(axes_handles,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = mesh(...) returns a handle to a Surfaceplot graphics object.

1-4267

mesh

Tips mesh does not accept complex inputs.

A mesh is drawn as a Surfaceplot graphics object with the viewpoint
specified by view(3). The face color is the same as the background
color (to simulate a wireframe with hidden-surface elimination), or
none when drawing a standard see-through wireframe. The current
colormap determines the edge color. The hidden command controls the
simulation of hidden-surface elimination in the mesh, and the shading
command controls the shading model.

Examples Create Mesh Plot of Sinc Function

Create a mesh plot of the sinc function, .

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;

figure
mesh(Z);

1-4268

mesh

Specify Color for Mesh Plot

Specify a color matrix for a mesh plot.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
C = gradient(Z);

figure

1-4269

mesh

mesh(X,Y,Z,C)

Change Lighting and Line Width for Mesh Plot

Change the lighting and the line width for a mesh plot using
Name,Value pair arguments.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;

1-4270

mesh

C = del2(Z);

figure
mesh(X,Y,Z,C,'FaceLighting','gouraud','LineWidth',0.3)

See Also meshc | meshz | hidden | griddata | scatteredInterpolant |
meshgrid | surface | surf | waterfall | axis | colormap | hold |
shading | view

1-4271

mesh

How To • “Representing Data as a Surface”

1-4272

meshc

Purpose Plot a contour graph under mesh graph

Syntax meshc(X,Y,Z)
meshc(Z)
meshc(...,C)
meshc(axes_handles,...)
h = meshc(...)

Description meshc(X,Y,Z) draws a wireframe mesh and a contour plot under it
with color determined by Z, so color is proportional to surface height. If
X and Y are vectors, length(X) = n and length(Y) = m, where [m,n]
= size(Z). In this case, (X(j), Y(i), Z(i,j)) are the intersections of
the wireframe grid lines; X and Y correspond to the columns and rows of
Z, respectively. If X and Y are matrices, (X(i,j), Y(i,j), Z(i,j)) are
the intersections of the wireframe grid lines.

meshc(Z) draws a contour plot under wireframe mesh using X = 1:n
and Y = 1:m, where [m,n] = size(Z). The height, Z, is a single-valued
function defined over a rectangular grid. Color is proportional to surface
height.

meshc(...,C) draws a meshc graph with color determined by matrix C.
MATLAB performs a linear transformation on the data in C to obtain
colors from the current colormap. If X, Y, and Z are matrices, they must
be the same size as C.

meshc(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = meshc(...) returns a handle to a Surfaceplot graphics object.

Tips meshc does not accept complex inputs.

A mesh is drawn as a Surfaceplot graphics object with the viewpoint
specified by view(3). The face color is the same as the background

1-4273

meshc

color (to simulate a wireframe with hidden-surface elimination), or
none when drawing a standard see-through wireframe. The current
colormap determines the edge color. The hidden command controls the
simulation of hidden-surface elimination in the mesh, and the shading
command controls the shading model.

Examples Display Contour Plot Under Mesh Plot

Use meshc to display a combination of a mesh plot and a contour plot of
the peaks function.

figure
[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
meshc(Z);

1-4274

meshc

Algorithms The range of X, Y, and Z, or the current settings of the axes XLimMode,
YLimMode, and ZLimMode properties, determine the axis limits. axis
sets these properties.

The range of C, or the current settings of the axes CLim and CLimMode
properties (also set by the caxis function), determine the color scaling.
Use the scaled color values are used as indices into the current colormap.

The mesh rendering functions produce color values by mapping the z
data values (or an explicit color array) onto the current colormap. The

1-4275

meshc

MATLAB default behavior is to compute the color limits automatically
using the minimum and maximum data values (also set using caxis
auto). The minimum data value maps to the first color value in the
colormap and the maximum data value maps to the last color value
in the colormap. MATLAB performs a linear transformation on the
intermediate values to map them to the current colormap.

meshc calls mesh, turns hold on, and then calls contour and positions
the contour on the x-y plane. For additional control over the appearance
of the contours, issue these commands directly. You can combine other
types of graphs in this manner, for example surf and pcolor plots.

meshc assumes that X and Y are monotonically increasing. If X or Y
is irregularly spaced, contour3 calculates contours using a regularly
spaced contour grid, and then it transforms the data to X or Y.

See Also mesh | meshz | contour | hidden | meshgrid | surface | surf |
surfc | surfl | waterfall | axis | caxis | colormap | hold |
shading | view

1-4276

meshz

Purpose Plot a curtain around mesh plot

Syntax meshz(X,Y,Z)
meshz(Z)
meshz(...,C)
meshz(axes_handles,...)
h = meshz(...)

Description meshz(X,Y,Z) draws a curtain around the wireframe mesh with color
determined by Z, so color is proportional to surface height. If X and
Y are vectors, length(X) = n and length(Y) = m, where [m,n] =
size(Z). In this case, (X(j), Y(i), Z(i,j)) are the intersections of the
wireframe grid lines; X and Y correspond to the columns and rows of Z,
respectively. If X and Y are matrices, (X(i,j), Y(i,j), Z(i,j)) are
the intersections of the wireframe grid lines.

meshz(Z) draws a curtain around the wireframe mesh using X = 1:n
and Y = 1:m, where [m,n] = size(Z). The height, Z, is a single-valued
function defined over a rectangular grid. Color is proportional to surface
height.

meshz(...,C) draws a meshz graph with color determined by matrix C.
MATLAB performs a linear transformation on the data in C to obtain
colors from the current colormap. If X, Y, and Z are matrices, they must
be the same size as C.

meshz(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = meshz(...) returns a handle to a Surfaceplot graphics object.

Tips meshz does not accept complex inputs.

A mesh is drawn as a Surfaceplot graphics object with the viewpoint
specified by view(3). The face color is the same as the background

1-4277

meshz

color (to simulate a wireframe with hidden-surface elimination), or
none when drawing a standard see-through wireframe. The current
colormap determines the edge color. The hidden command controls the
simulation of hidden-surface elimination in the mesh, and the shading
command controls the shading model.

Examples Curtain Plot of Peaks Function

Generate a curtain plot of the peaks function using meshz.

figure
[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
meshz(Z);

1-4278

meshz

Specify Color for Curtain Plot

Specify a color matrix for a curtain plot.

[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
C = gradient(Z);

figure
meshz(X,Y,Z,C)

1-4279

meshz

See Also mesh | meshc | contour | hidden | meshgrid | surface | surf |
surfc | surfl | waterfall | axis | caxis | colormap | hold |
shading | view

1-4280

meshgrid

Purpose Rectangular grid in 2-D and 3-D space

Syntax [X,Y] = meshgrid(xgv,ygv)
[X,Y,Z] = meshgrid(xgv,ygv,zgv)
[X,Y] = meshgrid(gv)
[X,Y,Z] = meshgrid(gv)

Description [X,Y] = meshgrid(xgv,ygv) replicates the grid vectors xgv and ygv to
produce a full grid. This grid is represented by the output coordinate
arrays X and Y. The output coordinate arrays X and Y contain copies of
the grid vectors xgv and ygv respectively. The sizes of the output arrays
are determined by the length of the grid vectors. For grid vectors xgv
and ygv of length M and N respectively, X and Y will have N rows and
M columns.

[X,Y,Z] = meshgrid(xgv,ygv,zgv) produces three-dimensional
coordinate arrays. The output coordinate arrays X, Y, and Z contain
copies of the grid vectors xgv, ygv, and zgv respectively. The sizes of
the output arrays are determined by the length of the grid vectors. For
grid vectors xgv, ygv, and zgv of length M, N, and P respectively, X, Y,
and Z will have N rows, M columns, and P pages.

[X,Y] = meshgrid(gv) is the same as [X,Y] = meshgrid(gv,gv).
In other words, you can reuse the same grid vector in each respective
dimension. The dimensionality of the output arrays is determined by
the number of output arguments.

[X,Y,Z] = meshgrid(gv) is the same as
[X,Y,Z] = meshgrid(gv,gv,gv). Again, the dimensionality of the
output arrays is determined by the number of output arguments.

The output coordinate arrays are typically used to evaluate functions of
two or three variables. They are also frequently used to create surface
and volumetric plots.

Input
Arguments

xgv,ygv,zgv

Grid vectors specifying a series of grid point coordinates in the x, y and
z directions, respectively.

1-4281

meshgrid

gv

Generic grid vector specifying a series of point coordinates.

Output
Arguments

X,Y,Z

Output arrays that specify the full grid.

Tips The meshgrid function is similar to ndgrid, however meshgrid is
restricted to 2-D and 3-D while ndgrid supports 1-D to N-D. The
coordinates output by each function are the same, but the shape of the
output arrays in the first two dimensions are different. For grid vectors
x1gv, x2gv and x3gv of length M, N and P respectively, meshgrid(x1gv,
x2gv) will output arrays of size N-by-M while ndgrid(x1gv, x2gv)
outputs arrays of size M-by-N. Similarly, meshgrid(x1gv, x2gv, x3gv)
will output arrays of size N-by-M-by-P while ndgrid(x1gv, x2gv, x3gv)
outputs arrays of size M-by-N-by-P. See “Grid Representation” in the
MATLAB Mathematics documentation for more information.

Examples 2-D Grid From Vectors

Create a full grid from two monotonically increasing grid vectors:

[X,Y] = meshgrid(1:3,10:14)
X =

1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

Y =
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14

1-4282

meshgrid

Plot 3-D Functional Surface

Use meshgrid to create a gridded (X,Y) domain.

[X,Y] = meshgrid(-2:.2:2, -2:.2:2);

Evaluate the function over this domain and generate
a surface plot of the results.

Z = X .* exp(-X.^2 - Y.^2);
surf(X,Y,Z)

1-4283

meshgrid

See Also griddedInterpolant | mesh | ndgrid | surf

How To • “Interpolating Gridded Data”

1-4284

meta.class

Purpose meta.class class describes MATLAB classes

Description Instances of the meta.class class contains information about MATLAB
classes. The read/write properties of the meta.class class correspond
to class attributes and are set only from within class definitions on
the classdef line. You can query the read–only properties of the
meta.class object to obtain information that is specified syntactically
by the class (for example, to obtain the name of the class).

You cannot instantiate a meta.class object directly. You can construct
a meta.class object from an instance of a class or using the class name:

• metaclass — returns a meta.class object representing the object
passed as an argument.

• ?ClassName— returns a meta.class object representing the named
class.

• fromName— static method returns a meta.class object representing
the named class.

For example, the metaclass function returns the meta.class object
representing MyClass.

ob = MyClass;
obmeta = metaclass(ob);
obmeta.Name
ans =
MyClass

You can use the class name to obtain the meta.class object:

obmeta = ?MyClass;

You can also use the fromName static method:

obmeta = meta.class.fromName('MyClass');

1-4285

meta.class

Properties Property Purpose

Abstract attribute,
default = false

If true, this class is an abstract class (cannot
be instantiated).

See “Defining Abstract Classes” for more
information.

AllowedSubclasses
attribute, write
only from classdef
statement

List classes that can subclass this class.
Specify subclasses as meta.class objects in
the form:

• A single meta.class object

• A cell array of meta.class objects

Specify meta.class objects using the
?ClassName syntax only.

ConstructOnLoad
attribute, default =
false

If true, MATLAB calls the class constructor
automatically when loading an object from a
MAT-file. Therefore, the construction must
be implemented so that calling it with no
arguments does not produce an error.

See “Tips for Saving and Loading”

ContainingPackage
read only

A meta.package object describing the package
within which this class is contained, or an
empty object if this class is not in a package.

See “Packages Create Namespaces”.

Description read
only

Currently not used

DetailedDescription
read only

Currently not used

1-4286

meta.class

Property Purpose

Enumeration
attribute, default
= false

If true, this class is an enumeration class.
See “Working with Enumerations”.

EventList read only An array of meta.event objects describing
each event defined by this class, including all
inherited events.

See “Events”.

Events read onlyUse
EventList instead

A cell array of meta.event objects describing
each event defined by this class, including all
inherited events.

EnumerationMemberListAn array of meta.EnumeratedValue objects
describing the member names defined by an
enumeration class.

See “Enumerations” for more information on
enumeration classes.

EnumeratedValues
read only Use
EnumeratedMemberList
instead

A cell array of meta.EnumeratedValue objects
describing the member names defined by an
enumeration class.

See “Enumerations” for more information on
enumeration classes.

Hidden attribute,
default = false

If set to true, the class does not appear in the
output of MATLAB commands or tools that
display class names.

InferiorClasses
attribute, default =
{}

A cell array of meta.class objects defining
the precedence of classes represented by the
list as inferior to this class.

See “Class Precedence”

1-4287

meta.class

Property Purpose

MethodList read
only

An array of meta.method objects describing
each method defined by this class, including
all inherited public and protected methods.

See “How to Use Methods”.

Methods read only
Use MethodList
instead

A cell array of meta.method objects describing
each method defined by this class, including
all inherited public and protected methods.

Name read only Name of the class associated with this
meta.class object (char array)

PropertyList read
only

An array of meta.property objects describing
each property defined by this class, including
all inherited public and protected properties.

See “Properties”.

Properties read only
Use PropertyList
instead

A cell array of meta.property objects
describing each property defined by this class,
including all inherited public and protected
properties.

See “Properties”.

Sealed attribute,
default = false

If true, the class cannot be subclassed.

SuperClassList
read only

An array of meta.class objects describing
each direct superclass from which this class
is derived.

See “Creating Subclasses — Syntax and
Techniques”.

SuperClasses
read only Use
SuperClassList
instead

A cell array of meta.class objects describing
each direct superclass from which this class
is derived.

1-4288

meta.class

Methods
Method Purpose

fromName Returns the meta.class object associated
with the specified class name.

tf = eq(Cls) Equality function (a == b). Use to test if two
variables refer to equal classes (classes that
contain exactly the same list of elements).

tf = ne(Cls) Not equal function (a ~= b). Use to test if two
variables refer to different meta–classes.

tf =
lt(ClsA,ClsB)

Less than function (ClsA < ClsB). Use to
determine if ClsA is a strict subclass of ClsB
(i.e., a strict subclass means ClsX < ClsX is
false).

tf =
le(ClsA,ClsB)

Less than or equal to function (ClsA <=
ClsB). Use to determine if ClsA is a subclass
of ClsB.

tf =
gt(ClsA,ClsB)

Greater than function (ClsB > ClsA). Use to
determine if ClsB is a strict superclass of ClsA
(i.e., a strict superclass means ClsX > ClsX
is false).

tf =
ge(ClsA,ClsB)

Greater than or equal to function (ClsB >=
ClsA). Use to determine if ClsB is a superclass
of ClsA.

1-4289

meta.class

Events
Event Purpose

InstanceCreated If the class is a handle class, this event
occurs every time a new instance of this
handle class is created, including new
instances of any subclasses. The event occurs
immediately after all constructor functions
finish executing.

InstanceDestroyed If the class is a handle class, this event occurs
every time an instance of this handle class is
destroyed, including all subclasses. The event
occurs immediately before any destructor
functions execute.

Examples Find property attributes using the handle class findobj method and
the audioplayer meta.class object. Determine if a class defines the
property named SampleRate and does it have public set access.

mc = ?audioplayer;
mp = findobj(mc.PropertyList,'Name','SampleRate');
strcmp(mp.SetAccess,'public')

...

See Also fromName | meta.property | meta.method | meta.event |
meta.package

How To • “Getting Information About Classes and Objects”

1-4290

meta.class.fromName

Purpose Return meta.class object associated with named class

Syntax mcls = meta.class.fromName('ClassName')

Description mcls = meta.class.fromName('ClassName') is a static method that
returns the meta.class object associated with the class ClassName.
Note that you can also use the ? operator to obtain the meta.class
object for a class name:

mcls = ?ClassName;

The equivalent call to meta.class.fromName is:

mcls = meta.class.fromName('ClassName');

Use meta.class.fromName when using a char variable for the class
name:

function mcls = getMetaClass(clname)
% Do error checking
mcls = meta.class.fromName(clname);
...

end

See Also meta.class

1-4291

meta.DynamicProperty

Purpose meta.DynamicProperty class describes dynamic property of MATLAB
object

Description The meta.DynamicProperty class contains descriptive information
about dynamic properties that you have added to an instance of
a MATLAB classes. The MATLAB class must be a subclass of
dynamicprops. The properties of the meta.DynamicProperty class
correspond to property attributes that you specify from within class
definitions. Dynamic properties are not defined in classdef blocks,
but you can set their attributes by setting the meta.DynamicProperty
object properties.

You add a dynamic property to an object using the addprop
method of the dynamicprops class. The addprop method returns
a meta.DynamicProperty instance representing the new dynamic
property. You can modify the properties of the meta.DynamicProperty
object to set the attributes of the dynamic property or to add set and
get access methods, which would be defined in the classdef for regular
properties.

You cannot instantiate the meta.DynamicProperty class. You must use
addprop to obtain a meta.DynamicProperty object.

To remove the dynamic property, call the delete handle class method
on the meta.DynamicProperty object.

Obtain a meta.DynamicProperty object from the addprops method,
which returns an array of meta.DynamicProperty objects, one for each
dynamic property.

See “Dynamic Properties — Adding Properties to an Instance” for more
information.

Properties Property Purpose

Name Name of the property.

Description Currently not used

1-4292

meta.DynamicProperty

Property Purpose

DetailedDescription Currently not used

AbortSet If true, and this property belongs to a handle
class, then MATLAB does not set the property
value if the new value is the same as the
current value. This approach prevents the
triggering of property PreSet and PostSet
events.

Abstract attribute,
default = false

If true, the property has no implementation,
but a concrete subclass must redefine this
property without Abstract being set to true.

• Abstract properties cannot define set or
get access methods. See “Property Access
Methods”

• Abstract properties cannot define initial
values. “Assigning a Default Value”

• All subclasses must specify the same
values as the superclass for the property
SetAccess and GetAccess attributes.

• Abstract=true should be used with the
class attribute Sealed=false (the default).

1-4293

meta.DynamicProperty

Property Purpose

Access public – unrestricted access

protected – access from class or subclasses

private – access by class members only (not
subclasses)

List of classes that have get and set access to
this property. Specify classes as meta.class
objects in the form:

• A single meta.class object

• A cell array of meta.class objects. An
empty cell array, {}, is the same as
private access.

Use Access to set both SetAccess and
GetAccess to the same value. Query the
values of SetAccess and GetAccess directly
(not Access).

Constant attribute,
default = false

Set to true if you want only one value for this
property in all instances of the class.

• Subclasses inherit constant properties, but
cannot change them.

• Constant properties cannot be Dependent

• SetAccess is ignored.

See “Properties with Constant Values”

DefaultValue Querying this property returns an error
because dynamic properties cannot define
default values.

1-4294

meta.DynamicProperty

Property Purpose

DefiningClass The meta.class object representing the class
that defines this property.

GetAccess attribute,
default = public

public – unrestricted access

protected – access from class or subclasses

private – access by class members only

SetAccess attribute,
default = public

public – unrestricted access

protected – access from class or subclasses

private – access by class members only

Dependent attribute,
default = false

If false, property value is stored in object. If
true, property value is not stored in object
and the set and get functions cannot access
the property by indexing into the object using
the property name.

See “Property Get Methods”

Transient attribute,
default = false

If true, property value is not saved when
object is saved to a file. See “Understanding
the Save and Load Process” for more about
saving objects.

Hidden attribute,
default = false

Determines whether the property should
be shown in a property list (e.g., Property
Inspector, call to properties, etc.).

GetObservable
attribute, default
= false

If true, and it is a handle class property,
then listeners can be created for access
to this property. The listeners are called
whenever property values are queried. See
“Property-Set and Query Events”

1-4295

meta.DynamicProperty

Property Purpose

SetObservable
attribute, default
= false

If true, and it is a handle class property,
then listeners can be created for access
to this property. The listeners are called
whenever property values are modified. See
“Property-Set and Query Events”

GetMethod Function handle of the get method associated
with this property. Empty if there is no get
method specified. See “Get Method Syntax”

SetMethod Function handle of the set method associated
with this property. Empty if there is no set
method specified. See “Property Set Methods”

HasDefault Always false. Dynamic properties cannot
define default values.

Events See “Listen for Changes to Property Values” for information on using
property events.

Event Name Purpose

PreGet Event occurs just before property is queried.

PostGet Event occurs just after property has been
queried

PreSet Event occurs just before this property is
modified

PostSet Event occurs just after this property has been
modified

ObjectBeingDestroyedInherited from handle

See Also addprop | handle

1-4296

meta.EnumeratedValue

Purpose Describes enumeration members of MATLAB class

Description The meta.EnumeratedValue class contains information about
enumeration members defined by MATLAB classes. The properties of
a meta.EnumeratedValue object correspond the to attributes of the
enumeration member being described.

All meta.EnumeratedValue properties are read-only. Query the
meta.EnumeratedValue object to obtain information about the
enumeration member it describes.

Obtain a meta.EnumeratedValue object from the
EnumerationMemberList property of the meta.class object.
EnumerationMemberList is an array of Meta.EnumeratedValue
instances, one per enumeration member.

The meta.EnumeratedValue class is a subclass of the handle class.

Example

To access the meta.EnumeratedValue objects for a class, first create a
meta.class object for that class. For example, give the following OnOff
class definition:

classdef OnOff < logical
enumeration

On (true)
Off (false)

end
end

Obtain a meta.EnumeratedValue object from the
EnumerationMemberList property of the meta.class object:

% Obtain the meta.class instance for the OnOff class
mc = ?OnOff;
% Get the array of EnumerateValue objects
enumList = mc.EnumerationMemberList;
% Access the Name property of the first object in the array
enumList(1).Name =

1-4297

meta.EnumeratedValue

ans =
On

Properties Property Purpose

Name read only Name of the enumeration member associated
with this meta.EnumeratedValue object

Description read
only

This property is not used

DetailedDescription
read only

This property is not used

Methods See the handle superclass for inherited methods.

Events See the handle superclass for inherited events.

See Also meta.class | meta.property | meta.method | meta.event

How To • “Working with Enumerations”

• “Getting Information About Classes and Objects”

1-4298

meta.event

Purpose meta.event class describes MATLAB class events

Description The meta.event class provides information about MATLAB class
events. The read/write properties of the meta.event class correspond to
event attributes and are specified only from within class definitions.

You can query the read-only properties of the meta.event object to
obtain information that is specified syntactically by the class (for
example, to obtain the name of the class defining the event).

You cannot instantiate a meta.event object directly. Obtain a
meta.event object from the meta.class EventList property, which
contains an array of meta.event objects, one for each event defined by
the class. For example, replace ClassName with the name of the class
whose events you want to query:

mco = ?ClassName;
elist = mco.EventList;
elist(1).Name; % name of first event in list

Use the metaclass function to obtain a meta.class object from a class
instance:

mco = metaclass(obj);

Properties Property Purpose

Name read only Name of the event.

Description read
only

Currently not used

DetailedDescription
read only

Currently not used

1-4299

meta.event

Property Purpose

Hidden If true, the event does not appear in the list
of events returned by the events function (or
other event listing functions or viewers)

ListenAccess Determines where you can create listeners for
the event.

• public — unrestricted access

• protected— access from methods in class
or subclasses

• private — access by class methods only
(not from subclasses)

• List classes that have listen access to
this event. Specify classes as meta.class
objects in the form:

- A single meta.class object

- A cell array of meta.class objects. An
empty cell array, {}, is the same as
private access.

See “Controlling Access to Class Members”

1-4300

meta.event

Property Purpose

NotifyAccess Determines where code can trigger the event.

• public— any code can trigger event

• protected — can trigger event from
methods in class or subclasses

• private — can trigger event by class
methods only (not from subclasses)

• List classes that have notify access to
this event. Specify classes as meta.class
objects in the form:

- A single meta.class object

- A cell array of meta.class objects. An
empty cell array, {}, is the same as
private access.

See “Controlling Access to Class Members”

DefiningClass The meta.class object representing the class
that defines this event.

See Also meta.class | meta.property | meta.method | metaclass

How To • “Events”

• “Getting Information About Classes and Objects”

1-4301

meta.MetaData

Superclasses Heterogeneous

Purpose Superclass for MATLAB object metadata

Description The meta.MetaData class of objects represent MATLAB class definitions
and the constituent parts of those definitions, such as properties and
methods. Metadata enable a program to get information about a class
definition.

The meta.MetaData class forms the root of the metadata class
hierarchy, which enables the formation of arrays of metadata objects
belonging to different specific classes.

MATLAB uses instances of the meta.MetaData class as the default
object to fill in missing array elements.

findobj and findprop, can search the metadata hierarchy and return
an array of different metadata objects. These function require the ability
to form heterogeneous arrays containing various metaclass objects.

See the matlab.mixin.Heterogeneous class for more information on
heterogeneous hierarchies.

Construction You cannot create an instance of the meta.MetaData class directly.
MATLAB constructs instances of this class as required.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples This example shows how the meta.MetaData class facilitates working
with metaclasses.

Create a meta.class instance representing the MATLAB timeseries
class:

>> mc = ?timeseries;

MATLAB uses meta.MetaData objects to fill empty array elements:

1-4302

meta.MetaData

>> m(2) = mc
>> class(m(1))

ans =

meta.MetaData
>> class(m(2))

ans =

meta.class

Use findobj to find all properties and methods that have protected
access:

>> protectedMembers = findobj(mc,{'Access','protected'},...
'-or',{'SetAccess','protected'},...
'-or',{'GetAccess','protected'});

The timeseries class defines both properties and methods that have
protected access. Therefore, findobj returns a heterogeneous array of
class meta.MetaData. This array contains both meta.property and
meta.method objects.

>> protectedMembers

protectedMembers =

11x1 heterogeneous meta.MetaData (meta.property, meta.method)

handle with no properties.

Package: meta

>> class(protectedMembers(1))

ans =

meta.property

>> protectedMembers(1).Name

1-4303

meta.MetaData

ans =

Length

>> protectedMembers(1).SetAccess

ans =

protected

>> protectedMembers(1).GetAccess

ans =

public

See Also handle | matlab.mixin.Heterogeneous

How To • Class Attributes

• Property Attributes

• “Getting Information About Classes and Objects”

1-4304

meta.method

Purpose meta.method class describes MATLAB class methods

Description The meta.method class provides information about the methods of
MATLAB classes. The read/write properties of the meta.method class
correspond to method attributes and are specified only from within
class definitions.

You can query the read-only properties of the meta.method object
to obtain information that is specified syntactically by the class (for
example, to obtain the name of the class defining a method).

You cannot instantiate a meta.method object directly. Obtain a
meta.method object from the meta.class MethodList property, which
contains an array of meta.method objects, one for each class method.
For example, replace ClassName with the name of the class whose
methods you want to query:

mco = ?ClassName;
mlist = mco.MethodList;
mlist(1).Name; % name of first method in the list

Use the metaclass function to obtain a meta.class object from a class
instance:

mco = metaclass(obj);

Properties Property Purpose

Abstract If true, the method has no implementation.
The method has a syntax line that can include
arguments, which subclasses use when
implementing the method.

• Subclasses are not required to define
the same number of input and output
arguments.

1-4305

meta.method

Property Purpose

• The method can have comments after the
function line

• Does not contain function or end
keywords, only the function syntax (e.g.,
[a,b] = myMethod(x,y))

Access attribute,
default = public

Determines what code can call this method.

• public — unrestricted access

• protected— access from methods in class
or subclasses

• private — access by class methods only
(not from subclasses)

DefiningClass The meta.class object representing the class
that defines this method.

Description read
only

Currently not used

DetailedDescription
read only

Currently not used

Hidden attribute,
default = false

When false, the method name shows in the
list of methods displayed using the methods
or methodsview commands. If set to true, the
method name is not included in these listings.

Name read only Name of the method.

1-4306

meta.method

Property Purpose

Sealed attribute,
default = false

If true, the method cannot be redefined in a
subclass. Attempting to define a method with
the same name in a subclass causes an error.

Static attribute,
default = false

Set to true to define a method that does not
depend on an object of the class and does
not require an object argument. Call static
methods using the class name in place of the
object:

classname.methodname()

Or with an instance of the class, like any
method:

o.methodname()

See “Static Methods”

See Also meta.class | meta.property | meta.event | metaclass

How To • “Methods”

• “Getting Information About Classes and Objects”

1-4307

meta.package

Purpose meta.package class describes MATLAB packages

Description The meta.package class contains information about MATLAB packages.

You cannot instantiate a meta.package object directly. Obtain a
meta.package object from the meta.class ContainingPackage
property, which contains a meta.package object, or an empty object, if
the class is not in a package.

Properties Property Purpose

Name read only Name of the package associated with this
meta.package object

ClassList read
only

List of classes that are scoped to this package. An
object array of meta.class objects.

Classes read
only Use
ClassList
instead

List of classes that are scoped to this package. A
cell array of meta.class objects.

FunctionList
read only

List of functions that are scoped to this package.
An object array of function handles.

Functions
read only Use
FunctionList
instead

List of functions that are scoped to this package.
A cell array of function handles.

PackageList
read only

List of packages that are scoped to this package.
An object array of meta.package objects.

Packages
read only Use
PackageList
instead

List of packages that are scoped to this package.
A cell array of meta.package objects.

ContainingPackage
read only

A meta.package object describing the package
within which this package is contained, or an
empty object if this package is not nested.

1-4308

meta.package

Methods
Method Purpose

fromName Static method returns a meta.package object for a
specified package name.

getAllPackages Static method returns a cell array of meta.package
objects representing all top-level packages.

See Also meta.class | meta.property | meta.method | meta.event

How To • “Getting Information About Classes and Objects”

1-4309

meta.abstractDetails

Purpose Find abstract methods and properties

Syntax meta.abstractDetails(ClassName)
meta.abstractDetails(mc)
absMembers = meta.abstractDetails(___)

Description meta.abstractDetails(ClassName) displays a list of abstract methods
and properties for the class with name ClassName. Use the fully
specified name for classes in packages. MATLAB displays all public and
protected abstract methods and properties, including those declared
Hidden.

meta.abstractDetails(mc) displays a list of abstract methods and
properties for the class represented by the meta.class object mc.

absMembers = meta.abstractDetails(___) returns an array of the
metaclass objects corresponding to the abstract members of the class,
and can include any of the input arguments in previous syntaxes. If the
class has both abstract methods and abstract properties, absMembers is
a heterogeneous array of class meta.MetaData containing meta.method
and meta.property objects.

A class can be abstract without defining any abstract methods or
properties if it declares the Abstract class attribute. In this case,
meta.abstractDetails returns no abstract members for that class, but
the class is abstract. See “Determine If a Class Is Abstract” for more
information.

Input
Arguments

ClassName

Name of the class specified as a character string (for example,
'MyClass')

mc

meta.class object representing the class (for example, ?MyClass)

1-4310

meta.abstractDetails

Output
Arguments

absMembers

Array of metaclass objects representing abstract class members

Examples Display Abstract Member Names

Define the class, AbsBase, with an abstract property:

classdef AbsBase
properties (Abstract)

Prop1
end
methods(Abstract)

result = methodOne(obj)
output = methodTwo(obj)

end
end

Pass the class name (AbsBase) as a string:

meta.abstractDetails('AbsBase')

meta.abstractDetails displays the names of the abstract properties
and methods defined in the class AbsBase.

Abstract methods for class AbsBase:
methodTwo % defined in AbsBase
methodOne % defined in AbsBase

Abstract properties for class AbsBase:
Prop1 % defined in AbsBase

Return Abstract Member Metaclass Objects

Pass a meta.class object representing the AbsBase class and return
the metaclass objects for the abstract members. Use the definition of
the AbsBase class from the previous example.

mc = ?AbsBase;

1-4311

meta.abstractDetails

absMembers = meta.abstractDetails(mc);

absMembers is a heterogeneous array containing a meta.property
object for the Prop1 abstract property and meta.method objects for the
methodOne and methodTwo abstract methods.

List the names of the metaclass objects.

for k=1:length(absMembers)
disp(absMembers(k).Name)

end

methodTwo
methodOne
Prop1

Find Inherited Abstract Members

Derive the SubAbsBase class from AbsBase, which is defined in a
previous example.

classdef SubAbsBase < AbsBase
properties

SubProp = 1;
end
methods

function result = methodOne(obj)
result = obj.SubProp + 1;

end
end

end

Display the names of the abstract members inherited by SubAbsBase.

meta.abstractDetails('SubAbsBase')

Abstract methods for class SubAbsBase:
methodTwo % defined in AbsBase

1-4312

meta.abstractDetails

Abstract properties for class SubAbsBase:
Prop1 % defined in AbsBase

To make SubAbsBase a concrete class, you need to implement concrete
versions of methodTwo and Prop1 in the subclass.

See Also meta.class | meta.class.fromName

Concepts • “Defining Abstract Classes”
• “Getting Information About Classes and Objects”

1-4313

meta.package.fromName

Purpose Return meta.package object for specified package

Syntax mpkg = meta.package.fromName('pkgname')

Description mpkg = meta.package.fromName('pkgname') is a static method that
returns the meta.package object associated with the named package. If
pkgname is a nested package, then you must provide the fully qualified
name (e.g., 'pkgname1.pkgname2').

Examples List the classes in the event package:

mev = meta.package.fromName('event');
for k=1:length(mev.Classes)

disp(mev.Classes{k}.Name)
end
event.EventData
event.PropertyEvent
event.listener
event.proplistener

See Also meta.package | meta.package.getAllPackages

1-4314

meta.package.getAllPackages

Purpose Get all top-level packages

Syntax P = meta.package.getAllPackages

Description P = meta.package.getAllPackages is a static method that returns
a cell array of meta.package objects representing all the top-level
packages that are visible on the MATLAB path or defined as top-level
built-in packages. You can access subpackages using the Packages
property of each meta.package object.

Note that the time required to find all the packages on the path might
be excessively long in some cases. You should therefore avoid using
this method in any code where execution time is a consideration.
getAllPackages is generally intended for interactive use only.

See Also meta.package | meta.package.fromName

1-4315

meta.property

Purpose meta.property class describes MATLAB class properties

Description The meta.property class provides information about the properties of
MATLAB classes. The read/write properties of the meta.property class
correspond to property attributes and are specified only from within
your class definitions.

You can query the read-only properties of the meta.property object
to obtain information that is specified syntactically by the class (for
example, to obtain the function handle of a property’s set access
method).

You cannot instantiate a meta.property object directly. Obtain a
meta.property object from the meta.class PropertList property,
which contains an array of meta.property objects, one for each class
property. For example, replace ClassName with the name of the class
whose properties you want to query:

mco = ?ClassName;
plist = mco.PropertyList;
plist(1).Name; % name of first property

Use the metaclass function to obtain a meta.class object from a class
instance:

mco = metaclass(obj);

Properties Property Purpose

Name read only Name of the property.

Description read
only

Currently not used

DetailedDescription
read only

Currently not used

1-4316

meta.property

Property Purpose

AbortSet attribute,
default = false

If true, and this property belongs to a handle
class, then MATLAB does not set the property
value if the new value is the same as the
current value. This prevents the triggering of
property PreSet and PostSet events.

See “Listen for Changes to Property Values”

Abstract attribute,
default = false

If true, the property has no implementation,
but a concrete subclass must redefine this
property without Abstract being set to true.

• Abstract properties cannot define set or
get access methods. See “Property Access
Methods”

• Abstract properties cannot define initial
values. “Assigning a Default Value”

• All subclasses must specify the same
values as the superclass for the property
SetAccess and GetAccess attributes.

• Abstract=true should be used with the
class attribute Sealed=false (the default).

Access public – unrestricted access

protected – access from class or subclasses

private – access by class members only (not
subclasses)

List of classes that have get and set access to
this property. Specify classes as meta.class
objects in the form:

• A single meta.class object

1-4317

meta.property

Property Purpose

• A cell array of meta.class objects. An
empty cell array, {}, is the same as
private access.

Use Access to set both SetAccess and
GetAccess to the same value. Query the
values of SetAccess and GetAccess directly
(not Access).

Constant attribute,
default = false

Set to true if you want only one value for this
property in all instances of the class.

• Subclasses inherit constant properties, but
cannot change them.

• Constant properties cannot be Dependent

• SetAccess is ignored.

See “Properties with Constant Values”

DefaultValue Property default value (if specified in class
definition). See also HasDefault property.
Abstract, dependent and dynamic properties
cannot specify default values.

DefiningClass The meta.class object representing the class
that defines this property.

1-4318

meta.property

Property Purpose

GetAccess attribute,
default = public

public – unrestricted access

protected – access from class or subclasses

private – access by class members only

List classes that have get access to this
property. Specify classes as meta.class
objects in the form:

• A single meta.class object

• A cell array of meta.class objects. An
empty cell array, {}, is the same as
private access.

See “Controlling Access to Class Members”

Dependent attribute,
default = false

If false, property value is stored in object. If
true, property value is not stored in object
and the set and get functions cannot access
the property by indexing into the object using
the property name.

See “Property Get Methods”

Transient attribute,
default = false

If true, property value is not saved when
object is saved to a file. See “Understanding
the Save and Load Process” for more about
saving objects.

GetMethod read only Function handle of the get method associated
with this property. Empty if there is no get
method specified. See “Get Method Syntax”

1-4319

meta.property

Property Purpose

GetObservable
attribute, default
= false

If true, and it is a handle class property,
then listeners can be created for access
to this property. The listeners are called
whenever property values are queried. See
“Property-Set and Query Events”

HasDefault Property contains a boolean value
indicating if the property defines a default
value. Test HasDefault before querying
the DefaultValue property to avoid a
MATLAB:class:NoDefaultDefined error.

Hidden attribute,
default = false

Determines whether the property should
be shown in a property list (e.g., Property
Inspector, call to properties, etc.).

SetAccess attribute,
default = public

public – unrestricted access

protected – access from class or subclasses

private – access by class members only

immutable— property can be set only in the
constructor.

See “Mutable and Immutable Properties”

List classes that have set access to this
property. Specify classes as meta.class
objects in the form:

• A single meta.class object

• A cell array of meta.class objects. An
empty cell array, {}, is the same as
private access.

See “Controlling Access to Class Members”

1-4320

meta.property

Property Purpose

SetMethod read only Function handle of the set method associated
with this property. Empty if there is no set
method specified. See “Property Set Methods”

SetObservable
attribute, default
= false

If true, and it is a handle class property,
then listeners can be created for access
to this property. The listeners are called
whenever property values are modified. See
“Property-Set and Query Events”

Events See “Listen for Changes to Property Values” for information on using
property events.

Event Name Purpose

PreGet Event occurs just before property is queried.

PostGet Event occurs just after property has been
queried

PreSet Event occurs just before this property is
modified

PostSet Event occurs just after this property has been
modified

See Also meta.class | meta.method | meta.event | metaclass

How To • “Properties”

• “Getting Information About Classes and Objects”

1-4321

metaclass

Purpose Obtain meta.class object

Syntax mc = metaclass(object)
mc = ?ClassName

Description mc = metaclass(object) returns the meta.class object for the class
of object. The object input argument can be a scalar or an array
of objects. However, metaclass always returns a scalar meta.class
object.

mc = ?ClassName returns the meta.class object for the class with
name, ClassName. The ? operator works only with a class name, not
an object.

If you pass a class name as a string to the metaclass function, it
returns the meta.class object for the char class. Use the ? operator
or the meta.class.fromName method to obtain the meta.class object
from a class name. Use this method if you want to pass the class name
in a string variable.

Examples Return the meta.class object for an instance of the MException class:

obj = MException('Msg:ID','MsgTxt');
mc = metaclass(obj);

Use the ? operator to get the meta.class object for the hgsetget class:

mc = ?hgsetget;

See Also meta.class | meta.class.fromName

Tutorials • “Class Metadata”

1-4322

methods

Purpose Class method names

Syntax methods('classname')
methods(...,'-full')
m = methods(...)

Description methods('classname') displays the names of the methods for the class
classname. If classname is a MATLAB or Java class, then methods
displays only public methods, including those methods inherited from
superclasses.

methods(...,'-full') displays a full description of the methods,
including inheritance information and, for MATLAB and Java methods,
method attributes and signatures. methods does not remove duplicate
method names with different signatures. Do not use this option with
classes defined before MATLAB 7.6.

m = methods(...) returns the method names in a cell array of strings.

methods is also a MATLAB class-definition keyword. See classdef for
more information on class-definition keywords.

This function does not show generic methods from classes based on the
Microsoft .NET Framework. Use your product documentation to get
information on generic methods.

Examples Retrieve the names of the static methods in class MException:

methods('MException')

Methods for class MException:

addCause getReport ne throw
eq isequal rethrow throwAsCaller

Static methods:

last

1-4323

methods

See Also methodsview | properties | events | what | which

Tutorials • “Methods”

1-4324

methodsview

Purpose View class methods

Syntax methodsview packagename.classname
methodsview classname
methodsview(object)

Description methodsview packagename.classname displays information about the
methods in the class, classname. If the class is in a package, include
packagename. If classname is a MATLAB or Java class, methodsview
lists only public methods, including those methods inherited from
superclasses.

methodsview classname displays information describing the class
classname.

methodsview(object) displays information about the methods of the
class of object.

methodsview creates a window that displays the methods defined in
the specified class. methodsview provides additional information like
arguments, returned values, and superclasses. It also includes method
qualifiers (for example, abstract or synchronized) and possible
exceptions thrown.

Examples List information on all methods in the java.awt.MenuItem class:

methodsview java.awt.MenuItem

MATLAB displays this information in a new window.

See Also methods | import | class | javaArray

1-4325

mex

Purpose Build MEX-function from C/C++ or Fortran source code

Syntax mex -setup

mex filenames
mex option1 ... optionN filenames

mex -setup lang

Description mex filenames compiles and links one or more C, C++, or Fortran
source files into a binary MEX-file, callable from MATLAB. filenames
specify the source files. Also builds executable files for standalone
MATLAB engine and MAT-file applications.

MATLAB automatically selects a compiler, if installed, based on the
language of the filenames arguments.

mex option1 ... optionN filenames builds with the specified build
options. The option1 ... optionN arguments supplement or
override the default mex build configuration.

mex -setup lang selects a compiler for the given lang. Use this option
when you want to change the default compiler for the given language.

Input
Arguments

filenames - One or more file names
string

One or more file names, including name and file extension, specified as
a string. If the file is not in the current folder, specify the full path to
the file. File names can be any combination of:

• C, C++, or Fortran language source files

• Simulink S-function files

• object files

• library files

1-4326

mex

The first file listed in filenames is the name of the binary MEX-file.
To override this naming convention, use the '-output' option.

Data Types
char

option1 ... optionN - One or more build options
strings corresponding to valid option flags

One or more build options, specified as one of these values. Options can
appear in any order on any platform, except where indicated.

Option Description

@rspfile Uses Windows RSP file. An RSP file is a text
file containing command-line options.

-c Compiles an object file only. Does not build a
binary MEX-file.

-client engine Build engine application.

-compatibleArrayDims
(default)
-largeArrayDims

Links with the specified MATLAB
array-handling API.

• -compatibleArrayDims — Uses the
MATLAB Version 7.2 array-handling API,
which limits arrays to 231-1 elements.
Default option.

• -largeArrayDims — Uses the MATLAB
large-array-handling API. This API handles
arrays with more than 231-1 elements. Must
use this option when calling LAPACK or
BLAS functions.

In verbose mode (-v option), if you do not
specify either the -compatibleArrayDims
or the -largeArrayDims option, MATLAB
displays a message showing the default option.

1-4327

mex

(Continued)

Option Description

-Dsymbolname
-Dsymbolname=symbolvalue
-Usymbolname

The -D options define C preprocessor macros.
Equivalent to the following in the source file:

• #define symbolname

• #define symbolname symbolvalue

The -U option removes any initial definition
of the C preprocessor macro, symbolname.
Inverse of the -D option.

Do not add a space between D or U and
symbolname. Do not add spaces around the
= sign.

Example: “Define Directive” on page 1-4337

-f filepath To build engine applications, use the -client
engine option.

Specifies name and location of the mex
configuration file. Overrides the default
compiler selection. For information about
using a non-default compiler, see “Changing
Default Compiler”. filepath is the name and
full path of the configuration file, specified as
a string.

-g Adds symbolic information and disables
optimizing built object code. Use for
debugging. To debug with optimization, add
the -O option.

-h[elp] Displays help for mex. Use from an operating
system prompt.

1-4328

mex

(Continued)

Option Description

-Ipathname Adds pathname to the list of folders to search
for #include files.

Do not add a space between I and pathname.

Example: “Specify Path to Include File” on
page 1-4335

-llibname
-Llibfolder
-llibname

Links with object library libname in (optional)
libfolder.

MATLAB expands libname to:

• libname.lib or liblibname.lib —
Windows systems

• liblibname.dylib— Mac systems

• liblibname.so— Linux systems

If used, the -L option must precede the
-l option. When using the -L option on
Linux or Mac systems, you also must set the
runtime library path, as explained in “Setting
Run-Time Library Path”.

Do not add a space between l and libname or
between L and libfolder.

Specify the -l option with the lowercase letter
L.

Example: “Specify Path to Library File” on
page 1-4336

1-4329

mex

(Continued)

Option Description

-largeArrayDims
-compatibleArrayDims
(default)

Links with the specified MATLAB
array-handling API.

• -compatibleArrayDims — Uses the
MATLAB Version 7.2 array-handling API,
which limits arrays to 231-1 elements.
Default option.

• -largeArrayDims — Uses the MATLAB
large-array-handling API. This API handles
arrays with more than 231-1 elements. Must
use this option when calling LAPACK or
BLAS functions.

In verbose mode (-v option), if you do not
specify either the -compatibleArrayDims
or the -largeArrayDims option, MATLAB
displays a message showing the default option.

-n Displays, but does not execute, commands
that mex would execute.

Example: “Preview Build Commands” on page
1-4334

-O Optimizes the object code. Use this option to
compile with optimization.

Optimization is enabled by default.
Optimization is disabled when the -g option
appears without the -O option.

Specify this option with the capital letter O.

1-4330

mex

(Continued)

Option Description

-outdir dirname Places all output files in folder dirname.

Example: “Create and Link to Separate Object
Files” on page 1-4334

-output mexname Overrides the default MEX-file naming
mechanism. Creates binary MEX-file named
mexname with the appropriate MEX-file
extension.

-setup lang Change the default compiler to build lang
language MEX-files. When you use this
option, all other command-line options are
ignored.

-silent Suppresses informational messages. The mex
function still reports errors and warnings,
even when you specify -silent.

-Usymbolname Removes any initial definition of the C
preprocessor macro symbolname. (Inverse of
the -D option.)

Do not add a space betweenU and symbolname.

-v Builds in verbose mode. Displays values for
internal variables after all command-line
arguments are considered. Displays each
compile and link step fully evaluated.

Example: “Display Detailed Build and
Troubleshooting Information” on page 1-4334

varname=varvalue Overrides default setting for variable
varname. This option is processed after all
command-line arguments are considered.

1-4331

mex

(Continued)

Option Description

Example: “Override Default Compiler Switch
Option” on page 1-4337.

lang - Language
C (default) | C++ | CPP | Fortran

Language, specified as one of these values.

C C compilers, including C++.

C++ or CPP C++ compilers.

Fortran Fortran compilers.

Examples Build C MEX-File

Build a single C program, yprime.c, into a MEX-file.

Each example is based on MEX examples in the
matlabroot/extern/examples subfolders. To build the
example code, copy the source file to a writable folder on your path, such
as c:\work. Set the current folder to c:\work.

[s,msg,msgid] = mkdir('c:\work');
if (isempty(msgid))

mkdir('c:\work')
end
cd c:\work

Copy the source code, yprime.c.

copyfile(fullfile(matlabroot,'extern','examples','mex',...
'yprime.c'),'.','f');

Build the MEX-file.

1-4332

mex

mex yprime.c

Building with 'Microsoft Visual C++ 2010 (C)'.
MEX completed successfully.

The output displays information specific to your compiler.

Test.

T=1; Y=1:4;
yprime(T,Y)

ans =
2.0000 8.9685 4.0000 -1.0947

Build MEX-File from Multiple Source Files

The MEX-file example, fulltosparse, consists of two Fortran source
files, loadsparse.F and fulltosparse.F.

To run this example, you need a supported Fortran compiler installed
on your system.

Copy the source files to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook',...
'loadsparse.F'),'.','f');

copyfile(fullfile(matlabroot,'extern','examples','refbook',...
'fulltosparse.F'),'.','f');

Build the fulltosparse MEX-file.

mex -largeArrayDims fulltosparse.F loadsparse.F

The MEX-file name is fulltosparse because fulltosparse.F is the
first file on the command line.

Test.

full = eye(5);

1-4333

mex

spar = fulltosparse(full)

spar =
(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1

Preview Build Commands

To preview the build command details without executing the commands,
use the -n option.

mex -n yprime.c

The output displays information specific to your platform and compiler.

Display Detailed Build and Troubleshooting Information

To display the compile and link commands and other information useful
for troubleshooting, use verbose mode.

mex -v -compatibleArrayDims yprime.c

The output displays information specific to your platform and compiler.

Create and Link to Separate Object Files

You can link to object files that you compile separately from your source
MEX-files.

The MEX-file example, fulltosparse, consists of two Fortran source
files, loadsparse.F and fulltosparse.F. The fulltosparse file
is the gateway routine (contains the mexFunction subroutine) and
loadsparse contains the computational routine.

To run this example, you need a supported Fortran compiler installed
on your system.

Copy the computational subroutine to your current folder.

1-4334

mex

copyfile(fullfile(matlabroot,'extern','examples','refbook',...
'loadsparse.F'),'.','f');

Compile the subroutine and place the object file in a separate folder,
c:\objfiles.

mkdir c:\objfiles
mex -largeArrayDims -c -outdir c:\objfiles loadsparse.F

Copy the gateway subroutine to your current folder. Compile and link
with the loadsparse object file.

copyfile(fullfile(matlabroot,'extern','examples','refbook',...
'fulltosparse.F'),'.','f');

mex -largeArrayDims fulltosparse.F c:\objfiles\loadsparse.obj

Specify Path to Include File

Use the -I option to specify the path to include the MATLAB LAPACK
library subroutines for handling complex number routines. To use these
subroutines, your MEX-file must access the header file, fort.h.

Copy the matrixDivideComplex.c example to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook',...
'matrixDivideComplex.c'),'.','f');

Create the -I argument by concatenating '-I' with the path to fort.h
file.

ipath = ['-I' fullfile(matlabroot,'extern','examples','refbook')];

Create variables for the names and paths to the LAPACK library file
and the file, fort.c, containing the complex number handling routines.

lapacklib = fullfile(matlabroot, ...
'extern','lib',computer('arch'),'microsoft','libmwlapack.lib');

fortfile = fullfile(matlabroot,'extern','examples',...

1-4335

mex

'refbook','fort.c');

Build the MEX-file.

mex('-v','-largeArrayDims',ipath, ...
'matrixDivideComplex.c',fortfile,lapacklib)

Specify Path to Library File

Build the matrixDivide.c example on a Windows platform.

Use the -L and -l options to specify the libmwlapack.lib library,
located in the folder, matlabroot\extern\lib\arch\microsoft.

Copy the matrixDivide.c example to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook',...
'matrixDivide.c'),'.','f');

Capture the value of matlabroot.

matlabroot

ans =

C:\Program Files\MATLAB\R2014a

Capture the value of arch.

arch

ans =

win64

To build the MEX-file, copy the values of matlabroot and arch into the
mex command, as shown in the following statement.

mex -largeArrayDims '-LC:\Program Files\MATLAB\R2014a\extern\lib\win64\mi

1-4336

mex

You must use the ' characters because \Program Files in the path
includes a space.

Define Directive

Define the character to use between strings in a matrix.

The MATLAB example, mxcreatecharmatrixfromstr.c, uses a
#define symbol, SPACE_PADDING, to determine what character to use
between strings in a matrix. To set the value, build the MEX-file with
the -D option.

Copy the mxcreatecharmatrixfromstr.c example to the current folder.

copyfile(fullfile(matlabroot,'extern','examples','mx',...
'mxcreatecharmatrixfromstr.c'),'.','f');

Set the SPACE_PADDING directive to add a space between strings.

mex mxcreatecharmatrixfromstr.c -DSPACE_PADDING

Override Default Compiler Switch Option

Build the yprime.c MEX-file by appending the value -Wall to the
existing compiler flag. Because the value includes a space character,
you must delineate the string; the character you use depends on the
platform.

At the MATLAB prompt, use MATLAB single quotes (').

mex -v COMPFLAGS='$COMPFLAGS -Wall' yprime.c

At the Windows Command Prompt, use double quotes (").

mex -v COMPFLAGS="$COMPFLAGS -Wall" yprime.c

At the shell command line on Mac and Linux, use single quotes (').

mex -v CFLAGS='$CFLAGS -Wall' yprime.c

1-4337

mex

Build Engine Application

Copy the engwindemo.c engine example to the current folder.

copyfile(fullfile(matlabroot,...
'extern','examples','eng_mat','engwindemo.c'),'.','f');

mex -client engine engwindemo.c

Run the example.

!engwindemo

Select C Compiler

mex -setup

MATLAB displays the options for your version and system based on the
list of Supported and Compatible Compilers.

Tips • You can run mex from:

- MATLAB Command Window

- Windows system prompt

- Mac Terminal

- Linux shell

For command-line usage outside of MATLAB, the mex program is
located in the folder specified by [matlabroot '/bin'].

• The MEX-file has a platform-dependent extension. You can place
binary MEX-files for different platforms in the same folder.

Platform Binary MEX-File Extension

Linux (64-bit) mexa64

Apple Mac (64-bit) mexmaci64

1-4338

http://www.mathworks.com/support/compilers/current_release/

mex

(Continued)

Platform Binary MEX-File Extension

Microsoft Windows
(32-bit)

mexw32

Windows (64-bit) mexw64

To identify the MEX-file extension, use the mexext function.

• To use mex to build executable files for standalone MATLAB engine
and MAT-file applications, use the -client engine option.

See Also “C/C++ Matrix Library API” | “Fortran Matrix Library API” |
mex.getCompilerConfigurations | dbmex | mexext | inmem | clear |
loadlibrary | computer | prefdir | system | pcode

Related
Examples

• “Table of MEX-File Source Code Files”

Concepts • “Build MEX-File”
• “Changing Default Compiler”

External
Web Sites

• Supported and Compatible Compilers

1-4339

http://www.mathworks.com/support/compilers/current_release/

mex.getCompilerConfigurations

Purpose Get compiler configuration information for building MEX-files

Syntax cc = mex.getCompilerConfigurations
cc = mex.getCompilerConfigurations(lang)
cc = mex.getCompilerConfigurations(lang,list)

Description cc = mex.getCompilerConfigurations returns an object cc
containing information about the default compiler configurations used
by the mex command. There is one configuration for each supported
language.

cc = mex.getCompilerConfigurations(lang) returns an array of
objects for the given language, lang.

cc = mex.getCompilerConfigurations(lang,list) returns
information about the set of configurations, list.

Input
Arguments

lang - Language
'Any' (default) | 'C' | 'C++' | 'CPP' | 'Fortran'

Language, specified as one of these values.

'Any' All supported languages. This is
the default value.

'C' All C compiler configurations,
including C++ configurations.

'C++' or 'CPP' All C++ compiler configurations.

'Fortran' All Fortran compiler
configurations.

list - Set of configurations
'Selected' (default) | 'Installed' | 'Supported'

Set of configurations, specified as one of these values.

1-4340

mex.getCompilerConfigurations

'Selected' The default compiler for each
language.

'Installed' All supported compilers mex finds
installed on your system.

'Supported' All compilers supported in the
current release.

Output
Arguments

cc - Compiler information
mex.CompilerConfiguration object or array of objects

Compiler information, specified as a mex.CompilerConfiguration
object or array of mex.CompilerConfiguration objects. The
mex.CompilerConfiguration class contains the following read-only
properties.

Property Purpose

Name Compiler name.

ShortName Character string used to identify options file for
the compiler.

Manufacturer Name of the manufacturer of the compiler.

Language Compiler language.

Version (Windows platforms only) Version of the compiler.

Location (Windows platforms only) Folder where compiler
is installed.

Details More read-only properties about the compiler
configuration. These properties might differ across
compilers, platforms, and releases of MATLAB.

LinkerName Linker name.

LinkerVersion (Windows platforms only) Version of the linker.

1-4341

mex.getCompilerConfigurations

Property Purpose

MexOpt Name and full path to options file.

Priority The priority of this compiler.

Examples Display Information for C Compiler

myCCompiler = mex.getCompilerConfigurations('C','Selected')

myCCompiler =

CompilerConfiguration with properties:

Name: 'Microsoft Visual C++ 2010 (C)'
Manufacturer: 'Microsoft'

Language: 'C'
Version: '10.0'

Location: 'c:\Program Files (x86)\Microsoft Visual Studio 10.0'
ShortName: 'MSVC100'
Priority: 'A'
Details: [1x1 mex.CompilerConfigurationDetails]

LinkerName: 'link'
LinkerVersion: ''

MexOpt: 'C:\Users\auser\AppData\Roaming\MathWorks\MATLAB\R2014

MATLAB displays information depending on your architecture and
your version of MATLAB.

Display Number of Supported C Compilers

cLanguageCC = mex.getCompilerConfigurations('C','Supported');
length(cLanguageCC)

ans =
10

1-4342

mex.getCompilerConfigurations

The number of compilers for your version of MATLAB might be
different.

See Also mex

External
Web Sites

• Supported and Compatible Compilers

1-4343

http://www.mathworks.com/support/compilers/current_release/

MException

Purpose Capture error information

Syntax exception = MException(msgIdent, msgString, v1, v2, ..., vN)

Description exception = MException(msgIdent, msgString, v1, v2, ..., vN)
captures information about a specific error and stores it in MException
object, exception. Information stored in the object includes a message
identifier msgIdent and an error message string msgString. Optional
arguments v1, v2, ... represent text or numeric values that replace
conversion specifiers in msgString at run time.

Message identifier msgIdent is a character string composed of at least
two substrings, the component and the mnemonic, separated by a colon
(e.g., component:mnemonic). The purpose of the identifier is to better
identify the source of the error. See the documentation on “Message
Identifiers” for more information.

Message string msgString is a character string that informs the user
about the cause of the error and can also suggest how to correct the
faulty condition. The msgString string can include escape sequences
such as \t or \n, as well as any of the format specifiers supported by
the sprintf function (such as %s or %d). Additional arguments v1, v2,
..., vN provide values that correspond to and replace the conversion
specifiers.

For example, if msgString is “Error on line %d, command %s”, then v1 is
the line number at which the error was detected, and v2 is the command
that failed. See “Formatting Strings” in the MATLAB Programming
Fundamentals documentation for more detailed information on using
string formatting commands.

The exception output is an object of the MException class. MException
is the constructor for this class. In addition to calling the constructor
directly, you can also create an object of MException with any of the
following functions: error and assert. See the documentation and
figure in the section “The MException Class” for more information on
this class.

1-4344

MException

Properties The MException object has four properties: identifier, message,
stack, and cause. Click any of the links below to find out more about
MException properties:

Property Description

identifier Identifies the error.

message Formatted error message that is displayed.

stack Structure containing stack trace information such
as file name, function name, and line number
where the MException was thrown.

cause Cell array of MException that caused this
exception to be created.

Methods The MException class has the following methods. Click any of the links
below to find out more about MException methods:

Method Description

addCause Appends an MException to the cause field of
another MException.

eq Tests scalar MException objects for equality.

getReport Returns a formatted message string that uses
the same format as errors thrown by internal
MATLAB code.

isequal Tests scalar MException objects for equality.

last Returns an MException object for the most
recently thrown exception.

ne Tests scalar MException objects for inequality.

1-4345

MException

Method Description

rethrow Reissues an exception that has been caught,
causing the program to stop.

throw Issues an exception from the currently running
function.

throwAsCaller Issues an exception from the currently running
function, also omitting the current stack frame
from the stack field of the MException.

Tips Valid escape sequences for the msgString argument are \b, \f, \n, \r,
\t, and \x or \ when followed by a valid hexadecimal or octal number,
respectively. Following a backslash in the msgString with any other
character causes MATLAB to issue a warning. Conversion specifiers
are similar to those used in the C programming language and in the
sprintf function.

All string input arguments must be enclosed in single quotation marks.

Examples Example 1 — Formatted Messages

If your message string requires formatting specifications like those
used with the sprintf function, you can use this syntax to compose
the error message string:

exception = MException(msgIdent, msgString, v1, v2, ...)

For example,

exception = MException('AcctError:Incomplete', ...
'Field ''%s.%s'' is not defined.', ...
'Accounts', 'ClientName');

exception.message
ans =

Field 'Accounts.ClientName' is not defined.

1-4346

MException

Example 2

The catch block in this example checks to see if the specified file could
not be found. If this is the case, the program allows for the possibility
that a common variation of the filename extension (e.g., jpeg instead
of jpg) was used by retrying the operation with a modified extension.
This is done using a try/catch statement that is nested within the
original try/catch.

function d_in = read_image(filename)
[path name ext] = fileparts(filename);
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch exception

% Did the read fail because the file could not be found?
if ~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch ext
case '.jpg' % Change jpg to jpeg

altFilename = strrep(filename, '.jpg', '.jpeg')
case '.jpeg' % Change jpeg to jpg

altFilename = strrep(filename, '.jpeg', '.jpg')
case '.tif' % Change tif to tiff

altFilename = strrep(filename, '.tif', '.tiff')
case '.tiff' % Change tiff to tif

altFilename = strrep(filename, '.tiff', '.tif')
otherwise

rethrow(exception);
end

% Try again, with modifed filename.
try

fid = fopen(altFilename, 'r');
d_in = fread(fid);

catch

1-4347

MException

rethrow(exception)
end

end
end

Example 3 — Nested try/catch

This example attempts to open a file in a folder that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the file still cannot be found, the
program issues an exception with the first error appended to the second:

function data = read_it(filename);
try

% Attempt to open and read from a file.
fid = fopen(filename, 'r');
data = fread(fid);

catch exception1
% If the error was caused by an invalid file ID, try
% reading from another location.
if strcmp(exception1.identifier, 'MATLAB:FileIO:InvalidFid')

msg = sprintf(...
'\nCannot open file %s. Try another location? ', ...
filename);

reply = input(msg, 's')
if reply(1) == 'y'

newFolder = input('Enter folder name: ', 's');
else

throw(exception1);
end
oldpath = addpath(newFolder);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch exception2
exception3 = addCause(exception2, exception1)
path(oldpath);
throw(exception3);

1-4348

MException

end
path(oldpath);

end
end
fclose(fid);

If you run this function in a try-catch block at the command line, you
can look at the MException object by assigning it to a variable (e) with
the catch command.

See Also dbstack | ne(MException) | isequal(MException) |
eq(MException) | getReport(MException) | last(MException)
| addCause(MException) | throwAsCaller(MException) |
rethrow(MException) | throw(MException) | assert | error | try,
catch

Related
Examples

• “The MException Class”

1-4349

mexext

Purpose Binary MEX-file-name extension

Syntax ext = mexext
extlist = mexext('all')

Description ext = mexext returns the file-name extension for the current platform.

extlist = mexext('all') returns the extensions for all platforms.

Output
Arguments

ext - File-name extension
mexa64 | mexmaci64 | mexw32 | mexw64

File-name extension for MEX-file, returned as one of these values.

Platform Binary MEX-File Extension

Linux (64-bit) mexa64

Apple Mac (64-bit) mexmaci64

Microsoft Windows
(32-bit)

mexw32

Windows (64-bit) mexw64

extlist - All file-name extensions
structure

All file-name extensions, returned as a structure with these fields:

arch - Platform
string

Platform, specified as a string. The name of the platform is the output
of the computer('arch') command.

ext - File extension
string

1-4350

mexext

File extension, specified as a string.

Examples Display File Extension for Your Computer

Find the MEX-file extension for the system you are currently working
on.

ext = mexext

ext =
mexw32

Your results reflect your system.

Find File Extension for Specific Platform

Find the MEX-file extension for the Apple Macintosh systems.

Get the list for supported platforms.

extlist = mexext('all');

The mex function identifies a platform by its arch value, which is the
output of the computer('arch') command. For Macintosh platforms,
the value is maci64.

Search the arch field in the results, extlist, for 'maci64', and display
the corresponding ext field.

for k=1:length(extlist)
if strcmp(extlist(k).arch, 'maci64')
disp(sprintf('Arch: %s Ext: %s', ...

extlist(k).arch, extlist(k).ext))
end, end

Arch: maci64 Ext: mexmaci64

The file extension is mexmaci64.

1-4351

mexext

Tips • To use the MEX-file-name extension in makefiles or scripts outside
MATLAB, type one of the following from the system command
prompt. The script is located in the matlabroot\bin folder.

- mexext.bat—Windows platform.

- mexext.sh—UNIX platform.

For example, the following commands are in a GNU® makefile.

ext = $(shell mexext)
yprime.$(ext) : yprime.c

mex yprime.c

• MATLAB continues to execute a MEX-file with a .dll extension, but
future versions of MATLAB will not support this extension.

See Also mex | computer

1-4352

mfilename

Purpose File name of currently running function

Syntax mfilename
p = mfilename('fullpath')
c = mfilename('class')

Description mfilename returns a string containing the file name of the most recently
invoked function. When called from within the file, it returns the name
of that file. This allows a function to determine its name, even if the file
name has been changed.

p = mfilename('fullpath') returns the full path and name of the file
in which the call occurs, not including the filename extension.

c = mfilename('class') in a method, returns the class of the method,
not including the leading @ sign. If called from a nonmethod, it yields
the empty string.

Tips If mfilename is called with any argument other than the above two, it
behaves as if it were called with no argument.

When called from the command line, mfilename returns an empty
string.

To get the names of the callers of a MATLAB function file, use dbstack
with an output argument.

See Also dbstack | function | nargin | nargout | inputname

1-4353

FTP.mget

Purpose Download files from FTP server

Syntax mget(ftpobj,contents)
mget(ftpobj,contents,target)

Description mget(ftpobj,contents) retrieves the file or folder specified by
contents from an FTP server into the MATLAB current folder.

mget(ftpobj,contents,target) retrieves the file or folder into the
local folder specified by target, which includes an absolute or relative
path.

Input
Arguments

ftpobj

FTP object created by ftp.

contents

String enclosed in single quotation marks that specifies either a
file name or a folder name. Can include a wildcard character (*).

target

String enclosed in single quotation marks that specifies the
absolute or relative path of the local folder to contain the
downloaded contents.

Examples Connect to an FTP server and retrieve the file README into the current
MATLAB folder:

mw = ftp('ftp.mathworks.com');
mget(mw, 'README');
close(mw);

See Also cd | ftp | mput

1-4354

min

Purpose Smallest elements in array

Syntax C = min(A)
C = min(A,[],dim)
[C,I] = min(...)

C = min(A,B)

Description C = min(A) returns the smallest elements along different dimensions
of an array.

If A is a vector, min(A) returns the smallest element in A.

If A is a matrix, min(A) treats the columns of A as vectors, returning a
row vector containing the minimum element from each column.

If A is a multidimensional array, min operates along the first
nonsingleton dimension.

C = min(A,[],dim) returns the smallest elements along the dimension
of A specified by scalar dim. For example, min(A,[],1) produces the
minimum values along the first dimension of A.

[C,I] = min(...) finds the indices of the minimum values of A, and
returns them in output vector I. If there are several identical minimum
values, the index of the first one found is returned.

C = min(A,B) returns an array the same size as A and B with the
smallest elements taken from A or B. The dimensions of A and B must
match, or they may be scalar.

Examples Return the minimum of a 2-by-3 matrix from each column:

X = [2 8 4; 7 3 9];
min(X,[],1)
ans =

1-4355

min

2 3 4

Return the minimum from each row:

min(X,[],2)
ans =

2
3

Compare each element of X to a scalar:

min(X,5)
ans =

2 5 4
5 3 5

Tips For complex input A, min returns the complex number with the smallest
complex modulus (magnitude), computed with min(abs(A)). Then
computes the smallest phase angle with min(angle(x)), if necessary.

The min function ignores NaNs.

See Also max | mean | median | sort

1-4356

MinimizeCommandWindow

Purpose Minimize size of Automation server window

Syntax IDL Method Signature

HRESULT MinimizeCommandWindow(void)

Microsoft Visual Basic Client

MinimizeCommandWindow

MATLAB Client
h.MinimizeCommandWindow
MinimizeCommandWindow(h)

Description h.MinimizeCommandWindow minimizes the window for the server
attached to handle h, and makes it inactive.

MinimizeCommandWindow(h) is an alternate syntax.

If the server window was already in a minimized state,
MinimizeCommandWindow does nothing.

Examples From a Visual Basic .NET client, modify the size of the command
window in a MATLAB Automation server:

Dim Matlab As Object

Matlab = CreateObject("matlab.application")
Matlab.MinimizeCommandWindow

'Now return the server window to its former state on
'the desktop and make it the currently active window.

Matlab.MaximizeCommandWindow

See Also MaximizeCommandWindow

1-4357

minres

Purpose Minimum residual method

Syntax x = minres(A,b)
minres(A,b,tol)
minres(A,b,tol,maxit)
minres(A,b,tol,maxit,M)
minres(A,b,tol,maxit,M1,M2)
minres(A,b,tol,maxit,M1,M2,x0)
[x,flag] = minres(A,b,...)
[x,flag,relres] = minres(A,b,...)
[x,flag,relres,iter] = minres(A,b,...)
[x,flag,relres,iter,resvec] = minres(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...)

Description x = minres(A,b) attempts to find a minimum norm residual solution x
to the system of linear equations A*x=b. The n-by-n coefficient matrix A
must be symmetric but need not be positive definite. It should be large
and sparse. The column vector b must have length n. You can specify A
as a function handle, afun, such that afun(x) returns A*x.

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If minres converges, a message to that effect is displayed. If minres
fails to converge after the maximum number of iterations or halts
for any reason, a warning message is printed displaying the relative
residual norm(b-A*x)/norm(b) and the iteration number at which the
method stopped or failed.

minres(A,b,tol) specifies the tolerance of the method. If tol is [],
then minres uses the default, 1e-6.

minres(A,b,tol,maxit) specifies the maximum number of iterations.
If maxit is [], then minres uses the default, min(n,20).

minres(A,b,tol,maxit,M) and minres(A,b,tol,maxit,M1,M2)
use symmetric positive definite preconditioner M or M = M1*M2 and
effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*y =

1-4358

minres

inv(sqrt(M))*b for y and then return x = inv(sqrt(M))*y. If M is []
then minres applies no preconditioner. M can be a function handle mfun,
such that mfun(x) returns M\x.

minres(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is
[], then minres uses the default, an all-zero vector.

[x,flag] = minres(A,b,...) also returns a convergence flag.

Flag Convergence

0 minres converged to the desired tolerance tol within
maxit iterations.

1 minres iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 minres stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during minres
became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = minres(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = minres(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = minres(A,b,...) also returns
a vector of estimates of the minres residual norms at each iteration,
including norm(b-A*x0).

[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...) also
returns a vector of estimates of the Conjugate Gradients residual norms
at each iteration.

1-4359

minres

Examples Using minres with a Matrix Input

n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M1 = spdiags(4*on,0,n,n);

x = minres(A,b,tol,maxit,M1);
minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Using minres with a Function Handle

This example replaces the matrix A in the previous example with
a handle to a matrix-vector product function afun. The example is
contained in a file run_minres that

• Calls minres with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in
run_minres are available to afun.

The following shows the code for run_minres:

function x1 = run_minres
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M = spdiags(4*on,0,n,n);
x1 = minres(@afun,b,tol,maxit,M);

function y = afun(x)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - 2 * x(2:n);

1-4360

minres

end
end

When you enter

x1=run_minres;

MATLAB software displays the message

minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Using minres instead of pcg

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1, -1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.

displays the following message:

pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, minres can handle the indefinite matrix A.

x = minres(A,b,1e-6,40);
minres converged at iteration 39 to a solution with relative
residual 1.3e-007

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, “Solution of Sparse Indefinite
Systems of Linear Equations.” SIAM J. Numer. Anal., Vol.12, 1975,
pp. 617-629.

1-4361

minres

See Also bicg | bicgstab | cgs | ichol | function_handle | gmres | lsqr |
pcg | qmr | symmlq | mldivide

1-4362

minus, -

Purpose Subtraction

Syntax C = A - B
C = minus(A,B)

Description C = A - B subtracts array B from array A and returns the result in C.

C = minus(A,B) is an alternate way to execute A - B, but is rarely
used. It enables operator overloading for classes.

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array. Inputs A and B must be the same size unless one is a scalar. You
can add a scalar value to any other value.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

B - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array. Inputs A and B must be the same size unless one is a scalar. You
can add a scalar value to any other value.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Subtract Scalar from Array

Create an array, A, and subtract a scalar value from it.

1-4363

minus, -

A = [2 1; 3 5];
C = A - 2

C =

0 -1
1 3

The scalar is subtracted from each entry of A.

Subtract Two Arrays

Create two arrays, A and B, and subtract the second, B, from the first, A.

A = [1 0; 2 4];
B = [5 9; 2 1];
C = A - B

C =

-4 -9
0 3

The elements of B are subtracted from the corresponding elements of A.

Use the syntax -C to negate the elements of C.

-C

ans =

4 9
0 -3

See Also plus | diff | uminus

1-4364

mislocked

Purpose Determine if function is locked in memory

Syntax mislocked
mislocked(fun)

Description mislocked by itself returns logical 1 (true) if the currently running
function is locked in memory, and logical 0 (false) otherwise. Functions
that are locked cannot be removed with the clear function unless you
first unlock them using the munlock function. You can use locking on
functions that reside in MATLAB .m files or .mex files.

mislocked(fun) returns logical 1 (true) if the function named fun is
locked in memory, and logical 0 (false) otherwise.

See Also mlock | munlock | inmem

1-4365

mkdir

Purpose Make new folder

Syntax mkdir('folderName')
mkdir('parentFolder','folderName')
status = mkdir(___)
[status,message,messageid] = mkdir(___)

Description mkdir('folderName') creates the folder folderName, where
folderName can be an absolute or a relative path.

mkdir('parentFolder','folderName') creates the folder folderName
in parentFolder, where parentFolder is an absolute or relative path.
If parentFolder does not exist, MATLAB attempts to create it. See
the Tips section.

status = mkdir(___) creates the specified folder. When the operation
is successful, it returns a status of logical 1. When the operation is
unsuccessful, it returns logical 0.

[status,message,messageid] = mkdir(___) creates the specified
folder, and returns the status, message string, and MATLAB message
ID. The value given to status is logical 1 for success, and logical 0 for
error.

Tips If an argument specifies a path that includes one or more nonexistent
folders, MATLAB attempts to create the nonexistent folder. For
example, for

mkdir('myFolder\folder1\folder2\targetFolder')

if folder1 does not exist, MATLAB creates folder1, creates folder2
within folder1, and creates targetFolder within folder2.

Examples Creating a Subfolder in the Current Folder

Create a subfolder called newdir in the current folder:

mkdir('newdir')

1-4366

mkdir

Creating a Subfolder in the Specified Parent Folder

Create a subfolder called newFolder in the folder testdata, using a
relative path, where newFolder is at the same level as the current
folder:

mkdir('../testdata','newFolder')

Returning Status When Creating a Folder

In this example, the first attempt to create newFolder succeeds,
returning a status of 1, and no error or warning message or message
identifier:

[s, mess, messid] = mkdir('../testdata', 'newFolder')
s =

1
mess =

''
messid =

''

Attempt to create the same folder again. mkdir again returns a success
status, and also a warning and message identifier informing you that
the folder exists:

[s,mess,messid] = mkdir('../testdata','newFolder')
s =

1
mess =

Directory "newFolder" already exists.
messid =

MATLAB:MKDIR:DirectoryExists

See Also copyfile | cd | dir | ls | movefile | rmdir

How To • “Manage Files and Folders”

1-4367

FTP.mkdir

Purpose Create folder on FTP server

Syntax mkdir(ftpobj,folder)

Description mkdir(ftpobj,folder) creates the specified folder on the FTP server
associated with ftpobj.

Input
Arguments

ftpobj

FTP object created by ftp.

folder

String enclosed in single quotation marks that specifies a path
relative to the current folder on the FTP server.

Examples Suppose that a hypothetical host, ftp.testsite.com, contains a folder
named testfolder. Connect to the server and add a subfolder:

test=ftp('ftp.testsite.com');
mkdir(test,'testfolder/newfolder');
close(test);

See Also dir | ftp | rmdir

1-4368

mkpp

Purpose Make piecewise polynomial

Syntax pp = mkpp(breaks,coefs)
pp = mkpp(breaks,coefs,d)

Description pp = mkpp(breaks,coefs) builds a piecewise polynomial pp from
its breaks and coefficients. breaks is a vector of length L+1 with
strictly increasing elements which represent the start and end of each
of L intervals. coefs is an L-by-k matrix with each row coefs(i,:)
containing the coefficients of the terms, from highest to lowest exponent,
of the order k polynomial on the interval [breaks(i),breaks(i+1)].

pp = mkpp(breaks,coefs,d) indicates that the piecewise polynomial
pp is d-vector valued, i.e., the value of each of its coefficients is a vector
of length d. breaks is an increasing vector of length L+1. coefs is a
d-by-L-by-k array with coefs(r,i,:) containing the k coefficients of the
ith polynomial piece of the rth component of the piecewise polynomial.

Use ppval to evaluate the piecewise polynomial at specific points. Use
unmkpp to extract details of the piecewise polynomial.

Note. The order of a polynomial tells you the number of coefficients
used in its description. A kth order polynomial has the form

c x c x c x ck k
k k1

1
2

2
1

 ...

It has k coefficients, some of which can be 0, and maximum exponent k
– 1. So the order of a polynomial is usually one greater than its degree.
For example, a cubic polynomial is of order 4.

Examples Construct and Plot Piecewise Polynomial

The first plot shows the quadratic polynomial

shifted to the interval [-8,-4]. The second plot shows its negative

1-4369

mkpp

but shifted to the interval [-4,0].

The last plot shows a piecewise polynomial constructed by alternating
these two quadratic pieces over four intervals. It also shows its
first derivative, which was constructed after breaking the piecewise
polynomial apart using unmkpp.

subplot(2,2,1)
cc = [-1/4 1 0];
pp1 = mkpp([-8 -4],cc);
xx1 = -8:0.1:-4;
plot(xx1,ppval(pp1,xx1),'k-')

subplot(2,2,2)
pp2 = mkpp([-4 0],-cc);
xx2 = -4:0.1:0;
plot(xx2,ppval(pp2,xx2),'k-')

subplot(2,1,2)
pp = mkpp([-8 -4 0 4 8],[cc;-cc;cc;-cc]);
xx = -8:0.1:8;
plot(xx,ppval(pp,xx),'k-')
[breaks,coefs,l,k,d] = unmkpp(pp);
dpp = mkpp(breaks,repmat(k-1:-1:1,d*l,1).*coefs(:,1:k-1),d);
hold on, plot(xx,ppval(dpp,xx),'r-'), hold off

1-4370

mkpp

See Also ppval | spline | unmkpp

1-4371

mldivide, \

Purpose Solve systems of linear equations Ax = B for x

Syntax x = A\B
x = mldivide(A,B)

Description x = A\B solves the system of linear equations A*x = B. The matrices
A and B must have the same number of rows. MATLAB displays a
warning message if A is badly scaled or nearly singular, but performs
the calculation regardless.

• If A is a scalar, then A\B is equivalent to A.\B.

• If A is a square n-by-n matrix and B is a matrix with n rows, then x =
A\B is a solution to the equation A*x = B, if it exists.

• If A is a rectangular m-by-n matrix with m ~= n, and B is a matrix
with m rows, then A\B returns a least-squares solution to the system
of equations A*x= B.

x = mldivide(A,B) is an alternative way to execute x = A\B, but is
rarely used. It enables operator overloading for classes.

Input
Arguments

A - Coefficient matrix
vector | full matrix | sparse matrix

Coefficient matrix, specified as a vector, full matrix, or sparse matrix. If
A has m rows, then B must have m rows.

Data Types
single | double
Complex Number Support: Yes

B - Right-hand side
vector | full matrix | sparse matrix

Right-hand side, specified as a vector, full matrix, or sparse matrix. If B
has m rows, then A must have m rows.

1-4372

mldivide, \

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

x - Solution
vector | full matrix | sparse matrix

Solution, returned as a vector, full matrix, or sparse matrix. If A is an
m-by-n matrix and B is an m-by-p matrix, then x is an n-by-p matrix,
including the case when p==1.

If A has full storage, x is also full. If A is sparse, then x has the same
storage as B.

Examples System of Equations

Solve a simple system of linear equations, A*x = B.

A = magic(3);
B = [15; 15; 15];
x = A\B

x =

1.0000
1.0000
1.0000

Linear System with Singular Matrix

Solve a linear system of equations A*x = b involving a singular matrix,
A.

A = magic(4);
b = [34; 34; 34; 34];
x = A\b

Warning: Matrix is close to singular or badly scaled. Results may be i
1.306145e-17.

1-4373

mldivide, \

x =

1.5000
2.5000

-0.5000
0.5000

When rcond is between 0 and eps, MATLAB issues a nearly singular
warning, but proceeds with the calculation. When working with
ill-conditioned matrices, an unreliable solution can result even though
the residual (b-A*x) is relatively small. In this particular example, the
norm of the residual is zero, and an exact solution is obtained, although
rcond is small.

When rcond is equal to 0, the singular warning appears.

A = [1 0; 0 0];
b = [1; 1];
x = A\b

Warning: Matrix is singular to working precision.

x =

1
Inf

In this case, division by zero leads to computations with Inf and/or NaN,
making the computed result unreliable.

Least-Squares Solution of Underdetermined System

Solve a system of linear equations, A*x = b.

A = [1 2 0; 0 4 3];
b = [8; 18];
x = A\b

1-4374

mldivide, \

ans =

0
4.0000
0.6667

Linear System with Sparse Matrix

Solve a simple system of linear equations using sparse matrices.

Consider the matrix equation A*x = B.

A = sparse([0 2 0 1 0; 4 -1 -1 0 0; 0 0 0 3 -6; -2 0 0 0 2; 0 0 4 2 0]
B = sparse([8; -1; -18; 8; 20]);
x = A\B

x =

(1,1) 1.0000
(2,1) 2.0000
(3,1) 3.0000
(4,1) 4.0000
(5,1) 5.0000

Tips • If A is a square matrix, A\B is roughly equal to inv(A)*B, but
MATLAB processes A\B differently and more robustly.

• If the rank of A is less than the number of columns in A, then x
= A\B is not necessarily the minimum norm solution. The more
computationally expensive x = pinv(A)*B computes the minimum
norm least-squares solution.

• For full singular inputs, you can compute the least-squares solution
using the function linsolve.

Algorithms The versatility of mldivide in solving linear systems stems from its
ability to take advantage of symmetries in the problem by dispatching
to an appropriate solver. This approach aims to minimize computation

1-4375

mldivide, \

time. The first distinction the function makes is between full (also
called “dense”) and sparse input arrays.

Algorithm for Full Inputs

The flow chart below shows the algorithm path when inputs A and B
are full.

1-4376

mldivide, \

1-4377

mldivide, \

Algorithm for Sparse Inputs

If A is full and B is sparse then mldivide converts B to a full matrix
and uses the full algorithm path (above) to compute a solution with
full storage. If A is sparse, the storage of the solution x is the same as
that of B and mldivide follows the algorithm path for sparse inputs,
shown below.

1-4378

mldivide, \

1-4379

mldivide, \

See Also mrdivide | ldivide | rdivide | inv | pinv | chol | lu | qr |
linsolve | ldl

Concepts • “Systems of Linear Equations”
• “Implementing Operators for Your Class”

1-4380

mrdivide, /

Purpose Solve systems of linear equations xA = B for x

Syntax x = B/A
x = mrdivide(B,A)

Description x = B/A solves the system of linear equations x*A = B for x. The
matrices A and B must contain the same number of columns. MATLAB
displays a warning message if A is badly scaled or nearly singular, but
performs the calculation regardless.

• If A is a scalar, then B/A is equivalent to B./A.

• If A is a square n-by-n matrix and B is a matrix with n columns, then
x = B/A is a solution to the equation x*A = B, if it exists.

• If A is a rectangular m-by-n matrix with m ~= n, and B is a matrix
with n columns, then x = B/A returns a least-squares solution of the
system of equations x*A = B.

x = mrdivide(B,A) is an alternative way to execute x = B/A, but is
rarely used. It enables operator overloading for classes.

Input
Arguments

A - Coefficient matrix
vector | full matrix | sparse matrix

Coefficient matrix, specified as a vector, full matrix, or sparse matrix. If
A has n columns, then B must have n columns.

Data Types
single | double
Complex Number Support: Yes

B - Right-hand side
vector | full matrix | sparse matrix

Right-hand side, specified as a vector, full matrix, or sparse matrix. If B
has n columns, then A must have n columns.

1-4381

mrdivide, /

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

x - Solution
vector | full matrix | sparse matrix

Solution, returned as a vector, full matrix, or sparse matrix. If A is an
m-by-n matrix and B is a p-by-n matrix, then x is a p-by-m matrix.

x is sparse only if both A and B are sparse matrices.

Examples System of Equations

Solve a system of equations that has a unique solution, x*A = B.

A = [1 1 3; 2 0 4; -1 6 -1];
B = [2 19 8];
x = B/A

x =

1.0000 2.0000 3.0000

Least-Squares on an Underdetermined System

Solve an underdetermined system, x*C = D.

C = [1 0; 2 0; 1 0];
D = [1 2];
x = D/C

Warning: Rank deficient, rank = 1, tol = 6.280370e-16.

x =

0 0.5000 0

MATLAB issues a warning but proceeds with calculation.

1-4382

mrdivide, /

Verify that x is not an exact solution.

x*C-D

ans =

0 -2

Tips • The operators / and \ are related to each other by the equation B/A
= (A'\B')'.

• If A is a square matrix, B/A is roughly equal to B*inv(A), but
MATLAB processes B/A differently and more robustly.

See Also mldivide | ldivide | rdivide | inv | transpose

Concepts • “Systems of Linear Equations”

1-4383

mlint

Purpose Check MATLAB code files for possible problems

Note mlint is not recommended. Use checkcode instead.

Alternatives For information on using the graphical user interface to the Code
Analyzer, see “Check Code for Errors and Warnings”.

Syntax mlint('filename')
mlint('filename','-config=settings.txt')
mlint('filename','-config=factory')
inform=mlint('filename','-struct')
msg=mlint('filename','-string')
[inform,filepaths]=mlint('filename')
inform=mlint('filename','-id')
inform=mlint('filename','-fullpath')
inform=mlint('filename','-notok')
mlint('filename','-cyc')
mlint('filename','-codegen')
mlint('filename','-eml')

Description mlint('filename') displays Code Analyzer messages about filename,
where the message reports potential problems and opportunities for
code improvement. The line number in the message is a hyperlink that
opens the file in the Editor, scrolled to that line. If filename is a cell
array, information is displayed for each file. For mlint(F1,F2,F3,...),
where each input is a character array, MATLAB software displays
information about each input file name. You cannot combine cell arrays
and character arrays of file names. Note that the exact text of the mlint
messages is subject to some change between versions.

mlint('filename','-config=settings.txt') overrides the default
active settings file with the settings that enable or suppress messages
as indicated in the specified settings.txt file.

1-4384

mlint

Note If used, you must specify the full path to the settings.txt file
specified with the -config option.

For information about creating a settings.txt file, see “Save and
Reuse Code Analyzer Message Settings”. If you specify an invalid file,
mlint returns a message indicating that it cannot open or read the file
you specified. In that case, mlint uses the factory default settings.

mlint('filename','-config=factory') ignores all settings files and
uses the factory default preference settings.

inform=mlint('filename','-struct') returns the information in a
structure array whose length is the number of messages found. The
structure has the fields that follow.

Field Description

message Message describing the suspicious construct
that code analysis caught.

line Vector of file line numbers to which the
message refers.

column Two-column array of file columns (column
extents) to which the message applies. The
first column of the array specifies the column
in the Editor where the message begins.
The second column of the array specifies the
column in the Editor where the message ends.
There is one row in the two-column array for
each occurrence of a message.

If you specify multiple file names as input, or if you specify a cell array
as input, inform contains a cell array of structures.

msg=mlint('filename','-string') returns the information as a
string to the variable msg. If you specify multiple file names as input,
or if you specify a cell array as input, msg contains a string where each

1-4385

mlint

file’s information is separated by 10 equal sign characters (=), a space,
the file name, a space, and 10 equal sign characters.

If you omit the -struct or -string argument and you specify an output
argument, the default behavior is -struct. If you omit the argument
and there are no output arguments, the default behavior is to display
the information to the command line.

[inform,filepaths]=mlint('filename') additionally returns
filepaths, the absolute paths to the file names, in the same order as
you specified them.

inform=mlint('filename','-id') requests the message ID, where ID
is a string of the form ABC.... When returned to a structure, the output
also has the id field, which is the ID associated with the message.

inform=mlint('filename','-fullpath') assumes that the input file
names are absolute paths, so that mlint does not try to locate them.

inform=mlint('filename','-notok') runs mlint for all lines in
filename, even those lines that end with the mlint suppression
directive, %#ok.

mlint('filename','-cyc') displays the McCabe complexity (also
referred to as cyclomatic complexity) of each function in the file. Higher
McCabe complexity values indicate higher complexity, and there
is some evidence to suggest that programs with higher complexity
values are more likely to contain errors. Frequently, you can lower the
complexity of a function by dividing it into smaller, simpler functions.
In general, smaller complexity values indicate programs that are easier
to understand and modify. Some people advocate splitting up programs
that have a complexity rating over 10.

mlint('filename','-codegen') enables code generation messages for
display in the Command Window.

mlint('filename','-eml') '-eml' is not recommended. Use
'-codegen' instead.

Examples The following examples use lengthofline.m, which is a sample
file with MATLAB code that can be improved. You can find it in

1-4386

mlint

matlabroot/help/techdoc/matlab_env/examples. If you want to run
the examples, save a copy of lengthofline.m to a location on your
MATLAB path.

Running mlint on a File with No Options

To run mlint on the example file, lengthofline.m, run

mlint('lengthofline')

MATLAB displays the M-Lint messages for lengthofline.m in the
Command Window:

L 22 (C 1-9): The value assigned here to variable 'nothandle' might never be used.

L 23 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 24 (C 5-11): 'notline' might be growing inside a loop. Consider preallocating for speed.

L 24 (C 44-49): Use STRCMPI(str1,str2) instead of using LOWER in a call to STRCMP.

L 28 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 34 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 34 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD.

Type 'doc struct' for more information.

L 38 (C 29): Use || instead of | as the OR operator in (scalar) conditional statements.

L 39 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 40 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 42 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 43 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.

L 45 (C 13-15): 'dim' might be growing inside a loop.Consider preallocating for speed.

L 48 (C 52): There may be a parenthesis imbalance around here.

L 48 (C 53): There may be a parenthesis imbalance around here.

L 48 (C 54): There may be a parenthesis imbalance around here.

L 48 (C 55): There may be a parenthesis imbalance around here.

L 49 (C 17): Terminate statement with semicolon to suppress output (in functions).

L 49 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

For details about these messages and how to improve the code, see
“Changing Code Based on Code Analyzer Messages” in the MATLAB
Desktop Tools and Development Environment documentation.

1-4387

mlint

Running mlint with Options to Show IDs and Return Results
to a Structure

To store the results to a structure and include message IDs, run

inform=mlint('lengthofline', '-id')

MATLAB returns

inform =

19x1 struct array with fields:
message
line
column
id

To see values for the first message, run

inform(1)

MATLAB displays

ans =

message: 'The value assigned here to variable 'nothandle' might never be used.'

line: 22

column: [1 9]

id: 'NASGU'

Here, the message is for the value that appears on line 22 that extends
from column 1–9 in the file.NASGU is the ID for the message 'The value
assigned here to variable 'nothandle' might never be used.'.

Displaying McCabe Complexity with mlint

To display the McCabe complexity of a MATLAB code file, run mlint
with the -cyc option, as shown in the following example (assuming you
have saved lengthofline.m to a local folder).

1-4388

mlint

mlint lengthofline.m -cyc

Results displayed in the Command Window show the McCabe
complexity of the file, followed by the M-Lint messages, as shown here:

L 1 (C 23-34): The McCabe complexity of 'lengthofline' is 12.

L 22 (C 1-9): The value assigned here to variable 'nothandle' might never be used.

L 23 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 24 (C 5-11): 'notline' might be growing inside a loop. Consider preallocating for speed.

L 24 (C 44-49): Use STRCMPI(str1,str2) instead of using UPPER/LOWER in a call to STRCMP.

L 28 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 34 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 34 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD. Type 'doc struct' for mo

L 38 (C 29): Use || instead of | as the OR operator in (scalar) conditional statements.

L 39 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 40 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 42 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 43 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.

L 45 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.

L 48 (C 52): There may be a parenthesis imbalance around here.

L 48 (C 53): There may be a parenthesis imbalance around here.

L 48 (C 54): There may be a parenthesis imbalance around here.

L 48 (C 55): There may be a parenthesis imbalance around here.

L 49 (C 17): Terminate statement with semicolon to suppress output (in functions).

L 49 (C 23): Use of brackets [] is unnecessary. Use parentheses to group, if needed.

See Also mlintrpt, profile

How To • For information on the suppression directive, %#ok, and suppressing
messages from within your program, see “Adjust Code Analyzer
Message Indicators and Messages”.

1-4389

mlintrpt

Purpose Run checkcode for file or folder, reporting results in browser

Syntax mlintrpt
mlintrpt('filename','file')
mlintrpt('dirname','dir')
mlintrpt('filename','file','settings.txt')
mlintrpt('dirname','dir','settings.txt')

Description mlintrpt scans all files with an .m file extension in the current folder
for Code Analyzer messages and reports the results in a MATLAB Web
browser.

mlintrpt('filename','file') scans filename for Code Analyzer
messages and reports results. You can omit 'file' in this form of the
syntax because it is the default.

mlintrpt('dirname','dir') scans the specified folder. Here, dirname
can be in the current folder or can be a full path.

mlintrpt('filename','file','settings.txt') applies the Code
Analyzer preference settings to enable or suppress messages as
indicated in the specified settings.txt file.

mlintrpt('dirname','dir','settings.txt') applies the settings
indicated in the specified settings.txt file.

Note If you specify a settings.txt file, you must specify the full path
to the file.

Examples lengthofline.m is an example file with code that can be improved. It is
found in matlabroot/matlab/help/techdoc/matlab_env/examples.

Run Report for All Files in a Folder

Run

mlintrpt(fullfile(matlabroot,'help','techdoc','matlab_env','examples'),'dir')

1-4390

mlintrpt

and MATLAB displays a report of potential problems and improvements
for all files with an .m file extension in the examples folder.

For details about these messages and how to improve the code, see
“Changing Code Based on Code Analyzer Messages”.

Run Report Using Code Analyzer Preference Settings

You can save preference settings to a text file by clicking the
Preferences button in the Environment section on theHome tab and
selecting Code Analyzer in the left pane. To save a preferences file,
select Save as under the drop-down list. To apply those settings
when you run mlintrpt, use the file option and supply the full path to
the settings file name as shown in this example:

mlintrpt('lengthofline.m', 'file', ...

'C:\WINNT\Profiles\me\Application Data\MathWorks\MATLAB\R2012b\mymlint.txt')

Alternatively, use fullfile if the settings file is stored in the
preferences folder:

mlintrpt('lengthofline.m', 'file', fullfile(prefdir,'mymlint.txt'))

Assuming that in that example mymlint.txt file, the setting for
Terminate statement with semicolon to suppress output has
been disabled, the results of mlintrpt for lengthofline do not show
that message for line 49.

When mlintrpt cannot locate the settings file, the first message in
the report is

0: Unable to open or read the configuration file 'mymlint.txt'--using default settings.

See Also checkcode

Concepts • “Check Code for Errors and Warnings”

1-4391

mlock

Purpose Prevent clearing function from memory

Syntax mlock

Description mlock locks the currently running function in memory so that
subsequent clear functions do not remove it. Locking a function in
memory also prevents any persistent variables defined in the file
from getting reinitialized.

Use the munlock function to return the file to its normal, clearable state.

Examples The function testfun begins with an mlock statement.

function testfun
mlock

.

.

When you execute this function, it becomes locked in memory. You can
check this using the mislocked function.

testfun

mislocked('testfun')
ans =

1

Using munlock, you unlock the testfun function in memory. Checking
its status with mislocked shows that it is indeed unlocked at this point.

munlock('testfun')

mislocked('testfun')
ans =

0

See Also mislocked | munlock | inmem | persistent

1-4392

mmfileinfo

Purpose Information about multimedia file

Syntax info = mmfileinfo(filename)

Description info = mmfileinfo(filename) returns a structure, info, with fields
containing information about the contents of the multimedia file
identified by filename. The filename input is a string enclosed in
single quotation marks.

If filename is a URL, mmfileinfo might take a long time to return
because it must first download the file. For large files, downloading
can take several minutes. To avoid blocking the MATLAB command
line while this processing takes place, download the file before calling
mmfileinfo.

The info structure contains the following fields, listed in the order
they appear in the structure.

Field Description

Filename String indicating the name of the file.

Path String indicating the absolute path to the
file.

Duration Length of the file in seconds.

Audio Structure containing information about
the audio data in the file. See “Audio Data”
on page 1-4394 for more information about
this data structure.

Video Structure containing information about
the video data in the file. See “Video Data”
on page 1-4394 for more information about
this data structure.

1-4393

mmfileinfo

Audio Data

The Audio structure contains the following fields, listed in the order
they appear in the structure. If the file does not contain audio data, the
fields in the structure are empty.

Field Description

Format Text string, indicating the audio format.

NumberOfChannels Number of audio channels.

Video Data

The Video structure contains the following fields, listed in the order
they appear in the structure. If the file does not contain video data, the
fields in the structure are empty.

Field Description

Format Text string, indicating the video format.

Height Height of the video frame.

Width Width of the video frame.

Examples Display information about the example file xylophone.mpg:

info = mmfileinfo('xylophone.mpg')
audio = info.Audio
video = info.Video

MATLAB returns:

info =
Filename: 'xylophone.mpg'

Path: 'matlabroot\toolbox\matlab\audiovideo'
Duration: 4.7020

Audio: [1x1 struct]
Video: [1x1 struct]

1-4394

mmfileinfo

audio =
Format: 'MPEG'

NumberOfChannels: 2

video =
Format: 'MPEG1'
Height: 240
Width: 320

where Path is system-dependent.

See Also get | VideoReader

1-4395

mmreader

Purpose Create object for reading video files

Note mmreader has been removed. Use VideoReader instead.

Description Use mmreader with the read method to read video data from a
multimedia file into the MATLAB workspace.

The file formats that mmreader supports vary by platform, as follows
(with no restrictions on file extensions):

All Platforms Motion JPEG 2000 (.mj2)

Windows AVI (.avi),
MPEG-1 (.mpg),
Windows Media Video (.wmv, .asf, .asx),
and any format supported by Microsoft DirectShow.

Macintosh AVI (.avi),
MPEG-1 (.mpg),
MPEG-4 (.mp4, .m4v),
Apple QuickTime Movie (.mov),
and any format supported by QuickTime as listed on
http://support.apple.com/kb/HT3775.

Linux Any format supported by your installed plug-ins
for GStreamer 0.10 or above, as listed on
http://gstreamer.freedesktop.org/documentation/plugins.html,
including AVI (.avi) and Ogg Theora (.ogg).

For more information, see “Supported Video File Formats” in the
MATLAB Data Import and Export documentation.

Construction obj = mmreader(filename) constructs obj to read video data from the
file named filename. The mmreader constructor searches for the file
on the MATLAB path. If it cannot construct the object for any reason,
mmreader generates an error.

1-4396

http://support.apple.com/kb/HT3775
http://gstreamer.freedesktop.org/documentation/plugins.html

mmreader

obj = mmreader(filename,'PropertyName',PropertyValue)
constructs the object using options, specified as property name/value
pairs. Property name/value pairs can be in any format that the set
method supports: name/value string pairs, structures, or name/value
cell array pairs.

Properties BitsPerPixel

Bits per pixel of the video data. (Read-only)

Duration

Total length of the file in seconds. (Read-only)

FrameRate

Frame rate of the video in frames per second. (Read-only)

Height

Height of the video frame in pixels. (Read-only)

Name

Name of the file associated with the object. (Read-only)

NumberOfFrames

Total number of frames in the video stream. (Read-only)

Some files store video at a variable frame rate, including many
Windows Media Video files. For these files, mmreader cannot
determine the number of frames until you read the last frame.
When you construct the object, mmreader returns a warning and
does not set the NumberOfFrames property.

To count the number of frames in a variable frame rate file, use
the read method to read the last frame of the file. For example:

vidObj = mmreader('varFrameRateFile.wmv');
lastFrame = read(vidObj, inf);
numFrames = vidObj.NumberOfFrames;

1-4397

mmreader

For more information, see “Read Variable Frame Rate Video” in
the MATLAB Data Import and Export documentation.

Path

String containing the full path to the file associated with the
reader. (Read-only)

Tag

User-defined string to identify the object.

Default: ''

Type

Class name of the object: 'mmreader'. (Read-only)

UserData

Generic field for user-defined data.

Default: []

VideoFormat

String indicating the MATLAB representation of the video format,
such as 'RGB24'. (Read-only)

Width

Width of the video frame in pixels. (Read-only)

Methods For backward compatibility, mmreader supports the following
VideoReader methods:

get Query property values for video
reader object

getFileFormats File formats that VideoReader
supports

1-4398

mmreader

read Read video frame data from file

set Set property values for video
reader object

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples Construct an mmreader object for the example movie file xylophone.mpg
and view its properties:

xyloObj = mmreader('xylophone.mpg', 'Tag', 'My reader object');
get(xyloObj)

Read and play back the movie file xylophone.mpg:

xyloObj = mmreader('xylophone.mpg');

nFrames = xyloObj.NumberOfFrames;
vidHeight = xyloObj.Height;
vidWidth = xyloObj.Width;

% Preallocate movie structure.
mov(1:nFrames) = ...

struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),...
'colormap', []);

% Read one frame at a time.
for k = 1 : nFrames

mov(k).cdata = read(xyloObj, k);
end

% Size a figure based on the video's width and height.
hf = figure;
set(hf, 'position', [150 150 vidWidth vidHeight])

1-4399

mmreader

% Play back the movie once at the video's frame rate.
movie(hf, mov, 1, xyloObj.FrameRate);

See Also mmfileinfo | VideoReader

How To • “Read Video Files”

1-4400

mod

Purpose Modulus after division

Syntax M = mod(X,Y)

Description M = mod(X,Y) returns the modulus after division of X by Y. In general,
if Y does not equal 0, M = mod(X,Y) returns X - n.*Y, where n =
floor(X./Y). If Y is not an integer and the quotient X./Y is within
roundoff error of an integer, then n is that integer. Inputs X and Y must
have the same dimensions unless one is a scalar double. If one input
has an integer data type, then the other input must be of the same
integer data type or be a scalar double.

The following are true by convention:

• mod(X,0) is X.

• mod(X,X) is 0.

• mod(X,Y) for X~=Y and Y~=0 has the same sign as Y.

Input
Arguments

X - Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a scalar, vector, matrix, or multidimensional
array. Must be a real-valued number of any numerical type.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | char

Y - Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a scalar, vector, matrix, or multidimensional array.
Must be a real-valued number of any numerical type.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | char

1-4401

mod

Examples Modulus of Two Scalars

Compute 23 modulo 5.

X = 23;
Y = 5;
M = mod(X,Y)

M =

3

Modulus of a Vector

Create a vector, then use mod to find the modulus after dividing a scalar
into each element of the vector.

X = 1:5;
Y = 3;
M = mod(X,Y)

M =

1 2 0 1 2

When you specify one or more of the inputs as an array, the mod function
acts on each array element independently.

Modulus of Two Arrays

Create two 3-by-3 matrices, then use mod to find the modulus after
dividing Y into X.

X = [1 2 3;4 5 6;7 8 9];
Y = [9 8 7;6 5 4;3 2 1];
M = mod(X,Y)

M =

1 2 3

1-4402

mod

4 0 2
1 0 0

Inputs X and Y must have the same dimensions unless one is a scalar
double.

Forced Rounding in mod

If Y is not an integer and X./Y is within roundoff error of an integer,
then mod rounds to that integer for its calculation. The size of the
roundoff error is very small.

X = 2;
Y = 2 - eps(2)

Y =

2.0000

It looks like Y is trivially equal to 2, but in fact there is an infinitesimal
difference.

2 - Y

ans =

4.4409e-16

This difference is forced to zero by mod if it is small enough.

M = mod(X,Y)

M =

0

Make the difference a little larger and the forced rounding disappears.

Y = 2 - eps(4);

1-4403

mod

M = mod(X,Y)

M =

8.8818e-16

Difference Between mod and rem

Define X and Y with different signs.

X = 5;
Y = -2;

Compute the modulus after division with mod, then compute the
remainder after division with rem.

M = mod(X,Y)

M =

-1

R = rem(X,Y)

R =

1

mod(X,Y) and rem(X,Y) are equal if X and Y have the same sign, but
differ by Y if X and Y have different signs. Notice that mod retains the
sign of Y, while rem retains the sign of X.

Tips • The mod function is useful for congruence relationships:
x and y are congruent (mod m) if and only if mod(x,m) == mod(y,m).
For example, 23 and 13 are congruent (mod 5).

See Also rem

1-4404

mode

Purpose Most frequent values in array

Syntax M = mode(X)
M = mode(X,dim)

[M,F] = mode(___)
[M,F,C] = mode(___)

Description M = mode(X) returns the sample mode of X, which is the most frequently
occurring value in X. When there are multiple values occurring equally
frequently, mode returns the smallest of those values. For complex
inputs, the smallest value is the first value in a sorted list.

• If X is a vector, then mode(X) returns the most frequent value of X.

• If X is a nonempty matrix, then mode(X) returns a row vector
containing the mode of each column of X.

• If X is an empty 0-by-0 matrix, mode(X) returns NaN.

• If X is a multidimensional array, then mode(X) acts along the first
nonsingleton dimension and returns an array of most frequent
values. The size of this dimension reduces to 1 while the sizes of all
other dimensions remain the same.

M = mode(X,dim) returns the mode of elements along dimension dim.
For example, if X is a matrix, then mode(X,2) is a column vector
containing the most frequent value of each row

[M,F] = mode(___) also returns a frequency array F, using any of
the input arguments in the previous syntaxes. F is the same size as
M, and each element of F represents the number of occurrences of the
corresponding element of M.

[M,F,C] = mode(___) also returns a cell array C of the same size as M
and F. Each element of C is a sorted vector of all values that have the
same frequency as the corresponding element of M.

1-4405

mode

Input
Arguments

X - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

NaN values in the input array, X, are ignored.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The
size(M,dim) is 1, while the sizes of all other dimensions remain the
same.

Consider a two-dimensional input array, X.

• If dim = 1, then mode(X,1) returns a row vector containing the most
frequent value in each column.

• If dim = 2, then mode(X,2) returns a column vector containing the
most frequent value in each row.

mode returns X if dim is greater than ndims(X).

1-4406

mode

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Output
Arguments

M - Most frequent values
scalar | vector | matrix | multidimensional array

Most frequent values returned as a scalar, vector, matrix, or
multidimensional array. When there are multiple values occurring
equally frequently, mode returns the smallest of those values. For
complex inputs, this is taken to be the first value in a sorted list of
values.

The class of M is the same as the class of the input array, X.

F - Frequency array
scalar | vector | matrix | multidimensional array

Frequency array returned as a scalar, vector, matrix, or
multidimensional array. The size of F is the same as the size of M,
and each element of F represents the number of occurrences of the
corresponding element of M.

The class of F is always double.

C - Most frequent values with multiplicity
cell array

Most frequent values with multiplicity returned as a cell array. The
size of C is the same as the size of M and F, and each element of C is
a sorted column vector of all values that have the same frequency as
the corresponding element of M.

Definitions First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array
whose size is not equal to 1.

For example:

1-4407

mode

• If X is a 1-by-n row vector, then the second dimension is the first
nonsingleton dimension of X.

• If X is a 1-by-0-by-n empty array, then the second dimension is the
first nonsingleton dimension of X.

• If X is a 1-by-1-by-3 array, then the third dimension is the first
nonsingleton dimension of X.

Tips • The mode function is most useful with discrete or coarsely rounded
data. The mode for a continuous probability distribution is defined
as the peak of its density function. Applying the mode function to a
sample from that distribution is unlikely to provide a good estimate
of the peak; it would be better to compute a histogram or density
estimate and calculate the peak of that estimate. Also, the mode
function is not suitable for finding peaks in distributions having
multiple modes.

Examples Mode of Matrix Columns

Define a 3-by-4 matrix.

X = [3 3 1 4; 0 0 1 1; 0 1 2 4]

X =

3 3 1 4
0 0 1 1
0 1 2 4

Find the most frequent value of each column.

M = mode(X)

M =

0 0 1 4

1-4408

mode

Mode of Matrix Rows

Define a 3-by-4 matrix.

X = [3 3 1 4; 0 0 1 1; 0 1 2 4]

X =

3 3 1 4
0 0 1 1
0 1 2 4

Find the most frequent value of each row.

M = mode(X,2)

M =

3
0
0

Mode of 3-D Array

Create a 1-by-3-by-4 array of integers between 1 and 10.

X = gallery('integerdata',10,[1,3,4],1)

X(:,:,1) =

10 8 10

X(:,:,2) =

6 9 5

X(:,:,3) =

1-4409

mode

9 6 1

X(:,:,4) =

4 9 5

Find the most frequent values of this 3-D array along the second
dimension.

M = mode(X)

M(:,:,1) =

10

M(:,:,2) =

5

M(:,:,3) =

1

M(:,:,4) =

4

This operation produces a 1-by-1-by-4 array by finding the most
frequent value along the second dimension. The size of the second
dimension reduces to 1.

Compute the mode along the first dimension of X.

1-4410

mode

M = mode(X,1);
isequal(X,M)

ans =

1

This returns the same array as X because the size of the first dimension
is 1.

Mode of Matrix Columns with Frequency Information

Define a 3-by-4 matrix.

X = [3 3 1 4; 0 0 1 1; 0 1 2 4]

X =

3 3 1 4
0 0 1 1
0 1 2 4

Find the most frequent value of each column, as well as how often it
occurs.

[M,F] = mode(X)

M =

0 0 1 4

F =

2 1 2 2

F(1) is 2 since M(1) occurs twice in the first column.

1-4411

mode

Mode of Matrix Rows with Frequency and Multiplicity
Information

Define a 3-by-4 matrix.

X = [3 3 1 4; 0 0 1 1; 0 1 2 4]

X =

3 3 1 4
0 0 1 1
0 1 2 4

Find the most frequent value of each row, how often it occurs, and which
values in that row occur with the same frequency.

[M,F,C] = mode(X,2)

M =

3
0
0

F =

2
2
1

C =

[3]
[2x1 double]
[4x1 double]

1-4412

mode

C{2} is the 2-by-1 vector [0;1] since values 0 and 1 in the second row
occur with frequency F(2).

C{3} is the 4-by-1 vector [0;1;2;4] since all values in the third row
occur with frequency F(3).

Mode of 16-bit Unsigned Integer Array

Define a 1-by-4 vector of 16-bit unsigned integers.

X = gallery('integerdata',10,[1,4],3,'uint16')

X =

6 3 2 3

Find the most frequent value, as well as the number of times it occurs.

[M,F] = mode(X),
class(M)

M =

3

F =

2

ans =

uint16

M is the same class as the input, X.

See Also mean | median | hist | histc | sort

1-4413

more

Purpose Control paged output for Command Window

Syntax more on
more off
more(n)
A = more(state)

Description more on enables paging of the output in the MATLAB Command
Window. MATLAB displays output one page at a time. Use the keys
defined in the table below to control paging.

more off disables paging of the output in the MATLAB Command
Window.

more(n) defines the length of a page to be n lines.

A = more(state) returns in A the number of lines that are currently
defined to be a page. The state input can be one of the quoted strings
'on' or 'off', or the number of lines to set as the new page length.

By default, the length of a page is equal to the number of lines available
for display in the MATLAB Command Window. Manually changing the
size of the command window adjusts the page length accordingly.

If you set the page length to a specific value, MATLAB uses that value
for the page size, regardless of the size of the command window. To
have MATLAB return to matching page size to window size, type more
off followed by more on.

To see the status of more, type get(0,'More'). MATLAB returns either
on or off, indicating the more status.

When you have enabled more and are examining output, you can do
the following.

1-4414

more

Press the... To...

Return key Advance to the next line of output.

Space bar Advance to the next page of output.

Q (for quit) key Terminate display of the text. Do not use
Ctrl+C to terminate more or you might
generate error messages in the Command
Window.

more is in the off state, by default.

See Also diary

1-4415

move

Purpose Move or resize control in parent window

Syntax V = h.move(position)
V = move(h, position)

Description V = h.move(position) moves the control to the position specified by
the position argument. When you use move with only the handle
argument, h, it returns a four-element vector indicating the current
position of the control.

V = move(h, position) is an alternate syntax.

The position argument is a four-element vector specifying the position
and size of the control in the parent figure window. The elements of
the vector are:

[x, y, width, height]

where x and y are offsets, in pixels, from the bottom left corner of the
figure window to the same corner of the control, and width and height
are the size of the control itself.

Examples This example moves the control:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200], f);
pos = h.move([50 50 200 200])

pos =
50 50 200 200

The next example resizes the control to always be centered in the
figure as you resize the figure window. Start by creating the script
resizectrl.m that contains

% Get the new position and size of the figure window
fpos = get(gcbo, 'position');

1-4416

move

% Resize the control accordingly
h.move([0 0 fpos(3) fpos(4)]);

Now execute the following:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
set(f, 'ResizeFcn', 'resizectrl');

As you resize the figure window, notice that the circle moves so that it
is always positioned in the center of the window.

See Also set (COM) | get (COM)

1-4417

movefile

Purpose Move file or folder

Syntax movefile('source')
movefile('source','destination')
movefile('source','destination','f')
[status,message,messageid] = movefile(___)

Description movefile('source') moves the file or folder named source to the
current folder, where source is the absolute or relative path name
for the folder or file. To move multiple files or folders, use one or
more wildcard characters (*) after the last file separator in source.
The source argument permits a wildcard character in a path string.
movefile does not preserve the archive attribute of source.

movefile('source','destination') moves the file or folder named
source to the location destination, where source and destination
are the absolute or relative paths for the folder or file. To move multiple
files or folders, you can use one or more wildcard characters (*) after
the last file separator in source. You cannot use a wildcard character
in destination. To rename a file or folder when moving it, make
destination a different name than source, and specify only one file
for source. When source and destination have the same location,
movefile renames source to destination.

movefile('source','destination','f') moves the file or folder
named source to the location destination, regardless of the read-only
attribute of destination.

[status,message,messageid] = movefile(___) moves the file or
folder named source to the location destination, returning the status,
a message, and the MATLAB message ID. Here, status is logical 1
for success or logical 0 for error. movefile requires only one output
argument.

Examples Moving a File to the Current Folder

Assuming myfiles is a subfolder within the current folder, move the
file myfunction.m to the current folder:

1-4418

movefile

movefile('myfiles/myfunction.m')

Assuming projects/testcases is the current folder, move
projects/myfiles and its contents to the current folder:

movefile('../myfiles')

Renaming a File in the Current Folder

In the current folder, rename myfunction.m to oldfunction.m:

movefile('myfunction.m','oldfunction.m')

Using a Wildcard to Move All Matching Files

Assuming myfiles is a subfolder of the current folder, move all files
whose names that begin with my from the myfiles folder, to the current
folder:

movefile('myfiles/my*')

Moving a File to a Different Folder

Assuming projects and the current folder are at the same level, move
the file myfunction.m from the current folder to the folder projects:

movefile('myfunction.m','../projects')

Moving a Folder Down One Level

Assuming projects is a subfolder of the current folder, move the folder
projects/testcases and all its contents down a level in projects into
projects/myfiles:

movefile('projects/testcases','projects/myfiles/')

Moving a File to a Read-Only Folder and Renaming the File

Move the file myfile.m from the current folder to d:/work/restricted,
assigning it the name test1.m, where restricted is a read-only folder:

movefile('myfile.m','d:/work/restricted/test1.m','f')

1-4419

movefile

The read-only file myfile.m is no longer in the current folder. The file
test1.m is in d:/work/restricted and is read only.

Returning Status When Moving Files

Move all files in the folder myfiles whose names start with new to the
current folder, when there is an error. You mistype new* as nex* and
no items in the current folder start with nex*:

[s,mess,messid] = movefile('myfiles/nex*')

s =
0

mess =

No matching files were found.

messid =

MATLAB:MOVEFILE:FileDoesNotExist

See Also cd | copyfile | delete | dir | fileattrib | ls | mkdir | rmdir

How To • “Manage Files and Folders”

1-4420

movegui

Purpose Move GUI figure to specified location on screen

Syntax movegui(h,'position')
movegui(position)
movegui(h)
movegui

Description movegui(h,'position') moves the figure identified by handle h to the
specified screen location, preserving the figure’s size. The position
argument is either a string or a two-element vector, as defined in the
tables that follow.

movegui(position) moves the callback figure (gcbf) or the current
figure (gcf) to the specified position.

movegui(h) moves the figure identified by the handle h to the onscreen
position.

movegui moves the callback figure (gcbf) or the current figure (gcf)
to the onscreen position. You can specify 'movegui' as a CreateFcn
callback for a figure. Doing so ensures after you save a figure, that
figure appears on screen when you reload it, regardless of its saved
position. See the following example.

When it is a string, position is one of the following descriptors.

Position String Description

north Top center edge of screen

south Bottom center edge of screen

east Right center edge of screen

west Left center edge of screen

northeast Top right corner of screen

northwest Top left corner of screen

southeast Bottom right corner of screen

1-4421

../ref/figure_props.html#CreateFcn

movegui

Position String Description

southwest Bottom left corner

center Centered on screen

onscreen Nearest location to current
location that is entirely on screen

You can also specify the position argument as a two-element vector,
[h,v]. Depending on sign, h specifies the figure’s offset from the left
or right edge of the screen, and v specifies the figure’s offset from the
top or bottom of the screen, in pixels. The following table summarizes
the possible values.

h (for h >= 0)
Offset of left side from left edge
of screen

h (for h < 0) Offset of right side from right
edge of screen

v (for v >= 0) Offset of bottom edge from bottom
of screen

v (for v < 0) Offset of top edge from top of
screen

Applying movegui to a maximized figure window moves the window
towards the task bar and creates a gap on the opposite side of the screen
about as wide as the task bar. The window might shrink in size by a
few pixels. If you use the onscreen option with a maximized figure
window, then movegui creates a gap on both the left and upper sides of
the screen so that the top-left corner of the figure is visible.

GUIDE and openfig call movegui when loading figures to ensure they
are visible.

Examples Ensure that a saved GUI appears on screen when you reload it,
regardless of the target computer screen size and resolution. Create a

1-4422

movegui

figure that is off the screen, assign movegui as its CreateFcn callback,
save the figure, and then reload it.

f = figure('Position',[10000,10000,400,300]);
% The figure does not display because
% it is created offscreen.
set(f,'CreateFcn','movegui')
hgsave(f,'onscreenfig')
close(f)
f2 = hgload('onscreenfig');
% The reloaded figure is now visible

Move a figure to the bottom left corner of the screen.

f = figure;
movegui(f,'southwest');

Move a figure so that it is offset 100 pixels from the bottom and left
side of the screen.

f = figure;
movegui(f,[100,100]);

See Also guide | openfig

How To • “Positioning Figures”

1-4423

movie

Purpose Play recorded movie frames

Syntax movie(M)
movie(M,n)
movie(M,n,fps)
movie(h,...)
movie(h,M,n,fps,loc)

Description The movie function plays the movie defined by a matrix whose columns
are movie frames (usually produced by getframe).

movie(M) plays the movie in matrix M once, using the current axes as
the default target. If you want to play the movie in the figure instead
of the axes, specify the figure handle (or gcf) as the first argument:
movie(figure_handle,...). M must be an array of movie frames
(usually from getframe).

movie(M,n) plays the movie n times. If n is negative, each cycle is
shown forward then backward. If n is a vector, the first element is the
number of times to play the movie, and the remaining elements make
up a list of frames to play in the movie.

For example, if M has four frames then n = [10 4 4 2 1] plays the
movie ten times, and the movie consists of frame 4 followed by frame 4
again, followed by frame 2 and finally frame 1.

movie(M,n,fps) plays the movie at fps frames per second. The default
is 12 frames per second. Computers that cannot achieve the specified
speed play as fast as possible.

movie(h,...) plays the movie centered in the figure or axes identified
by the handle h. Specifying the figure or axes enables MATLAB to fit
the movie to the available size.

movie(h,M,n,fps,loc) specifies loc, a four-element location vector, [x
y 0 0], where the lower left corner of the movie frame is anchored (only
the first two elements in the vector are used). The location is relative to
the lower left corner of the figure or axes specified by handle h and in
units of pixels, regardless of the object’s Units property.

1-4424

movie

Tips The movie function uses a default figure size of 560-by-420 and does
not resize figures to fit movies with larger or smaller frames. To
accommodate other frame sizes, you can resize the figure to fit the
movie, as shown in the second example below.

movie only accepts 8-bit image frames; it does not accept 16-bit
grayscale or 24–bit truecolor image frames.

Buffering the movie places all frames in memory. As a result, on
Microsoft Windows and perhaps other platforms, a long movie (on the
order of several hundred frames) can exhaust memory, depending on
system resources. In such cases an error message is issued that says

??? Error using ==> movie
Could not create movie frame

You can abort a movie by typing Ctrl-C.

movie is not a built-in function. Therefore, you cannot call movie using
the builtin function.

Limitations with Renderer on Windows Systems

Setting the figure Renderer property to zbuffer or painters works
around limitations of using getframe with the OpenGL renderer on some
Windows systems.

Examples Animate the peaks function as you scale the values of Z:

figure('Renderer','zbuffer')
Z = peaks;
surf(Z);
axis tight manual
set(gca,'NextPlot','replaceChildren');
% Preallocate the struct array for the struct returned by getframe
F(20) = struct('cdata',[],'colormap',[]);
% Record the movie
for j = 1:20

surf(.01+sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

1-4425

movie

end

Now play the movie ten times. The twelfth frame looks like the
following plot.

movie(F,10)

With larger frames, first adjust the figure’s size to fit the movie:

figure('Position',[100 100 850 600])

1-4426

movie

Z = peaks; surf(Z);
axis tight manual
set(gca,'NextPlot','replacechildren');
% Record the movie
for j = 1:20

surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end
% use 1st frame to get dimensions
[h, w, p] = size(F(1).cdata);
hf = figure;
% resize figure based on frame's w x h, and place at (150, 150)
set(hf,'Position', [150 150 w h]);
axis off
% Place frames at bottom left
movie(hf,F,4,30,[0 0 0 0]);

See Also getframe | frame2im | im2frame | VideoReader | VideoWriter

How To • Example – Visualizing an FFT as a Movie

1-4427

movie2avi

Purpose Create Audio/Video Interleaved (AVI) file from MATLAB movie

Syntax movie2avi(mov, filename)
movie2avi(mov, filename, ParameterName, ParameterValue)

Description movie2avi(mov, filename) creates the AVI file filename from the
MATLAB movie mov. The filename input is a string. The mov input
is a 1-by-n structure array, where n is the number of frames. Each
frame is a structure with two fields: cdata and colormap. For more
information, see getframe.

movie2avi(mov, filename, ParameterName, ParameterValue)
accepts one or more comma-separated parameter name/value pairs. The
following table lists the available parameters and values.

Parameter
Name Value Default

'colormap' An m-by-3 matrix defining the colormap for indexed
AVI movies, where m is no more than 256 (236 for
Indeo compression).

Valid only when the 'compression' is 'MSVC',
'RLE', or 'None'.

No default

'compression' A text string specifying the compression codec to
use. To create an uncompressed file, specify a value
of 'None'.

On UNIX operating systems, the only valid value is
'None'.

On Windows systems, valid values include:

• 'MSVC'

• 'RLE'

• 'Cinepak' on 32-bit systems.

'Indeo5'
on Windows
systems.

'None' on UNIX
systems.

1-4428

movie2avi

Parameter
Name Value Default

• 'Indeo3' or 'Indeo5' on 32-bit Windows XP
systems.

Alternatively, specify a custom compression codec
on Windows systems using the four-character code
that identifies the codec (typically included in the
codec documentation). If MATLAB cannot find the
specified codec, it returns an error.

'fps' A scalar value specifying the speed of the AVI movie
in frames per second (fps).

15 fps

'keyframe' For compressors that support temporal compression,
the number of key frames per second.

2.1429 key
frames per second

'quality' A number from 0 through 100. Higher quality
numbers result in higher video quality and larger
file sizes. Lower quality numbers result in lower
video quality and smaller file sizes.

Valid only for compressed movies.

75

'videoname' A descriptive name for the video stream, no more
than 64 characters.

filename

Tips • On some Windows systems, including all 64-bit systems, the default
Indeo 5 codec is not available. MATLAB issues a warning, and
creates an uncompressed file.

• On 32-bit Windows XP systems, MATLAB can create AVI files
compressed with Indeo 3 and Indeo 5 codecs. However, Microsoft
Windows XP Service Pack 3 (SP3) with Security Update 954157
disables playback of Indeo 3 and Indeo 5 codecs in Windows Media
Player and Internet Explorer. Consider specifying a compression
value of 'None'.

1-4429

http://www.microsoft.com/technet/security/advisory/954157.mspx

movie2avi

Examples Create a movie and write to an uncompressed AVI file, myPeaks.avi:

nFrames = 20;

% Preallocate movie structure.
mov(1:nFrames) = struct('cdata', [],...

'colormap', []);

% Create movie.
Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');
for k = 1:nFrames

surf(sin(2*pi*k/20)*Z,Z)
mov(k) = getframe(gcf);

end

% Create AVI file.
movie2avi(mov, 'myPeaks.avi', 'compression', 'None');

See Also VideoWriter | VideoReader | mmfileinfo | movie

1-4430

mpower, ^

Purpose Matrix power

Syntax C = A^B
C = mpower(A,B)

Description C = A^B computes A to the B power and returns the result in C.

C = mpower(A,B) is an alternate way to execute A^B, but is rarely used.
It enables operator overloading for classes.

Input
Arguments

A - Base
scalar | matrix

Base, specified as a scalar or matrix. Inputs A and B must be one of
the following:

• Base A is a square matrix and exponent B is a scalar. If B is a positive
integer, the power is computed by repeated squaring. For other
values of B the calculation involves eigenvalues and eigenvectors.

• Base A is a scalar and exponent B is a square matrix. The calculation
uses eigenvalues and eigenvectors.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

B - Exponent
scalar | matrix

Exponent, specified as a scalar or matrix. Inputs A and B must be one
of the following:

• Base A is a square matrix and exponent B is a scalar. If B is a positive
integer, the power is computed by repeated squaring. For other
values of B the calculation involves eigenvalues and eigenvectors.

1-4431

mpower, ^

• Base A is a scalar and exponent B is a square matrix. The calculation
uses eigenvalues and eigenvectors.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Square a Matrix

Create a 2-by-2 matrix and square it.

A = [1 2; 3 4];
C = A^2

C =

7 10
15 22

The syntax A^2 is equivalent to A*A.

Matrix Exponents

Create a 2-by-2 matrix and use it as the exponent for a scalar.

B = [0 1; 1 0];
C = 2^B

C =

1.2500 0.7500
0.7500 1.2500

Compute C by first finding the eigenvalues D and eigenvectors V of the
matrix B.

[V,D] = eig(B)

1-4432

mpower, ^

V =

-0.7071 0.7071
0.7071 0.7071

D =

-1 0
0 1

Next, use the formula 2^B = V*2^D/V to compute the power.

C = V*2^D/V

C =

1.2500 0.7500
0.7500 1.2500

See Also power | mtimes | times

1-4433

FTP.mput

Purpose Upload file or folder to FTP server

Syntax mput(ftpobj,contents)
paths = mput(ftpobj,contents)

Description mput(ftpobj,contents) uploads the file or folder specified by
contents to the current folder on an FTP server.

paths = mput(ftpobj,contents) returns a cell array that lists the
paths to the uploaded files on the server.

Input
Arguments

ftpobj

FTP object created by ftp.

contents

String enclosed in single quotation marks that specifies either a
file name or a folder name. Can include a wildcard character (*).

Output
Arguments

paths

Cell array that includes the paths to the uploaded files on the
server.

Examples Suppose that your current MATLAB folder contains files myfile1.m
through myfile10.m, and that you want to upload to a hypothetical FTP
server, ftp.testsite.com. Connect to the server and upload the files:

test = ftp('ftp.testsite.com');
mput(test, 'myfile*.m');
close(test);

See Also mget | ftp | mkdir | rename

1-4434

msgbox

Purpose Create and open message dialog box

Syntax h = msgbox(Message)
h = msgbox(Message,Title)
h = msgbox(Message,Title,Icon)
h = msgbox(Message,Title,'custom',IconData,IconCMap)
h = msgbox(___ ,CreateMode)

Description h = msgbox(Message) creates a message dialog box that automatically
wraps Message to fit an appropriately sized figure.

h = msgbox(Message,Title) specifies the title of the message box.

h = msgbox(Message,Title,Icon) specifies which built-in icon to
display in the message dialog box.

h = msgbox(Message,Title,'custom',IconData,IconCMap) specifies
a custom icon to include in the message dialog box. IconData is the
image data that defines the icon. IconCMap is the colormap used for
the image. If IconData is a true-color image, you do not need to specify
an IconCMap.

h = msgbox(___ ,CreateMode) specifies whether the message box is
modal. Additionally, you can specify a TeX interpreter for Message
and Title.

Input
Arguments

Message - Message dialog box text
string vector | string matrix | cell array

Dialog box text specified as a string vector, string matrix, or cell array.

Example: 'Operation Completed'

Example: ['Operation ', 'Completed']

Example: {'Operation', 'Completed'}

1-4435

msgbox

Title - Message dialog box title bar text
string vector

Dialog box title bar text specified as a string vector.

Example: 'Success'

Icon - Icon to include in message dialog box
'none' (default) | 'error' | 'help' | 'warn' | 'custom'

Icon to include in message dialog box specified as a string.

Built-in icons appear as follows:

• Error

• Help

• Warn

IconData - Image data defining a custom icon
matrix

Image data defining a custom icon specified as a matrix. Each element
of the matrix specifies the color of a rectangular segment in the image.
Use imread to get the IconData value for an image that you want to
use as a message dialog box icon.

Example: [1:64]’*[1:64])/64

IconCMap - Colormap for a custom icon that is not true-color
m–by–3 matrix | built-in colormap

Colormap for a custom icon that is not true-color, specified as a m-by-3
matrix of real numbers between 0.0 and 1.0, or as a MATLAB built-in
colormap. Use imread to get the IconCMap value for an image that you
want to use as a message dialog box icon.

Example: [0.5 0.5 0.5]

Example: hot(64)

1-4436

msgbox

CreateMode - Message dialog box mode
structure | 'nonmodal' (default) | 'modal' | 'replace'

Mode in which message dialog box is created, specified as a string or
a structure.

• If CreateMode is a structure, it can have the fields WindowStyle
and Interpreter. The WindowStyle field must be one of the strings
listed in the list items that follow this one. The Interpreter field
must be the string 'tex' or 'none'. If the Interpreter value is
'tex', MATLAB interprets the Message and Title values as TeX.
The default value for Interpreter is 'none'.

• If CreateMode is 'nonmodal', MATLAB creates a new nonmodal
message box with the specified parameters. Existing message boxes
with the same Title remain.

• If CreateMode is 'modal', MATLAB replaces the existing message
box with the specified Title that was last created or clicked on with
the specified modal dialog box. MATLAB deletes all other message
boxes with the same title. The replaced message box can be either
modal or nonmodal.

• If CreateMode is 'replace', MATLAB replaces the message box
having the specified Title that was last created or clicked on with
a nonmodal message box as specified. MATLAB deletes all other
message boxes with the same title. The replaced message box can be
either modal or nonmodal.

Example: CreateStruct.Interpreter=’tex’;

Output
Arguments

h - Message dialog box handle
scalar

Message dialog box handle returned as a scalar. This is a unique
identifier, which you can use to query and modify the properties of a
specific message dialog box.

1-4437

msgbox

Tips • Program execution continues even when a modal dialog box is active.
To block MATLAB program execution until the user responds to the
modal dialog box, use the uiwait function.

• If you open a dialog box with errordlg, msgbox, or warndlg using
'CreateMode','modal' and a nonmodal dialog box that was created
with any of these functions is already present and has the same title
as the modal dialog box, then the nonmodal dialog box closes when
the modal one opens.

Definitions modal dialog box

A modal dialog box prevents a user from interacting with other windows
before responding to the modal dialog box.

For more information about modal dialog boxes, see WindowStyle in
the Figure Properties topic.

Examples Simple Message Dialog Box

Specify the text you want displayed in the message dialog box.

h = msgbox('Operation Completed');

Message Dialog Box Text with Line Breaks

Specify the message dialog box text using a cell array of strings to insert
line breaks between the display of each string in the cell array.

h = msgbox({'Operation' 'Completed'});

1-4438

msgbox

Message Dialog Box with a Title

Specify the message dialog box text and give the dialog box a title,
Success.

h = msgbox('Operation Completed','Success');

Message Dialog Box that Uses a Built-in Icon

Include a built-in error icon with an error message in a message dialog
box entitled Error.

h = msgbox('Invalid Value', 'Error','error');

1-4439

msgbox

Message Dialog Box that Uses a True-Color Custom Icon

Use a .png file as an icon in your message dialog box. True-color
images, such as .png files, do not use colormaps.

Copy a .png file to a folder on your MATLAB search path.

copyfile(fullfile(matlabroot,...
'help','includes','product',...
'images','global','ico_large_info.png'));

Determine the value to specify for IconData by passing the image file
to imread.

[cdata] = imread('ico_large_info.png');

Create the message dialog box, including the custom icon. Because .png
files are true-color, you do not specify a colormap.

h=msgbox('Operation Completed',...
'Success','custom',cdata);

Message Dialog Box that Uses an Indexed Custom Icon

Use trees.tiff (which is on the MATLAB path) as an icon in your
message dialog box. Because .tiff images use a colormap to define the
colors, you must specify a colormap. Change the colormap to change
the image colors.

1-4440

msgbox

Determine the value to specify for IconData by passing the image file
to imread.

[cdata,map] = imread('trees.tif');

Create the message dialog box, including the custom icon.

h=msgbox('Operation Completed',...
'Success','custom',cdata,map);

Adjust the image colors by specifying a different colormap. For instance,
specify the MATLAB built-in colormap, summer

h=msgbox('Operation Completed','Success','custom',...
cdata,summer);

1-4441

msgbox

Modal Message Dialog Box

Create a modal message dialog box, wrapping the call to msgbox with
uiwait to make the message dialog box block MATLAB execution until
the user responds to the message dialog box.

uiwait(msgbox('Operation Completed','Success','modal'));

Modal Message Dialog Box that Uses a TeX Formatted
Message

Create a structure to specify that the user must click OK before
interacting with another window and that MATLAB interpret the
message text as TeX format.

CreateStruct.Interpreter = 'tex';
CreateStruct.WindowStyle = 'modal';

Create the message dialog box.

h=msgbox('Z = X^2 + Y^2','Value',CreateStruct);

See Also errordlg | helpdlg | imread | warndlg

1-4442

msgbox

Concepts • “Reading Image Data”

1-4443

mtimes, *

Purpose Matrix Multiplication

Syntax C = A*B
C = mtimes(A,B)

Description C = A*B is the matrix product of A and B. If A is an m-by-p and B is a
p-by-n matrix, then C is an m-by-n matrix defined by

C i j A i k B k j
k

p
(,) (,) (,).

1

This definition says that C(i,j) is the inner product of the ith row
of A with the jth column of B. You can write this definition using the
MATLAB colon operator as

C(i,j) = A(i,:)*B(:,j)

For nonscalar A and B, the number of columns of A must equal
the number of rows of B. Matrix multiplication is not universally
commutative for nonscalar inputs. That is, A*B is typically not equal
to B*A. If at least one input is scalar, then A*B is equivalent to A.*B
and is commutative.

C = mtimes(A,B) is an alternative way to execute A*B, but is rarely
used. It enables operator overloading for classes.

Input
Arguments

A - Left Array
scalar | vector | matrix

Left Array, specified as a scalar, vector, or matrix. For nonscalar inputs,
the number of columns in A must be equal to the number of rows in B.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

1-4444

mtimes, *

B - Right Array
scalar | vector | matrix

Right Array, specified as a scalar, vector, or matrix. For nonscalar
inputs, the number of columns in A must be equal to the number of
rows in B.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Output
Arguments

C - Product Array
scalar | vector | matrix

Product Array, returned as a scalar, vector, or matrix. Array C has the
same number of rows as input A and the same number of columns as
input B. For example, if A is an m-by-0 empty matrix and B is a 0-by-n
empty matrix, then A*B is an m-by-n matrix of zeros.

Examples Multiply Two Vectors

Create a 1-by-4 row vector, A, and a 4-by-1 column vector, B.

A = [1 1 0 0];
B = [1; 2; 3; 4];

Multiply A times B.

C = A*B

C =

3

The result is a 1-by-1 scalar, also called the dot product or inner product
of the vectors A and B. Alternatively, you can calculate the dot product
A • B with the syntax dot(A,B).

1-4445

mtimes, *

Multiply B times A.

C = B*A

C =

1 1 0 0
2 2 0 0
3 3 0 0
4 4 0 0

The result is a 4-by-4 matrix, also called the outer product of the vectors
A and B. The outer product of two vectors, A ⊗ B, returns a matrix.

Multiply Two Arrays

Create two arrays, A and B.

A = [1 3 5; 2 4 7];
B = [-5 8 11; 3 9 21; 4 0 8];

Calculate the product of A and B.

C = A*B

C =

24 35 114
30 52 162

Calculate the inner product of the second row of A and the third column
of B.

A(2,:)*B(:,3)

ans =

162

1-4446

mtimes, *

This answer is the same as C(2,3).

See Also colon | times | dot | cross

1-4447

mu2lin

Purpose Convert mu-law audio signal to linear

Syntax y = mu2lin(mu)

Description y = mu2lin(mu) converts mu-law encoded 8-bit audio signals, stored
as “flints” in the range 0 ≤ mu ≤ 255, to linear signal amplitude in the
range -s < Y < s where s = 32124/32768 ~= .9803. The input mu is
often obtained using fread(...,'uchar') to read byte-encoded audio
files. "Flints" are MATLAB integers — floating-point numbers whose
values are integers.

See Also auread | lin2mu

1-4448

multibandread

Purpose Read band-interleaved data from binary file

Syntax X = multibandread(filename, size, precision, offset, interleave,
byteorder)

X = multibandread(...,subset1,subset2,subset3)

Description X = multibandread(filename, size, precision, offset,
interleave, byteorder) reads band-sequential (BSQ),
band-interleaved-by-line (BIL), or band-interleaved-by-pixel (BIP) data
from the binary file filename. The filename input is a string enclosed
in single quotes. This function defines band as the third dimension in a
3-D array, as shown in this figure.

You can use the parameters to multibandread to specify many aspects
of the read operation, such as which bands to read. See “Parameters” on
page 1-4450 for more information.

X is a 2-D array if only one band is read; otherwise it is 3-D. X is
returned as an array of data type double by default. Use the precision
parameter to map the data to a different data type.

X = multibandread(...,subset1,subset2,subset3) reads a subset
of the data in the file. You can use up to three subsetting parameters to
specify the data subset along row, column, and band dimensions. See
“Subsetting Parameters” on page 1-4451 for more information.

1-4449

multibandread

Note In addition to BSQ, BIL, and BIP files, multiband imagery may
be stored using the TIFF file format. In that case, use the imread
function to import the data.

Parameters This table describes the arguments accepted by multibandread.

Argument Description

filename String containing the name of the file to be read.

size Three-element vector of integers consisting of
[height, width, N], where

• height is the total number of rows

• width is the total number of elements in each
row

• N is the total number of bands.

This will be the dimensions of the data if it is read
in its entirety.

precision String specifying the format of the data to be read,
such as 'uint8', 'double', 'integer*4', or any
of the other precisions supported by the fread
function.

Note: You can also use the precision parameter
to specify the format of the output data. For
example, to read uint8 data and output a uint8
array, specify a precision of 'uint8=>uint8' (or
'*uint8'). To read uint8 data and output it in
the MATLAB software in single precision, specify
'uint8=>single'. See fread for more information.

1-4450

multibandread

Argument Description

offset Scalar specifying the zero-based location of the first
data element in the file. This value represents the
number of bytes from the beginning of the file to
where the data begins.

interleave String specifying the format in which the data is
stored

• 'bsq’ — Band-Sequential

• 'bil'— Band-Interleaved-by-Line

• 'bip'— Band-Interleaved-by-Pixel

For more information about these interleave
methods, see the multibandwrite reference page.

byteorder String specifying the byte ordering (machine
format) in which the data is stored, such as

• 'ieee-le' — Little-endian

• 'ieee-be' — Big-endian

See fopen for a complete list of supported formats.

Subsetting
Parameters

You can specify up to three subsetting parameters. Each subsetting
parameter is a three-element cell array, {dim, method, index}, where

Parameter Description

dim Text string specifying the dimension to subset
along. It can have any of these values:

• 'Column'

• 'Row'

1-4451

multibandread

Parameter Description

• 'Band'

method Text string specifying the subsetting method. It
can have either of these values:

• 'Direct'

• 'Range'

If you leave out this element of the subset cell
array, multibandread uses 'Direct' as the
default.

index If method is 'Direct', index is a vector specifying
the indices to read along the Band dimension.

If method is 'Range', index is a three-element
vector of [start, increment, stop] specifying
the range and step size to read along the
dimension specified in dim. If index is a
two-element vector, multibandread assumes that
the value of increment is 1.

Examples Example 1

Setup initial parameters for a data set.

rows=3; cols=3; bands=5;
filename = tempname;

Define the data set.

fid = fopen(filename, 'w', 'ieee-le');
fwrite(fid, 1:rows*cols*bands, 'double');
fclose(fid);

Read every other band of the data using the Band-Sequential format.

1-4452

multibandread

im1 = multibandread(filename, [rows cols bands], ...
'double', 0, 'bsq', 'ieee-le', ...
{'Band', 'Range', [1 2 bands]})

Read the first two rows and columns of data using
Band-Interleaved-by-Pixel format.

im2 = multibandread(filename, [rows cols bands], ...
'double', 0, 'bip', 'ieee-le', ...
{'Row', 'Range', [1 2]}, ...
{'Column', 'Range', [1 2]})

Read the data using Band-Interleaved-by-Line format.

im3 = multibandread(filename, [rows cols bands], ...
'double', 0, 'bil', 'ieee-le')

Delete the file created in this example.

delete(filename);

Example 2

Read int16 BIL data from the FITS file tst0012.fits, starting at
byte 74880.

im4 = multibandread('tst0012.fits', [31 73 5], ...
'int16', 74880, 'bil', 'ieee-be', ...
{'Band', 'Range', [1 3]});

im5 = double(im4)/max(max(max(im4)));
imagesc(im5);

See Also fread | fwrite | imread | memmapfile | multibandwrite

1-4453

multibandwrite

Purpose Write band-interleaved data to file

Syntax multibandwrite(data,filename,interleave)
multibandwrite(data,filename,interleave,start,totalsize)
multibandwrite(...,param,value...)

Description multibandwrite(data,filename,interleave) writes data, a two- or
three-dimensional numeric or logical array, to the binary file specified
by filename. The filename input is a string enclosed in single quotes.
The length of the third dimension of data determines the number of
bands written to the file. The bands are written to the file in the form
specified by interleave. See “Interleave Methods” on page 1-4456 for
more information about this argument.

If filename already exists, multibandwrite overwrites it unless you
specify the optional offset parameter. See the last alternate syntax for
multibandwrite for information about other optional parameters.

multibandwrite(data,filename,interleave,start,totalsize)
writes data to the binary file filename in chunks. In this syntax, data
is a subset of the complete data set.

start is a 1-by-3 array [firstrow firstcolumn firstband] that
specifies the location to start writing data. firstrow and firstcolumn
specify the location of the upper left image pixel. firstband gives the
index of the first band to write. For example, data(I,J,K) contains
the data for the pixel at [firstrow+I-1, firstcolumn+J-1] in the
(firstband+K-1)-th band.

totalsize is a 1-by-3 array, [totalrows,totalcolumns,totalbands],
which specifies the full, three-dimensional size of the data to be written
to the file.

1-4454

multibandwrite

Note In this syntax, you must call multibandwrite multiple times to
write all the data to the file. The first time it is called, multibandwrite
writes the complete file, using the fill value for all values outside the
data subset. In each subsequent call, multibandwrite overwrites these
fill values with the data subset in data. The parameters filename,
interleave, offset, and totalsize must remain constant throughout
the writing of the file.

multibandwrite(...,param,value...) writes the multiband data to
a file, specifying any of these optional parameter/value pairs.

Parameter Description

'precision' String specifying the form and size of each element
written to the file. See the help for fwrite for a
list of valid values. The default precision is the
class of the data.

'offset' The number of bytes to skip before the first
data element. If the file does not already exist,
multibandwrite writes ASCII null values to fill
the space. To specify a different fill value, use the
parameter 'fillvalue'.

This option is useful when you are writing a
header to the file before or after writing the data.
When writing the header to the file after the data
is written, open the file with fopen using 'r+'
permission.

1-4455

multibandwrite

Parameter Description

'machfmt' String to control the format in which the data is
written to the file. Typical values are 'ieee-le'
for little endian and 'ieee-be' for big endian. See
the help for fopen for a complete list of available
formats. The default machine format is the local
machine format.

'fillvalue' A number specifying the value to use in place
of missing data. 'fillvalue' can be a single
number, specifying the fill value for all missing
data, or a 1-by-Number-of-bands vector of
numbers specifying the fill value for each band.
This value is used to fill space when data is
written in chunks.

Interleave
Methods

interleave is a string that specifies how multibandwrite interleaves
the bands as it writes data to the file. If data is two-dimensional,
multibandwrite ignores the interleave argument. The following
table lists the supported methods and uses this example multiband file
to illustrate each method.

Supported methods of interleaving bands include those listed below.

1-4456

multibandwrite

Method String Description Example

Band-Interleaved-by-Line 'bil' Write an entire row
from each band AAAAABBBBBCCCCC

AAAAABBBBBCCCCC

AAAAABBBBBCCCCC

Band-Interleaved-by-Pixel 'bip' Write a pixel from
each band ABCABCABCABCABC...

Band-Sequential 'bsq' Write each band in
its entirety AAAAA

AAAAA

AAAAA

BBBBB

BBBBB

BBBBB

CCCCC

CCCCC

CCCCC

Examples
Note To run these examples successfully, you must be in a writable
directory.

Example 1

Write all data (interleaved by line) to the file in one call.

data = reshape(uint16(1:600), [10 20 3]);
multibandwrite(data,'data.bil','bil');

1-4457

multibandwrite

Example 2

Write a single-band tiled image with one call for each tile. This
is only useful if a subset of each band is available at each call to
multibandwrite.

numBands = 1;

dataDims = [1024 1024 numBands];

data = reshape(uint32(1:(1024 * 1024 * numBands)), dataDims);

for band = 1:numBands

for row = 1:2

for col = 1:2

subsetRows = ((row - 1) * 512 + 1):(row * 512);

subsetCols = ((col - 1) * 512 + 1):(col * 512);

upperLeft = [subsetRows(1), subsetCols(1), band];

multibandwrite(data(subsetRows, subsetCols, band), ...

'banddata.bsq', 'bsq', upperLeft, dataDims);

end

end

end

See Also multibandread | fwrite | fread

1-4458

munlock

Purpose Allow clearing functions from memory

Syntax munlock
munlock fun
munlock('fun')

Description munlock unlocks the currently running .m or .mex function in memory
so that subsequent clear functions can remove it.

munlock fun unlocks the .m or .mex file named fun from memory. By
default, these files are unlocked so that changes to the file are picked
up. Calls to munlock are needed only to unlock .m or .mex functions
that have been locked with mlock.

munlock('fun') is the function form of munlock.

Examples The function testfun begins with an mlock statement.

function testfun
mlock

.

.

When you execute this function, it becomes locked in memory. You can
check this using the mislocked function.

testfun

mislocked testfun
ans =

1

Using munlock, you unlock the testfun function in memory. Checking
its status with mislocked shows that it is indeed unlocked at this point.

munlock testfun

mislocked testfun
ans =

1-4459

munlock

0

See Also mlock | mislocked | inmem | persistent

1-4460

namelengthmax

Purpose Maximum identifier length

Syntax len = namelengthmax

Description len = namelengthmax returns the maximum length allowed for
MATLAB identifiers, which include:

• Variable names

• Structure field names

• Script, function, and class names

• Model names

Rather than hard-coding a specific maximum name length into your
programs, use the namelengthmax function. This saves you the trouble
of having to update these limits should the identifier length change
in some future MATLAB release.

Examples Call namelengthmax to get the maximum identifier length:

maxid = namelengthmax
maxid =

63

See Also isvarname | matlab.lang.makeValidName |
matlab.lang.makeUniqueStrings

1-4461

NaN

Purpose Not-a-Number

Syntax NaN
N = NaN(n)
N = NaN(sz1,...,szN)
N = NaN(sz)

N = NaN(classname)
N = NaN(n,classname)
N = NaN(sz1,...szN,classname)
N = NaN(sz,classname)

N = NaN('like',p)
N = NaN(n,'like',p)
N = NaN(sz1,...szN,'like',p)
N = NaN(sz,'like',p)

Description NaN returns the IEEE arithmetic representation for Not-a-Number
(NaN). These values result from operations which have undefined
numerical results.

N = NaN(n) is an n-by-n matrix of NaN values.

N = NaN(sz1,...,szN) is a sz1-by-...-by-szN array of NaN values
where sz1,...,szN indicates the size of each dimension. For example,
NaN(3,4) returns a 3-by-4 array of NaN values.

N = NaN(sz) is an array of NaN values where the size vector, sz, defines
size(N). For example, NaN([3,4]) returns a 3-by-4 array of NaN values.

Note The size inputs sz1,...,szN, as well as the elements of the
size vector sz, should be nonnegative integers. Negative integers are
treated as 0.

1-4462

NaN

N = NaN(classname) returns a NaN value where the string, classname,
specifies the data type. classname can be either 'single' or 'double'.

N = NaN(n,classname) returns an n-by-n array of NaN values of data
type classname.

N = NaN(sz1,...szN,classname) returns a sz1-by-...-by-szN array of
NaN values of data type classname.

N = NaN(sz,classname) returns an array of NaN values where the size
vector, sz, defines size(N) and classname defines class(N).

N = NaN('like',p) returns a NaN value of the same data type, sparsity,
and complexity (real or complex) as the numeric variable, p.

N = NaN(n,'like',p) returns an n-by-n array of NaN values like p.

N = NaN(sz1,...szN,'like',p) returns a sz1-by-...-by-szN array of
NaN values like p.

N = NaN(sz,'like',p) returns an array of NaN values like p where the
size vector, sz, defines size(N).

Examples These operations produce NaN:

• Any arithmetic operation on a NaN, such as sqrt(NaN)

• Addition or subtraction, such as magnitude subtraction of infinities
as (+Inf)+(-Inf)

• Multiplication, such as 0*Inf

• Division, such as 0/0 and Inf/Inf

• Remainder, such as rem(x,y) where y is zero or x is infinity

1-4463

NaN

Tips Because two NaNs are not equal to each other, logical operations
involving NaNs always return false, except ~= (not equal). Consequently,

NaN ~= NaN
ans =

1
NaN == NaN
ans =

0

and the NaNs in a vector are treated as different unique elements.

unique([1 1 NaN NaN])
ans =

1 NaN NaN

Use the isnan function to detect NaNs in an array.

isnan([1 1 NaN NaN])
ans =

0 0 1 1

See Also inf | isnan | isfinite | isfloat

Concepts • “Class Support for Array-Creation Functions”

1-4464

nargchk

Purpose Validate number of input arguments

Note nargchk will be removed in a future version. Use narginchk
instead.

Syntax msgstring = nargchk(minargs, maxargs, numargs)
msgstring = nargchk(minargs, maxargs, numargs, 'string')
msgstruct = nargchk(minargs, maxargs, numargs, 'struct')

Description Use nargchk inside a function to check that the desired number of input
arguments is specified in the call to that function.

msgstring = nargchk(minargs, maxargs, numargs) returns an error
message string msgstring if the number of inputs specified in the call
numargs is less than minargs or greater than maxargs. If numargs is
between minargs and maxargs (inclusive), nargchk returns an empty
matrix.

It is common to use the nargin function to determine the number of
input arguments specified in the call.

msgstring = nargchk(minargs, maxargs, numargs, 'string') is
essentially the same as the command shown above, as nargchk returns
a string by default.

msgstruct = nargchk(minargs, maxargs, numargs, 'struct')
returns an error message structure msgstruct instead of a string. The
fields of the return structure contain the error message string and
a message identifier. If numargs is between minargs and maxargs
(inclusive), nargchk returns an empty structure.

When too few inputs are supplied, the message string and identifier are

message: 'Not enough input arguments.'
identifier: 'MATLAB:nargchk:notEnoughInputs'

When too many inputs are supplied, the message string and identifier
are

1-4465

nargchk

message: 'Too many input arguments.'
identifier: 'MATLAB:nargchk:tooManyInputs'

Tips nargchk is often used together with the error function. The error
function accepts either type of return value from nargchk: a message
string or message structure. For example, this command provides the
error function with a message string and identifier regarding which
error was caught:

error(nargchk(2, 4, nargin, 'struct'))

If nargchk detects no error, it returns an empty string or structure.
When nargchk is used with the error function, as shown here, this
empty string or structure is passed as an input to error. When error
receives an empty string or structure, it simply returns and no error is
generated.

Examples Given the function CheckInputs,

function CheckInputs(x, y, z)
error(nargchk(2, 3, nargin))

Then typing CheckInputs(1) produces

Not enough input arguments.

See Also narginchk | nargoutchk | nargin | nargout | varargin | varargout
| error

1-4466

nargin

Purpose Number of function input arguments

Syntax nargin
nargin(fx)

Description nargin returns the number of input arguments passed in the call to
the currently executing function. Use this nargin syntax only in the
body of a function.

nargin(fx) returns the number of input arguments that appear in the
definition statement for function fx. If the function includes varargin
in its definition, then nargin returns the negative of the number of
inputs. For example, if function foo declares inputs a, b, and varargin,
then nargin('foo') returns -3.

Input
Arguments

fx

Either a function handle or a string in single quotes that specifies the
name of a function.

Examples Inputs to Current Function

Create a function in a file named addme.m that accepts up to two inputs,
and identify the number of inputs with nargin.

function c = addme(a,b)

switch nargin
case 2

c = a + b;
case 1

c = a + a;
otherwise

c = 0;
end

Inputs Defined for a Function

Determine how many inputs a function can accept.

1-4467

nargin

The function addme created in the previous example has two inputs in
its declaration statement (a and b).

fx = 'addme';
nargin(fx)

ans =
2

Function with varargin Input

Determine how many inputs a function that uses varargin can accept.

Define a function in a file named mynewplot.m that accepts numeric
inputs x and y and any number of additional plot inputs using varargin.

function mynewplot(x,y,varargin)
figure
plot(x,y,varargin{:})
title('My New Plot')

At the command line, query how many inputs newplot can accept.

fx = 'mynewplot';
nargin(fx)

ans =
-3

The minus sign indicates that the third input is varargin. The
mynewplot function can accept an indeterminate number of additional
input arguments.

See Also nargout | narginchk | nargoutchk | varargin | varargout |
inputname

1-4468

narginchk

Purpose Validate number of input arguments

Syntax narginchk(minargs, maxargs)

Description narginchk(minargs, maxargs) throws an error if the number of inputs
specified in the call to the currently executing function is less than
minargs or greater than maxargs. If the number of inputs is between
minargs and maxargs (inclusive), narginchk does nothing.

When too few inputs are supplied, the message identifier and message
are:

identifier: 'MATLAB:narginchk:notEnoughInputs'
message: 'Not enough input arguments.'

When too many inputs are supplied, the message identifier and message
are:

identifier: 'MATLAB:narginchk:tooManyInputs'
message: 'Too many input arguments.'

• To verify that there are a minimum of N arguments, specify inf as
maxargs. For example: narginchk(5,inf) throws an error when
there are not at least five inputs.

Examples This function uses narginchk to verify that a minimum of 2 and
maximum of 5 input arguments are received from the calling function:

function check_inputs(A, B, varargin)
minargs=2; maxargs=5;

% Number of inputs must be >=minargs and <=maxargs.
narginchk(minargs, maxargs)

fprintf('Received 2 required, %d optional inputs.\n\n', ...
size(varargin, 2))

1-4469

narginchk

Call the example function, passing 1 input argument:

check_inputs(23)
Error using check_inputs
Not enough input arguments.

Call the function, passing 5 arguments:

check_inputs(23, 9, 15, 34, 62)
Received 2 required, 3 optional inputs.

Call the function, passing 6 arguments:

check_inputs(23, 9, 15, 34, 62, 6)
Error using check_inputs
Too many input arguments.

See Also nargoutchk | nargin | nargout | varargin | varargout

1-4470

nargout

Purpose Number of function output arguments

Syntax nargout
nargout(fx)

Description nargout returns the number of output arguments specified in the call to
the currently executing function. Use this nargout syntax only in the
body of a function.

nargout(fx) returns the number of outputs that appear in the
definition statement of function fx. If the function includes varargout
in its definition, then nargout returns the negative of the number
of outputs. For example, if function foo declares outputs a, b, and
varargout, then nargout('foo') returns -3.

Input
Arguments

fx

Either a function handle or a string in single quotes that specifies the
name of a function.

Examples Outputs for Current Function

Create a function in a file named subtract.m that calculates a second
return value only when requested.

function [dif,absdif] = subtract(y,x)
dif = y - x;
if nargout > 1

disp('Calculating absolute value')
absdif = abs(dif);

end

Outputs Defined for a Function

Determine how many outputs a function can return.

The function named subtract created in the previous example has two
outputs in its declaration statement (dif and absdif).

1-4471

nargout

fx = 'subtract';
nargout(fx)

ans =
2

Function with varargout Output

Determine how many outputs a function that uses varargout can
return.

Define a function in a file named mysize.m that returns a vector of
dimensions from the size function and the individual dimensions using
varargout.

function [sizeVector,varargout] = mysize(x)
sizeVector = size(x);
varargout = cell(1,nargout-1);
for k = 1:length(varargout)

varargout{k} = sizeVector(k);
end

At the command line, query how many outputs mysize can return.

fx = 'mysize';
nargout(fx)

ans =
-2

The minus sign indicates that the second output is varargout. The
mysize function can return an indeterminate number of additional
outputs.

Tips • When you use a function as part of an expression, MATLAB calls the
function with one output argument, so nargout within the function
returns 1. For example, given the following if statement and the
subtract function defined in the Examples section, the value of
nargout within the subtract function is 1.

1-4472

nargout

a = 1; b = 2;
if subtract(a,b) < 0

disp('Result is negative')
end

See Also nargin | nargoutchk | narginchk | varargout | varargin |
inputname

1-4473

nargoutchk

Purpose Validate number of output arguments

Syntax nargoutchk(minargs, maxargs)

Description nargoutchk(minargs, maxargs) throws an error if the number of
outputs specified in the call is less than minargs or greater than
maxargs. If the number of outputs is between minargs and maxargs
(inclusive), nargoutchk does nothing.

When too few outputs are supplied, the identifier and message are:

identifier: 'MATLAB:nargoutchk:notEnoughOutputs'
message: 'Not enough output arguments.'

When too many outputs are supplied, the identifier and message are:

identifier: 'MATLAB:nargoutchk:tooManyOutputs'
message: 'Too many output arguments.'

Tips • To verify that there are a minimum of N arguments, specify inf as
maxargs. For example: nargoutchk(5,inf) throws an error when
there are not at least five outputs.

Examples This function uses nargoutchk to verify that a minimum of 2 and
maximum of 5 input arguments are passed back to the calling function:

function [varargout] = check_outputs(array_in)
minargs=2; maxargs=5;

% Number of outputs must be >=minargs and <=maxargs.
nargoutchk(minargs, maxargs)

for k=1:nargout
varargout{k} = array_in(k)*3;

end

Initialize input array X to a vector of 6 elements:

1-4474

nargoutchk

X = 5:7:40
X =

5 12 19 26 33 40

Call the example function with 1 output argument. This is less than the
minimum (2) that was specified by nargoutchk and results in an error:

A = check_outputs(X);

Error using check_outputs
Not enough output arguments.

Call the function with 4 output arguments. This is within the allowable
bounds (2 to 5) specified by nargoutchk:

[A, B, C, D] = check_outputs(X);

[A, B, C, D]
ans =

15 36 57 78

Call the function with 6 output arguments. This exceeds the maximum
(5) that was specified by nargoutchk and results in an error:

[A, B, C, D, E, F] = check_outputs(X);

Error using check_outputs
Too many output arguments.

See Also narginchk | nargout | nargin | varargout | varargin

1-4475

native2unicode

Purpose Convert numeric bytes to Unicode character representation

Syntax unicodestr = native2unicode(bytes)
unicodestr = native2unicode(bytes, encoding)

Description unicodestr = native2unicode(bytes) converts a numeric
vector, bytes, from the user default encoding to Unicode character
representation. bytes is treated as a stream of 8-bit bytes, and each
value must be in the range [0,255]. Return value unicodestr is a char
vector having the same general array shape as bytes.

unicodestr = native2unicode(bytes, encoding) converts bytes
to Unicode representation assuming that the byte stream is in the
character encoding scheme specified by the string encoding. encoding
must be the empty string ('') or a name or alias for an encoding
scheme. Some examples are 'UTF-8', 'latin1', 'US-ASCII', and
'Shift_JIS'. If encoding is unspecified or is the empty string (''), the
default encoding scheme is used.

Note If bytes is a char vector, it is returned unchanged.

Examples This example begins with a vector of bytes in an unknown character
encoding scheme. The user-written function detect_encoding
determines the encoding scheme. If successful, it returns the encoding
scheme name or alias as a string. If unsuccessful, it throws an
error represented by an MException object, ME. The example calls
native2unicode to convert the bytes to Unicode representation:

try
enc = detect_encoding(bytes);
str = native2unicode(bytes, enc);
disp(str);

catch ME
rethrow(ME);

end

1-4476

native2unicode

Note that the computer must be configured to display text in a
language represented by the detected encoding scheme for the output of
disp(str) to be correct.

See Also unicode2native

1-4477

nchoosek

Purpose Binomial coefficient or all combinations

Syntax b = nchoosek(n,k)
C = nchoosek(v,k)

Description b = nchoosek(n,k) returns the binomial coefficient, defined as
n!/((n–k)! k!). This is the number of combinations of n items taken k at
a time.

C = nchoosek(v,k) returns a matrix containing all possible
combinations of the elements of vector v taken k at a time. Matrix C has
k columns and n!/((n–k)! k!) rows, where n is length(v).

Input
Arguments

n - Number of possible choices
scalar, real, nonnegative value

Number of possible choices, specified as a scalar value of any numeric
type that is real and nonnegative.

Example: 10

Example: int16(10)

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

k - Number of selected choices
scalar, real, nonnegative value

Number of selected choices, specified as a scalar value that is real and
nonnegative. k can be any numeric type. However, nchoosek(n,k)
requires that n and k be the same type or that at least one of them be
of type double.

There are no restrictions on combining inputs of different types for
nchoosek(v,k).

Example: 3

1-4478

nchoosek

Example: int16(3)

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

v - Set of all choices
vector of numeric, logical, or char values

Set of all choices, specified as a vector of numeric, logical, or char
values.

Example: [1 2 3 4 5]

Example: [1+1i 2+1i 3+1i 4+1i]

Example: int16([1 2 3 4 5])

Example: [true false true false]

Example: ['abcd']

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Output
Arguments

b - Binomial coefficient
nonnegative scalar value

Binomial coefficient, returned as a nonnegative scalar value. b is the
same type as n and k. If n and k are of different types, then b is returned
as the nondouble type.

C - All combinations of v
matrix

All combinations of v, returned as a matrix of the same type as v.
Matrix C has k columns and n!/((n–k)! k!) rows, where n is length(v).

1-4479

nchoosek

Each row of C contains a combination of k items chosen from v. The
elements in each row of C are listed in the same order as they appear
in v.

Limitations • When b = nchoosek(n,k) is sufficiently large, nchoosek displays a
warning that the result might not be exact. In this case, the result
is only accurate to 15 digits for double-precision inputs, or 8 digits
for single-precision inputs.

• C = nchoosek(v,k) is only practical for situations where length(v)
is less than about 15.

Examples Binomial Coefficient, “5 Choose 4”

b = nchoosek(5,4)

b =

5

All Combinations of Five Numbers Taken Four at a Time

v = 2:2:10;
C = nchoosek(v,4)

C =

2 4 6 8
2 4 6 10
2 4 8 10
2 6 8 10
4 6 8 10

All Combinations of Three Unsigned Integers Taken Two at
a Time

v = uint16([10 20 30]);
C = nchoosek(v,uint16(2))

1-4480

nchoosek

C =

10 20
10 30
20 30

See Also perms

1-4481

ndgrid

Purpose Rectangular grid in N-D space

Syntax [X1,X2,X3,...,Xn] = ndgrid(x1gv,x2gv,x3gv,...,xngv)
[X1,X2,...,Xn] = ndgrid(xgv)

Description [X1,X2,X3,...,Xn] = ndgrid(x1gv,x2gv,x3gv,...,xngv) replicates
the grid vectors x1gv,x2gv,x3gv,...,xngv to produce a full grid. This
grid is represented by the output coordinate arrays X1,X2,X3,...,Xn.
The ith dimension of any output array Xi contains copies of the grid
vector xigv.

[X1,X2,...,Xn] = ndgrid(xgv) is the same as
[X1,X2,...,Xn] = ndgrid(xgv,xgv,...,xgv). In other words, you
can reuse the same grid vector in each respective dimension. The
dimensionality of the output arrays is determined by the number of
output arguments.

The coordinate arrays [X1,X2,X3,...,Xn] are typically used to
evaluate functions of several variables and to create surface and
volumetric plots.

Input
Arguments

xigv

Grid vector specifying a series of grid point coordinates in the ith
dimension.

xgv

Generic grid vector specifying a series of point coordinates.

Output
Arguments

Xi

The ith dimension of the output array Xi are copies of elements of the
grid vector xigv. The output arrays specify the full grid.

Tips The ndgrid function is similar to meshgrid, however ndgrid supports
1-D to N-D while meshgrid is restricted to 2-D and 3-D. The coordinates
output by each function are the same, but the shape of the output
arrays in the first two dimensions are different. For grid vectors x1gv,

1-4482

ndgrid

x2gv and x3gv of length M, N and P respectively, ndgrid(x1gv, x2gv)
will output arrays of size M-by-N while meshgrid(x1gv, x2gv) outputs
arrays of size N-by-M. Similarly, ndgrid(x1gv, x2gv, x3gv) will output
arrays of size M-by-N-by-P while meshgrid(x1gv, x2gv, x3gv) outputs
arrays of size N-by-M-by-P. See “Grid Representation” in the MATLAB
Mathematics documentation for more information.

Examples Evaluate Function Over Gridded Domain

Evaluate the function over the gridded domain
and .

Create a grid of values for the domain.

[X1,X2] = ndgrid(-2:.2:2, -2:.2:2);

Evaluate the function over the domain.

Z = X1 .* exp(-X1.^2 - X2.^2);

Generate a mesh plot of the function.

mesh(X1,X2,Z)

1-4483

ndgrid

See Also griddedInterpolant | meshgrid | mesh | surf

How To • “Interpolating Gridded Data”

1-4484

ndims

Purpose Number of array dimensions

Syntax N = ndims(A)

Description N = ndims(A) returns the number of dimensions in the array A. The
number of dimensions is always greater than or equal to 2. The function
ignores trailing singleton dimensions, for which size(A,dim) = 1.

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array. This includes numeric arrays, logical arrays, character arrays,
categorical arrays, tables, structure arrays, cell arrays, and object
arrays.

Examples Find Dimensions of Vector

Create a row vector.

A = 1:5;

Find the number of dimensions in the vector.

ndims(A)

ans =

2

The result is 2 because the vector has a size of 1-by-5.

Find Dimensions of Cell Array

Create a cell array of strings.

C{1,1,1} = 'cell_1';
C{1,1,2} = 'cell_2';
C{1,1,3} = 'cell_3'

1-4485

ndims

C(:,:,1) =

'cell_1'

C(:,:,2) =

'cell_2'

C(:,:,3) =

'cell_3'

Find the number of dimensions of the cell array.

ndims(A)

ans =

3

The result is 3 because the cell array has a size of 1-by-1-by-3.

Algorithms The number of dimensions in an array is the same as the length of the
size vector of the array. In other words, ndims(A) = length(size(A)).

See Also size | length

1-4486

ne, ~=

Purpose Determine inequality

Syntax A ~= B
ne(A,B)

Description A ~= B returns a logical array with elements set to logical 1 (true)
where arrays A and B are not equal; otherwise, it returns logical 0
(false). The test compares both real and imaginary parts of numeric
arrays. ne returns logical 1 (true) where A or B have NaN or undefined
categorical elements.

ne(A,B) is an alternative way to execute A ~= B, but is rarely used. It
enables operator overloading for classes.

Input
Arguments

A - Left array
numeric array | logical array | character array | categorical array

Left array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is a categorical array, the other input can be a categorical
array, a cell array of strings, or a single string. A single string expands
into a cell array of strings of the same size as the other input. If both
inputs are ordinal categorical arrays, they must have the same sets of
categories, including their order. If both inputs are categorical arrays
that are not ordinal, they can have different sets of categories. See
“Compare Categorical Array Elements” for more details.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

B - Right array
numeric array | logical array | character array | categorical array

1-4487

ne, ~=

Right array, specified as a numeric array, logical array, character array,
or categorical array. Inputs A and B must be the same size unless one
is a scalar. A scalar input expands into an array of the same size as
the other input.

If one input is a categorical array, the other input can be a categorical
array, a cell array of strings, or a single string. A single string expands
into a cell array of strings of the same size as the other input. If both
inputs are ordinal categorical arrays, they must have the same sets of
categories, including their order. If both inputs are categorical arrays
that are not ordinal, they can have different sets of categories. See
“Compare Categorical Array Elements” for more details.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Inequality of Two Vectors

Create two vectors containing both real and imaginary numbers.

A = [1+i 3 2 4+i];
B = [1 3+i 2 4+i];

Compare the two vectors for inequality.

A ~= B

ans =

1 1 0 0

The ne function tests both real and imaginary parts for inequality, and
returns logical 1 (true) where one or both parts are not equal.

Find Characters in String

Create a string of characters.

1-4488

ne, ~=

M = 'masterpiece';

Test the string for the presence of a specific character using ~=.

M ~= 'n'

ans =

1 1 1 1 1 1 1 1 1 1 1

The value of logical 1 (true) in the vector indicates the absence of the
character 'n'. The character is not present in the string.

Find Values in Categorical Array

Create a categorical array.

A = categorical({'heads' 'heads' 'tails'; 'tails' 'heads' 'tails'})

A =

heads heads tails
tails heads tails

The array has two categories: 'heads' and 'tails'.

Find all values not in the 'heads' category.

A ~= 'heads'

ans =

0 0 1
1 0 1

A value of logical 1 (true) indicates a value not in the category. Since
A only has two categories, A ~= 'heads' returns the same answer as
A == 'tails'.

Compare the rows of A for inequality.

1-4489

ne, ~=

A(1,:) ~= A(2,:)

ans =

1 0 0

The function returns logical 1 (true) where the rows have unequal
category values.

Compare Floating-Point Numbers

Some floating-point numbers cannot be represented exactly in binary
form. This leads to small differences in results that the ~= operator
reflects.

Perform a few subtraction operations on a floating-point number and
store the result in C.

C = 0.5-0.4-0.1

C =

-2.7756e-17

Intuitively, C should be equal to exactly 0. Its small value is due to the
nature of floating-point arithmetic.

Compare C to zero for inequality.

C ~= 0

ans =

1

The result is logical 1 (true).

Compare floating-point numbers using a tolerance, tol, instead of ~=.

tol = eps;

1-4490

ne, ~=

abs(C-0) > tol

ans =

0

The two numbers, C and 0, are closer to one another than two
consecutive floating-point numbers. They are essentially equal.

See Also ge | gt | le | lt | eq

1-4491

DelaunayTri.nearestNeighbor

Purpose (Will be removed) Point closest to specified location

Note nearestNeighbor(DelaunayTri) will be removed in a future
release. Use nearestNeighbor(delaunayTriangulation) instead.

DelaunayTri will be removed in a future release. Use
delaunayTriangulation instead.

Syntax PI = nearestNeighbor(DT,QX)
PI = nearestNeighbor(DT,QX,QY)
PI = nearestNeighbor(DT,QX,QY,QZ)
[PI,D] = nearestNeighbor(DT,QX,...)

Description PI = nearestNeighbor(DT,QX) returns the index of the nearest point
in DT.X for each query point location in QX.

PI = nearestNeighbor(DT,QX,QY) and PI =
nearestNeighbor(DT,QX,QY,QZ) allow the query points to be specified
in column vector format when working in 2-D and 3-D.

[PI,D] = nearestNeighbor(DT,QX,...) returns the index of
the nearest point in DT.X for each query point location in QX. The
corresponding Euclidean distances between the query points and their
nearest neighbors are returned in D.

Note Note: nearestNeighbor is not supported for 2-D triangulations
that have constrained edges.

Input
Arguments

DT Delaunay triangulation.

QX The matrix QX is of size mpts-by-ndim, mpts being the
number of query points and ndim the dimension of
the space where the points reside.

1-4492

DelaunayTri.nearestNeighbor

Output
Arguments

PI PI is a column vector of point indices that index into
the points DT.X. The length of PI is equal to the
number of query points mpts

D D is a column vector of length mpts.

Examples Create a Delaunay triangulation:

x = rand(10,1);
y = rand(10,1);
dt = DelaunayTri(x,y);

Create query points:

qrypts = [0.25 0.25; 0.5 0.5];

Find the nearest neighbors to the query points:

pid = nearestNeighbor(dt, qrypts)

See Also pointLocation | delaunayTriangulation | triangulation

1-4493

ne (MException)

Purpose Compare scalar MException objects for inequality

Syntax eObj1 ~= eObj2

Description eObj1 ~= eObj2 tests MException objects eObj1 and eObj2 for
inequality, returning logical 1 (true) if the two objects are not identical,
otherwise returning logical 0 (false).

See Also addCause(MException) | disp(MException) | eq(MException)
| isequal(MException) | last(MException) |
throwAsCaller(MException) | rethrow(MException) |
throw(MException) | getReport(MException) | MException |
assert | error | try, catch

1-4494

TriRep.neighbors

Purpose (Will be removed) Simplex neighbor information

Note neighbors(TriRep) will be removed in a future release. Use
neighbors(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax SN = neighbors(TR, SI)

Description SN = neighbors(TR, SI) returns the simplex neighbor information for
the specified simplices SI.

Input
Arguments

TR Triangulation representation.

SI SI is a column vector of simplex indices that index
into the triangulation matrix TR.Triangulation.
If SI is not specified the neighbor information for
the entire triangulation is returned, where the
neighbors associated with simplex i are defined by
the i’th row of SN.

Output
Arguments

SN SN is an m-by-n matrix, where m = length(SI) , the
number of specified simplices, and n is the number
of neighbors per simplex. Each row SN(i,:)
represents the neighbors of the simplex SI(i).

By convention, the simplex opposite vertex(j) of
simplex SI(i) is SN(i,j). If a simplex has one or
more boundary facets, the nonexistent neighbors
are represented by NaN.

1-4495

TriRep.neighbors

Definitions A simplex is a triangle/tetrahedron or higher-dimensional equivalent. A
facet is an edge of a triangle or a face of a tetrahedron.

Examples Example 1

Load a 3-D triangulation and use TriRep to compute the neighbors of
all tetrahedra.

load tetmesh
trep = TriRep(tet, X)
nbrs = neighbors(trep)

Example 2

Query a 2-D triangulation created using DelaunayTri.

x = rand(10,1)
y = rand(10,1)
dt = DelaunayTri(x,y)

Find the neighbors of the first triangle:

n1 = neighbors(dt, 1)

See Also delaunayTriangulation | triangulation

1-4496

NET

Purpose Summary of functions in MATLAB .NET interface

Description Use the following functions to bring assemblies from the Microsoft
.NET Framework into the MATLAB environment. The functions are
implemented as a package called NET. To use these functions, prefix
the function name with package name NET.

BeginInvoke Initiate asynchronous .NET
delegate call

cell Create cell array

Combine Convenience function for static
.NET System.Delegate Combine
method

enableNETfromNetworkDrive Enable access to .NET commands
from network drive

EndInvoke Retrieve result of asynchronous
call initiated by .NET
System.Delegate BeginInvoke
method

NET.addAssembly Make .NET assembly visible to
MATLAB

NET.Assembly Members of .NET assembly

NET.convertArray Convert numeric MATLAB array
to .NET array

NET.createArray Array for nonprimitive .NET
types

NET.createGeneric Create instance of specialized
.NET generic type

NET.disableAutoRelease Lock .NET object representing
a RunTime Callable Wrapper
(COM Wrapper) so that MATLAB
does not release COM object

1-4497

NET

NET.enableAutoRelease Unlock .NET object representing
a RunTime Callable Wrapper
(COM Wrapper) so that MATLAB
releases COM object

NET.GenericClass Represent parameterized generic
type definitions

NET.invokeGenericMethod Invoke generic method of object

NET.isNETSupported Check for supported

NET.NetException Capture error information for
.NET exception

NET.setStaticProperty Static property or field name

Remove Convenience function for static
.NET System.Delegate Remove
method

RemoveAll Convenience function for
static .NET System.Delegate
RemoveAll method

How To • “Call .NET Libraries”

1-4498

NET.addAssembly

Purpose Make .NET assembly visible to MATLAB

Syntax asmInfo = NET.addAssembly(globalName)
asmInfo = NET.addAssembly(privateName)

Description asmInfo = NET.addAssembly(globalName) loads a global .NET
assembly into MATLAB.

asmInfo = NET.addAssembly(privateName) loads a private .NET
assembly.

Tips • MATLAB dynamically loads the mscorlib.dll and system.dll
assemblies from the .NET Framework class library the first time you
type "NET." or "System.". You do not need to call NET.addAssembly
to access classes in these assemblies.

• Refer to your .NET product documentation for the name of the
assembly and its deployment type (global or private).

Limitations • NET.addAssembly does not support assemblies generated by the
MATLAB Builder NE product.

Input
Arguments

globalName

One of the following:

• String representing the name of a global assembly.

• Instance of System.Reflection.AssemblyName class.

privateName

String representing the full path of a private assembly.

Output
Arguments

asmInfo

NET.Assembly object containing names of the members of the assembly.

1-4499

NET.addAssembly

Examples Display today’s date using System.DateTime in the mscorlib assembly.

System.DateTime.Now.ToLongDateString

Call the System.Windows.Forms.MessageBox.Show method in the
global assembly System.Windows.Forms.

asm = NET.addAssembly('System.Windows.Forms');
import System.Windows.Forms.*;
MessageBox.Show('Simple Message Box')

Display classes in the private assembly NetSample.dll.

asm = NET.addAssembly('c:\work\NetSample.dll');
asm.Classes

See Also NET.Assembly

How To • “An Assembly is a Library of .NET Classes”

Related
Links

• MSDN AssemblyName Class

1-4500

http://msdn.microsoft.com/en-us/library/system.reflection.assemblyname(v=VS.80).aspx

NET.Assembly

Purpose Members of .NET assembly

Description NET.Assembly object returns names of the members of an assembly.

Construction The NET.addAssembly function creates an instance of this class.

Properties AssemblyHandle

Instance of System.Reflection.Assembly class of the added
assembly.

Classes

nClassx1 cell array of class names of the assembly, where nClass
is the number of classes

Enums

nEnumx1 cell array of enums of the assembly, where nEnum is the
number of enums

Structures

nStructx1 cell array of structures of the assembly, where nStruct
is the number of structures

GenericTypes

nGenTypex1 cell array of generic types of the assembly, where
nGenType is the number of generic types

Interfaces

nInterfacex1 cell array of interface names of the assembly,
where nInterface is the number of interfaces

Delegates

nDelegatex1 cell array of delegates of the assembly, where
nDelegate is the number of delegates

See Also NET.addAssembly

1-4501

NET.Assembly

How To • “What Classes Are in a .NET Assembly?”

1-4502

NET.convertArray

Purpose Convert numeric MATLAB array to .NET array

Note MATLAB automatically converts arrays to .NET types. For
information, see “Using Arrays with .NET Applications”.

Syntax arrObj = NET.convertArray(V,'arrType',[m,n])

Description arrObj = NET.convertArray(V,'arrType',[m,n]) converts a
MATLAB array V to a .NET array. Optional value arrType is a string
representing a namespace-qualified .NET array type. Use optional
values m,n to convert a MATLAB vector to a two-dimensional .NET
array (either 1-by-n or m-by-1). If V is a MATLAB vector and you do not
specify the number of dimensions and their sizes, the output arrObj
is a one-dimensional .NET array.

If you do not specify arrType, MATLAB converts the type according to
the MATLAB Primitive Type Conversion Table. See “Pass Primitive
.NET Types”.

Examples Create a list aList of random System.Int32 integers using the
System.Collections.Generic.List class, and then sort the results:

%Create array R of random integers
nInt = 5;
R = randi(100,1,nInt);
%Create .NET array A
A = NET.convertArray(R,'System.Int32');
%Put A into aList, a generic collections list
aList = NET.createGeneric(...

'System.Collections.Generic.List',...
{'System.Int32'},A.Length);

aList.AddRange(A);
%Sort the values in aList
aList.Sort;

1-4503

NET.convertArray

See Also NET.createArray

1-4504

NET.createArray

Purpose Array for nonprimitive .NET types

Syntax array = NET.createArray(typeName,[m,n,p,...])
array = NET.createArray(typeName,m,n,p,...)

Description array = NET.createArray(typeName,[m,n,p,...]) creates an
m-by-n-by-p-by-... array of type typeName, which is either a fully
qualified .NET array type name (namespace and array type name) or
an instance of the NET.GenericClass class, in case of arrays of generic
type. m,n,p,... are the number of elements in each dimension of the
array.

array = NET.createArray(typeName,m,n,p,...) alternative syntax
for creating an array.

You cannot specify the lower bound of an array.

Examples Create .NET Array of Generic Type

This example creates a .NET array of List<Int32> generic type.

genType = NET.GenericClass('System.Collections.Generic.List',...
'System.Int32');

arr = NET.createArray(genType, 5)

arr =

List<System*Int32>[] with properties:

Length: 5
LongLength: 5

Rank: 1
SyncRoot: [1x1 System.Collections.Generic.List<System*Int32>

IsReadOnly: 0
IsFixedSize: 1

IsSynchronized: 0

1-4505

NET.createArray

Create and Initialize Jagged Array

This example creates a jagged .NET array of 3 elements.

jaggedArray = NET.createArray('System.Double[]', 3)

jaggedArray =

Double[][] with properties

Length: 3
LongLength: 3

Rank: 1
SyncRoot: [1x1 System.Double[][]]

IsReadOnly: 0
IsFixedSize: 1

IsSynchronized: 0

Assign values:

jaggedArray(1) = [1, 3, 5, 7, 9];
jaggedArray(2) = [0, 2, 4, 6];
jaggedArray(3) = [11, 22];

Access first value of 3rd array:

jaggedArray(3,1)

ans =
11

Create Jagged Array of Generic Type

This example creates a jagged array of List<Double> generic type.

genCls = NET.GenericClass('System.Collections.Generic.List[]',...
'System.Double');

Create the array, genArr.

1-4506

NET.createArray

genArr = NET.createArray(genCls,3)

genArr =

List<System*Double>[][] with properties:

Length: 3
LongLength: 3

Rank: 1
SyncRoot: [1x1 System.Collections.Generic.List`1[][]]

IsReadOnly: 0
IsFixedSize: 1

IsSynchronized: 0

Create Nested Jagged Array

This command creates a jagged array of type System.Double[][][].

netArr = NET.createArray('System.Double[][]', 3)

netArr =

Double[][][] with properties:

Length: 3
LongLength: 3

Rank: 1
SyncRoot: [1x1 System.Double[][][]]

IsReadOnly: 0
IsFixedSize: 1

IsSynchronized: 0

See Also NET.convertArray | NET.createGeneric

1-4507

NET.createGeneric

Purpose Create instance of specialized .NET generic type

Syntax genObj = createGeneric(className,paramTypes,varargin ctorArgs)

Description genObj = createGeneric(className,paramTypes,varargin
ctorArgs) creates an instance genObj of generic type className.

Input
Arguments

className Fully qualified string with the generic type
name.

paramTypes Allowed cell types are: strings with fully
qualified parameter type names and instances
of the NET.GenericClass class when
parameterization with another parameterized
type is needed.

ctorArgs Optional, variable length (0 to N) list
of constructor arguments matching the
arguments of the .NET generic class
constructor intended to be invoked.

Output
Arguments

genObj Handle to the specialized generic class
instance.

Examples Create a List of System.Double Objects

Create a strongly typed list dblLst of objects of type System.Double:

t = NET.createGeneric('System.Collections.Generic.List',...
{'System.Double'},10);

Create a List with Key/Value Pairs

Create the kvpType generic association where Key is of System.Int32
type and Value is a System.String:

1-4508

NET.createGeneric

pe = NET.GenericClass('System.Collections.Generic.KeyValuePair',...
'System.Int32','System.String');

Create the list kvpList with initial storage capacity for 10 key-value
pairs:

st = NET.createGeneric('System.Collections.Generic.List',...
{kvpType},10);

Add an Item to the List

Create a KeyValuePair item.

kvpItem = NET.createGeneric('System.Collections.Generic.KeyValuePair',
{'System.Int32','System.String'},42,'myString');

Add this item to the list kvpList.

kvpList.Add(kvpItem);

See Also NET.GenericClass

1-4509

NET.disableAutoRelease

Purpose Lock .NET object representing a RunTime Callable Wrapper (COM
Wrapper) so that MATLAB does not release COM object

Syntax A = NET.disableAutoRelease(obj)

Description A = NET.disableAutoRelease(obj) locks a .NET object representing
a RunTime Callable Wrapper (COM Wrapper) so that MATLAB does
not release the COM object. obj is a .NET object representing a COM
Wrapper.

Before passing a .NET object representing a COM Wrapper to another
process, lock the object using this function so that MATLAB does not
release it. After using the object, call NET.enableAutoRelease to
release the COM object.

Examples The following user-defined function, GetComApp.m, has access to a COM
object defined in the pseudo-classComNamespace.ComClass. One of its
methods is readData, with the signature:

System.String RetVal readData(ComNamespace.ComClass this, System.String strIn)

The input argument is defined in the pseudo-class
NetDocTest.MyClass, which has a property named MyApp.

function GetComApp(obj)
comObj = ComNamespace.ComClass;
obj.MyApp = comObj;
% To pass a COM object to another process, lock the object
NET.disableAutoRelease(comObj);
end

The example in NET.enableAutoRelease shows how to call the
GetComApp function.

See Also NET.enableAutoRelease

How To • “How MATLAB Handles System.__ComObject”

1-4510

NET.enableAutoRelease

Purpose Unlock .NET object representing a RunTime Callable Wrapper (COM
Wrapper) so that MATLAB releases COM object

Syntax A = NET.enableAutoRelease(obj)

Description A = NET.enableAutoRelease(obj) releases the COM wrapper when
the object goes out of scope, where obj is a .NET object representing a
COM Wrapper.

Call this function only if the object was locked using
NET.disableAutoRelease.

Examples The following pseudo-code shows how to call a function (GetComApp.m,
described in NET.disableAutoRelease) which returns a COM object.
The object, mainObj of type NetDocTest.MyClass, has a property,
MyApp. Call GetComApp to get a COM object, and use its readData
method.

mainObj = NetDocTest.MyClass;
GetComApp(mainObj);
app = mainObj.MyApp;
app.readData('hello');
% Unlock the COM object
NET.enableAutoRelease(mainObj.MyApp);

See Also NET.disableAutoRelease

How To • “How MATLAB Handles System.__ComObject”

1-4511

NET.GenericClass

Purpose Represent parameterized generic type definitions

Description Instances of this class are used by the NET.createGeneric function
when creation of generic specialization requires parameterization with
another parameterized type.

Construction genType = NET.GenericClass (className, paramTypes)

Input Arguments

className

Fully qualified string containing the generic type name.

paramTypes

Optional, variable length (1 to N) list of types for the generic class
parameterization. Allowed argument types are:

• Fully qualified string containing the generic type name.

• Instance of the NET.GenericClass class when deeper nested
parameterization with another parameterized type is needed.

Examples Create an instance of System.Collections.Generic.List of
System.Collections.Generic.KeyValuePair generic associations
where Key is of System.Int32 type and Value is a System.String class
with initial storage capacity for 10 key-value pairs.

kvpType = NET.GenericClass(...
'System.Collections.Generic.KeyValuePair',...
'System.Int32', 'System.String');

kvpList = NET.createGeneric('System.Collections.Generic.List',...
{ kvpType }, 10);

See Also NET.createGeneric | NET.createArray | NET.invokeGenericMethod

How To • “.NET Generic Classes”

1-4512

NET.invokeGenericMethod

Purpose Invoke generic method of object

Syntax [varargout] = NET.invokeGenericMethod(obj,
'genericMethodName',

paramTypes, args, ...)

Description [varargout] = NET.invokeGenericMethod(obj,
'genericMethodName', paramTypes, args, ...) calls
instance or static generic method genericMethodName.

Input
Arguments

obj Allowed argument types are:

• Instances of class containing the generic
method

• Strings with fully qualified class name, if
calling static generic methods

• Instances of NET.GenericClass definitions,
if calling static generic methods of a generic
class

genericMethodName Generic method name to invoke

paramTypes Cell vector (1 to N) with the types for generic
method parameterization, where allowed cell
types are:

• Strings with fully qualified parameter type
name.

• Instances of NET.GenericClass definitions,
if using nested parameterization with
another parameterized type

args Optional, variable length (0 to N) list of
method arguments

1-4513

NET.invokeGenericMethod

Output
Arguments

varargout Variable-length output argument list,
varargout, from method genericMethodName

Examples Use the following syntax to call a generic method that takes two
parameterized types and returns a parameterized type:

a = NET.invokeGenericMethod(obj, ...
'myGenericSwapMethod', ...
{'System.Double', 'System.Double'}, ...
5, 6);

To display generic methods in MATLAB, see the example “Display .NET
Generic Methods Using Reflection”.

See Also NET.GenericClass | NET.createGeneric | varargout

How To • “Call .NET Generic Methods”

1-4514

NET.isNETSupported

Purpose Check for supported Microsoft .NET Framework

Syntax tf = NET.isNETSupported

Description tf = NET.isNETSupported returns logical 1 (true) if a supported
version of the Microsoft .NET Framework is found. Otherwise, it
returns logical 0 (false) and you cannot use the .NET Framework in
MATLAB.

1-4515

NET.NetException

Purpose Capture error information for .NET exception

Description Process information from a NET.NetException object to handle .NET
errors. This class is derived from MException.

Construction e = NET.NetException(msgID,errMsg,netObj) constructs instance e
of NET.NetException class.

Input
Arguments

msgID

message identifier

errMsg

error message string

netObj

System.Exception object that caused the exception

Properties ExceptionObject

System.Exception class causing the error.

Methods Inherited Methods

See the methods of the base class MException.

Examples Display error information after trying to load an unknown assembly:

try
NET.addAssembly('C:\Work\invalidfile.dll')

catch e
e.message;
if(isa(e, 'NET.NetException'))

eObj = e.ExceptionObject
end

end

ans =

1-4516

NET.NetException

Message: Could not load file or assembly
'file:///C:\Work\invalidfile.dll' or
one of its dependencies. The system cannot
find the file specified.

Source: mscorlib
HelpLink:

eObj =
FileNotFoundException with properties:

Message: [1x1 System.String]
FileName: [1x1 System.String]

FusionLog: [1x1 System.String]
Data: [1x1 System.Collections.ListDictionaryInternal]

InnerException: []
TargetSite: [1x1 System.Reflection.RuntimeMethodInfo]
StackTrace: [1x1 System.String]

HelpLink: []
Source: [1x1 System.String]

See Also MException

How To • Class Attributes

• Property Attributes

1-4517

NET.setStaticProperty

Purpose Static property or field name

Syntax NET.setStaticProperty('propName', value)

Description NET.setStaticProperty('propName', value) sets the static property
or field name specified in the string propName to the given value.

Examples To set the myStaticProperty in the given class and namespace, use
the syntax:

NET.setStaticProperty('MyTestObject.MyClass.myStaticProperty', 5);

1-4518

nccreate

Purpose Create variable in NetCDF file

Syntax nccreate(filename,varname)
nccreate(filename,varname,Name,Value)

Description nccreate(filename,varname) creates a scalar double variable named
varname in the NetCDF file filename. If filename does not exist,
nccreate creates the file using the netcdf4_classic format. To create
a nonscalar variable, use the Dimensions argument.

nccreate(filename,varname,Name,Value) creates a variable named
varname with additional options specified by one or more Name,Value
pair arguments.

Input
Arguments

filename

Text string specifying a NetCDF file, or the name you want to assign to
a new NetCDF file.

varname

Text string specifying the name you want to assign to a variable in
a NetCDF file.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Dimensions’

Cell array specifying dimensions for the variable in the NetCDF file.
The cell array lists the dimension name as a string followed by its
numerical length: {dname1,dlength1,dname2,dlength2, ...}. If a
dimension exists, specifying its length is optional. Use Inf to specify
an unlimited dimension.

1-4519

nccreate

All formats other than netcdf4 format files can have only one unlimited
dimension per file and it has to be the last in the list specified. A
netcdf4 format file can have any number of unlimited dimensions in
any order.

A single-dimension variable is always treated as a column vector.

’Datatype’

Text string specifying a MATLAB data type. When nccreate creates
the variable in the NetCDF file, it uses a corresponding NetCDF
datatype. The following table describes how MATLAB datatypes map to
NetCDF datatypes.

MATLAB Data
Type

Corresponding NetCDF Variable Type

double NC_DOUBLE

single NC_FLOAT

int64 NC_INT64*

uint64 NC_UINT64*

int32 NC_INT

uint32 NC_UINT*

int16 NC_SHORT

uint16 NC_USHORT*

int8 NC_BYTE

uint8 NC_UBYTE*

char NC_CHAR

* These data types are only available when the file is a netcdf4 format
file.

’Format’

Text string specifying the type of NetCDF file you want to create.

1-4520

nccreate

Format String Description

classic NetCDF 3

64bit NetCDF 3, with 64-bit offsets

netcdf4_classic NetCDF 4 classic model

netcdf4 NetCDF 4 model (Use this to enable group
hierarchy)

If varname specifies a group (e.g.,'/grid3/temperature'), nccreate
sets the value of format to 'netcdf4'.

Default: netcdf4_classic

’FillValue’

A scalar specifying the value to use for missing values. To disable fill
values, set FillValue to the text string 'disable'. (Available for
netcdf4 or netcdf4_classic formats only.)

Default: Value specified by the NetCDF library

’ChunkSize’

Vector specifying the size of the chunk along each dimension,
[num_rows,num_cols,..., num_ndims]. (Available for netcdf4 or
netcdf4_classic formats only.)

Default: Set by the NetCDF library

’DeflateLevel’

Numeric value between 0 (least) and 9 (most) specifying the compression
setting for the deflate filter, or the text string disable. (Available for
netcdf4 or netcdf4_classic formats only.)

Default: Disabled

1-4521

nccreate

’Shuffle’

Boolean flag to turn on the shuffle filter. (Available for netcdf4 or
netcdf4_classic formats only.)

Default: False

Examples Create a new 2–D variable in a classic format file. Write data to this
variable

nccreate('myncclassic.nc','peaks',...
'Dimensions',{'r' 200 'c' 200},...
'Format','classic');

ncwrite('myncclassic.nc','peaks', peaks(200));
ncdisp('myncclassic.nc');

See Also ncdisp | ncwrite | ncinfo | ncwriteschema | netcdf

Tutorials • “Exporting to NetCDF Files”

1-4522

ncdisp

Purpose Display contents of NetCDF data source in Command Window

Syntax ncdisp(source)
ncdisp(source,location)
ncdisp(source,location,dispFormat)

Description ncdisp(source) displays all the groups, dimensions, variable
definitions, and all attributes in the NetCDF data source, source, as
text in the Command Window.

ncdisp(source,location) displays information about the variable
or group specified by location.

ncdisp(source,location,dispFormat) displays the contents of the
NetCDF data source, in the display format specified by dispFormat.

Input
Arguments

source - Name of NetCDF file
string

Name of a NetCDF file, specified as a string. source also can be the
URL of an OPeNDAP NetCDF data source that resolves to a NetCDF
file or a variable in a NetCDF file.

Example: 'myNetCDFfile.nc'

Data Types
char

location - Location of variable or group
'/' (default) | string

Location of a variable or group in the NetCDF file, specified as a string.
Set location to '/'(forward slash) to display the entire contents of
the file.

Data Types
char

1-4523

ncdisp

dispFormat - Display format
'full' (default) | 'min'

Display format, specified as one of the following strings.

'full' Display group hierarchy with dimensions, attributes,
and variable definitions.

'min' Display group hierarchy and variable definitions.

Data Types
char

Examples Display Contents of NetCDF File

Display the contents of the example NetCDF file, example.nc.

ncdisp('example.nc')

Source:
matlabroot\toolbox\matlab\demos\example.nc

Format:
netcdf4

Global Attributes:
creation_date = '29-Mar-2010'

Dimensions:
x = 50
y = 50
z = 5

Variables:
avagadros_number

Size: 1x1
Dimensions:
Datatype: double
Attributes:

description = 'this variable has no dimensions'
temperature

Size: 50x1
Dimensions: x

1-4524

ncdisp

Datatype: int16
Attributes:

scale_factor = 1.8
add_offset = 32
units = 'degrees_fahrenheight'

peaks
Size: 50x50
Dimensions: x,y
Datatype: int16
Attributes:

description = 'z = peaks(50);'
Groups:

/grid1/
Attributes:

description = 'This is a group attribute.'
Dimensions:

x = 360
y = 180
time = 0 (UNLIMITED)

Variables:
temp

Size: []
Dimensions: x,y,time
Datatype: int16

/grid2/
Attributes:

description = 'This is another group attribute.'
Dimensions:

x = 360
y = 180
time = 0 (UNLIMITED)

Variables:
temp

Size: []
Dimensions: x,y,time
Datatype: int16

1-4525

ncdisp

MATLAB displays all the groups, dimensions, and variable definitions
in example.nc.

Display Contents of NetCDF Variable

Display the contents of the variable peaks in the file, example.nc.

ncdisp('example.nc','peaks')

Source:
matlabroot\toolbox\matlab\demos\example.nc

Format:
netcdf4

Dimensions:
x = 50
y = 50

Variables:
peaks

Size: 50x50
Dimensions: x,y
Datatype: int16
Attributes:

description = 'z = peaks(50);'

Display Contents of NetCDF File and Hide Attributes

Display only the group hierarchy and variable definitions of the
example file, example.nc.

ncdisp('example.nc','/','min')

Source:
matlabroot\toolbox\matlab\demos\example.nc

Format:
netcdf4

Variables:
avagadros_number

Size: 1x1
Dimensions:
Datatype: double

1-4526

ncdisp

temperature
Size: 50x1
Dimensions: x
Datatype: int16

peaks
Size: 50x50
Dimensions: x,y
Datatype: int16

Groups:
/grid1/

Variables:
temp

Size: []
Dimensions: x,y,time
Datatype: int16

/grid2/
Variables:

temp
Size: []
Dimensions: x,y,time
Datatype: int16

Tips • If source is an OPeNDAP URL with string constraints, use the
syntax, ncdisp(source) with no other input arguments.

See Also ncwrite | ncinfo | ncread | netcdf | ncreadatt

Concepts • “Importing NetCDF Files and OPeNDAP Data”

1-4527

ncinfo

Purpose Return information about NetCDF data source

Syntax finfo = ncinfo(source)
vinfo = ncinfo(source,varname)
ginfo = ncinfo(source,groupname)

Description finfo = ncinfo(source) returns information in the structure finfo
about the entire NetCDF data source specified by source, where source
can be the name of a NetCDF file or the URL of an OPeNDAP NetCDF
data source.

vinfo = ncinfo(source,varname) returns information in the
structure vinfo about the variable varname in source.

ginfo = ncinfo(source,groupname) returns information in the
structure ginfo about the group groupname in source (only NetCDF4
data sources).

Note Use ncdisp for visual inspection of a NetCDF source.

Input
Arguments

source

Text string specifying the name of a NetCDF file or the URL of an
OPeNDAP NetCDF data source.

varname

Text string specifying the name of a variable in a NetCDF file or
OPeNDAP data source.

groupname

Text string specifying the name of a group in a NetCDF file or
OPeNDAP data source.

1-4528

ncinfo

Output
Arguments

finfo

A structure with the following fields.

Field Description

Filename NetCDF file name or
OPeNDAP URL

Name '/', indicating the full
file

DimensionsAn array of structures with these fields:

Name Dimension name

Length Current length of dimension

Unlimited Boolean flag, true for unlimited
dimensions

Variables An array of structures with these fields:

Name Variable name

Dimensions Associated dimensions

Size Current variable size

Datatype MATLAB datatype

Attributes Associated variable attributes

ChunkSize Chunk size, if defined. []
otherwise

FillValue Fill value of the variable.

DeflateLevel Deflate filter level, if enabled.

Shuffle Shuffle filter enabled flag

AttributesAn array of global attributes with these fields:

Name Attribute name

Value Attribute value

1-4529

ncinfo

Field Description

Groups An array of groups present in the file, for netcdf4 files;
An empty array ([]) for all other NetCDF file formats.

Format The format of the
NetCDF file

vinfo

A structure containing only the variable fields from finfo.

Field Description

Filename NetCDF file name

Name Name of the variable

Dimensions Dimensions of the variable

Size Size of the current variable

Datatype MATLAB datatype

Attributes Attributes associated with the variable

ChunkSize Chunk size, if defined. [] otherwise.

FillValue Fill value used in the variable.

DeflateLevel Deflate filter level, if enabled.

Shuffle Shuffle filter enabled flag

Format The format of the NetCDF file

ginfo

A structure containing only the group fields from finfo.

Field Description

Filename NetCDF file name

Name Name of the group

1-4530

ncinfo

Field Description

Dimensions Only dimensions defined in the
specified group

Variables Only variables defined in the specified
group

Attributes Attributes associated with the variable

Groups Names of groups, if defined. []
otherwise.

Format The format of the NetCDF file

Examples Search for dimensions with names that start with the character x in
the file.

finfo = ncinfo('example.nc');
disp(finfo);
dimNames = {finfo.Dimensions.Name};
dimMatch = strncmpi(dimNames,'x',1);
disp(finfo.Dimensions(dimMatch));

Obtain the size of a variable and check if it has any unlimited
dimensions.

vinfo = ncinfo('example.nc','peaks');
varSize = vinfo.Size;
disp(vinfo);
hasUnLimDim = any([vinfo.Dimensions.Unlimited]);

Find all unlimited dimensions defined in a group.

ginfo = ncinfo('example.nc','/grid2/');
unlimDims = [ginfo.Dimensions.Unlimited];
disp(ginfo.Dimensions(unlimDims));

1-4531

ncinfo

See Also ncdisp | ncwrite | ncread | ncwriteschema | netcdf

Tutorials • “Importing NetCDF Files and OPeNDAP Data”

1-4532

ncread

Purpose Read data from variable in NetCDF data source

Syntax vardata = ncread(source,varname)
vardata = ncread(source,varname,start,count,stride)

Description vardata = ncread(source,varname) reads data from the variable
varname in source, which can be either the name of a NetCDF file or an
OPeNDAP NetCDF data source.

vardata = ncread(source,varname,start,count,stride) reads
data from the variable varname in source beginning at the location
given by start. count specifies the number of elements to read along
the corresponding dimension. The optional argument stride specifies
the inter-element spacing along each dimension.

Input
Arguments

source

Text string specifying the name of a NetCDF file or the URL of an
OPeNDAP NetCDF data source.

varname

Text string specifying the name of a variable in the NetCDF file or
OPeNDAP NetCDF data source.

start

For an N-dimensional variable, start is a vector of length N of indices
specifying the starting location. Indices are 1-based.

count

Vector of length N specifying the number of elements to read along
the corresponding dimensions. If a particular element of count is Inf,
ncread reads data until the end of the corresponding dimension.

stride

1-4533

ncread

Optional argument that specifies the inter-element spacing along each
dimension.

Default: Vector of 1s (ones)

Output
Arguments

vardata

The data in the variable. ncread uses the MATLAB datatype that is
the closest type to the corresponding NetCDF datatype, except when
at least one of _FillValue, scale_offset, and add_offset variables
attribute is present. ncread applies the following attribute conventions,
in sequence, to vardata if the corresponding attribute exists for this
variable:

• If the _FillValue attribute exists, ncread replaces values in vardata
equal to the value of _FillValue with NaNs. If the_FillValue
attribute does not exist, ncread queries the NetCDF library for the
variable’s fill value.

• If the scale_factor attribute exists, ncread multiplies vardata by
the value of the scale_factor attribute.

• If the add_offset attribute exists, ncread adds the value of the
add_offset attribute to vardata.

Examples Read and display the data in the peaks variable in the example file.

ncdisp('example.nc','peaks');
peaksData = ncread('example.nc','peaks');
peaksDesc = ncreadatt('example.nc','peaks','description');
surf(double(peaksData));
title(peaksDesc);

Subsample the peaks data by a factor of 2 (read every other value along
each dimension).

subsetdata = ncread('example.nc','peaks',...
[1 1], [Inf Inf], [2 2]);

1-4534

ncread

surf(double(subsetdata));

See Also ncdisp | ncinfo | netcdf | ncwrite | ncreadatt

Tutorials • “Importing NetCDF Files and OPeNDAP Data”

1-4535

ncreadatt

Purpose Read attribute value from NetCDF data source

Syntax attvalue = ncreadatt(source,location,attname)

Description attvalue = ncreadatt(source,location,attname) reads the
attribute attname from the group or variable specified by location in
source, where source is the name of a NetCDF file or the URL of a
NetCDF data source.

Input
Arguments

source

Text string specifying the name of a NetCDF file or the URL of an
OPeNDAP NetCDF data source.

location

Text string specifying a group or variable in the NetCDF data source.
To read global attributes, set location to '/' (forward slash).

attname

Text string specifying the name of an attribute that you want to read in
the NetCDF data source.

Output
Arguments

attvalue

Data associated with the attribute.

Examples Read a global attribute.

creation_date = ncreadatt('example.nc','/','creation_date');
disp(creation_date);

Read an attribute associated with a variable.

scale_factor = ncreadatt('example.nc','temperature','scale_factor');
disp(scale_factor);

1-4536

ncreadatt

Read an attribute associated with a group (netcdf4 format files only).

desc_value = ncreadatt('example.nc','/grid2','description');
disp(desc_value);

See Also ncdisp | ncinfo | ncread | netcdf | ncwriteatt

Tutorials • “Importing NetCDF Files and OPeNDAP Data”

1-4537

ncwrite

Purpose Write data to NetCDF file

Syntax ncwrite(filename,varname,vardata)
ncwrite(filename,varname,vardata,start,stride)

Description ncwrite(filename,varname,vardata) writes the numerical or char
data in vardata to an existing variable varname in the NetCDF file
filename. ncwrite writes the data in vardata starting at the beginning
of the variable and extends unlimited dimensions automatically, if
needed.

If the NetCDF file or the variable do not exist, use nccreate to create
them first.

ncwrite(filename,varname,vardata,start,stride) writes vardata
to an existing variable varname in file filename beginning at the
location given by start. stride is an optional argument that specifies
the inter-element spacing of the data written. Use this syntax to append
data to an existing variable or write partial data.

Tips • If the variable varname already exists, ncwrite expects the datatype
of vardata to match the NetCDF variable data type.

• If the variable varname has a _FillValue, scale_factor or
add_offset attribute, ncwrite expects data in double format and
casts vardata to the NetCDF data type, after applying the following
attribute conventions in sequence:

1 Subtract the value of’ theadd_offset attribute from vardata.

2 Divide vardata by the value of the scale_factor attribute.

3 Replace NaNs in vardata by the value of the _FillValue attribute.
If this attribute does not exist, ncwrite tries to use the fill value
for this variable as reported by the NetCDF library.

Input
Arguments

filename

Text string specifying the name of a NetCDF file. If the file does not
exist, use nccreate to create it first.

1-4538

ncwrite

varname

Text string specifying the name of a variable in a NetCDF file. If the
variable does not exist, use nccreate to create it first.

vardata

Data to write to the variable in the NetCDF file.

start

For an N-dimensional variable, start is a vector of indices of length N
specifying the starting location. Indices are 1-based.

stride

(Optional) Vector of length N, specifying the inter-element spacing.

Default: Vector of ones

Examples Create a new netcdf4_classic file, and write a scalar variable with no
dimensions. Add the creation time as a global attribute.

nccreate('myfile.nc','pi');
ncwrite('myfile.nc','pi',3.1);
ncwriteatt('myfile.nc','/','creation_time',datestr(now));
% overwrite existing data
ncwrite('myfile.nc','pi',3.1416);
ncdisp('myfile.nc');

Create a netcdf4_classic file with a variable defined on an unlimited
dimension. Write data incrementally to the variable.

nccreate('myncfile.nc','vmark',...
'Dimensions', {'time', inf, 'cols', 6},...
'ChunkSize', [3 3],...
'DeflateLevel', 2);

ncwrite('myncfile.nc','vmark', eye(3),[1 1]);

1-4539

ncwrite

varData = ncread('myncfile.nc','vmark');
disp(varData);
ncwrite('myncfile.nc','vmark',fliplr(eye(3)),[1 4]);
varData = ncread('myncfile.nc','vmark');
disp(varData);

See Also ncdisp | ncread | ncinfo | netcdf | ncwriteatt | nccreate

Tutorials • “Exporting to NetCDF Files”

1-4540

ncwriteatt

Purpose Write attribute to NetCDF file

Syntax ncwriteatt(filename,location,attname,attvalue)

Description ncwriteatt(filename,location,attname,attvalue) creates or
modifies the attribute specified by attname in the group or variable
specified by location, in the NetCDF file specified by filename.
attvalue can be a numeric vector or a string.

Input
Arguments

filename

Text string specifying the name of a NetCDF file

location

Text string specifying a group or variable in the NetCDF file. To write
global attributes, set location to '/' (forward slash).

attname

Text string specifying the name of an existing attribute in a NetCDF
file or the name of the attribute that you want to create.

attvalue

Numeric vector or a string.

Examples Create a global attribute.

copyfile(which('example.nc'),'myfile.nc');
fileattrib('myfile.nc','+w');
ncdisp('myfile.nc');
ncwriteatt('myfile.nc','/','creation_date',datestr(now));
ncdisp('myfile.nc');

Modify an existing attribute.

1-4541

ncwriteatt

copyfile(which('example.nc'),'myfile.nc');
fileattrib('myfile.nc','+w');
ncdisp('myfile.nc','peaks');
ncwriteatt('myfile.nc','peaks','description','Output of PEAKS');
ncdisp('myfile.nc','peaks');

See Also ncdisp | ncreadatt | ncwrite | ncread | nccreate | netcdf

Tutorials • “Exporting to NetCDF Files”

1-4542

ncwriteschema

Purpose Add NetCDF schema definitions to NetCDF file

Syntax ncwriteschema(filename,schema)

Description ncwriteschema(filename,schema) creates or adds attributes,
dimensions, variable definitions and group structure defined in schema
to the file filename.

Use ncwriteschema in combination with ncinfo to create a new
NetCDF file based on the schema of an existing file. You can also use
ncwriteschema to add variable definitions, attributes, dimensions, or
group structure to an existing file.

Note ncwriteschema does not write variable data. Use ncwrite to
write data to the created variables. Created unlimited dimensions will
have an initial size of 0 until you write data.

Note ncwriteschema cannot change the format of an existing file.
It cannot redefine existing variables and dimensions in filename. If
your schema contains attributes, dimensions, variable definitions, or
a group structure that already exist in the file, writeschema issues a
warning but continues processing.

Input
Arguments

filename

Text string specifying the name of a NetCDF file. If filename does not
exist, ncwriteschema creates a new file using the netcdf4_classic
format, unless the Format field in schema specifies another format.

schema

A structure, or array of structures, representing either a dimension,
variable, an entire NetCDF file, or a netcdf4 group. A group or file
schema can contain a dimension or variable schema, or both. You can

1-4543

ncwriteschema

use the output returned by ncinfo as a schema structure. The following
table lists the fields in the various types of schema structures. Optional
fields are marked with asterisk (*).

Schema Type Structure Field Description

Group/File
Schema

Name Text string identifying the
group name. Use '/' to
indicate the entire file.

Dimensions* Dimension schema

Variables* Variable schema

Attributes* Structure array of group/global
attributes with Name and
Value fields

Format* Text string identifying a
NetCDF file format

Dimension
schema

Name Text string identifying the
dimension

Length Length of the dimension. Can
be Inf.

Unlimited* Boolean flag indicating if the
dimension is unlimited

Format* Text string identifying a
NetCDF file format

Variable schema Name Text string identifying a
variable name

Dimensions Variable’s dimension schema

Datatype Text string identifying a
MATLAB datatype

Attributes* Structure array of variable
attributes with Name and
Value fields

1-4544

ncwriteschema

Schema Type Structure Field Description

ChunkSize* Numeric value specifying
chunk size of the variable

FillValue* Character or numeric fill value

DeflateValue* Deflate compression level

Shuffle* Boolean flag to turn on the
Shuffle filter

Format* Text string identifying a
NetCDF file format

Examples Create a classic format file with two dimension definitions.

mySchema.Name = '/';
mySchema.Format = 'classic';
mySchema.Dimensions(1).Name = 'time';
mySchema.Dimensions(1).Length = Inf;
mySchema.Dimensions(2).Name = 'rows';
mySchema.Dimensions(2).Length = 10;
ncwriteschema('emptyFile.nc', mySchema);
ncdisp('emptyFile.nc');

Create a netcdf4_classic format file to store a single variable from an
existing file. First use ncinfo to get the schema of the peaks variable
from the file. Then use ncwriteschema to create a NetCDF file, defining
the peaks variable. Use ncread to get the data associated with the
peaks variable and then use ncwrite to write the data to the variable in
the new NetCDF file.

myVarSchema = ncinfo('example.nc','peaks');
ncwriteschema('peaksFile.nc',myVarSchema);
peaksData = ncread('example.nc','peaks');
ncwrite('peaksFile.nc','peaks',peaksData);
ncdisp('peaksFile.nc');

1-4545

ncwriteschema

See Also ncdisp | ncinfo | ncwrite | ncread | netcdf

Tutorials • “Exporting to NetCDF Files”

1-4546

netcdf

Purpose Summary of MATLAB Network Common Data Form (NetCDF)
capabilities

Description MATLAB provides both high- and low-level access to NetCDF files:

• High-level access functions make it easy to read a data set from a
NetCDF file or write a variable from the MATLAB workspace into
a NetCDF file

• Low-level access functions provide interfaces to dozens of functions
in the NetCDF library

Note For information about MATLAB support for the Common Data
Format (CDF), which is a completely separate and incompatible format,
see cdflib.

High-Level Access

These functions provide high-level access to NetCDF files.

nccreate Create variable in NetCDF file

ncinfo Return information about
NetCDF data source

ncread Read data from variable in
NetCDF data source

ncreadatt Read attribute value from
NetCDF data source

ncwrite Write data to NetCDF file

ncwriteatt Write attribute to NetCDF file

ncwriteschema Add NetCDF schema definitions
to NetCDF file

1-4547

netcdf

Low-Level Access

The MATLAB low-level functions provide an API that you can use to
enable reading data from and writing data to NetCDF files (known as
data sets in NetCDF terminology). To use these functions, you should
be familiar with the information about NetCDF contained in the NetCDF
C Interface Guide.

MATLAB supports NetCDF version 4.1.3.

In most cases, the syntax of the MATLAB function matches the syntax
of the NetCDF library function. The functions are implemented as a
package called netcdf. To use these functions, prefix the function name
with package name netcdf. For example, to call the NetCDF library
routine used to open existing NetCDF files, use the following MATLAB
syntax:

ncid = netcdf.open(ncfile, mode);

Library Functions
netcdf Summary of MATLAB Network

Common Data Form (NetCDF)
capabilities

netcdf.getChunkCache Retrieve chunk cache settings for
NetCDF library

netcdf.inqLibVers Return NetCDF library version
information

netcdf.setChunkCache Set default chunk cache settings
for NetCDF library

netcdf.setDefaultFormat Change default netCDF file
format

File Operations
netcdf.abort Revert recent netCDF file

definitions

netcdf.close Close netCDF file

1-4548

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/
http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/

netcdf

netcdf.create Create new NetCDF dataset

netcdf.endDef End netCDF file define mode

netcdf.inq Return information about
netCDF file

netcdf.inqFormat Determine format of NetCDF file

netcdf.inqGrps Retrieve array of child group IDs

netcdf.inqUnlimDims Return list of unlimited
dimensions in group

netcdf.open Open NetCDF data source

netcdf.reDef Put open netCDF file into define
mode

netcdf.setFill Set netCDF fill mode

netcdf.sync Synchronize netCDF file to disk

Dimensions
netcdf.defDim Create netCDF dimension

netcdf.inqDim Return netCDF dimension name
and length

netcdf.inqDimID Return dimension ID

netcdf.renameDim Change name of netCDF
dimension

Variables
netcdf.defVar Create NetCDF variable

netcdf.defVarChunking Define chunking behavior for
NetCDF variable

netcdf.defVarDeflate Define compression parameters
for NetCDF variable

netcdf.defVarFill Define fill parameters for NetCDF
variable

1-4549

netcdf

netcdf.defVarFletcher32 Define checksum parameters for
NetCDF variable

netcdf.getVar Return data from netCDF
variable

netcdf.inqVar Information about variable

netcdf.inqVarChunking Determine chunking settings for
NetCDF variable

netcdf.inqVarDeflate Determine compression settings
for NetCDF variable

netcdf.inqVarFill Determine values of fill
parameters for NetCDF variable

netcdf.inqVarFletcher32 Fletcher32 checksum setting for
NetCDF variable

netcdf.inqVarID Return ID associated with
variable name

netcdf.putVar Write data to netCDF variable

netcdf.renameVar Change name of netCDF variable

Attributes
netcdf.copyAtt Copy attribute to new location

netcdf.delAtt Delete netCDF attribute

netcdf.getAtt Return netCDF attribute

netcdf.inqAtt Return information about
netCDF attribute

netcdf.inqAttID Return ID of netCDF attribute

netcdf.inqAttName Return name of netCDF attribute

netcdf.putAtt Write netCDF attribute

netcdf.renameAtt Change name of attribute

1-4550

netcdf

Utilities
netcdf.getConstant Return numeric value of named

constant

netcdf.getConstantNames Return list of constants known to
netCDF library

1-4551

netcdf.abort

Purpose Revert recent netCDF file definitions

Syntax netcdf.abort(ncid)

Description netcdf.abort(ncid) reverts a netCDF file to its previous state,
backing out any definitions made since the file last entered define mode.
A file enters define mode when you create it (using netcdf.create) or
when you explicitly enter define mode (using netcdf.redef). Once
you leave define mode (using netcdf.endDef), you cannot revert the
definitions you made while in define mode. ncid is a netCDF file
identifier returned by netcdf.create or netcdf.open. A call to
netcdf.abort closes the file.

This function corresponds to the nc_abort function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example creates a new file, performs an operation on the file, and
then reverts the file back to its original state. To run this example, you
must have write permission in your current directory.

% Create a netCDF file
ncid = netcdf.create('foo.nc','NC_NOCLOBBER');

% Perform an operation, such as defining a dimension.
dimid = netcdf.defDim(ncid, 'lat', 50);

% Revert the file back to its previous state.
netcdf.abort(ncid)

% Verify that the file is now closed.
dimid = netcdf.defDim(ncid, 'lat', 50); % should fail
??? Error using ==> netcdflib
NetCDF: Not a valid ID

Error in ==> defDim at 22
dimid = netcdflib('def_dim', ncid,dimname,dimlen);

1-4552

netcdf.abort

See Also netcdf.create | netcdf.endDef | netcdf.reDef

1-4553

netcdf.close

Purpose Close netCDF file

Syntax netcdf.close(ncid)

Description netcdf.close(ncid) terminates access to the netCDF file identified
by ncid.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

This function corresponds to the nc_close function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example creates a new netCDF file, and then closes the file. You
must have write permission in your current directory to run this
example.

ncid = netcdf.open('foo.nc','NC_WRITE')

netcdf.close(ncid)

See Also netcdf.create | netCDF.open

1-4554

netcdf.copyAtt

Purpose Copy attribute to new location

Syntax netcdf.copyAtt(ncid_in,varid_in,attname,ncid_out,varid_out)

Description netcdf.copyAtt(ncid_in,varid_in,attname,ncid_out,varid_out)
copies an attribute from one variable to another, possibly across
files. ncid_in and ncid_out are netCDF file identifiers returned by
netcdf.create or netcdf.open. varid_in identifies the variable with
an attribute that you want to copy. varid_out identifies the variable to
which you want to associate a copy of the attribute.

This function corresponds to the nc_copy_att function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example makes a copy of the attribute associated with the first
variable in the netCDF example file, example.nc, in a new file. To run
this example, you must have write permission in your current directory.

% Open example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get identifier for a variable in the file.
varid = netcdf.inqVarID(ncid,'avagadros_number');

% Create new netCDF file.
ncid2 = netcdf.create('foo.nc','NC_NOCLOBBER');

% Define a dimension in the new file.
dimid2 = netcdf.defDim(ncid2,'x',50);

% Define a variable in the new file.
varid2 = netcdf.defVar(ncid2,'myvar','double',dimid2);

% Copy the attribute named 'description' into the new file,
% associating the attribute with the new variable.
netcdf.copyAtt(ncid,varid,'description',ncid2,varid2);

1-4555

netcdf.copyAtt

%
% Check the name of the attribute in new file.
attname = netcdf.inqAttName(ncid2,varid2,0)

attname =

description

See Also netcdf.inqAtt | netcdf.inqAttID | netcdf.inqAttName |
netcdf.putAtt | netcdf.renameAtt

1-4556

netcdf.create

Purpose Create new NetCDF dataset

Syntax ncid = netcdf.create(filename,mode)
[chunksize_out,ncid] = netcdf.create(filename,mode,initsz,chunksize)

Description ncid = netcdf.create(filename,mode) creates a new NetCDF file
according to the file creation mode. The return value ncid is a file
ID. The mode parameter is a text string that describes the type of file
access, which can have any of the following values.

Value Description

NOCLOBBER Prevent overwriting of existing file with the
same name.CLOBBER Overwrite any existing file with the same name.

SHARE Allow synchronous file updates.

64BIT_OFFSET Allow easier creation of files and variables which
are larger than two gigabytes.

NETCDF4 Create a NetCDF-4/HDF5 file

CLASSIC_MODEL Enforce the classic model; has no effect unless
used in a bitwise-or with NETCDF4

Note You can specify the mode as a numeric value, retrieved using the
netcdf.getConstant function. To specify more than one mode, use a
bitwise-OR of the numeric values of the modes.

[chunksize_out,ncid] =
netcdf.create(filename,mode,initsz,chunksize) creates a new
netCDF file, but with additional performance tuning parameters.
initsz sets the initial size of the file. chunksize can affect I/O
performance. The actual value chosen by the NetCDF library might not
correspond to the input value.

1-4557

netcdf.create

This function corresponds to the nc_create and nc__create functions
in the NetCDF library C API. To use this function, you should be
familiar with the netCDF programming paradigm. See netcdf for more
information.

Examples This example creates a netCDF dataset named foo.nc, only if no other
file with the same name exists in the current directory. To run this
example, you must have write permission in your current directory.

ncid = netcdf.create('foo.nc','NOCLOBBER');

This example creates a netCDF-4 file that uses the classic model.

mode = netcdf.getConstant('NETCDF4');
mode = bitor(mode,netcdf.getConstant('CLASSIC_MODEL'));
ncid = netcdf.create('myfile.nc',mode);
netcdf.close(ncid);

See Also netcdf.getConstant | netcdf.open

1-4558

netcdf.defDim

Purpose Create netCDF dimension

Syntax dimid = netcdf.defDim(ncid,dimname,dimlen)

Description dimid = netcdf.defDim(ncid,dimname,dimlen) creates a new
dimension in the netCDF file specified by ncid, wheredimname is a
character string that specifies the name of the dimension and dimlen
is a numeric value that specifies its length. To define an unlimited
dimension, specify the predefined constant 'NC_UNLIMITED' for dimlen,
using netcdf.getConstant to retrieve the value.

netcdf.defDim returns dimid, a numeric ID corresponding to the new
dimension.

This function corresponds to the nc_def_dim function in the netCDF
library C API.To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

Examples Create a new file and define two dimensions in the file. One dimension
is an unlimited dimension. To run this example, you must have write
permission in your current folder.

% Create a netCDF file.
ncid = netcdf.create('foo.nc','NC_NOCLOBBER')

% Define a dimension.
lat_dimID = netcdf.defDim(ncid,'latitude',360);

% Define an unlimited dimension.
long_dimID = netcdf.defDim(ncid,'longitude',...

netcdf.getConstant('NC_UNLIMITED'));

See Also netcdf.getConstant

1-4559

netcdf.defGrp

Purpose Create group in NetCDF file

Syntax childGrpID = netcdf.defGrp(parentGroupId,childGroupName)

Description childGrpID = netcdf.defGrp(parentGroupId,childGroupName)
creates a child group with the name specified by childGroupName, that
is the child of the parent group specified by parentGroupId

Input
Arguments

parentGroupId

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

childGroupName

Text string specifying the name that you want to assign to the group.

Output
Arguments

childGrpID

Identifier of a NetCDF group.

Examples This example creates a NetCDF dataset and then defines a group.

ncid = netcdf.create('myfile.nc','netcdf4');
childGroupId = netcdf.defGrp(ncid,'mygroup');
netcdf.close(ncid);

References This function corresponds to the nc_def_grp function in the NetCDF
library C API.

For copyright information, read the files netcdfcopyright.txt and
mexnccopyright.txt.

See Also netcdf | netcdf.inqGrps

1-4560

netcdf.defVar

Purpose Create NetCDF variable

Syntax varid = netcdf.defVar(ncid,varname,xtype,dimids)

Description varid = netcdf.defVar(ncid,varname,xtype,dimids) creates a new
variable in the dataset identified by ncid.

varname is a character string that specifies the name of the variable.
xtype can be either a character string specifying the data type of
the variable, such as 'double', or it can be the numeric equivalent
returned by the netcdf.getConstant function. dimids specifies a list
of dimension IDs.

netcdf.defVar returns varid, a numeric identifier for the new variable.

This function corresponds to the nc_def_var function in the NetCDF
library C API. Because MATLAB uses FORTRAN-style ordering, the
fastest-varying dimension comes first and the slowest comes last. Any
unlimited dimension is therefore last in the list of dimension IDs. This
ordering is the reverse of that found in the C API.To use this function,
you should be familiar with the netCDF programming paradigm. See
netcdf for more information.

Examples This example creates a new netCDF file, defines a dimension in the file,
and then defines a variable on that dimension. (In netCDF files, you
must create a dimension before you can create a variable.) To run this
example, you must have write permission in your current directory.

% Create netCDF file.
ncid = netcdf.create('foo.nc','NC_NOCLOBBER');
%
% Define a dimension in the new file.
dimid = netcdf.defDim(ncid,'x',50);

% Define a variable in the new file.
varid = netcdf.defVar(ncid,'myvar','double',dimid)

See Also netCDF.getConstant | netCDF.inqVar | netCDF.putVar

1-4561

netcdf.defVarChunking

Purpose Define chunking behavior for NetCDF variable

Syntax netcdf.defVarChunking(ncid,varid,storage,chunkDims)

Description netcdf.defVarChunking(ncid,varid,storage,chunkDims). sets
the chunk settings for the variable specified by varid. Chunking is
a technique to improve performance. storage specifies the type of
chunking to use and chunkDims specifies the extents of the chunk size.
You must specify the chunk size used with a variable after creating the
variable but before you write data to the variable.

You cannot specify the chunk size for variables in a NetCDF file created
with the netCDF-3 mode (CLASSIC_MODEL).

Input
Arguments

ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

varid

Identifier of a NetCDF variable, returned by netcdf.defVar.

storage

Text string specifying whether NetCDF should break the variable into
chunks when writing to a file. If set to CHUNKED, NetCDF breaks the
variable into chunks; if set to CONTIGUOUS, NetCDF does not break the
data into chunks.

chunkDims

Array specifying the dimensions of the chunk.

Because MATLAB uses FORTRAN-style ordering, the order of
dimensions in chunkdims is reversed relative to what would be in the
C API.

If storage is CONTIGUOUS, you can omit chunkDims.

1-4562

netcdf.defVarChunking

Default: Chunk size determined by the NetCDF library.

Examples This example creates a NetCDF file and specifies the chunking behavior
of a variable.

ncid = netcdf.create('myfile.nc','NETCDF4');
latdimid = netcdf.defDim(ncid,'lat',1800);
londimid = netcdf.defDim(ncid,'col',3600);
varid = netcdf.defVar(ncid,'earthgrid','double',[latdimid londimid]);
netcdf.defVarChunking(ncid,varid,'CHUNKED',[180 360]);
netcdf.close(ncid);

References This function corresponds to the nc_def_var_chunking function in
the NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.inqVarChunking

1-4563

netcdf.defVarDeflate

Purpose Define compression parameters for NetCDF variable

Syntax netcdf.defVarDeflate(ncid,varid,shuffle,deflate,deflateLevel)

Description netcdf.defVarDeflate(ncid,varid,shuffle,deflate,deflateLevel)
sets the compression parameters for the NetCDF variable specified by
varid in the location specified by ncid.

Input
Arguments

ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

varid

Identifier of a NetCDF variable, returned by netcdf.defVar.

shuffle

Boolean value. To turn on the shuffle filter, set this argument to true.
The shuffle filter can assist with the compression of integer data by
changing the byte order in the data stream.

deflate

Boolean value. To turn on compression, set this argument to true and
set the deflateLevel argument to the desired compression level.

deflateLevel

Numeric value between 0 and 9 specifying the amount of compression,
where 0 is no compression and 9 is the most compression.

Examples This example create a variable with dimensions [1800 3600] and a
compression level of 5. This results in a chunked layout that is a
10-by-10 grid.

ncid = netcdf.create('myfile.nc','NETCDF4');
latdimid = netcdf.defDim(ncid,'lat',1800);

1-4564

netcdf.defVarDeflate

londimid = netcdf.defDim(ncid,'col',3600);
varid = netcdf.defVar(ncid,'earthgrid','double',[latdimid londimid]);
netcdf.defVarDeflate(ncid,varid,true,true,5);
netcdf.close(ncid);

References This function corresponds to the nc_def_var_deflate function in the
netCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.inqVarDeflate

1-4565

netcdf.defVarFill

Purpose Define fill parameters for NetCDF variable

Syntax netcdf.defVarFill(ncid,varid,noFillMode,fillValue)

Description netcdf.defVarFill(ncid,varid,noFillMode,fillValue) sets the fill
parameters for the NetCDF variable identified by varid. ncid specifies
the location.

For netCDF-4 files, you can only specify fill values when the NetCDF is
in definition mode (before calling netcdf.endDef). For NetCDF files
in classic and 64-bit offset modes, you can turn no-fill mode on and
off at any time.

Input
Arguments

ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

varid

Identifier of a NetCDF variable, returned by netcdf.defVar.

noFillMode

Boolean value. When set to true, turns off use of fill values for the
variable, which can be helpful in high performance applications.
When true, netcdf.defVarFill ignores the value of the fillValue
argument. To use the fill value, set this to false.

fillValue

Specifies the value to use in the variable when no other value is
specified. The data type must be the same data type as the variable.

Examples This example creates a NetCDF file and defines a fill value for a
variable.

ncid = netcdf.create('myfile.nc','NETCDF4');
dimid = netcdf.defDim(ncid,'latitude',180);

1-4566

netcdf.defVarFill

varid = netcdf.defVar(ncid,'latitude','double',dimid);
netcdf.defVarFill(ncid,varid,false,-999);
netcdf.close(ncid);

References This function corresponds to the nc_def_var_fill function in the
NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.setFill | netcdf.inqVarFill

1-4567

netcdf.defVarFletcher32

Purpose Define checksum parameters for NetCDF variable

Syntax netcdf.defVarFletcher32(ncid,varid,setting)

Description netcdf.defVarFletcher32(ncid,varid,setting) defines the
checksum settings for the NetCDF variable specified by varid in the
file specified by ncid.

Input
Arguments

ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

varid

Identifier of a NetCDF variable, returned by netcdf.defVar.

setting

Text string specifying whether Fletcher32 checksum error detection is
used with the variable. To turn on Fletcher32 checksum, specify the
value FLETCHER32. To turn off the use of checksum error detection,
specify the value NOCHECKSUM.

Examples This example creates a NetCDF dataset and turns on the Fletcher32
checksum for a variable.

ncid = netcdf.create('myfile.nc','NETCDF4');
latdimid = netcdf.defDim(ncid,'lat',1800);
londimid = netcdf.defDim(ncid,'col',3600);
varid = netcdf.defVar(ncid,'earthgrid','double',[latdimid londimid]);
netcdf.defVarFletcher32(ncid,varid,'FLETCHER32');
netcdf.close(ncid);

References This function corresponds to the nc_def_var_fletcher32 function in
the NetCDF library C API.

1-4568

netcdf.defVarFletcher32

For copyright information, read the files netcdfcopyright.txt and
mexnccopyright.txt.

See Also netcdf | netcdf.inqVarFletcher32

1-4569

netcdf.delAtt

Purpose Delete netCDF attribute

Syntax netcdf.delAtt(ncid,varid,attName)

Description netcdf.delAtt(ncid,varid,attName) deletes the attribute identified
by the text string attName.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

varid is a numeric value that identifies the variable. To delete a global
attribute, use netcdf.getConstant('GLOBAL') for the varid. You
must be in define mode to delete an attribute.

This function corresponds to the nc_del_att function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example opens a local copy of the example netCDF file included
with MATLAB, example.nc.

% Open a netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Determine number of global attributes in file.
[numdims numvars numatts unlimdimID] = netcdf.inq(ncid);

numatts =

1

% Get name of attribute; it is needed for deletion.
attname = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0)

% Put file in define mode to delete an attribute.
netcdf.reDef(ncid);

% Delete the global attribute in the netCDF file.

1-4570

netcdf.delAtt

netcdf.delAtt(ncid,netcdf.getConstant('GLOBAL'),attname);

% Verify that the global attribute was deleted.
[numdims numvars numatts unlimdimID] = netcdf.inq(ncid);

numatts =

0

See Also netcdf.getConstant | netcdf.inqAttName

1-4571

netcdf.endDef

Purpose End netCDF file define mode

Syntax netcdf.endDef(ncid)
netcdf.endDef(ncid,h_minfree,v_align,v_minfree,r_align)

Description netcdf.endDef(ncid) takes a netCDF file out of define mode and into
data mode. ncid is a netCDF file identifier returned by netcdf.create
or netcdf.open.

netcdf.endDef(ncid,h_minfree,v_align,v_minfree,r_align)
takes a netCDF file out of define mode, specifying four additional
performance tuning parameters. For example, one reason for using the
performance parameters is to reserve extra space in the netCDF file
header using the h_minfree parameter:

ncid = netcdf.endDef(ncid,20000,4,0,4);

This reserves 20,000 bytes in the header, which can be used later when
adding attributes. This can be extremely efficient when working with
very large netCDF 3 files. To understand how to use these performance
tuning parameters, see the netCDF library documentation.

This function corresponds to the nc_enddef and nc__enddef functions
in the netCDF library C API. To use this function, you should be
familiar with the netCDF programming paradigm. See netcdf for more
information.

Examples Take File out of Define Mode

When you create a file using netcdf.create, the functions opens the
file in define mode. This example uses netcdf.endDef to take the file
out of define mode.

Create a netCDF file.

ncid = netcdf.create('foo.c','NC_NOCLOBBER');

Define a dimension.

dimid = netcdf.defDim(ncid,'lat',50);

1-4572

netcdf.endDef

Leave define mode.

netcdf.endDef(ncid)

Test if still in define mode.

dimid = netcdf.defDim(ncid,'lon',50);

Error using netcdflib
The NetCDF library encountered an error during execution of 'defDim' f
(NC_ENOTINDEFINE)'.

Error in netcdf.defDim (line 25)
dimid = netcdflib('defDim', ncid,dimname,dimlen);

netcdf.defDim errors, as expected.

See Also netcdf.create | netcdf.reDef

1-4573

netcdf.getAtt

Purpose Return netCDF attribute

Syntax attrvalue = netcdf.getAtt(ncid,varid,attname)
attrvalue = netcdf.getAtt(ncid,varid,attname,output_datatype)

Description attrvalue = netcdf.getAtt(ncid,varid,attname) returns
attrvalue, the value of the attribute specified by the text string
attname. When it chooses the data type of attrvalue, MATLAB
attempts to match the netCDF class of the attribute. For example, if
the attribute has the netCDF data type NC_INT, MATLAB uses the
int32 class for the output data. If an attribute has the netCDF data
type NC_BYTE, the class of the output data is int8 value.

attrvalue =
netcdf.getAtt(ncid,varid,attname,output_datatype) returns
attrvalue, the value of the attribute specified by the text string
attname, using the output class specified by output_datatype. You can
specify any of the following strings for the output data type.

'int' 'double' 'int16'

'short' 'single' 'int8'

'float' 'int32' 'uint8'

This function corresponds to several attribute I/O functions in the
netCDF library C API. To use this function, you should be familiar with
the netCDF programming paradigm. See netcdf for more information.

Examples This example opens the example netCDF file included with MATLAB,
example.nc, and gets the value of the attribute associated with the
first variable. The example also gets the value of the global variable
in the file.

% Open a netCDF file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get name of first variable.

1-4574

netcdf.getAtt

[varname vartype vardimIDs varatts] = netcdf.inqVar(ncid,0);

% Get ID of variable, given its name.
varid = netcdf.inqVarID(ncid,varname);

% Get attribute name, given variable id.
attname = netcdf.inqAttName(ncid,varid,0);

% Get value of attribute.
attval = netcdf.getAtt(ncid,varid,attname);

% Get name of global attribute
gattname = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0);

% Get value of global attribute.
gattval = netcdf.getAtt(ncid,netcdf.getConstant('NC_GLOBAL'),gattname)

gattval =

09-Jun-2008

See Also netcdf.inqAtt | netcdf.putAtt

1-4575

netcdf.getChunkCache

Purpose Retrieve chunk cache settings for NetCDF library

Syntax [csize, nelems, premp] = netcdf.getChunkCache()

Description [csize, nelems, premp] = netcdf.getChunkCache() returns the
default chunk cache settings.

Output
Arguments

csize

Scalar double specifying the total size of the raw data chunk cache in
bytes.

nelems

Scalar double specifying the number of chunk slots in the raw data
chunk cache hash table.

premp

Double, between 0 and 1, inclusive, that specifies how the library
handles preempting fully read chunks in the chunk cache. A value
of zero means fully read chunks are treated no differently than other
chunks, that is, preemption occurs solely based on the Least Recently
Used (LRU) algorithm. A value of 1 means fully read chunks are always
preempted before other chunks.

Examples Determine information about the chunk cache size used by the NetCDF
library.

[csize, nelems, premp] = netcdf.getChunkCache();

References This function corresponds to the nc_get_chunk_cache function in the
NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.setChunkCache

1-4576

netcdf.getConstant

Purpose Return numeric value of named constant

Syntax val = netcdf.getConstant(param_name)

Description val = netcdf.getConstant(param_name) returns the numeric value
corresponding to the name of a constant defined by the netCDF library.
For example, netcdf.getConstant('NC_NOCLOBBER') returns the
numeric value corresponding to the netCDF constant NC_NOCLOBBER.

The value for param_name can be either upper- or lowercase, and
does not need to include the leading three characters 'NC_'. To
retrieve a list of all the names defined by the netCDF library, use the
netcdf.getConstantNames function.

This function has no direct equivalent in the netCDF C interface. To
find out more about NetCDF, see netcdf.

Examples This example opens the example netCDF file included with MATLAB,
example.nc.

% Open example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Determine contents of the file.
[ndims nvars natts dimm] = netcdf.inq(ncid);

% Get name of global attribute.
% Note: You must use netcdf.getConstant to specify NC_GLOBAL.
attname = netcdf.inqattname(ncid,netcdf.getConstant('NC_GLOBAL'),0)

attname =

creation_date

See Also netcdf.getConstantNames

1-4577

netcdf.getConstantNames

Purpose Return list of constants known to netCDF library

Syntax val = netcdf.getConstantNames(param_name)

Description val = netcdf.getConstantNames(param_name) returns a list of
names of netCDF library constants, definitions, and enumerations.
When these strings are supplied as actual parameters to MATLAB
netCDF package functions, the functions automatically convert the
constant to the appropriate numeric value.

This MATLAB function has no direct equivalent in the netCDF C
interface. To find out more about netCDF, see netcdf.

Examples nc_constants = netcdf.getConstantNames

nc_constants =

'NC2_ERR'
'NC_64BIT_OFFSET'
'NC_BYTE'
'NC_CHAR'
'NC_CLOBBER'
'NC_DOUBLE'
'NC_EBADDIM'
'NC_EBADID'
'NC_EBADNAME'
'NC_EBADTYPE'

...

See Also netCDF.getConstantNames

1-4578

netcdf.getVar

Purpose Return data from netCDF variable

Syntax data = netcdf.getVar(ncid,varid)
data = netcdf.getVar(ncid,varid,start)
data = netcdf.getVar(ncid,varid,start,count)
data = netcdf.getVar(ncid,varid,start,count,stride)
data = netcdf.getVar(...,output_type)

Description data = netcdf.getVar(ncid,varid) returns data, the value of the
variable specified by varid. MATLAB attempts to match the class of
the output data to netCDF class of the variable.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

data = netcdf.getVar(ncid,varid,start) returns a single value
starting at the specified index, start.

data = netcdf.getVar(ncid,varid,start,count) returns a
contiguous section of a variable. start specifies the starting point and
count specifies the amount of data to return.

data = netcdf.getVar(ncid,varid,start,count,stride) returns
a subset of a section of a variable. start specifies the starting point,
count specifies the extent of the section, and stride specifies which
values to return.

data = netcdf.getVar(...,output_type) specifies the data type of
the return value data. You can specify any of the following strings
for the output data type.

'int8'

'uint8'

'int16'

'int32'

'single'

'double'

1-4579

netcdf.getVar

This function corresponds to several functions in the netCDF library
C API. To use this function, you should be familiar with the netCDF
programming paradigm. See netcdf for more information.

Examples Open the example netCDF file and get the value of a variable in the file.

% Open example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get the name of the first variable.
[varname, xtype, varDimIDs, varAtts] = netcdf.inqVar(ncid,0);

% Get variable ID of the first variable, given its name.
varid = netcdf.inqVarID(ncid,varname);

% Get the value of the first variable, given its ID.
data = netcdf.getVar(ncid,varid)

data =

6.0221e+023

% Determine the data type of the output value
whos data
Name Size Bytes Class Attributes

data 1x1 8 double

% Get the value again, this time specifying the output data type
data = netcdf.getVar(ncid,varid,'single');

% Determine the data type of the output value
whos data

Name Size Bytes Class Attributes

data 1x1 4 single

1-4580

netcdf.getVar

See Also netcdf.create | netcdf.inqVarID | netcdf.open

1-4581

netcdf.inq

Purpose Return information about netCDF file

Syntax [ndims,nvars,ngatts,unlimdimid] = netcdf.inq(ncid)

Description [ndims,nvars,ngatts,unlimdimid] = netcdf.inq(ncid) returns the
number of dimensions, variables, and global attributes in a netCDF
file. The function also returns the ID of the dimension defined with
unlimited length, if one exists.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open. You can call netcdf.inq in either define mode or data
mode.

This function corresponds to the nc_inq function in the netCDF library
C API. To use this function, you should be familiar with the netCDF
programming paradigm. See netcdf for more information.

Examples This example opens the example netCDF file included with MATLAB,
example.nc, and uses the netcdf.inq function to get information about
the contents of the file.

% Open netCDF example file.
ncid = netcdf.open('example.nc','NC_NOWRITE')

% Get information about the contents of the file.
[numdims, numvars, numglobalatts, unlimdimID] = netcdf.inq(ncid)

numdims =

4

numvars =

4

numglobalatts =

1-4582

netcdf.inq

1

unlimdimID =

3

See Also netcdf.create | netcdf.open

1-4583

netcdf.inqDimIDs

Purpose Retrieve list of dimension identifiers in group

Syntax dimIDs = netcdf.inqDimIDs(ncid)
dimIDs = netcdf.inqDimIDs(ncid,includeParents)

Description dimIDs = netcdf.inqDimIDs(ncid) returns a list of dimension
identifiers in the group specified by ncid.

dimIDs = netcdf.inqDimIDs(ncid,includeParents) includes all
dimensions in all parent groups if includeParents is true.

Input
Arguments

ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

includeParents

Boolean value. If set to true, netcdf.inqDimIDs includes the
dimensions of all parent groups.

Default: false

Output
Arguments

dimIDs

Array of dimension IDs

Examples This example opens the NetCDF sample file and gets the IDs of all
the dimensions.

ncid = netcdf.open('example.nc','NOWRITE');
gid = netcdf.inqNcid(ncid,'grid1');
dimids = netcdf.inqDimIDs(gid);
dimids_all = netcdf.inqDimIDS(gid, true);
netcdf.close(ncid);

References This function corresponds to the nc_inq_dimids function in the
NetCDF library C API.

1-4584

netcdf.inqDimIDs

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.inqVarIDs

1-4585

netcdf.inqFormat

Purpose Determine format of NetCDF file

Syntax format = netcdf.inqFormat(ncid)

Description format = netcdf.inqFormat(ncid) returns the format for the file
specified by NetCDF file identifier, ncid.

Input
Arguments

ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

Output
Arguments

format

Text string that specifies the format of the NetCDF file. Values include:

Format String Description

FORMAT_CLASSIC Classic format — Original NetCDF
format, used by all NetCDF files created
between 1989 and 2004

FORMAT_64BIT Classic format, 64–bit — Original format
with 64–bit addressing capability to allow
creation and access of much larger files.

FORMAT_NETCDF4 Enhanced model, HDF5-based —
Introduced in 2008, NetCDF, version 4,
extends the classic model and is based on
HDF5.

FORMAT_NETCDF4_CLASSIC Classic model, HDF5-based — Introduced
in 2008, NetCDF, version 4, implements
classic model but is based on HDF5.

Examples This example opens the sample NetCDF file and determines the format.

ncid = netcdf.open('example.nc','NOWRITE');
fmt = netcdf.inqFormat(ncid)

1-4586

netcdf.inqFormat

format =

FORMAT_NETCDF4

netcdf.close(ncid);

References This function corresponds to the nc_inq_format function in the
NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf.getConstant | netcdf

1-4587

netcdf.inqGrpName

Purpose Retrieve name of group

Syntax groupName = netcdf.inqGrpName(ncid)

Description groupName = netcdf.inqGrpName(ncid) returns the name of a group
specified by ncid.

Input
Arguments

ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

Output
Arguments

groupName

Text string specifying name of a group. The root group has the name
'/'.

Examples This example opens the NetCDF sample file and gets the names of
groups in the dataset.

ncid = netcdf.open('example.nc','nowrite');
name = netcdf.inqGrpName(ncid);
netcdf.close(ncid);

References This function corresponds to the nc_inq_grpname function in the
NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.inqGrpNameFull

1-4588

netcdf.inqGrpNameFull

Purpose Complete pathname of group

Syntax groupName = netcdf.inqGrpNameFull(ncid)

Description groupName = netcdf.inqGrpNameFull(ncid) returns the complete
pathname of the group specified by ncid.

Input
Arguments

ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

Output
Arguments

groupName

Text string specifying complete path of group.

The root group has the name '/'. The names of parent groups and child
groups use the forward slash '/' separator, as in UNIX folder names,
for example, /group1/subgrp2/subsubgrp3.

Examples Open the NetCDF sample dataset and retrieve the names of all groups.

ncid = netcdf.open('example.nc','NOWRITE');
gid = netcdf.inqNcid(ncid,'grid2');
fullName = netcdf.inqGrpNameFull(gid);
netcdf.close(ncid);

References This function corresponds to the nc_inq_grpname_full function in
the netCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.inqGrpName

1-4589

netcdf.inqGrpParent

Purpose Retrieve ID of parent group.

Syntax parentGroupID = netcdf.inqGrpParent(ncid)

Description parentGroupID = netcdf.inqGrpParent(ncid) returns the ID of the
parent group given the location of the child group, specified by ncid.

Input
Arguments

ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

Output
Arguments

parentGroupID

Identifier of the NetCDF group or file that is the parent of the specified
file or group.

Examples This example opens the NetCDF sample file and gets the full path of
the parent of the specified group.

ncid = netcdf.open('example.nc','NOWRITE');
gid = netcdf.inqNcid(ncid,'grid2');
parentId = netcdf.inqGrpParent(gid);
fullName = netcdf.inqGrpNameFull(parentId);
netcdf.close(ncid);

References This function corresponds to the nc_inq_grp_parent function in the
NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.inqGrps

1-4590

netcdf.inqGrps

Purpose Retrieve array of child group IDs

Syntax childGrps = netcdf.inqGrps(ncid)

Description childGrps = netcdf.inqGrps(ncid) returns all the child group IDs
in the parent group, specified by ncid.

Input
Arguments

ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

Output
Arguments

childGrps

Array containing identifiers of child groups in the specified NetCDF
file or group.

Examples This example opens the sample NetCDF file and then gets information
about the groups it contains.

ncid = netcdf.open('example.nc','nowrite');
childGroups = netcdf.inqGrps(ncid);
netcdf.close(ncid);

References This function corresponds to the nc_inq_grps function in the netCDF
library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.inqNcid

1-4591

netcdf.inqNcid

Purpose Return ID of named group

Syntax childGroupId = netcdf.inqNcid(ncid,childGroupName)

Description childGroupId = netcdf.inqNcid(ncid,childGroupName) returns the
ID of the child group, specified by the name childGroupName, in the file
or group specified by ncid.

Input
Arguments

ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

childGroupName

Text string specifying the name of a NetCDF group.

Output
Arguments

childGroupID

Identifier of a NetCDF group.

Examples This example opens the sample NetCDF dataset and then gets the ID
of a group in the dataset.

ncid = netcdf.open('example.nc','nowrite');
gid = netcdf.inqNcid(ncid,'grid1');
netcdf.close(ncid);

References This function corresponds to the nc_inq_ncid function in the
netCDF library C API. Read the files netcdfcopyright.txt and
mexnccopyright.txt for more information.

See Also netcdf | netcdf.inqGrpName | netcdf.inqGrpNameFull

1-4592

netcdf.inqUnlimDims

Purpose Return list of unlimited dimensions in group

Syntax unlimdimIDs = netcdf.inqUnlimDims(ncid)

Description unlimdimIDs = netcdf.inqUnlimDims(ncid) returns the IDs of all
unlimited dimensions in the group specified by ncid.

Input
Arguments

ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open,
or group, returned by netcdf.defGrp.

Output
Arguments

unlimDimIDs

An array containing the identifiers of each unlimited dimension.
unlimDimIDs is empty if there are no unlimited dimensions.

Examples This example opens the NetCDF sample dataset and gets the IDs of all
the unlimited dimensions.

ncid = netcdf.open('example.nc','NOWRITE');
dimids = netcdf.inqUnlimDims(ncid)

dimids =

[]

netcdf.close(ncid);

References This function corresponds to the nc_inq_unlim_dims function in the
NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.defDim | netcdf.inqDim | netcdf.inqDimID |
netcdf.renameDim | netcdf.inqDimIDs

1-4593

netcdf.inqVarIDs

Purpose IDs of all variables in group

Syntax varids = netcdf.inqVarIDs(ncid)

Description varids = netcdf.inqVarIDs(ncid) returns IDs of the all the variables
in the group specified by ncid.

Input
Arguments

ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

Output
Arguments

varids

Array containing identifiers of variables in a NetCDF file or group.

Examples This example opens the NetCDF sample file and gets the IDs of all
the variables in a group.

ncid = netcdf.open('example.nc','NOWRITE');
gid = netcdf.inqNcid(ncid,'grid1');
varids = netcdf.inqVarIDs(gid);
netcdf.close(ncid);

References This function corresponds to the nc_inq_varids function in the
NetCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.inqDimIDs | netcdf.inqVarID

1-4594

netcdf.inqVarChunking

Purpose Determine chunking settings for NetCDF variable

Syntax [storage,chunkSizes] = netcdf.inqVarChunking(ncid,varid)

Description [storage,chunkSizes] = netcdf.inqVarChunking(ncid,varid)
returns the type of chunking and the dimensions of a chunk for the
NetCDF variable specified by varid, in the file or group specified by
ncid.

Input
Arguments

ncid

Identifier of NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

varid

Identifier of NetCDF variable, returned by netcdf.defVar.

Output
Arguments

storage

Text string specifying if NetCDF breaks the data into chunks when
writing to a file. CHUNKED indicates the data is chunked; CONTIGUOUS
indicates that the data is not chunked.

chunkSizes

Array specifying the dimensions of the chunk.

Because MATLAB uses FORTRAN-style ordering, the order of
dimensions in chunkdims is reversed relative to what would be in the
NetCDF C API.

If the storage type specified is CONTIGUOUS, netcdf.inqVarChunking
returns an empty array, [].

Examples This example opens the NetCDF sample dataset and gets the values of
chunking parameters associated with a variable.

ncid = netcdf.open('example.nc','NOWRITE');

1-4595

netcdf.inqVarChunking

groupid = netcdf.inqNcid(ncid,'grid1');
varid = netcdf.inqVarID(groupid,'temp');
[storage,chunkSize] = netcdf.inqVarChunking(groupid,varid);
netcdf.close(ncid);

References This function corresponds to the nc_inq_var_chunking function in
the netCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.defVar | netcdf.defVarChunking

1-4596

netcdf.inqVarDeflate

Purpose Determine compression settings for NetCDF variable

Syntax [shuffle,deflate,deflateLevel] = netcdf.inqVarDeflate(ncid,varid)

Description [shuffle,deflate,deflateLevel] =
netcdf.inqVarDeflate(ncid,varid) returns the compression
parameters for the NetCDF variable specified by varid in the location
specified by ncid.

Input
Arguments

ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open,
or of a NetCDF group, returned by netcdf.defGrp.

varid

Identifier of NetCDF variable, returned by netcdf.defVar.

Output
Arguments

shuffle

Boolean value. true indicates that the shuffle filter is enabled for the
specified variable. The shuffle filter can assist with the compression of
integer data by changing the byte order in the data stream.

deflate

Boolean value. true indicates that compression is enabled for
this variable. The deflateLevel argument specifies the level of
compression.

deflateLevel

Scalar value between 0 and 9 specifying the amount of compression,
where 0 is no compression and 9 is the most compression

Examples This example opens the NetCDF sample file and gets information about
variable compression.

ncid = netcdf.open('example.nc','NOWRITE');

1-4597

netcdf.inqVarDeflate

groupid = netcdf.inqNcid(ncid,'grid1');
varid = netcdf.inqVarID(groupid,'temp');
[shuffle,deflate,deflateLevel] = netcdf.inqVarDeflate(groupid,varid);
netcdf.close(ncid);

References This function corresponds to the nc_inq_var_deflate function in the
netCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.defVarDeflate

1-4598

netcdf.inqVarFill

Purpose Determine values of fill parameters for NetCDF variable

Syntax [noFillMode,fillValue] = netcdf.inqVarFill(ncid,varid)

Description [noFillMode,fillValue] = netcdf.inqVarFill(ncid,varid)
returns the fill mode and the fill value for the variable varid in the file
or group specified by ncid.

Input
Arguments

ncid

Identifier of a NetCDF file, returned by netcdf.create or netcdf.open,
or a NetCDF group, returned by netcdf.defGrp.

varid

Identifier of NetCDF variable.

Output
Arguments

noFillMode

Boolean value. true indicates that use of the fill values for the variable
has been disabled.

fillValue

Specifies the value to use in the variable when no other value is
specified and use of fill values has been enabled.

Examples This example opens the NetCDF sample dataset and gets the fill mode
and fill value used with a variable.

ncid = netcdf.open('example.nc','NOWRITE');
varid = netcdf.inqVarID(ncid,'temperature');
[noFillMode,fillValue] = netcdf.inqVarFill(ncid,varid);
netcdf.close(ncid);

References This function corresponds to the nc_inq_var_fill function in the
netCDF library C API.

1-4599

netcdf.inqVarFill

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.defVarFill | netcdf.setFill

1-4600

netcdf.inqVarFletcher32

Purpose Fletcher32 checksum setting for NetCDF variable

Syntax setting = netcdf.inqVarFletcher32(ncid,varid)

Description setting = netcdf.inqVarFletcher32(ncid,varid) returns the
Fletcher32 checksum setting for the NetCDF variable specified by
varid in the file or group specified by ncid.

Input
Arguments

ncid

Identifier for NetCDF file, returned by netcdf.create or netcdf.open,
or group, returned by netcdf.defGrp.

varid

Identifier of NetCDF variable.

Output
Arguments

setting

Text string specifying whether the Fletcher32 checksum is turned
on for the specified variable. netcdf.inqVarFletcher32 returns the
text string FLETCHER32 if the checksum is turned on for the variable;
otherwise, NOCHECKSUM.

Examples This example opens the sample NetCDF file and gets information about
the checksum setting for a variable.

ncid = netcdf.open('example.nc','NOWRITE');
varid = netcdf.inqVarID(ncid,'temperature');
setting = netcdf.inqVarFletcher32(ncid,varid);
netcdf.close(ncid);

References This function corresponds to the nc_inq_var_fletcher32 function in
the netCDF library C API.

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt for more information.

1-4601

netcdf.inqVarFletcher32

See Also netcdf | netcdf.defVarFletcher32

1-4602

netcdf.inqAtt

Purpose Return information about netCDF attribute

Syntax [xtype,attlen] = netcdf.inqAtt(ncid,varid,attname)

Description [xtype,attlen] = netcdf.inqAtt(ncid,varid,attname) returns the
data type, xtype, and length, attlen, of the attribute identified by the
text string attname.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

varid identifies the variable that the attribute is associated
with. To get information about a global attribute, specify
netcdf.getConstant('NC_GLOBAL') in place of varid.

This function corresponds to the nc_inq_att function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example opens the example netCDF file included with MATLAB,
example.nc, and gets information about an attribute in the file.

% Open netCDF example file.
ncid = netcdf.open('example.nc','NOWRITE');

% Get identifier of a variable in the file, given its name.
varid = netcdf.inqVarID(ncid,'avagadros_number');

% Get attribute name, given variable id and attribute number.
attname = netcdf.inqAttName(ncid,varid,0);

% Get information about the attribute.
[xtype,attlen] = netcdf.inqAtt(ncid,varid,'description')

xtype =

2

1-4603

netcdf.inqAtt

attlen =

31

% Get name of global attribute
gattname = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0);

% Get information about global attribute.
[gxtype gattlen] = netcdf.inqAtt(ncid,netcdf.getConstant('NC_GLOBAL'),gat

gxtype =

2

gattlen =

11

See Also netcdf.inqAttID | netcdf.inqAttName

1-4604

netcdf.inqAttID

Purpose Return ID of netCDF attribute

Syntax attnum = netcdf.inqAttID(ncid,varid,attname)

Description attnum = netcdf.inqAttID(ncid,varid,attname) retrieves attnum,
the identifier of the attribute specified by the text string attname.

varid specifies the variable the attribute is associated with.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

This function corresponds to the nc_inq_attid function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example opens the netCDF example file included with MATLAB,
example.nc.

% Open the netCDF example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get the identifier of a variable in the file.
varid = netcdf.inqVarID(ncid,'avagadros_number');

% Retrieve the identifier of the attribute associated with the variabl
attid = netcdf.inqAttID(ncid,varid,'description');

See Also netcdf.inqAtt | netcdf.inqAttName

1-4605

netcdf.inqAttName

Purpose Return name of netCDF attribute

Syntax attname = netcdf.inqAttName(ncid,varid,attnum)

Description attname = netcdf.inqAttName(ncid,varid,attnum) returns
attname, a text string specifying the name of an attribute.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

varid is a numeric identifier of a variable in the file. If you
want to get the name of a global attribute in the file, use
netcdf.getConstant('NC_GLOBAL') in place of attnum is a zero-based
numeric value specifying the attribute, with 0 indicating the first
attribute, 1 the second attribute, and so on.

This function corresponds to the nc_inq_attname function in the
netCDF library C API. To use this function, you should be familiar with
the netCDF programming paradigm. See netcdf for more information.

Examples This example opens the example netCDF file included with MATLAB,
example.nc.

% Open netCDF example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get identifier of a variable in the file.
varid = netcdf.inqVarID(ncid,'avagadros_number')

% Get the name of the attribute associated with the variable.
attname = netcdf.inqAttName(ncid,varid,0)

attname =

description

% Get the name of the global attribute associated with the variable.
gattname = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0)

1-4606

netcdf.inqAttName

gattname =

creation_date

See Also netcdf.inqAtt | netcdf.inqAttID

1-4607

netcdf.inqDim

Purpose Return netCDF dimension name and length

Syntax [dimname, dimlen] = netcdf.inqDim(ncid,dimid)

Description [dimname, dimlen] = netcdf.inqDim(ncid,dimid) returns the
name, dimname, and length, dimlen, of the dimension specified by
dimid. If ndims is the number of dimensions defined for a netCDF file,
each dimension has an ID between 0 and ndims-1. For example, the
dimension identifier of the first dimension is 0, the second dimension
is 1, and so on.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

This function corresponds to the nc_inq_dim function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples The example opens the example netCDF file include with MATLAB,
example.nc.

ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get name and length of first dimension
[dimname, dimlen] = netcdf.inqDim(ncid,0)

dimname =

x

dimlen =

50

See Also netcdf.inqDimID

1-4608

netcdf.inqDimID

Purpose Return dimension ID

Syntax dimid = netcdf.inqDimID(ncid,dimname)

Description dimid = netcdf.inqDimID(ncid,dimname) returns dimid, the
identifier of the dimension specified by the character string dimname.
You can use the netcdf.inqDim function to retrieve the dimension
name. ncid is a netCDF file identifier returned by netcdf.create
or netcdf.open.

This function corresponds to the nc_inq_dimid function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example opens the example netCDF file included with MATLAB,
example.nc.

% Open netCDF example file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get name and length of first dimension
[dimname, dimlen] = netcdf.inqDim(ncid,0);

% Retrieve identifier of dimension.
dimid = netcdf.inqDimID(ncid,dimname)

dimid =

0

See Also netcdf.inqDim

1-4609

netcdf.inqLibVers

Purpose Return NetCDF library version information

Syntax libvers = netcdf.inqLibVers

Description libvers = netcdf.inqLibVers returns a string identifying the version
of the NetCDF library.

This function corresponds to the nc_inq_libvers function in the
NetCDF library C API. To use this function, you should be familiar with
the netCDF programming paradigm. See netcdf for more information.

Examples libvers = netcdf.inqLibVers

libvers =

4.1.3

1-4610

netcdf.inqVar

Purpose Information about variable

Syntax [varname,xtype,dimids,natts] = netcdf.inqVar(ncid,varid)

Description [varname,xtype,dimids,natts] = netcdf.inqVar(ncid,varid)
returns information about the variable identified by varid. The
argument, ncid, is a netCDF file identifier returned by netcdf.create
or netcdf.open.

The output argument, varname, is the name of the variable. xtype is
the data type, dimids is the dimension IDs, and natts is the number of
attributes associated with the variable. Dimension IDs are zero-based.

This function corresponds to the nc_inq_var function in the netCDF
library C API. Because MATLAB uses FORTRAN-style ordering,
however, the order of the dimension IDs is reversed relative to what
would be obtained from the C API. To use this function, you should
be familiar with the netCDF programming paradigm. See netcdf for
more information.

Examples Open the example netCDF file included with MATLAB, example.nc,
and get information about a variable in the file.

% Open the example netCDF file.
ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get information about third variable in the file.
[varname, xtype, dimids, numatts] = netcdf.inqVar(ncid,2)

varname =

peaks

xtype =

5

1-4611

netcdf.inqVar

dimids =

0 1

numatts =

1 1

See Also netcdf.create | netcdf.inqVarID | netcdf.open

1-4612

netcdf.inqVarID

Purpose Return ID associated with variable name

Syntax varid = netcdf.inqVarID(ncid,varname)

Description varid = netcdf.inqVarID(ncid,varname) returns varid, the ID of a
netCDF variable specified by the text string, varname.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

This function corresponds to the nc_inq_varid function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example opens the example netCDF file included with MATLAB,
example.nc, and uses several inquiry functions to get the ID of the
first variable.

ncid = netcdf.open('example.nc','NC_NOWRITE');

% Get information about first variable in the file.
[varname, xtype, dimids, atts] = netcdf.inqVar(ncid,0);

% Get variable ID of the first variable, given its name
varid = netcdf.inqVarID(ncid,varname)

varid =

0

See Also netcdf.create | netcdf.inqVar | netcdf.open

1-4613

netcdf.open

Purpose Open NetCDF data source

Syntax ncid = netcdf.open(source)
ncid = netcdf.open(source,mode)
[chosen_chunksize, ncid] = netcdf.open(source,mode,chunksize)

Description ncid = netcdf.open(source) opens source, which can be the name
of a NetCDF file or the URL of an OPeNDAP NetCDF data source, for
read-only access. Returns a NetCDF ID in ncid.

ncid = netcdf.open(source,mode) opens source with the type of
access specified by mode, which can have any of the following values.

Value Description

'WRITE' Read-write access

'SHARE' Synchronous file updates

'NOWRITE' Read-only access (Default)

You can also specify mode as a numeric value that can be retrieved
using netcdf.getConstant. Use these numeric values when you want
to specify a bitwise-OR of several modes.

[chosen_chunksize, ncid] =
netcdf.open(source,mode,chunksize) opens source, an existing
netCDF data source, specifying the additional I/O performance tuning
parameter, chunksize. The actual value used by the NetCDF library
might not correspond to the input value you specify.

This function corresponds to the nc_open and nc__open functions in the
netCDF library C API. To use this function, you should be familiar with
the netCDF programming paradigm. See netcdf for more information.

Examples This example opens the example NetCDF file included with MATLAB,
example.nc.

ncid = netcdf.open('example.nc','NOWRITE');
netcdf.close(ncid);

1-4614

netcdf.open

See Also netcdf.close | netcdf | netcdf.getConstant

1-4615

netcdf.putAtt

Purpose Write netCDF attribute

Syntax netcdf.putAtt(ncid,varid,attrname,attrvalue)

Description netcdf.putAtt(ncid,varid,attrname,attrvalue) writes the
attribute named attrname with value attrvalue to the netCDF
variable specified by varid. To specify a global attribute, use
netcdf.getConstant('NC_GLOBAL') for varid.

ncid is a netCDF file identifier returned by netCDF.create or
netCDF.open.

Note You cannot use netcdf.putAtt to set the '_FillValue'
attribute of NetCDF4 files. Use the netcdf.defVarFill function to set
the fill value for a variable.

This function corresponds to several attribute I/O functions in the
netCDF library C API. To use this function, you should be familiar with
the netCDF programming paradigm. See netcdf for more information.

Examples This example creates a new netCDF file, defines a dimension and a
variable, adds data to the variable, and then creates an attribute
associated with the variable. To run this example, you must have writer
permission in your current directory.

% Create a variable in the workspace.
my_vardata = linspace(0,50,50);

% Create a netCDF file.
ncid = netcdf.create('foo.nc','NC_WRITE');

% Define a dimension in the file.
dimid = netcdf.defDim(ncid,'my_dim',50);

% Define a new variable in the file.

1-4616

netcdf.putAtt

varid = netcdf.defVar(ncid,'my_var','double',dimid);

% Leave define mode and enter data mode to write data.
netcdf.endDef(ncid);

% Write data to variable.
netcdf.putVar(ncid,varid,my_vardata);

% Re-enter define mode.
netcdf.reDef(ncid);

% Create an attribute associated with the variable.
netcdf.putAtt(ncid,0,'my_att',10);

% Verify that the attribute was created.
[xtype xlen] = netcdf.inqAtt(ncid,0,'my_att')

xtype =

6

xlen =

1

This example creates a new netCDF file, specifies a global attribute,
and assigns a value to the attribute.

ncid = netcdf.create('myfile.nc','CLOBBER');
varid = netcdf.getConstant('GLOBAL');
netcdf.putAtt(ncid,varid,'creation_date',datestr(now));
netcdf.close(ncid);

See Also netcdf.getAtt | netcdf.defVarFill | netcdf.getConstant

1-4617

netcdf.putVar

Purpose Write data to netCDF variable

Syntax netcdf.putVar(ncid,varid,data)
netcdf.putVar(ncid,varid,start,data)
netcdf.putVar(ncid,varid,start,count,data)
netcdf.putVar(ncid,varid,start,count,stride,data)

Description netcdf.putVar(ncid,varid,data) writes data to a netCDF variable
identified by varid.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

netcdf.putVar(ncid,varid,start,data) writes a single data value
into the variable at the index specified by start.

netcdf.putVar(ncid,varid,start,count,data) writes a section of
values into the netCDF variable at the index specified by the vector
start to the extent specified by the vector count, along each dimension
of the specified variable.

netcdf.putVar(ncid,varid,start,count,stride,data) writes the
subsection specified by sampling interval, stride, of the values in the
section of the variable beginning at the index start and to the extent
specified by count.

This function corresponds to several variable I/O functions in the
netCDF library C API. To use this function, you should be familiar with
the netCDF programming paradigm. See netcdf for more information.

Examples Write Variable to New netCDF File

Create a new netCDF file and write a variable to the file.

Create a 50 element vector for a variable.

my_vardata = linspace(0,50,50);

Open the netCDF file.

1-4618

netcdf.putVar

ncid = netcdf.create('foo.nc','NOCLOBBER');

Define the dimensions of the variable.

dimid = netcdf.defDim(ncid,'my_dim',50);

Define a new variable in the file.

my_varID = netcdf.defVar(ncid,'my_var','double',dimid);

Leave define mode and enter data mode to write data.

netcdf.endDef(ncid);

Write data to variable.

netcdf.putVar(ncid,my_varID,my_vardata);

Verify that the variable was created.

[varname xtype dimid natts] = netcdf.inqVar(ncid,0)

varname =

my_var

xtype =

6

dimid =

0

natts =

1-4619

netcdf.putVar

0

Close the file.

netcdf.close(ncid)

Write Elements of Variable

Write to the first ten elements of the example temperature variable.

srcFile = fullfile(matlabroot,'toolbox','matlab','demos','example.nc');
copyfile(srcFile,'myfile.nc');
fileattrib('myfile.nc','+w');
ncid = netcdf.open('myfile.nc','WRITE');
varid = netcdf.inqVarID(ncid,'temperature');
data = [100:109];
netcdf.putVar(ncid,varid,0,10,data);
netcdf.close(ncid);

See Also netcdf.getVar

1-4620

netcdf.reDef

Purpose Put open netCDF file into define mode

Syntax netcdf.reDef(ncid)

Description netcdf.reDef(ncid) puts an open netCDF file into define mode so
that dimensions, variables, and attributes can be added or renamed.
Attributes can also be deleted in define mode. ncid is a valid NetCDF
file ID, returned from a previous call to netcdf.open or netcdf.create.

This function corresponds to the nc_redef function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example opens a local copy of the example netCDF file included
with MATLAB, example.nc.

% Open a netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Try to define a dimension.
dimid = netcdf.defdim(ncid, 'lat', 50); % should fail.
??? Error using ==> netcdflib
NetCDF: Operation not allowed in data mode

Error in ==> defDim at 22
dimid = netcdflib('def_dim', ncid,dimname,dimlen);

% Put file in define mode.
netcdf.reDef(ncid);

% Try to define a dimension again. Should succeed.
dimid = netcdf.defDim(ncid, 'lat', 50);

See Also netcdf.create | netcdf.endDef | netcdf.open

1-4621

netcdf.renameAtt

Purpose Change name of attribute

Syntax netcdf.renameAtt(ncid,varid,oldName,newName)

Description netcdf.renameAtt(ncid,varid,oldName,newName) changes the name
of the attribute specified by the character string oldName.

newName is a character string that specifies the new name.

ncid is a netCDF file identifier returned by netcdf.create or
netcdf.open.

varid identifies the variable to which the attribute is associated. To
specify a global attribute, use netcdf.getConstant('NC_GLOBAL') for
varid.

This function corresponds to the nc_rename_att function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example modifies a local copy of the example netCDF file included
with MATLAB, example.nc.

% Open netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Get the ID of a variable the attribute is associated with.
varID = netcdf.inqVarID(ncid,'avagadros_number')

% Rename the attribute.
netcdf.renameAtt(ncid,varID,'description','Description');

% Verify that the name changed.
attname = netcdf.inqAttName(ncid,varID,0)

attname =

Description

1-4622

netcdf.renameAtt

See Also netcdf.inqAttName

1-4623

netcdf.renameDim

Purpose Change name of netCDF dimension

Syntax netcdf.renameDim(ncid,dimid,newName)

Description netcdf.renameDim(ncid,dimid,newName) renames the dimension
identified by the dimension identifier, dimid.

newName is a character string specifying the new name. ncid is a
netCDF file identifier returned by netcdf.create or netcdf.open

This function corresponds to the nc_rename_dim function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This examples modifies a local copy of the example netCDF file included
with MATLAB, example.nc.

% Open netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Put file is define mode.
netcdf.reDef(ncid)

% Get the identifer of a dimension to rename.
dimid = netcdf.inqDimID(ncid,'x');

% Rename the dimension.
netcdf.renameDim(ncid,dimid,'Xdim')

% Verify that the name changed.
data = netcdf.inqDim(ncid,dimid)

data =

Xdim

See Also netcdf.defDim

1-4624

netcdf.renameVar

Purpose Change name of netCDF variable

Syntax netcdf.renameVar(ncid,varid,newName)

Description netcdf.renameVar(ncid,varid,newName) renames the variable
identified by varid in the netCDF file identified by ncid.newName is a
character string specifying the new name.

This function corresponds to the nc_rename_var function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example modifies a local copy of the example netCDF file included
with MATLAB, example.nc.

% Open netCDF file.
ncid = netcdf.open('my_example.nc','NC_WRITE')

% Put file in define mode.
netcdf.redef(ncid)

% Get name of first variable
[varname, xtype, varDimIDs, varAtts] = netcdf.inqVar(ncid,0);

varname

varname =

avagadros_number

% Rename the variable, using a capital letter to start the name.
netcdf.renameVar(ncid,0,'Avagadros_number')

% Verify that the name of the variable changed.
[varname, xtype, varDimIDs, varAtts] = netcdf.inqVar(ncid,0);

varname

1-4625

netcdf.renameVar

varname =

Avagadros_number

See Also netCDF.defVar | netCDF.inqVar | netCDF.putVar

1-4626

netcdf.setChunkCache

Purpose Set default chunk cache settings for NetCDF library

Syntax netcdf.setChunkCache(csize,nelems,premp)

Description netcdf.setChunkCache(csize,nelems,premp) sets the default chunk
cache settings used by the NetCDF library.

Settings apply for subsequent file open or create operations, for the
remainder of the MATLAB session or until you issue a clear mex call.
This function does not change the chunk cache settings of files already
open.

Input
Arguments

csize

Scalar double specifying the total size of the raw data chunk cache in
bytes.

nelems

Scalar double specifying the number of chunk slots in the raw data
chunk cache hash table.

premp

Scalar double, between 0 and 1, inclusive, that specifies how the library
handles preempting fully read chunks in the chunk cache. A value of 0
means fully read chunks are treated no differently than other chunks,
that is, preemption occurs solely based on the Least Recently Used
(LRU) algorithm. A value of 1 means fully read chunks are always
preempted before other chunks.

Examples This example sets the cache chunk size used by the NetCDF library.

netcdf.setChunkCache(32000000, 2003, .75)

References This function corresponds to the nc_set_chunk_cache function in the
NetCDF library C API.

1-4627

netcdf.setChunkCache

For copyright information, read the netcdfcopyright.txt and
mexnccopyright.txt files.

See Also netcdf | netcdf.getChunkCache

1-4628

netcdf.setDefaultFormat

Purpose Change default netCDF file format

Syntax oldFormat = netcdf.setDefaultFormat(newFormat)

Description oldFormat = netcdf.setDefaultFormat(newFormat) changes the
default format used by netCDF.create when creating new netCDF files,
and returns the value of the old format. You can use this function to
change the format used by a netCDF file without having to change the
creation mode flag used in each call to netCDF.create.

newFormat can be either of the following values.

Value Description

'NC_FORMAT_CLASSIC' Original netCDF file format

'NC_FORMAT_64BIT' 64-bit offset format; relaxes limitations
on creating very large files

You can also specify the numeric equivalent of these values, as retrieved
by netcdf.getConstant.

This function corresponds to the nc_set_default_format function
in the netCDF library C API. To use this function, you should be
familiar with the netCDF programming paradigm. See netcdf for more
information.

Examples oldFormat = netcdf.setDefaultFormat('NC_FORMAT_64BIT');

See Also netcdf.create

1-4629

netcdf.setFill

Purpose Set netCDF fill mode

Syntax old_mode = netcdf.setFill(ncid,new_mode)

Description old_mode = netcdf.setFill(ncid,new_mode) sets the fill mode for
a netCDF file identified by ncid.

new_mode can be either 'FILL' or 'NOFILL' or their numeric
equivalents, as retrieved by netcdf.getConstant. The default mode
is 'FILL'. netCDF pre-fills data with fill values. Specifying 'NOFILL'
can be used to enhance performance, because it avoids the duplicate
writes that occur when the netCDF writes fill values that are later
overwritten with data.

This function corresponds to the nc_set_fill function in the netCDF
library C API. To use this function, you should be familiar with the
netCDF programming paradigm. See netcdf for more information.

Examples This example creates a new file and specifies the fill mode used by
netCDF with the file.

ncid = netcdf.open('foo.nc','NC_WRITE');

% Set filling behavior
old_mode = netcdf.setFill(ncid,'NC_NOFILL');

See Also netcdf.getConstant

1-4630

netcdf.sync

Purpose Synchronize netCDF file to disk

Syntax netcdf.sync(ncid)

Description netcdf.sync(ncid) synchronizes the state of a netCDF file to disk. The
netCDF library normally buffers accesses to the underlying netCDF
file, unless you specify the NC_SHARE mode when you opened the file
with netcdf.open or netcdf.create. To call netcdf.sync, the netCDF
file must be in data mode.

This function corresponds to the nc_sync function in the netCDF library
C API. To use this function, you should be familiar with the netCDF
programming paradigm. See netcdf for more information.

Examples This example creates a new netCDF file for write access, performs
an operation on the file, takes the file out of define mode, and then
synchronizes the file to disk.

% Create a netCDF file.
ncid = netcdf.create('foo.nc','NC_WRITE');

% Perform an operation.
dimid = netcdf.defDim(ncid,'Xdim',50);

% Take file out of define mode.
netcdf.endDef(ncid);

% Synchronize the file to disk.
netcdf.sync(ncid)

See Also netcdf.close | netcdf.create | netcdf.open | netcdf.endDef

1-4631

newplot

Purpose Determine where to draw graphics objects

Syntax newplot
h = newplot
h = newplot(hsave)

Description newplot prepares a figure and axes for subsequent graphics commands.

h = newplot prepares a figure and axes for subsequent graphics
commands and returns a handle to the current axes.

h = newplot(hsave) prepares and returns an axes, but does not delete
any objects whose handles you have assigned to the hsave argument,
which can be a vector of handles. If hsave is not empty, the figure and
axes containing hsave are prepared for plotting instead of the current
axes of the current figure. If hsave is empty, newplot behaves as if it
were called without any inputs.

Tips To create a simple 2-D plot, use the plot function instead.

Use newplot at the beginning of high-level graphics code to determine
which figure and axes to target for graphics output. Calling newplot can
change the current figure and current axes. Basically, there are three
options when you are drawing graphics in existing figures and axes:

• Add the new graphics without changing any properties or deleting
any objects.

• Delete all existing objects whose handles are not hidden before
drawing the new objects.

• Delete all existing objects regardless of whether or not their handles
are hidden, and reset most properties to their defaults before drawing
the new objects (refer to the following table for specific information).

The figure and axes NextPlot properties determine how newplot
behaves. The following two tables describe this behavior with various
property values.

First, newplot reads the current figure’s NextPlot property and acts
accordingly.

1-4632

newplot

NextPlot What Happens

new Create a new figure and use it as the current
figure.

add Draw to the current figure without clearing
any graphics objects already present.

replacechildren Remove all child objects whose
HandleVisibility property is set to on
and reset figure NextPlot property to add.

This clears the current figure and is equivalent
to issuing the clf command.

replace Remove all child objects (regardless of the
setting of the HandleVisibility property) and
reset figure properties to their defaults, except

NextPlot is reset to add regardless of
user-defined defaults.

• Position, Units, PaperPosition, and
PaperUnits are not reset.

This clears and resets the current figure and is
equivalent to issuing the clf reset command.

After newplot establishes which figure to draw in, it reads the current
axes’ NextPlot property and acts accordingly.

1-4633

newplot

NextPlot Description

add Draw into the current axes, retaining all
graphics objects already present.

replacechildren Remove all child objects whose
HandleVisibility property is set to on,
but do not reset axes properties. This clears
the current axes like the cla command.

replace Remove all child objects (regardless of the
setting of the HandleVisibility property) and
reset axes properties to their defaults, except
Position and Units.

This clears and resets the current axes like the
cla reset command.

See Also plot | axes | cla | clf | figure | hold | ishold | reset | figure |
axes

How To • Controlling Graphics Output

1-4634

Tiff.nextDirectory

Purpose Make next IFD current IFD

Syntax tiffobj.nextDirectory()

Description tiffobj.nextDirectory() makes the next image file directory (IFD)
in the file the current IFD. Tiff object methods operate on the current
IFD. Use this method to navigate among IFDs in a TIFF file containing
multiple images.

Examples Make Next Directory the Current Directory

Open a Tiff object and change the current IFD to the next IFD in the
file.

t = Tiff('example.tif','r');
t.nextDirectory();
t.close();

References This method corresponds to the TIFFReadDirectory function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.setDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-4635

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

nextpow2

Purpose Exponent of next higher power of 2

Syntax P = nextpow2(A)

Description P = nextpow2(A) returns the exponents for the smallest powers of
two that satisfy

2p A

for each element in A.

You can use nextpow2 to pad the signal you pass to fft. Doing so can
speed up the computation of the FFT when the signal length is not
an exact power of 2.

Input
Arguments

A - Input values
scalar, vector, or array of real numbers

Input values, specified as a scalar, vector, or array of real numbers
of any numeric type.

Example: 15

Example: [-15.123 32.456 63.111]

Example: int16([-15 32 63])

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Examples Next Power of 2 of Double Integer Values

Define a vector of double integer values and calculate the exponents for
the next power of 2 higher than those values.

a = [1 -2 3 -4 5 9 519];
p = nextpow2(a)

p =

1-4636

nextpow2

0 1 2 2 3 4 10

Calculate the positive next powers of 2.

np2 = 2.^p

np2 =

1 2 4 4 8 16 1024

Preserve the sign of the original input values.

np2.*sign(a)

ans =

1 -2 4 -4 8 16 1024

Next Power of 2 of Unsigned Integer Values

Define a vector of unsigned integers and calculate the exponents for the
next power of 2 higher than those values.

a = uint32([1020 4000 32700]);
p = nextpow2(a)

p =

10 12 15

Calculate the next powers of 2 higher than the values in a.

2.^p

ans =

1024 4096 32768

1-4637

nextpow2

Optimize FFT with Padding

Use nextpow2 to increase the performance of fft when the length of
your signal is not a power of 2.

Create a 1-D vector containing 8191 sample values.

x = gallery('uniformdata',[1,8191],0);

Calculate the next power of 2 higher than 8191.

p = nextpow2(8191);
n = 2^p

n =

8192

Pass the signal and the next power of 2 to the fft function.

y = fft(x,n);

See Also fft | log2 | pow2

1-4638

nnz

Purpose Number of nonzero matrix elements

Syntax n = nnz(X)

Description n = nnz(X) returns the number of nonzero elements in matrix X.

The density of a sparse matrix is nnz(X)/prod(size(X)).

Examples The matrix

w = sparse(wilkinson(21));

is a tridiagonal matrix with 20 nonzeros on each of three diagonals,
so nnz(w) = 60.

See Also find | isa | nonzeros | nzmax | size | whos

1-4639

noanimate

Purpose Change EraseMode of all objects to normal

Note noanimate will be removed in a future release.

Syntax noanimate(state,fig_handle)
noanimate(state)

Description noanimate(state,fig_handle) sets the EraseMode of all image, line,
patch, surface, and text graphics objects in the specified figure to
normal. state can be the following strings:

• 'save'— Set the values of the EraseMode properties to normal for
all the appropriate objects in the designated figure.

• 'restore' — Restore the EraseMode properties to the previous
values (i.e., the values before calling noanimate with the 'save'
argument).

noanimate(state) operates on the current figure.

noanimate is useful if you want to print the figure to a TIFF or JPEG
format.

See Also print

1-4640

nonzeros

Purpose Nonzero matrix elements

Syntax s = nonzeros(A)

Description s = nonzeros(A) returns a full column vector of the nonzero elements
in A, ordered by columns.

This gives the s, but not the i and j, from [i,j,s] = find(A).
Generally,

length(s) = nnz(A) <= nzmax(A) <= prod(size(A))

See Also find | isa | nnz | nzmax | size | whos

1-4641

norm

Purpose Vector and matrix norms

Syntax n = norm(X)
n = norm(X,p)

Description n = norm(X) returns the 2-norm of input X and is equivalent to
norm(X,2). If X is a vector, this is equal to the Euclidean distance. If X
is a matrix, this is equal to the largest singular value of X.

n = norm(X,p) returns the p-norm of input X.

Input
Arguments

X - Numeric array
scalar | vector | matrix

Numeric array, specified as a scalar, vector, or matrix. If X is sparse,
then norm(X) returns an error.

Data Types
single | double
Complex Number Support: Yes

p - Norm type
2 (default) | positive integer scalar | Inf | -Inf | 'fro'

Norm type, specified as 2 (default), a positive integer scalar, Inf, -Inf,
or 'fro'. Whether X is a matrix or vector determines the allowed values
of p (and what they return). The following table lists the calculated
values for each allowed value of p.

Note The table does not reflect the actual algorithms used in
calculations.

1-4642

norm

p Matrix Vector

1 max(sum(abs(X))) sum(abs(X))

2 max(svd(X)) sum(abs(X).^2)^(1/2)

positive, real-valued
numeric p

– sum(abs(X).^p)^(1/p)

Inf max(sum(abs(X'))) max(abs(X))

-Inf – min(abs(X))

'fro' sqrt(sum(diag(X'*X))) norm(X)

Output
Arguments

n - Matrix or vector norm
scalar

Matrix or vector norm, returned as a scalar. The norm gives a measure
of the magnitude of the elements. By convention, norm returns NaN
if the input contains NaN values.

Examples 1- and 2- Norm of Vector

Create a vector corresponding to the point (-2,3,-1) in 3-D space.

X = [-2 3 -1];

Calculate the 2-norm of the vector.

n = norm(X)

n =

3.7417

The 2-norm is equal to the Euclidean length of the vector.

Calculate the 1-norm of the vector.

n = norm(X,1)

1-4643

norm

n =

6

The 1-norm is equal to the sum of the element magnitudes.

2-Norm of Matrix

Create a matrix.

X = [2 0 1;-1 1 0;-3 3 0];

The matrix has rank(X) = 2, so it has two nonzero singular values.

Calculate the 2-norm of the matrix.

n = norm(X)

n =

4.7234

The 2-norm is equal to the largest singular value of X.

Frobenius Norm of Sparse Matrix

Create a sparse identity matrix, S.

S = sparse(1:25,1:25,1);

Attempt to use norm(S) to calculate the 2-norm of S.

n = norm(S)

Error using norm
Sparse norm(S,2) is not available.

When the input matrix is sparse, norm(S) returns an error.

Now use 'fro' to calculate the Frobenius norm of the sparse matrix.

1-4644

norm

n = norm(S,'fro')

n =

5

This calculates the 2-norm of the column vector, S(:).

See Also cond | rcond | condest | normest | hypot

1-4645

normest

Purpose 2-norm estimate

Syntax nrm = normest(S)
nrm = normest(S,tol)
[nrm,count] = normest(...)

Description This function is intended primarily for sparse matrices, although it
works correctly and may be useful for large, full matrices as well.

nrm = normest(S) returns an estimate of the 2-norm of the matrix S.

nrm = normest(S,tol) uses relative error tol instead of the default
tolerance 1.e-6. The value of tol determines when the estimate is
considered acceptable.

[nrm,count] = normest(...) returns an estimate of the 2-norm and
also gives the number of power iterations used.

Algorithms The power iteration involves repeated multiplication by the matrix S
and its transpose, S'. The iteration is carried out until two successive
estimates agree to within the specified relative tolerance.

See Also cond | condest | norm | rcond | svd

1-4646

not, ~

Purpose Find logical NOT

Syntax ~A
not(A)

Description ~A performs a logical NOT of input array A, and returns an array
containing elements set to either logical 1 (true) or logical 0 (false).
An element of the output array is set to 1 if the input array contains
a zero value element at that same array location. Otherwise, that
element is set to 0.

The input of the expression can be an array or can be a scalar value.
If the input is an array, then the output is an array of the same
dimensions. If the input is scalar, then the output is scalar.

not(A) is called for the syntax ~A when A is an object.

Examples If matrix A is

0 29 0 36 0
23 34 35 0 39
0 24 31 27 0
0 29 0 0 34

then

~A
ans =

1 0 1 0 1
0 0 0 1 0
1 0 0 0 1
1 0 1 1 0

See Also any | all | bitcmp | xor | and | or

Concepts • “Truth Table for Logical Operations”

1-4647

notebook

Purpose Open MATLAB Notebook in Microsoft Word software (on Microsoft
Windows platforms)

Syntax notebook
notebook('filename')
notebook('-setup')

Description notebook starts Microsoft Word software and creates a new MATLAB
Notebook titled Document 1.

notebook('filename') starts Microsoft Word and opens the notebook
filename, where filename is either in the MATLAB current folder
or is a full path. If filename does not exist, MATLAB creates a new
notebook titled filename. If the file name extension is not specified,
MATLAB assumes .doc.

notebook('-setup') runs an interactive setup function for MATLAB
Notebook. It copies the notebook template, m-book.dot, to the
Microsoft Word template folder, whose location MATLAB automatically
determines from the Windows system registry. Upon completion,
MATLAB displays a message indicating whether or not the setup was
successful.

How To • “Create a MATLAB Notebook with Microsoft Word”

• “Publishing MATLAB Code”

1-4648

notify (handle)

Purpose Notify listeners that event is occurring

Syntax notify(Hobj,'EventName')
notify(Hobj,'EventName',data)

Description notify(Hobj,'EventName') notifies listeners that the specified event
is taking place on the specified handle objects.

notify(Hobj,'EventName',data) includes user-defined event data.

Input Arguments

Hobj
Array of handle objects triggering the specified event.

EventName
Name of the event.

data
An event.EventData object encapsulating information about
the event. You can define custom event data by subclassing
event.EventData and passing an instance of your subclass as
the data argument. See “Defining Event-Specific Data” for
information on defining event data.

See Also

See “Events and Listeners — Syntax and Techniques”

handle, addlistener

1-4649

now

Purpose Current date and time as serial date number

Syntax t = now

Description t = now returns the current date and time as a serial date number. A
serial date number represents the whole and fractional number of days
from a fixed, preset date (January 0, 0000).

floor(now) returns the current date as a serial date number, and
rem(now,1) returns the current time as a serial date number.
datestr(now) returns the current date and time as a string.

Examples t1 = now, t2 = rem(now,1)

t1 =

7.2908e+05

t2 =

0.4013

See Also clock | date | datenum | datestr

1-4650

nthroot

Purpose Real nth root of real numbers

Syntax y = nthroot(X, n)

Description y = nthroot(X, n) returns the real nth root of the elements of X. Both
X and n must be real and n must be a scalar. If X has negative entries,
n must be an odd integer.

Examples nthroot(-2, 3)

returns the real cube root of -2.

ans =

-1.2599

By comparison,

(-2)^(1/3)

returns a complex cube root of -2.

ans =

0.6300 + 1.0911i

See Also sqrt | power

1-4651

null

Purpose Null space

Syntax Z = null(A)
Z = null(A,'r')

Description Z = null(A) is an orthonormal basis for the null space of A obtained
from the singular value decomposition. That is, A*Z has negligible
elements, size(Z,2) is the nullity of A, and Z'*Z = I.

Z = null(A,'r') is a “rational” basis for the null space obtained from
the reduced row echelon form. A*Z is zero, size(Z,2) is an estimate
for the nullity of A, and, if A is a small matrix with integer elements,
the elements of the reduced row echelon form (as computed using rref)
are ratios of small integers.

The orthonormal basis is preferable numerically, while the rational
basis may be preferable pedagogically.

Examples Example 1

Compute the orthonormal basis for the null space of a matrix A.

A = [1 2 3
1 2 3
1 2 3];

Z = null(A);
A*Z

ans =
1.0e-015 *

0.2220 0.2220
0.2220 0.2220
0.2220 0.2220

Z'*Z

ans =

1-4652

null

1.0000 -0.0000
-0.0000 1.0000

Example 2

Compute the 1-norm of the matrix A*Z and determine that it is within a
small tolerance.

norm(A*Z,1) < 1e-12
ans =

1

Example 3

Compute the rational basis for the null space of the same matrix A.

ZR = null(A,'r')

ZR =
-2 -3
1 0
0 1

A*ZR

ans =

0 0
0 0
0 0

See Also orth | rank | rref | svd

1-4653

num2cell

Purpose Convert array to cell array with consistently sized cells

Syntax C = num2cell(A)
C = num2cell(A,dim)

Description C = num2cell(A) converts array A into cell array C by placing each
element of A into a separate cell in C. Array A need not be numeric.

C = num2cell(A,dim) splits the contents of A into separate cells of C,
where dim specifies which dimensions of A to include in each cell. dim
can be a scalar or a vector of dimensions. For example, if A has 2 rows
and 3 columns, then:

• num2cell(A,1) creates a 1-by-3 cell array C, where each cell contains
a 2-by-1 column of A.

• num2cell(A,2) creates a 2-by-1 cell array C, where each cell contains
a 1-by-3 row of A.

• num2cell(A,[1 2]) creates a 1-by-1 cell array C, where the cell
contains the entire array A.

Input
Arguments

A - Input
any type of multidimensional array

Input, specified as any type of multidimensional array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char | struct | cell
| function_handle

dim - Dimension of A
positive integer | positive vector of integers

Dimension of A, specified as a positive integer or a vector of positive
integers. dim must be between 1 and ndims(A).

1-4654

num2cell

Elements need not be in numeric order. However, num2cell permutes
the dimensions of the arrays in each cell of C to match the order of the
specified dimensions.

Data Types
double

Output
Arguments

C - Resulting array
cell array

Resulting array, returned as a cell array. The size of C depends on the
size of A and the values of dim.

• If dim is not specified, then C is the same size as A.

• If dim is a scalar, then C contains numel(A)/size(A,dim) cells.
If dim is 1 or 2, then each cell contains a column or row vector,
respectively. If dim > 2, then each cell contains an array whose dimth
dimensional length is size(A,dim), and whose other dimensions
are all singletons.

For example, given a 4-by-7-by-3 array, A, this figure shows how
num2cell creates cells corresponding to dim values of 1, 2, and 3.

4

7

3

di
m

 1

dim2

4

7

3

4

7

3

dim 3

C = num2cell(A, 1) yields
21 arrays of 4 cells each

C = num2cell(A, 2) yields C = num2cell(A, 3) yields
12 arrays of 7 cells each 28 arrays of 3 cells each

• If dim is a vector containing N values, then C has
numel(A)/prod([size(A,dim(1)),...,size(A,vdim(N))]) cells.
Each cell contains an array whose dim(i)th dimension has a length
of size(A,dim(i)) and whose other dimensions are singletons.

For example, given a 4-by-7-by-3 array, you can specify dim as an
positive integer vector to create cell arrays of different dimensions.

1-4655

num2cell

d
im

 1

3

7

4

dim2

d
im

 1

dim2

4 4

7 7

3 3

dim 3dim 3

C = num2cell(A, [1 3]) yields
7 arrays of 12 cells each

C = num2cell(A, [1 2]) yields C = num2cell(A, [2 3]) yields
3 arrays of 28 cells each 4 arrays of 21 cells each

Examples Convert Arrays to Cell Array

Place all elements of a numeric array into separate cells.

a = magic(3)
c = num2cell(a)

a =

8 1 6
3 5 7
4 9 2

c =

[8] [1] [6]
[3] [5] [7]
[4] [9] [2]

Place individual letters of a word into separate cells of an array.

a = ['four';'five';'nine']
c = num2cell(a)

a =

1-4656

num2cell

four
five
nine

c =

'f' 'o' 'u' 'r'
'f' 'i' 'v' 'e'
'n' 'i' 'n' 'e'

Create Cell Array of Numeric Arrays

Generate a 4-by-3-by-2 numeric array, and then create a 1-by-3-by-2
cell array of 4-by-1 column vectors.

A = reshape(1:12,4,3);
A(:,:,2) = A*10
C = num2cell(A,1)

A(:,:,1) =

1 5 9
2 6 10
3 7 11
4 8 12

A(:,:,2) =

10 50 90
20 60 100
30 70 110
40 80 120

1-4657

num2cell

C(:,:,1) =

[4x1 double] [4x1 double] [4x1 double]

C(:,:,2) =

[4x1 double] [4x1 double] [4x1 double]

Each 4-by-1 vector contains elements from along the first dimension of A:

C{1}

ans =

1
2
3
4

Create a 4-by-1-by-2 cell array of 1-by-3 numeric arrays.

C = num2cell(A,2)

C(:,:,1) =

[1x3 double]
[1x3 double]
[1x3 double]
[1x3 double]

1-4658

num2cell

C(:,:,2) =

[1x3 double]
[1x3 double]
[1x3 double]
[1x3 double]

Each 1-by-3 row vector contains elements from along the second
dimension of A:

C{1}

ans =

1 5 9

Finally, create a 4-by-3 cell array of 1-by-1-by-2 numeric arrays.

C = num2cell(A,3)

C =

[1x1x2 double] [1x1x2 double] [1x1x2 double]
[1x1x2 double] [1x1x2 double] [1x1x2 double]
[1x1x2 double] [1x1x2 double] [1x1x2 double]
[1x1x2 double] [1x1x2 double] [1x1x2 double]

Each 1-by-1-by-2 vector contains elements from along the third
dimension of A:

C{1}

1-4659

num2cell

ans(:,:,1) =

1

ans(:,:,2) =

10

Combine Across Multiple Dimensions

Create a cell array by combining elements into numeric arrays along
several dimensions.

A = reshape(1:12,4,3);
A(:,:,2) = A*10
c = num2cell(A,[1 3])

A(:,:,1) =

1 5 9
2 6 10
3 7 11
4 8 12

A(:,:,2) =

10 50 90
20 60 100
30 70 110
40 80 120

1-4660

num2cell

c =

[4x1x2 double] [4x1x2 double] [4x1x2 double]

Each 4-by-1-by-2 array contains elements from along the first and third
dimension of A:

c{1}

ans(:,:,1) =

1
2
3
4

ans(:,:,2) =

10
20
30
40

c = num2cell(A,[2 3])

c =

[1x3x2 double]
[1x3x2 double]
[1x3x2 double]
[1x3x2 double]

1-4661

num2cell

See Also cat | mat2cell | cell2mat

1-4662

num2hex

Purpose Convert singles and doubles to IEEE hexadecimal strings

Syntax num2hex(X)

Description If X is a single or double precision array with n elements, num2hex(X)
is an n-by-8 or n-by-16 char array of the hexadecimal floating-point
representation. The same representation is printed with format hex.

Examples num2hex([1 0 0.1 -pi Inf NaN])

returns

ans =

3ff0000000000000
0000000000000000
3fb999999999999a
c00921fb54442d18
7ff0000000000000
fff8000000000000
num2hex(single([1 0 0.1 -pi Inf NaN]))

returns

ans =

3f800000
00000000
3dcccccd
c0490fdb
7f800000
ffc00000

See Also hex2num | dec2hex | format

1-4663

num2str

Purpose Convert number to string

Syntax str = num2str(A)
str = num2str(A,precision)
str = num2str(A,formatSpec)

Description str = num2str(A) converts array A into a string representation str.
The output format depends upon the magnitude of the original values
and sometimes includes exponents. num2str is useful for labeling and
titling plots with numeric values.

str = num2str(A,precision) returns a string representation with the
maximum number of digits specified by precision.

str = num2str(A,formatSpec) applies a format specified by
formatSpec to all elements of A.

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array of real or complex numbers.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

precision - Numeric precision
positive integer

Numeric precision of the output string, specified as a positive integer.
This is the maximum number of digits in the output string.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

1-4664

num2str

formatSpec - Format of the output fields
string

Format of the output fields, specified as a string.

The string can include a percent sign followed by a conversion
character. The following table lists the available conversion characters
and subtypes.

Value Type Conversion Details

Integer, signed %d or %i Base 10

%u Base 10

%o Base 8 (octal)

%x Base 16 (hexadecimal),
lowercase letters a–f

Integer, unsigned

%X Same as %x, uppercase letters
A–F

%f Fixed-point notation

%e Exponential notation, such as
3.141593e+00

%E Same as %e, but uppercase,
such as 3.141593E+00

%g The more compact of %e or %f,
with no trailing zeros

%G The more compact of %E or %f,
with no trailing zeros

%bx or %bX
%bo
%bu

Double-precision hexadecimal,
octal, or decimal value
Example: %bx prints pi as
400921fb54442d18

Floating-point
number

1-4665

num2str

Value Type Conversion Details

%tx or %tX
%to
%tu

Single-precision hexadecimal,
octal, or decimal value
Example: %tx prints pi as
40490fdb

%c Single characterCharacters

%s String of characters

The string can include optional operators, which appear in the following
order (includes spaces for clarity):

���������	�
����

������������������������������

�����
 ��������������!����

"��#$�

Optional operators include:

• Identifier

Order for processing inputs. Use the syntax n$, where n represents
the position of the value in the input list.

For example, '%3$s %2$s %1$s %2$s' prints inputs 'A', 'B', 'C'
as follows: C B A B.

• Flags

' ' Left-justify. Example: %-5.2f

'+' Print sign character (+) for positive values. Example:
%+5.2f

' ' Pad to field width with spaces before the value.
Example: % 5.2f

1-4666

num2str

'0' Pad to field width with zeros. Example: %05.2f

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.

- For %f, %e, or %E, print decimal point even when
precision is 0.

- For %g or %G, do not remove trailing zeros or decimal
point.

Example: %#5.0f

• Field width

Minimum number of characters to print. Can be a number, or an
asterisk (*) to refer to an argument in the input list. For example, the
input list ('%12d', intmax) is equivalent to ('%*d', 12, intmax).

• Precision

For %f, %e, or %E: Number of digits to the right of the decimal
point.
Example: '%6.4f' prints pi as '3.1416'

For %g or %G Number of significant digits.
Example: '%6.4g' prints pi as ' 3.142'

Can be a number, or an asterisk (*) to refer to an argument in the
input list. For example, the input list ('%6.4f', pi) is equivalent
to ('%*.*f', 6, 4, pi).

The string can also include combinations of the following:

• Literal text to print. To print a single quotation mark, include ''
in formatSpec.

• Control characters, including:

1-4667

num2str

%% Percent character

\\ Backslash

\a Alarm

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xN Character whose ASCII code is the hexadecimal number,
N

\N Character whose ASCII code is the octal number, N

The following limitations apply to conversions:

• Numeric conversions print only the real component of complex
numbers.

• If you specify a conversion that does not fit the data, such as a string
conversion for a numeric value, MATLAB overrides the specified
conversion, and uses %e.

• If you apply a string conversion (%s) to integer values, MATLAB
converts values that correspond to valid character codes to characters.
For example, '%s' converts [65 66 67] to ABC.

Output
Arguments

str - String representation of input array
character array

String representation of the input array, A, returned as a character
array.

1-4668

num2str

Algorithms num2str trims any leading spaces from a string, even when formatSpec
includes a space character flag. For example, num2str(42.67,'%
10.2f') returns a 1-by-5 character array '42.67'.

Examples Default Conversions of Floating-Point Values

Convert pi and eps to text strings.

str = num2str(pi)

str =

3.1416

str = num2str(eps)

str =

2.2204e-16

Specifying Precision

Specify the number of significant digits for floating-point values.

A = gallery('normaldata',[2,2],0);
precision = 3;
str = num2str(A,precision)

str =

-0.433 0.125
-1.67 0.288

1-4669

num2str

Specifying Formatting

Specify the width, precision, and other formatting for an array of
floating-point values.

A = gallery('uniformdata',[2,3],0) * 9999;
formatSpec = '%10.5e\n';
str = num2str(A,formatSpec)

str =

9.50034e+03
6.06782e+03
8.91210e+03
2.31115e+03
4.85934e+03
7.62021e+03

The format '%10.5e' prints each value in exponential format with five
decimal places, and '\n' prints a new line character.

See Also cast | int2str | mat2str | sprintf | str2num

1-4670

Tiff.numberOfStrips

Purpose Total number of strips in image

Syntax numStrips = tiffobj.numberOfStrips()

Description numStrips = tiffobj.numberOfStrips() returns the total number of
strips in the image.

Examples Determine Number of Strips in Image

Determine the number of strips in the second image of a file.

Create a Tiff object associated with the example file, example.tif.

t = Tiff('example.tif','r');

When the Tiff object is created, the first image in the file is the current
image file directory.

Make the second image the current directory.

t.nextDirectory();

Get the number of strips in the image if the image has a stripped
organization.

if ~t.isTiled()
numStrips = t.numberOfStrips()

end

numStrips =

7

The image has 7 strips.

Close the Tiff object.

t.close();

1-4671

Tiff.numberOfStrips

References This method corresponds to the TIFFNumberOfStrips function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.numberOfTiles | Tiff.isTiled

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-4672

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

Tiff.numberOfTiles

Purpose Total number of tiles in image

Syntax numTiles = tiffobj.numberOfTiles()

Description numTiles = tiffobj.numberOfTiles() returns the total number of
tiles in the image.

Examples Determine Number of Tiles in Image

Create a Tiff object associated with the example file, example.tif. Get
the number of tiles in the image if the image has a tiled organization.

t = Tiff('example.tif','r');
if t.isTiled()

nTiles = t.numberOfTiles()
end

nTiles =

110

The image has 110 tiles.

Close the Tiff object.

t.close();

References This method corresponds to the TIFFNumberOfTiles function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.numberOfStrips | Tiff.isTiled

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-4673

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

numel

Purpose Number of array elements

Syntax n = numel(A)

Description n = numel(A) returns the number of elements, n, in array A, equivalent
to prod(size(A)).

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array. This includes numeric arrays, logical arrays, character arrays,
categorical arrays, tables, structure arrays, cell arrays, and object
arrays.

Examples Number of Elements in 3-D Matrix

Create a 4-by-4-by-2 matrix.

A = magic(4);
A(:,:,2) = A'

A(:,:,1) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

A(:,:,2) =
16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1

numel counts 32 elements in the matrix.

n = numel(A)

1-4674

numel

n =

32

Number of Elements in Cell Array of Strings

Create a cell array of strings.

A = {'dog','cat','fish','horse'};

numel counts 4 string elements in the array.

n = numel(A)

n =

4

Number of Elements in Table

Create a table with four variables listing patient information for five
people.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

A = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

A =

Age Height Weight BloodPressure
--- ------ ------ ---------------

1-4675

numel

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

Find the number of elements in the table.

n = numel(A)

n =

20

numel returns a value equivalent to prod(size(A)) corresponding to
the 5 rows and 4 variables.

Limitations • If A is a table, numel returns the number of elements in the table, A,
equivalent to prod(size(A)). Variables in a table can have multiple
columns, but numel(A) only accounts for the number of rows and
number of variables.

See Also prod | size | subsref

Concepts • “Caution When Customizing Classes”

1-4676

nzmax

Purpose Amount of storage allocated for nonzero matrix elements

Syntax n = nzmax(S)

Description n = nzmax(S) returns the amount of storage allocated for nonzero
elements.

If S is a sparse
matrix...

nzmax(S) is the number of storage locations
allocated for the nonzero elements in S.

If S is a full matrix... nzmax(S) = prod(size(S)).

Often, nnz(S) and nzmax(S) are the same. But if S is created by an
operation which produces fill-in matrix elements, such as sparse matrix
multiplication or sparse LU factorization, more storage may be allocated
than is actually required, and nzmax(S) reflects this. Alternatively,
sparse(i,j,s,m,n,nzmax) or its simpler form, spalloc(m,n,nzmax),
can set nzmax in anticipation of later fill-in.

See Also find | isa | nnz | nonzeros | size | whos

1-4677

ode15i

Purpose Solve fully implicit differential equations, variable order method

Syntax [T,Y] = ode15i(odefun,tspan,y0,yp0)
[T,Y] = ode15i(odefun,tspan,y0,yp0,options)
[T,Y,TE,YE,IE] = ode15i(odefun,tspan,y0,yp0,options...)
sol = ode15i(odefun,[t0 tfinal],y0,yp0,...)

Arguments The following table lists the input arguments for ode15i.

odefun A function handle that evaluates the left side of the
differential equations, which are of the form f(t,y,y′) = 0.

tspan A vector specifying the interval of integration, [t0,tf].
To obtain solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

y0, yp0 Vectors of initial conditions for y and y′ respectively.

options Optional integration argument created using the odeset
function. See odeset for details.

The following table lists the output arguments for ode15i.

T Column vector of time points

Y Solution array. Each row in y corresponds to the solution
at a time returned in the corresponding row of t.

Description [T,Y] = ode15i(odefun,tspan,y0,yp0) with tspan = [t0 tf]
integrates the system of differential equations f(t,y,y′) = 0 from time
t0 to tf with initial conditions y0 and yp0. odefun is a function
handle. Function ode15i solves ODEs and DAEs of index 1. The initial
conditions must be consistent, meaning that f(t0,y0,yp0) = 0. You can
use the function decic to compute consistent initial conditions close to
guessed values. Function odefun(t,y,yp), for a scalar t and column
vectors y and yp, must return a column vector corresponding to f(t,y,y′).
Each row in the solution array Y corresponds to a time returned in the

1-4678

ode15i

column vector T. To obtain solutions at specific times t0,t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions” explains how to provide additional
parameters to the function odefun, if necessary.

[T,Y] = ode15i(odefun,tspan,y0,yp0,options) solves as above
with default integration parameters replaced by property values
specified in options, an argument created with the odeset function.
Commonly used options include a scalar relative error tolerance RelTol
(1e-3 by default) and a vector of absolute error tolerances AbsTol (all
components 1e-6 by default). See odeset for details.

[T,Y,TE,YE,IE] = ode15i(odefun,tspan,y0,yp0,options...)
with the 'Events' property in options set to a function events,
solves as above while also finding where functions of (t,y,y′), called
event functions, are zero. The function events is of the form
[value,isterminal,direction] = events(t,y,yp) and includes
the necessary event functions. Code the function events so that the ith
element of each output vector corresponds to the ith event. For the ith
event function in events:

• value(i) is the value of the function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this
event function and 0 otherwise.

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Output TE is a column vector of times at which events occur. Rows of YE
are the corresponding solutions, and indices in vector IE specify which
event occurred. See “Integrator Options” in the MATLAB Mathematics
documentation for more information.

sol = ode15i(odefun,[t0 tfinal],y0,yp0,...) returns a structure
that can be used with deval to evaluate the solution at any point
between t0 and tfinal. The structure sol always includes these fields:

1-4679

ode15i

sol.x Steps chosen by the solver. If you specify the Events
option and a terminal event is detected, sol.x(end)
contains the end of the step at which the event
occurred.

sol.y Each column sol.y(:,i) contains the solution at
sol.x(i).

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred. sol.xe(end)
contains the exact point of a terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values indicate
which event the solver detected.

Options ode15i accepts the following parameters in options. For more
information, see odeset and Changing ODE Integration Properties in
the MATLAB Mathematics documentation.

Error
control

RelTol, AbsTol, NormControl

Solver
output

OutputFcn, OutputSel, Refine, Stats

Event
location

Events

Step size MaxStep, InitialStep

Jacobian
matrix

Jacobian, JPattern, Vectorized

1-4680

ode15i

Solver Output

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.
By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

Jacobian Matrices

The Jacobian matrices ∂f/∂y and ∂f/∂y′ are critical to reliability and
efficiency. You can provide these matrices as one of the following:

• Function of the form [dfdy,dfdyp] = FJAC(t,y,yp) that computes
the Jacobian matrices. If FJAC returns an empty matrix [] for either
dfdy or dfdyp, then ode15i approximates that matrix by finite
differences.

• Cell array of two constant matrices {dfdy,dfdyp}, either of which
could be empty.

Use odeset to set the Jacobian option to the function or cell array. If
you do not set the Jacobian option, ode15i approximates both Jacobian
matrices by finite differences.

For ode15i, Vectorized is a two-element cell array. Set the
first element to 'on' if odefun(t,[y1,y2,...],yp) returns
[odefun(t,y1,yp),odefun(t,y2,yp),...]. Set the second
element to 'on' if odefun(t,y,[yp1,yp2,...]) returns
[odefun(t,y,yp1),odefun(t,y,yp2),...]. The default value of
Vectorized is {'off','off'}.

1-4681

ode15i

For ode15i, JPattern is also a two-element sparse matrix cell array. If
∂f/∂y or ∂f/∂y′ is a sparse matrix, set JPattern to the sparsity patterns,
{SPDY,SPDYP}. A sparsity pattern of ∂f/∂y is a sparse matrix SPDY with
SPDY(i,j) = 1 if component i of f(t,y,yp) depends on component j of
y, and 0 otherwise. Use SPDY = [] to indicate that ∂f/∂y is a full matrix.
Similarly for ∂f/∂y′ and SPDYP. The default value of JPattern is {[],[]}.

Examples Solve Weissinger Implicit ODE

This example uses a helper function, decic, to hold fixed the initial
value for y(t0) and compute a consistent initial value for y’(t0) for
the Weissinger implicit ODE. The Weissinger function evaluates the
residual of the implicit ODE.

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;
[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0);

Use ode15i to solve the ODE, and then plot the numerical solution, y,
against the analytical solution, ytrue.

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);
ytrue = sqrt(t.^2 + 0.5);
plot(t,y,t,ytrue,'o');

1-4682

ode15i

Other Examples

The files, ihb1dae.m and iburgersode.m, are examples of implicit
ODEs.

See Also decic | deval | odeget | odeset | function_handle | ode45 | ode23
| ode113 | ode15s | ode23s | ode23t | ode23tb

1-4683

ode15s

Purpose Solve stiff differential equations and DAEs; variable order method

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

This page contains an overview of the solver functions: ode23, ode45,
ode113, ode15s, ode23s, ode23t, and ode23tb. You can call any of
these solvers by substituting the placeholder, solver, with any of the
function names.

Arguments The following table describes the input arguments to the solvers.

odefun A function handle that evaluates the right side
of the differential equations. All solvers solve
systems of equations in the form y′ = f(t,y)
or problems that involve a mass matrix,
M(t,y)y′ = f(t,y). The ode23s solver can solve
only equations with constant mass matrices.
ode15s and ode23t can solve problems
with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration,
[t0,tf]. The solver imposes the initial
conditions at tspan(1), and integrates
from tspan(1) to tspan(end). To obtain
solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

For tspan vectors with two elements [t0 tf],
the solver returns the solution evaluated at
every integration step. For tspan vectors with
more than two elements, the solver returns
solutions evaluated at the given time points.
The time values must be in order, either
increasing or decreasing.

1-4684

ode15s

Specifying tspan with more than two elements
does not affect the internal time steps that
the solver uses to traverse the interval from
tspan(1) to tspan(end). All solvers in the
ODE suite obtain output values by means of
continuous extensions of the basic formulas.
Although a solver does not necessarily step
precisely to a time point specified in tspan,
the solutions produced at the specified time
points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two
elements has little effect on the efficiency of
computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change
the default integration properties. This is the
fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

You can create options using the odeset
function. See odeset for details.

The following table lists the output arguments for the solvers.

T Column vector of time points.

Y Solution array. Each row in Y corresponds to the solution
at a time returned in the corresponding row of T.

TE The time at which an event occurs.

YE The solution at the time of the event.

1-4685

ode15s

IE The index i of the event function that vanishes.

sol Structure to evaluate the solution.

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates
the system of differential equations y′ = f(t,y) from time t0 to tf with
initial conditions y0. The first input argument, odefun, is a function
handle. The function, f = odefun(t,y), for a scalar t and a column
vector y, must return a column vector f corresponding to f(t,y). Each
row in the solution array Y corresponds to a time returned in column
vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

[T,Y] = solver(odefun,tspan,y0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly
used properties include a scalar relative error tolerance RelTol (1e-3
by default) and a vector of absolute error tolerances AbsTol (all
components are 1e-6 by default). If certain components of the solution
must be nonnegative, use the odeset function to set the NonNegative
property to the indices of these components. See odeset for details.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves
as above while also finding where functions of (t,y), called event
functions, are zero. For each event function, you specify whether the
integration is to terminate at a zero and whether the direction of
the zero crossing matters. Do this by setting the 'Events' property
to a function, e.g., events or @events, and creating a function
[value,isterminal,direction] = events(t,y). For the ith event
function in events,

• value(i) is the value of the function.

• isterminal(i) = 1, if the integration is to terminate at a zero of
this event function and 0 otherwise.

1-4686

ode15s

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time
at which an event occurs, the solution at the time of the event, and the
index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you
can use with deval to evaluate the solution at any point on the interval
[t0,tf]. You must pass odefun as a function handle. The structure
sol always includes these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution
at sol.x(i).

sol.solver Solver name.

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred.
sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values
indicate which event the solver detected.

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.

1-4687

ode15s

By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian
matrix ∂f/∂y is critical to reliability and efficiency. Use odeset to set
Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian ∂f/∂y or to the
matrix ∂f/∂y if the Jacobian is constant. If the Jacobian property is
not set (the default), ∂f/∂y is approximated by finite differences. Set
the Vectorized property ’on’ if the ODE function is coded so that
odefun(T,[Y1,Y2 ...]) returns [odefun(T,Y1),odefun(T,Y2) ...]. If
∂f/∂y is a sparse matrix, set the JPattern property to the sparsity
pattern of ∂f/∂y, i.e., a sparse matrix S with S(i,j) = 1 if the ith
component of f(t,y) depends on the jth component of y, and 0 otherwise.

The solvers of the ODE suite can solve problems of the form
M(t,y)y′ = f(t,y), with time- and state-dependent mass matrix M. (The
ode23s solver can solve only equations with constant mass matrices.)
If a problem has a mass matrix, create a function M = MASS(t,y) that
returns the value of the mass matrix, and use odeset to set the Mass
property to @MASS. If the mass matrix is constant, the matrix should be
used as the value of the Mass property. Problems with state-dependent
mass matrices are more difficult:

• If the mass matrix does not depend on the state variable y and the
function MASS is to be called with one input argument, t, set the
MStateDependence property to ’none’.

• If the mass matrix depends weakly on y, set MStateDependence to
’weak’ (the default); otherwise, set it to ’strong’. In either case, the
function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit
sparsity:

• Return a sparse M(t,y).

1-4688

ode15s

• Supply the sparsity pattern of ∂f/∂y using the JPattern property or
a sparse ∂f/∂y using the Jacobian property.

• For strongly state-dependent M(t,y), set MvPattern to a sparse
matrix S with S(i,j) = 1 if for any k, the (i,k) component of M(t,y)
depends on component j of y, and 0 otherwise.

If the mass matrix M is singular, then M(t,y)y′ = f(t,y) is a system of
differential algebraic equations. DAEs have solutions only when y0 is
consistent, that is, if there is a vector yp0 such that M(t0,y0)yp0 = f(t0,y0).
The ode15s and ode23t solvers can solve DAEs of index 1 provided that
y0 is sufficiently close to being consistent. If there is a mass matrix,
you can use odeset to set the MassSingular property to 'yes', 'no',
or 'maybe'. The default value of 'maybe' causes the solver to test
whether the problem is a DAE. You can provide yp0 as the value of the
InitialSlope property. The default is the zero vector. If a problem is
a DAE, and y0 and yp0 are not consistent, the solver treats them as
guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem. When solving DAEs, it is
very advantageous to formulate the problem so that M is a diagonal
matrix (a semi-explicit DAE).

Solver
Problem
Type

Order of
Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the
first solver you try.

ode23 Nonstiff Low For problems
with crude error
tolerances or for
solving moderately
stiff problems.

1-4689

ode15s

Solver
Problem
Type

Order of
Accuracy When to Use

ode113 Nonstiff Low to high For problems
with stringent
error tolerances
or for solving
computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow
because the problem
is stiff.

ode23s Stiff Low If using crude error
tolerances to solve
stiff systems and
the mass matrix is
constant.

ode23t Moderately
Stiff

Low For moderately stiff
problems if you need
a solution without
numerical damping.

ode23tb Stiff Low If using crude error
tolerances to solve
stiff systems.

The algorithms used in the ODE solvers vary according to order of
accuracy [6] and the type of systems (stiff or nonstiff) they are designed
to solve. See “Algorithms” on page 1-4696 for more details.

Options Different solvers accept different parameters in the options list. For
more information, see odeset and “Integrator Options” in the MATLAB
Mathematics documentation.

1-4690

ode15s

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

NonNegative √ √ √ √ * — √ * √ *

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Note You can use the NonNegative parameter with ode15s, ode23t,
and ode23tb only for those problems for which there is no mass matrix.

Examples Example 1

An example of a nonstiff system is the system of equations describing
the motion of a rigid body without external forces.

1-4691

ode15s

y y y y

y y y y

y

1 2 3 1

2 1 3 2

3

0 0

0 1

()

()

 0 51 0 11 2 3. ()y y y

To simulate this system, create a function rigid containing the
equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset
command and solve on a time interval [0 12] with an initial condition
vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

1-4692

ode15s

Example 2

An example of a stiff system is provided by the van der Pol equations in
relaxation oscillation. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

y y y

y y y y y

1 2 1

2 1
2

2 1 2

0 2

1000 1 0 0

()

() ()

To simulate this system, create a function vdp1000 containing the
equations

function dy = vdp1000(t,y)

1-4693

ode15s

dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute
tolerances (1e-3 and 1e-6, respectively) and solve on a time interval of
[0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the
solution

plot(T,Y(:,1),'-o')

1-4694

ode15s

Example 3

This example solves an ordinary differential equation with
time-dependent terms.

Consider the following ODE, with time-dependent parameters defined
only through the set of data points given in two vectors:

y'(t) + f(t)y(t) = g(t)

The initial condition is y(0) = 0, where the function f(t) is defined
through the n-by-1 vectors tf and f, and the function g(t) is defined
through the m-by-1 vectors tg and g.

First, define the time-dependent parameters f(t) and g(t) as the
following:

ft = linspace(0,5,25); % Generate t for f
f = ft.^2 - ft - 3; % Generate f(t)
gt = linspace(1,6,25); % Generate t for g
g = 3*sin(gt-0.25); % Generate g(t)

Write a function to interpolate the data sets specified above to obtain
the value of the time-dependent terms at the specified time:

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evaluate ODE at time t

Call the derivative function myode.m within the MATLAB ode45
function specifying time as the first input argument :

Tspan = [1 5]; % Solve from t=1 to t=5
IC = 1; % y(t=0) = 1
[T Y] = ode45(@(t,y) myode(t,y,ft,f,gt,g),Tspan,IC); % Solve ODE

Plot the solution y(t) as a function of time:

plot(T, Y);

1-4695

ode15s

title('Plot of y as a function of time');
xlabel('Time'); ylabel('Y(t)');

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn),
it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a first try for
most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more efficient than ode45 at crude

1-4696

ode15s

tolerances and in the presence of moderate stiffness. Like ode45, ode23
is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It
may be more efficient than ode45 at stringent tolerances and when the
ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding
time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they
appear to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when
ode45 fails, or is very inefficient, and you suspect that the problem is
stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because
it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s
is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping. ode23t can solve
DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both
stages. Like ode23s, this solver may be more efficient than ode15s at
crude tolerances. [8], [1]

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose,
and R. Smith, “Transient Simulation of Silicon Devices and Circuits,”
IEEE Trans. CAD, 4 (1985), pp. 436–451.

1-4697

ode15s

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta
formulas,” Appl. Math. Letters, Vol. 2, 1989, pp. 321–325.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp. 19–26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and
Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, 1997, pp. 1–22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving
Index-1 DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41,
1999, pp. 538–552.

See Also deval | ode15i | odeget | odeset | function_handle

1-4698

ode23

Purpose Solve nonstiff differential equations; low order method

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

This page contains an overview of the solver functions: ode23, ode45,
ode113, ode15s, ode23s, ode23t, and ode23tb. You can call any of
these solvers by substituting the placeholder, solver, with any of the
function names.

Arguments The following table describes the input arguments to the solvers.

odefun A function handle that evaluates the right side
of the differential equations. All solvers solve
systems of equations in the form y′ = f(t,y)
or problems that involve a mass matrix,
M(t,y)y′ = f(t,y). The ode23s solver can solve
only equations with constant mass matrices.
ode15s and ode23t can solve problems
with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration,
[t0,tf]. The solver imposes the initial
conditions at tspan(1), and integrates
from tspan(1) to tspan(end). To obtain
solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

For tspan vectors with two elements [t0 tf],
the solver returns the solution evaluated at
every integration step. For tspan vectors with
more than two elements, the solver returns
solutions evaluated at the given time points.
The time values must be in order, either
increasing or decreasing.

1-4699

ode23

Specifying tspan with more than two elements
does not affect the internal time steps that
the solver uses to traverse the interval from
tspan(1) to tspan(end). All solvers in the
ODE suite obtain output values by means of
continuous extensions of the basic formulas.
Although a solver does not necessarily step
precisely to a time point specified in tspan,
the solutions produced at the specified time
points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two
elements has little effect on the efficiency of
computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change
the default integration properties. This is the
fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

You can create options using the odeset
function. See odeset for details.

The following table lists the output arguments for the solvers.

T Column vector of time points.

Y Solution array. Each row in Y corresponds to the solution
at a time returned in the corresponding row of T.

TE The time at which an event occurs.

YE The solution at the time of the event.

1-4700

ode23

IE The index i of the event function that vanishes.

sol Structure to evaluate the solution.

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates
the system of differential equations y′ = f(t,y) from time t0 to tf with
initial conditions y0. The first input argument, odefun, is a function
handle. The function, f = odefun(t,y), for a scalar t and a column
vector y, must return a column vector f corresponding to f(t,y). Each
row in the solution array Y corresponds to a time returned in column
vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

[T,Y] = solver(odefun,tspan,y0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly
used properties include a scalar relative error tolerance RelTol (1e-3
by default) and a vector of absolute error tolerances AbsTol (all
components are 1e-6 by default). If certain components of the solution
must be nonnegative, use the odeset function to set the NonNegative
property to the indices of these components. See odeset for details.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves
as above while also finding where functions of (t,y), called event
functions, are zero. For each event function, you specify whether the
integration is to terminate at a zero and whether the direction of
the zero crossing matters. Do this by setting the 'Events' property
to a function, e.g., events or @events, and creating a function
[value,isterminal,direction] = events(t,y). For the ith event
function in events,

• value(i) is the value of the function.

• isterminal(i) = 1, if the integration is to terminate at a zero of
this event function and 0 otherwise.

1-4701

ode23

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time
at which an event occurs, the solution at the time of the event, and the
index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you
can use with deval to evaluate the solution at any point on the interval
[t0,tf]. You must pass odefun as a function handle. The structure
sol always includes these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution
at sol.x(i).

sol.solver Solver name.

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred.
sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values
indicate which event the solver detected.

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.

1-4702

ode23

By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian
matrix ∂f/∂y is critical to reliability and efficiency. Use odeset to set
Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian ∂f/∂y or to the
matrix ∂f/∂y if the Jacobian is constant. If the Jacobian property is
not set (the default), ∂f/∂y is approximated by finite differences. Set
the Vectorized property ’on’ if the ODE function is coded so that
odefun(T,[Y1,Y2 ...]) returns [odefun(T,Y1),odefun(T,Y2) ...]. If
∂f/∂y is a sparse matrix, set the JPattern property to the sparsity
pattern of ∂f/∂y, i.e., a sparse matrix S with S(i,j) = 1 if the ith
component of f(t,y) depends on the jth component of y, and 0 otherwise.

The solvers of the ODE suite can solve problems of the form
M(t,y)y′ = f(t,y), with time- and state-dependent mass matrix M. (The
ode23s solver can solve only equations with constant mass matrices.)
If a problem has a mass matrix, create a function M = MASS(t,y) that
returns the value of the mass matrix, and use odeset to set the Mass
property to @MASS. If the mass matrix is constant, the matrix should be
used as the value of the Mass property. Problems with state-dependent
mass matrices are more difficult:

• If the mass matrix does not depend on the state variable y and the
function MASS is to be called with one input argument, t, set the
MStateDependence property to ’none’.

• If the mass matrix depends weakly on y, set MStateDependence to
’weak’ (the default); otherwise, set it to ’strong’. In either case, the
function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit
sparsity:

• Return a sparse M(t,y).

1-4703

ode23

• Supply the sparsity pattern of ∂f/∂y using the JPattern property or
a sparse ∂f/∂y using the Jacobian property.

• For strongly state-dependent M(t,y), set MvPattern to a sparse
matrix S with S(i,j) = 1 if for any k, the (i,k) component of M(t,y)
depends on component j of y, and 0 otherwise.

If the mass matrix M is singular, then M(t,y)y′ = f(t,y) is a system of
differential algebraic equations. DAEs have solutions only when y0 is
consistent, that is, if there is a vector yp0 such that M(t0,y0)yp0 = f(t0,y0).
The ode15s and ode23t solvers can solve DAEs of index 1 provided that
y0 is sufficiently close to being consistent. If there is a mass matrix,
you can use odeset to set the MassSingular property to 'yes', 'no',
or 'maybe'. The default value of 'maybe' causes the solver to test
whether the problem is a DAE. You can provide yp0 as the value of the
InitialSlope property. The default is the zero vector. If a problem is
a DAE, and y0 and yp0 are not consistent, the solver treats them as
guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem. When solving DAEs, it is
very advantageous to formulate the problem so that M is a diagonal
matrix (a semi-explicit DAE).

Solver
Problem
Type

Order of
Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the
first solver you try.

ode23 Nonstiff Low For problems
with crude error
tolerances or for
solving moderately
stiff problems.

1-4704

ode23

Solver
Problem
Type

Order of
Accuracy When to Use

ode113 Nonstiff Low to high For problems
with stringent
error tolerances
or for solving
computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow
because the problem
is stiff.

ode23s Stiff Low If using crude error
tolerances to solve
stiff systems and
the mass matrix is
constant.

ode23t Moderately
Stiff

Low For moderately stiff
problems if you need
a solution without
numerical damping.

ode23tb Stiff Low If using crude error
tolerances to solve
stiff systems.

The algorithms used in the ODE solvers vary according to order of
accuracy [6] and the type of systems (stiff or nonstiff) they are designed
to solve. See “Algorithms” on page 1-4711 for more details.

Options Different solvers accept different parameters in the options list. For
more information, see odeset and “Integrator Options” in the MATLAB
Mathematics documentation.

1-4705

ode23

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

NonNegative √ √ √ √ * — √ * √ *

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Note You can use the NonNegative parameter with ode15s, ode23t,
and ode23tb only for those problems for which there is no mass matrix.

Examples Example 1

An example of a nonstiff system is the system of equations describing
the motion of a rigid body without external forces.

1-4706

ode23

y y y y

y y y y

y

1 2 3 1

2 1 3 2

3

0 0

0 1

()

()

 0 51 0 11 2 3. ()y y y

To simulate this system, create a function rigid containing the
equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset
command and solve on a time interval [0 12] with an initial condition
vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

1-4707

ode23

Example 2

An example of a stiff system is provided by the van der Pol equations in
relaxation oscillation. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

y y y

y y y y y

1 2 1

2 1
2

2 1 2

0 2

1000 1 0 0

()

() ()

To simulate this system, create a function vdp1000 containing the
equations

function dy = vdp1000(t,y)

1-4708

ode23

dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute
tolerances (1e-3 and 1e-6, respectively) and solve on a time interval of
[0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the
solution

plot(T,Y(:,1),'-o')

1-4709

ode23

Example 3

This example solves an ordinary differential equation with
time-dependent terms.

Consider the following ODE, with time-dependent parameters defined
only through the set of data points given in two vectors:

y'(t) + f(t)y(t) = g(t)

The initial condition is y(0) = 0, where the function f(t) is defined
through the n-by-1 vectors tf and f, and the function g(t) is defined
through the m-by-1 vectors tg and g.

First, define the time-dependent parameters f(t) and g(t) as the
following:

ft = linspace(0,5,25); % Generate t for f
f = ft.^2 - ft - 3; % Generate f(t)
gt = linspace(1,6,25); % Generate t for g
g = 3*sin(gt-0.25); % Generate g(t)

Write a function to interpolate the data sets specified above to obtain
the value of the time-dependent terms at the specified time:

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evaluate ODE at time t

Call the derivative function myode.m within the MATLAB ode45
function specifying time as the first input argument :

Tspan = [1 5]; % Solve from t=1 to t=5
IC = 1; % y(t=0) = 1
[T Y] = ode45(@(t,y) myode(t,y,ft,f,gt,g),Tspan,IC); % Solve ODE

Plot the solution y(t) as a function of time:

plot(T, Y);

1-4710

ode23

title('Plot of y as a function of time');
xlabel('Time'); ylabel('Y(t)');

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn),
it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a first try for
most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more efficient than ode45 at crude

1-4711

ode23

tolerances and in the presence of moderate stiffness. Like ode45, ode23
is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It
may be more efficient than ode45 at stringent tolerances and when the
ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding
time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they
appear to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when
ode45 fails, or is very inefficient, and you suspect that the problem is
stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because
it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s
is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping. ode23t can solve
DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both
stages. Like ode23s, this solver may be more efficient than ode15s at
crude tolerances. [8], [1]

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose,
and R. Smith, “Transient Simulation of Silicon Devices and Circuits,”
IEEE Trans. CAD, 4 (1985), pp. 436–451.

1-4712

ode23

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta
formulas,” Appl. Math. Letters, Vol. 2, 1989, pp. 321–325.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp. 19–26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and
Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, 1997, pp. 1–22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving
Index-1 DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41,
1999, pp. 538–552.

See Also deval | ode15i | odeget | odeset | function_handle

1-4713

ode23s

Purpose Solve stiff differential equations; low order method

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

This page contains an overview of the solver functions: ode23, ode45,
ode113, ode15s, ode23s, ode23t, and ode23tb. You can call any of
these solvers by substituting the placeholder, solver, with any of the
function names.

Arguments The following table describes the input arguments to the solvers.

odefun A function handle that evaluates the right side
of the differential equations. All solvers solve
systems of equations in the form y′ = f(t,y)
or problems that involve a mass matrix,
M(t,y)y′ = f(t,y). The ode23s solver can solve
only equations with constant mass matrices.
ode15s and ode23t can solve problems
with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration,
[t0,tf]. The solver imposes the initial
conditions at tspan(1), and integrates
from tspan(1) to tspan(end). To obtain
solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

For tspan vectors with two elements [t0 tf],
the solver returns the solution evaluated at
every integration step. For tspan vectors with
more than two elements, the solver returns
solutions evaluated at the given time points.
The time values must be in order, either
increasing or decreasing.

1-4714

ode23s

Specifying tspan with more than two elements
does not affect the internal time steps that
the solver uses to traverse the interval from
tspan(1) to tspan(end). All solvers in the
ODE suite obtain output values by means of
continuous extensions of the basic formulas.
Although a solver does not necessarily step
precisely to a time point specified in tspan,
the solutions produced at the specified time
points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two
elements has little effect on the efficiency of
computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change
the default integration properties. This is the
fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

You can create options using the odeset
function. See odeset for details.

The following table lists the output arguments for the solvers.

T Column vector of time points.

Y Solution array. Each row in Y corresponds to the solution
at a time returned in the corresponding row of T.

TE The time at which an event occurs.

YE The solution at the time of the event.

1-4715

ode23s

IE The index i of the event function that vanishes.

sol Structure to evaluate the solution.

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates
the system of differential equations y′ = f(t,y) from time t0 to tf with
initial conditions y0. The first input argument, odefun, is a function
handle. The function, f = odefun(t,y), for a scalar t and a column
vector y, must return a column vector f corresponding to f(t,y). Each
row in the solution array Y corresponds to a time returned in column
vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

[T,Y] = solver(odefun,tspan,y0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly
used properties include a scalar relative error tolerance RelTol (1e-3
by default) and a vector of absolute error tolerances AbsTol (all
components are 1e-6 by default). If certain components of the solution
must be nonnegative, use the odeset function to set the NonNegative
property to the indices of these components. See odeset for details.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves
as above while also finding where functions of (t,y), called event
functions, are zero. For each event function, you specify whether the
integration is to terminate at a zero and whether the direction of
the zero crossing matters. Do this by setting the 'Events' property
to a function, e.g., events or @events, and creating a function
[value,isterminal,direction] = events(t,y). For the ith event
function in events,

• value(i) is the value of the function.

• isterminal(i) = 1, if the integration is to terminate at a zero of
this event function and 0 otherwise.

1-4716

ode23s

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time
at which an event occurs, the solution at the time of the event, and the
index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you
can use with deval to evaluate the solution at any point on the interval
[t0,tf]. You must pass odefun as a function handle. The structure
sol always includes these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution
at sol.x(i).

sol.solver Solver name.

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred.
sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values
indicate which event the solver detected.

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.

1-4717

ode23s

By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian
matrix ∂f/∂y is critical to reliability and efficiency. Use odeset to set
Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian ∂f/∂y or to the
matrix ∂f/∂y if the Jacobian is constant. If the Jacobian property is
not set (the default), ∂f/∂y is approximated by finite differences. Set
the Vectorized property ’on’ if the ODE function is coded so that
odefun(T,[Y1,Y2 ...]) returns [odefun(T,Y1),odefun(T,Y2) ...]. If
∂f/∂y is a sparse matrix, set the JPattern property to the sparsity
pattern of ∂f/∂y, i.e., a sparse matrix S with S(i,j) = 1 if the ith
component of f(t,y) depends on the jth component of y, and 0 otherwise.

The solvers of the ODE suite can solve problems of the form
M(t,y)y′ = f(t,y), with time- and state-dependent mass matrix M. (The
ode23s solver can solve only equations with constant mass matrices.)
If a problem has a mass matrix, create a function M = MASS(t,y) that
returns the value of the mass matrix, and use odeset to set the Mass
property to @MASS. If the mass matrix is constant, the matrix should be
used as the value of the Mass property. Problems with state-dependent
mass matrices are more difficult:

• If the mass matrix does not depend on the state variable y and the
function MASS is to be called with one input argument, t, set the
MStateDependence property to ’none’.

• If the mass matrix depends weakly on y, set MStateDependence to
’weak’ (the default); otherwise, set it to ’strong’. In either case, the
function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit
sparsity:

• Return a sparse M(t,y).

1-4718

ode23s

• Supply the sparsity pattern of ∂f/∂y using the JPattern property or
a sparse ∂f/∂y using the Jacobian property.

• For strongly state-dependent M(t,y), set MvPattern to a sparse
matrix S with S(i,j) = 1 if for any k, the (i,k) component of M(t,y)
depends on component j of y, and 0 otherwise.

If the mass matrix M is singular, then M(t,y)y′ = f(t,y) is a system of
differential algebraic equations. DAEs have solutions only when y0 is
consistent, that is, if there is a vector yp0 such that M(t0,y0)yp0 = f(t0,y0).
The ode15s and ode23t solvers can solve DAEs of index 1 provided that
y0 is sufficiently close to being consistent. If there is a mass matrix,
you can use odeset to set the MassSingular property to 'yes', 'no',
or 'maybe'. The default value of 'maybe' causes the solver to test
whether the problem is a DAE. You can provide yp0 as the value of the
InitialSlope property. The default is the zero vector. If a problem is
a DAE, and y0 and yp0 are not consistent, the solver treats them as
guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem. When solving DAEs, it is
very advantageous to formulate the problem so that M is a diagonal
matrix (a semi-explicit DAE).

Solver
Problem
Type

Order of
Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the
first solver you try.

ode23 Nonstiff Low For problems
with crude error
tolerances or for
solving moderately
stiff problems.

1-4719

ode23s

Solver
Problem
Type

Order of
Accuracy When to Use

ode113 Nonstiff Low to high For problems
with stringent
error tolerances
or for solving
computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow
because the problem
is stiff.

ode23s Stiff Low If using crude error
tolerances to solve
stiff systems and
the mass matrix is
constant.

ode23t Moderately
Stiff

Low For moderately stiff
problems if you need
a solution without
numerical damping.

ode23tb Stiff Low If using crude error
tolerances to solve
stiff systems.

The algorithms used in the ODE solvers vary according to order of
accuracy [6] and the type of systems (stiff or nonstiff) they are designed
to solve. See “Algorithms” on page 1-4726 for more details.

Options Different solvers accept different parameters in the options list. For
more information, see odeset and “Integrator Options” in the MATLAB
Mathematics documentation.

1-4720

ode23s

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

NonNegative √ √ √ √ * — √ * √ *

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Note You can use the NonNegative parameter with ode15s, ode23t,
and ode23tb only for those problems for which there is no mass matrix.

Examples Example 1

An example of a nonstiff system is the system of equations describing
the motion of a rigid body without external forces.

1-4721

ode23s

y y y y

y y y y

y

1 2 3 1

2 1 3 2

3

0 0

0 1

()

()

 0 51 0 11 2 3. ()y y y

To simulate this system, create a function rigid containing the
equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset
command and solve on a time interval [0 12] with an initial condition
vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

1-4722

ode23s

Example 2

An example of a stiff system is provided by the van der Pol equations in
relaxation oscillation. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

y y y

y y y y y

1 2 1

2 1
2

2 1 2

0 2

1000 1 0 0

()

() ()

To simulate this system, create a function vdp1000 containing the
equations

function dy = vdp1000(t,y)

1-4723

ode23s

dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute
tolerances (1e-3 and 1e-6, respectively) and solve on a time interval of
[0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the
solution

plot(T,Y(:,1),'-o')

1-4724

ode23s

Example 3

This example solves an ordinary differential equation with
time-dependent terms.

Consider the following ODE, with time-dependent parameters defined
only through the set of data points given in two vectors:

y'(t) + f(t)y(t) = g(t)

The initial condition is y(0) = 0, where the function f(t) is defined
through the n-by-1 vectors tf and f, and the function g(t) is defined
through the m-by-1 vectors tg and g.

First, define the time-dependent parameters f(t) and g(t) as the
following:

ft = linspace(0,5,25); % Generate t for f
f = ft.^2 - ft - 3; % Generate f(t)
gt = linspace(1,6,25); % Generate t for g
g = 3*sin(gt-0.25); % Generate g(t)

Write a function to interpolate the data sets specified above to obtain
the value of the time-dependent terms at the specified time:

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evaluate ODE at time t

Call the derivative function myode.m within the MATLAB ode45
function specifying time as the first input argument :

Tspan = [1 5]; % Solve from t=1 to t=5
IC = 1; % y(t=0) = 1
[T Y] = ode45(@(t,y) myode(t,y,ft,f,gt,g),Tspan,IC); % Solve ODE

Plot the solution y(t) as a function of time:

plot(T, Y);

1-4725

ode23s

title('Plot of y as a function of time');
xlabel('Time'); ylabel('Y(t)');

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn),
it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a first try for
most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more efficient than ode45 at crude

1-4726

ode23s

tolerances and in the presence of moderate stiffness. Like ode45, ode23
is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It
may be more efficient than ode45 at stringent tolerances and when the
ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding
time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they
appear to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when
ode45 fails, or is very inefficient, and you suspect that the problem is
stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because
it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s
is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping. ode23t can solve
DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both
stages. Like ode23s, this solver may be more efficient than ode15s at
crude tolerances. [8], [1]

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose,
and R. Smith, “Transient Simulation of Silicon Devices and Circuits,”
IEEE Trans. CAD, 4 (1985), pp. 436–451.

1-4727

ode23s

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta
formulas,” Appl. Math. Letters, Vol. 2, 1989, pp. 321–325.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp. 19–26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and
Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, 1997, pp. 1–22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving
Index-1 DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41,
1999, pp. 538–552.

See Also deval | ode15i | odeget | odeset | function_handle

1-4728

ode23t

Purpose Solve moderately stiff ODEs and DAEs; trapezoidal rule

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

This page contains an overview of the solver functions: ode23, ode45,
ode113, ode15s, ode23s, ode23t, and ode23tb. You can call any of
these solvers by substituting the placeholder, solver, with any of the
function names.

Arguments The following table describes the input arguments to the solvers.

odefun A function handle that evaluates the right side
of the differential equations. All solvers solve
systems of equations in the form y′ = f(t,y)
or problems that involve a mass matrix,
M(t,y)y′ = f(t,y). The ode23s solver can solve
only equations with constant mass matrices.
ode15s and ode23t can solve problems
with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration,
[t0,tf]. The solver imposes the initial
conditions at tspan(1), and integrates
from tspan(1) to tspan(end). To obtain
solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

For tspan vectors with two elements [t0 tf],
the solver returns the solution evaluated at
every integration step. For tspan vectors with
more than two elements, the solver returns
solutions evaluated at the given time points.
The time values must be in order, either
increasing or decreasing.

1-4729

ode23t

Specifying tspan with more than two elements
does not affect the internal time steps that
the solver uses to traverse the interval from
tspan(1) to tspan(end). All solvers in the
ODE suite obtain output values by means of
continuous extensions of the basic formulas.
Although a solver does not necessarily step
precisely to a time point specified in tspan,
the solutions produced at the specified time
points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two
elements has little effect on the efficiency of
computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change
the default integration properties. This is the
fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

You can create options using the odeset
function. See odeset for details.

The following table lists the output arguments for the solvers.

T Column vector of time points.

Y Solution array. Each row in Y corresponds to the solution
at a time returned in the corresponding row of T.

TE The time at which an event occurs.

YE The solution at the time of the event.

1-4730

ode23t

IE The index i of the event function that vanishes.

sol Structure to evaluate the solution.

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates
the system of differential equations y′ = f(t,y) from time t0 to tf with
initial conditions y0. The first input argument, odefun, is a function
handle. The function, f = odefun(t,y), for a scalar t and a column
vector y, must return a column vector f corresponding to f(t,y). Each
row in the solution array Y corresponds to a time returned in column
vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

[T,Y] = solver(odefun,tspan,y0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly
used properties include a scalar relative error tolerance RelTol (1e-3
by default) and a vector of absolute error tolerances AbsTol (all
components are 1e-6 by default). If certain components of the solution
must be nonnegative, use the odeset function to set the NonNegative
property to the indices of these components. See odeset for details.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves
as above while also finding where functions of (t,y), called event
functions, are zero. For each event function, you specify whether the
integration is to terminate at a zero and whether the direction of
the zero crossing matters. Do this by setting the 'Events' property
to a function, e.g., events or @events, and creating a function
[value,isterminal,direction] = events(t,y). For the ith event
function in events,

• value(i) is the value of the function.

• isterminal(i) = 1, if the integration is to terminate at a zero of
this event function and 0 otherwise.

1-4731

ode23t

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time
at which an event occurs, the solution at the time of the event, and the
index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you
can use with deval to evaluate the solution at any point on the interval
[t0,tf]. You must pass odefun as a function handle. The structure
sol always includes these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution
at sol.x(i).

sol.solver Solver name.

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred.
sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values
indicate which event the solver detected.

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.

1-4732

ode23t

By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian
matrix ∂f/∂y is critical to reliability and efficiency. Use odeset to set
Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian ∂f/∂y or to the
matrix ∂f/∂y if the Jacobian is constant. If the Jacobian property is
not set (the default), ∂f/∂y is approximated by finite differences. Set
the Vectorized property ’on’ if the ODE function is coded so that
odefun(T,[Y1,Y2 ...]) returns [odefun(T,Y1),odefun(T,Y2) ...]. If
∂f/∂y is a sparse matrix, set the JPattern property to the sparsity
pattern of ∂f/∂y, i.e., a sparse matrix S with S(i,j) = 1 if the ith
component of f(t,y) depends on the jth component of y, and 0 otherwise.

The solvers of the ODE suite can solve problems of the form
M(t,y)y′ = f(t,y), with time- and state-dependent mass matrix M. (The
ode23s solver can solve only equations with constant mass matrices.)
If a problem has a mass matrix, create a function M = MASS(t,y) that
returns the value of the mass matrix, and use odeset to set the Mass
property to @MASS. If the mass matrix is constant, the matrix should be
used as the value of the Mass property. Problems with state-dependent
mass matrices are more difficult:

• If the mass matrix does not depend on the state variable y and the
function MASS is to be called with one input argument, t, set the
MStateDependence property to ’none’.

• If the mass matrix depends weakly on y, set MStateDependence to
’weak’ (the default); otherwise, set it to ’strong’. In either case, the
function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit
sparsity:

• Return a sparse M(t,y).

1-4733

ode23t

• Supply the sparsity pattern of ∂f/∂y using the JPattern property or
a sparse ∂f/∂y using the Jacobian property.

• For strongly state-dependent M(t,y), set MvPattern to a sparse
matrix S with S(i,j) = 1 if for any k, the (i,k) component of M(t,y)
depends on component j of y, and 0 otherwise.

If the mass matrix M is singular, then M(t,y)y′ = f(t,y) is a system of
differential algebraic equations. DAEs have solutions only when y0 is
consistent, that is, if there is a vector yp0 such that M(t0,y0)yp0 = f(t0,y0).
The ode15s and ode23t solvers can solve DAEs of index 1 provided that
y0 is sufficiently close to being consistent. If there is a mass matrix,
you can use odeset to set the MassSingular property to 'yes', 'no',
or 'maybe'. The default value of 'maybe' causes the solver to test
whether the problem is a DAE. You can provide yp0 as the value of the
InitialSlope property. The default is the zero vector. If a problem is
a DAE, and y0 and yp0 are not consistent, the solver treats them as
guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem. When solving DAEs, it is
very advantageous to formulate the problem so that M is a diagonal
matrix (a semi-explicit DAE).

Solver
Problem
Type

Order of
Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the
first solver you try.

ode23 Nonstiff Low For problems
with crude error
tolerances or for
solving moderately
stiff problems.

1-4734

ode23t

Solver
Problem
Type

Order of
Accuracy When to Use

ode113 Nonstiff Low to high For problems
with stringent
error tolerances
or for solving
computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow
because the problem
is stiff.

ode23s Stiff Low If using crude error
tolerances to solve
stiff systems and
the mass matrix is
constant.

ode23t Moderately
Stiff

Low For moderately stiff
problems if you need
a solution without
numerical damping.

ode23tb Stiff Low If using crude error
tolerances to solve
stiff systems.

The algorithms used in the ODE solvers vary according to order of
accuracy [6] and the type of systems (stiff or nonstiff) they are designed
to solve. See “Algorithms” on page 1-4741 for more details.

Options Different solvers accept different parameters in the options list. For
more information, see odeset and “Integrator Options” in the MATLAB
Mathematics documentation.

1-4735

ode23t

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

NonNegative √ √ √ √ * — √ * √ *

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Note You can use the NonNegative parameter with ode15s, ode23t,
and ode23tb only for those problems for which there is no mass matrix.

Examples Example 1

An example of a nonstiff system is the system of equations describing
the motion of a rigid body without external forces.

1-4736

ode23t

y y y y

y y y y

y

1 2 3 1

2 1 3 2

3

0 0

0 1

()

()

 0 51 0 11 2 3. ()y y y

To simulate this system, create a function rigid containing the
equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset
command and solve on a time interval [0 12] with an initial condition
vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

1-4737

ode23t

Example 2

An example of a stiff system is provided by the van der Pol equations in
relaxation oscillation. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

y y y

y y y y y

1 2 1

2 1
2

2 1 2

0 2

1000 1 0 0

()

() ()

To simulate this system, create a function vdp1000 containing the
equations

function dy = vdp1000(t,y)

1-4738

ode23t

dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute
tolerances (1e-3 and 1e-6, respectively) and solve on a time interval of
[0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the
solution

plot(T,Y(:,1),'-o')

1-4739

ode23t

Example 3

This example solves an ordinary differential equation with
time-dependent terms.

Consider the following ODE, with time-dependent parameters defined
only through the set of data points given in two vectors:

y'(t) + f(t)y(t) = g(t)

The initial condition is y(0) = 0, where the function f(t) is defined
through the n-by-1 vectors tf and f, and the function g(t) is defined
through the m-by-1 vectors tg and g.

First, define the time-dependent parameters f(t) and g(t) as the
following:

ft = linspace(0,5,25); % Generate t for f
f = ft.^2 - ft - 3; % Generate f(t)
gt = linspace(1,6,25); % Generate t for g
g = 3*sin(gt-0.25); % Generate g(t)

Write a function to interpolate the data sets specified above to obtain
the value of the time-dependent terms at the specified time:

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evaluate ODE at time t

Call the derivative function myode.m within the MATLAB ode45
function specifying time as the first input argument :

Tspan = [1 5]; % Solve from t=1 to t=5
IC = 1; % y(t=0) = 1
[T Y] = ode45(@(t,y) myode(t,y,ft,f,gt,g),Tspan,IC); % Solve ODE

Plot the solution y(t) as a function of time:

plot(T, Y);

1-4740

ode23t

title('Plot of y as a function of time');
xlabel('Time'); ylabel('Y(t)');

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn),
it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a first try for
most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more efficient than ode45 at crude

1-4741

ode23t

tolerances and in the presence of moderate stiffness. Like ode45, ode23
is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It
may be more efficient than ode45 at stringent tolerances and when the
ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding
time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they
appear to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when
ode45 fails, or is very inefficient, and you suspect that the problem is
stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because
it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s
is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping. ode23t can solve
DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both
stages. Like ode23s, this solver may be more efficient than ode15s at
crude tolerances. [8], [1]

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose,
and R. Smith, “Transient Simulation of Silicon Devices and Circuits,”
IEEE Trans. CAD, 4 (1985), pp. 436–451.

1-4742

ode23t

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta
formulas,” Appl. Math. Letters, Vol. 2, 1989, pp. 321–325.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp. 19–26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and
Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, 1997, pp. 1–22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving
Index-1 DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41,
1999, pp. 538–552.

See Also deval | ode15i | odeget | odeset | function_handle

1-4743

ode23tb

Purpose Solve stiff differential equations; low order method

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

This page contains an overview of the solver functions: ode23, ode45,
ode113, ode15s, ode23s, ode23t, and ode23tb. You can call any of
these solvers by substituting the placeholder, solver, with any of the
function names.

Arguments The following table describes the input arguments to the solvers.

odefun A function handle that evaluates the right side
of the differential equations. All solvers solve
systems of equations in the form y′ = f(t,y)
or problems that involve a mass matrix,
M(t,y)y′ = f(t,y). The ode23s solver can solve
only equations with constant mass matrices.
ode15s and ode23t can solve problems
with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration,
[t0,tf]. The solver imposes the initial
conditions at tspan(1), and integrates
from tspan(1) to tspan(end). To obtain
solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

For tspan vectors with two elements [t0 tf],
the solver returns the solution evaluated at
every integration step. For tspan vectors with
more than two elements, the solver returns
solutions evaluated at the given time points.
The time values must be in order, either
increasing or decreasing.

1-4744

ode23tb

Specifying tspan with more than two elements
does not affect the internal time steps that
the solver uses to traverse the interval from
tspan(1) to tspan(end). All solvers in the
ODE suite obtain output values by means of
continuous extensions of the basic formulas.
Although a solver does not necessarily step
precisely to a time point specified in tspan,
the solutions produced at the specified time
points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two
elements has little effect on the efficiency of
computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change
the default integration properties. This is the
fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

You can create options using the odeset
function. See odeset for details.

The following table lists the output arguments for the solvers.

T Column vector of time points.

Y Solution array. Each row in Y corresponds to the solution
at a time returned in the corresponding row of T.

TE The time at which an event occurs.

YE The solution at the time of the event.

1-4745

ode23tb

IE The index i of the event function that vanishes.

sol Structure to evaluate the solution.

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates
the system of differential equations y′ = f(t,y) from time t0 to tf with
initial conditions y0. The first input argument, odefun, is a function
handle. The function, f = odefun(t,y), for a scalar t and a column
vector y, must return a column vector f corresponding to f(t,y). Each
row in the solution array Y corresponds to a time returned in column
vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

[T,Y] = solver(odefun,tspan,y0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly
used properties include a scalar relative error tolerance RelTol (1e-3
by default) and a vector of absolute error tolerances AbsTol (all
components are 1e-6 by default). If certain components of the solution
must be nonnegative, use the odeset function to set the NonNegative
property to the indices of these components. See odeset for details.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves
as above while also finding where functions of (t,y), called event
functions, are zero. For each event function, you specify whether the
integration is to terminate at a zero and whether the direction of
the zero crossing matters. Do this by setting the 'Events' property
to a function, e.g., events or @events, and creating a function
[value,isterminal,direction] = events(t,y). For the ith event
function in events,

• value(i) is the value of the function.

• isterminal(i) = 1, if the integration is to terminate at a zero of
this event function and 0 otherwise.

1-4746

ode23tb

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time
at which an event occurs, the solution at the time of the event, and the
index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you
can use with deval to evaluate the solution at any point on the interval
[t0,tf]. You must pass odefun as a function handle. The structure
sol always includes these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution
at sol.x(i).

sol.solver Solver name.

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred.
sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values
indicate which event the solver detected.

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.

1-4747

ode23tb

By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian
matrix ∂f/∂y is critical to reliability and efficiency. Use odeset to set
Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian ∂f/∂y or to the
matrix ∂f/∂y if the Jacobian is constant. If the Jacobian property is
not set (the default), ∂f/∂y is approximated by finite differences. Set
the Vectorized property ’on’ if the ODE function is coded so that
odefun(T,[Y1,Y2 ...]) returns [odefun(T,Y1),odefun(T,Y2) ...]. If
∂f/∂y is a sparse matrix, set the JPattern property to the sparsity
pattern of ∂f/∂y, i.e., a sparse matrix S with S(i,j) = 1 if the ith
component of f(t,y) depends on the jth component of y, and 0 otherwise.

The solvers of the ODE suite can solve problems of the form
M(t,y)y′ = f(t,y), with time- and state-dependent mass matrix M. (The
ode23s solver can solve only equations with constant mass matrices.)
If a problem has a mass matrix, create a function M = MASS(t,y) that
returns the value of the mass matrix, and use odeset to set the Mass
property to @MASS. If the mass matrix is constant, the matrix should be
used as the value of the Mass property. Problems with state-dependent
mass matrices are more difficult:

• If the mass matrix does not depend on the state variable y and the
function MASS is to be called with one input argument, t, set the
MStateDependence property to ’none’.

• If the mass matrix depends weakly on y, set MStateDependence to
’weak’ (the default); otherwise, set it to ’strong’. In either case, the
function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit
sparsity:

• Return a sparse M(t,y).

1-4748

ode23tb

• Supply the sparsity pattern of ∂f/∂y using the JPattern property or
a sparse ∂f/∂y using the Jacobian property.

• For strongly state-dependent M(t,y), set MvPattern to a sparse
matrix S with S(i,j) = 1 if for any k, the (i,k) component of M(t,y)
depends on component j of y, and 0 otherwise.

If the mass matrix M is singular, then M(t,y)y′ = f(t,y) is a system of
differential algebraic equations. DAEs have solutions only when y0 is
consistent, that is, if there is a vector yp0 such that M(t0,y0)yp0 = f(t0,y0).
The ode15s and ode23t solvers can solve DAEs of index 1 provided that
y0 is sufficiently close to being consistent. If there is a mass matrix,
you can use odeset to set the MassSingular property to 'yes', 'no',
or 'maybe'. The default value of 'maybe' causes the solver to test
whether the problem is a DAE. You can provide yp0 as the value of the
InitialSlope property. The default is the zero vector. If a problem is
a DAE, and y0 and yp0 are not consistent, the solver treats them as
guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem. When solving DAEs, it is
very advantageous to formulate the problem so that M is a diagonal
matrix (a semi-explicit DAE).

Solver
Problem
Type

Order of
Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the
first solver you try.

ode23 Nonstiff Low For problems
with crude error
tolerances or for
solving moderately
stiff problems.

1-4749

ode23tb

Solver
Problem
Type

Order of
Accuracy When to Use

ode113 Nonstiff Low to high For problems
with stringent
error tolerances
or for solving
computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow
because the problem
is stiff.

ode23s Stiff Low If using crude error
tolerances to solve
stiff systems and
the mass matrix is
constant.

ode23t Moderately
Stiff

Low For moderately stiff
problems if you need
a solution without
numerical damping.

ode23tb Stiff Low If using crude error
tolerances to solve
stiff systems.

The algorithms used in the ODE solvers vary according to order of
accuracy [6] and the type of systems (stiff or nonstiff) they are designed
to solve. See “Algorithms” on page 1-4756 for more details.

Options Different solvers accept different parameters in the options list. For
more information, see odeset and “Integrator Options” in the MATLAB
Mathematics documentation.

1-4750

ode23tb

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

NonNegative √ √ √ √ * — √ * √ *

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Note You can use the NonNegative parameter with ode15s, ode23t,
and ode23tb only for those problems for which there is no mass matrix.

Examples Example 1

An example of a nonstiff system is the system of equations describing
the motion of a rigid body without external forces.

1-4751

ode23tb

y y y y

y y y y

y

1 2 3 1

2 1 3 2

3

0 0

0 1

()

()

 0 51 0 11 2 3. ()y y y

To simulate this system, create a function rigid containing the
equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset
command and solve on a time interval [0 12] with an initial condition
vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

1-4752

ode23tb

Example 2

An example of a stiff system is provided by the van der Pol equations in
relaxation oscillation. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

y y y

y y y y y

1 2 1

2 1
2

2 1 2

0 2

1000 1 0 0

()

() ()

To simulate this system, create a function vdp1000 containing the
equations

function dy = vdp1000(t,y)

1-4753

ode23tb

dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute
tolerances (1e-3 and 1e-6, respectively) and solve on a time interval of
[0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the
solution

plot(T,Y(:,1),'-o')

1-4754

ode23tb

Example 3

This example solves an ordinary differential equation with
time-dependent terms.

Consider the following ODE, with time-dependent parameters defined
only through the set of data points given in two vectors:

y'(t) + f(t)y(t) = g(t)

The initial condition is y(0) = 0, where the function f(t) is defined
through the n-by-1 vectors tf and f, and the function g(t) is defined
through the m-by-1 vectors tg and g.

First, define the time-dependent parameters f(t) and g(t) as the
following:

ft = linspace(0,5,25); % Generate t for f
f = ft.^2 - ft - 3; % Generate f(t)
gt = linspace(1,6,25); % Generate t for g
g = 3*sin(gt-0.25); % Generate g(t)

Write a function to interpolate the data sets specified above to obtain
the value of the time-dependent terms at the specified time:

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evaluate ODE at time t

Call the derivative function myode.m within the MATLAB ode45
function specifying time as the first input argument :

Tspan = [1 5]; % Solve from t=1 to t=5
IC = 1; % y(t=0) = 1
[T Y] = ode45(@(t,y) myode(t,y,ft,f,gt,g),Tspan,IC); % Solve ODE

Plot the solution y(t) as a function of time:

plot(T, Y);

1-4755

ode23tb

title('Plot of y as a function of time');
xlabel('Time'); ylabel('Y(t)');

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn),
it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a first try for
most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more efficient than ode45 at crude

1-4756

ode23tb

tolerances and in the presence of moderate stiffness. Like ode45, ode23
is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It
may be more efficient than ode45 at stringent tolerances and when the
ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding
time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they
appear to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when
ode45 fails, or is very inefficient, and you suspect that the problem is
stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because
it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s
is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping. ode23t can solve
DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both
stages. Like ode23s, this solver may be more efficient than ode15s at
crude tolerances. [8], [1]

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose,
and R. Smith, “Transient Simulation of Silicon Devices and Circuits,”
IEEE Trans. CAD, 4 (1985), pp. 436–451.

1-4757

ode23tb

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta
formulas,” Appl. Math. Letters, Vol. 2, 1989, pp. 321–325.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp. 19–26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and
Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, 1997, pp. 1–22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving
Index-1 DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41,
1999, pp. 538–552.

See Also deval | ode15i | odeget | odeset | function_handle

1-4758

ode45

Purpose Solve nonstiff differential equations; medium order method

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

This page contains an overview of the solver functions: ode23, ode45,
ode113, ode15s, ode23s, ode23t, and ode23tb. You can call any of
these solvers by substituting the placeholder, solver, with any of the
function names.

Arguments The following table describes the input arguments to the solvers.

odefun A function handle that evaluates the right side
of the differential equations. All solvers solve
systems of equations in the form y′ = f(t,y)
or problems that involve a mass matrix,
M(t,y)y′ = f(t,y). The ode23s solver can solve
only equations with constant mass matrices.
ode15s and ode23t can solve problems
with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration,
[t0,tf]. The solver imposes the initial
conditions at tspan(1), and integrates
from tspan(1) to tspan(end). To obtain
solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

For tspan vectors with two elements [t0 tf],
the solver returns the solution evaluated at
every integration step. For tspan vectors with
more than two elements, the solver returns
solutions evaluated at the given time points.
The time values must be in order, either
increasing or decreasing.

1-4759

ode45

Specifying tspan with more than two elements
does not affect the internal time steps that
the solver uses to traverse the interval from
tspan(1) to tspan(end). All solvers in the
ODE suite obtain output values by means of
continuous extensions of the basic formulas.
Although a solver does not necessarily step
precisely to a time point specified in tspan,
the solutions produced at the specified time
points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two
elements has little effect on the efficiency of
computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change
the default integration properties. This is the
fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

You can create options using the odeset
function. See odeset for details.

The following table lists the output arguments for the solvers.

T Column vector of time points.

Y Solution array. Each row in Y corresponds to the solution
at a time returned in the corresponding row of T.

TE The time at which an event occurs.

YE The solution at the time of the event.

1-4760

ode45

IE The index i of the event function that vanishes.

sol Structure to evaluate the solution.

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates
the system of differential equations y′ = f(t,y) from time t0 to tf with
initial conditions y0. The first input argument, odefun, is a function
handle. The function, f = odefun(t,y), for a scalar t and a column
vector y, must return a column vector f corresponding to f(t,y). Each
row in the solution array Y corresponds to a time returned in column
vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

[T,Y] = solver(odefun,tspan,y0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly
used properties include a scalar relative error tolerance RelTol (1e-3
by default) and a vector of absolute error tolerances AbsTol (all
components are 1e-6 by default). If certain components of the solution
must be nonnegative, use the odeset function to set the NonNegative
property to the indices of these components. See odeset for details.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves
as above while also finding where functions of (t,y), called event
functions, are zero. For each event function, you specify whether the
integration is to terminate at a zero and whether the direction of
the zero crossing matters. Do this by setting the 'Events' property
to a function, e.g., events or @events, and creating a function
[value,isterminal,direction] = events(t,y). For the ith event
function in events,

• value(i) is the value of the function.

• isterminal(i) = 1, if the integration is to terminate at a zero of
this event function and 0 otherwise.

1-4761

ode45

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time
at which an event occurs, the solution at the time of the event, and the
index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you
can use with deval to evaluate the solution at any point on the interval
[t0,tf]. You must pass odefun as a function handle. The structure
sol always includes these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution
at sol.x(i).

sol.solver Solver name.

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred.
sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values
indicate which event the solver detected.

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.

1-4762

ode45

By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian
matrix ∂f/∂y is critical to reliability and efficiency. Use odeset to set
Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian ∂f/∂y or to the
matrix ∂f/∂y if the Jacobian is constant. If the Jacobian property is
not set (the default), ∂f/∂y is approximated by finite differences. Set
the Vectorized property ’on’ if the ODE function is coded so that
odefun(T,[Y1,Y2 ...]) returns [odefun(T,Y1),odefun(T,Y2) ...]. If
∂f/∂y is a sparse matrix, set the JPattern property to the sparsity
pattern of ∂f/∂y, i.e., a sparse matrix S with S(i,j) = 1 if the ith
component of f(t,y) depends on the jth component of y, and 0 otherwise.

The solvers of the ODE suite can solve problems of the form
M(t,y)y′ = f(t,y), with time- and state-dependent mass matrix M. (The
ode23s solver can solve only equations with constant mass matrices.)
If a problem has a mass matrix, create a function M = MASS(t,y) that
returns the value of the mass matrix, and use odeset to set the Mass
property to @MASS. If the mass matrix is constant, the matrix should be
used as the value of the Mass property. Problems with state-dependent
mass matrices are more difficult:

• If the mass matrix does not depend on the state variable y and the
function MASS is to be called with one input argument, t, set the
MStateDependence property to ’none’.

• If the mass matrix depends weakly on y, set MStateDependence to
’weak’ (the default); otherwise, set it to ’strong’. In either case, the
function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit
sparsity:

• Return a sparse M(t,y).

1-4763

ode45

• Supply the sparsity pattern of ∂f/∂y using the JPattern property or
a sparse ∂f/∂y using the Jacobian property.

• For strongly state-dependent M(t,y), set MvPattern to a sparse
matrix S with S(i,j) = 1 if for any k, the (i,k) component of M(t,y)
depends on component j of y, and 0 otherwise.

If the mass matrix M is singular, then M(t,y)y′ = f(t,y) is a system of
differential algebraic equations. DAEs have solutions only when y0 is
consistent, that is, if there is a vector yp0 such that M(t0,y0)yp0 = f(t0,y0).
The ode15s and ode23t solvers can solve DAEs of index 1 provided that
y0 is sufficiently close to being consistent. If there is a mass matrix,
you can use odeset to set the MassSingular property to 'yes', 'no',
or 'maybe'. The default value of 'maybe' causes the solver to test
whether the problem is a DAE. You can provide yp0 as the value of the
InitialSlope property. The default is the zero vector. If a problem is
a DAE, and y0 and yp0 are not consistent, the solver treats them as
guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem. When solving DAEs, it is
very advantageous to formulate the problem so that M is a diagonal
matrix (a semi-explicit DAE).

Solver
Problem
Type

Order of
Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the
first solver you try.

ode23 Nonstiff Low For problems
with crude error
tolerances or for
solving moderately
stiff problems.

1-4764

ode45

Solver
Problem
Type

Order of
Accuracy When to Use

ode113 Nonstiff Low to high For problems
with stringent
error tolerances
or for solving
computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow
because the problem
is stiff.

ode23s Stiff Low If using crude error
tolerances to solve
stiff systems and
the mass matrix is
constant.

ode23t Moderately
Stiff

Low For moderately stiff
problems if you need
a solution without
numerical damping.

ode23tb Stiff Low If using crude error
tolerances to solve
stiff systems.

The algorithms used in the ODE solvers vary according to order of
accuracy [6] and the type of systems (stiff or nonstiff) they are designed
to solve. See “Algorithms” on page 1-4771 for more details.

Options Different solvers accept different parameters in the options list. For
more information, see odeset and “Integrator Options” in the MATLAB
Mathematics documentation.

1-4765

ode45

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

NonNegative √ √ √ √ * — √ * √ *

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Note You can use the NonNegative parameter with ode15s, ode23t,
and ode23tb only for those problems for which there is no mass matrix.

Examples Example 1

An example of a nonstiff system is the system of equations describing
the motion of a rigid body without external forces.

1-4766

ode45

y y y y

y y y y

y

1 2 3 1

2 1 3 2

3

0 0

0 1

()

()

 0 51 0 11 2 3. ()y y y

To simulate this system, create a function rigid containing the
equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset
command and solve on a time interval [0 12] with an initial condition
vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

1-4767

ode45

Example 2

An example of a stiff system is provided by the van der Pol equations in
relaxation oscillation. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

y y y

y y y y y

1 2 1

2 1
2

2 1 2

0 2

1000 1 0 0

()

() ()

To simulate this system, create a function vdp1000 containing the
equations

function dy = vdp1000(t,y)

1-4768

ode45

dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute
tolerances (1e-3 and 1e-6, respectively) and solve on a time interval of
[0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the
solution

plot(T,Y(:,1),'-o')

1-4769

ode45

Example 3

This example solves an ordinary differential equation with
time-dependent terms.

Consider the following ODE, with time-dependent parameters defined
only through the set of data points given in two vectors:

y'(t) + f(t)y(t) = g(t)

The initial condition is y(0) = 0, where the function f(t) is defined
through the n-by-1 vectors tf and f, and the function g(t) is defined
through the m-by-1 vectors tg and g.

First, define the time-dependent parameters f(t) and g(t) as the
following:

ft = linspace(0,5,25); % Generate t for f
f = ft.^2 - ft - 3; % Generate f(t)
gt = linspace(1,6,25); % Generate t for g
g = 3*sin(gt-0.25); % Generate g(t)

Write a function to interpolate the data sets specified above to obtain
the value of the time-dependent terms at the specified time:

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evaluate ODE at time t

Call the derivative function myode.m within the MATLAB ode45
function specifying time as the first input argument :

Tspan = [1 5]; % Solve from t=1 to t=5
IC = 1; % y(t=0) = 1
[T Y] = ode45(@(t,y) myode(t,y,ft,f,gt,g),Tspan,IC); % Solve ODE

Plot the solution y(t) as a function of time:

plot(T, Y);

1-4770

ode45

title('Plot of y as a function of time');
xlabel('Time'); ylabel('Y(t)');

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn),
it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a first try for
most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more efficient than ode45 at crude

1-4771

ode45

tolerances and in the presence of moderate stiffness. Like ode45, ode23
is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It
may be more efficient than ode45 at stringent tolerances and when the
ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding
time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they
appear to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when
ode45 fails, or is very inefficient, and you suspect that the problem is
stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because
it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s
is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping. ode23t can solve
DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both
stages. Like ode23s, this solver may be more efficient than ode15s at
crude tolerances. [8], [1]

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose,
and R. Smith, “Transient Simulation of Silicon Devices and Circuits,”
IEEE Trans. CAD, 4 (1985), pp. 436–451.

1-4772

ode45

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta
formulas,” Appl. Math. Letters, Vol. 2, 1989, pp. 321–325.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp. 19–26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and
Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, 1997, pp. 1–22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving
Index-1 DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41,
1999, pp. 538–552.

See Also deval | ode15i | odeget | odeset | function_handle

1-4773

ode113

Purpose Solve nonstiff differential equations; variable order method

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

This page contains an overview of the solver functions: ode23, ode45,
ode113, ode15s, ode23s, ode23t, and ode23tb. You can call any of
these solvers by substituting the placeholder, solver, with any of the
function names.

Arguments The following table describes the input arguments to the solvers.

odefun A function handle that evaluates the right side
of the differential equations. All solvers solve
systems of equations in the form y′ = f(t,y)
or problems that involve a mass matrix,
M(t,y)y′ = f(t,y). The ode23s solver can solve
only equations with constant mass matrices.
ode15s and ode23t can solve problems
with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration,
[t0,tf]. The solver imposes the initial
conditions at tspan(1), and integrates
from tspan(1) to tspan(end). To obtain
solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

For tspan vectors with two elements [t0 tf],
the solver returns the solution evaluated at
every integration step. For tspan vectors with
more than two elements, the solver returns
solutions evaluated at the given time points.
The time values must be in order, either
increasing or decreasing.

1-4774

ode113

Specifying tspan with more than two elements
does not affect the internal time steps that
the solver uses to traverse the interval from
tspan(1) to tspan(end). All solvers in the
ODE suite obtain output values by means of
continuous extensions of the basic formulas.
Although a solver does not necessarily step
precisely to a time point specified in tspan,
the solutions produced at the specified time
points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two
elements has little effect on the efficiency of
computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change
the default integration properties. This is the
fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

You can create options using the odeset
function. See odeset for details.

The following table lists the output arguments for the solvers.

T Column vector of time points.

Y Solution array. Each row in Y corresponds to the solution
at a time returned in the corresponding row of T.

TE The time at which an event occurs.

YE The solution at the time of the event.

1-4775

ode113

IE The index i of the event function that vanishes.

sol Structure to evaluate the solution.

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates
the system of differential equations y′ = f(t,y) from time t0 to tf with
initial conditions y0. The first input argument, odefun, is a function
handle. The function, f = odefun(t,y), for a scalar t and a column
vector y, must return a column vector f corresponding to f(t,y). Each
row in the solution array Y corresponds to a time returned in column
vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

[T,Y] = solver(odefun,tspan,y0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly
used properties include a scalar relative error tolerance RelTol (1e-3
by default) and a vector of absolute error tolerances AbsTol (all
components are 1e-6 by default). If certain components of the solution
must be nonnegative, use the odeset function to set the NonNegative
property to the indices of these components. See odeset for details.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves
as above while also finding where functions of (t,y), called event
functions, are zero. For each event function, you specify whether the
integration is to terminate at a zero and whether the direction of
the zero crossing matters. Do this by setting the 'Events' property
to a function, e.g., events or @events, and creating a function
[value,isterminal,direction] = events(t,y). For the ith event
function in events,

• value(i) is the value of the function.

• isterminal(i) = 1, if the integration is to terminate at a zero of
this event function and 0 otherwise.

1-4776

ode113

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time
at which an event occurs, the solution at the time of the event, and the
index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you
can use with deval to evaluate the solution at any point on the interval
[t0,tf]. You must pass odefun as a function handle. The structure
sol always includes these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution
at sol.x(i).

sol.solver Solver name.

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred.
sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values
indicate which event the solver detected.

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.

1-4777

ode113

By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian
matrix ∂f/∂y is critical to reliability and efficiency. Use odeset to set
Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian ∂f/∂y or to the
matrix ∂f/∂y if the Jacobian is constant. If the Jacobian property is
not set (the default), ∂f/∂y is approximated by finite differences. Set
the Vectorized property ’on’ if the ODE function is coded so that
odefun(T,[Y1,Y2 ...]) returns [odefun(T,Y1),odefun(T,Y2) ...]. If
∂f/∂y is a sparse matrix, set the JPattern property to the sparsity
pattern of ∂f/∂y, i.e., a sparse matrix S with S(i,j) = 1 if the ith
component of f(t,y) depends on the jth component of y, and 0 otherwise.

The solvers of the ODE suite can solve problems of the form
M(t,y)y′ = f(t,y), with time- and state-dependent mass matrix M. (The
ode23s solver can solve only equations with constant mass matrices.)
If a problem has a mass matrix, create a function M = MASS(t,y) that
returns the value of the mass matrix, and use odeset to set the Mass
property to @MASS. If the mass matrix is constant, the matrix should be
used as the value of the Mass property. Problems with state-dependent
mass matrices are more difficult:

• If the mass matrix does not depend on the state variable y and the
function MASS is to be called with one input argument, t, set the
MStateDependence property to ’none’.

• If the mass matrix depends weakly on y, set MStateDependence to
’weak’ (the default); otherwise, set it to ’strong’. In either case, the
function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit
sparsity:

• Return a sparse M(t,y).

1-4778

ode113

• Supply the sparsity pattern of ∂f/∂y using the JPattern property or
a sparse ∂f/∂y using the Jacobian property.

• For strongly state-dependent M(t,y), set MvPattern to a sparse
matrix S with S(i,j) = 1 if for any k, the (i,k) component of M(t,y)
depends on component j of y, and 0 otherwise.

If the mass matrix M is singular, then M(t,y)y′ = f(t,y) is a system of
differential algebraic equations. DAEs have solutions only when y0 is
consistent, that is, if there is a vector yp0 such that M(t0,y0)yp0 = f(t0,y0).
The ode15s and ode23t solvers can solve DAEs of index 1 provided that
y0 is sufficiently close to being consistent. If there is a mass matrix,
you can use odeset to set the MassSingular property to 'yes', 'no',
or 'maybe'. The default value of 'maybe' causes the solver to test
whether the problem is a DAE. You can provide yp0 as the value of the
InitialSlope property. The default is the zero vector. If a problem is
a DAE, and y0 and yp0 are not consistent, the solver treats them as
guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem. When solving DAEs, it is
very advantageous to formulate the problem so that M is a diagonal
matrix (a semi-explicit DAE).

Solver
Problem
Type

Order of
Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the
first solver you try.

ode23 Nonstiff Low For problems
with crude error
tolerances or for
solving moderately
stiff problems.

1-4779

ode113

Solver
Problem
Type

Order of
Accuracy When to Use

ode113 Nonstiff Low to high For problems
with stringent
error tolerances
or for solving
computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow
because the problem
is stiff.

ode23s Stiff Low If using crude error
tolerances to solve
stiff systems and
the mass matrix is
constant.

ode23t Moderately
Stiff

Low For moderately stiff
problems if you need
a solution without
numerical damping.

ode23tb Stiff Low If using crude error
tolerances to solve
stiff systems.

The algorithms used in the ODE solvers vary according to order of
accuracy [6] and the type of systems (stiff or nonstiff) they are designed
to solve. See “Algorithms” on page 1-4786 for more details.

Options Different solvers accept different parameters in the options list. For
more information, see odeset and “Integrator Options” in the MATLAB
Mathematics documentation.

1-4780

ode113

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

NonNegative √ √ √ √ * — √ * √ *

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Note You can use the NonNegative parameter with ode15s, ode23t,
and ode23tb only for those problems for which there is no mass matrix.

Examples Example 1

An example of a nonstiff system is the system of equations describing
the motion of a rigid body without external forces.

1-4781

ode113

y y y y

y y y y

y

1 2 3 1

2 1 3 2

3

0 0

0 1

()

()

 0 51 0 11 2 3. ()y y y

To simulate this system, create a function rigid containing the
equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset
command and solve on a time interval [0 12] with an initial condition
vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

1-4782

ode113

Example 2

An example of a stiff system is provided by the van der Pol equations in
relaxation oscillation. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

y y y

y y y y y

1 2 1

2 1
2

2 1 2

0 2

1000 1 0 0

()

() ()

To simulate this system, create a function vdp1000 containing the
equations

function dy = vdp1000(t,y)

1-4783

ode113

dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute
tolerances (1e-3 and 1e-6, respectively) and solve on a time interval of
[0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the
solution

plot(T,Y(:,1),'-o')

1-4784

ode113

Example 3

This example solves an ordinary differential equation with
time-dependent terms.

Consider the following ODE, with time-dependent parameters defined
only through the set of data points given in two vectors:

y'(t) + f(t)y(t) = g(t)

The initial condition is y(0) = 0, where the function f(t) is defined
through the n-by-1 vectors tf and f, and the function g(t) is defined
through the m-by-1 vectors tg and g.

First, define the time-dependent parameters f(t) and g(t) as the
following:

ft = linspace(0,5,25); % Generate t for f
f = ft.^2 - ft - 3; % Generate f(t)
gt = linspace(1,6,25); % Generate t for g
g = 3*sin(gt-0.25); % Generate g(t)

Write a function to interpolate the data sets specified above to obtain
the value of the time-dependent terms at the specified time:

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evaluate ODE at time t

Call the derivative function myode.m within the MATLAB ode45
function specifying time as the first input argument :

Tspan = [1 5]; % Solve from t=1 to t=5
IC = 1; % y(t=0) = 1
[T Y] = ode45(@(t,y) myode(t,y,ft,f,gt,g),Tspan,IC); % Solve ODE

Plot the solution y(t) as a function of time:

plot(T, Y);

1-4785

ode113

title('Plot of y as a function of time');
xlabel('Time'); ylabel('Y(t)');

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn),
it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a first try for
most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more efficient than ode45 at crude

1-4786

ode113

tolerances and in the presence of moderate stiffness. Like ode45, ode23
is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It
may be more efficient than ode45 at stringent tolerances and when the
ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding
time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they
appear to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when
ode45 fails, or is very inefficient, and you suspect that the problem is
stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because
it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s
is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping. ode23t can solve
DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both
stages. Like ode23s, this solver may be more efficient than ode15s at
crude tolerances. [8], [1]

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose,
and R. Smith, “Transient Simulation of Silicon Devices and Circuits,”
IEEE Trans. CAD, 4 (1985), pp. 436–451.

1-4787

ode113

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta
formulas,” Appl. Math. Letters, Vol. 2, 1989, pp. 321–325.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp. 19–26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and
Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, 1997, pp. 1–22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving
Index-1 DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41,
1999, pp. 538–552.

See Also deval | ode15i | odeget | odeset | function_handle

1-4788

odeget

Purpose Ordinary differential equation options parameters

Syntax o = odeget(options,'name')
o = odeget(options,'name',default)

Description o = odeget(options,'name') extracts the value of the property
specified by string 'name' from integrator options structure options,
returning an empty matrix if the property value is not specified in
options. It is only necessary to type the leading characters that
uniquely identify the property name. Case is ignored for property
names.

o = odeget(options,'name',default) returns o = default if the
named property is not specified in options.

The empty matrix [] is a valid options argument, and the syntax
odeget([],'name',default) always returns default.

Examples Having constructed an ODE options structure,

options = odeset('RelTol',1e-4,'AbsTol',[1e-3 2e-3 3e-3]);

you can view these property settings with odeget.

odeget(options,'RelTol')
ans =

1.0000e-04

odeget(options,'AbsTol')
ans =

0.0010 0.0020 0.0030

odeget([],'RelTol',1e-3)
ans =

1.0000e-03

1-4789

odeget

See Also odeset

1-4790

odeset

Purpose Create or alter options structure for ordinary differential equation
solvers

Syntax options = odeset('name1',value1,'name2',value2,...)
options = odeset(oldopts,'name1',value1,...)
options = odeset(oldopts,newopts)
odeset

Description The odeset function lets you adjust the integration parameters of the
following ODE solvers.

For solving fully implicit differential equations:

ode15i

For solving initial value problems:

ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb

See below for information about the integration parameters.

options = odeset('name1',value1,'name2',value2,...) creates
an options structure that you can pass as an argument to any of the
ODE solvers. In the resulting structure, options, the named properties
have the specified values. For example, 'name1' has the value value1.
Any unspecified properties have default values. It is sufficient to type
only the leading characters that uniquely identify a property name.
Case is ignored for property names.

options = odeset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This sets options equal to the existing
structure oldopts, overwrites any values in oldopts that are
respecified using name/value pairs, and adds any new pairs to the
structure. The modified structure is returned as an output argument.

options = odeset(oldopts,newopts) alters an existing options
structure oldopts by combining it with a new options structure
newopts. Any new options not equal to the empty matrix overwrite
corresponding options in oldopts.

1-4791

odeset

odeset with no input arguments displays all property names as well as
their possible and default values.

ODE
Properties

The following sections describe the properties that you can set using
odeset. The available properties depend on the ODE solver you are
using. There are several categories of properties:

• “Error Control Properties” on page 1-4792

• “Solver Output Properties” on page 1-4794

• “Step-Size Properties” on page 1-4797

• “Event Location Property” on page 1-4799

• “Jacobian Matrix Properties” on page 1-4800

• “Mass Matrix and DAE Properties” on page 1-4804

• “ode15s and ode15i-Specific Properties” on page 1-4806

Note This reference page describes the ODE properties for MATLAB,
Version 7. The Version 5 properties are supported only for backward
compatibility. For information on the Version 5 properties, type at the
MATLAB command line: more on, type odeset, more off.

Error
Control
Properties

At each step, the solver estimates the local error e in the ith component
of the solution. This error must be less than or equal to the acceptable
error, which is a function of the specified relative tolerance, RelTol, and
the specified absolute tolerance, AbsTol.

|e(i)| ≤ max(RelTol*abs(y(i)),AbsTol(i))

For routine problems, the ODE solvers deliver accuracy roughly
equivalent to the accuracy you request. They deliver less accuracy
for problems integrated over "long" intervals and problems that are
moderately unstable. Difficult problems may require tighter tolerances
than the default values. For relative accuracy, adjust RelTol. For

1-4792

odeset

the absolute error tolerance, the scaling of the solution components is
important: if |y| is somewhat smaller than AbsTol, the solver is not
constrained to obtain any correct digits in y. You might have to solve a
problem more than once to discover the scale of solution components.

Roughly speaking, this means that you want RelTol correct digits in all
solution components except those smaller than thresholds AbsTol(i).
Even if you are not interested in a component y(i) when it is small,
you may have to specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more interesting
components.

The following table describes the error control properties. Further
information on each property is given following the table.

Property Value Description

RelTol Positive scalar
{1e-3}

Relative error tolerance that applies
to all components of the solution
vector y.

AbsTol Positive scalar
or vector {1e-6}

Absolute error tolerances that apply
to the individual components of the
solution vector.

NormControl on | {off} Control error relative to norm of
solution.

Description of Error Control Properties

RelTol— This tolerance is a measure of the error relative to the size
of each solution component. Roughly, it controls the number of correct
digits in all solution components, except those smaller than thresholds
AbsTol(i).

The default, 1e-3, corresponds to 0.1% accuracy.

AbsTol — AbsTol(i) is a threshold below which the value of the ith
solution component is unimportant. The absolute error tolerances
determine the accuracy when the solution approaches zero.

1-4793

odeset

If AbsTol is a vector, the length of AbsTol must be the same as the
length of the solution vector y. If AbsTol is a scalar, the value applies to
all components of y.

NormControl — Set this property on to request that the
solvers control the error in each integration step with
norm(e) <= max(RelTol*norm(y),AbsTol). By default the solvers use
a more stringent componentwise error control.

Solver
Output
Properties

The following table lists the solver output properties that control the
output that the solvers generate. Further information on each property
is given following the table.

Property Value Description

NonNegative Vector of
integers

Specifies which components of the
solution vector must be nonnegative.
The default value is [].

OutputFcn Function
handle

A function for the solver to call after
every successful integration step.

OutputSel Vector of
indices

Specifies which components of the
solution vector are to be passed to
the output function.

Refine Positive integer Increases the number of output
points by a factor of Refine.

Stats on | {off} Determines whether the solver
should display statistics about its
computations. By default, Stats is
off.

Description of Solver Output Properties

NonNegative— The NonNegative property is not available in ode23s,
ode15i. In ode15s, ode23t, and ode23tb, NonNegative is not available
for problems where there is a mass matrix.

1-4794

odeset

OutputFcn — To specify an output function, set 'OutputFcn' to a
function handle. For example,

options = odeset('OutputFcn',@myfun)

sets 'OutputFcn' to @myfun, a handle to the function myfun. See the
function_handle reference page for more information.

The output function must be of the form

status = myfun(t,y,flag)

“Parameterizing Functions” explains how to provide additional
parameters to myfun, if necessary.

The solver calls the specified output function with the following flags.
Note that the syntax of the call differs with the flag. The function must
respond appropriately:

Flag Description

init The solver calls myfun(tspan,y0,'init') before beginning
the integration to allow the output function to initialize.
tspan and y0 are the input arguments to the ODE solver.

{[]} The solver calls status = myfun(t,y,[]) after each
integration step on which output is requested. t contains
points where output was generated during the step, and y
is the numerical solution at the points in t. If t is a vector,
the ith column of y corresponds to the ith element of t.

When length(tspan) > 2 the output is produced at every
point in tspan. When length(tspan) = 2 the output is
produced according to the Refine option.

1-4795

odeset

Flag Description

myfun must return a status output value of 0 or 1. If
status = 1, the solver halts integration. You can use this
mechanism, for instance, to implement a Stop button.

done The solver calls myfun([],[],'done') when integration
is complete to allow the output function to perform any
cleanup chores.

You can use these general purpose output functions or you can edit
them to create your own. Type help function at the command line
for more information.

• odeplot— Time series plotting (default when you call the solver with
no output arguments and you have not specified an output function)

• odephas2 — Two-dimensional phase plane plotting

• odephas3— Three-dimensional phase plane plotting

• odeprint — Print solution as it is computed

Note If you call the solver with no output arguments, the solver does
not allocate storage to hold the entire solution history.

OutputSel — Use OutputSel to specify which components of the
solution vector you want passed to the output function. For example, if
you want to use the odeplot output function, but you want to plot only
the first and third components of the solution, you can do this using

options = ...
odeset('OutputFcn',@odeplot,'OutputSel',[1 3]);

By default, the solver passes all components of the solution to the
output function.

1-4796

odeset

Refine — If Refine is 1, the solver returns solutions only at the end
of each time step. If Refine is n >1, the solver subdivides each time
step into n smaller intervals and returns solutions at each time point.
Refine does not apply when length(tspan)>2 or the ODE solver
returns the solution as a structure.

Note In all the solvers, the default value of Refine is 1. Within ode45,
however, the default is 4 to compensate for the solver’s large step
sizes. To override this and see only the time steps chosen by ode45,
set Refine to 1.

The extra values produced for Refine are computed by means of
continuous extension formulas. These are specialized formulas used by
the ODE solvers to obtain accurate solutions between computed time
steps without significant increase in computation time.

Stats— By default, Stats is off. If it is on, after solving the problem
the solver displays

• Number of successful steps

• Number of failed attempts

• Number of times the ODE function was called to evaluate f(t,y)

Solvers based on implicit methods, including ode23s, ode23t, ode15s,
and ode15i, also display

• Number of times that the partial derivatives matrix ∂f/∂x was formed

• Number of LU decompositions

• Number of solutions of linear systems

Step-Size
Properties

The step-size properties specify the size of the first step the solver tries,
potentially helping it to better recognize the scale of the problem. In
addition, you can specify bounds on the sizes of subsequent time steps.

1-4797

odeset

The following table describes the step-size properties. Further
information on each property is given following the table.

Property Value Description

InitialStep Positive scalar Suggested initial step size.

MaxStep Positive scalar
{0.1*abs(t0-tf)}

Upper bound on solver step
size.

Description of Step-Size Properties

InitialStep — InitialStep sets an upper bound on the magnitude
of the first step size the solver tries. If you do not set InitialStep,
the initial step size is based on the slope of the solution at the initial
time tspan(1), and if the slope of all solution components is zero, the
procedure might try a step size that is much too large. If you know this
is happening or you want to be sure that the solver resolves important
behavior at the start of the integration, help the code start by providing
a suitable InitialStep.

MaxStep — If the differential equation has periodic coefficients or
solutions, it might be a good idea to set MaxStep to some fraction (such
as 1/4) of the period. This guarantees that the solver does not enlarge
the time step too much and step over a period of interest. Do not reduce
MaxStep for any of the following purposes:

• To produce more output points. This can significantly slow down
solution time. Instead, use Refine to compute additional outputs by
continuous extension at very low cost.

• When the solution does not appear to be accurate enough. Instead,
reduce the relative error tolerance RelTol, and use the solution you
just computed to determine appropriate values for the absolute error
tolerance vector AbsTol. See “Error Control Properties” on page
1-4792 for a description of the error tolerance properties.

• To make sure that the solver doesn’t step over some behavior that
occurs only once during the simulation interval. If you know the
time at which the change occurs, break the simulation interval into

1-4798

odeset

two pieces and call the solver twice. If you do not know the time at
which the change occurs, try reducing the error tolerances RelTol
and AbsTol. Use MaxStep as a last resort.

Event
Location
Property

In some ODE problems the times of specific events are important,
such as the time at which a ball hits the ground, or the time at which
a spaceship returns to the earth. While solving a problem, the ODE
solvers can detect such events by locating transitions to, from, or
through zeros of user-defined functions.

The following table describes the Events property. Further information
on each property is given following the table.

ODE Events Property

String Value Description

Events Function
handle

Handle to a function that includes
one or more event functions.

Description of Event Location Properties

Events — The function is of the form

[value,isterminal,direction] = events(t,y)

value, isterminal, and direction are vectors for which the ith
element corresponds to the ith event function:

• value(i) is the value of the ith event function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this
event function, otherwise, 0.

• direction(i) = 0 if all zeros are to be located (the default), +1 if
only zeros where the event function is increasing, and -1 if only zeros
where the event function is decreasing.

If you specify an events function and events are detected, the solver
returns three additional outputs:

1-4799

odeset

• A column vector of times at which events occur

• Solution values corresponding to these times

• Indices into the vector returned by the events function. The values
indicate which event the solver detected.

If you call the solver as

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)

the solver returns these outputs as TE, YE, and IE respectively. If you
call the solver as

sol = solver(odefun,tspan,y0,options)

the solver returns these outputs as sol.xe, sol.ye, and sol.ie,
respectively.

For examples that use an event function, see “Event Location”
and “Advanced Event Location” in the MATLAB Mathematics
documentation.

Jacobian
Matrix
Properties

The stiff ODE solvers often execute faster if you provide additional
information about the Jacobian matrix ∂f/∂y, a matrix of partial
derivatives of the function that defines the differential equations.

f
y

f
y

f
y

f
y

f
y

1

1

1

2

2

1

2

2

The Jacobian matrix properties pertain only to those solvers for stiff
problems (ode15s, ode23s, ode23t, ode23tb, and ode15i) for which
the Jacobian matrix ∂f/∂y can be critical to reliability and efficiency. If
you do not provide a function to calculate the Jacobian, these solvers

1-4800

odeset

approximate the Jacobian numerically using finite differences. In this
case, you might want to use the Vectorized or JPattern properties.

The following table describes the Jacobian matrix properties for all
implicit solvers except ode15i. Further information on each property is
given following the table. See Jacobian Properties for ode15i on page
1-4803 for ode15i-specific information.

Jacobian Properties for All Implicit Solvers Except ode15i

Property Value Description

Jacobian Function handle |
constant matrix

Matrix or function that
evaluates the Jacobian.

JPattern Sparse matrix of
{0,1}

Generates a sparse Jacobian
matrix numerically.

Vectorized on | {off} Allows the solver to reduce
the number of function
evaluations required.

Description of Jacobian Properties

Jacobian— Supplying an analytical Jacobian often increases the speed
and reliability of the solution for stiff problems. Set this property to
a function FJac, where FJac(t,y) computes ∂f/∂y, or to the constant
value of ∂f/∂y.

The Jacobian for the “van der Pol Equation (Stiff)”, described in the
MATLAB Mathematics documentation, can be coded as

function J = vdp1000jac(t,y)
J = [0 1

(-2000*y(1)*y(2)-1) (1000*(1-y(1)^2))];

JPattern— JPattern is a sparsity pattern with 1s where there might
be nonzero entries in the Jacobian.

1-4801

odeset

Note If you specify Jacobian, the solver ignores any setting for
JPattern.

Set this property to a sparse matrix S with S(i,j) = 1 if component
i of f(t,y) depends on component j of y, and 0 otherwise. The solver
uses this sparsity pattern to generate a sparse Jacobian matrix
numerically. If the Jacobian matrix is large and sparse, this can greatly
accelerate execution. For an example using the JPattern property, see
Example: Large, Stiff, Sparse Problem in the MATLAB Mathematics
documentation.

Vectorized— The Vectorized property allows the solver to reduce the
number of function evaluations required to compute all the columns of
the Jacobian matrix, and might significantly reduce solution time.

Set on to inform the solver that you have coded the ODE function F so
that F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2) ...]. This allows
the solver to reduce the number of function evaluations required to
compute all the columns of the Jacobian matrix, and might significantly
reduce solution time.

Note If you specify Jacobian, the solver ignores a setting of 'on' for
'Vectorized'.

With the MATLAB array notation, it is typically an easy matter to
vectorize an ODE function. For example, you can vectorize the “van
der Pol Equation (Stiff)”, described in the MATLAB Mathematics
documentation, by introducing colon notation into the subscripts and by
using the array power (.^) and array multiplication (.*) operators.

function dydt = vdp1000(t,y)
dydt = [y(2,:); 1000*(1-y(1,:).^2).*y(2,:)-y(1,:)];

1-4802

../ref/colon.html

odeset

Note Vectorization of the ODE function used by the ODE solvers differs
from the vectorization used by the boundary value problem (BVP)
solver, bvp4c. For the ODE solvers, the ODE function is vectorized only
with respect to the second argument, while bvp4c requires vectorization
with respect to the first and second arguments.

The following table describes the Jacobian matrix properties for ode15i.

Jacobian Properties for ode15i

Property Value Description

Jacobian Function
handle|Cell array
of constant values

Function that evaluates the
Jacobian or a cell array of
constant values.

JPattern Sparse matrices of
{0,1}

Generates a sparse Jacobian
matrix numerically.

Vectorized on | {off} Vectorized ODE function

Description of Jacobian Properties for ode15i

Jacobian— Supplying an analytical Jacobian often increases the speed
and reliability of the solution for stiff problems. Set this property to a
function

[dFdy,dFdp] = Fjac(t,y,yp)

or to a cell array of constant values [∂F/∂y,(∂F/∂y)′].

JPattern— JPattern is a sparsity pattern with 1’s where there might
be nonzero entries in the Jacobian.

Set this property to {dFdyPattern,dFdypPattern}, the sparsity
patterns of ∂F/∂y and ∂F/∂y′, respectively.

Vectorized —

1-4803

odeset

Set this property to {yVect, ypVect}. Setting yVect to 'on' indicates
that

F(t, [y1 y2 ...], yp)

returns

[F(t,y1,yp), F(t,y2,yp) ...]

Setting ypVect to 'on' indicates that

F(t,y,[yp1 yp2 ...])

returns

[F(t,y,yp1) F(t,y,yp2) ...]

Mass
Matrix
and DAE
Properties

This section describes mass matrix and differential-algebraic equation
(DAE) properties, which apply to all the solvers except ode15i. These
properties are not applicable to ode15i and their settings do not affect
its behavior.

The solvers of the ODE suite can solve ODEs of the form

M t y y f t y(,) (,) (1-3)

with a mass matrix M(t,y) that can be sparse.

When M(t,y) is nonsingular, the equation above is equivalent to y′ = M–1

f(t,y) and the ODE has a solution for any initial values y0 at t0. The
more general form (Equation 1-3) is convenient when you express a
model naturally in terms of a mass matrix. For large, sparse M(t,y),
solving Equation 1-3 directly reduces the storage and run-time needed
to solve the problem.

When M(t,y) is singular, then M(t,y) times M(t,y)y′ = f(t,y) is a DAE. A
DAE has a solution only when y0 is consistent; that is, there exists an
initial slope yp0 such that M(t0,y0)yp0 = f(t0,y0). If y0 and yp0 are not
consistent, the solver treats them as guesses, attempts to compute
consistent values that are close to the guesses, and continues to solve

1-4804

odeset

the problem. For DAEs of index 1, solving an initial value problem with
consistent initial conditions is much like solving an ODE.

The ode15s and ode23t solvers can solve DAEs of index 1. For examples
of DAE problems, see Example: Differential-Algebraic Problem, in the
MATLAB Mathematics documentation, and the examples amp1dae and
hb1dae.

The following table describes the mass matrix and DAE properties.
Further information on each property is given following the table.

Mass Matrix and DAE Properties (Solvers Other Than ode15i)

Property Value Description

Mass Matrix | function
handle

Mass matrix or a function that evaluates the
mass matrix M(t,y).

MStateDependence none | {weak} |
strong

Dependence of the mass matrix on y.

MvPattern Sparse matrix ∂(M(t,y)v)/∂y sparsity pattern.

MassSingular yes | no |
{maybe}

Indicates whether the mass matrix is
singular.

InitialSlope Vector {zero vector} Vector representing the consistent initial
slope yp0.

Description of Mass Matrix and DAE Properties

Mass— For problems of the form M t y f t y() (,) , set 'Mass' to a mass

matrix M. For problems of the form M t y f t y() (,) , set 'Mass' to a
function handle @Mfun, where Mfun(t,y) evaluates the mass matrix
M(t,y). The ode23s solver can only solve problems with a constant
mass matrix M. When solving DAEs, using ode15s or ode23t, it is
advantageous to formulate the problem so that M is a diagonal matrix
(a semiexplicit DAE).

1-4805

odeset

For example problems, see “Finite Element Discretization” in the
MATLAB Mathematics documentation, or the examples fem2ode or
batonode.

MStateDependence — Set this property to none for problems

M t y f t y() (,) . Both weak and strong indicate M(t,y), but weak
results in implicit solvers using approximations when solving algebraic
equations.

MvPattern— Set this property to a sparse matrix S with S(i,j) = 1 if, for
any k, the (i,k) component of M(t,y) depends on component j of y, and 0
otherwise. For use with the ode15s, ode23t, and ode23tb solvers when
MStateDependence is strong. See burgersode as an example.

MassSingular — Set this property to no if the mass matrix is not
singular and you are using either the ode15s or ode23t solver. The
default value of maybe causes the solver to test whether the problem is a
DAE, by testing whether M(t0,y0) is singular.

InitialSlope— Vector representing the consistent initial slope yp0 ,

where yp0 satisfies M t y yp f t y(,) (,)0 0 0 0 0 . The default is the zero
vector.

This property is for use with the ode15s and ode23t solvers when
solving DAEs.

ode15s
and
ode15i-Specific
Properties

ode15s is a variable-order solver for stiff problems. It is based
on the numerical differentiation formulas (NDFs). The NDFs are
generally more efficient than the closely related family of backward
differentiation formulas (BDFs), also known as Gear’s methods. The
ode15s properties let you choose among these formulas, as well as
specifying the maximum order for the formula used.

ode15i solves fully implicit differential equations of the form

f t y y(, ,)′ = 0

using the variable order BDF method.

1-4806

odeset

The following table describes the ode15s and ode15i-specific properties.
Further information on each property is given following the table. Use
odeset to set these properties.

ode15s and ode15i-Specific Properties

Property Value Description

MaxOrder 1 | 2 | 3 | 4 |
{5}

Maximum order formula used to
compute the solution.

BDF
(ode15s
only)

on | {off} Specifies whether you want to use the
BDFs instead of the default NDFs.

Description of ode15s and ode15i-Specific Properties

MaxOrder—Maximum order formula used to compute the solution.

BDF (ode15s only) — Set BDF on to have ode15s use the BDFs.

For both the NDFs and BDFs, the formulas of orders 1 and 2 are
A-stable (the stability region includes the entire left half complex
plane). The higher order formulas are not as stable, and the higher the
order the worse the stability. There is a class of stiff problems (stiff
oscillatory) that is solved more efficiently if MaxOrder is reduced (for
example to 2) so that only the most stable formulas are used.

See Also deval | odeget | ode45 | ode23 | ode23t | ode23tb | ode113 |
ode15s | ode23s | function_handle

1-4807

odextend

Purpose Extend solution of initial value problem for ordinary differential
equation

Syntax solext = odextend(sol, odefun, tfinal)
solext = odextend(sol,[],tfinal)
solext = odextend(sol, odefun, tfinal, yinit)
solext = odextend(sol, odefun, tfinal, [yinit, ypinit])
solext = odextend(sol, odefun, tfinal, yinit, options)

Description solext = odextend(sol, odefun, tfinal) extends the solution
stored in sol to an interval with upper bound tfinal for the
independent variable. Specify odefun as a function handle. Specify sol
as an ODE solution structure created using an ODE solver. The lower
bound for the independent variable in solext is the same as in sol. If
you created sol with an ODE solver other than ode15i, the function
odefun computes the right-hand side of the ODE equation, which is
of the form y′ = f(t,y). If you created sol using ode15i, the function
odefun computes the left-hand side of the ODE equation, which is of
the form f(t,y,y′) = 0.

“Parameterizing Functions” explains how to provide additional
parameters to the function odefun, if necessary.

odextend extends the solution by integrating odefun from the upper
bound for the independent variable in sol to tfinal, using the same
ODE solver that created sol. By default, odextend uses

• The initial conditions y = sol.y(:,end) for the subsequent
integration

• The same integration properties and additional input arguments
the ODE solver originally used to compute sol. This information
is stored as part of the solution structure sol and is subsequently
passed to solext. Unless you want to change these values, you do
not need to pass them to odextend.

solext = odextend(sol,[],tfinal) uses the same ODE function
that the ODE solver uses to compute sol to extend the solution. It is

1-4808

odextend

not necessary to pass in odefun explicitly unless it differs from the
original ODE function.

solext = odextend(sol, odefun, tfinal, yinit) uses the column
vector yinit as new initial conditions for the subsequent integration,
instead of the vector sol.y(end).

Note To extend solutions obtained with ode15i, use the following
syntax, in which the column vector ypinit is the initial derivative of
the solution:

solext = odextend(sol, odefun, tfinal, [yinit, ypinit])

solext = odextend(sol, odefun, tfinal, yinit, options) uses
the integration properties specified in options instead of the options
the ODE solver originally used to compute sol. The new options are
then stored within the structure solext. See odeset for details on
setting options properties. Set yinit = [] as a placeholder to specify
the default initial conditions.

Examples The following command

sol=ode45(@vdp1,[0 10],[2 0]);

uses ode45 to solve the system y' = vdp1(t,y), where vdp1 is an
example of an ODE function provided with MATLAB software, on the
interval [0 10]. Then, the commands

sol=odextend(sol,@vdp1,20);
plot(sol.x,sol.y(1,:));

extend the solution to the interval [0 20] and plot the first component
of the solution on [0 20].

See Also deval | ode23 | ode45 | ode113 | ode15s | ode23s | ode23t | ode23tb
| ode15i | odeset | odeget | deval | function_handle

1-4809

onCleanup

Purpose Cleanup tasks upon function completion

Syntax cleanupObj = onCleanup(cleanupFun)

Description cleanupObj = onCleanup(cleanupFun) creates an object that, when
destroyed, executes the function cleanupFun. MATLAB implicitly
clears all local variables at the termination of a function, whether by
normal completion, or a forced exit, such as an error, or Ctrl+C.

If you reference or pass cleanupObj outside your function, then
cleanupFun does not run when that function terminates. Instead, it
runs whenever the MATLAB destroys the object.

Input
Arguments

cleanupFun - Clean-up task
function handle

Clean-up task, specified as a handle to a function.

You can declare any number of onCleanup objects in a program file.
However, if the clean-up tasks depend on the order of execution,
then you should define only one object that calls a script or function,
containing the relevant clean-up commands.

You should use an anonymous function handle to call your clean-up
task. This allows you to pass arguments to your clean-up function.

Example: @() fclose('file.m')

Example: @() user_script

Example: @() function(input)

Data Types
function_handle

Examples Close a Figure After Executing Function

Save the following code in action.m and type action in the Command
Window.

function [] = action()

1-4810

onCleanup

f = figure;
finishup = onCleanup(@() myCleanupFun(f));
disp('Display Figure');
end

function myCleanupFun(f)
close(f);
disp('Close Figure')
end

Display Figure
Close Figure

Switch Directories After Executing Function

Pass your own script to the onCleanup object so that it executes when
MATLAB destroys the cleanup object.

Save the following code in cleanup.m.

cd(tempdir);
disp('You are now in the temporary folder')

Save the following code in youraction.m and type youraction in the
Command Window.

function [] = youraction
changeup = onCleanup(@cleanup);
disp('Execute Code');

end

Execute Code
You are now in the temporary folder

Tips • Avoid using nested functions during cleanup. MATLAB can clear
variables used in nested functions before the clean-up function tries
to read from them.

• If your program contains multiple cleanup objects, MATLAB does not
guarantee the order that it destroys these objects.

1-4811

onCleanup

• If the order of your cleanup functions matters, define one onCleanup
object for all the tasks.

See Also clear | clearvars | function_handle

Concepts • “Clean Up When Functions Complete”
• “Object Lifecycle”
• “Function Handles”
• “What Are Anonymous Functions?”

1-4812

ones

Purpose Create array of all ones

Syntax X = ones
X = ones(n)
X = ones(sz1,...,szN)
X = ones(sz)

X = ones(classname)
X = ones(n,classname)
X = ones(sz1,...,szN,classname)
X = ones(sz,classname)

X = ones('like',p)
X = ones(n,'like',p)
X = ones(sz1,...,szN,'like',p)
X = ones(sz,'like',p)

Description X = ones returns the scalar 1.

X = ones(n) returns an n-by-n matrix of ones.

X = ones(sz1,...,szN) returns an sz1-by-...-by-szN array of ones
where sz1,...,szN indicates the size of each dimension. For example,
ones(2,3) returns a 2-by-3 array of ones.

X = ones(sz) returns an array of ones where the size vector, sz, defines
size(X). For example, ones([2,3]) returns a 2-by-3 array of ones.

X = ones(classname) returns a scalar 1 where the string, classname,
specifies the data type. For example, ones('int8') returns a scalar,
8-bit integer 1.

X = ones(n,classname) returns an n-by-n array of ones of data type
classname.

1-4813

ones

X = ones(sz1,...,szN,classname) returns an sz1-by-...-by-szN array
of ones of data type classname.

X = ones(sz,classname) returns an array of ones where the size
vector, sz, defines size(X) and classname defines class(X).

X = ones('like',p)returns a scalar 1 with the same data type,
sparsity, and complexity (real or complex) as the numeric variable, p.

X = ones(n,'like',p) returns an n-by-n array of ones like p.

X = ones(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array
of ones like p.

X = ones(sz,'like',p) returns an array of ones like p where the size
vector, sz, defines size(X).

Input
Arguments

n - Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output
as a square, n-by-n matrix of ones.

• If n is 0, then X is an empty matrix.

• If n is negative, then it is treated as 0.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

sz1,...,szN - Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values, defines
X as a sz1-by...-by-szN array.

1-4814

ones

• If the size of any dimension is 0, then X is an empty array.

• If the size of any dimension is negative, then it is treated as 0.

• If any trailing dimensions greater than 2 have a size of 1, then the
output, X, does not include those dimensions.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

sz - Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of
this vector indicates the size of the corresponding dimension.

• If the size of any dimension is 0, then X is an empty array.

• If the size of any dimension is negative, then it is treated as 0.

• If any trailing dimensions greater than 2 have a size of 1, then the
output, X, does not include those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

classname - Output class
'double' (default) | 'single' | 'int8' | 'uint8' | ...

Output class, specified as 'double', 'single', 'int8', 'uint8',
'int16', 'uint16', 'int32', 'uint32', 'int64', or 'uint64'.

Data Types
char

p - Prototype
numeric variable

1-4815

ones

Prototype, specified as a numeric variable.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

Examples Square Array of Ones

Create a 4-by-4 array of ones.

X = ones(4)

X =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3-D Array of Ones

Create a 2-by-3-by-4 array of ones.

X = ones(2,3,4);

size(X)

ans =

2 3 4

Size Defined by Existing Array

Define a 3-by-2 array A.

A = [1 4 ; 2 5 ; 3 6];

sz = size(A)

1-4816

ones

sz =

3 2

Create an array of ones that is the same size as A

X = ones(sz)

X =

1 1
1 1
1 1

Nondefault Numeric Data Type

Create a 1-by-3 vector of ones whose elements are 16-bit unsigned
integers.

X = ones(1,3,'uint16'),
class(X)

X =

1 1 1

ans =

uint16

Complex One

Create a scalar 1 that is not real valued, but instead is complex like an
existing array.

Define a complex vector.

p = [1+2i 3i];

1-4817

ones

Create a scalar 1 that is complex like p.

X = ones('like',p)

X =

1.0000 + 0.0000i

Size and Numeric Data Type of Defined by Existing Array

Define a 2-by-3 array of 8-bit unsigned integers.

p = uint8([1 3 5 ; 2 4 6]);

Create an array of ones that is the same size and data type as p.

X = ones(size(p),'like',p),
class(X)

X =

1 1 1
1 1 1

ans =

uint8

See Also eye | zeros | rand | randn | complex | false | size

Concepts • “Class Support for Array-Creation Functions”
• “Preallocating Arrays”

1-4818

open

Purpose Open file in appropriate application

Syntax open(name)
output = open(name)

Description open(name) opens the specified file or variable in the appropriate
application.

output = open(name) returns an empty output ([]) for most cases. If
opening a MAT-file, output is a structure that contains the variables in
the file. If opening a figure, output is a handle to that figure.

Tips The open function opens files based on their extension. You can extend
the functionality of open by defining your own file handling function of
the form openxxx, where xxx is a file extension. For example, if you
create a function openlog, the open function calls openlog to process
any files with the .log extension. The open function returns any single
output defined by your function.

Input
Arguments

name

Name of file or variable to open. If name does not include an extension,
the open function:

1 Searches for a variable named name. If the variable exists, open
opens it in the Variables editor.

2 Searches the MATLAB path for name.mdl, name.slx, or name.m. If
name.mdl or name.slx exists, then open opens the model in Simulink.
If only name.m exists, open opens the file in the MATLAB Editor.

If more than one file named name exists on the MATLAB path, the open
function opens the file returned by which(name).

The open function performs the following actions based on the file
extension:

1-4819

open

(Continued)

.m Open in MATLAB Editor.

.mat Return variables in structure st when called with
the syntax:

st = open(name)

.fig Open figure in Handle Graphics.

.mdl or .slx Open model in Simulink.

.prj Open project in the MATLAB Compiler Deployment
Tool.

.doc* Open document in Microsoft Word.

.exe Run executable file (only on Windows systems).

.pdf Open document in Adobe® Acrobat®.

.ppt* Open document in Microsoft PowerPoint.

.xls* Start MATLAB Import Wizard.

.htm or .html Open document in MATLAB browser.

.url Open file in your default Web browser.

Examples Open Contents.m in the MATLAB Editor by typing:

open Contents.m

Generally, MATLAB opens
matlabroot\toolbox\matlab\general\Contents.m. However, if
you have a file called Contents.m in a directory that is before
toolbox\matlab\general on the MATLAB path, then open opens that
file instead.

Open a file not on the MATLAB path by including the complete file
specification:

1-4820

open

open('D:\temp\data.mat')

If the file does not exist, MATLAB displays an error message.

Create a function called opentxt to handle files with extension .txt:

function opentxt(filename)

fprintf('You have requested file: %s\n', filename);

wh = which(filename);
if exist(filename, 'file') == 2

fprintf('Opening in MATLAB Editor: %s\n', filename);
edit(filename);

elseif ~isempty(wh)
fprintf('Opening in MATLAB Editor: %s\n', wh);
edit(wh);

else
warning('MATLAB:fileNotFound', ...

'File was not found: %s', filename);
end

end

Open the file ngc6543a.txt (a description of ngc6543a.jpg, located in
matlabroot\toolbox\matlab\demos):

photo_text = 'ngc6543a.txt';
open(photo_text)

open calls your function with the following syntax:

opentxt(photo_text)

See Also edit | load | openfig | openvar | path | uiopen | which | winopen

1-4821

VideoWriter.open

Purpose Open file for writing video data

Syntax open(writerObj)

Description open(writerObj) opens the file associated with writerObj for writing.
When you open the file, all properties of the object become read only.
open discards any existing contents of the file.

Input
Arguments

writerObj

VideoWriter object created by the VideoWriter function.

Examples Open a new AVI file:

myObj = VideoWriter('newfile.avi');
open(myObj);

See Also writeVideo | VideoWriter | close

1-4822

openfig

Purpose Open new copy or raise existing copy of saved figure

Syntax openfig('filename.fig')
openfig('filename.fig','new')
openfig('filename.fig','reuse')
openfig('filename.fig','new','invisible')
openfig('filename.fig','reuse','invisible')
openfig('filename.fig','new','visible')
openfig('filename.fig','reuse','visible')
figure_handle = openfig(...)

Description openfig('filename.fig') and openfig('filename.fig','new')
opens the figure contained in the FIG-file, filename.fig, and ensures
it is visible and positioned completely on screen. You do not have to
specify the full path to the FIG-file as long as it is on your MATLAB
path. The .fig extension is optional.

openfig('filename.fig','reuse') opens the figure contained in the
FIG-file only if a copy of the figure is not currently open. Otherwise,
openfig brings the existing copy forward, making sure it is still visible
and completely on screen.

openfig('filename.fig','new','invisible') or
openfig('filename.fig','reuse','invisible') opens the
figure as in the preceding example, while forcing the figure to be
invisible.

openfig('filename.fig','new','visible') or
openfig('filename.fig','reuse','visible') opens the figure,
while forcing the figure to be visible.

figure_handle = openfig(...) returns the handle to the figure.

Tips openfig is designed for use with GUI figures. Use this function to:

• Open the FIG-file creating the GUI and ensure it is displayed on
screen. This provides compatibility with different screen sizes and
resolutions.

1-4823

openfig

• Control whether the MATLAB software displays one or multiple
instances of the GUI at any given time.

• Return the handle of the figure created, which is typically hidden
for GUI figures.

If the FIG-file contains an invisible figure, openfig returns its handle
and leaves it invisible. The caller should make the figure visible when
appropriate.

Do not use openfig or double-click a FIG-file to open a GUI created
with GUIDE. Instead open the GUI code file by typing its name in the
command window or by right-clicking its name in the Current Folder
Browser and selecting Run File. To open a GUIDE GUI, for example
one called guifile.m, in an invisible state, specify the Visible property
in your command:

guifile('Visible','off')

Your code should then make the figure visible at an appropriate time.

See Also guide | guihandles | movegui | open | hgload | save

1-4824

opengl

Purpose Control OpenGL rendering

Syntax opengl selection_mode
opengl info
s = opengl('data')
opengl software
opengl hardware
opengl verbose
opengl quiet
opengl DriverBugWorkaround
opengl('DriverBugWorkaround',WorkaroundState)

Description opengl selection_mode determines how MATLAB selects the
OpenGL renderer. Possible values for selection_mode are

• autoselect – allows OpenGL to be automatically selected if OpenGL
is available and if there is graphics hardware on the host machine.

• neverselect – disables autoselection of OpenGL.

• advise – prints a message to the command window if OpenGL
rendering is advised, but RenderMode is set to manual.

opengl, by itself, returns the current autoselection state.

Note that the autoselection state only specifies whether OpenGL should
or should not be considered for rendering; it does not explicitly set the
rendering to OpenGL. You can do this by setting the Renderer property
of the figure to OpenGL. For example,

set(figure_handle,'Renderer','OpenGL')

Note The OpenGL autoselection mode applies when the RendererMode
of the figure is auto

opengl info prints information with the version and vendor of the
OpenGL on your system. Also indicates whether your system is

1-4825

../ref/figure_props.html#RendererMode

opengl

currently using hardware or software OpenGL and the state of various
driver bug workarounds. Note that calling opengl info loads the
OpenGL Library.

For example, the following output is generated on a Windows computer:

>> opengl info
Version: '3.3.0'
Vendor: 'NVIDIA Corporation'

Renderer: 'Quadro 400/PCI/SSE2'
MaxTextureSize: 8192

Visual: ''
Software: ''

Extensions: {235x1 cell}
MaxFrameBufferSize: 8192

Note that different computer systems may not list all OpenGL bugs.

s = opengl('data') returns a structure containing the same data
that is displayed when you call opengl info, with the exception of
the driver bug workaround state.

opengl software forces the MATLAB software to use software OpenGL
rendering instead of hardware OpenGL. Note that Macintosh systems
do not support software OpenGL.

opengl hardware reverses the opengl software command and enables
MATLAB to use hardware OpenGL rendering if it is available. If your
computer does not have OpenGL hardware acceleration, MATLAB
automatically switches to software OpenGL rendering (except on
Macintosh systems, which do not support software OpenGL).

Note that on UNIX systems, the software or hardware options with the
opengl command works only if MATLAB has not yet used the OpenGL
renderer or you have not issued the opengl info command (which
attempts to load the OpenGL Library).

opengl verbose displays verbose messages about OpenGL initialization
(if OpenGL is not already loaded) and other runtime messages.

opengl quiet disables verbose message setting.

1-4826

opengl

opengl DriverBugWorkaround queries the state of the specified driver
bug workaround. Use the command opengl info to see a list of all
driver bug workarounds. See “Driver Bug Workarounds” on page 1-4827
for more information.

opengl('DriverBugWorkaround',WorkaroundState) sets the state of
the specified driver bug workaround. You can set WorkaroundState to
one of three values:

• 0 – Disable the specified DriverBugWorkaround (if enabled) and do
not allow MATLAB to autoselect this workaround.

• 1 – Enable the specified DriverBugWorkaround.

• -1 – Set the specified DriverBugWorkaround to autoselection mode,
which allows MATLAB to enable this workaround if the requisite
conditions exist.

Driver Bug
Workarounds Note Always check with your graphics hardware vendor to ensure you

are using the latest driver software. Use the opengl info command to
see your current version number.

The MATLAB software enables various OpenGL driver bug
workarounds when it detects certain known problems with installed
hardware. However, because there are many versions of graphics
drivers, you might encounter situations when MATLAB does not enable
a workaround that would solve a problem you are having with OpenGL
rendering.

This section describes the symptoms that each workaround is designed
to correct so you can decide if you want to try using one to fix an
OpenGL rendering problem.

Use the opengl info command to see what driver bug workarounds
are available on your computer.

1-4827

opengl

Note These workarounds have not been tested under all driver
combinations and therefore might produce undesirable results under
certain conditions.

OpenGLBitmapZbufferBug

Symptom: text with background color (including data tips) and text
displayed on image, patch, or surface objects is not visible when using
OpenGL renderer.

Possible side effect: text is always on top of other objects.

Command to enable:

opengl('OpenGLBitmapZbufferBug',1)

OpenGLWobbleTesselatorBug

Symptom: Rendering complex patch object causes segmentation
violation and returns a tesselator error message in the stack trace.

Command to enable:

opengl('OpenGLWobbleTesselatorBug',1)

OpenGLLineSmoothingBug

Symptom: Lines with a LineWidth greater than 3 look bad.

Command to enable:

opengl('OpenGLLineSmoothingBug',1)

OpenGLDockingBug

Symptom: MATLAB crashes when you dock a figure that has its
Renderer property set to opengl.

Command to enable:

1-4828

opengl

opengl('OpenGLDockingBug',1)

OpenGLClippedImageBug

Symptom: Images (as well as colorbar displays) do not display when
the Renderer property set to opengl.

Command to enable:

opengl('OpenGLClippedImageBug',1)

OpenGLEraseModeBug

Symptom: Graphics objects with EraseMode property set to non-normal
erase modes (xor, none, or background) do not draw when the figure
Renderer property is set to opengl.

Command to enable:

opengl('OpenGLEraseModeBug',1)

See Also Renderer

1-4829

../ref/figure_props.html#Renderer

openvar

Purpose Open workspace variable in Variables editor or other graphical editing
tool

Syntax openvar(varname)

Description openvar(varname) opens the workspace variable named by the string,
varname, in the Variables editor for graphical editing. Changes that
you make to variables in the Variables editor occur in the workspace
as soon as you enter them.

In some toolboxes, openvar opens a tool appropriate for viewing or
editing objects indicated by varname instead of opening the Variables
editor.

MATLAB does not impose any limitation on the size of a variable that
you can open in the Variables editor. However, your operating system
or the amount of physical memory installed on your computer can
impose such limits.

Input
Arguments

varname - Variable name
string

Variable name, specified as a string. The named variable can be
an array, character string, cell array, structure, or an object and its
properties. If the named variable is a multidimensional array, then you
can only view the array in the Variables editor, and not edit it.

Example: 'myVariable'

Example: 'A'

Examples Identify Outliers in a Linked Graph

Use data brushing to identify observations in a vector or matrix that
might warrant further analysis.

Make a scatter plot of data in the sample MAT-file count.dat, and
open the variable count in the Variables editor.

load count.dat

1-4830

openvar

scatter(count(:,1),count(:,2))
openvar('count')

Right-click a cell in the Variables editor and select
Brushing > Brushing On. This turns on data brushing in
the Variables editor.

Select the rows 7, 8, and 20. (Select noncontiguous rows by holding
down the Ctrl key and clicking in each row.)

In the Figure window with the scatter plot, click Brush/Select Data

to enable data brushing, and Link Plot to enable data
linking.

The data observations you brushed in the Variables editor appear
highlighted in the scatter plot.

1-4831

openvar

As long as data linking is enabled in the figure, observations that you
brush in the scatter plot are highlighted in the Variables editor. When
a figure is not linked to its data sources, you can still brush its graphs
and you can brush the same data in the Variables editor, but only the
display that you brush responds by highlighting.

Tips • As an alternative to the openvar function, double-click a variable in
the Workspace browser.

See Also brush | linkdata | load | workspace | save

Concepts • “View, Edit, and Copy Variables”
• “Making Graphs Responsive with Data Linking”

1-4832

optimget

Purpose Optimization options values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
parameter in the optimization options structure options. You need
to type only enough leading characters to define the parameter name
uniquely. Case is ignored for parameter names.

val = optimget(options,'param',default) returns default if the
specified parameter is not defined in the optimization options structure
options. Note that this form of the function is used primarily by other
optimization functions.

Examples This statement returns the value of the Display optimization options
parameter in the structure called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display optimization options
parameter in the structure called my_options (as in the previous
example) except that if the Display parameter is not defined, it returns
the value 'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset | fminbnd | fminsearch | fzero | lsqnonneg

1-4833

optimset

Purpose Create or edit optimization options structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description The function optimset creates an options structure that you can pass
as an input argument to the following four MATLAB optimization
functions:

• fminbnd

• fminsearch

• fzero

• lsqnonneg

You can use the options structure to change the default parameters
for these functions.

Note If you have an Optimization Toolbox™ license, you can also
use optimset to create an expanded options structure containing
additional options specifically designed for the functions provided in
that toolbox. For more information about these additional options, see
the reference page for the enhanced Optimization Toolbox optimset
function.

options = optimset('param1',value1,'param2',value2,...)
creates an optimization options structure called options, in which the
specified parameters (param) have specified values. Any unspecified
parameters are set to [] (parameters with value [] indicate to use
the default value for that parameter when options is passed to the
optimization function). It is sufficient to type only enough leading

1-4834

optimset

characters to define the parameter name uniquely. Case is ignored
for parameter names.

optimset with no input or output arguments displays a complete list of
parameters with their valid values.

options = optimset (with no input arguments) creates an options
structure options where all fields are set to [].

options = optimset(optimfun) creates an options structure
options with all parameter names and default values relevant to the
optimization function optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy
of oldopts, modifying the specified parameters with the specified
values.

options = optimset(oldopts,newopts) combines an existing
options structure oldopts with a new options structure newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.

Options The following table lists the available options for the MATLAB
optimization functions.

Option Value Description Solvers

Display 'off' |
’iter' |
{'final'} |
'notify'

Level of display. 'off'
displays no output;
'iter' displays output
at each iteration
(not available for
lsqnonneg); 'final'
displays just the final
output; 'notify'
displays output only if

fminbnd,
fminsearch,fzero,
lsqnonneg

1-4835

optimset

Option Value Description Solvers

the function does not
converge.

FunValCheck{'off'} | 'on' Check whether
objective function
values are valid. 'on'
displays an error when
the objective function
returns a value that is
complex or NaN. 'off'
displays no error.

fminbnd,
fminsearch,fzero

MaxFunEvalspositive integer Maximum number of
function evaluations
allowed.

fminbnd,
fminsearch

MaxIter positive integer Maximum number of
iterations allowed.

fminbnd,
fminsearch

OutputFcn function | {[]} User-defined function
that an optimization
function calls at each
iteration. See “Output
Functions”.

fminbnd,
fminsearch,fzero

PlotFcns function | {[]} User-defined or built-in
plot function that an
optimization function
calls at each iteration.
Built-in functions:

• @optimplotx plots
the current point

• @optimplotfval
plots the function
value

fminbnd,
fminsearch,fzero

1-4836

optimset

Option Value Description Solvers

• @optimplotfunccount
plots the function
count (not available
for fzero)

See “Plot Functions”.

TolFun positive scalar Termination tolerance
on the function value.
See “Tolerances and
Stopping Criteria”.

fminsearch

TolX positive scalar Termination tolerance
on x, the current point.
See “Tolerances and
Stopping Criteria”.

fminbnd,
fminsearch,fzero,
lsqnonneg

Examples This statement creates an optimization options structure called
options in which the Display parameter is set to 'iter' and the
TolFun parameter is set to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options,
changing the value of the TolX parameter and storing new values in
optnew.

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure that contains
all the parameter names and default values relevant to the function
fminbnd.

optimset('fminbnd')

See Also optimset | optimget | fminbnd | fminsearch | fzero | lsqnonneg

1-4837

or, |

Purpose Find logical OR

Syntax A | B | ...
or(A, B)

Description A | B | ... performs a logical OR of all input arrays A, B, etc., and
returns an array containing elements set to either logical 1 (true) or
logical 0 (false). An element of the output array is set to 1 if any
input arrays contain a nonzero element at that same array location.
Otherwise, that element is set to 0.

Each input of the expression can be an array or can be a scalar value.
All nonscalar input arrays must have equal dimensions. If one or more
inputs are an array, then the output is an array of the same dimensions.
If all inputs are scalar, then the output is scalar.

If the expression contains both scalar and nonscalar inputs, then
each scalar input is treated as if it were an array having the same
dimensions as the other input arrays. In other words, if input A is a
3-by-5 matrix and input B is the number 1, then B is treated as if it
were a 3-by-5 matrix of ones.

or(A, B) is called for the syntax A | B when either A or B is an object.

Note The symbols | and || perform different operations in a MATLAB
application. The element-wise OR operator described here is |. The
short-circuit OR operator is ||.

Examples If matrix A is

0.4235 0.5798 0 0.7942 0
0.5155 0 0 0 0.8744

0 0 0 0.4451 0.0150
0.4329 0.6405 0.6808 0 0

and matrix B is

1-4838

or, |

0 1 0 1 0
1 1 0 0 1
0 0 0 1 0
0 1 0 0 1

then

A | B
ans =

1 1 0 1 0
1 1 0 0 1
0 0 0 1 1
1 1 1 0 1

See Also any | all | Logical Operators: Short Circuit | bitor | xor
| and | not

Concepts • “Truth Table for Logical Operations”

1-4839

ordeig

Purpose Eigenvalues of quasitriangular matrices

Syntax E = ordeig(T)
E = ordeig(AA,BB)

Description E = ordeig(T) takes a quasitriangular Schur matrix T, typically
produced by schur, and returns the vector E of eigenvalues in their
order of appearance down the diagonal of T.

E = ordeig(AA,BB) takes a quasitriangular matrix pair AA and BB,
typically produced by qz, and returns the generalized eigenvalues in
their order of appearance down the diagonal of AA-º*BB.

ordeig is an order-preserving version of eig for use with ordschur and
ordqz. It is also faster than eig for quasitriangular matrices.

Examples Example 1

T=diag([1 -1 3 -5 2]);

ordeig(T) returns the eigenvalues of T in the same order they appear
on the diagonal.

ordeig(T)

ans =

1
-1
3

-5
2

eig(T), on the other hand, returns the eigenvalues in order of
increasing magnitude.

eig(T)

ans =

1-4840

ordeig

-5
-1
1
2
3

Example 2

A = rand(10);
[U, T] = schur(A);
abs(ordeig(T))

ans =

5.3786
0.7564
0.7564
0.7802
0.7080
0.7080
0.5855
0.5855
0.1445
0.0812

% Move eigenvalues with magnitude < 0.5 to the
% upper-left corner of T.
[U,T] = ordschur(U,T,abs(E)<0.5);
abs(ordeig(T))

ans =

0.1445
0.0812
5.3786
0.7564
0.7564
0.7802

1-4841

ordeig

0.7080
0.7080
0.5855
0.5855

See Also schur | qz | ordschur | ordqz | eig

1-4842

orderfields

Purpose Order fields of structure array

Syntax s = orderfields(s1)
s = orderfields(s1, s2)
s = orderfields(s1, c)
s = orderfields(s1, perm)
[s, perm] = orderfields(...)

Description s = orderfields(s1) orders the fields in s1 so that the new structure
array s has field names in ASCII dictionary order.

s = orderfields(s1, s2) orders the fields in s1 so that the new
structure array s has field names in the same order as those in s2.
Structures sl and s2 must have the same fields.

s = orderfields(s1, c) orders the fields in s1 so that the new
structure array s has field names in the same order as those in the
cell array of field name strings c. Structure s1 and cell array c must
contain the same field names.

s = orderfields(s1, perm) orders the fields in s1 so that the new
structure array s has fieldnames in the order specified by the indices in
permutation vector perm.

If s1 has N fieldnames, the elements of perm must be an arrangement of
the numbers from 1 to N. This is particularly useful if you have more
than one structure array that you would like to reorder in the same way.

[s, perm] = orderfields(...) returns a permutation vector
representing the change in order performed on the fields of the structure
array that results in s.

Tips orderfields only orders top-level fields. It is not recursive.

Examples Create a structure s. Then create a new structure from s, but with
the fields ordered alphabetically:

s = struct('b', 2, 'c', 3, 'a', 1)
s =

1-4843

orderfields

b: 2
c: 3
a: 1

snew = orderfields(s)
snew =

a: 1
b: 2
c: 3

Arrange the fields of s in the order specified by the second (cell array)
argument of orderfields. Return the new structure in snew and the
permutation vector used to create it in perm:

[snew, perm] = orderfields(s, {'b', 'a', 'c'})
snew =

b: 2
a: 1
c: 3

perm =
1
3
2

Now create a new structure, s2, having the same fieldnames as s.
Reorder the fields using the permutation vector returned in the
previous operation:

s2 = struct('b', 3, 'c', 7, 'a', 4)
s2 =

b: 3
c: 7
a: 4

snew = orderfields(s2, perm)
snew =

b: 3
a: 4

1-4844

orderfields

c: 7

See Also struct | isfield | fieldnames | setfield | getfield | rmfield |
struct2cell | cell2struct

Related
Examples

• dynamic field names

1-4845

ordqz

Purpose Reorder eigenvalues in QZ factorization

Syntax [AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,select)
[...] = ordqz(AA,BB,Q,Z,keyword)
[...] = ordqz(AA,BB,Q,Z,clusters)

Description [AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,select) reorders the QZ
factorizations Q*A*Z = AA and Q*B*Z = BB produced by the qz function
for a matrix pair (A,B). It returns the reordered pair (AAS,BBS)
and the cumulative orthogonal transformations QS and ZS such that
QS*A*ZS = AAS and QS*B*ZS = BBS. In this reordering, the selected
cluster of eigenvalues appears in the leading (upper left) diagonal blocks
of the quasitriangular pair (AAS,BBS), and the corresponding invariant
subspace is spanned by the leading columns of ZS. The logical vector
select specifies the selected cluster as E(select) where E is the vector
of eigenvalues as they appear along the diagonal of AA-º*BB.

Note To extract E from AA and BB, use ordeig(BB), instead of eig.
This ensures that the eigenvalues in E occur in the same order as they
appear on the diagonal of AA-º*BB.

[...] = ordqz(AA,BB,Q,Z,keyword) sets the selected cluster to
include all eigenvalues in the region specified by keyword:

keyword Selected Region

'lhp' Left-half plane (real(E) < 0)

'rhp' Right-half plane (real(E) > 0)

'udi' Interior of unit disk (abs(E) < 1)

'udo' Exterior of unit disk (abs(E) > 1)

[...] = ordqz(AA,BB,Q,Z,clusters) reorders multiple clusters at
once. Given a vector clusters of cluster indices commensurate with
E = ordeig(AA,BB), such that all eigenvalues with the same clusters

1-4846

ordqz

value form one cluster, ordqz sorts the specified clusters in descending
order along the diagonal of (AAS,BBS). The cluster with highest index
appears in the upper left corner.

See Also ordeig | ordschur | qz

1-4847

ordschur

Purpose Reorder eigenvalues in Schur factorization

Syntax [US,TS] = ordschur(U,T,select)
[US,TS] = ordschur(U,T,keyword)
[US,TS] = ordschur(U,T,clusters)

Description [US,TS] = ordschur(U,T,select) reorders the Schur factorization
X = U*T*U' produced by the schur function and returns the reordered
Schur matrix TS and the cumulative orthogonal transformation US
such that X = US*TS*US'. In this reordering, the selected cluster of
eigenvalues appears in the leading (upper left) diagonal blocks of the
quasitriangular Schur matrix TS, and the corresponding invariant
subspace is spanned by the leading columns of US. The logical vector
select specifies the selected cluster as E(select) where E is the vector
of eigenvalues as they appear along T’s diagonal.

Note To extract E from T, use E = ordeig(T), instead of eig. This
ensures that the eigenvalues in E occur in the same order as they
appear on the diagonal of TS.

[US,TS] = ordschur(U,T,keyword) sets the selected cluster to include
all eigenvalues in one of the following regions:

keyword Selected Region

'lhp' Left-half plane (real(E) < 0)

'rhp' Right-half plane (real(E) > 0)

'udi' Interior of unit disk (abs(E) < 1)

'udo' Exterior of unit disk (abs(E) > 1)

[US,TS] = ordschur(U,T,clusters) reorders multiple clusters
at once. Given a vector clusters of cluster indices, commensurate
with E = ordeig(T), and such that all eigenvalues with the same
clusters value form one cluster, ordschur sorts the specified clusters

1-4848

ordschur

in descending order along the diagonal of TS, the cluster with highest
index appearing in the upper left corner.

See Also ordeig | ordqz | schur

1-4849

orient

Purpose Hardcopy paper orientation

Alternatives Use File —> Print Preview on the figure window menu to directly
manipulate print layout, paper size, headers, fonts and other properties
when printing figures. For details, see Using Print Preview in the
MATLAB Graphics documentation.

Syntax orient
orient landscape
orient portrait
orient tall
orient(fig_handle)
orient(simulink_model)
orient(fig_handle,orientation)
orient(simulink_model,orientation)

Description orient returns a string with the current paper orientation: portrait,
landscape, or tall.

orient landscape sets the paper orientation of the current figure to
full-page landscape, orienting the longest page dimension horizontally.
The figure is centered on the page and scaled to fit the page with a
0.25 inch border.

orient portrait sets the paper orientation of the current figure to
portrait, orienting the longest page dimension vertically. The portrait
option returns the page orientation to the MATLAB default. (Note that
the result of using the portrait option is affected by changes you
make to figure properties. See the "Algorithm" section for more specific
information.)

orient tall maps the current figure to the entire page in portrait
orientation, leaving a 0.25 inch border.

orient(fig_handle) returns the current orientation of the specified
figure.

orient(simulink_model) returns the current orientation of the
Simulink model.

1-4850

orient

orient(fig_handle,orientation) sets the orientation for the specified
figure to the specified orientation (landscape, portrait, or tall).

orient(simulink_model,orientation) sets the orientation for the
Simulink model.

Algorithms orient sets the PaperOrientation, PaperPosition, and PaperUnits
properties of the current figure. Subsequent print operations use these
properties. The result of using the portrait option can be affected by
default property values as follows:

• If the current figure PaperType is the same as the default figure
PaperType and the default figure PaperOrientation has been set
to landscape, then the orient portrait command uses the current
values of PaperOrientation and PaperPosition to place the figure
on the page.

• If the current figure PaperType is the same as the default figure
PaperType and the default figure PaperOrientation has been set
to landscape, then the orient portrait command uses the default
figure PaperPosition with the x, y and width, height values reversed
(i.e., [y,x,height,width]) to position the figure on the page.

• If the current figure PaperType is different from the default figure
PaperType, then the orient portrait command uses the current
figure PaperPosition with the x, y and width, height values reversed
(i.e., [y,x,height,width]) to position the figure on the page.

See Also print | printpreview | set | PaperOrientation | PaperPosition |
PaperSize | PaperType | PaperUnits

1-4851

orth

Purpose Orthonormal basis for range of matrix

Syntax Q = orth(A)

Description Q = orth(A) returns an orthonormal basis for the range of A. The
columns of Q are vectors, which span the range of A. The number of
columns in Q is equal to the rank of A.

Input
Arguments

A - Input matrix
scalar | vector | matrix

Input matrix, specified as a scalar, vector, or matrix.

Data Types
single | double
Complex Number Support: Yes

Examples Basis for Full Rank Matrix

Calculate and verify the orthonormal basis vectors for the range of a
full rank matrix.

Define a matrix and find the rank.

A = [1 0 1;-1 -2 0; 0 1 -1];
r = rank(A)

r =

3

Since A is a square matrix of full rank, the orthonormal basis calculated
by orth(A) matches the matrix U calculated in the singular value
decomposition, [U,S] = svd(A,'econ'). This is because the singular
values of A are all nonzero.

Calculate the orthonormal basis for the range of A using orth.

1-4852

orth

Q = orth(A)

Q =

-0.1200 -0.8097 0.5744
0.9018 0.1531 0.4042

-0.4153 0.5665 0.7118

The number of columns in Q is equal to rank(A). Since A is of full rank,
Q and A are the same size.

Verify that the basis, Q, is orthogonal and normalized within a
reasonable error range.

E = norm(eye(r)-Q'*Q,'fro')

E =

9.6228e-16

The error is on the order of eps.

Basis for Rank Deficient Matrix

Calculate and verify the orthonormal basis vectors for the range of a
rank deficient matrix.

Define a singular matrix and find the rank.

A = [1 0 1; 0 1 0; 1 0 1];
r = rank(A)

r =

2

Since A is rank deficient, the orthonormal basis calculated by orth(A)
matches only the first r = 2 columns of matrix U calculated in the

1-4853

orth

singular value decomposition, [U,S] = svd(A,'econ'). This is because
the singular values of A are not all nonzero.

Calculate the orthonormal basis for the range of A using orth.

Q = orth(A)

Q =

-0.7071 0
0 1.0000

-0.7071 0

Since A is rank deficient, Q contains one fewer column than A.

Definitions Range

The column space, or range, of a matrix A is the collection of all linear
combinations of the columns of A. Any vector, b, that is a solution to the
linear equation, A*x = b, is included in the range of A since you can also
write it as a linear combination of the columns of A.

Rank

The rank of a matrix is equal to the dimension of the range.

Algorithms orth is obtained from U in the singular value decomposition, [U,S]
= svd(A,'econ'). If r = rank(A), the first r columns of U form an
orthonormal basis for the range of A.

See Also null | svd | rank

1-4854

outerjoin

Purpose Outer join between two tables

Syntax C = outerjoin(A,B)
C = outerjoin(A,B,Name,Value)
[C,ia,ib] = outerjoin(___)

Description C = outerjoin(A,B) creates the table, C, as the outer join between
the tables A and B by matching up rows using all the variables with
the same name as key variables.

The outer join includes the rows that match between A and B, and also
unmatched rows from either A or B, all with respect to the key variables.
C contains all variables from both A and B, including the key variables.

C = outerjoin(A,B,Name,Value) performs the outer-join operation
with additional options specified by one or more Name,Value pair
arguments.

[C,ia,ib] = outerjoin(___) also returns index vectors, ia and ib,
indicating the correspondence between rows in C and those in A and B
respectively. You can use this syntax with any of the input arguments
in the previous syntaxes.

Input
Arguments

A,B - Input tables
tables

Input tables, specified as tables.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Keys',2 uses the second variable in A and the second
variable in B as key variables.

1-4855

outerjoin

’Keys’ - Variables to use as keys
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables to use as keys, specified as the comma-separated pair
consisting of 'Keys' and a positive integer, vector of positive integers,
variable name, cell array of variable names, or logical vector.

You cannot use the 'Keys' name-value pair argument with the
'LeftKeys' and 'RightKeys' name-value pair arguments.

Example: 'Keys',[1 3] uses the first and third variables in A and B
as a key variables.

’LeftKeys’ - Variables to use as keys in A
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables to use as keys in A, specified as the comma-separated pair
consisting of 'LeftKeys' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You must use the 'LeftKeys' name-value pair argument in conjunction
with the 'RightKeys' name-value pair argument. 'LeftKeys' and
'RightKeys' both must specify the same number of key variables.
outerjoin pairs key values based on their order.

Example: 'LeftKeys',1 uses only the first variable in A as a key
variable.

’RightKeys’ - Variables to use as keys in B
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables to use as keys in B, specified as the comma-separated pair
consisting of 'RightKeys' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You must use the 'RightKeys' name-value pair argument in
conjunction with the 'LeftKeys' name-value pair argument.

1-4856

outerjoin

'LeftKeys' and 'RightKeys' both must specify the same number of
key variables. outerjoin pairs key values based on their order.

Example: 'RightKeys',3 uses only the third variable in B as a key
variable.

’MergeKeys’ - Merge keys flag
false (default) | true | 0 | 1

Merge keys flag, specified as the comma-separated pair consisting of
'MergeKeys' and either false, true, 0 or 1.

false outerjoin includes two separate variables in the
output table, C, for each key variable pair from
tables A and B.

This is the default behavior.

true outerjoin includes a single variable in the output
table, C, for each key variable pair from tables A
and B.

outerjoin creates the single variable by merging
the key values from A and B, taking values from A
where a corresponding row exists in A, and taking
values from B otherwise.

If you specify, 'MergeKeys',true, then outerjoin
includes all key variables in the output table, C,
and overrides the inclusion or exclusion of key
variables specified via the 'LeftVariables' and
'RightVariables' name-value pair arguments.

’LeftVariables’ - Variables from A to include in C
positive integer | vector of positive integers | variable name | cell array
containing one or more variable names | logical vector

Variables from A to include in C, specified as the comma-separated pair
consisting of 'LeftVariables' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

1-4857

outerjoin

You can use 'LeftVariables' to include or exclude key variables as
well as nonkey variables from the output, C.

By default, outerjoin includes all variables from A.

’RightVariables’ - Variables from B to include in C
positive integer | vector of positive integers | variable name | cell array
containing one or more variable names | logical vector

Variables from B to include in C, specified as the comma-separated pair
consisting of 'RightVariables' and a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

You can use 'RightVariables' to include or exclude key variables as
well as nonkey variables from the output, C.

By default, outerjoin includes all the variables from B.

’Type’ - Type of outer join operation
'full' (default) | 'left' | 'right'

Type of outer-join operation, specified as the comma-separated pair
consisting of 'Type' and either 'full', 'left', or 'right'.

• For a left outer join, C contains rows corresponding to key values in A
that do not match any values in B, but not vice-versa.

• For a right outer join, C contains rows corresponding to key values in
B that do not match any values in A, but not vice-versa.

By default, outerjoin does a full outer join and includes unmatched
rows from both A and B.

Output
Arguments

C - Outer join from A and B
table

Outer join from A and B, returned as a table. The output table, C,
contains one row for each pair of rows in tables A and B that share the
same combination of key values. If A and B contain variables with
the same name, outerjoin adds a unique suffix to the corresponding
variable names in C. Variables in C that came from A contain null values

1-4858

outerjoin

in those rows that had no match from B. Similarly, variables in C that
came from B contain null values in those rows that had no match from A.

In general, if there are m rows in table A and n rows in table B that
all contain the same combination of values in the key variables,
table C contains m*n rows for that combination. C also contains rows
corresponding to key value combinations in one input table that do not
match any row the other input table.

C contains the horizontal concatenation of A(ia,LeftVars) and
B(ib,RightVars) sorted by the values in the key variables. By default,
LeftVars consists of all the variables of A, and RightVars consists of
all the from B. Otherwise, LefttVars consists of the variables specified
by the 'LeftVariables' name-value pair argument, and RightVars
consists of the variables specified by the 'RightVariables' name-value
pair argument.

You can store additional metadata such as descriptions, variable units,
variable names, and row names in the table. For more information, see
Table Properties.

ia - Index to A
column vector

Index to A, returned as a column vector. Each element of ia identifies
the row in table A that corresponds to that row in the output table,
C. The vector ia contains zeros to indicate the rows in C that do not
correspond to rows in A.

ib - Index to B
column vector

Index to B, returned as a column vector. Each element of ib identifies
the row in table B that corresponds to that row in the output table,
C. The vector ib contains zeros to indicate the rows in C that do not
correspond to rows in B.

1-4859

outerjoin

Definitions Key Variable

Variable used to match and combine data between the input tables,
A and B.

Examples Outer-Join Operation of Tables with One Variable in
Common

Create a table, A.

A = table([5;12;23;2;15;6],...
{'cheerios';'pizza';'salmon';'oreos';'lobster';'pizza'},...
'VariableNames',{'Age','FavoriteFood'},...
'RowNames',{'Amy','Bobby','Holly','Harry','Marty','Sally'})

A =

Age FavoriteFood
___ ____________

Amy 5 'cheerios'
Bobby 12 'pizza'
Holly 23 'salmon'
Harry 2 'oreos'
Marty 15 'lobster'
Sally 6 'pizza'

Create a table, B, with one variable in common with A, called
FavoriteFood.

B = table({'cheerios';'oreos';'pizza';'salmon';'cake'},...
[110;160;140;367;243],...
{'A-';'D';'B';'B';'C-'},...
'VariableNames',{'FavoriteFood','Calories','NutritionGrade'})

B =

FavoriteFood Calories NutritionGrade

1-4860

outerjoin

____________ ________ ______________

'cheerios' 110 'A-'
'oreos' 160 'D'
'pizza' 140 'B'
'salmon' 367 'B'
'cake' 243 'C-'

Use the outerjoin function to create a new table, C, with data from
tables A and B.

C = outerjoin(A,B)

C =

Age FavoriteFood_A FavoriteFood_B Calories NutritionGr
___ ______________ ______________ ________ ___________

NaN '' 'cake' 243 'C-'
5 'cheerios' 'cheerios' 110 'A-'

15 'lobster' '' NaN ''
2 'oreos' 'oreos' 160 'D'

12 'pizza' 'pizza' 140 'B'
6 'pizza' 'pizza' 140 'B'

23 'salmon' 'salmon' 367 'B'

Table C contains a separate variable for the key variable from A, called
FavoriteFood_A, and the key variable from B, called FavoriteFood_B.

Merge Key Variable Pair to Single Variable

Create a table, A.

A = table({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
'VariableNames',{'Key1' 'Var1'})

A =

1-4861

outerjoin

Key1 Var1
____ ____

'a' 1
'b' 2
'c' 3
'e' 11
'h' 17

Create a table, B, with common values in the variable Key1 between
tables A and B, but also containing rows with values of Key1 not present
in A.

B = table({'a','b','d','e'}',[4;5;6;7],...
'VariableNames',{'Key1' 'Var2'})

B =

Key1 Var2
____ ____

'a' 4
'b' 5
'd' 6
'e' 7

Use the outerjoin function to create a new table, C, with data from
tables A and B. Merge the key values into a single variable in the output
table, C.

C = outerjoin(A,B,'MergeKeys',true)

C =

Key1 Var1 Var2
____ ____ ____

'a' 1 4

1-4862

outerjoin

'b' 2 5
'c' 3 NaN
'd' NaN 6
'e' 11 7
'h' 17 NaN

Variables in table C that came from A contain null values in the rows
that have no match from B. Similarly, variables in C that came from B
contain null values in those rows that had no match from A.

Outer-Join Operation of Tables and Indices to Values

Create a table, A.

A = table({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
'VariableNames',{'Key1' 'Var1'})

A =

Key1 Var1
____ ____

'a' 1
'b' 2
'c' 3
'e' 11
'h' 17

Create a table, B, with common values in the variable Key1 between
tables A and B, but also containing rows with values of Key1 not present
in A.

B = table({'a','b','d','e'}',[4;5;6;7],...
'VariableNames',{'Key1' 'Var2'})

B =

Key1 Var2
____ ____

1-4863

outerjoin

'a' 4
'b' 5
'd' 6
'e' 7

Use the outerjoin function to create a new table, C, with data from
tables A and B. Match up rows with common values in the key variable,
Key1, but also retain rows whose key values don’t have a match.

Also, return index vectors, ia and ib indicating the correspondence
between rows in C and rows in A and B respectively.

[C,ia,ib] = outerjoin(A,B)

C =

Key1_A Var1 Key1_B Var2
______ ____ ______ ____

'a' 1 'a' 4
'b' 2 'b' 5
'c' 3 '' NaN
'' NaN 'd' 6
'e' 11 'e' 7
'h' 17 '' NaN

ia =

1
2
3
0
4
5

1-4864

outerjoin

ib =

1
2
0
3
4
0

The index vectors ia and ib contain zeros to indicate the rows in table C
that do not correspond to rows in tables A or B, respectively.

Left Outer-Join Operation of Tables and Indices to Values

Create a table, A.

A = table({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
'VariableNames',{'Key1' 'Var1'})

A =

Key1 Var1
____ ____

'a' 1
'b' 2
'c' 3
'e' 11
'h' 17

Create a table, B, with common values in the variable Key1 between
tables A and B, but also containing rows with values of Key1 not present
in A.

B = table({'a','b','d','e'}',[4;5;6;7],...
'VariableNames',{'Key1' 'Var2'})

B =

1-4865

outerjoin

Key1 Var2
____ ____

'a' 4
'b' 5
'd' 6
'e' 7

Use the outerjoin function to create a new table, C, with data from
tables A and B. Ignore rows in B whose key values do not match any
rows in A.

Also, return index vectors, ia and ib indicating the correspondence
between rows in C and rows in A and B respectively.

[C,ia,ib] = outerjoin(A,B,'Type','left')

C =

Key1_A Var1 Key1_B Var2
______ ____ ______ ____

'a' 1 'a' 4
'b' 2 'b' 5
'c' 3 '' NaN
'e' 11 'e' 7
'h' 17 '' NaN

ia =

1
2
3
4
5

1-4866

outerjoin

ib =

1
2
0
4
0

All values of ia are nonzero indicating that all rows in C have
corresponding rows in A.

See Also join | outerjoin

1-4867

pack

Purpose Consolidate workspace memory

Syntax pack
pack filename
pack('filename')

Description pack frees up needed space by reorganizing information so that it only
uses the minimum memory required. All variables from your base and
global workspaces are preserved. Any persistent variables that are
defined at the time are set to their default value (the empty matrix, []).

The MATLAB software temporarily stores your workspace data in a file
called tp######.mat (where ###### is a numeric value) that is located
in your temporary folder. (You can use the command dir(tempdir) to
see the files in this folder).

pack filename frees space in memory, temporarily storing workspace
data in a file specified by filename. This file resides in your current
working folder and, unless specified otherwise, has a .mat file extension.

pack('filename') is the function form of pack.

Tips You can only run pack from the MATLAB command line.

If you specify a filename argument, that file must reside in a folder for
which you have write permission.

The pack function does not affect the amount of memory allocated to
the MATLAB process. You must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When
memory is fragmented, there may be plenty of free space, but not
enough contiguous memory to store a new large variable.

If you get the Out of memorymessage from MATLAB, the pack function
may find you some free memory without forcing you to delete variables.

The pack function frees space by

1-4868

pack

• Saving all variables in the base and global workspaces to a temporary
file.

• Clearing all variables and functions from memory.

• Reloading the base and global workspace variables back from the
temporary file and then deleting the file.

If you use pack and there is still not enough free memory to proceed,
you must clear some variables. If you run out of memory often, you can
allocate larger matrices earlier in the MATLAB session and use these
system-specific tips:

• When running MATLAB on The Open Group UNIX platforms, ask
your system manager to increase your swap space.

• On Microsoft Windowsplatforms, increase virtual memory using the
Windows Control Panel.

To maintain persistent variables when you run pack, use mlock in the
function.

Examples Change the current folder to one that is writable, run pack, and return
to the previous folder.

cwd = pwd;
cd(tempdir);
pack
cd(cwd)

See Also clear | memory

1-4869

padecoef

Purpose Padé approximation of time delays

Syntax [num,den] = padecoef(T,N)

Description [num,den] = padecoef(T,N) returns the Nth-order Padé
approximation of the continuous-time delay T in transfer function form.
The row vectors num and den contain the numerator and denominator
coefficients in descending powers of s. Both are Nth-order polynomials.

Class support for input T:

float: double, single

Class
Support

Input T support floating-point values of type single or double.

References [1] Golub, G. H. and C. F. Van Loan Matrix Computations, 3rd ed.
Johns Hopkins University Press, Baltimore: 1996, pp. 572–574.

See Also pade

1-4870

pagesetupdlg

Purpose Page setup dialog box

Syntax dlg = pagesetupdlg(fig)

Note pagesetupdlg is not recommended. Use printpreview instead.

Description dlg = pagesetupdlg(fig) creates a dialog box from which a set of
page layout properties for the figure window, fig, can be set.

pagesetupdlg implements the "Page Setup..." option in the Figure
File Menu.

pagesetupdlg supports setting the layout for a single figure. fig must
be a single figure handle, not a vector of figures or a Simulink diagram.

1-4871

pagesetupdlg

See Also printdlg | printpreview | printopt

1-4872

pan

Purpose Pan view of graph interactively

Syntax pan on
pan xon
pan yon
pan off
pan
pan(figure_handle,...)
h = pan(figure_handle)

Description pan on turns on mouse-based panning in the current figure.

pan xon turns on panning only in the x direction in the current figure.

pan yon turns on panning only in the y direction in the current figure.

pan off turns panning off in the current figure.

pan toggles the pan state in the current figure on or off.

pan(figure_handle,...) sets the pan state in the specified figure.

h = pan(figure_handle) returns the figure’s pan mode object for the
figure figure_handle for you to customize the mode’s behavior.

Using Pan Mode Objects

Access the following properties of pan mode objects via get and modify
some of them using set:

• Enable 'on'|'off' — Specifies whether this figure mode is
currently enabled on the figure

• Motion 'horizontal'|'vertical'|'both'— The type of panning
enabled for the figure

• FigureHandle <handle>— The associated figure handle, a read-only
property that cannot be set

Pan Mode Callbacks

You can program the following callbacks for pan mode operations.

1-4873

pan

• ButtonDownFilter <function_handle> — Function to intercept
ButtonDown events

The application can inhibit the panning operation under
circumstances the programmer defines, depending on what the
callback returns. The input function handle should reference a
function with two implicit arguments (similar to Handle Graphics
object callbacks):

function [res] = myfunction(obj,event_obj)
% obj handle to the object clicked on
% event_obj event data (empty in this release)
% res [output] a logical flag to determine whether the pan
% operation should take place(for 'res' set to 'false')
% or the 'ButtonDownFcn' property of the object should
% take precedence (when 'res' is 'true')

• ActionPreCallback <function_handle> — Function to execute
before panning

Set this callback to if you need to execute code when a pan operation
begins. The function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data

The event data struct has the following field:

Axes The handle of the axes that is being panned

• ActionPostCallback <function_handle> — Function to execute
after panning

Set this callback if you need to execute code when a pan operation
ends. The function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

1-4874

pan

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data
% (same as the event data of the
% 'ActionPreCallback' callback)

Pan Mode Utility Functions

The following functions in pan mode query and set certain of its
properties.

• flags = isAllowAxesPan(h,axes)— Function querying permission
to pan axes

Calling the function isAllowAxesPan on the pan object, h, with a
vector of axes handles, axes, as input returns a logical array of the
same dimension as the axes handle vector, which indicates whether a
pan operation is permitted on the axes objects.

• setAllowAxesPan(h,axes,flag) — Function to set permission to
pan axes

Calling the function setAllowAxesPan on the pan object, h, with a
vector of axes handles, axes, and a logical scalar, flag, either allows
or disallows a pan operation on the axes objects.

• info = getAxesPanMotion(h,axes)— Function to get style of pan
operations

Calling the function getAxesPanMotion on the pan object, h, with
a vector of axes handles, axes, as input will return a character
cell array of the same dimension as the axes handle vector, which
indicates the type of pan operation for each axes. Possible values for
the type of operation are 'horizontal', 'vertical' or 'both'.

• setAxesPanMotion(h,axes,style) — Function to set style of pan
operations

Calling the function setAxesPanMotion on the pan object, h, with a
vector of axes handles, axes, and a character array, style, sets the
style of panning on each axes.

1-4875

pan

Examples Example 1 — Entering Pan Mode

Plot a graph and turn on Pan mode:

plot(magic(10));
pan on
% pan on the plot

Example 2 — Constrained Pan

Constrain pan to x-axis using set:

plot(magic(10));
h = pan;
set(h,'Motion','horizontal','Enable','on');
% pan on the plot in the horizontal direction.

Example 3 — Constrained Pan in Subplots

Create four axes as subplots and give each one a different panning
behavior:

ax1 = subplot(2,2,1);
plot(1:10);
h = pan;
ax2 = subplot(2,2,2);
plot(rand(3));
setAllowAxesPan(h,ax2,false);
ax3 = subplot(2,2,3);
plot(peaks);
setAxesPanMotion(h,ax3,'horizontal');
ax4 = subplot(2,2,4);
contour(peaks);
setAxesPanMotion(h,ax4,'vertical');
% pan on the plots.

1-4876

pan

Example 4 — Coding a ButtonDown Callback

Create a buttonDown callback for pan mode objects to trigger. Copy the
following code to a new file, execute it, and observe panning behavior:

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');
h = pan;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse click on the line
%
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then
% return true.

% Indicate what the target is.
disp(['Clicked ' get(obj,'Type') ' object'])
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

Example 5 — Coding Pre- and Post-Callback Behavior

Create callbacks for pre- and post-ButtonDown events for pan mode
objects to trigger. Copy the following code to a new file, execute it, and
observe panning behavior:

function demo
% Listen to pan events
plot(1:10);
h = pan;
set(h,'ActionPreCallback',@myprecallback);

1-4877

pan

set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');
%
function myprecallback(obj,evd)
disp('A pan is about to occur.');
%
function mypostcallback(obj,evd)
newLim = get(evd.Axes,'XLim');
msgbox(sprintf('The new X-Limits are [%.2f,%.2f].',newLim));

Example 6 — Creating a Context Menu for Pan Mode

Coding a context menu that lets the user to switch to Zoom mode by
right-clicking:

figure; plot(magic(10));
hCM = uicontextmenu;
hMenu = uimenu('Parent',hCM,'Label','Switch to zoom',...

'Callback','zoom(gcbf,''on'')');
hPan = pan(gcf);
set(hPan,'UIContextMenu',hCM);
pan('on')

You cannot add items to the built-in pan context menu, but you can
replace it with your own.

Tips You can create a pan mode object once and use it to customize the
behavior of different axes, as Example 3 illustrates. You can also
change its callback functions on the fly.

1-4878

pan

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is the
figure WindowButtonMotionFcn callback, which can be changed from
within a mode. Therefore, if you are creating a GUI that updates a
figure’s callbacks, the GUI should some keep track of which interactive
mode is active, if any, before attempting to do this.

When you assign different pan behaviors to different subplot axes
via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse carries over
to the linked axes, regardless of the behavior you previously set for
the other axes.

Alternatives Use the Pan tool on the figure toolbar to enable and disable pan
mode on a plot, or select Pan from the figure’s Tools menu. For details,
see “Panning — Shifting Your View of the Graph”.

See Also zoom | linkaxes | rotate3d

1-4879

../ref/figure_props.html#WindowButtonMotionFcn

matlab.unittest.parameters

Purpose Summary of classes associated with MATLAB Unit Test parameters

Description The matlab.unittest.parameters package consists of the following
classes used in parameterized testing.

matlab.unittest.parameters.ClassSetupParameterSpecification of Class Setup
Parameter

matlab.unittest.parameters.EmptyParameterEmpty parameter
implementation

matlab.unittest.parameters.MethodSetupParameterSpecification of Method Setup
Parameter

matlab.unittest.parameters.TestParameterSpecification of Test Parameter

See Also matlab.unittest.TestSuite.selectIf

Related
Examples

• “Create Basic Parameterized Test”
• “Create Advanced Parameterized Test”

1-4880

matlab.unittest.parameters.EmptyParameter

Purpose Empty parameter implementation

Description The matlab.unittest.parameters.EmptyParameter class is a Parameter
implementation that provides no parameter information. There is no
need for test authors to interact with this Parameter directly. This
class provides an empty parameter instance to the Parameterization
property of a nonparameterized test element.

Properties Property

String indicating the name of the property that defines the Empty
Parameter.

Name

String indicating the name that uniquely identifies a particular
value for a Empty Parameter.

Value

Value of the Empty Parameter. The Value property holds the
data that the Test Runner uses for parameterized testing.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also matlab.unittest.TestCase

Related
Examples

• “Create Basic Parameterized Test”
• “Create Advanced Parameterized Test”

Concepts

1-4881

matlab.unittest.parameters.ClassSetupParameter

Purpose Specification of Class Setup Parameter

Description The matlab.unittest.parameters.ClassSetupParameter class holds
information about a single value of a Class Setup Parameter.

Properties Property

String indicating the name of the property that defines the Class
Setup Parameter.

Name

String indicating the name that uniquely identifies a particular
value for a Class Setup Parameter.

Value

Value of the Class Setup Parameter. The Value property holds
the data that the Test Runner uses for parameterized testing.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also matlab.unittest.TestCase

Related
Examples

• “Create Basic Parameterized Test”
• “Create Advanced Parameterized Test”

Concepts

1-4882

matlab.unittest.parameters.TestParameter

Purpose Specification of Test Parameter

Description The matlab.unittest.parameters.TestParameter class holds information
about a single value of a Test Parameter.

Properties Property

String indicating the name of the property that defines the Test
Parameter.

Name

String indicating the name that uniquely identifies a particular
value for a Test Parameter.

Value

Value of the Test Parameter. The Value property holds the data
that the Test Runner uses for parameterized testing.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also matlab.unittest.TestCase

Related
Examples

• “Create Basic Parameterized Test”
• “Create Advanced Parameterized Test”

Concepts

1-4883

matlab.unittest.parameters.MethodSetupParameter

Purpose Specification of Method Setup Parameter

Description The matlab.unittest.parameters.MethodSetupParameter class holds
information about a single value of a Method Setup Parameter.

Properties Property

String indicating the name of the property that defines the
Method Setup Parameter.

Name

String indicating the name that uniquely identifies a particular
value for a Method Setup Parameter.

Value

Value of the Method Setup Parameter. The Value property holds
the data that the Test Runner uses for parameterized testing.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also matlab.unittest.TestCase

Related
Examples

• “Create Basic Parameterized Test”
• “Create Advanced Parameterized Test”

Concepts

1-4884

pareto

Purpose Pareto chart

Syntax pareto(Y)
pareto(Y,names)
pareto(Y,X)
H = pareto(...)

Description Pareto charts display the values in the vector Y as bars drawn in
descending order. Values in Y must be nonnegative and not include
NaNs. Only the first 95% of the cumulative distribution is displayed.

pareto(Y) labels each bar with its element index in Y and also plots a
line displaying the cumulative sum of Y.

pareto(Y,names) labels each bar with the associated name in the
string matrix or cell array names.

pareto(Y,X) labels each bar with the associated value from X.

pareto(ax,..) plots a Pareto chart in existing axes ax rather than GCA.

H = pareto(...) returns a combination of patch and line object
handles.

Examples Create Pareto Chart

Create a Pareto chart of vector y.

y = [90,75,30,60,5,40,40,5];
figure
pareto(y)

1-4885

pareto

pareto displays the elements in y as bars in descending order and labels
each bar with its index in y. Since pareto displays only the first 95% of
the cumulative distribution, some elements in y are not displayed.

Label Bars in Pareto Chart

Examine the cumulative productivity of a group of programmers to
see how normal its distribution is. Label each bar with the name of
the programmer.

1-4886

pareto

codelines = [200 120 555 608 1024 101 57 687];
coders = {'Fred','Ginger','Norman','Max','Julia','Wally','Heidi','Pat

figure
pareto(codelines, coders)
title('Lines of Code by Programmer')

Tips You can use pareto to display the output of hist, even for vectors that
include negative numbers. Because only the first 95 percent of values

1-4887

pareto

are displayed, one or more of the smallest bars may not appear. If you
extend the Xlim of your chart, you can display all the values, but the
new bars will not be labeled.

You cannot place datatips (use the Datacursor tool) on graphs created
with pareto.

See Also hist | bar

1-4888

parfor

Purpose Parallel for loop

Syntax parfor loopvar = initval:endval; statements; end
parfor (loopvar = initval:endval, M); statements; end

Description parfor loopvar = initval:endval; statements; end executes a
series of MATLAB statements for values of loopvar between initval
and endval, inclusive, which specify a vector of increasing integer
values. The loop runs in parallel when you have the Parallel Computing
Toolbox™ or when you create a MEX function with MATLAB Coder™.
Unlike a traditional for-loop, iterations are not executed in a
guaranteed order.

parfor (loopvar = initval:endval, M); statements; end
executes statements in a loop using a maximum of M workers or threads,
where M is a nonnegative integer.

Tips • If you have Parallel Computing Toolbox software, see the function
reference pages for parfor and parpool for additional information.

• If you have MATLAB Coder software, see the parfor function
reference page for additional information.

Examples Perform three large eigenvalue computations using three workers or
cores with Parallel Computing Toolbox software:

parpool(3)
parfor i=1:3, c(:,i) = eig(rand(1000)); end

See Also for

1-4889

inputParser.parse

Purpose Parse function inputs

Syntax parse(p,argList)

Description parse(p,argList) parses and validates the inputs in arglist.

Input
Arguments

p

Object of class inputParser.

argList

Comma separated list of inputs to parse and validate for your
custom function. The class of each input depends upon your
function definition.

Examples Input Parsing

Parse and validate required and optional function inputs.

Create a custom function with required and optional inputs in the file
findArea.m.

function a = findArea(width,varargin)
p = inputParser;
defaultHeight = 1;
defaultUnits = 'inches';
defaultShape = 'rectangle';
expectedShapes = {'square','rectangle','parallelogram'};

addRequired(p,'width',@isnumeric);
addOptional(p,'height',defaultHeight,@isnumeric);
addParameter(p,'units',defaultUnits);
addParameter(p,'shape',defaultShape,...

@(x) any(validatestring(x,expectedShapes)));

parse(p,width,varargin{:});
a = p.Results.width .* p.Results.height;

1-4890

inputParser.parse

The input parser checks whether width and height are numeric, and
whether the shape matches a string in cell array expectedShapes. @
indicates a function handle, and the syntax @(x) creates an anonymous
function with input x.

Call the function with inputs that do not match the scheme. For
example, specify a nonnumeric value for the width input:

findArea('text')

Error using findArea (line 14)

The value of 'width' is invalid. It must satisfy the function: isnumeric.

Specify an unsupported value for shape:

findArea(4,'shape','circle')

Error using findArea (line 14)

The value of 'shape' is invalid. Expected input to match one of these strings:

square, rectangle, parallelogram

The input, ''circle'', did not match any of the valid strings.

See Also addOptional | addParameter | addRequired | inputParser

1-4891

parseSoapResponse

Purpose Convert response string from SOAP server into MATLAB types

Syntax parseSoapResponse(response)

Description parseSoapResponse(response) extracts data from response a string
returned by a SOAP server from the callSoapService function, and
converts it to appropriate MATLAB classes (types).

Examples This example uses parseSoapResponse in conjunction with other SOAP
functions to retrieve information about books from a library database,
specifically, the author’s name for a given book title.

Note The example does not use an actual endpoint; therefore, you
cannot run it. The example only illustrates how to use the SOAP
functions.

% Create the message:
message = createSoapMessage(...
'urn:LibraryCatalog',...
'getAuthor',...
{'In the Fall'},...
{'nameToLookUp'},...
{'{http://www.w3.org/2001/XMLSchema}string'},...
'rpc');
%
% Send the message to the service and get the response:
response = callSoapService(...
'http://test/soap/services/LibraryCatalog',...
'urn:LibraryCatalog#getAuthor',...
message)
%
% Extract MATLAB data from the response
author = parseSoapResponse(response)

MATLAB returns:

1-4892

parseSoapResponse

author = Kate Alvin

where author is a char class (type).

See Also callSoapService | createClassFromWsdl | createSoapMessage |
urlread | xmlread

How To • “Access Web Services Using MATLAB SOAP Functions”

1-4893

pascal

Purpose Pascal matrix

Syntax A = pascal(n)
A = pascal(n,1)
A = pascal(n,2)

Description A = pascal(n) returns the Pascal matrix of order n: a symmetric
positive definite matrix with integer entries taken from Pascal’s
triangle. The inverse of A has integer entries.

A = pascal(n,1) returns the lower triangular Cholesky factor (up to
the signs of the columns) of the Pascal matrix. It is involutary, that is,
it is its own inverse.

A = pascal(n,2) returns a transposed and permuted version of
pascal(n,1). A is a cube root of the identity matrix.

Examples pascal(4) returns

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

A = pascal(3,2) produces

A =
1 1 1

-2 -1 0
1 0 0

See Also chol

1-4894

patch

Purpose Create one or more filled polygons

Syntax patch(X,Y,C)
patch(X,Y,Z,C)
patch(FV)
patch(X,Y,C,'PropertyName',propertyvalue...)
patch('PropertyName',propertyvalue,...)
handle = patch(...)

Properties For a list of properties, see Patch Properties.

Description patch(X,Y,C) adds a filled 2-D patch object to the current axes. A
patch object is one or more polygons defined by the coordinates of its
vertices. The elements of X and Y specify the vertices of a polygon . If X
and Y are m-by-n matrices, MATLAB draws n polygons with m vertices. C
determines the color of the patch. For more information on color input
requirements, see “Coloring Patches” on page 1-4899.

MATLAB does not require each face to have the same number of
vertices. In cases where they do not, pad the end of the Faces matrix
with NaNs. To define a patch with faces that do not close, add one or
more NaNs to the row in the Vertices matrix that defines the vertex
you do not want connected.

See “Introduction to Patch Objects” for more information on using patch
objects.

patch(X,Y,Z,C) creates a patch in 3-D coordinates. If the coordinate
data does not define closed polygons, patch closes the polygons. The
data can define concave or intersecting polygons. However, if the edges
of an individual patch face intersect themselves, the resulting face
might be only partly filled. In that case, it is better to divide the face
into smaller polygons.

patch(FV) creates a patch using structure FV, which contains the
fields vertices, faces, and optionally facevertexcdata. These fields
correspond to the Vertices, Faces, and FaceVertexCData patch
properties. Specifying only unique vertices and their connection matrix

1-4895

patch

can reduce the size of the data for patches having many faces. For an
example of how to specify patches with this method, see “Specifying
Patch Object Shapes” on page 1-4896.

patch(X,Y,C,'PropertyName',propertyvalue...) follows the X,
Y, (Z), and C arguments with property name/property value pairs to
specify additional patch properties. For a description of the properties,
see Patch Properties. You can specify properties as property
name/property value pairs, structure arrays, and cell arrays (see the set
and get reference pages for examples of how to specify these data types).

patch('PropertyName',propertyvalue,...) specifies all properties
using property name/property value pairs. This form lets you omit the
color specification because MATLAB uses the default face color and
edge color unless you explicitly assign a value to the FaceColor and
EdgeColor properties. This form also lets you specify the patch using
the Faces and Vertices properties instead of x-, y-, and z-coordinates.
See “Specifying Patch Object Shapes” on page 1-4896 for more
information.

handle = patch(...) returns the handle of the patch object it creates.

Unlike high-level area creation functions, such as fill or area, patch
does not check the settings of the figure and axes NextPlot properties.
It simply adds the patch object to the current axes.

Examples Specifying Patch Object Shapes

The next two examples create a patch object using two methods:

• Specifying x-, y-, and z-coordinates and color data (XData, YData,
ZData, and CData properties)

• Specifying vertices, the connection matrix, and color data (Vertices,
Faces, and FaceVertexCData properties)

Create five triangular faces, each having three vertices, by specifying
the x-, y-, and z-coordinates of each vertex:

xdata = [2 2 0 2 5;
2 8 2 4 5;

1-4896

patch

8 8 2 4 8];
ydata = [4 4 4 2 0;

8 4 6 2 2;
4 0 4 0 0];

zdata = ones(3,5);

% Red numbers denote the vertex indices.
% For this example:
% xindices = [1 4 7 10 13;
% 2 5 8 11 14;
% 3 6 9 12 15];
% Blue numbers denote the face numbers.
patch(xdata,ydata,zdata,'w')

Create the five triangular faces, specifying faces and vertices:

% The Vertices property contains the coordinates of each

1-4897

patch

% unique vertex defining the patch. The Faces property
% specifies how to connect these vertices to form each
% face of the patch. More than one face may
% use a given vertex.
% For this example, five triangles have 11 total vertices,
% instead of 15. Each row contains
% the x- and y-coordinates
% of each vertex.
verts = [2 4; ...

2 8; ...
8 4; ...
8 0; ...
0 4; ...
2 6; ...
2 2; ...
4 2; ...
4 0; ...
5 2; ...
5 0];

% There are five faces, defined by connecting the
% vertices in the order indicated.
faces = [...

1 2 3; ...
1 3 4; ...
5 6 1; ...
7 8 9; ...
11 10 4];

% Create the patch by specifying the Faces, Vertices,
% and FaceVertexCData properties as well as the
% FaceColor property. Red numbers denote the vertex
% numbers, as defined in faces. Blue indicate face numbers.
p = patch('Faces',faces,'Vertices',verts,'FaceColor','w');

1-4898

patch

% Using the previous values for verts and faces, you can
% create the same patch object using a structure:
patchinfo.Vertices = verts;
patchinfo.Faces = faces;
patchinfo.FaceColor = 'w';

patch(patchinfo);

Coloring Patches

There are many ways to customize your patch objects using colors. The
appropriate input depends on:

• Whether you want to change the edge colors

• How you specified the patch faces:

- Using face/vertex values

- Using x-, y-, and z-coordinates

1-4899

patch

The following sections present the various options available.

Specifying Edge Colors
The following options apply to the edge colors of your patch object. The
settings are independent of the face colors, but the colors themselves
depend on the colors specified at each vertex. Markers show the color at
each vertex. Specify the colors using the EdgeColor property. To explore
the options using the Sample Input Code, create a base patch object:

xdata = [2 2 0 2 5;
2 8 2 4 5;
8 8 2 4 8];

ydata = [4 4 4 2 0;
8 4 6 2 2;
4 0 4 0 0];

cdata = [15 0 4 6 10;
1 2 5 7 9;
2 3 0 8 3];

p = patch(xdata,ydata,cdata,'Marker','o',...
'MarkerFaceColor','flat',...
'FaceColor','none')

For more detailed information on how the EdgeColor property works,
see the Patch Properties page.

Desired Look EdgeColor Value Sample Code

All edges have the same color,
around all faces. This option does
not rely on the FaceColor value.

ColorSpec
set(p,'EdgeColor','g')

1-4900

patch

Desired Look EdgeColor Value Sample Code

Each edge corresponds to the color
of the vertex that precedes the
edge, with one color per edge. This
option requires that the FaceColor
property be flat or interp. By
default, if you specify CData when
creating the patch object, its
FaceColor property is interp.

'flat'
set(p,'EdgeColor','flat',...

'LineWidth',3)

1-4901

patch

Desired Look EdgeColor Value Sample Code

Each edge corresponds to the
vertex colors, interpolated between
vertices. This option requires that
the FaceColor property be flat or
interp. By default, if you specify
CData when creating the patch
object, its FaceColor property is
interp.

'interp'
set(gcf,'Renderer','zbuffer')

set(p,'EdgeColor','interp',...

'LineWidth',5)

Edges have no color. This option
does not rely on the FaceColor
value. If set, markers retain vertex
colors.

'none'
set(p,'EdgeColor','none')

1-4902

patch

Desired Look EdgeColor Value Sample Code

Specifying Face Colors Using Face/Vertex Input Matrices
The following options apply to the face colors of your patch object when
you specify the faces using face/vertex input matrices. To explore the
options, start with a base patch object:

% For this example, there are five triangles (m = 5)
% sharing eleven unique vertices (k = 11).
verts = [2 4; ...

2 8; ...
8 4; ...
8 0; ...
0 4; ...
2 6; ...
2 2; ...
4 2; ...
4 0; ...
5 2; ...
5 0];

faces = [1 2 3; ...
1 3 4; ...
5 6 1; ...
7 8 9; ...
11 10 4];

1-4903

patch

p = patch('Faces',faces,'Vertices',verts,'FaceColor','b');

For more information on the relevant properties, see FaceColor,
FaceVertexCData, and CDataMapping.

Desired Look Parameter Values Sample Code

All faces have the same
color.

• FaceColor: ColorSpec

• FaceVertexCData: [] (no
input)

An empty array is the
default value, and patch
ignores any input until you
set FaceColor to 'flat' or
'interp'.

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

set(p,'FaceColor','r')

or

set(p,'FaceColor',[1 0 0])

Each face has a single,
unique color, indexed
from a selected section
of the colormap.

• FaceColor: 'flat'

• FaceVertexCData: m-by-1
matrix of index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'CDataMapping','scaled')

1-4904

patch

Desired Look Parameter Values Sample Code

Each face has a
single, unique color,
indexed from the whole
colormap.

• FaceColor: 'flat'

• FaceVertexCData: m-by-1
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'CDataMapping','direct')

Each face has a
single, unique color,
determined by truecolor
value input.

• FaceColor: 'flat'

• FaceVertexCData: m-by-3
matrix of truecolor values,
from 0 to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1 0 0.8;

0 1 0 0 0.8;

1 0 1 0 0.8]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata)

1-4905

patch

Desired Look Parameter Values Sample Code

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Faces each have a
single, unique color, but
edges may have 'flat'
or 'interp' color.

• FaceColor: 'flat'

• FaceVertexCData: k-by-1
matrix of index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'EdgeColor','flat',...

'LineWidth',5,...

'CDataMapping','scaled')

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Faces
each have a single,
unique color, but edges
may have 'flat' or
'interp' color.

• FaceColor: 'flat'

• FaceVertexCData: k-by-1
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'CDataMapping','direct',...

'EdgeColor','flat',...

'LineWidth',5)

1-4906

patch

Desired Look Parameter Values Sample Code

Each unique vertex has
a single, unique color,
determined by truecolor
value input. Faces
each have a single,
unique color, but edges
may have 'flat' or
'interp' color.

• FaceColor: 'flat'

• FaceVertexCData: k-by-3
matrix of truecolor values,
from 0 to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1;

0 1 0;

0 1 1;

1 0 0;

1 0 1;

1 1 0;

0 0 0;

0.2 0.2 0.2;

0.4 0.4 0.4;

0.6 0.6 0.6;

0.8 0.8 0.8];

set(p,'FaceColor','flat',...

'FaceVertexCData',cdata,...

'EdgeColor','interp',...

'LineWidth',5)

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Edges may have 'flat'
or 'interp' color.

• FaceColor: 'interp'

• FaceVertexCData: k-by-1
matrix of index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';

set(p,'FaceColor','interp',...

'FaceVertexCData',cdata,...

'EdgeColor','flat',...

'LineWidth',5,...

'CDataMapping','scaled')

1-4907

patch

Desired Look Parameter Values Sample Code

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Edges
may have 'flat' or
'interp' color.

• FaceColor: 'interp'

• FaceVertexCData: k-by-1
matrix of index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 ...

60 12 23 40 13 26 24]';

set(p,'FaceColor','interp',...

'FaceVertexCData',cdata,...

'CDataMapping','direct',...

'EdgeColor','flat',...

'LineWidth',5)

Each unique vertex has
a single, unique color,
determined by truecolor
value input. Edges
may have 'flat' or
'interp' color.

• FaceColor: 'interp'

• FaceVertexCData: k-by-3
matrix of truecolor values,
from 0 to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata = [0 0 1;

0 1 0;

0 1 1;

1 0 0;

1 0 1;

1 1 0;

0 0 0;

0.2 0.2 0.2;

0.4 0.4 0.4;

0.6 0.6 0.6;

0.8 0.8 0.8];

set(p,'FaceColor','interp',...

'FaceVertexCData',cdata,...

'EdgeColor','interp',...

'LineWidth',5)

1-4908

patch

Specifying Face Colors Using x-, y-, and z-Coordinate Input
The following options apply to the face colors of your patch object when
you specify the faces using x-, y-, and z-coordinates. To explore the
options, start with a base patch object:

% For this example, there are five (m=5) triangles (n=3).
% The total number of vertices is mxn, or k = 15.
xdata = [2 2 0 2 5;

2 8 2 4 5;
8 8 2 4 8];

ydata = [4 4 4 2 0;
8 4 6 2 2;
4 0 4 0 0];

zdata = ones(3,5);
p = patch(xdata,ydata,zdata,'b')

For more information on the relevant properties, see FaceColor, CData,
and CDataMapping.

Desired Look Parameter Values Sample Code

All faces have the same
color.

• FaceColor: ColorSpec

• CData: [] (no input)

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

set(p,'FaceColor','r')

or

set(p,'FaceColor',[1 0 0])

Each face has a single,
unique color, indexed
from a selected section
of the colormap.

• FaceColor: 'flat'

• CData: m-by-1 matrix of
index values

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60];

1-4909

patch

Desired Look Parameter Values Sample Code

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

set(p,'FaceColor','flat',...

'CData',cdata,...

'CDataMapping','scaled')

Each face has a
single, unique color,
indexed from the whole
colormap.

• FaceColor: 'flat'

• CData: m-by-1 matrix of
index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60];

set(p,'FaceColor','flat',...

'CData',cdata,...

'CDataMapping','direct')

1-4910

patch

Desired Look Parameter Values Sample Code

Each face has a
single, unique color,
determined by truecolor
value input.

• FaceColor: 'flat'

• CData: m-by-1-by-3 matrix of
truecolor values, from 0 to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata(:,:,1) = [0 0 1 0 0.8];

cdata(:,:,2) = [0 0 0 0 0.8];

cdata(:,:,3) = [1 1 1 0 0.8];

set(p,'FaceColor','flat',...

'CData',cdata)

Each unique vertex has
a single, unique color,
indexed from a selected
section of the colormap.
Faces each have a
single, unique color, but
edges may have 'flat'
or 'interp' color.

• FaceColor: 'flat'

• CData: m-by-n matrix of
index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];

set(p,'FaceColor','flat',...

'CData',cdata,...

'EdgeColor','flat',...

'LineWidth',5,...

'CDataMapping','scaled')

1-4911

patch

Desired Look Parameter Values Sample Code

Each unique vertex
has a single, unique
color, indexed from the
whole colormap. Faces
each have a single,
unique color, but edges
may have 'flat' or
'interp' color.

• FaceColor: 'flat'

• CData: m-by-n matrix of
index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];

set(p,'FaceColor','flat',...

'CData',cdata,...

'CDataMapping','direct',...

'EdgeColor','flat',...

'LineWidth',5)

Each vertex has a
single, unique color,
determined by truecolor
value input. Faces
each have a single,
unique color, but edges
may have 'flat' or
'interp' color.

• FaceColor: 'flat'

• CData: m-by-n-by-3 matrix of
truecolor values, from 0 to 1

• Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

clear cdata

cdata(:,:,1) = [0 0 1 0 0.8;

0 0 1 0.2 0.6;

0 1 0 0.4 1];

cdata(:,:,2) = [0 0 0 0 0.8;

1 1 1 0.2 0.6;

1 0 0 0.4 0];

cdata(:,:,3) = [1 1 1 0 0.8;

0 1 0 0.2 0.6;

1 0 1 0.4 0];

set(p,'FaceColor','flat',...

'CData',cdata,...

'EdgeColor','interp',...

'LineWidth',5)

1-4912

patch

Desired Look Parameter Values Sample Code

Each vertex has a single,
unique color, indexed
from a selected section
of the colormap. Edges
may have 'flat' or
'interp' color.

• FaceColor: 'interp'

• CData: m-by-n matrix of
index values

• Color source: A selected
portion of the colormap

• CDataMapping: 'scaled'

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];

set(p,'FaceColor','interp',...

'CData',cdata,...

'EdgeColor','flat',...

'LineWidth',5,...

'CDataMapping','scaled')

Each vertex has a
single, unique color,
indexed from the
whole colormap. Edges
may have 'flat' or
'interp' color.

• FaceColor: 'interp'

• CData: m-by-n matrix of
index values

• Color source: colormap

• CDataMapping: 'direct'

'scaled' is the default
value when you input
CData values. If you
want to change the axes
CLim property, but want
your patch object to index
the entire colormap, use
'CDataMapping','direct'.

clear cdata

set(gca,'CLim',[0 40])

cdata = [15 30 25 2 60;

12 23 40 13 26;

24 8 1 65 42];

set(p,'FaceColor','interp',...

'CData',cdata,...

'CDataMapping','direct',...

'EdgeColor','flat',...

'LineWidth',5)

Each vertex has a
single, unique color,
determined by truecolor
value input. Edges

• FaceColor: 'interp'

• CData: m-by-n-by-3 matrix of
truecolor values, from 0 to 1

clear cdata

cdata(:,:,1) = [0.8 0.1 0.2

0.9 0.3 1;

1-4913

patch

Desired Look Parameter Values Sample Code

may have 'flat' or
'interp' color. • Color source: truecolor

• CDataMapping: 'direct' or
'scaled'.

'scaled' is the default
value, but neither affects the
outcome.

0.1 0.5 0.9;

0.9 1 0.5;

0.6 0.9 0.8];

cdata(:,:,2) =[0.1 0.6 0.7;

0.4 0.1 0.7;

0.9 0.8 0.3;

0.7 0.9 0.6;

0.9 0.6 0.1];

cdata(:,:,3) =[0.7 0.8 0.4;

0.1 0.6 0.3;

0.2 0.3 0.7;

0.0 0.9 0.7;

0.0 0.0 0.1];

set(p,'FaceColor','interp',...

'CData',cdata,...

'EdgeColor','interp',...

'LineWidth',5)

See Also area | caxis | fill | fill3 | isosurface | surface | FaceColor |
CData | CDataMapping | FaceVertexCData | Patch Properties

Tutorials • “Introduction to Patch Objects”

1-4914

Patch Properties

Purpose Patch properties

Creating
Patch
Objects

Use patch to create patch objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “Customize Objects in Graph” is an interactive tool that enables you
to see and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Patch
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

AlphaDataMapping
none| {scaled} | direct

Transparency mapping method. Determines how the MATLAB
software interprets indexed alpha data.

• none— The transparency values of FaceVertexAlphaData are
between 0 and 1 or are clamped to this range.

• scaled — Transform the FaceVertexAlphaData to span the
portion of the alphamap indicated by the axes ALim property,
linearly mapping data values to alpha values.

• direct — Use the FaceVertexAlphaData as indices directly
into the alphamap. When not scaled, the data are usually
integer values ranging from 1 to length(alphamap). MATLAB
maps values less than 1 to the first alpha value in the

1-4915

../ref/axes_props.html#ALim

Patch Properties

alphamap, and values greater than length(alphamap)
to the last alpha value in the alphamap. Values with a
decimal portion are fixed to the nearest lower integer. If
FaceVertexAlphaData is an array of uint8 integers, then the
indexing begins at 0 (that is, MATLAB maps a value of 0 to the
first alpha value in the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. Sets the strength of the ambient light,
which is a nondirectional light source that illuminates the entire
scene. You must have at least one visible light object in the axes
for the ambient light to be visible. The axes AmbientLightColor
property sets the color of the ambient light, which is therefore the
same on all objects in the axes.

You can also set the strength of the diffuse and specular
contribution of light objects. See the patch DiffuseStrength
and SpecularStrength properties.

Annotation
hg.Annotation object (read-only)

Handle of Annotation object. The Annotation property enables
you to specify whether this patch object is represented in a figure
legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the patch
object is displayed in a figure legend:

1-4916

Patch Properties

IconDisplayStyle
Value

Purpose

on Represent this patch object in a legend
(default)

off Do not include this patch object in a legend

children Same as on because patch objects do not
have children

Setting the IconDisplayStyle property

Set the IconDisplayStyle of a graphics object with handle hobj
to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Control Legend Content” for more information and examples.

Selecting which objects to display in legend

Some graphics functions create multiple objects. For example,
contour3 uses patch objects to create a 3D contour graph. You
can use the Annotation property set select a subset of the objects
for display in the legend.

[X,Y] = meshgrid(-2:.1:2);
[Cm hC] = contour3(X.*exp(-X.^2-Y.^2));
hA = get(hC,'Annotation');
hLL = get([hA{:}],'LegendInformation');
% Set the IconDisplayStyle property to display
% the first, fifth, and ninth patch in the legend

set([hLL{:}],{'IconDisplayStyle'},...

1-4917

Patch Properties

{'on','off','off','off','on','off','off','off','on'}')
% Assign DisplayNames for the three patch
that are displayed in the legend

set(hC([1,5,9]),{'DisplayName'},...
{'bottom','middle','top'}')

legend show

BackFaceLighting
unlit | lit | {reverselit}

Face lighting control. Determines how faces are lit when their
vertex normals point away from the camera.

• unlit — Face not lit.

• lit — Face lit in normal way.

• reverselit — Face lit as if the vertex pointed towards the
camera.

Use this property to discriminate between the internal and
external surfaces of an object. See “Back Face Lighting” for an
example.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

1-4918

Patch Properties

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press a
mouse button while the pointer is over the patch object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
You can also use a string that is a valid MATLAB expression
or the name of a MATLAB file. The expressions execute in the
MATLAB workspace.

1-4919

Patch Properties

For information on the syntax of callback functions, see Function
Handle Callbacks.

CData
scalar | vector | matrix

Patch colors. Specifies the color of the patch. You can specify color
for each vertex, each face, or a single color for the entire patch.
The way MATLAB interprets CData depends on the type of data
supplied. The data can be numeric values that are scaled to map
linearly into the current colormap, integer values that are used
directly as indices into the current colormap, or arrays of RGB
values. RGB values are not mapped into the current colormap,
but interpreted as the colors defined. On true color systems,
MATLAB uses the actual colors defined by the RGB triples.

The following diagrams illustrate the dimensions of CData with
respect to the coordinate data arrays, XData, YData, and ZData.
The first diagram illustrates the use of indexed color.

1-4920

Patch Properties

The following diagram illustrates the use of true color. True
color requires m-by-n-by-3 arrays to define red, green, and blue
components for each color.

Note that if CData contains NaNs, MATLAB does not color the
faces.

See the Faces, Vertices, and FaceVertexCData properties for an
alternative method of patch definition.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. Determines how MATLAB
interprets indexed color data used to color the patch. If you
use true color specification for CData or FaceVertexCData, this
property has no effect.

• scaled — Transform the color data to span the portion of
the colormap indicated by the axes CLim property, linearly

1-4921

Patch Properties

mapping data values to colors. See the caxis command for
more information on this mapping.

• direct — Use the color data as indices directly into the
colormap. When not scaled, the data are usually integer values
ranging from 1 to length(colormap). MATLAB maps values
less than 1 to the first color in the colormap, and values greater
than length(colormap) to the last color in the colormap.
Values with a decimal portion are fixed to the nearest lower
integer.

Children
matrix of handles

Always the empty matrix; patch objects have no children.

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the patch outside the axes rectangle.

CreateFcn
string | function handle

Callback routine executed during object creation. Executes when
MATLAB creates a patch object. You must define this property
as a default value for patches or in a call to the patch function
that creates a new object.

For example, the following statement creates a patch (assuming
x, y, z, and c are defined), and executes the function referenced by
the function handle @myCreateFcn.

patch(x,y,z,c,'CreateFcn',@myCreateFcn)

MATLAB executes the create function after setting all properties
for the patch created. Setting this property on an existing patch
object has no effect.

1-4922

Patch Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
string | function handle

Delete patch callback routine. Executes when you delete the patch
object (for example, when you issue a delete command or clear
the axes (cla) or figure (clf) containing the patch). MATLAB
executes the routine before deleting the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. Sets the intensity of the diffuse
component of the light falling on the patch. Diffuse light comes
from light objects in the axes.

You can also set the intensity of the ambient and specular
components of the light on the object. See the AmbientStrength
and SpecularStrength properties.

DisplayName
string

1-4923

Patch Properties

String used by legend. The legend function uses the DisplayName
property to label the patch object in the legend. The default is an
empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the edges of patch faces.

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

• flat— The alpha data (FaceVertexAlphaData) of each vertex
controls the transparency of the edge that follows it.

• interp — Linear interpolation of the alpha data
(FaceVertexAlphaData) at each vertex determines the
transparency of the edge.

1-4924

Patch Properties

Note that you cannot specify flat or interp EdgeAlpha without
first setting FaceVertexAlphaData to a matrix containing one
alpha value per face (flat) or one alpha value per vertex (interp).

EdgeColor
{ColorSpec} | none | flat | interp

Color of the patch edge. Determines how MATLAB colors the
edges of the individual faces that make up the patch.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for edges.
The default value is [0 0 0] (black). See the ColorSpec
reference page for more information on specifying color.

• none — Edges not drawn.

• flat — The color of each vertex controls the color of the edge
that follows it. This means flat edge coloring is dependent on
the order in which you specify the vertices:

• interp—Linear interpolation of the CData or FaceVertexCData
values at the vertices determines the edge color.

EdgeLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. Selects the algorithm
used to calculate the effect of light objects on patch edges.

• none— Lights do not affect the edges of this object.

1-4925

Patch Properties

• flat — The effect of light objects is uniform across each edge
of the patch.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw
and erase patch objects. Alternative erase modes are useful in
creating animated sequences, where control of the way individual
objects redraw is necessary to improve performance and obtain
the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase the patch when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the patch by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the patch does not damage the color of the objects behind it.
However, patch color depends on the color of the screen behind
it and is correctly colored only when over the axes background
Color, or the figure background Color if the axes Color is none.

1-4926

Patch Properties

• background — Erase the patch by drawing it in the axes
background Color, or the figure background Color if the axes
Color is none. This damages objects that are behind the erased
patch, but the patch is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

FaceAlpha
{scalar = 1} | flat | interp

Transparency of the patch face.

• scalar — A single non-NaN value between 0 and 1 that controls
the transparency of all the faces of the object. 1 (the default)
means fully opaque and 0 means completely transparent
(invisible).

• flat— The values of the alpha data (FaceVertexAlphaData)
determine the transparency for each face. The alpha data at
the first vertex determines the transparency of the entire face.

• interp — Bilinear interpolation of the alpha data
(FaceVertexAlphaData) at each vertex determines the
transparency of each face.

1-4927

Patch Properties

Note that you cannot specify flat or interp FaceAlpha without
first setting FaceVertexAlphaData to a matrix containing one
alpha value per face (flat) or one alpha value per vertex (interp).

FaceColor
{ColorSpec} | none | flat | interp

Color of the patch face.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See the ColorSpec reference page for more information on
specifying color.

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat— The CData or FaceVertexCData property must contain
one value per face and determines the color for each face in the
patch. The color data at the first vertex determines the color
of the entire face.

• interp — Bilinear interpolation of the color at each
vertex determines the coloring of each face. The CData or
FaceVertexCData property must contain one value per vertex.

FaceLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. Selects the algorithm
used to calculate the effect of light objects on patch faces.

• none— Lights do not affect the faces of this object.

• flat— The effect of light objects is uniform across the faces of
the patch. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

1-4928

Patch Properties

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

Faces
m-by-n matrix

Vertex connection defining each face. Specifies which vertices in
the Vertices property are connected. The Faces matrix defines
m faces with up to n vertices each. Each row designates the
connections for a single face, and the number of elements in that
row that are not NaN defines the number of vertices for that face.

The Faces and Vertices properties provide an alternative way
to specify a patch that can be more efficient than using x, y, and
z coordinates in most cases. For example, consider the following
patch. It is composed of eight triangular faces defined by nine
vertices.

The corresponding Faces and Vertices properties are shown to
the right of the patch. Note how some faces share vertices with
other faces. For example, the fifth vertex (V5) is used six times,

1-4929

Patch Properties

once each by faces one, two, and three and six, seven, and eight.
Without sharing vertices, this same patch requires 24 vertex
definitions.

FaceVertexAlphaData
m-by-1 matrix

Face and vertex transparency data. Specifies the transparency
of patches that have been defined by the Faces and Vertices
properties. The interpretation of the values specified for
FaceVertexAlphaData depends on the dimensions of the data.

FaceVertexAlphaData can be one of the following:

• A single value, which applies the same transparency to the
entire patch. The FaceAlpha property must be set to flat.

• An m-by-1 matrix (where m is the number of rows in the Faces
property), which specifies one transparency value per face. The
FaceAlpha property must be set to flat.

• An m-by-1 matrix (where m is the number of rows in the
Vertices property), which specifies one transparency value per
vertex. The FaceAlpha property must be set to interp.

The AlphaDataMapping property determines how MATLAB
interprets the FaceVertexAlphaData property values.

FaceVertexCData
matrix

Face and vertex colors. Specifies the color of patches defined
by the Faces and Vertices properties. You must also set the
values of the FaceColor, EdgeColor, MarkerFaceColor, or
MarkerEdgeColor appropriately. The interpretation of the values
specified for FaceVertexCData depends on the dimensions of the
data.

For indexed colors, FaceVertexCData can be:

1-4930

Patch Properties

• A single value, which applies a single color to the entire patch.

• An n-by-1 matrix, where n is the number of rows in the Faces
property, which specifies one color per face.

• An n-by-1 matrix, where n is the number of rows in the
Vertices property, which specifies one color per vertex.

For true colors, FaceVertexCData can be:

• A 1-by-3matrix, which applies a single color to the entire patch.

• An n-by-3 matrix, where n is the number of rows in the Faces
property, which specifies one color per face.

• An n-by-3 matrix, where n is the number of rows in the
Vertices property, which specifies one color per vertex.

The following diagram illustrates the various forms of the
FaceVertexCData property for a patch having eight faces and
nine vertices. The CDataMapping property determines how
MATLAB interprets the FaceVertexCData property when you
specify indexed colors.

1-4931

Patch Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such

1-4932

Patch Properties

as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. Determines if the patch can become the
current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the patch.
If HitTest is off, clicking the patch selects the object below it
(which might be the axes containing it).

Interruptible
off | {on}

Callback routine interruption

1-4933

Patch Properties

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

1-4934

Patch Properties

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of the patch edges.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

Use LineStyle none when you want to place a marker at each
point but do not want the points connected with a line (see the
Marker property).

LineWidth
width in points

Edge line width. The width, in points, of the patch edges 1 point =
1/72 inch. The default value is 0.5 points.

1-4935

Patch Properties

Marker
character (see table)

Marker symbol. Specifies marks that locate vertices. You can
set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto} | flat

1-4936

Patch Properties

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — Defines the color to use.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto — Sets MarkerEdgeColor to the same color as the
EdgeColor property.

• flat— The color of each vertex controls the color of the marker
that denotes it.

MarkerFaceColor
ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• ColorSpec — Defines the color to use.

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Sets the fill color to the axes color, or the figure color, if
the axes Color property is none.

• flat— The color of each vertex controls the color of the marker
that denotes it.

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

1-4937

Patch Properties

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors.

• auto — MATLAB calculates vertex normals based on the
coordinate data

• manual — If you specify your own vertex normals, MATLAB
sets this property to manual and does not generate its own data.

See also the VertexNormals property.

Parent
handle of axes, hggroup, or hgtransform

Parent of patch object. Contains the handle of the patch object’s
parent. The parent of a patch object is the axes, hggroup, or
hgtransform object that contains it.

Selected
on | {off}

Is object selected? When this property is on, MATLAB displays
selection handles or a dashed box (depending on the number of
faces) if the SelectionHighlight property is also on. You can, for
example, define the ButtonDownFcn to set this property, allowing
users to select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by:

• Drawing handles at each vertex for a single-faced patch

• Drawing a dashed bounding box for a multifaced patch

1-4938

Patch Properties

When SelectionHighlight is off, MATLAB does not draw the
indicators.

SpecularColorReflectance
scalar in the range 0 to 1

Color of specularly-reflected light. When this property is 0, the
color of the specularly-reflected light depends on both the color of
the object from which it reflects and the color of the light source.
When set to 1, the color of the specularly-reflected light depends
only on the color or the light source (that is, the light object Color
property). The proportions vary linearly for values in between.

SpecularExponent
scalar >= 1

Harshness of specular reflection. Controls the size of the specular
spot. Most materials have exponents in the range of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. Sets the intensity of the specular
component of the light falling on the patch. Specular light comes
from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the patch object. See the
AmbientStrength and DiffuseStrength properties. Also see the
material function.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

1-4939

Patch Properties

For example, suppose you use patch objects to create borders for a
group of uicontrol objects and want to change the color of the
borders in a uicontrol’s callback routine. Specify a Tag with the
patch definition:

patch(X,Y,'k','Tag','PatchBorder')

Then use findobj in the uicontrol’s callback routine to obtain the
handle of the patch and set its FaceColor property.

set(findobj('Tag','PatchBorder'),'FaceColor','w')

Type
string (read-only)

Class of the graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For patch objects, Type is always
’patch’.

UIContextMenu
handle of uicontextmenu object

Associate a context menu with the patch. Assign this property
the handle of a uicontextmenu object created in the same figure
as the patch. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the patch.

UserData
matrix

User-specified data. Data you want to associate with the patch
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

VertexNormals
matrix

1-4940

Patch Properties

Surface normal vectors. Contains the vertex normals for the patch.
MATLAB generates this data to perform lighting calculations.
You can supply your own vertex normal data, even if it does
not match the coordinate data. Use this property to produce
interesting lighting effects.

Vertices
matrix

Vertex coordinates. A matrix containing the x-, y-, z-coordinates
for each vertex. See the Faces property for more information.

Visible
{on} | off

Patch object visibility.

• on — All patches are visible.

• off — The patch is not visible, but still exists, and you can
query and set its properties.

XData
vector | matrix

X-coordinates. The x-coordinates of the patch vertices. If XData
is a matrix, each column represents the x-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

YData
vector | matrix

Y-coordinates. The y-coordinates of the patch vertices. If YData
is a matrix, each column represents the y-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

ZData
vector | matrix

1-4941

Patch Properties

Z-coordinates. The z-coordinates of the patch vertices. If ZData
is a matrix, each column represents the z-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

See Also patch

1-4942

path

Purpose View or change search path

Alternatives As an alternative to the path function, use the Set Path dialog box.

Syntax path
path('newpath')
path(path,'newpath')
path('newpath',path)
p = path

Description path displays the MATLAB search path, which is stored in pathdef.m.

path('newpath') changes the search path to newpath, where newpath
is a string array of folders.

path(path,'newpath') adds the newpath folder to the end of the search
path. If newpath is already on the search path, then path(path,
'newpath') moves newpath to the end of the search path.

path('newpath',path) adds the newpath folder to the top of the search
path. If newpath is already on the search path, then path('newpath',
path) moves newpath to the top of the search path. To add multiple
folders in one statement, instead use addpath.

p = path returns the search path to string variable p.

Examples Display the search path:

path

MATLAB returns, for example

MATLABPATH

H:\My Documents\MATLAB
C:\Program Files\MATLAB\R200nn\toolbox\matlab\general
C:\Program Files\MATLAB\R200nn\toolbox\matlab\ops
C:\Program Files\MATLAB\R200nn\toolbox\matlab\lang
C:\Program Files\MATLAB\R200nn\toolbox\matlab\elmat

1-4943

path

C:\Program Files\MATLAB\R200nn\toolbox\matlab\elfun
...

R200nn represents the folder for the MATLAB release, for example,
R2009b.

Add a new folder to the search path on Microsoft Windows platforms:

path(path,'c:/tools/goodstuff')

Add a new folder to the search path on UNIX5 platforms:

path(path,'/home/tools/goodstuff')

Temporarily add the folder my_files to the search path, run
my_function in my_files, then restore the previous search path:

p = path
path(p,'my_files')
my_function
path(p)

See Also addpath | cd | dir | genpath | matlabroot | pathsep | pathtool
| rehash | restoredefaultpath | rmpath | savepath | startup
| userpath | what

How To • “What Is the MATLAB Search Path?”

• “Files and Folders that MATLAB Accesses”

5. UNIX is a registered trademark of The Open Group in the United States and other
countries.

1-4944

path2rc

Purpose Save current search path to pathdef.m file

Syntax path2rc

Description path2rc runs savepath. The savepath function is replacing path2rc.
Use savepath instead of path2rc and replace instances of path2rc
with savepath.

1-4945

pathsep

Purpose Search path separator for current platform

Syntax c = pathsep

Description c = pathsep returns the search path separator character for this
platform. The search path separator is the character that separates
path names in the pathdef.m file, as returned by the path function. The
character is a semicolon (;). For versions of MATLAB software earlier
than version 7.7 (R2008b), the character on UNIX6 platforms was a
colon (:). Use pathsep to work programmatically with the content of
the search path file.

See Also fileparts | filesep | fullfile | path

How To • “What Is the MATLAB Search Path?”

6. UNIX is a registered trademark of The Open Group in the United States and
other countries.

1-4946

pathtool

Purpose Open Set Path dialog box to view and change search path

Syntax pathtool

Description pathtool opens the Set Path dialog box, a graphical user interface you
use to view and modify the MATLAB search path.

1-4947

pathtool

See Also addpath | cd | dir | genpath | matlabroot | path | pathsep | rehash
| restoredefaultpath | rmpath | savepath | startup | what

How To • “What Is the MATLAB Search Path?”

1-4948

pause

Purpose Halt execution temporarily

Syntax pause
pause(n)
pause on
pause off
pause query
state = pause('query')
oldstate = pause(newstate)

Description pause, by itself, causes the currently executing function to stop and wait
for you to press any key before continuing. Pausing must be enabled for
this to take effect. (See pause on, below). pause without arguments
also blocks execution of Simulink models, but not repainting of them.

pause(n) pauses execution for n seconds before continuing, where n
is any nonnegative real number. Pausing must be enabled for this to
take effect.

Typing pause(inf) puts you into an infinite loop. To return to the
MATLAB prompt, type Ctrl+C.

pause on enables the pausing of MATLAB execution via the pause and
pause(n) commands. Pausing remains enabled until you enter pause
off in your function or at the command line.

pause off disables the pausing of MATLAB execution via the pause
and pause(n) commands. This allows normally interactive scripts to
run unattended. Pausing remains disabled until you enter pause on in
your function or at the command line, or start a new MATLAB session.

pause query displays 'on' if pausing is currently enabled. Otherwise,
it displays 'off'.

state = pause('query') returns 'on' in character array state if
pausing is currently enabled. Otherwise, the value of state is 'off'.

oldstate = pause(newstate), enables or disables pausing, depending
on the 'on' or 'off' value in newstate, and returns the former setting
(also either 'on' or 'off') in character array oldstate.

1-4949

pause

Tips The accuracy of pause is subject to the scheduling resolution of the
operating system you are using, and also to other system activity.
It cannot be guaranteed with 100% confidence. Asking for finer
resolutions shows higher relative error.

While MATLAB is paused, the following continue to execute:

• Repainting of figure windows, Simulink block diagrams, and Java
windows

• HG callbacks from figure windows

• Event handling from Java windows

See Also keyboard | input | drawnow

1-4950

pbaspect

Purpose Set or query plot box aspect ratio

Syntax pbaspect
pbaspect([aspect_ratio])
pbaspect('mode')
pbaspect('auto')
pbaspect('manual')
pbaspect(axes_handle,...)

Description The plot box aspect ratio determines the relative size of the x-, y-, and
z-axes.

pbaspect with no arguments returns the plot box aspect ratio of the
current axes.

pbaspect([aspect_ratio]) sets the plot box aspect ratio in the current
axes to the specified value. Specify the aspect ratio as three relative
values representing the ratio of the x-, y-, and z-axes size. For example,
a value of [1 1 1] (the default) means the plot box is a cube (although
with stretch-to-fill enabled, it may not appear as a cube). See Tips.

pbaspect('mode') returns the current value of the plot box aspect ratio
mode, which can be either auto (the default) or manual. See Remarks.

pbaspect('auto') sets the plot box aspect ratio mode to auto.

pbaspect('manual') sets the plot box aspect ratio mode to manual.

pbaspect(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. If you do not specify an
axes handle, pbaspect operates on the current axes.

Tips pbaspect sets or queries values of the axes object PlotBoxAspectRatio
and PlotBoxAspectRatioMode properties.

When the plot box aspect ratio mode is auto, the MATLAB software
sets the ratio to [1 1 1], but may change it to accommodate manual
settings of the data aspect ratio, camera view angle, or axis limits. See
the axes DataAspectRatio property for a table listing the interactions
between various properties.

1-4951

pbaspect

Setting a value for the plot box aspect ratio or setting the plot box
aspect ratio mode to manual disables the MATLAB stretch-to-fill feature
(stretching of the axes to fit the window). This means setting the plot
box aspect ratio to its current value,

pbaspect(pbaspect)

can cause a change in the way the graphs look. See the Remarks section
of the axes reference description, “Axes Aspect Ratio Properties” in the
3-D Visualization manual, and “Setting Aspect Ratio” in the MATLAB
Graphics manual for a discussion of stretch-to-fill.

Examples Query Plot Box Aspect Ratio

Plot the function over the range and
.

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

1-4952

pbaspect

Query the plot box aspect ratio to show that the plot box is square.

plotboxaspect = pbaspect

plotboxaspect =

1 1 1

1-4953

pbaspect

Change the data aspect ratio.

daspect([1,1,1])

Query the plot box aspect ratio to show how it changes to accommodate
the specified data aspect ratio.

plotboxaspect = pbaspect

1-4954

pbaspect

plotboxaspect =

4 4 1

Make the plot box square again by changing the plot box aspect ratio
to [1,1,1].

pbaspect([1,1,1])

1-4955

pbaspect

See Also axis | daspect | xlim | ylim | zlim | DataAspectRatio |
PlotBoxAspectRatio | XLim | YLim | ZLim

How To • Setting Aspect Ratio

• Axes Aspect Ratio Properties

1-4956

pcg

Purpose Preconditioned conjugate gradients method

Syntax x = pcg(A,b)
pcg(A,b,tol)
pcg(A,b,tol,maxit)
pcg(A,b,tol,maxit,M)
pcg(A,b,tol,maxit,M1,M2)
pcg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = pcg(A,b,...)
[x,flag,relres] = pcg(A,b,...)
[x,flag,relres,iter] = pcg(A,b,...)
[x,flag,relres,iter,resvec] = pcg(A,b,...)

Description x = pcg(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be symmetric and positive
definite, and should also be large and sparse. The column vector b must
have length n. You also can specify A to be a function handle, afun,
such that afun(x) returns A*x.

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If pcg converges, a message to that effect is displayed. If pcg fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

pcg(A,b,tol) specifies the tolerance of the method. If tol is [], then
pcg uses the default, 1e-6.

pcg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then pcg uses the default, min(n,20).

pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2) use
symmetric positive definite preconditioner M or M = M1*M2 and
effectively solve the system inv(M)*A*x = inv(M)*b for x. If M is []

1-4957

pcg

then pcg applies no preconditioner. M can be a function handle mfun
such that mfun(x) returns M\x.

pcg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then pcg uses the default, an all-zero vector.

[x,flag] = pcg(A,b,...) also returns a convergence flag.

Flag Convergence

0 pcg converged to the desired tolerance tol within maxit
iterations.

1 pcg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 pcg stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during pcg became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = pcg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = pcg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = pcg(A,b,...) also returns a vector
of the residual norms at each iteration including norm(b-A*x0).

Examples Using pcg with Large Matrices

This example shows how to use pcg with a matrix input and with a
function handle.

n1 = 21;
A = gallery('moler',n1);
b1 = sum(A,2);

1-4958

pcg

tol = 1e-6;
maxit = 15;
M1 = spdiags((1:n1)',0,n1,n1);
[x1,flag1,rr1,iter1,rv1] = pcg(A,b1,tol,maxit,M1);

Alternatively, you can use the following function in place of the matrix A:

function y = applyMoler(x)
y = x;
y(end-1:-1:1) = y(end-1:-1:1) - cumsum(y(end:-1:2));
y(2:end) = y(2:end) - cumsum(y(1:end-1));

By using this function, you can solve larger systems more efficiently as
there is no need to store the entire matrix A:

n2 = 21;
b2 = applyMoler(ones(n2,1));
tol = 1e-6;
maxit = 15;
M2 = spdiags((1:n2)',0,n2,n2);
[x2,flag2,rr2,iter2,rv2] = pcg(@applyMoler,b2,tol,maxit,M2);

Using pcg with a Preconditioner

This example demonstrates how to use a preconditioner matrix with
pcg.

Create an input matrix and try to solve the system with pcg.

A = delsq(numgrid('S',100));
b = ones(size(A,1),1);
[x0,fl0,rr0,it0,rv0] = pcg(A,b,1e-8,100);

fl0 is 1 because pcg does not converge to the requested tolerance of
1e-8 within the requested maximum 100 iterations. A preconditioner
can make the system converge more quickly.

Use ichol with only one input argument to construct an incomplete
Cholesky factorization with zero fill.

1-4959

pcg

L = ichol(A);
[x1,fl1,rr1,it1,rv1] = pcg(A,b,1e-8,100,L,L');

fl1 is 0 because pcg drives the relative residual to 9.8e-09 (the
value of rr1) which is less than the requested tolerance of 1e-8 at the
seventy-seventh iteration (the value of it1) when preconditioned by the
zero-fill incomplete Cholesky factorization. rv1(1) = norm(b) and
rv1(78) = norm(b-A*x1).

The previous matrix represents the discretization of the Laplacian on
a 100x100 grid with Dirichlet boundary conditions. This means that
a modified incomplete Cholesky preconditioner might perform even
better.

Use the michol option to create a modified incomplete Cholesky
preconditioner.

L = ichol(A,struct('michol','on'));
[x2,fl2,rr2,it2,rv2] = pcg(A,b,1e-8,100,L,L');

In this case you attain convergence in only forty-seven iterations.

You can see how the preconditioners affect the rate of convergence of
pcg by plotting each of the residual histories starting from the initial
estimate (iterate number 0).

figure;
semilogy(0:it0,rv0/norm(b),'b.');
hold on;
semilogy(0:it1,rv1/norm(b),'r.');
semilogy(0:it2,rv2/norm(b),'k.');
legend('No Preconditioner','IC(0)','MIC(0)');
xlabel('iteration number');
ylabel('relative residual');
hold off;

1-4960

pcg

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

See Also bicg | bicgstab | cgs | function_handle | gmres | ichol | lsqr |
minres | qmr | symmlq | mldivide

1-4961

pchip

Purpose Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

Syntax yi = pchip(x,y,xi)
pp = pchip(x,y)

Description yi = pchip(x,y,xi) returns vector yi containing elements
corresponding to the elements of xi and determined by piecewise cubic
interpolation within vectors x and y. The vector x specifies the points
at which the data y is given. If y is a matrix, then the interpolation is
performed for each column of y and yi is length(xi)-by-size(y,2).

pp = pchip(x,y) returns a piecewise polynomial structure for use by
ppval. x can be a row or column vector. y is a row or column vector of
the same length as x, or a matrix with length(x) columns.

pchip finds values of an underlying interpolating function P x() at
intermediate points, such that:

• On each subinterval x x xk k≤ ≤ +1 , P x() is the cubic Hermite
interpolant to the given values and certain slopes at the two
endpoints.

• P x() interpolates y, i.e., P x yj j() = , and the first derivative ′P x() is

continuous. ′′P x() is probably not continuous; there may be jumps

at the x j .

• The slopes at the x j are chosen in such a way that P x() preserves
the shape of the data and respects monotonicity. This means that, on

intervals where the data are monotonic, so is P x() ; at points where

the data has a local extremum, so does P x() .

Note If y is a matrix, P x() satisfies the above for each column of y.

1-4962

pchip

Tips spline constructs S x() in almost the same way pchip constructs P x() .

However, spline chooses the slopes at the x j differently, namely to

make even ′′S x() continuous. This has the following effects:

• spline produces a smoother result, i.e. ′′S x() is continuous.

• spline produces a more accurate result if the data consists of values
of a smooth function.

• pchip has no overshoots and less oscillation if the data are not
smooth.

• pchip is less expensive to set up.

• The two are equally expensive to evaluate.

Examples Data Interpolation Using spline and pchip

x = -3:3;
y = [-1 -1 -1 0 1 1 1];
t = -3:.01:3;
p = pchip(x,y,t);
s = spline(x,y,t);
plot(x,y,'o',t,p,'-',t,s,'-.')
legend('data','pchip','spline',4)

1-4963

pchip

References [1] Fritsch, F. N. and R. E. Carlson, "Monotone Piecewise Cubic
Interpolation," SIAM J. Numerical Analysis, Vol. 17, 1980, pp.238-246.

[2] Kahaner, David, Cleve Moler, Stephen Nash, Numerical Methods
and Software, Prentice Hall, 1988.

See Also interp1 | spline | ppval

1-4964

pcode

Purpose Create protected function file

Syntax pcode(fun)
pcode(fun1,...,funN)
pcode(fun,'-inplace')

Description pcode(fun) obfuscates the code in fun.m and produces a file called
fun.p, known as a P-file. If fun is a folder, then all the script or function
files in that folder are obfuscated in P-files. MATLAB creates the P-files
in the current folder. The original .m file or folder can be anywhere
on the search path.

pcode(fun1,...,funN) creates N P-files from the listed files. If any
inputs are folders, then MATLAB creates a P-file for every .m file the
folders contain.

pcode(fun,'-inplace') creates P-files in the same folder as the script
or function files.

Note The pcode function obfuscates your .m files, it does not encrypt
them. While the content in a .p file is difficult to understand, it should
not be considered secure. It is not recommended that you P-code files to
protect your intellectual property.

Tips • The pcode algorithm was redesigned in MATLAB 7.5 (Release
R2007b). You can run older P-files in any current version of
MATLAB; however, upcoming releases will not run P-files created
before version 7.5. Files generated in 7.5, or later versions, cannot
run in MATLAB 7.4 or earlier.

• When obfuscating all files in a folder, pcode does not obfuscate any
files within subfolders.

• A P-file takes precedence over the corresponding .m file for execution,
even after modifications to the .m file.

1-4965

pcode

• MATLAB does not display any of the help comments that might be in
the original .m file.

Input
Arguments

fun

MATLAB file or directory containing MATLAB files. If fun resides
within a package and/or class folder, then pcode creates the same
package and/or class structure to house the resulting P-files.

An input argument with no file extension and that is not a folder must
be a function in the MATLAB path or in the current folder.

When using wild cards *, pcode ignores all files with extensions other
than .m.

Examples P-Coding Multiple Files

Convert selected files from the sparfun folder into P-files.

Create a temporary folder and define an existing path to .m files.

tmp = tempname;
mkdir(tmp);
cd(tmp);
fun = fullfile(matlabroot,'toolbox','matlab','sparfun','spr*.m');

Create the P-files.

pcode(fun)
dir(tmp)

. .. sprand.p sprandn.p sprandsym.p sprank.p

The temporary folder now contains encoded P-files.

P-Coding Files That Belong to a Package and/or Class

Generate P-files from input files that are part of a package and/or class.
This example uses an existing MATLAB example class.

Define funclass as an existing a class folder that contains .m files.

1-4966

pcode

funclass = fullfile(docroot, 'techdoc', 'matlab_oop', ...
'examples', '@BankAccount')

dir(funclass)

funclass =

C:\Program Files\MATLAB\R2013a\help\techdoc\matlab_oop\examples\@BankAccount

. .. BankAccount.m

Create a temporary folder. This folder has no package or class structure
at this time.

tmp = tempname;
mkdir(tmp);
cd(tmp);
dir(tmp)

. ..

Create a P-file for every .m file in the path funclass. Because the
input files are part of a package and/or class, MATLAB creates a folder
structure so that the output file belongs to the same package and/or
class.

pcode(funclass)
dir(tmp)

. .. @BankAccount

You see that the P-file resides in the same folder structure.

dir('@BankAccount')

. .. BankAccount.p

1-4967

pcode

P-Coding In Place

Generate P-files in the same folder as the input files using the option
inplace

Copy several MATLAB files to a temporary folder.

fun = fullfile(matlabroot,'toolbox','matlab','sparfun','spr*.m');
tmp = tempname;
mkdir(tmp);
copyfile(fun,tmp)
dir(tmp)

. .. sprand.m sprandn.m sprandsym.m sprank.m

Create P-files in the same folder as the original.m files.

pcode(tmp,'-inplace')
dir(tmp)

. sprand.m sprandn.m sprandsym.m sprank.m

.. sprand.p sprandn.p sprandsym.p sprank.p

See Also matlab.codetools.requiredFilesAndProducts

Concepts • “Protect Your Source Code”

1-4968

pcolor

Purpose Pseudocolor (checkerboard) plot

Syntax pcolor(C)
pcolor(X,Y,C)
pcolor(axes_handles,...)
h = pcolor(...)

Description A pseudocolor plot is a rectangular array of cells with colors determined
by C. MATLAB creates a pseudocolor plot using each set of four adjacent
points in C to define a surface rectangle (i.e., cell).

The default shading is faceted, which colors each cell with a single
color. The last row and column of C are not used in this case. With
shading interp, each cell is colored by bilinear interpolation of the
colors at its four vertices, using all elements of C.

The minimum and maximum elements of C are assigned the first and
last colors in the colormap. Colors for the remaining elements in C are
determined by a linear mapping from value to colormap element.

pcolor(C) draws a pseudocolor plot. The elements of C are linearly
mapped to an index into the current colormap. The mapping from C to
the current colormap is defined by colormap and caxis.

pcolor(X,Y,C) draws a pseudocolor plot of the elements of C at the
locations specified by X and Y. The plot is a logically rectangular,
two-dimensional grid with vertices at the points [X(i,j), Y(i,j)]. X
and Y are vectors or matrices that specify the spacing of the grid lines. If
X and Y are vectors, X corresponds to the columns of C and Y corresponds
to the rows. If X and Y are matrices, they must be the same size as C.

pcolor(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = pcolor(...) returns a handle to a surface graphics object.

1-4969

pcolor

Tips A pseudocolor plot is a flat surface plot viewed from above.
pcolor(X,Y,C) is the same as viewing surf(X,Y,zeros(size(X)),C)
using view([0 90]).

When you use shading faceted or shading flat, the constant color of
each cell is the color associated with the corner having the smallest x-y
coordinates. Therefore, C(i,j) determines the color of the cell in the
ith row and jth column. The last row and column of C are not used.

When you use shading interp, each cell’s color results from a bilinear
interpolation of the colors at its four vertices, and all elements of C are
used.

Examples A Hadamard matrix has elements that are +1 and -1. A colormap with
only two entries is appropriate when displaying a pseudocolor plot of
this matrix.

pcolor(hadamard(20))
colormap(gray(2))
axis ij
axis square

1-4970

pcolor

A simple color wheel illustrates a polar coordinate system.

n = 6;
r = (0:n)'/n;
theta = pi*(-n:n)/n;
X = r*cos(theta);
Y = r*sin(theta);
C = r*cos(2*theta);
pcolor(X,Y,C)

1-4971

pcolor

axis equal tight

Algorithms The number of vertex colors for pcolor(C) is the same as the number
of cells for image(C). pcolor differs from image in that pcolor(C)
specifies the colors of vertices, which are scaled to fit the colormap;
changing the axes clim property changes this color mapping. image(C)
specifies the colors of cells and directly indexes into the colormap
without scaling. Additionally, pcolor(X,Y,C) can produce parametric
grids, which is not possible with image.

1-4972

pcolor

See Also caxis | image | mesh | shading | surf | view

1-4973

pdepe

Purpose Solve initial-boundary value problems for parabolic-elliptic PDEs in 1-D

Syntax sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)
[sol,tsol,sole,te,ie] = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,

options)

Arguments m A parameter corresponding to the symmetry of
the problem. m can be slab = 0, cylindrical = 1, or
spherical = 2.

pdefun A handle to a function that defines the components
of the PDE.

icfun A handle to a function that defines the initial
conditions.

bcfun A handle to a function that defines the boundary
conditions.

xmesh A vector [x0, x1, ..., xn] specifying the points at
which a numerical solution is requested for every
value in tspan. The elements of xmesh must satisfy
x0 < x1 < ... < xn. The length of xmesh must
be >= 3.

tspan A vector [t0, t1, ..., tf] specifying the points at
which a solution is requested for every value
in xmesh. The elements of tspan must satisfy
t0 < t1 < ... < tf. The length of tspan must be
>= 3.

options Some options of the underlying ODE solver are
available in pdepe: RelTol, AbsTol, NormControl,
InitialStep, MaxStep, and Events. In most cases,
default values for these options provide satisfactory
solutions. See odeset for details.

1-4974

pdepe

Description sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) solves
initial-boundary value problems for systems of parabolic and elliptic
PDEs in the one space variable x and time t. pdefun, icfun, and bcfun
are function handles. See the function_handle reference page for more
information. The ordinary differential equations (ODEs) resulting from
discretization in space are integrated to obtain approximate solutions
at times specified in tspan. The pdepe function returns values of the
solution on a mesh provided in xmesh.

“Parameterizing Functions” explains how to provide additional
parameters to the functions pdefun, icfun, or bcfun, if necessary.

pdepe solves PDEs of the form:

c x t u
u
x

u
t

x
x

x f x t u
u
x

s x tm m, , , , , , ,

 ,, ,u
u
x

(1-4)

The PDEs hold for t0 ≤ t ≤ tf and a ≤ x ≤ b. The interval [a,b] must be
finite. m can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical
symmetry, respectively. If m > 0, then a must be ≥ 0.

In Equation 1-4, f (x,t,u,∂u/∂x) is a flux term and s (x,t,u,∂u/∂x) is a
source term. The coupling of the partial derivatives with respect to time
is restricted to multiplication by a diagonal matrix c (x,t,u,∂u/∂x). The
diagonal elements of this matrix are either identically zero or positive.
An element that is identically zero corresponds to an elliptic equation
and otherwise to a parabolic equation. There must be at least one
parabolic equation. An element of c that corresponds to a parabolic
equation can vanish at isolated values of x if those values of x are mesh
points. Discontinuities in c and/or s due to material interfaces are
permitted provided that a mesh point is placed at each interface.

For t = t0 and all x, the solution components satisfy initial conditions
of the form

u x t u x(,) ()0 0 (1-5)

For all t and either x = a or x = b, the solution components satisfy a
boundary condition of the form

1-4975

pdepe

p x t u q x t f x t u
u
x

(, ,) (,) , , ,

 0

(1-6)

Elements of q are either identically zero or never zero. Note that the
boundary conditions are expressed in terms of the flux f rather than
∂u/∂x. Also, of the two coefficients, only p can depend on u.

In the call sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan):

• m corresponds to m.

• xmesh(1) and xmesh(end) correspond to a and b.

• tspan(1) and tspan(end) correspond to t0 and tf.

• pdefun computes the terms c, f, and s (Equation 1-4). It has the form

[c,f,s] = pdefun(x,t,u,dudx)

The input arguments are scalars x and t and vectors u and dudx that
approximate the solution u and its partial derivative with respect to
x, respectively. c, f, and s are column vectors. c stores the diagonal
elements of the matrix c (Equation 1-4).

• icfun evaluates the initial conditions. It has the form

u = icfun(x)

When called with an argument x, icfun evaluates and returns the
initial values of the solution components at x in the column vector u.

• bcfun evaluates the terms p and q of the boundary conditions
(Equation 1-6). It has the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

ul is the approximate solution at the left boundary xl = a and ur is
the approximate solution at the right boundary xr = b. pl and ql are
column vectors corresponding to p and q evaluated at xl, similarly
pr and qr correspond to xr. When m > 0 and a = 0, boundedness of
the solution near x = 0 requires that the flux f vanish at a = 0. pdepe

1-4976

pdepe

imposes this boundary condition automatically and it ignores values
returned in pl and ql.

pdepe returns the solution as a multidimensional array sol.
ui = ui = sol(:,:,i) is an approximation to the ith component of the
solution vector u. The element ui(j,k) = sol(j,k,i) approximates ui at
(t,x) = (tspan(j),xmesh(k)).

ui = sol(j,:,i) approximates component i of the solution at time
tspan(j) and mesh points xmesh(:). Use pdeval to compute the
approximation and its partial derivative ∂ui/∂x at points not included
in xmesh. See pdeval for details.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) solves
as above with default integration parameters replaced by values in
options, an argument created with the odeset function. Only some
of the options of the underlying ODE solver are available in pdepe:
RelTol, AbsTol, NormControl, InitialStep, and MaxStep. The defaults
obtained by leaving off the input argument options will generally be
satisfactory. See odeset for details.

[sol,tsol,sole,te,ie] =
pdepe(m,pdefun,icfun,bcfun,xmesh,tspan, options) with the
'Events' property in options set to a function handle Events, solves
as above while also finding where event functions g(t,u(x,t))are
zero. For each function you specify whether the integration is
to terminate at a zero and whether the direction of the zero
crossing matters. Three column vectors are returned by events:
[value,isterminal,direction] = events(m,t,xmesh,umesh).
xmesh contains the spatial mesh and umesh is the solution at the mesh
points. Use pdeval to evaluate the solution between mesh points.
For the I-th event function, value(i) is the value of the function,
ISTERMINAL(I) = 1 if the integration is to terminate at a zero of this
event function and 0 otherwise. direction(i) = 0 if all zeros are to be
computed (the default), +1 if only zeros where the event function is
increasing, and -1 if only zeros where the event function is decreasing.
Output tsol is a column vector of times specified in tspan, prior to first
terminal event. SOL(j,:,:) is the solution at T(j). TE is a vector of

1-4977

pdepe

times at which events occur. SOLE(j,:,:) is the solution at TE(j) and
indices in vector IE specify which event occurred.

If UI = SOL(j,:,i) approximates component i of the solution
at time TSPAN(j) and mesh points XMESH, pdeval evaluates the
approximation and its partial derivative ∂ui/∂x at the array of points
XOUT and returns them in UOUT and DUOUTDX: [UOUT,DUOUTDX] =
PDEVAL(M,XMESH,UI,XOUT)

Note The partial derivative ∂ui/∂x is evaluated here rather than the
flux. The flux is continuous, but at a material interface the partial
derivative may have a jump.

Tips • The arrays xmesh and tspan play different roles in pdepe.

tspan – The pdepe function performs the time integration with an
ODE solver that selects both the time step and formula dynamically.
The elements of tspan merely specify where you want answers and
the cost depends weakly on the length of tspan.

xmesh – Second order approximations to the solution are made on the
mesh specified in xmesh. Generally, it is best to use closely spaced
mesh points where the solution changes rapidly. pdepe does not
select the mesh in x automatically. You must provide an appropriate
fixed mesh in xmesh. The cost depends strongly on the length of
xmesh. When m > 0, it is not necessary to use a fine mesh near x = 0
to account for the coordinate singularity.

• The time integration is done with ode15s. pdepe exploits the
capabilities of ode15s for solving the differential-algebraic equations
that arise when Equation 1-4 contains elliptic equations, and for
handling Jacobians with a specified sparsity pattern.

• After discretization, elliptic equations give rise to algebraic equations.
If the elements of the initial conditions vector that correspond to
elliptic equations are not "consistent" with the discretization, pdepe
tries to adjust them before beginning the time integration. For

1-4978

pdepe

this reason, the solution returned for the initial time may have a
discretization error comparable to that at any other time. If the mesh
is sufficiently fine, pdepe can find consistent initial conditions close
to the given ones. If pdepe displays a message that it has difficulty
finding consistent initial conditions, try refining the mesh.

No adjustment is necessary for elements of the initial conditions
vector that correspond to parabolic equations.

Examples Example 1. This example illustrates the straightforward formulation,
computation, and plotting of the solution of a single PDE.

 2

u
t x

u
x

This equation holds on an interval 0 ≤ x ≤ 1 for times t ≥ 0.

The PDE satisfies the initial condition

u x x(,) sin0

and boundary conditions

u t

e
u
x

tt

(,)

(,)

0 0

1 0

It is convenient to use local functions to place all the functions required
by pdepe in a single function.

function pdex1

m = 0;
x = linspace(0,1,20);
t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
% Extract the first solution component as u.

1-4979

pdepe

u = sol(:,:,1);

% A surface plot is often a good way to study a solution.
surf(x,t,u)
title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')
ylabel('Time t')

% A solution profile can also be illuminating.
figure
plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')
ylabel('u(x,2)')
% --
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;
% --
function u0 = pdex1ic(x)
u0 = sin(pi*x);
% --
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

In this example, the PDE, initial condition, and boundary conditions
are coded in local functions pdex1pde, pdex1ic, and pdex1bc.

The surface plot shows the behavior of the solution.

1-4980

pdepe

The following plot shows the solution profile at the final value of t (i.e.,
t = 2).

1-4981

pdepe

Example 2. This example illustrates the solution of a system of PDEs.
The problem has boundary layers at both ends of the interval. The
solution changes rapidly for small t.

The PDEs are

u
t

u

x
F u u

u
t

u

x
F u u

1
2

1
2 1 2

2
2

2
2 1 2

0 024

0 170

. ()

. ()

where F(y) = exp(5.73y) – exp(–11.46y).

This equation holds on an interval 0 ≤ x ≤ 1 for times t ≥ 0.

The PDE satisfies the initial conditions

1-4982

pdepe

u x
u x

1

2

0 1
0 0

(,)
(,)

and boundary conditions

u
x

t

u t
u t

u
x

t

1

2

1

2

0 0

0 0
1 1

1 0

(,)

(,)
(,)

(,)

In the form expected by pdepe, the equations are

1
1

0 024
0 170

1

2

1

2

*

. ()

. ()t

u

u x

u x

u x

/
/

F u u

F u u

()
()

1 2

1 2

The boundary conditions on the partial derivatives of u have to be
written in terms of the flux. In the form expected by pdepe, the left
boundary condition is

0 1
0

0 024
0 170

0
02

1

2u
u x

u x

*

. ()

. ()
/
/

and the right boundary condition is

u u x

u x
1 1

2

1

0
0
1

0 024
0 170

0
0

*

. ()

. ()
/
/

The solution changes rapidly for small t. The program selects the step
size in time to resolve this sharp change, but to see this behavior in the
plots, the example must select the output times accordingly. There are
boundary layers in the solution at both ends of [0,1], so the example
places mesh points near 0 and 1 to resolve these sharp changes. Often

1-4983

pdepe

some experimentation is needed to select a mesh that reveals the
behavior of the solution.

function pdex4
m = 0;
x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')

figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')
% --
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [0.024; 0.17] .* DuDx;
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];
% --
function u0 = pdex4ic(x);
u0 = [1; 0];
% --
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [1; 0];

1-4984

pdepe

pr = [ur(1)-1; 0];
qr = [0; 1];

In this example, the PDEs, initial conditions, and boundary conditions
are coded in local functions pdex4pde, pdex4ic, and pdex4bc.

The surface plots show the behavior of the solution components.

1-4985

pdepe

References [1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization
of Parabolic Equations in One Space Variable," SIAM Journal on
Scientific and Statistical Computing, Vol. 11, 1990, pp.1–32.

See Also function_handle | pdeval | ode15s | odeset | odeget

1-4986

pdeval

Purpose Evaluate numerical solution of PDE using output of pdepe

Syntax [uout,duoutdx] = pdeval(m,x,ui,xout)

Arguments m Symmetry of the problem: slab = 0, cylindrical = 1,
spherical = 2. This is the first input argument used
in the call to pdepe.

xmesh A vector [x0, x1, ..., xn] specifying the points at which
the elements of ui were computed. This is the same
vector with which pdepe was called.

ui A vector sol(j,:,i) that approximates component i of
the solution at time tf and mesh points xmesh, where
sol is the solution returned by pdepe.

xout A vector of points from the interval [x0,xn] at which
the interpolated solution is requested.

Description [uout,duoutdx] = pdeval(m,x,ui,xout) approximates the solution
ui and its partial derivative ∂ui/∂x at points from the interval [x0,xn].
The pdeval function returns the computed values in uout and duoutdx,
respectively.

Note pdeval evaluates the partial derivative ∂ui/∂x rather than the flux
f. Although the flux is continuous, the partial derivative may have a
jump at a material interface.

See Also pdepe

1-4987

peaks

Purpose Example function of two variables

Syntax Z = peaks;
Z = peaks(n);
Z = peaks(V);
Z = peaks(X,Y);
peaks(...)
[X,Y,Z] = peaks(...);

Description peaks is a function of two variables, obtained by translating and scaling
Gaussian distributions, which is useful for demonstrating mesh, surf,
pcolor, contour, and so on.

Z = peaks; returns a 49-by-49 matrix.

Z = peaks(n); returns an n-by-n matrix.

Z = peaks(V); returns an n-by-n matrix, where n = length(V).

Z = peaks(X,Y); evaluates peaks at the given X and Y (which must be
the same size) and returns a matrix the same size.

peaks(...) (with no output argument) plots the peaks function with
surf. Use any of the input argument combinations in the previous
syntaxes.

[X,Y,Z] = peaks(...); returns two additional matrices, X and Y, for
parametric plots, for example, surf(X,Y,Z,del2(Z)). If not given as
input, the underlying matrices X and Y are

[X,Y] = meshgrid(V,V)

1-4988

peaks

where V is a given vector, or V is a vector of length n with elements
equally spaced from -3 to 3. If no input argument is given, the default
n is 49.

Examples This example creates a 5–by–5 matrix of peaks and displays the image:

peaks(5);

See Examples section from surf for a more elaborate use case.

1-4989

peaks

See Also meshgrid | surf

1-4990

perl

Purpose Call Perl script using appropriate operating system executable

Syntax perl('perlfile')
perl('perlfile',arg1,arg2,...)
result = perl(...)
[result, status] = perl(...)

Description perl('perlfile') calls the Perl script perlfile, using the appropriate
operating system Perl executable. Perl is included with the MATLAB
software on Microsoft Windows systems, and thus MATLAB users can
run user-created MATLAB functions containing the perl function. On
Linux and Macintosh systems, MATLAB calls the Perl interpreter
available with the operating system.

perl('perlfile',arg1,arg2,...) calls the Perl script perlfile,
using the appropriate operating system Perl executable, and passes the
arguments arg1, arg2, and so on, to perlfile.

result = perl(...) returns the results of attempted Perl call to
result.

[result, status] = perl(...) returns the results of attempted Perl
call to result and its exit status to status.

It is sometimes beneficial to use Perl scripts instead of MATLAB code.
The perl function allows you to run those scripts from MATLAB.
Specific examples where you might choose to use a Perl script include:

• Perl script already exists

• Perl script preprocesses data quickly, formatting it in a way more
easily read by MATLAB

• Perl has features not supported by MATLAB

Examples Given the Perl script, hello.pl:

$input = $ARGV[0];
print "Hello $input.";

1-4991

perl

At the MATLAB command line, type:

perl('hello.pl','World')

ans =
Hello World.

See Also dos | regexp | system | unix | ! (exclamation point)

1-4992

perms

Purpose All possible permutations

Syntax P = perms(v)

Description P = perms(v) returns a matrix containing all permutations of the
elements of vector v in reverse lexicographic order. Each row of P
contains a different permutation of the n elements in v. Matrix P has
the same data type as v, and it has n! rows and n columns.

Input
Arguments

v - Set of items
vector of numeric, logical, or char values

Set of items, specified as a vector of numeric, logical, or char values.

Example: [1 2 3 4]

Example: [1+1i 2+1i 3+1i 4+1i]

Example: int16([1 2 3 4])

Example: ['abcd']

Example: [true false true false]

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Limitations perms(v) is practical when length(v) is less than about 10.

Examples All Permutations of Double Integers

v = [2 4 6];
P = perms(v)

P =

6 4 2
6 2 4

1-4993

perms

4 6 2
4 2 6
2 4 6
2 6 4

All Permutations of Unsigned Integers

v = uint16([1023 4095 65535]);
P = perms(v)

P =

65535 4095 1023
65535 1023 4095
4095 65535 1023
4095 1023 65535
1023 4095 65535
1023 65535 4095

All Permutations of Complex Numbers

v = [1+1i 2+1i 3+1i];
P = perms(v)

P =

3.0000 + 1.0000i 2.0000 + 1.0000i 1.0000 + 1.0000i
3.0000 + 1.0000i 1.0000 + 1.0000i 2.0000 + 1.0000i
2.0000 + 1.0000i 3.0000 + 1.0000i 1.0000 + 1.0000i
2.0000 + 1.0000i 1.0000 + 1.0000i 3.0000 + 1.0000i
1.0000 + 1.0000i 2.0000 + 1.0000i 3.0000 + 1.0000i
1.0000 + 1.0000i 3.0000 + 1.0000i 2.0000 + 1.0000i

See Also nchoosek | permute | randperm

1-4994

permute

Purpose Rearrange dimensions of N-D array

Syntax B = permute(A,order)

Description B = permute(A,order) rearranges the dimensions of A so that they are
in the order specified by the vector order. B has the same values of A
but the order of the subscripts needed to access any particular element
is rearranged as specified by order. All the elements of order must be
unique, real, positive, integer values.

Tips permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Given any matrix A, the statement

permute(A,[2 1])

is the same as A.'.

For example:

A = [1 2; 3 4]; permute(A,[2 1])
ans =

1 3
2 4

The following code permutes a three-dimensional array:

X = rand(12,13,14);
Y = permute(X,[2 3 1]);
size(Y)
ans =

13 14 12

See Also ipermute | circshift | fliplr | flipud | reshape | shiftdim

1-4995

persistent

Purpose Define persistent variable

Syntax persistent X Y Z

Description persistent X Y Z defines X, Y, and Z as variables that are local to
the function in which they are declared; yet their values are retained
in memory between calls to the function. Persistent variables are
similar to global variables because the MATLAB software creates
permanent storage for both. They differ from global variables in that
persistent variables are known only to the function in which they are
declared. This prevents persistent variables from being changed by
other functions or from the MATLAB command line.

Whenever you clear or modify a function that is in memory, MATLAB
also clears all persistent variables declared by that function. To keep a
function in memory until MATLAB quits, use mlock.

If the persistent variable does not exist the first time you issue the
persistent statement, it is initialized to the empty matrix.

It is an error to declare a variable persistent if a variable with the same
name exists in the current workspace. MATLAB also errors if you
declare any of a function’s input or output arguments as persistent
within that same function. For example, the following persistent
declaration is invalid:

function myfun(argA, argB, argC)
persistent argB

Tips There is no function form of the persistent command (i.e., you cannot
use parentheses and quote the variable names).

Examples This function writes a large array to a spreadsheet file and then reads
several rows from the same file. Because you only need to write the
array to the spreadsheet one time, the program tests whether an array
can be read from the file and, if so, does not waste time in repeating
that task. By defining the dblArray variable as persistent, you can
easily check whether the array has been read from the spreadsheet file.

1-4996

persistent

Here is the arrayToXLS function:

function arrayToXLS(A, xlsfile, x1, x2)
persistent dblArray;

if isempty(dblArray)
disp 'Writing spreadsheet file ...'
xlswrite(xlsfile, A);

end

disp 'Reading array from spreadsheet ...'
dblArray = xlsread(xlsfile, 'Sheet1', [x1 ':' x2])
fprintf('\n');

Run the function three times and observe the time elapsed for each run.
The second and third run take approximately one tenth the time of the
first run in which the function must create the spreadsheet:

largeArray = rand(4000, 200);

tic, arrayToXLS(largeArray, 'myTest.xls','E254', 'J256'), toc
Writing spreadsheet file ...
Reading array from spreadsheet ...
dblArray =

0.0982 0.3783 0.1264 0.7880 0.1902 0.5811
0.2251 0.2704 0.5682 0.7271 0.8028 0.2834
0.6453 0.5568 0.8254 0.4961 0.9096 0.5402

Elapsed time is 8.990525 seconds.

tic, arrayToXLS(largeArray, 'myTest.xls','E257', 'J258'), toc
Reading array from spreadsheet ...
dblArray =

0.4620 0.3781 0.6386 0.5930 0.0946 0.4865
0.1605 0.1251 0.8709 0.5188 0.6702 0.2138

1-4997

persistent

Elapsed time is 0.912534 seconds.

tic, arrayToXLS(largeArray, 'myTest.xls','E259', 'J262'), toc
Reading array from spreadsheet ...
dblArray =

0.7015 0.6588 0.4023 0.0359 0.4512 0.6097
0.1308 0.6441 0.0431 0.6396 0.7481 0.8688
0.8278 0.2686 0.5475 0.8550 0.5896 0.1080
0.9437 0.1671 0.0505 0.1203 0.2461 0.7306

Elapsed time is 0.928843 seconds.

Now clear the arrayToXLS function from memory and observe that
running it takes much longer again:

clear functions

tic, arrayToXLS(largeArray, 'myTest.xls','E263', 'J264'), toc
Writing spreadsheet file ...
Reading array from spreadsheet ...
dblArray =

0.6292 0.7788 0.0732 0.6481 0.9299 0.8631
0.7700 0.5181 0.9805 0.5092 0.8658 0.4070

Elapsed time is 7.603461 seconds.

See Also global | clear | mislocked | mlock | munlock | isempty

1-4998

pi

Purpose Ratio of circle’s circumference to its diameter

Syntax pi

Description pi returns the floating-point number nearest the value of π. The
expressions 4*atan(1) and imag(log(-1)) provide the same value.

Examples Find the sine of π:

sin(pi)

returns

ans =

1.2246e-16

The expression sin(pi) is not exactly zero because pi is not exactly π.

1-4999

pie

Purpose Pie chart

Syntax pie(X)
pie(X,explode)
pie(...,labels)
pie(axes_handle,...)
h = pie(...)

Description pie(X) draws a pie chart using the data in X. Each element in X is
represented as a slice in the pie chart.

• If sum(X) 1, then the values in X directly specify the area of the
pie slices. pie draws only a partial pie if sum(X) < 1.

• If the sum of the elements in X is greater than one, then pie
normalizes the values by X/sum(X) to determine the area of each
slice of the pie.

pie(X,explode) offsets a slice from the pie. explode is a vector or
matrix of zeros and nonzeros that correspond to X. A nonzero value
offsets the corresponding slice from the center of the pie chart, so that
X(i,j) is offset from the center if explode(i,j) is nonzero. explode
must be the same size as X.

pie(...,labels) specifies text labels for the slices. The number of
labels must equal the number of elements in X.

pie(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = pie(...) returns a vector of handles to patch and text graphics
objects.

Examples Create Pie Chart

Create a pie chart of vector x.

1-5000

pie

x = [1,3,0.5,2.5,2];
figure
pie(x)

To offset the second and fourth pie slices, set the corresponding explode
elements to 1.

explode = [0,1,0,1,0];
figure
pie(x,explode)

1-5001

pie

Specify Text Labels for Pie Chart

Specify the text labels for a pie chart.

x = 1:3;
labels = {'Taxes','Expenses','Profit'};

figure
pie(x,labels)

1-5002

pie

Remove Piece From Pie Chart

Create a pie chart of x.

x = [0.19,0.22,0.41];
figure
pie(x)

1-5003

pie

Since the sum of the elements in x is less than 1, pie draws a partial pie.

See Also pie3

How To • “Offset Pie Slice with Greatest Contribution”

• “Label Pie Chart With Text and Percent Values”

1-5004

pie3

Purpose 3-D pie chart

Syntax pie3(X)
pie3(X,explode)
pie3(...,labels)
pie3(axes_handle,...)
h = pie3(...)

Description pie3(X) draws a three-dimensional pie chart using the data in X. Each
element in X is represented as a slice in the pie chart.

• If sum(X) 1, then the values in X directly specify the area of the
pie slices. pie3 draws only a partial pie if sum(X) < 1.

• If the sum of the elements in X is greater than one, then pie3
normalizes the values by X/sum(X) to determine the area of each
slice of the pie.

pie3(X,explode) specifies whether to offset a slice from the center
of the pie chart. X(i,j) is offset from the center of the pie chart if
explode(i,j) is nonzero. explode must be the same size as X.

pie3(...,labels) specifies text labels for the slices. The number of
labels must equal the number of elements in X.

pie3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = pie3(...) returns a vector of handles to patch, surface, and text
graphics objects.

Examples Create 3-D Pie Chart

Create a 3-D pie chart of vector x.

x = [1,3,0.5,2.5,2];

1-5005

pie3

figure
pie3(x);

To offset the second pie slice, set the corresponding explode element
to 1.

explode = [0,1,0,0,0];
figure
pie3(x,explode)

1-5006

pie3

Specify Text Labels for 3-D Pie Chart

Create a 3-D pie chart and specify the text labels.

x = 1:3;
labels = {'Taxes','Expenses','Profit'};

figure
pie3(x,labels)

1-5007

pie3

See Also pie

1-5008

pinv

Purpose Moore-Penrose pseudoinverse of matrix

Syntax B = pinv(A)
B = pinv(A,tol)

Definitions The Moore-Penrose pseudoinverse is a matrix B of the same dimensions
as A' satisfying four conditions:

A*B*A = A
B*A*B = B
A*B is Hermitian
B*A is Hermitian

The computation is based on svd(A) and any singular values less than
tol are treated as zero.

Description B = pinv(A) returns the Moore-Penrose pseudoinverse of A.

B = pinv(A,tol) returns the Moore-Penrose pseudoinverse and
overrides the default tolerance, max(size(A))*norm(A)*eps.

Examples If A is square and not singular, then pinv(A) is an expensive way to
compute inv(A). If A is not square, or is square and singular, then
inv(A) does not exist. In these cases, pinv(A) has some of, but not all,
the properties of inv(A).

If A has more rows than columns and is not of full rank, then the
overdetermined least squares problem

minimize norm(A*x-b)

does not have a unique solution. Two of the infinitely many solutions are

x = pinv(A)*b

and

y = A\b

1-5009

pinv

These two are distinguished by the facts that norm(x) is smaller than
the norm of any other solution and that y has the fewest possible
nonzero components.

For example, the matrix generated by

A = magic(8); A = A(:,1:6)

is an 8-by-6 matrix that happens to have rank(A) = 3.

A =
64 2 3 61 60 6
9 55 54 12 13 51

17 47 46 20 21 43
40 26 27 37 36 30
32 34 35 29 28 38
41 23 22 44 45 19
49 15 14 52 53 11
8 58 59 5 4 62

The right-hand side is b = 260*ones(8,1),

b =
260
260
260
260
260
260
260
260

The scale factor 260 is the 8-by-8 magic sum. With all eight columns,
one solution to A*x = b would be a vector of all 1’s. With only six
columns, the equations are still consistent, so a solution exists, but it
is not all 1’s. Since the matrix is rank deficient, there are infinitely
many solutions. Two of them are

x = pinv(A)*b

1-5010

pinv

which is

x =
1.1538
1.4615
1.3846
1.3846
1.4615
1.1538

and

y = A\b

which produces this result.

Warning: Rank deficient, rank = 3 tol = 1.8829e-013.
y =

4.0000
5.0000

0
0
0

-1.0000

Both of these are exact solutions in the sense that norm(A*x-b) and
norm(A*y-b) are on the order of roundoff error. The solution x is special
because

norm(x) = 3.2817

is smaller than the norm of any other solution, including

norm(y) = 6.4807

On the other hand, the solution y is special because it has only three
nonzero components.

See Also inv | qr | rank | svd

1-5011

planerot

Purpose Givens plane rotation

Syntax [G,y] = planerot(x)

Description [G,y] = planerot(x) where x is a 2-component column vector, returns
a 2-by-2 orthogonal matrix G so that y = G*x has y(2) = 0.

Examples x = [3 4];
[G,y] = planerot(x')

G =
0.6000 0.8000

-0.8000 0.6000

y =
5
0

See Also qrdelete | qrinsert

1-5012

audioplayer.play

Purpose Play audio from audioplayer object

Syntax play(playerObj)
play(playerObj,start)
play(playerObj,[start,stop])

Description play(playerObj) plays the audio associated with audioplayer object
playerObj from beginning to end.

play(playerObj,start) plays audio from the sample indicated by
start to the end.

play(playerObj,[start,stop]) plays audio from the sample indicated
by start to the sample indicated by stop.

Examples Play with and without Blocking

Play two audio samples with and without blocking using the play and
playblocking methods.

Load data from example files chirp.mat and gong.mat.

chirpData = load('chirp.mat');
chirpObj = audioplayer(chirpData.y,chirpData.Fs);

gongData = load('gong.mat');
gongObj = audioplayer(gongData.y,gongData.Fs);

Play the samples with blocking, one after the other.

playblocking(chirpObj);
playblocking(gongObj);

Play without blocking. The audio can overlap.

play(chirpObj);
play(gongObj);

1-5013

audioplayer.play

Starting Sample

Play audio from the example file handel.mat starting 4 seconds from
the beginning.

load handel.mat;
playerObj = audioplayer(y,Fs);
start = playerObj.SampleRate * 4;

play(playerObj,start);

Sample Range

Play the first 3 seconds of audio from the example file handel.mat.

load handel.mat;
playerObj = audioplayer(y,Fs);
start = 1;
stop = playerObj.SampleRate * 3;

play(playerObj,[start,stop]);

See Also audioplayer | playblocking

How To • “Play Audio”

1-5014

audiorecorder.play

Purpose Play audio from audiorecorder object

Syntax player = play(recObj)
player = play(recObj, start)
player = play(recObj, [start stop])

Description player = play(recObj) plays the audio associated with
audiorecorder object recObj from beginning to end, and returns an
audioplayer object.

player = play(recObj, start) plays audio from the sample indicated
by start to the end.

player = play(recObj, [start stop]) plays audio from the sample
indicated by start to the sample indicated by stop.

Examples Record 5 seconds of your speech with a microphone, and play it back.
Display the properties of the audioplayer object.

myVoice = audiorecorder;

disp('Start speaking.');
recordblocking(myVoice, 5);
disp('End of recording. Playing back ...');

playerObj = play(myVoice);

disp('Properties of playerObj:');
get(playerObj)

Play back only the first 3 seconds of the speech recorded in the previous
example:

play(myVoice, [1 myVoice.SampleRate*3]);

See Also audioplayer | audiorecorder

1-5015

audioplayer.playblocking

Purpose Play audio from audioplayer object, holding control until playback
completes

Syntax playblocking(playerObj)
playblocking(playerObj,start)
playblocking(playerObj,[start,stop])

Description playblocking(playerObj) plays the audio associated with
audioplayer object playerObj from beginning to end. playblocking
does not return control until playback completes.

playblocking(playerObj,start) plays audio from the sample
indicated by start to the end.

playblocking(playerObj,[start,stop]) plays audio from the sample
indicated by start to the sample indicated by stop.

Examples Play with and without Blocking

Play two audio samples with and without blocking using the play and
playblocking methods.

Load data from example files chirp.mat and gong.mat.

chirpData = load('chirp.mat');
chirpObj = audioplayer(chirpData.y,chirpData.Fs);

gongData = load('gong.mat');
gongObj = audioplayer(gongData.y,gongData.Fs);

Play the samples with blocking, one after the other.

playblocking(chirpObj);
playblocking(gongObj);

Play without blocking. The audio can overlap.

play(chirpObj);
play(gongObj);

1-5016

audioplayer.playblocking

Starting Sample

Play audio from the example file handel.mat starting 4 seconds from
the beginning.

load handel.mat;
playerObj = audioplayer(y,Fs);
start = playerObj.SampleRate * 4;

playblocking(playerObj,start);
beep;

Sample Range

Play the first 3 seconds of audio from the example file handel.mat.

load handel.mat;
playerObj = audioplayer(y,Fs);
start = 1;
stop = playerObj.SampleRate * 3;

playblocking(playerObj,[start,stop]);
beep;

See Also audioplayer | play

How To • “Play Audio”

1-5017

plot

Purpose 2-D line plot

Syntax plot(X,Y)
plot(X,Y,LineSpec)
plot(X1,Y1,...,Xn,Yn)
plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)

plot(Y)
plot(Y,LineSpec)

plot(___ ,Name,Value)
plot(axes_handle, ___)

h = plot(___)

Description plot(X,Y) creates a 2-D line plot of the data in Y versus the
corresponding values in X.

• If X and Y are both vectors, then they must have equal length and
MATLAB plots Y versus X.

• If X and Y are both matrices, then they must have equal size and
MATLAB plots columns of Y versus columns of X.

• If one of X or Y is a vector and the other is a matrix, then the matrix
must have dimensions such that one of its dimensions equals the
vector length. If the number of matrix rows equals the vector length,
then MATLAB plots each matrix column versus the vector. If the
number of matrix columns equals the vector length, then MATLAB
plots each matrix row versus the vector. If the matrix is square, then
MATLAB plots each column versus the vector.

• If one of X or Y is a scalar and the other is a vector, then MATLAB
plots the vector as discrete points at the scalar value.

plot(X,Y,LineSpec) sets the line style, marker symbol, and color.

1-5018

plot

plot(X1,Y1,...,Xn,Yn) plots multiple X, Y pairs using the same axes
for all lines.

plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn) sets the line style,
marker type, and color for each line. You can mix X, Y, LineSpec triplets
with X, Y pairs. For example, plot(X1,Y1,X2,Y2,LineSpec2,X3,Y3).

plot(Y) creates a 2-D line plot of the data in Y versus the index of
each value.

• If Y is a vector, then the x-axis scale ranges from 1 to length(Y).

• If Y is a matrix, then MATLAB plots the columns of Y versus their row
number. The x-axis scale ranges from 1 to the number of rows in Y.

• If Y is complex, then MATLAB plots the imaginary part of Y
versus the real part of Y, such that plot(Y) is equivalent to
plot(real(Y),imag(Y)).

plot(Y,LineSpec) sets the line style, marker symbol, and color.

plot(___ ,Name,Value) specifies lineseries properties using one or
more Name,Value pair arguments. Use this option with any of the input
argument combinations in the previous syntaxes. Name,Value pair
settings apply to all the lines plotted. You cannot specify different
Name,Value pairs for each line using this syntax.

plot(axes_handle, ___) plots into the axes specified by axes_handle
instead of into the current axes (gca). The option, axes_handle can
precede any of the input combinations in the previous syntaxes.

h = plot(___) returns a column vector of lineseries handles, where h
contains one handle per line plotted. When multiple lines are present,
you can make changes to properties of a specific line by specifying its
handle.

1-5019

plot

Input
Arguments

Y - Data values to plot
scalar | vector | matrix

Data values to plot, specified as a scalar, a vector, or a matrix. To plot
against specific x-values you must also specify X.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical
Complex Number Support: Yes

X - Locations along the x-axis to plot data values in Y
scalar | vector | matrix

Locations along the x-axis to plot data values in Y, specified as a scalar,
a vector, or a matrix. If you specify both X and Y input arguments, and
if either X or Y is complex, then plot ignores the imaginary components.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

LineSpec - Line style, marker symbol, and color
string

Line style, marker symbol, and color, specified as a string. The elements
of the string can appear in any order, and you can omit one or more
options from the string specifier. If you omit the line style and specify
the marker character, then the plot shows only the marker and no line.

If Y is a matrix and you specify a color with LineSpec, then all lines
are plotted using the specified color. If you specify a marker type or
line style and do not specify a color, then MATLAB cycles through the
predefined color order.

Example: '--or' is a red dashed line with circle markers

1-5020

plot

Specifier Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

Specifier Marker

o Circle

+ Plus sign

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Pentagram

h Hexagram

Specifier Color

y yellow

m magenta

c cyan

1-5021

plot

Specifier Color

r red

g green

b blue

w white

k black

axes_handle - Axes handle
handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For a complete list of lineseries properties, see lineseries properties.

Example: 'Marker','o','MarkerFaceColor','red'

’Color’ - Color
[0 0 1] (blue) (default) | three-element RGB vector | string

Color, specified as the comma-separated pair consisting of 'Color' and
a three-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a three-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

This table lists the predefined colors and their RGB equivalents.

1-5022

plot

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'Color',[0 1 0]

Example: 'Color','green'

Example: 'Color','g'

’LineStyle’ - Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as the comma-separated pair consisting of
'LineStyle' and a line style specifier. This table lists supported line
styles.

Specifier Line Style

’- ’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-. ’ Dash-dot line

’none’ No line

1-5023

plot

Example: 'LineStyle','-.'

’LineWidth’ - Line width
0.5 (default) | scalar

Line width, specified as the comma-separated pair consisting of
'LineWidth' and a scalar. Specify the value in points, where one point
equals 1/72 inches. If any markers are displayed, then LineWidth also
sets the width of the marker edges.

Example: 'LineWidth',0.75

’Marker’ - Marker symbol
'none' (default) | string

Marker symbol, specified as the comma-separated pair consisting of
'Marker' and a marker specifier. By default, a plot line does not have
markers. You can add markers at each data point along the line by
specifying a marker symbol.

This table lists supported marker symbols.

Specifier Marker Symbol

’o’ Circle

’+’ Plus sign

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

1-5024

plot

Specifier Marker Symbol

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star
(pentagram)

’hexagram’ or ’h’ Six-pointed star (hexagram)

’none’ No marker

Example: 'Marker','+'

Example: 'Marker','diamond'

’MarkerEdgeColor’ - Marker edge color
'auto' (default) | 'none' | three-element RGB vector | string

Marker edge color, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and a color value. The color value can be one of the
supported strings or an RGB vector, listed in the following tables.

Specifier Result

’auto’ Uses same color as line color

’none’ Specifies no color, which makes
unfilled markers invisible

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

1-5025

plot

RGB Vector Short Name Long Name

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerEdgeColor',[1 .8 .1]

’MarkerFaceColor’ - Marker face color
'none' (default) | 'auto' | three-element RGB vector | string

Marker face color, specified as the comma-separated pair consisting
of 'MarkerFaceColor' and a color value. MarkerFaceColor sets the
fill color for markers that are closed shapes (circle, square, diamond,
pentagram, hexagram, and the four triangles). The color value can be
one of the supported strings or an RGB vector, listed in the following
tables.

Specifier Result

’auto’ Uses the value of the axes Color
property to fill the markers. If the
axes Color property is 'none',
then plot uses the figure Color
value instead.

’none’ Makes the interior of the marker
transparent, allowing the
background to show through
(default).

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

1-5026

plot

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerFaceColor',[0 .8 1]

’MarkerSize’ - Marker size
6 (default) | scalar

Marker size, specified as the comma-separated pair consisting of
'MarkerSize' and a scalar in points.

Example: 'MarkerSize',3.75

Output
Arguments

h - One or more lineseries handles
scalar | vector

One or more lineseries handles, returned as a scalar or a vector. These
are unique identifiers, which you can use to query and modify properties
of a specific line.

Examples Create Line Plot

Define x as a vector of linearly spaced values between 0 and . Use an
increment of between the values. Define y as sine values of x.

x = 0:pi/100:2*pi;
y = sin(x);

1-5027

plot

Create a line plot of the data.

figure % opens new figure window
plot(x,y)

1-5028

plot

Plot Multiple Lines

Define x as 100 linearly spaced values between and . Define y1
and y2 as sine and cosine values of x. Create a line plot of both sets
of data.

x = linspace(-2*pi,2*pi);
y1 = sin(x);
y2 = cos(x);

figure
plot(x,y1,x,y2)

1-5029

plot

Create Line Plot From Matrix

Define Y as the 4-by-4 matrix returned by the magic function.

Y = magic(4)

Y =

16 2 3 13

1-5030

plot

5 11 10 8
9 7 6 12
4 14 15 1

Create a 2-D line plot of Y. MATLAB® plots each matrix column as
a separate line.

figure
plot(Y)

1-5031

plot

Specify Line Style

Plot three sine curves with a small phase shift between each line. Use
the default line style for the first line. Specify a dashed line style for the
second line and a dotted line style for the third line.

x = 0:pi/100:2*pi;
y1 = sin(x);
y2 = sin(x-0.25);
y3 = sin(x-0.5);

1-5032

plot

figure
plot(x,y1,x,y2,'--',x,y3,':')

MATLAB® cycles the line color through the default color order.

Specify Line Style, Color, and Marker

Plot three sine curves with a small phase shift between each line. Use a
green line with no markers for the first sine curve. Use a blue dashed

1-5033

plot

line with circle markers for the second sine curve. Use only cyan star
markers for the third sine curve.

x = 0:pi/10:2*pi;
y1 = sin(x);
y2 = sin(x-0.25);
y3 = sin(x-0.5);

figure
plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')

1-5034

plot

Specify Line Width, Marker Size, and Marker Color

Create a line plot and use the LineSpec option to specify a dashed
green line with square markers. Use Name,Value pairs to specify the
line width, marker size, and marker colors. Set the marker edge color to
blue and set the marker face color using an RGB color value.

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));

1-5035

plot

figure
plot(x,y,'--gs',...

'LineWidth',2,...
'MarkerSize',10,...
'MarkerEdgeColor','b',...
'MarkerFaceColor',[0.5,0.5,0.5])

1-5036

plot

Add Title and Axis Labels

Use the linspace function to define x as a vector of 150 values between
0 and 10. Define y as cosine values of x.

x = linspace(0,10,150);
y = cos(5*x);

Create a 2-D line plot of the cosine curve. Change the line color to a
shade of blue-green using an RGB color value. Add a title and axis
labels to the graph using the title, xlabel, and ylabel functions.

figure
plot(x,y,'Color',[0,0.7,0.9])

title('2-D Line Plot')
xlabel('x')
ylabel('cos(5x)')

1-5037

plot

Specify Axes for Line Plot

Create a figure with two subplots and return the handle to each subplot
axes, s(1) and s(2).

figure; % new figure
s(1) = subplot(2,1,1); % top subplot
s(2) = subplot(2,1,2); % bottom subplot

1-5038

plot

Create a 2-D line plot in each axes by referring to the axes handles.
Add a title and y-axis label to each axes by passing the axes handles to
the title and ylabel functions.

x = linspace(0,3);
y1 = sin(5*x);
y2 = sin(15*x);

plot(s(1),x,y1)
title(s(1),'Top Subplot')

1-5039

plot

ylabel(s(1),'sin(5x)')

plot(s(2),x,y2)
title(s(2),'Bottom Subplot')
ylabel(s(2),'sin(15x)')

1-5040

plot

Change Line Properties Using Handles

Define x as 100 linearly spaced values between and . Define y1
and y2 as sine and cosine values of x. Create a line plot of both sets of
data and return the handles of the two lines in h.

x = linspace(-2*pi,2*pi);
y1 = sin(x);
y2 = cos(x);

figure
h = plot(x,y1,x,y2);

1-5041

plot

Use the handle of the first line, h(1), to change the line width to 2.
Use the handle of the second line, h(2), to add star markers to the
plotted line.

set(h(1),'LineWidth',2);
set(h(2),'Marker','*');

1-5042

plot

Tips • plot automatically chooses colors and line styles in the order
specified by the ColorOrder and LineStyleOrder properties of the
current axes. plot cycles through the color order with the first line
style. Then, plot cycles through it again with each additional line
style.

To change the color and line style orders for the current axes, set
the ColorOrder and LineStyleOrder axes properties. If you do not
specify these properties, then plot uses the default values. For

1-5043

plot

example, to set the line style order for the current axes to a solid
line with asterisk markers, a dotted line, and circle markers with no
line, use this command:

set(gca,'LineStyleOrder', '-*|:|o')

• Data can include NaN and inf values, which cause breaks in the lines
drawn. For example, this code plots the first two elements, skips the
third element, and draws another line using the last two elements:
plot([1,2,NaN,4,5]).

See Also title | xlabel | ylabel | xlim | ylim | legend | hold | LineSpec |
gca

1-5044

plot3

Purpose 3-D line plot

Syntax plot3(X1,Y1,Z1,...)
plot3(X1,Y1,Z1,LineSpec,...)
plot3(...,'PropertyName',PropertyValue,...)
plot3(axes_handle,...)
h = plot3(...)

Description The plot3 function displays a three-dimensional plot of a set of data
points.

plot3(X1,Y1,Z1,...), where X1, Y1, Z1 are vectors or matrices, plots
one or more lines in three-dimensional space through the points whose
coordinates are the elements of X1, Y1, and Z1.

plot3(X1,Y1,Z1,LineSpec,...) creates and displays all lines defined
by the Xn,Yn,Zn,LineSpec quads, where LineSpec is a line specification
that determines line style, marker symbol, and color of the plotted lines.

plot3(...,'PropertyName',PropertyValue,...) sets line properties
to the specified property values for all the lines created by plot3. See
lineseries properties for a description of the properties you can set.

plot3(axes_handle,...) plots into the axes specified by axes_handle
instead of into the current axes (gca). The option, axes_handle can
precede any of the input combinations in the previous syntaxes.

h = plot3(...) returns a column vector of lineseries handles, with
one handle per object.

Tips If one or more of X1, Y1, Z1 is a vector, the vectors are plotted versus the
rows or columns of the matrix, depending whether the vectors’ lengths
equal the number of rows or the number of columns.

1-5045

plot3

You can mix Xn,Yn,Zn triples with Xn,Yn,Zn,LineSpec quads, for
example,

plot3(X1,Y1,Z1,X2,Y2,Z2,LineSpec,X3,Y3,Z3)

See LineSpec and plot for information on line types and markers.

Examples Plot 3-D Helix

Define t as values between 0 and . Define st and ct as vectors of
sine and cosine values. Plot a 3-D helix.

t = 0:pi/50:10*pi;
st = sin(t);
ct = cos(t);

figure
plot3(st,ct,t)

1-5046

plot3

See Also axis | bar3 | grid | line | LineSpec | | loglog | plot | scatter3 |
semilogx | semilogy | subplot

1-5047

plotbrowser

Purpose Show or hide figure Plot Browser

Syntax plotbrowser('on')
plotbrowser('off')
plotbrowser
plotbrowser(figure_handle,...)

Description plotbrowser('on') displays the Plot Browser on the current figure.

plotbrowser('off') hides the Plot Browser on the current figure.

plotbrowser toggles the visibility of the Plot Browser on the current
figure. You can use plotbrowser('toggle') instead for the same
functionality.

plotbrowser(figure_handle,...) shows or hides the Plot Browser on
the figure specified by figure_handle.

Tips If you call plotbrowser in a MATLAB program and subsequent lines
depend on the Plot Browser being fully initialized, follow it by drawnow
to ensure complete initialization.

Alternatives To collectively enable Plotting Tools, use the large Plotting Tool icon

on the figure toolbar. To collectively disable the Plotting Tools,

use the smaller icon . Open or close the Plot Browser tool from
the figure’s View menu.

See Also plottools | figurepalette | propertyeditor

1-5048

plotedit

Purpose Interactively edit and annotate plots

Syntax plotedit on
plotedit off
plotedit
plotedit(h)
plotedit('state')
plotedit(h,'state')

Description plotedit on starts plot edit mode for the current figure, allowing you
to use a graphical interface to annotate and edit plots easily. In plot
edit mode, you can label axes, change line styles, and add text, line, and
arrow annotations.

plotedit off ends plot mode for the current figure.

plotedit toggles the plot edit mode for the current figure.

plotedit(h) toggles the plot edit mode for the figure specified by figure
handle h.

plotedit('state') specifies the plotedit state for the current figure.
Values for state can be as shown.

Value for state Description

on Starts plot edit mode

off Ends plot edit mode

showtoolsmenu Displays the Tools menu in the
menu bar

hidetoolsmenu Removes the Tools menu from
the menu bar

Note hidetoolsmenu is intended for GUI developers who do not want
the Tools menu to appear in applications that use the figure window.

1-5049

plotedit

plotedit(h,'state') specifies the plotedit state for figure handle h.

Tips Plot Editing Mode Graphical Interface Components

Examples Start plot edit mode for figure 2.

plotedit(2)

End plot edit mode for figure 2.

plotedit(2, 'off')

Hide the Tools menu for the current figure:

1-5050

plotedit

plotedit('hidetoolsmenu')

See Also axes | line | open | plot | print | saveas | text | propedit

1-5051

plotmatrix

Purpose Scatter plot matrix

Syntax plotmatrix(X,Y)
plotmatrix(X)
plotmatrix(___ ,LineSpec)

[H,AX,BigAx,P,PAx] = plotmatrix(___)

Description plotmatrix(X,Y) creates a matrix of subaxes containing scatter plots
of the columns of X against the columns of Y. If X is p-by-n and Y is
p-by-m, then plotmatrix produces an n-by-m matrix of subaxes.

plotmatrix(X) is the same as plotmatrix(X,X) except that the
subaxes along the diagonal are replaced with histogram plots of the
data in the corresponding column of X. For example, the subaxes along
the diagonal in the ith column is replaced by hist(X(:,i)).

plotmatrix(___ ,LineSpec) specifies the line style, marker symbol,
and color for the scatter plots. The option LineSpec can be preceded by
any of the input argument combinations in the previous syntaxes.

[H,AX,BigAx,P,PAx] = plotmatrix(___) returns handles to the
graphic objects created as follows:

• H – Matrix of handles to the line objects used to create the scatter
plots

• AX – Matrix of handles to the individual subaxes

• BigAx – Handle to the big axes that frames the subaxes

• P – Vector of handles for the patch objects that create the histogram
plots

• PAx – Vector of handles to the invisible histogram axes

BigAx is left as the current axes (gca) so that a subsequent title,
xlabel, or ylabel command will center text with respect to the big axes.

1-5052

plotmatrix

Input
Arguments

X - Data to display
matrix

Data to display, specified as a matrix.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

Y - Data to plot against X
matrix

Data to plot against X, specified as a matrix.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

LineSpec - Line style, marker symbol, and color for scatter plots
string

Line style, marker symbol, and color for the scatter plots, specified as a
string. For more information on line style, marker symbol, and color
options see LineSpec.

Example: ':*r'

Data Types
char

Output
Arguments

H - Line object handles
matrix

Line object handles, returned as a matrix. This is a unique identifier,
which you can use to query and modify the properties of a specific line
object. The line objects are used to create the scatter plots.

AX - Subaxes handles
matrix

1-5053

plotmatrix

Subaxes handles, returned as a matrix. This is a unique identifier,
which you can use to query and modify the properties of a specific
subaxes.

BigAx - Big axes handle
scalar

Big axes handle, returned as a scalar. This is a unique identifier, which
you can use to query and modify properties of the big axes. BigAx is left
as the current axes (gca) so that a subsequent title, xlabel, or ylabel
command will center text with respect to the big axes.

P - Patch object handles
vector | []

Patch object handles, returned as a vector or []. If histogram plots
are created, then P is returned as a vector of patch object handles for
the histogram plots. These are unique identifiers, which you can use
to query and modify the properties of a specific patch object. If no
histogram plots are created, then P is returned as empty brackets.

PAx - Handle to invisible histogram axes
vector | []

Handle to invisible histogram axes, returned as a vector or []. If
histogram plots are created, then PAx is returned as a vector of
histogram axes handles. These are unique identifiers, which you can
use to query and modify the properties of a specific axes, such as the
axes scale. If no histogram plots are created, then PAx is returned as
empty brackets.

Examples Create Scatter Plot Matrix with Two Matrix Inputs

Initialize the random-number generator to make the output of randn
repeatable. Define X as a matrix of normally distributed pseudorandom
data and Y as a matrix of integer values.

rng(0,'twister');
X = randn(50,3);

1-5054

plotmatrix

Y = reshape(1:150,50,3);

Create a scatter plot matrix of the columns of X against the columns of Y.

figure
plotmatrix(X,Y)

The subplot in the ith row, jth column of the figure is a scatter plot of
the ith column of Y against the jth column of X.

1-5055

plotmatrix

Create Scatter Plot Matrix with One Matrix Input

Initialize the random-number generator to make the output of randn
repeatable and generate a matrix of normally distributed pseudorandom
data

rng(0,'twister');
X = randn(50,3);

Create a scatter plot matrix.

figure
plotmatrix(X)

1-5056

plotmatrix

The subplot in the ith row, jth column of the matrix is a scatter plot of
the ith column of X against the jth column of X. Along the diagonal,
plotmatrix creates a histogram plot of each column of X.

Specify Marker Type and Color

Initialize the random-number generator to make the output of randn
repeatable. Generate a matrix of normally distributed pseudorandom
data.

1-5057

plotmatrix

rng(0,'twister');
X = randn(50,3);

Create a scatter plot matrix and specify the marker type and the color
for the scatter plots.

figure
plotmatrix(X,'*r')

1-5058

plotmatrix

The LineSpec option sets properties for the scatter plots. To set
properties for the histogram plots, use the patch object handles.

Set Plotmatrix Properties Using Handles

Initialize the random-number generator to make the output of randn
repeatable. Generate a matrix of normally distributed pseudorandom
data.

rng(0,'twister');
X = randn(50,3);

Create a scatter plot matrix and return the object handles and the axes
handles.

figure
[H,AX,BigAx,P,PAx] = plotmatrix(X);

1-5059

plotmatrix

To set properties for the scatter plots, use the handles in H. To set
properties for the histograms, use the patch handles in P. To set axes
properties, use the axes handles, AX, BigAx, and PAx.

Set the color and marker type for the scatter plot in the lower left corner.

set(H(3),'Color','g','Marker','*');

1-5060

plotmatrix

Set the color for the histogram plot in the lower right corner. Use the
title command to title the figure.

set(P(3),'EdgeColor','k','FaceColor','g');
title(BigAx,'A Comparison of Data Sets');

1-5061

plotmatrix

See Also scatter | scatter3

1-5062

plottools

Purpose Show or hide plot tools

Syntax plottools('on')
plottools('off')
plottools
plottools(figure_handle,...)
plottools(...,'tool')

Description plottools('on') displays the Figure Palette, Plot Browser, and
Property Editor on the current figure, configured as you last used them.

plottools('off') hides the Figure Palette, Plot Browser, and
Property Editor on the current figure.

plottools with no arguments, is the same as plottools('on')

1-5063

plottools

plottools(figure_handle,...) displays or hides the plot tools on the
specified figure instead of on the current figure.

plottools(...,'tool') operates on the specified tool only. tool can
be one of the following strings:

• figurepalette

• plotbrowser

• propertyeditor

Note The first time you open the plotting tools, all three of them
appear, grouped around the current figure as shown above. If you
close, move, or undock any of the tools, MATLAB remembers the
configuration you left them in and restores it when you invoke the tools
for subsequent figures, both within and across MATLAB sessions.

Alternatives Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Individually select the Figure Palette, Plot Browser,
and Property Editor tools from the figure’s View menu. For details,
see “Customize Graph Using Plot Tools”.

See Also figurepalette | plotbrowser | propertyeditor

1-5064

plotyy

Purpose 2-D line plots with y-axes on both left and right side

Syntax plotyy(X1,Y1,X2,Y2)
plotyy(X1,Y1,X2,Y2,function)
plotyy(X1,Y1,X2,Y2,'function1','function2')
[AX,H1,H2] = plotyy(...)

Description plotyy(X1,Y1,X2,Y2) plots X1 versus Y1 with y-axis labeling on the
left and plots X2 versus Y2 with y-axis labeling on the right.

plotyy(X1,Y1,X2,Y2,function) uses the specified plotting function to
produce the graph.

function can be either a function handle or a string specifying plot,
semilogx, semilogy, loglog, stem, or any MATLAB function that
accepts the syntax

h = function(x,y)

For example,

plotyy(x1,y1,x2,y2,@loglog) % function handle
plotyy(x1,y1,x2,y2,'loglog') % string

Function handles enable you to access user-defined local functions and
can provide other advantages. See @ for more information on using
function handles.

plotyy(X1,Y1,X2,Y2,'function1','function2') uses
function1(X1,Y1) to plot the data for the left axis and
function2(X2,Y2) to plot the data for the right axis.

[AX,H1,H2] = plotyy(...) returns the handles of the two axes
created in AX and the handles of the graphics objects from each plot in
H1 and H2. AX(1) is the left axes and AX(2) is the right axes.

1-5065

plotyy

Examples Plot Two Data Sets with Different y-Axes

Plot two data sets on one graph using two y-axes.

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);

figure % new figure
plotyy(x,y1,x,y2);

1-5066

plotyy

Add Title and Axis Labels

Plot two data sets using a graph with two y-axes. Add a title and axis
labels.

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);

figure % new figure
[hAx,hLine1,hLine2] = plotyy(x,y1,x,y2);

title('Multiple Decay Rates')
xlabel('Time (\musec)')

ylabel(hAx(1),'Slow Decay') % left y-axis
ylabel(hAx(2),'Fast Decay') % right y-axis

1-5067

plotyy

Change Line Styles

Plot two data sets using a graph with two y-axes. Change the line styles.

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);

figure % new figure
[hAx,hLine1,hLine2] = plotyy(x,y1,x,y2);

1-5068

plotyy

set(hLine1,'LineStyle','--')
set(hLine2,'LineStyle',':')

Combine Different Types of Plots

Plot two data sets using a graph with two y-axes. Use a line plot for
the data associated with the left y-axes. Use a stem plot for the data
associated with the right y-axes.

1-5069

plotyy

x = 0:0.1:10;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);

figure
plotyy(x,y1,x,y2,'plot','stem');

1-5070

plotyy

Use Right y-Axis for Two Data Sets

Plot three data sets using a graph with two y-axes. Plot one set of data
associated with the left y-axis. Plot two sets of data associated with the
right y-axis by using two-column matrices.

x = linspace(0,10);
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
y3 = 0.2*exp(-0.5*x).*sin(10*x);

figure
[hAx,hLine1,hLine2] = plotyy(x,y1,[x',x'],[y2',y3']);

1-5071

plotyy

See Also plot | linkaxes | linkprop | loglog | semilogx | semilogy |
XAxisLocation | YAxisLocation

How To • “Create Graph with Two y-Axes”

• “Graph with Multiple x-Axes and y-Axes”

1-5072

matlab.unittest.plugins

Purpose Summary of classes in MATLAB Plugins Interface

Description Plugins customize a TestRunner object. The matlab.unittest.plugins
package consists of the following customized MATLAB plugins.

matlab.unittest.plugins.DiagnosticsValidationPluginPlugin to help validate diagnostic
code

matlab.unittest.plugins.FailureDiagnosticsPluginPlugin to show diagnostics on
failure

matlab.unittest.plugins.OutputStreamInterface that determines where
to send text output

matlab.unittest.plugins.StopOnFailuresPluginPlugin to debug test failures

matlab.unittest.plugins.TAPPlugin Plugin that produces Test
Anything Protocol stream

matlab.unittest.plugins.TestRunnerPluginPlugin interface for extending
TestRunner

matlab.unittest.plugins.TestSuiteProgressPluginPlugin that outputs progress
information as text

matlab.unittest.plugins.ToFile Output stream to write text
output to file

matlab.unittest.plugins.ToStandardOutputOutput stream to display text
information to screen

Related
Examples

• “Add Plugin to Test Runner”
• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5073

matlab.unittest.plugins.DiagnosticsValidationPlugin

Purpose Plugin to help validate diagnostic code

Description The DiagnosticsValidationPlugin creates a plugin to help validate
diagnostic code.

Add the DiagnosticsValidationPlugin to the TestRunner to confirm
that user-supplied diagnostics execute correctly. This plugin is useful
because typically tests do not encounter failure conditions. A failure
can result in unexercised diagnostic code. If a programming error exists
in this diagnostic code, the error is not evident unless the test fails.
However, at this point in the testing process, the diagnostics for the
failure condition are lost due to the error in the diagnostic code.

Use this plugin to unconditionally evaluate the diagnostics supplied by
the test writer, regardless of whether the test results in a passing or
failing condition. This approach helps you to confirm that all of the
diagnostic code is free from programming errors.

The diagnostic analysis can reduce the test performance and can result
in very verbose text output. Be aware of these impacts before using this
plugin for routine testing.

Construction matlab.unittest.plugins.DiagnosticsValidationPlugin creates a
plugin to help validate diagnostic code.

matlab.unittest.plugins.DiagnosticsValidationPlugin(stream)
redirects all the text output to the output stream, stream. If
you do not specify the output stream, the plugin uses the default
ToStandardOutput stream.

Input
Arguments

stream

Location where the plugin directs text output, specified as an
OutputStream.

Default: ToStandardOutput

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-5074

matlab.unittest.plugins.DiagnosticsValidationPlugin

Examples Add Plugin to TestRunner

In your working folder, create a file, ExampleTest.m, containing the
following test class. In this example, the testThree method has an
intentional error. The method should use a function handle to the dir
function as a FunctionHandleDiagnostic, but dir is misspelled.

classdef ExampleTest < matlab.unittest.TestCase
methods(Test)

function testOne(testCase)
% test code

end
function testTwo(testCase)

% test code
end
function testThree(testCase)

% The following should use @dir as a function handle,
% but there is a typo
testCase.verifyEqual('myfile','myfile', @dri);

end
end

end

All of the tests in ExampleTest.m result in a passing condition, but
there is an error in the diagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.DiagnosticsValidationPlugin;

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner with no plugins. This code creates a silent runner
and provides you with complete control over the installed plugins.

runner = TestRunner.withTextOutput;

1-5075

matlab.unittest.plugins.DiagnosticsValidationPlugin

Run the tests.

result1 = runner.run(suite);

Running ExampleTest
...
Done ExampleTest

No diagnostic output is displayed because all the tests passed.
The testing framework does not encounter the bug in the
FunctionHandleDiagnostic of testThree.

Add DiagnosticValidationPlugin to the runner and run the tests.

runner.addPlugin(DiagnosticsValidationPlugin);
result2 = runner.run(suite);

Running ExampleTest
..

Validation of Test Diagnostic:

Error occurred while capturing diagnostics:
Error using evalc
Undefined function or variable 'dri'.

Error in ExampleTest/testThree (line 12)
testCase.verifyEqual('myfile','myfile', @dri);

.
Done ExampleTest

The framework executes the diagnostic provided by the
FunctionHandleDiagnostic, even though none of the tests fails.
Without this plugin, the test framework only encounters the bug if the
test fails.

1-5076

matlab.unittest.plugins.DiagnosticsValidationPlugin

See Also matlab.unittest.plugins | matlab.unittest.diagnostics |
OutputStream | ToStandardOutput

Concepts

1-5077

matlab.unittest.plugins.FailureDiagnosticsPlugin

Purpose Plugin to show diagnostics on failure

Description The FailureDiagnosticsPlugin creates a plugin to show diagnostics
upon encountering a test failure. Add it to the TestRunner to
output test failure diagnostics to the Command Window. This
plugin is used by default when you construct a test runner using
TestRunner.withTextOutput.

Construction matlab.unittest.plugins.FailureDiagnosticsPlugin creates a
plugin to show diagnostics upon encountering a test failure.

matlab.unittest.plugins.DFailureDiagnosticsPlugin(stream)
redirects all the text output to the output stream, stream. If you do
not specify the output stream, the plugin uses the ToStandardOutput
stream.

Input
Arguments

stream

Location where the plugin directs text output, specified as an
OutputStream.

Default: ToStandardOutput

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Add Plugin to TestRunner

In your working folder, create a file, ExampleTest.m, containing the
following test class.

classdef ExampleTest < matlab.unittest.TestCase
methods(Test)

function testPathAdd(testCase)
% test code

end
function testOne(testCase) % Test fails

1-5078

matlab.unittest.plugins.FailureDiagnosticsPlugin

testCase.verifyEqual(5, 4, 'Testing 5==4');
end
function testTwo(testCase) % Test passes

testCase.verifyEqual(5, 5, 'Testing 5==5');
end

end
end

The verifyEqual qualification in testOne causes a test failure.
The qualifications in testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.FailureDiagnosticsPlugin;

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner with no plugins. This code creates a silent runner
and provides you with complete control over the installed plugins.

runner = TestRunner.withNoPlugins;

Run the tests.

result1 = runner.run(suite);

No output is displayed, but result1 contains information about the
failed test.

Add FailureDiagnosticsPlugin to the runner and run the tests.

runner.addPlugin(FailureDiagnosticsPlugin);
result2 = runner.run(suite);

==
Verification failed in ExampleTest/testOne.

1-5079

matlab.unittest.plugins.FailureDiagnosticsPlugin

Test Diagnostic:

Testing 5==4

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".

Actual Value:
5

Expected Value:
4

Stack Information:

In C:\work\ExampleTest.m (ExampleTest.testOne) at 7

===
Failure Summary:

Name Failed Incomplete Reason(s)
==
ExampleTest/testOne X Failed by verification.

The framework displays the DiagnosticResult of the
StringDiagnostic for failed tests only. It also displays additional
framework diagnostics. The TestResult object, result2, is the same
as result1.

See Also matlab.unittest.diagnostics | matlab.unittest.plugins |
OutputStream | ToStandardOutput

Concepts

1-5080

matlab.unittest.plugins.OutputStream

Purpose Interface that determines where to send text output

Description The OutputStream interface is an abstract interface class that you can
use as a base class to specify where plugins direct their text output.
To create a custom output stream, implement a print method that
correctly handles the formatted text information the testing framework
passes to it. Many text-oriented plugins accept an OutputStream to
redirect the text they produce in a configurable manner.

Methods
print Print string to output stream

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create Custom Output Stream

In a file in your working directory, create a new output stream class in
the file ToFigure.m. This class allows plugin output to be redirected
to a figure.

classdef ToFigure < matlab.unittest.plugins.OutputStream

properties(SetAccess=private)
Figure

end
properties(Dependent, Access=private)

CurrentText
end
properties(Access=private)

ListBox
end

This class uses three properties. Figure is the figure that receives and
displays the output. CurrentText is the current text displayed in the
list box and a dependent property that you can use to easily access

1-5081

matlab.unittest.plugins.OutputStream

and set the current text in the list box. ListBox is a handle to the list
box that displays the text.

In the same file, add the following methods block.

methods
function print(stream, formatSpec, varargin)

if isempty(stream.Figure) || ~ishghandle(stream.Figure)
stream.createFigure;

end
newStr = sprintf(formatSpec, varargin{:});
str = sprintf('%s%s', stream.CurrentText, newStr);
stream.CurrentText = str;

end

function str = get.CurrentText(stream)
strCell = cellstr(get(stream.ListBox, 'String'));
str = strjoin(strCell','\n');

end

function set.CurrentText(stream, str)
strCell = strsplit(str, '\n');
set(stream.ListBox, 'String', strCell, 'ListBoxTop',numel(str
drawnow;

end
end

You must implement the print method for any subclass of
OutputStream. In this example, the method creates a new figure (if
necessary), formats the incoming text, and then adds it to the output
stream. The get.CurrentText function gets the text from the list box
on the figure. The set.CurrentText function adds the text onto the
list box on the figure.

In the same file, add the following methods block containing a helper
function to create the figure.

methods(Access=private)

1-5082

matlab.unittest.plugins.OutputStream

function createFigure(stream)
stream.Figure = figure;
stream.ListBox = uicontrol(...

'Parent', stream.Figure, ...
'Style', 'listbox', ...
'Units', 'normalized', ...
'Position', [.05 .05 .9 .9], ...
'Max', 2, ...
'FontSize', 13, ...
'HorizontalAlignment', 'left');

end
end

end

In an new file in your working folder, create ExampleTest.m containing
the following test class.

classdef ExampleTest < matlab.unittest.TestCase
methods(Test)

function testOne(testCase) % Test fails
testCase.verifyEqual(5, 4, 'Testing 5==4');

end
function testTwo(testCase) % Test passes

testCase.verifyEqual(5, 5, 'Testing 5==5');
end
function testThree(testCase)

% test code
end

end
end

The verifyEqual qualification in testOne causes a test failure.
The qualifications in testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestSuite;

1-5083

matlab.unittest.plugins.OutputStream

import matlab.unittest.TestRunner;
import matlab.unittest.plugins.DiagnosticsValidationPlugin;

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner that displays output to the command window.

runner = TestRunner.withTextOutput;

Create a DiagnosticsValidationPlugin that explicitly specifies that
its output should go to a figure via the ToFigure output stream.

plugin = DiagnosticsValidationPlugin(ToFigure);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite);

Running ExampleTest

===
Verification failed in ExampleTest/testOne.

Test Diagnostic:

Testing 5==4

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".

Actual Value:
5

Expected Value:

1-5084

matlab.unittest.plugins.OutputStream

4

Stack Information:

In C:\work\ExampleTest.m (ExampleTest.testOne) at 4

==
...
Done ExampleTest

Failure Summary:

Name Failed Incomplete Reason(s)
==
ExampleTest/testOne X Failed by verification.

Only the test failures produce output to the screen. By default,
TestRunner.withTextOutput uses a FailureDiagnosticsPlugin to
display output on the screen.

In addition to the default text output being displayed on the screen, the
DiagnosticsValidationPlugin output is directed to a figure. The
figure shows the following text.

Validation of Test Diagnostic:

Testing 5==4

Validation of Test Diagnostic:

Testing 5==5

The DiagnosticsValidationPlugin displays the diagnostic
information regardless of whether the tests encounter failure conditions.

1-5085

matlab.unittest.plugins.OutputStream

See Also fprintf | matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins

Concepts

1-5086

matlab.unittest.plugins.OutputStream.print

Purpose Print string to output stream

Syntax print(stream,formatSpec,A1,...,An)

Description print(stream,formatSpec,A1,...,An) formats the data in arrays
A1,...,An according to formatSpec, and sends the result to the output
stream, stream. Assign formatSpec and A1,...,An using the same
interface that you use for sprintf and fprintf.

Input
Arguments

stream

Output stream, specified as an instance of the OutputStream class

formatSpec

Format of text in output stream, specified as a string. For
information on the construction of formatSpec string, see the
input argument entry on the fprintf or sprint reference pages.

A

Numeric or character arrays, specified as a scalar, vector, matrix,
or multidimensional array.

See Also fprintf | sprintf

1-5087

matlab.unittest.plugins.StopOnFailuresPlugin

Purpose Plugin to debug test failures

Description The StopOnFailuresPlugin class provides a plugin to help debug test
failures. Adding StopOnFailuresPlugin to the test runner pauses
execution of a test if it encounters a qualification failure or uncaught
error and puts MATLAB into debug mode.

If StopOnFailuresPlugin encounters a qualification failure or
uncaught error in a test, you can use MATLAB debugging commands,
such as dpbup, dbstep, dbcont, and dbquit, to investigate the cause of
the test failure.

If StopOnFailuresPlugin encounters an uncaught error in a test, you
cannot use dbup to shift context to the source of the error because the
error disrupts the stack.

Construction matlab.unittest.plugins.StopOnFailuresPlugin creates a plugin to
debug test failures.

matlab.unittest.plugins.StopOnFailuresPlugin('IncludingAssumptionFailu
res',tf) indicates whether to react to assumption failures. By default,
StopOnFailuresPlugin reacts to only uncaught errors and verification,
assertion, and fatal assertion qualification errors. However, when
'IncludingAssumptionFailures' is set to true, the plugin
also reacts to assumption failures.

Input Arguments

tf - Indicator to react to assumption failures
FALSE (default) | TRUE

Indicator to react to assumption failures, specified as logical
false or true. When this value is true, the test runner reacts to
assumption failures. When the value is false, the plugin ignores
assumption failures.

1-5088

matlab.unittest.plugins.StopOnFailuresPlugin

Properties IncludeAssumptionFailures

When this property value is true, the instance reacts to
assumption failures. When the value is false, the instance
ignores assumption failures. The IncludeAssumptionFailures
property is false by default. To specify the property as true, use
the InlcudingAssumptionFailures input when you construct
the instance.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Add Plugin to TestRunner

In your working folder, create the file ExampleTest.m containing the
following test class.

classdef ExampleTest < matlab.unittest.TestCase
methods(Test)

function testOne(testCase) % Test fails
act = 3.1416;
exp = pi;
testCase.verifyEqual(act, exp);

end
function testTwo(testCase) % Test does not complete

testCase.assumeEqual(5, 4);
end

end
end

At the command prompt, create a test suite from the ExampleTest class
and a test runner.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.StopOnFailuresPlugin;

suite = TestSuite.fromClass(?ExampleTest);

1-5089

matlab.unittest.plugins.StopOnFailuresPlugin

runner = TestRunner.withTextOutput;

Run the tests.

result = runner.run(suite);

===
Verification failed in ExampleTest/testOne.

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".

Actual Value:
3.141600000000000

Expected Value:
3.141592653589793

Stack Information:

In C:\work\ExampleTest.m (ExampleTest.testOne) at 6

===
.
===
ExampleTest/testTwo was filtered.

Details
===
.
Done ExampleTest

Failure Summary:

Name Failed Incomplete Reason(s)

1-5090

matlab.unittest.plugins.StopOnFailuresPlugin

==
ExampleTest/testOne X Failed by verification

--
ExampleTest/testTwo X Filtered by assumption

As a result of the qualifications in the test class, the first test fails, and
the second test does not complete.

Add the StopOnFailuresPlugin to the runner and run the tests.

runner.addPlugin(StopOnFailuresPlugin);
result = runner.run(suite);

==
Verification failed in ExampleTest/testOne.

Framework Diagnostic:

verifyEqual failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
3.141600000000000

Expected Value:
3.141592653589793

Stack Information:

In C:\work\ExampleTest.m (ExampleTest2.testOne) at 6

==
Test execution paused due to failure. Either click here or execute DBU

During the test execution, when the failure occurs, MATLAB enters
debug mode.

1-5091

matlab.unittest.plugins.StopOnFailuresPlugin

Click on the hyperlinked word 'here' to shift debug context to your
work source. If necessary, make the command window your current
window.

In workspace belonging to ExampleTest>ExampleTest.testOne at 6

Examine the variables in the workspace.

whos

Name Size Bytes Class Attributes

act 1x1 8 double
exp 1x1 8 double
testCase 1x1 112 ExampleTest

Now, you can investigate the cause of the test failure.

For example, see if the test passes when you specify a relative tolerance
of 100*eps.

testCase.verifyThat(act, matlab.unittest.constraints.IsEqualTo(exp,...
'Within', matlab.unittest.constraints.RelativeTolerance(100*eps)));

===
Verification failed in ExampleTest/testOne.

Framework Diagnostic:

IsEqualTo failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".
--> RelativeTolerance failed.

--> The value was not within relative tolerance.

Tolerance Value:
2.220446049250313e-14

1-5092

matlab.unittest.plugins.StopOnFailuresPlugin

Actual Value:
3.141600000000000

Expected Value:
3.141592653589793

Stack Information:
In C:\work\ExampleTest.m (ExampleTest.testOne) at 6

==

The test fails even with the specified tolerance.

Exit out of debug mode.

dbquit

.
==
ExampleTest/testTwo was filtered.

Details
==
.
Done ExampleTest

Failure Summary:

Name Failed Incomplete Reason(s)
==
ExampleTest/testOne X Failed by verification

--
ExampleTest/testTwo X Filtered by assumption

To enter debug mode for tests that fail by assumption, such as testTwo
in the ExampleTest class, include 'IncludingAssumptionFailures'
option for the plugin.

1-5093

matlab.unittest.plugins.StopOnFailuresPlugin

runner = TestRunner.withTextOutput;
runner.addPlugin(StopOnFailuresPlugin(...

'IncludingAssumptionFailures', true));

If you run the test runner, you enter debug mode for both testOne and
testTwo.

See Also dbup | dbstep | dbcont | dbquit | matlab.unittest.plugins

Concepts

1-5094

matlab.unittest.plugins.TAPPlugin

Purpose Plugin that produces Test Anything Protocol stream

Description The TAPPlugin creates a plugin that produces a Test Anything Protocol
(TAP) stream. Using this plugin, you can integrate MATLAB Unit Test
results into third-party systems that recognize the TAP protocol. For
example, you can integrate test results with continuous integration
systems like Jenkins™ or TeamCity®.

Construction matlab.unittest.plugins.TAPPlugin.producingOriginalFormat
creates a plugin that produces output in the form of the original TAP
format (version 12). By default, the plugin displays the output to the
screen. In this case, other output sent to the screen can invalidate the
TAP stream. To avoid this, redirect the output to a different output
stream, such as the ToFile stream.

matlab.unittest.plugins.TAPPlugin.producingOriginalFormat(stream)
redirects all the text output to the output stream, stream. If you
do not specify the output stream, the plugin uses the
ToStandardOutput stream.

Input Arguments

stream

Location where the plugin directs text output, specified as an
OutputStream.

Default: ToStandardOutput

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create TAP Plugin

In an new file in your working folder, create ExampleTest.m containing
the following test class.

classdef ExampleTest < matlab.unittest.TestCase

1-5095

matlab.unittest.plugins.TAPPlugin

methods(Test)
function testOne(testCase) % Test fails

testCase.verifyEqual(5, 4, 'Testing 5==4');
end
function testTwo(testCase) % Test passes

testCase.verifyEqual(5, 5, 'Testing 5==5');
end
function testThree(testCase)

% test code
end

end
end

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TAPPlugin;
import matlab.unittest.plugins.ToFile;

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner that displays output to the command window
using the default plugin.

runner = TestRunner.withTextOutput;

Create a TAPPlugin that explicitly specifies that its output should go to
the file MyTapOutput.tap.

tapFile = 'MyTAPOutput.tap';
plugin = TAPPlugin.producingOriginalFormat(ToFile(tapFile));

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite);

1-5096

matlab.unittest.plugins.TAPPlugin

Running ExampleTest

==
Verification failed in ExampleTest/testOne.

Test Diagnostic:

Testing 5==4

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".

Actual Value:
5

Expected Value:
4

Stack Information:

In C:\work\ExampleTest.m (ExampleTest.testOne) at 4

==
...
Done ExampleTest

Failure Summary:

Name Failed Incomplete Reason(s)
==
ExampleTest/testOne X Failed by verification.

Observe contents in the file created by the plugin.

1-5097

matlab.unittest.plugins.TAPPlugin

disp(fileread(tapFile));

1..3
not ok 1 - ExampleTest/testOne
ok 2 - ExampleTest/testTwo
ok 3 - ExampleTest/testThree

You can use the TAPPlugin directed to standard output. However, any
other text displayed to standard output (such as failed test information)
interrupts the stream and has the potential to invalidate it.

See Also matlab.unittest.plugins.TestRunnerPlugin
| matlab.unittest.plugins.ToFile |
matlab.unittest.plugins.OutputStream

Concepts

External
Web Sites

• Jenkins
• TeamCity
• testanything.org

1-5098

http://jenkins-ci.org
http://www.jetbrains.com/teamcity/plugins/index.html
http://testanything.org/wiki/index.php/Main_Page

matlab.unittest.plugins.ToFile

Superclasses OutputStream

Purpose Output stream to write text output to file

Description The ToFile class creates an output stream that writes text output to a
file. Whenever text prints to this stream, the output stream opens the
file, appends the text, and closes the file.

Construction matlab.unittest.plugins.ToFile(fname) creates an OutputStream
that writes text output to the file, fname.

Input Arguments

fname

Name of file to write the output text, specified as a string. If
fname exists, the text from the stream is appended to the file.

Properties Filename

Name of file to redirect text output from the plugin, specified in
the input argument, fname.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Direct TAPPlugin Output Text to Separate File

In your working folder, create the file ExampleTest.m containing the
following test class.

classdef ExampleTest < matlab.unittest.TestCase
methods(Test)

function testOne(testCase) % Test fails
testCase.verifyEqual(5, 4, 'Testing 5==4');

end
function testTwo(testCase) % Test passes

testCase.verifyEqual(5, 5, 'Testing 5==5');

1-5099

matlab.unittest.plugins.ToFile

end
function testThree(testCase)

% test code
end

end
end

The verifyEqual qualification in testOne causes a test failure.
The qualifications in testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TAPPlugin;
import matlab.unittest.plugins.ToFile;

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner that displays output to the command window.

runner = TestRunner.withTextOutput;

Create a TAPPlugin that explicitly specifies that its output should go to
the file, MyTapOutput.tap.

filename = 'MyTapOutput.tap';
plugin = TAPPlugin.producingOriginalFormat(ToFile(filename));

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite);

Running ExampleTest

===
Verification failed in ExampleTest/testOne.

1-5100

matlab.unittest.plugins.ToFile

Test Diagnostic:

Testing 5==4

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".

Actual Value:
5

Expected Value:
4

Stack Information:

In C:\work\ExampleTest.m (ExampleTest.testOne) at 4

==
...
Done ExampleTest

Failure Summary:

Name Failed Incomplete Reason(s)
==
ExampleTest/testOne X Failed by verification.

Only the test failures produce output to the screen. By default,
TestRunner.withTextOutput uses a FailureDiagnosticsPlugin to
display output on the screen.

Observe contents in the file created by the plugin.

1-5101

matlab.unittest.plugins.ToFile

disp(fileread(filename));

1..3
not ok 1 - ExampleTest/testOne
ok 2 - ExampleTest/testTwo
ok 3 - ExampleTest/testThree

See Also fopen | fprintf | matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins

Concepts

1-5102

matlab.unittest.plugins.ToStandardOutput

Superclasses OutputStream

Purpose Output stream to display text information to screen

Description The ToStandardOutput class creates an output stream to display text
output to the screen. Many plugins that accept an output stream use
ToStandardOutput as their default stream.

Construction matlab.unittest.plugins.ToStandardOutput creates an
OutputStream that prints text output to the screen.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Direct Plugin Output Text to Standard Output

In your working folder, create the file ExampleTest.m containing the
following test class.

classdef ExampleTest < matlab.unittest.TestCase
methods(Test)

function testOne(testCase) % Test fails
testCase.verifyEqual(5, 4, 'Testing 5==4');

end
function testTwo(testCase) % Test passes

testCase.verifyEqual(5, 5, 'Testing 5==5');
end
function testThree(testCase)

% test code
end

end
end

The verifyEqual qualification in testOne causes a test failure.
The qualifications in testOne and testTwo include an instance of a
matlab.unittest.diagnostics.StringDiagnostic.

1-5103

matlab.unittest.plugins.ToStandardOutput

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.FailureDiagnosticsPlugin;
import matlab.unittest.plugins.ToStandardOutput;

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner with no plugins. This code creates a silent runner
and provides you with complete control over the installed plugins.

runner = TestRunner.withNoPlugins;

Create a FailureDiagnosticsPlugin that explicitly specifies that its
output should go to the screen.

plugin = FailureDiagnosticsPlugin(ToStandardOutput);

Add the plugin to the TestRunner and run the suite.

runner.addPlugin(plugin);
result = runner.run(suite);

===
Verification failed in ExampleTest/testOne.

Test Diagnostic:

Testing 5==4

Framework Diagnostic:

verifyEqual failed.
--> The values are not equal using "isequaln".

Actual Value:

1-5104

matlab.unittest.plugins.ToStandardOutput

5
Expected Value:

4

Stack Information:

In C:\work\ExampleTest.m (ExampleTest.testOne) at 4

==
Failure Summary:

Name Failed Incomplete Reason(s)
==
ExampleTest/testOne X Failed by verification.

Only the test failures produce output to the screen.

See Also fprintf | matlab.unittest.plugins.OutputStream |
matlab.unittest.plugins

Concepts

1-5105

matlab.unittest.plugins.TestRunnerPlugin

Purpose Plugin interface for extending TestRunner

Description The TestRunnerPlugin interface enables extension of the
matlab.unittest.TestRunner. To customize a test run, create a subclass
of TestRunnerPlugin and override select methods. TestRunnerPlugin
provides you with a default implementation, so override only methods
necessary to achieve your required customization. Every method you
implement must invoke its corresponding superclass method, passing
along the same instance of pluginData that it receives.

To run tests with this extension, add the custom TestRunnerPlugin to
the TestRunner using the addPlugin method of TestRunner.

Methods
createSharedTestFixture Extend creation of shared test

fixture instances

createTestClassInstance Extend creation of class-level
TestCase instances

createTestMethodInstance Extend creation of method-level
TestCase instances

runTest Extend running of single
TestSuite element

runTestClass Extend running of TestSuite
array from same class or function

runTestMethod Extend running of single Test
method

runTestSuite Extend running of TestSuite
array

setupSharedTestFixture Extend setting up shared test
fixture

setupTestClass Extend setting up test class

setupTestMethod Extend setting up of test method

1-5106

matlab.unittest.plugins.TestRunnerPlugin

teardownSharedTestFixture Extend tearing down shared test
fixture

teardownTestClass Extend tearing down of test class

teardownTestMethod Extend tearing down of test
method

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also matlab.unittest.plugins.plugindata.PluginData |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData |
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData
| matlab.unittest.TestRunner

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

Concepts

1-5107

matlab.unittest.plugins.TestRunnerPlugin.runTestSuite

Purpose Extend running of TestSuite array

Syntax runTestSuite(plugin,pluginData)

Description runTestSuite(plugin,pluginData) extends the running of the
original TestSuite array that the test framework hands to the
TestRunner.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test suite information, specified as an instance of
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData.
The test framework uses this information to introspect into
the test content.

Examples Implement runTestSuite Method

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
methods (Access = protected)

function runTestSuite(plugin, pluginData)

% Introspect into pluginData to get TestSuite size
suiteSize = numel(pluginData.TestSuite);
fprintf('### Running a total of %d tests\n', suiteSize);

% Invoke the super class method
runTestSuite@matlab.unittest.plugins.TestRunnerPlugin(plugin,

end
end

end

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData |
matlab.unittest.TestResult

1-5108

matlab.unittest.plugins.TestRunnerPlugin.runTestSuite

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5109

matlab.unittest.plugins.TestRunnerPlugin.createSharedTestFixtu

Purpose Extend creation of shared test fixture instances

Syntax f = createSharedTestFixture(plugin,pluginData)

Description f = createSharedTestFixture(plugin,pluginData) extends the
creation of shared test fixtures and returns the modified Fixture
instance, f. The testing framework uses the fixture instance to
customize running tests that use shared fixtures. The testing
framework evaluates this method within the scope of the runTestSuite
method of the TestRunnerPlugin for each shared test fixture it needs to
set up. A typical implementation of this method is to add listeners to
various events originating from the shared test fixture instance. Since
the Fixture inherits from the handle class, add listeners by calling
the addlistener method from within the createSharedTestFixture
method.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Shared test fixture creation information, specified as an instance
of matlab.unittest.plugins.plugindata.PluginData. The
test framework uses this information to introspect into the test
content.

Examples Extend Creation of Shared Test Fixture Instances

Extend the running of tests to count the number of shared test fixture
assertion failures.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

properties (SetAccess = private)
FixtureAssertionFailureData = {};

end

1-5110

matlab.unittest.plugins.TestRunnerPlugin.createSharedTes

methods (Access = protected)
function fixture = createSharedTestFixture(plugin, pluginData)

% Invoke the super class method
fixture = createSharedTestFixture@...

matlab.unittest.plugins.TestRunnerPlugin(plugin, plugi

% Get the fixture name
fixtureName = pluginData.Name;

% Add a listener to fixture assertion failures
% and capture the qualification failure information
fixture.addlistener('AssertionFailed', @(~,evd) ...

plugin.captureFixtureAssertionFailureData(evd, fixture
end

end

methods (Access = private)
function captureFixtureAssertionFailureData(plugin, eventData,

plugin.FixtureAssertionFailureData{end+1} = struct(...
'FixtureName', fixtureName, ...
'ActualValue', eventData.ActualValue, ...
'Constraint' , eventData.Constraint, ...
'Stack' , eventData.Stack);

end
end

end

See Also matlab.unittest.TestRunner | matlab.unittest.fixtures.Fixture
| matlab.unittest.plugins.plugindata.PluginData |
matlab.unittest.qualifications.ExceptionEventData |
matlab.unittest.qualifications.QualificationEventData

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5111

matlab.unittest.plugins.TestRunnerPlugin.setupSharedTestFixtu

Purpose Extend setting up shared test fixture

Syntax setupSharedTestFixture(plugin,pluginData)

Description setupSharedTestFixture(plugin,pluginData) extends the setting
up of a shared test fixture. This method defines how the TestRunner
performs shared fixture setup. The test framework evaluates this
method one time for each shared test fixture, within the scope of the
runTestSuite method of the TestRunnerPlugin.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Shared test fixture setup information, specified as an instance of
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData.
The test framework uses this information to introspect into
the test content.

Examples Implement setupSharedTestFixture Method

Display the shared test fixture name at setup time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

methods (Access = protected)
function setupSharedTestFixture(plugin, pluginData)

fprintf('### Setting up: %s\n', pluginData.Name);
setupSharedTestFixture@matlab.unittest.plugins.TestRunnerPlug

(plugin, pluginData);
end

end
end

1-5112

matlab.unittest.plugins.TestRunnerPlugin.setupSharedTest

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData
| createSharedTestFixture

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5113

matlab.unittest.plugins.TestRunnerPlugin.runTestClass

Purpose Extend running of TestSuite array from same class or function

Syntax runTestClass(plugin,pluginData)

Description runTestClass(plugin,pluginData) extends the running of tests that
belong to the same test class or the same function-based test. This
method applies to a subset of the full TestSuite that the TestRunner.
The test framework evaluates this method within the scope of the
runTestSuite method of the TestRunnerPlugin. It evaluates this
method between setting up and tearing down the shared test fixture
(setupSharedTestFixture and teardownSharedTestFixture).
Provided the test framework completes shared test fixture setup, it
invokes this method one time per test class.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test suite information, specified as an instance of
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData.
The test framework uses this information to introspect into
the test content.

Examples Extend runTestClass method

Print the label of the test content element at run time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
methods (Access = protected)

function runTestClass(plugin, pluginData)
fprintf('### Running test class: %s\n', pluginData.Name);

runTestClass@matlab.unittest.plugins.TestRunnerPlugin(...
plugin, pluginData);

end
end

1-5114

matlab.unittest.plugins.TestRunnerPlugin.runTestClass

end

See Also matlab.unittest.TestRunner | matlab.unittest.TestSuite |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData
| matlab.unittest.TestResult

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5115

matlab.unittest.plugins.TestRunnerPlugin.createTestClassInstan

Purpose Extend creation of class-level TestCase instances

Syntax tc = createTestClassInstance(plugin,pluginData)

Description tc = createTestClassInstance(plugin,pluginData) extends the
creation of class-level TestCase instances, and returns the modified
TestCase instance, tc. The test framework uses the TestCase instance
to customize running tests that belong to the same test class. The test
framework evaluates this method within the scope of the runTestClass
method of the TestRunnerPlugin. A typical implementation of this
method is to add listeners to various events originating from the class
level instance. Since the TestCase inherits from the handle class,
add listeners by calling the addlistener method from within the
createTestClassInstance method. For each class, the test framework
passes the instance to any method with the TestClassSetup or
TestClassTeardown attribute.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Class-level TestCase creation information, specified as an
instance of matlab.unittest.plugins.plugindata.PluginData.
The test framework uses this information to introspect into the
test content.

Examples Extend Creation of Class-Level TestCase Instances

Extend the running of tests to count the number of class-level
assumption failures.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

properties (SetAccess = private)
TestClassAssumptionFailureData = {};

end

1-5116

matlab.unittest.plugins.TestRunnerPlugin.createTestClassIn

methods (Access = protected)
function testCase = createTestClassInstance(plugin, pluginData

% Invoke super class method
testCase = createTestClassInstance@...

matlab.unittest.plugins.TestRunnerPlugin(plugin, plugi

% Get the test class name
instanceName = pluginData.Name;

% Add a listener to capture assumption failures
testCase.addlistener('AssumptionFailed', @(~,evd) ...

plugin.captureClassLevelAssumptionFailureData(evd, ins
end

end

methods (Access = private)
function captureClassLevelAssumptionFailureData(plugin, eventD

plugin.TestClassAssumptionFailureData{end+1} = struct(...
'InstanceName', instanceName, ...
'ActualValue' , eventData.ActualValue, ...
'Constraint' , eventData.Constraint, ...
'Stack' , eventData.Stack);

end
end

end

See Also matlab.unittest.TestRunner | matlab.unittest.TestCase
| matlab.unittest.plugins.plugindata.PluginData |
matlab.unittest.qualifications.ExceptionEventData |
matlab.unittest.qualifications.QualificationEventData

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5117

matlab.unittest.plugins.TestRunnerPlugin.setupTestClass

Purpose Extend setting up test class

Syntax setupTestClass(plugin,pluginData)

Description setupTestClass(plugin,pluginData) extends the setting up of a test
class. This method defines how the TestRunner performs test class
setup. The test framework evaluates this method within the scope of
the runTestClass method of the TestRunnerPlugin. If the test class
contains properties with the ClassSetupParameter attribute, the test
framework evaluates the setupTestClass method as many times as
the class setup parameterization dictates.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test class setup information, specified as an instance of
matlab.unittest.plugins.plugindata.PluginData. The test
framework uses this information to introspect into the test
content.

Examples Implement setupTestClass Method

Display the test class name at setup time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

methods (Access = protected)
function setupTestClass(plugin, pluginData)

fprintf('### Setting up: %s\n', pluginData.Name);
setupTestClass@matlab.unittest.plugins.TestRunnerPlugin...

(plugin, pluginData);
end

end
end

1-5118

matlab.unittest.plugins.TestRunnerPlugin.setupTestClass

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.PluginData |
createTestClassInstance

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5119

matlab.unittest.plugins.TestRunnerPlugin.runTest

Purpose Extend running of single TestSuite element

Syntax runTest(plugin,pluginData)

Description runTest(plugin,pluginData) extends the running of a single
TestSuite element. This method allows the test author to override
the method that runs a scalar test element in the TestSuite array,
including the creation of the TestCase, and the TestMethodSetup and
TestMethodTeardown routines. Provided the test framework completes
all fixture setup, it invokes this method one time per test element.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test element information, specified as an instance of
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData.
The test framework uses this information to introspect into
the test content.

Examples Extend runTest method

Print the label of the test content element at run time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
methods (Access = protected)

function runTest(plugin, pluginData)
fprintf('### Running test: %s\n', pluginData.Name);
runTest@matlab.unittest.plugins.TestRunnerPlugin(...

plugin, pluginData);
end

end
end

1-5120

matlab.unittest.plugins.TestRunnerPlugin.runTest

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData |
matlab.unittest.TestResult

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5121

matlab.unittest.plugins.TestRunnerPlugin.createTestMethodInsta

Purpose Extend creation of method-level TestCase instances

Syntax tc = createTestMethodInstance(plugin,pluginData)

Description tc = createTestMethodInstance(plugin,pluginData) extends the
creation of method-level TestCase instances, and returns the modified
TestCase instance, tc. The test framework evaluates this method
within the scope of the runTest method of the TestRunnerPlugin.
A typical implementation of this method is to add listeners to
various events originating from the method level instance. Since the
TestCase inherits from the handle class, add listeners by calling the
addlistener method from within the createTestMethodInstance
method. The test framework creates instances for every element
of the matlab.unittest.Test array and passes each instance
to its corresponding Test methods and to any method with the
TestMethodSetup or TestMethodTeardown attribute.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Method-level TestCase creation information, specified as an
instance of matlab.unittest.plugins.plugindata.PluginData.
The test framework uses this information to introspect into the
test content.

Examples Implement createMethodInstance Method

Add a listener to listen for assumption failures. Use the helper
function, captureMethodLevelAssumptionFailureData, to populate
the TestMethodAssumptionFailureData property.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

properties (SetAccess = private)
TestMethodAssumptionFailureData = {};

1-5122

matlab.unittest.plugins.TestRunnerPlugin.createTestMetho

end

methods (Access = protected)
function testCase = createTestMethodInstance(plugin, pluginDat

testCase = createTestMethodInstance@...
matlab.unittest.plugins.TestRunnerPlugin(plugin, plugi

instanceName = pluginData.Name;
testCase.addlistener('AssumptionFailed', @(~,evd) ...

plugin.captureMethodLevelAssumptionFailureData(evd,ins
end

end

methods (Access = private)
function captureMethodLevelAssumptionFailureData(...

plugin, eventData, instanceName)
plugin.TestMethodAssumptionFailureData{end+1} = struct(...

'InstanceName', instanceName, ...
'ActualValue' , eventData.ActualValue, ...
'Constraint' , eventData.Constraint, ...
'Stack' , eventData.Stack);

end
end

end

See Also matlab.unittest.TestRunner | matlab.unittest.TestCase |
matlab.unittest.plugins.plugindata.PluginData |
matlab.unittest.plugins.TestRunnerPlugin.createTestClassInstance
| matlab.unittest.qualifications.ExceptionEventData |
matlab.unittest.qualifications.QualificationEventData

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5123

matlab.unittest.plugins.TestRunnerPlugin.setupTestMethod

Purpose Extend setting up of test method

Syntax setupTestMethod(plugin,pluginData)

Description setupTestMethod(plugin,pluginData) extends the setting up of a
test method. This method defines how the TestRunner performs test
method setup for the single test suite element. The test framework
evaluates this method within the scope of the runTest method of the
TestRunnerPlugin.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test method setup information, specified as an instance of
matlab.unittest.plugins.plugindata.PluginData. The test
framework uses this information to introspect into the test
content.

Examples Implement setupTestMethod

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

methods (Access = protected)
function setupTestMethod(plugin, pluginData)

fprintf('### Setting up: %s\n', pluginData.Name);
setupTestMethod@matlab.unittest.plugins.TestRunnerPlugin...

(plugin, pluginData);
end

end
end

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.PluginData

1-5124

matlab.unittest.plugins.TestRunnerPlugin.setupTestMethod

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5125

matlab.unittest.plugins.TestRunnerPlugin.runTestMethod

Purpose Extend running of single Test method

Syntax runTestMethod(plugin,pluginData)

Description runTestMethod(plugin,pluginData) extends the running of a single
Test method. The test framework evaluates this method within the
scope of the runTest method of the TestRunnerPlugin. It evaluates
this method between setting up and tearing down the scalar TestSuite
element (setupTestMethod and teardownTestMethod).

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test method information, specified as an instance of
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData.
The test framework uses this information to introspect into
the test content.

Examples Extend runTestMethod method

Print the time taken to evaluate the test method.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
methods (Access = protected)

function runTestMethod(plugin, pluginData)
tic;

runTestMethod@matlab.unittest.plugins.TestRunnerPlugin(...
plugin, pluginData);

fprintf('### %s ran in %f seconds excluding fixture time.',..
pluginData.Name, toc)

end
end

end

1-5126

matlab.unittest.plugins.TestRunnerPlugin.runTestMethod

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.TestSuiteRunPluginData
| matlab.unittest.TestResult |
matlab.unittest.plugins.TestRunnerPlugin.runTest |
matlab.unittest.plugins.TestRunnerPlugin.runTestClass

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5127

matlab.unittest.plugins.TestRunnerPlugin.teardownTestMethod

Purpose Extend tearing down of test method

Syntax teardownTestMethod(plugin,pluginData)

Description teardownTestMethod(plugin,pluginData) extends the tearing down
of a test method. This method defines how the TestRunner performs
test method teardown for the single test suite element. The test
framework evaluates this method within the scope of the runTest
method of the TestRunnerPlugin.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test method teardown information, specified as an instance
of matlab.unittest.plugins.plugindata.PluginData. The
test framework uses this information to introspect into the test
content.

Examples Implement teardownTestMethod Method

Display the test method name at teardown time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin
methods (Access = protected)

function teardownTestMethod(plugin, pluginData)
fprintf('### Tearing down: %s\n', pluginData.Name);
teardownTestMethod@matlab.unittest.plugins.TestRunnerPlugin..

(plugin, pluginData);
end

end
end

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.PluginData |
matlab.unittest.plugins.TestRunnerPlugin.setupTestMethod

1-5128

matlab.unittest.plugins.TestRunnerPlugin.teardownTestMe

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5129

matlab.unittest.plugins.TestRunnerPlugin.teardownTestClass

Purpose Extend tearing down of test class

Syntax teardownTestClass(plugin,pluginData)

Description teardownTestClass(plugin,pluginData) extends the tearing down
of a test class. This method defines how the TestRunner performs test
class teardown. The test framework evaluates this method within the
scope of the runTestClass method of the TestRunnerPlugin. If the test
class contains properties with the ClassSetupParameter attribute, the
test framework evaluates the teardownTestClass method as many
times as the class setup parameterization dictates.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Test class teardown information, specified as an instance of
matlab.unittest.plugins.plugindata.PluginData. The test
framework uses this information to introspect into the test
content.

Examples Implement teardownTestClass Method

Display the test class name at teardown time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

methods (Access = protected)
function teardownTestClass(plugin, pluginData)

fprintf('### Tearing down: %s\n', pluginData.Name);
steardownTestClass@matlab.unittest.plugins.TestRunnerPlugin..

(plugin, pluginData);
end

end
end

1-5130

matlab.unittest.plugins.TestRunnerPlugin.teardownTestCla

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.PluginData |
createTestClassInstance

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5131

matlab.unittest.plugins.TestRunnerPlugin.teardownSharedTestF

Purpose Extend tearing down shared test fixture

Syntax teardownSharedTestFixture(plugin,pluginData)

Description teardownSharedTestFixture(plugin,pluginData) extends the
tearing down of a shared test fixture. This method defines how the
TestRunner performs shared fixture teardown. The test framework
evaluates this method one time for each shared test fixture, within the
scope of the runTestSuite method of the TestRunnerPlugin.

Input
Arguments

plugin

Instance of matlab.unittest.plugins.TestRunnerPlugin.

pluginData

Shared test fixture teardown
information, specified as an instance of
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData.
The test framework uses this information to introspect into
the test content.

Examples Implement teardownSharedTestFixture Method

Display the shared test fixture name at teardown time.

classdef ExamplePlugin < matlab.unittest.plugins.TestRunnerPlugin

methods (Access = protected)
function teardownSharedTestFixture(plugin, pluginData)

fprintf('### Setting up: %s\n', pluginData.Name);
teardownSharedTestFixturee@matlab.unittest.plugins.TestRunner

(plugin, pluginData);
end

end
end

1-5132

matlab.unittest.plugins.TestRunnerPlugin.teardownShared

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.plugindata.SharedTestFixturePluginData
| createSharedTestFixture

Related
Examples

• “Write Plugins to Extend TestRunner”
• “Create Custom Plugin”

1-5133

matlab.unittest.plugins.TestSuiteProgressPlugin

Purpose Plugin that outputs progress information as text

Description The TestSuiteProgressPlugin class creates a plugin to output
progress information as text. TestSuiteProgressPlugin is added to
the TestRunner to show the progress of the testing to the Command
Window. This plugin is used by default when you construct a test
runner with TestRunner.withTextOutput.

Construction matlab.unittest.plugins.TestSuiteProgressPlugin creates a
plugin to output progress information as text.

matlab.unittest.plugins.TestSuiteProgressPlugin(stream)
redirects all the text output to the output stream, stream. If you do
not specify the output stream, the plugin uses the ToStandardOutput
stream.

Input
Arguments

stream

Location where the plugin directs text output, specified as an
OutputStream.

Default: ToStandardOutput

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Add Plugin to TestRunner

In your working folder, create the file ExampleTest.m containing the
following test class.

classdef ExampleTest < matlab.unittest.TestCase
methods(Test)

function testOne(testCase)
% test code

end
function testTwo(testCase) % Test fails

1-5134

matlab.unittest.plugins.TestSuiteProgressPlugin

% test code
end
function testThree(testCase) % Test passes

% test code
end

end
end

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;
import matlab.unittest.plugins.TestSuiteProgressPlugin;

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner with no plugins. This code creates a silent runner
and provides you with complete control over the installed plugins.

runner = TestRunner.withNoPlugins;

Run the tests.

result1 = runner.run(suite);

No output is displayed.

Add TestSuiteProgressPlugin to the runner and run the tests.

runner.addPlugin(TestSuiteProgressPlugin);
result2 = runner.run(suite);

Running ExampleTest
...
Done ExampleTest

See Also matlab.unittest.plugins | OutputStream | ToStandardOutput

1-5135

matlab.unittest.plugins.TestSuiteProgressPlugin

Concepts

1-5136

matlab.unittest.plugins.plugindata

Purpose Summary of classes in MATLAB Plugin Data Interface

Description The plugindata classes store information about test content
for use by the plugins and plugin methods. The TestRunner
passes instances of these classes to various plugin methods. The
matlab.unittest.plugins.plugindata package consists of the following
MATLAB plugin data classes.

matlab.unittest.plugins.plugindata.PluginDataData object passed to
TestRunnerPlugin methods

matlab.unittest.plugins.plugindata.SharedTestFixturePluginDataPlugin data containing shared
test fixture information

matlab.unittest.plugins.plugindata.TestSuiteRunPluginDataPlugin data containing selected
test information

See Also TestRunnerPlugin | matlab.unittest.plugins

1-5137

matlab.unittest.plugins.plugindata.PluginData

Purpose Data object passed to TestRunnerPlugin methods

Description The PluginData class defines the data the TestRunner passes to various
plugin methods. It is created by the TestRunner, so there is no need for
test plugin authors to construct this class directly.

Properties Name

Label of test content executed by the test runner within the
scope of a plugin method, represented as a string. Use the Name
property for informational, labeling, and display purposes. Do not
use Nameprogrammatically to introspect into the content.

See Also TestRunnerPlugin

Concepts

1-5138

matlab.unittest.plugins.plugindata.SharedTestFixturePlugi

Purpose Plugin data containing shared test fixture information

Description The SharedTestFixturePluginData defines the data the TestRunner
passes to plugin methods related to shared test fixtures. The
TestRunner creates this, so there is no need for test plugin authors to
construct this class directly.

Properties Name

Label of shared test fixture, represented as a string. Use the Name
property for informational, labeling, and display purposes. Do not
use Nameprogrammatically to introspect into the content.

Description

Description of action performed during setup and teardown of a
shared text fixture, represented as a string

See Also TestRunnerPlugin | matlab.unittest.fixtures.Fixture

Concepts

1-5139

matlab.unittest.plugins.plugindata.TestSuiteRunPluginData

Purpose Plugin data containing selected test information

Description The TestSuiteRunPluginData defines the data the TestRunner passes
to plugin methods related to running tests from the suite. The
TestRunner creates this, so there is no need for test plugin authors to
construct this class directly.

Properties Name

Name corresponding to the portion of the test suite the runner
executes within a plugin method, represented as a string. Use the
Name property for informational, labeling, and display purposes.
Do not use Nameprogrammatically to introspect into the content.

TestSuite

Select test methods, represented as a
matlab.unittest.TestSuite instance

TestResult

Results from running select test methods listed in TestSuite,
represented as a matlab.unittest.TestResult array

See Also TestRunnerPlugin | matlab.unittest.TestSuite |
matlab.unittest.TestResult

Concepts

1-5140

plus, +

Purpose Addition

Syntax C = A + B
C = plus(A,B)

Description C = A + B adds arrays A and B and returns the result in C.

C = plus(A,B) is an alternate way to execute A + B, but is rarely used.
It enables operator overloading for classes.

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array. Inputs A and B must be the same size unless one is a scalar. You
can add a scalar value to any other value.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

B - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array. Inputs A and B must be the same size unless one is a scalar. You
can add a scalar value to any other value.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Add Scalar to Array

Create an array, A, and add a scalar value to it.

1-5141

plus, +

A = [0 1; 1 0];
C = A + 2

C =

2 3
3 2

The scalar value is added to each entry of A.

Add Two Arrays

Create two arrays, A and B, and add them together.

A = [1 0; 2 4];
B = [5 9; 2 1];
C = A + B

C =

6 9
4 5

The elements of A are added to the corresponding elements of B.

See Also minus | sum | cumsum | uplus

1-5142

DelaunayTri.pointLocation

Purpose (Will be removed) Simplex containing specified location

Note pointLocation(DelaunayTri) will be removed in a future
release. Use pointLocation(delaunayTriangulation) instead.

DelaunayTri will be removed in a future release. Use
delaunayTriangulation instead.

Syntax SI = pointLocation(DT,QX)
SI = pointLocation(DT,QX,QY)
SI = pointLocation(DT,QX,QY,QZ)
[SI, BC] = pointLocation(DT,...)

Description SI = pointLocation(DT,QX) returns the indices SI of the enclosing
simplex (triangle/tetrahedron) for each query point location in QX. The
enclosing simplex for point QX(k,:) is SI(k). pointLocation returns
NaN for all points outside the convex hull.

SI = pointLocation(DT,QX,QY) and SI =
pointLocation(DT,QX,QY,QZ) allow the query point locations to be
specified in alternative column vector format when working in 2-D
and 3-D.

[SI, BC] = pointLocation(DT,...) returns the barycentric
coordinates BC.

Input
Arguments

DT Delaunay triangulation.

QX Matrix of size mpts-by-ndim, mpts being the
number of query points.

1-5143

DelaunayTri.pointLocation

Output
Arguments

SI Column vector of length mpts containing the
indices of the enclosing simplex for each query
point. mpts is the number of query points.

BC BC is a mpts-by-ndimmatrix, each row BC(i,:)
represents the barycentric coordinates of
QX(i,:) with respect to the enclosing simplex
SI(i).

Examples Example 1

Create a 2-D Delaunay triangulation:

X = rand(10,2);
dt = DelaunayTri(X);

Find the triangles that contain specified query points:

qrypts = [0.25 0.25; 0.5 0.5];
triids = pointLocation(dt, qrypts)

Example 2

Create a 3-D Delaunay triangulation:

x = rand(10,1);
y = rand(10,1);
z = rand(10,1);
dt = DelaunayTri(x,y,z);

Find the triangles that contain specified query points and evaluate
the barycentric coordinates:

qrypts = [0.25 0.25 0.25; 0.5 0.5 0.5];
[tetids, bcs] = pointLocation(dt, qrypts)

See Also nearestNeighbor | delaunayTriangulation | triangulation

1-5144

pol2cart

Purpose Transform polar or cylindrical coordinates to Cartesian

Syntax [X,Y] = pol2cart(THETA,RHO)
[X,Y,Z] = pol2cart(THETA,RHO,Z)

Description [X,Y] = pol2cart(THETA,RHO) transforms the polar coordinate data
stored in corresponding elements of THETA and RHO to two-dimensional
Cartesian, or xy, coordinates. The arrays THETA and RHO must be the
same size (or either can be scalar). The values in THETA must be in
radians.

[X,Y,Z] = pol2cart(THETA,RHO,Z) transforms the cylindrical
coordinate data stored in corresponding elements of THETA, RHO, and Z
to three-dimensional Cartesian, or xyz coordinates. The arrays THETA,
RHO, and Z must be the same size (or any can be scalar). The values in
THETA must be in radians.

Algorithms The mapping from polar and cylindrical coordinates to Cartesian
coordinates is:

1-5145

pol2cart

See Also cart2pol | cart2sph | sph2cart

1-5146

polar

Purpose Polar coordinate plot

Syntax polar(theta,rho)
polar(theta,rho,LineSpec)
polar(axes_handle,...)
h = polar(...)

Description The polar function accepts polar coordinates, plots them in a Cartesian
plane, and draws the polar grid on the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta
versus the radius rho. theta is the angle from the x-axis to the radius
vector specified in radians; rho is the length of the radius vector
specified in dataspace units.

polar(theta,rho,LineSpec) LineSpec specifies the line type, plot
symbol, and color for the lines drawn in the polar plot.

polar(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = polar(...) returns the handle of a line object in h.

Tips Negative r values reflect through the origin, rotating by pi (since
(theta,r) transforms to (r*cos(theta), r*sin(theta))). If you
want different behavior, you can manipulate r prior to plotting. For
example, you can make r equal to max(0,r) or abs(r).

Examples Simple Polar Plot

Create a simple polar plot using a dashed red line.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);

1-5147

polar

figure
polar(theta,rho,'--r')

See Also cart2pol | compass | LineSpec | plot | pol2cart | rose

1-5148

poly

Purpose Polynomial with specified roots

Syntax p = poly(A)
p = poly(r)

Description p = poly(A) where A is an n-by-n matrix returns an n+1 element
row vector whose elements are the coefficients of the characteristic
polynomial, det(λI – A). The coefficients are ordered in descending
powers: if a vector c has n+1 components, the polynomial it represents
is c1λ

n + c2λ
n-1 + … + cnλ + cn+1

p = poly(r) where r is a vector returns a row vector whose elements
are the coefficients of the polynomial whose roots are the elements of r.

Tips Note the relationship of this command to

r = roots(p)

which returns a column vector whose elements are the roots of the
polynomial specified by the coefficients row vector p. For vectors, roots
and poly are inverse functions of each other, up to ordering, scaling,
and roundoff error.

Examples MATLAB displays polynomials as row vectors containing the coefficients
ordered by descending powers. The characteristic equation of the matrix

A =

1 2 3
4 5 6
7 8 0

is returned in a row vector by poly:

p = poly(A)

p =
1 -6 -72 -27

1-5149

poly

The roots of this polynomial (eigenvalues of matrix A) are returned in
a column vector by roots:

r = roots(p)

r =

12.1229
-5.7345
-0.3884

Algorithms The algorithms employed for poly and roots illustrate an interesting
aspect of the modern approach to eigenvalue computation. poly(A)
generates the characteristic polynomial of A, and roots(poly(A)) finds
the roots of that polynomial, which are the eigenvalues of A. But both
poly and roots use eig, which is based on similarity transformations.
The classical approach, which characterizes eigenvalues as roots of the
characteristic polynomial, is actually reversed.

If A is an n-by-n matrix, poly(A) produces the coefficients c(1) through
c(n+1), with c(1) = 1, in

det() I A c c cn
n n 1 1

The algorithm is

z = eig(A);
c = zeros(n+1,1); c(1) = 1;
for j = 1:n

c(2:j+1) = c(2:j+1)-z(j)*c(1:j);
end

This recursion is easily derived by expanding the product.

()() () 1 2 n

It is possible to prove that poly(A) produces the coefficients in the
characteristic polynomial of a matrix within roundoff error of A. This is

1-5150

poly

true even if the eigenvalues of A are badly conditioned. The traditional
algorithms for obtaining the characteristic polynomial, which do not use
the eigenvalues, do not have such satisfactory numerical properties.

See Also conv | polyval | residue | roots

1-5151

polyarea

Purpose Area of polygon

Syntax A = polyarea(X,Y)
A = polyarea(X,Y,dim)

Description A = polyarea(X,Y) returns the area of the polygon specified by the
vertices in the vectors X and Y.

If X and Y are matrices of the same size, then polyarea returns the area
of polygons defined by the columns X and Y.

If X and Y are multidimensional arrays, polyarea returns the area of
the polygons in the first nonsingleton dimension of X and Y.

A = polyarea(X,Y,dim) operates along the dimension specified by
scalar dim.

Examples Find Area of Polygon

L = linspace(0,2.*pi,9); xv = 1.2*cos(L)';yv = 1.2*sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
A = polyarea(xv,yv)

A =

4.0729

plot(xv,yv); title(['Area = ' num2str(A)]); axis image

1-5152

polyarea

See Also convhull | inpolygon | rectint

1-5153

polyder

Purpose Polynomial derivative

Syntax k = polyder(p)
k = polyder(a,b)
[q,d] = polyder(b,a)

Description The polyder function calculates the derivative of polynomials,
polynomial products, and polynomial quotients. The operands a, b, and
p are vectors whose elements are the coefficients of a polynomial in
descending powers.

k = polyder(p) returns the derivative of the polynomial p.

k = polyder(a,b) returns the derivative of the product of the
polynomials a and b.

[q,d] = polyder(b,a) returns the numerator q and denominator d of
the derivative of the polynomial quotient b/a.

Examples The derivative of the product

3 6 9 22 2x x x x
is obtained with

a = [3 6 9];
b = [1 2 0];
k = polyder(a,b)
k =

12 36 42 18

This result represents the polynomial

12 36 42 183 2x x x

See Also conv | deconv

1-5154

polyeig

Purpose Polynomial eigenvalue problem

Syntax [X,e] = polyeig(A0,A1,...Ap)
e = polyeig(A0,A1,..,Ap)
[X, e, s] = polyeig(A0,A1,..,AP)

Description [X,e] = polyeig(A0,A1,...Ap) solves the polynomial eigenvalue
problem of degree p

A A A xP
p0 1 0

where polynomial degree p is a non-negative integer, and A0,A1,...Ap
are input matrices of order n. The output consists of a matrix X of size
n-by-n*p whose columns are the eigenvectors, and a vector e of length
n*p containing the eigenvalues.

If lambda is the jth eigenvalue in e, and x is the jth column of
eigenvectors in X, then (A0 + lambda*A1 + ... + lambda^p*Ap)*x
is approximately 0.

e = polyeig(A0,A1,..,Ap) is a vector of length n*p whose elements
are the eigenvalues of the polynomial eigenvalue problem.

[X, e, s] = polyeig(A0,A1,..,AP) also returns a vector s of length
p*n containing condition numbers for the eigenvalues. At least one of
A0 and AP must be nonsingular. Large condition numbers imply that
the problem is close to a problem with multiple eigenvalues.

Tips Based on the values of p and n, polyeig handles several special cases:

• p = 0, or polyeig(A) is the standard eigenvalue problem: eig(A).

• p = 1, or polyeig(A,B) is the generalized eigenvalue problem:
eig(A,-B).

• n = 1, or polyeig(a0,a1,...ap) for scalars a0, a1 ..., ap is the standard
polynomial problem: roots([ap ... a1 a0]).

1-5155

polyeig

If both A0 and Ap are singular the problem is potentially ill-posed.
Theoretically, the solutions might not exist or might not be unique.
Computationally, the computed solutions might be inaccurate. If one,
but not both, of A0 and Ap is singular, the problem is well posed, but
some of the eigenvalues might be zero or infinite.

Note that scaling A0,A1,..,Ap to have norm(Ai) roughly equal 1 may
increase the accuracy of polyeig. In general, however, this cannot be
achieved. (See Tisseur [3] for more detail.)

Algorithms The polyeig function uses the QZ factorization to find intermediate
results in the computation of generalized eigenvalues. It uses
these intermediate results to determine if the eigenvalues are
well-determined. See the descriptions of eig and qz for more on this.

References [1] Dedieu, Jean-Pierre Dedieu and Francoise Tisseur, “Perturbation
theory for homogeneous polynomial eigenvalue problems,” Linear
Algebra Appl., Vol. 358, pp. 71-94, 2003.

[2] Tisseur, Francoise and Karl Meerbergen, “The quadratic eigenvalue
problem,” SIAM Rev., Vol. 43, Number 2, pp. 235-286, 2001.

[3] Francoise Tisseur, “Backward error and condition of polynomial
eigenvalue problems” Linear Algebra Appl., Vol. 309, pp. 339-361, 2000.

See Also condeig | eig | qz

1-5156

polyfit

Purpose Polynomial curve fitting

Syntax p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of
degree n that fits the data, p(x(i)) to y(i), in a least squares sense.
The result p is a row vector of length n+1 containing the polynomial
coefficients in descending powers:

p x p px p x x pn n
n n()= + ++ +−

+1 2
1

1

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p
and a structure S for use with polyval to obtain error estimates or
predictions. Structure S contains fields R, df, and normr, for the
triangular factor from a QR decomposition of the Vandermonde matrix
of x, the degrees of freedom, and the norm of the residuals, respectively.
If the data y are random, an estimate of the covariance matrix of p is
(Rinv*Rinv')*normr^2/df, where Rinv is the inverse of R. If the errors
in the data y are independent normal with constant variance, polyval
produces error bounds that contain at least 50% of the predictions.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

x̂
x

=
−

1

2

where 1 = mean()x and 2 = std()x . mu is the two-element vector
[μ1,μ2]. This centering and scaling transformation improves the
numerical properties of both the polynomial and the fitting algorithm.

Examples Fit Polynomial to Error Function

This example involves fitting the error function, erf(x), by a polynomial
in x. This is a risky project because erf(x) is a bounded function, while
polynomials are unbounded, so the fit might not be very good.

1-5157

polyfit

First generate a vector of x points, equally spaced in the interval [0,
2.5], then evaluate erf(x) at those points.

x = (0: 0.1: 2.5)';
y = erf(x);

The coefficients in the approximating polynomial of degree 6 are

p = polyfit(x,y,6)

p =

0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

There are seven coefficients, and the polynomial is

To see how good the fit is, evaluate the polynomial at the data points.

f = polyval(p,x);

A table showing the data, fit, and error is

table = [x y f y-f]

table =

0 0 0.0004 -0.0004
0.1000 0.1125 0.1119 0.0006
0.2000 0.2227 0.2223 0.0004
0.3000 0.3286 0.3287 -0.0001
0.4000 0.4284 0.4288 -0.0004
0.5000 0.5205 0.5209 -0.0004
0.6000 0.6039 0.6041 -0.0002

1-5158

polyfit

0.7000 0.6778 0.6778 0.0000
0.8000 0.7421 0.7418 0.0003
0.9000 0.7969 0.7965 0.0004
1.0000 0.8427 0.8424 0.0003
1.1000 0.8802 0.8800 0.0002
1.2000 0.9103 0.9104 -0.0000
1.3000 0.9340 0.9342 -0.0002
1.4000 0.9523 0.9526 -0.0003
1.5000 0.9661 0.9664 -0.0003
1.6000 0.9763 0.9765 -0.0002
1.7000 0.9838 0.9838 0.0000
1.8000 0.9891 0.9889 0.0002
1.9000 0.9928 0.9925 0.0003
2.0000 0.9953 0.9951 0.0002
2.1000 0.9970 0.9969 0.0001
2.2000 0.9981 0.9982 -0.0001
2.3000 0.9989 0.9991 -0.0003
2.4000 0.9993 0.9995 -0.0002
2.5000 0.9996 0.9994 0.0002

On this interval, the interpolated values and the actual values agree
fairly closely. Outside this interval, the extrapolated values quickly
diverge from the actual data values, as the following plot demonstrates.

x = (0: 0.1: 5)';
y = erf(x);
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
axis([0 5 0 2])

1-5159

polyfit

Algorithms The polyfit MATLAB file forms the Vandermonde matrix, V, whose

elements are powers of x. v xi j i
n j

, = −

It then uses the backslash operator, \, to solve the least squares
problem Vp y.

See “Programmatic Fitting” for information about fitting different
functions of x.

1-5160

polyfit

See Also poly | polyval | roots | lscov | cov

1-5161

polyint

Purpose Integrate polynomial analytically

Syntax polyint(p,k)
polyint(p)

Description polyint(p,k) returns a polynomial representing the integral of
polynomial p, using a scalar constant of integration k. Specify p and k
as type double or single.

polyint(p) assumes a constant of integration k=0.

See Also polyder | polyval | polyvalm | polyfit

1-5162

polyval

Purpose Polynomial evaluation

Syntax y = polyval(p,x)
[y,delta] = polyval(p,x,S)
y = polyval(p,x,[],mu)
[y,delta] = polyval(p,x,S,mu)

Description y = polyval(p,x) returns the value of a polynomial of degree n
evaluated at x. The input argument p is a vector of length n+1 whose
elements are the coefficients in descending powers of the polynomial
to be evaluated.

y = p1x
n + p2x

n–1 + … + pnx + pn+1

x can be a matrix or a vector. In either case, polyval evaluates p at
each element of x.

[y,delta] = polyval(p,x,S) uses the optional output structure S
generated by polyfit to generate error estimates delta. delta is an
estimate of the standard deviation of the error in predicting a future
observation at x by p(x). If the coefficients in p are least squares
estimates computed by polyfit, and the errors in the data input to
polyfit are independent, normal, and have constant variance, then
y±delta contains at least 50% of the predictions of future observations
at x.

y = polyval(p,x,[],mu) or [y,delta] = polyval(p,x,S,mu) use

ˆ () /x x= − 1 2 in place of x. In this equation, 1 = mean()x and

2 = std()x . The centering and scaling parameters mu = [μ1,μ2] are
optional output computed by polyfit.

Tips The polyvalm(p,x) function, with x a matrix, evaluates the polynomial
in a matrix sense. See polyvalm for more information.

1-5163

polyval

Examples The polynomial p x x x() = + +3 2 12 is evaluated at x = 5, 7, and 9 with

p = [3 2 1];
polyval(p,[5 7 9])

which results in

ans =

86 162 262

For another example, see polyfit.

See Also polyfit | polyvalm | polyder | polyint

1-5164

polyvalm

Purpose Matrix polynomial evaluation

Syntax Y = polyvalm(p,X)

Description Y = polyvalm(p,X) evaluates a polynomial in a matrix sense. This is
the same as substituting matrix X in the polynomial p.

Polynomial p is a vector whose elements are the coefficients of a
polynomial in descending powers, and X must be a square matrix.

Examples The Pascal matrices are formed from Pascal’s triangle of binomial
coefficients. Here is the Pascal matrix of order 4.

X = pascal(4)
X =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

Its characteristic polynomial can be generated with the poly function.

p = poly(X)
p =

1 -29 72 -29 1

This represents the polynomial .

Pascal matrices have the curious property that the vector of coefficients
of the characteristic polynomial is palindromic; it is the same forward
and backward.

Evaluating this polynomial at each element is not very interesting.

polyval(p,X)
ans =

16 16 16 16
16 15 -140 -563
16 -140 -2549 -12089

1-5165

polyvalm

16 -563 -12089 -43779

But evaluating it in a matrix sense is interesting.

polyvalm(p,X)
ans =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The result is the zero matrix. This is an instance of the Cayley-Hamilton
theorem: a matrix satisfies its own characteristic equation.

See Also polyfit | polyval

1-5166

pow2

Purpose Base 2 power and scale floating-point numbers

Syntax X = pow2(Y)
X = pow2(F,E)

Description X = pow2(Y) returns an array X whose elements are 2 raised to the
power Y.

X = pow2(F,E) computes x = f * 2e for corresponding elements of
F and E. The result is computed quickly by simply adding E to the
floating-point exponent of F. Arguments F and E are real and integer
arrays, respectively.

Tips This function corresponds to the ANSI C function ldexp() and the
IEEE floating-point standard function scalbn().

Examples For IEEE arithmetic, the statement X = pow2(F,E) yields the values:

F E X
1/2 1 1
pi/4 2 pi
-3/4 2 -3
1/2 -51 eps
1-eps/2 1024 realmax
1/2 -1021 realmin

See Also log2 | exp | hex2num | realmax | realmin | power | mpower

1-5167

power, .^

Purpose Element-wise power

Syntax C = A.^B
C = power(A,B)

Description C = A.^B raises each element of A to the corresponding power in B.

C = power(A,B) is an alternate way to execute A.^B, but is rarely used.
It enables operator overloading for classes.

Input
Arguments

A - Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.
Inputs A and B must be the same size unless one is a scalar. A scalar
value expands into an array of the same size as the other input.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

B - Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a scalar, vector, matrix, or multidimensional
array. Inputs A and B must be the same size unless one is a scalar. A
scalar value expands into an array of the same size as the other input.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Square Each Element of Vector

Create a vector, A, and square each element.

1-5168

power, .^

A = 1:5;
C = A.^2

C =

1 4 9 16 25

Find Inverse of Each Matrix Element

Create a matrix, A, and take the inverse of each element.

A = [1 2 3; 4 5 6; 7 8 9];
C = A.^-1

C =

1.0000 0.5000 0.3333
0.2500 0.2000 0.1667
0.1429 0.1250 0.1111

An inversion of the elements is not equal to the inverse of the matrix,
which is instead written A^-1 or inv(A).

Find Roots of Number

Calculate the roots of -1 to the 1/3 power.

A = -1;
B = 1/3;
C = A.^B

C =

0.5000 + 0.8660i

For negative base A and noninteger B, if abs(B) is less than 1, the power
function returns the complex roots of A.

Use the nthroot function to obtain the real roots.

1-5169

power, .^

C = nthroot(A,3)

C =

-1

See Also realpow | mpower | nthroot

1-5170

ppval

Purpose Evaluate piecewise polynomial

Syntax v = ppval(pp,xx)

Description v = ppval(pp,xx) returns the value of the piecewise polynomial f,
contained in pp, at the entries of xx. You can construct pp using the
functions pchip, spline, or the spline utility mkpp.

v is obtained by replacing each entry of xx by the value of f there. If f is
scalar-valued, v is of the same size as xx. xx may be N-dimensional.

If pp was constructed by pchip, spline, or mkpp using the orientation of
non-scalar function values specified for those functions, then:

If f is [D1,..,Dr]-valued, and xx is a vector of length N, then V has size
[D1,...,Dr, N], with V(:,...,:,J) the value of f at xx(J).

If f is [D1,..,Dr]-valued, and xx has size [N1,...,Ns], then V has size
[D1,...,Dr, N1,...,Ns], with V(:,...,:, J1,...,Js) the value of f
at xx(J1,...,Js).

Examples Compare the result of integrating cos(x) between 0 and 10 to the result of
integrating a piece-wise polynomial approximation of the same function.

a = 0; b = 10;
int1 = integral(@cos,a,b)

int1 =
-0.5440

Create a piece-wise polynomial approximation of cos(x) and integrate
over the same interval.

x = a:b;
y = cos(x);
pp = spline(x,y);
int2 = integral(@(x)ppval(pp,x),a,b)

int2 =

1-5171

ppval

-0.5485

See Also mkpp | spline | unmkpp

1-5172

prefdir

Purpose Folder containing preferences, history, and layout files

Syntax prefdir
folder = prefdir
folder = prefdir(1)

Description prefdir returns the folder that contains

• Preferences for MATLAB and related products (matlab.prf)

• Command history file (History.xml)

• MATLAB shortcuts (shortcuts_2.xml)

• MATLAB desktop layout files (MATLABDesktop.xml and
Your_Saved_LayoutMATLABLayout.xml)

• Other related files

folder = prefdir assigns to folder the name of the folder containing
preferences and related files.

folder = prefdir(1) creates a folder for preferences and related files
if one does not exist. If the folder does exist, the name is assigned to
folder.

Tips • You must have write access to the preferences folder. Otherwise,
MATLAB generates an error in the Command Window when you try
to change preferences. This can happen if the folder is hidden, for
example: myname/.matlab/R2009a.

Examples View the location of the preferences folder:

prefdir

Make the preferences folder become the current folder:

cd(prefdir)

1-5173

prefdir

% Then, view the files for customizing MathWorks products:
dir

On Windows platforms, go directly to the preferences folder in Microsoft
Windows Explorer

winopen(prefdir)

See Also preferences | getpref | setpref

How To • “Preferences Folder and Files MATLAB Uses When Multiple
MATLAB Releases Are Installed”

1-5174

preferences

Purpose Open Preferences dialog box

Syntax preferences

Description preferences displays the Preferences dialog box, from which you can
make changes to options for MATLAB and related products.

See Also prefdir

How To • “Preferences”

1-5175

primes

Purpose Prime numbers less than or equal to input value

Syntax p = primes(n)

Description p = primes(n) returns a row vector containing all the prime numbers
less than or equal to n. The data type of p is the same as that of n.

Input
Arguments

n - Input value
scalar, real integer value

Input value, specified as a scalar that is a real integer value.

Example: 10

Example: int16(32)

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

Examples Primes Less Than or Equal to 25

p = primes(25)

p =

2 3 5 7 11 13 17 19 23

Primes Less Than or Equal to an Unsigned Integer

n = uint16(12);
p = primes(n)

p =

2 3 5 7 11

See Also factor | isprime

1-5176

print

Purpose Print figure or save to file

Contents

Syntax

“Description” on page 1-5177

“Printer Drivers” on page 1-5179

“Graphics Format Files” on page 1-5183

“Printing Options” on page 1-5187

“Paper Sizes” on page 1-5190

“Printing Tips” on page 1-5192

“Examples” on page 1-5195

“Alternatives” on page 1-5197

Syntax print
print('argument1','argument2',...)
print(handle,'filename')
print argument1 argument2 ... argumentn

Description print sends the contents of the current figure, including bitmap
representations of any user interface controls, to the printer using the
device and system printing command defined by printopt.

print('argument1','argument2',...) is the function form of
print. It enables you to pass variables for any input arguments.
This form is useful for passing file names and handles (for example,
print(handle,'filename'). See “Batch Processing” on page 1-5196
for an example. Also see “Specifying the Figure to Print” on page 1-5195
for further examples.

Note Print input only takes string variables and handles as inputs.
Strings passed in as cell array or struct inputs are not accepted.

1-5177

print

print argument1 argument2 ... argumentn prints the figure using
the specified arguments.

The following arguments apply to both the function and the command
form:

Argument Description

handle Print the specified object.

filename Direct the output to the PostScript file designated
by filename. If filename does not include an
extension, print appends an appropriate extension.

-ddriver Print the figure using the specified printer driver,
(such as color PostScript). If you omit -ddriver,
print uses the default value stored in printopt.m.
The table in “Printer Drivers” on page 1-5179 lists
all supported device types.

-dformat Copy the figure to the system Clipboard (Microsoft
Windows platforms only). To be valid, the format
for this operation must be either -dmeta (Windows
Enhanced Metafile) or -dbitmap (Windows
Bitmap).

-dformat
filename

Export the figure to the specified file using the
specified graphics format (such as TIFF). The table
of “Graphics Format Files” on page 1-5183 lists all
supported graphics file formats.

-smodelname Print the current Simulink model modelname.

-options Specify print options that modify the action of the
print command. (For example, the -noui option
suppresses printing of user interface controls.)
“Printing Options” on page 1-5187 lists available
options.

1-5178

print

Printer
Drivers

The following table shows the more widely used printer drivers
supported by MATLAB software. If you do not specify a driver, the
default setting shown in the previous table is used. For a list of all
supported printer drivers, type print -d at the MATLAB prompt.
Some things to remember:

• As indicated in “Description” on page 1-5177 the -d switch specifies a
printer driver or a graphics file format:

- Specifying a printer driver without a file name or printer name
(the -P option) sends the output formatted by the specified driver
to your default printer, which may not be what you want to do.

Note OnWindows systems, when you use the -P option to identify
a printer to use, if you specify any driver other than -dwin or
-dwinc, MATLAB writes the output to a file with an appropriate
extension but does not send it to the printer. You can then copy
that file to a printer.

- Specifying a -dmeta or a -dbitmap graphics format without a
file name places the graphic on the system Clipboard, if possible
(Windows platforms only).

- Specifying any other graphics format without a file name creates a
file in the current folder with a name such as figureN.fmt, where
N is 1, 2, 3, ... and fmt indicates the format type, for example, eps
or png.

• Several drivers come from a product called Ghostscript, which is
shipped with MATLAB software. The last column indicates when
Ghostscript is used.

• Not all drivers are supported on all platforms. Non support is noted
in the first column of the table.

• If you specify a particular printer with the -P option and do not
specify a driver, a default driver for that printer is selected, either by
the operating system or by MATLAB , depending on the platform:

1-5179

print

- On Windows, the driver associated with this particular printing
device is used.

- On Macintosh and UNIX platforms, the driver specified in
printopt.m is used

See Selecting the Printer in the Graphics documentation for more
information.

Note Support for some print options will be removed in a future
release. The affected formats have an asterisk (*) next to the option
string in the following table. The asterisks provide a link to the Web site
which supplies a form for users to give feedback about these changes.

Printer Driver Print Command Option
String

Ghostscript

Canon® BubbleJet
BJ10e

-dbj10e * Yes

Canon BubbleJet BJ200
color

-dbj200 * Yes

Canon Color BubbleJet
BJC-70/BJC-600/BJC-4000

-dbjc600 * Yes

Canon Color BubbleJet
BJC-800

-dbjc800 * Yes

Epson® and compatible 9-
or 24-pin dot matrix print
drivers

-depson * Yes

Epson and compatible
9-pin with interleaved
lines (triple resolution)

-deps9high * Yes

1-5180

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print

Printer Driver Print Command Option
String

Ghostscript

Epson LQ-2550 and
compatible; color (not
supported on HP-700)

-depsonc * Yes

Fujitsu® 3400/2400/1200 -depsonc * Yes

HP® DesignJet 650C
color (not supported on
Windows)

-ddnj650c * Yes

HP DeskJet 500 -ddjet500 * Yes

HP DeskJet 500C
(creates black and white
output)

-dcdjmono * Yes

HP DeskJet 500C
(with 24 bit/pixel
color and high-quality
Floyd-Steinberg color
dithering) (not supported
on Windows)

-dcdjcolor * Yes

HP DeskJet 500C/540C
color (not supported on
Windows)

-dcdj500 * Yes

HP Deskjet 550C
color (not supported
on Windows)

-dcdj550 * Yes

HP DeskJet and
DeskJet Plus

-ddeskjet * Yes

HP LaserJet -dlaserjet * Yes

HP LaserJet+ -dljetplus * Yes

HP LaserJet IIP -dljet2p * Yes

1-5181

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print

Printer Driver Print Command Option
String

Ghostscript

HP LaserJet III -dljet3 * Yes

HP LaserJet 4, 5L and
5P

-dljet4 * Yes

HP LaserJet 5 and 6 -dpxlmono * Yes

HP PaintJet color -dpaintjet * Yes

HP PaintJet XL color -dpjxl * Yes

HP PaintJet XL color -dpjetxl * Yes

HP PaintJet XL300
color (not supported on
Windows)

-dpjxl300 * Yes

HPGL for HP 7475A and
other compatible plotters.
(Renderer cannot be set to
Z-buffer.)

-dhpgl * No

IBM 9-pin Proprinter -dibmpro * Yes

PostScript black and
white

-dps No

PostScript color -dpsc No

PostScript Level 2 black
and white

-dps2 No

PostScript Level 2 color -dpsc2 No

Windows color
(Windows only)

-dwinc No

Windows monochrome
(Windows only)

-dwin No

1-5182

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html
http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print

Tip Generally, Level 2 PostScript files are smaller and are rendered
more quickly when printing than Level 1 PostScript files. However, not
all PostScript printers support Level 2, so determine the capabilities of
your printer before using those drivers. Level 2 PostScript printing is
the default for UNIX platforms. You can change this default by editing
the printopt.m file. Likewise, if you want color PostScript printing
to be the default instead of black-and-white PostScript printing, edit
the line in the printopt.m file that reads dev = '-dps2'; to be
dev = '-dpsc2';.

Graphics
Format
Files

To save your figure as a graphics format file, specify a format switch
and file name. To set the resolution of the output file for a built-in
MATLAB format, use the -r switch. (For example, -r300 sets the
output resolution to 300 dots per inch.) The -r switch is also supported
for Windows Enhanced Metafiles, JPEG, TIFF and PNG files, but is
not supported for Ghostscript raster formats. For more information,
see “Printing and Exporting without a Display” on page 1-5186 and
“Resolution Considerations” on page 1-5189.

Note When you print to a file, the file name must have fewer than
128 characters, including path name. When you print to a file in your
current folder, the filename must have fewer than 126 characters,
because MATLAB places './' or '.\'’ at the beginning of the filename
when referring to it.

The following table shows the supported output formats for exporting
from figures and the switch settings to use. In some cases, a format is
available both as a MATLAB output filter and as a Ghostscript output
filter. All formats except for EMF are supported on both Windows and
UNIX platforms.

1-5183

print

Note Support for some print options will be removed in a future
release. The affected formats have an asterisk (*) next to the option
string in the following table. The asterisks provide a link to the Web site
which supplies a form for users to give feedback about these changes.

Graphics Format

Bitmap
or
Vector

Print Command
Option String

MATLAB or
Ghostscript

BMP monochrome
BMP

Bitmap -dbmpmono Ghostscript

BMP 24-bit BMP Bitmap -dbmp16m Ghostscript

BMP 8-bit
(256-color) BMP
(this format uses a
fixed colormap)

Bitmap -dbmp256 Ghostscript

BMP 24-bit Bitmap -dbmp MATLAB

EMF Vector -dmeta MATLAB

EPS black and
white

Vector -deps MATLAB

EPS color Vector -depsc MATLAB

EPS Level 2 black
and white

Vector -deps2 MATLAB

EPS Level 2 color Vector -depsc2 MATLAB

HDF 24-bit Bitmap -dhdf MATLAB

ILL (Adobe
Illustrator)

Vector -dill * MATLAB

JPEG 24-bit Bitmap -djpeg MATLAB

PBM (plain format)
1-bit

Bitmap -dpbm Ghostscript

1-5184

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print

Graphics Format

Bitmap
or
Vector

Print Command
Option String

MATLAB or
Ghostscript

PBM (raw format)
1-bit

Bitmap -dpbmraw Ghostscript

PCX 1-bit Bitmap -dpcxmono Ghostscript

PCX 24-bit color
PCX file format,
three 8-bit planes

Bitmap -dpcx24b Ghostscript

PCX 8-bit newer
color PCX file
format (256-color)

Bitmap -dpcx256 Ghostscript

PCX Older color
PCX file format
(EGA/VGA,
16-color)

Bitmap -dpcx16 Ghostscript

PDF Color PDF file
format

Vector -dpdf Ghostscript

PGM Portable
Graymap (plain
format)

Bitmap -dpgm Ghostscript

PGM Portable
Graymap (raw
format)

Bitmap -dpgmraw Ghostscript

PNG 24-bit Bitmap -dpng MATLAB

PPM Portable
Pixmap (plain
format)

Bitmap -dppm Ghostscript

PPM Portable
Pixmap (raw
format)

Bitmap -dppmraw Ghostscript

1-5185

print

Graphics Format

Bitmap
or
Vector

Print Command
Option String

MATLAB or
Ghostscript

SVG Scalable
Vector Graphics
(For Simulink
Models Only)

Vector -dsvg MATLAB

TIFF 24-bit Bitmap -dtiff or -dtiffn MATLAB

TIFF preview for
EPS files

Bitmap -tiff

The TIFF image format is supported on all platforms by almost all
word processors for importing images. The -dtiffn variant writes an
uncompressed TIFF. JPEG is a lossy, highly compressed format that
is supported on all platforms for image processing and for inclusion
into HTML documents on the Web. To create these formats, MATLAB
renders the figure using the Z-buffer rendering method and the
resulting bitmap is then saved to the specified file.

Printing and Exporting without a Display

On a UNIX platform (including Macintosh), where you can start in
MATLAB nodisplay mode (matlab -nodisplay), you can print using
most of the drivers you can use with a display and export to most of the
same file formats. The PostScript and Ghostscript devices all function
in nodisplay mode on UNIX platforms. The graphic devices -djpeg,
-dpng, -dtiff (compressed TIFF bitmaps), and -tiff (EPS with TIFF
preview) work as well, but under nodisplay they use Ghostscript
to generate output instead of using the drivers built into MATLAB.
However, Ghostscript ignores the -r option when generating -djpeg,
-dpng, -dtiff, and -tiff image files. This means that you cannot vary
the resolution of image files when running in nodisplay mode.

The same is true for the -noFigureWindows startup option which
suppresses figures on all platforms. On Windows platforms the
-dwin, -dwinc, and -dsetup options operate as usual under
-noFigureWindows. However, the printpreview GUI does not function

1-5186

print

in this mode. Naturally, the Windows only -dwin and -dwinc output
formats cannot be used on UNIX or Mac platforms with or without a
display.

The formats which you cannot generate in nodisplay mode on UNIX
and Mac platforms are:

• bitmap (-dbitmap) — Windows bitmap file

• bmp (-dbmp...) — Monochrome and color bitmaps

• hdf (-dhdf) — Hierarchical Data Format

• svg (-dsvg) — Scalable Vector Graphics file

• tiffn (-dtiffn) — TIFF image file, no compression
In addition, uicontrols do not print or export in nodisplay mode.

Printing
Options

This table summarizes options that you can specify for print. The
second column links to tutorials that provide operational details. Also
see “Resolution Considerations” on page 1-5189 for information on
controlling output resolution.

Note Support for some print options will be removed in a future
release. The affected formats have an asterisk (*) next to the option
string in the following table. The asterisks provide a link to the Web site
which supplies a form for users to give feedback about these changes.

Option Description

-adobecset * PostScript devices only. Use PostScript default
character set encoding. See “Early PostScript 1
Printers”.

-append PostScript devices only. Append figure to existing
PostScript file. See “Settings That Are Driver
Specific”.

1-5187

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print

Option Description

-cmyk PostScript devices only. Print with CMYK colors
instead of RGB. See “Setting CMYK Color”.

-ddriver Printing only. Printer driver to use. See “Printer
Drivers” on page 1-5179 table.

-dformat Exporting only. Graphics format to use. See
“Graphics Format Files” table.

-dsetup * Windows printing only. Display the
(platform-specific) Print Setup dialog. Settings
you make in it are saved, but nothing is printed.

-fhandle Handle of figure to print. Note that you cannot
specify both this option and the -swindowtitle
option. See “Which Figure Is Printed”.

-loose PostScript and Ghostscript printing only. Use
loose bounding box for PostScript output. See
“Producing Uncropped Figures”.

-noui Suppress printing of user interface controls. See
“Excluding User Interface Controls”.

-opengl Render using the OpenGL algorithm. Note that
you cannot specify this method in conjunction
with -zbuffer or -painters. See “Selecting a
Renderer”.

-painters Render using the Painter’s algorithm. Note that
you cannot specify this method in conjunction
with -zbuffer or -opengl. See “Selecting a
Renderer”.

-Pprinter Specify name of printer to use. See “Selecting
the Printer”.

1-5188

http://www.mathworks.com/support/contact_us/dev/obsoleteprintdevices.html

print

Option Description

-rnumber PostScript and built-in raster formats, and
Ghostscript vector format only. Specify resolution
in dots per inch. Defaults to 90 for Simulink, 150
for figures in image formats and when printing in
Z-buffer or OpenGL mode, screen resolution for
metafiles, and 864 otherwise. Use -r0 to specify
screen resolution. For details, see “Resolution
Considerations” on page 1-5189 and “Setting the
Resolution”.

-swindowtitle Specify name of Simulink system window to
print. Note that you cannot specify both this
option and the -fhandle option. See “Which
Figure Is Printed”.

-v Windows printing only. Display the Windows
Print dialog box. The v stands for “verbose mode.”

-zbuffer Render using the Z-buffer algorithm. Note that
you cannot specify this method in conjunction
with -opengl or -painters. See “Selecting a
Renderer”.

Resolution Considerations

Use -rnumber to specify the resolution of the generated output. In
general, using a higher value will yield higher quality output but at the
cost of larger output files. It affects the resolution and output size of all
MATLAB built-in raster formats (which are identified in column four of
the table in “Graphics Format Files” on page 1-5183).

1-5189

print

Note Built-in graphics formats are generated directly from MATLAB
without conversion through the Ghostscript library. Also, in headless
(nodisplay) mode, writing to certain image formats is not done by
built-in drivers, as it is when a display is being used. These formats are
-djpeg, -dtiff, and -dpng. Furthermore, the -dhdf and -dbmp formats
cannot be generated in headless mode (but you can substitute -dbmp16m
for -dbmp). See “Printing and Exporting without a Display” on page
1-5186 for details on printing when not using a display.

Unlike the built-in MATLAB formats, graphic output generated via
Ghostscript does not directly obey -r option settings. However, the
intermediate PostScript file generated by MATLAB as input for
the Ghostscript processor is affected by the -r setting and thus can
indirectly influence the quality of the final Ghostscript generated
output.

The effect of the -r option on output quality can be subtle at ordinary
magnification when using the OpenGL or ZBuffer renderers and writing
to one of the MATLAB built-in raster formats, or when generating vector
output that contains an embedded raster image (for example, PostScript
or PDF). The effect of specifying higher resolution is more apparent
when viewing the output at higher magnification or when printed, since
a larger -r setting provides more data to use when scaling the image.

When generating fully vectorized output (as when using the Painters
renderer to output a vector format such as PostScript or PDF), the
resolution setting affects the degree of detail of the output; setting
resolution higher generates crisper output (but small changes in the
resolution may have no observable effect). For example, the gap widths
of lines that do not use a solid ('-') linestyle can be affected.

Paper
Sizes

MATLAB printing supports a number of standard paper sizes. You can
select from the following list by setting the PaperType property of the
figure or selecting a supported paper size from the Print dialog box.

1-5190

print

Property Value Size (Width by Height)

usletter 8.5 by 11 inches

uslegal 8.5 by 14 inches

tabloid 11 by 17 inches

A0 841 by 1189 mm

A1 594 by 841 mm

A2 420 by 594 mm

A3 297 by 420 mm

A4 210 by 297 mm

A5 148 by 210 mm

B0 1029 by 1456 mm

B1 728 by 1028 mm

B2 514 by 728 mm

B3 364 by 514 mm

B4 257 by 364 mm

B5 182 by 257 mm

arch-A 9 by 12 inches

arch-B 12 by 18 inches

arch-C 18 by 24 inches

arch-D 24 by 36 inches

arch-E 36 by 48 inches

A 8.5 by 11 inches

B 11 by 17 inches

C 17 by 22 inches

1-5191

print

Property Value Size (Width by Height)

D 22 by 34 inches

E 34 by 43 inches

Printing
Tips

Setting Default Printer

You can edit the file printopt.m to set the default printer type and
destination. If you want to set up a new printer, use the operating
system printer management utilities. Restart MATLAB if you do not
see a printer which is already setup.

Figures with Resize Functions

The print command produces a warning when you print a figure
having a callback routine defined for the figure ResizeFcn. To avoid
the warning, set the figure PaperPositionMode property to auto or
select Auto (Actual Size, Centered) in the File > Print Preview
dialog box.

Troubleshooting Microsoft Windows Printing

If you encounter problems such as segmentation violations, general
protection faults, or application errors, or the output does not appear as
you expect when using Microsoft printer drivers, try the following:

• If your printer is PostScript compatible, print with one of the
MATLAB built-in PostScript drivers. There are various PostScript
device options that you can use with print , which all start with -dps.

• The behavior you are experiencing might occur only with certain
versions of the print driver. Contact the print driver vendor for
information on how to obtain and install a different driver.

• Try printing with one of the MATLAB built-in Ghostscript devices.
These devices use Ghostscript to convert PostScript files into other
formats, such as HP LaserJet, PCX, Canon BubbleJet, and so on.

1-5192

../ref/figure_props.html#ResizeFcn
../ref/figure_props.html#PaperPositionMode

print

• Copy the figure as a Windows Enhanced Metafile using the Edit >
Copy Figure menu item on the figure window menu or the print
-dmeta option at the command line. You can then import the file into
another application for printing.

You can set copy options in the figure’s File > Preferences >
Copying Options dialog box. The Windows Enhanced Metafile
Clipboard format produces a better quality image than Windows
Bitmap.

Printing MATLAB GUIs

You can generally obtain better results when printing a figure window
that contains MATLAB uicontrols by setting these key properties:

• Set the figure PaperPositionMode property to auto. This ensures
that the printed version is the same size as the on-screen version.
With PaperPositionMode set to auto MATLAB, does not resize
the figure to fit the current value of the PaperPosition. This is
particularly important if you have specified a figure ResizeFcn,
because if MATLAB resizes the figure during the print operation,
ResizeFcn is automatically called.

To set PaperPositionMode on the current figure, use the command:

set(gcf,'PaperPositionMode','auto')

• Set the figure InvertHardcopy property to off. By default, MATLAB
changes the figure background color of printed output to white,
but does not change the color of uicontrols. If you have set the
background color, for example, to match the gray of the GUI devices,
you must set InvertHardcopy to off to preserve the color scheme.

To set InvertHardcopy on the current figure, use the command:

set(gcf,'InvertHardcopy','off')

• Use a color device if you want lines and text that are in color on the
screen to be written to the output file as colored objects. Black and

1-5193

print

white devices convert colored lines and text to black or white to
provide the best contrast with the background and to avoid dithering.

• Use the print command’s -loose option to keep a bounding box from
being too tightly wrapped around objects contained in the figure.
This is important if you have intentionally used space between
uicontrols or axes and the edge of the figure and you want to
maintain this appearance in the printed output.

If you print or export in nodisplay mode, none of the uicontrols the
figure has will be visible. If you run code that adds uicontrols to a
figure when the figure is invisible, the controls will not print until the
figure is made visible.

Printing Interpolated Shading with PostScript Drivers

You can print MATLAB surface objects (such as graphs created with
surf or mesh) using interpolated colors. However, only patch objects
that are composed of triangular faces can be printed using interpolated
shading.

Printed output is always interpolated in RGB space, not in the colormap
colors. This means that if you are using indexed color and interpolated
face coloring, the printed output can look different from what is
displayed on screen.

PostScript files generated for interpolated shading contain the color
information of the graphics object’s vertices and require the printer
to perform the interpolation calculations. This can take an excessive
amount of time and in some cases, printers might time out before
finishing the print job. One solution to this problem is to interpolate
the data and generate a greater number of faces, which can then be
flat shaded.

To ensure that the printed output matches what you see on the screen,
print using the -zbuffer option. To obtain higher resolution (for
example, to make text look better), use the -r option to increase the
resolution. There is, however, a tradeoff between the resolution and the
size of the created PostScript file, which can be quite large at higher
resolutions. The default resolution of 150 dpi generally produces good

1-5194

print

results. You can reduce the size of the output file by making the figure
smaller before printing it and setting the figure PaperPositionMode to
auto, or by just setting the PaperPosition property to a smaller size.

Examples Specifying the Figure to Print

Pass a figure handle as a variable to the function form of print. For
example:

h = figure;
plot(1:4,5:8)
print(h)

Save the figure with the handle h to a PostScript file named Figure2,
which can be printed later:

print(h,'-dps','Figure2.ps')

Pass in a file name as a variable:

filename = 'mydata';
print(h, '-dpsc', filename);

(Because a file name is specified, the figure will be printed to a file.)

Specifying the Model to Print

Print a noncurrent Simulink model using the -s option with the title
of the window (in this case, f14):

print('-sf14')

If the window title includes any spaces, you must call the function form
rather than the command form of print. For example, this command
saves the Simulink window title Thruster Control:

print('-sThruster Control')

To print the current system, use:

1-5195

print

print('-s')

For information about issues specific to printing Simulink windows,
see the Simulink documentation.

Printing Figures at Screen Size

This example prints a surface plot with interpolated shading. Setting
the current figure’s (gcf) PaperPositionMode to auto enables you to
resize the figure window and print it at the size you see on the screen.
See “Printing Options” on page 1-5187 and “Printing Interpolated
Shading with PostScript Drivers” on page 1-5194 for information on
the -zbuffer and -r200 options.

surf(peaks)
shading interp
set(gcf,'PaperPositionMode','auto')
print('-dpsc2','-zbuffer','-r200')

For additional details, see “Printing Images” in the MATLAB Graphics
documentation.

Batch Processing

You can use the function form of print to pass variables containing
file names. For example, this for loop uses file names stored in a cell
array to create a series of graphs and prints each one with a different
file name:

fnames = {'file1', 'file2', 'file3'};
for k=1:length(fnames)

surf(peaks)
print('-dtiff','-r200',fnames{k})

end

fnames is a cell of string arrays so each element is a string.

Tiff Preview

The command

1-5196

print

print('-depsc','-tiff','-r300','picture1')

saves the current figure at 300 dpi, in a color Encapsulated PostScript
file named picture1.eps. The -tiff option creates a 72 dpi TIFF
preview, which many word processor applications can display on screen
after you import the EPS file. This enables you to view the picture
on screen within your word processor and print the document to a
PostScript printer using a resolution of 300 dpi.

Alternatives Select File > Print from the figure window to open the Print dialog box
and File > Print Preview to open the Print Preview GUI. For details,
see “How to Print or Export”.

See Also figure | hgsave | imwrite | orient | printdlg | printopt | saveas

1-5197

printopt

Purpose Configure printer defaults

Syntax [pcmd,dev] = printopt

Description [pcmd,dev] = printopt returns strings containing the current
system-dependent printing command and output device. printopt is a
file used by print to produce the hard-copy output. You can edit the file
printopt.m to set your default printer type and destination.

pcmd and dev are platform-dependent strings. pcmd contains the
command that print uses to send a file to the printer. dev contains the
printer driver or graphics format option for the print command. Their
defaults are platform dependent.

Platform Print Command Driver or Format

Mac and
UNIX

lpr -r -dps2

Windows COPY /B %s LPT1: -dwin

See Also printdlg | print

1-5198

printdlg

Purpose Print dialog box

Syntax printdlg
printdlg(fig)
printdlg('-crossplatform',fig)
printdlg('-setup',fig)

Description printdlg prints the current figure.

printdlg(fig) creates a modal dialog box from which you can print
the figure window identified by the handle fig. Note that uimenus
do not print.

printdlg('-crossplatform',fig) displays the standard
cross-platform MATLAB printing dialog rather than the built-in
printing dialog box for Microsoft Windows computers. Insert this option
before the fig argument.

printdlg('-setup',fig) forces the printing dialog to appear in a setup
mode. This option is obsolete and will be removed in a future release.

Note If you want to set up a new printer, use the operating system
printer management utilities. Restart MATLAB if you do not see the
printer which is already setup.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

See Also print | printopt | printpreview

1-5199

printpreview

Purpose Preview figure to print

Contents

“Description” on page 1-5200

“Right Pane Controls” on page 1-5201

“The Layout Tab” on page 1-5202

“The Lines/Text Tab” on page 1-5203

“The Color Tab” on page 1-5205

“The Advanced Tab” on page 1-5207

“Alternatives” on page 1-5208

Syntax printpreview
printpreview(f)

Description printpreview displays a dialog box showing the figure in the currently
active figure window as it will print. A scaled version of the figure
displays in the right-hand pane of the GUI.

printpreview(f) displays a dialog box showing the figure having the
handle f as it will print.

Use the Print Preview dialog box, shown below, to control the layout
and appearance of figures before sending them to a printer or print file.
Controls are grouped into four tabbed panes: Layout, Lines/Text,
Color, and Advanced.

1-5200

printpreview

Right Pane Controls

You can position and scale plots on the printed page using the rulers in
the right-hand pane of the Print Preview dialog. Use the outer ruler
handlebars to change margins. Moving them changes plot proportions.
Use the center ruler handlebars to change the position of the plot on
the page. Plot proportions do not change, but you can move portions of

1-5201

printpreview

the plot off the paper. The buttons on that pane let you refresh the
plot, close the dialog (preserving all current settings), print the page
immediately, or obtain context-sensitive help. Use the Zoom box and
scroll bars to view and position page elements more precisely.

The Layout Tab

Use the Layout tab, shown above, to control the paper format and
placement of the plot on printed pages. The following table summarizes
the Layout options:

Group Option Description

Placement Auto Let MATLAB decide placement of
plot on page*

Use manual... Specify position parameters for
plot on page*

Top, Left, Width,
Height

Standard position parameters in
current units

Use defaults Revert to default position

Fill page Expand figure to fill printable area
(see note below)

Fix aspect ratio Correct height/width ratio

Center Center plot on printed page

Paper Format U.S. and ISO® sheet size selector

Width, Height Sheet size in current units

Units Inches Use inches as units for dimensions
and positions

Centimeters Use centimeters as units for
dimensions and positions

Points Use points as units for dimensions
and positions

Orientation Portrait Upright paper orientation

1-5202

printpreview

Group Option Description

Landscape Sideways paper orientation

Rotated Currently the same as Landscape

* Selecting Auto in the Placement group sets the figure
PaperPositionMode to 'auto' and disables the controls in that
panel. Selecting Use manual size and position sets the figure
PaperPositionMode to 'manual' and enables the controls. If you set
PaperPositionMode programmatically, the print preview Placement
controls respond accordingly.

Note Selecting the Fill page option changes the PaperPosition
property to fill the page, allowing objects in normalized units to expand
to fill the space. If an object within the figure has an absolute size, for
example a table, it can overflow the page when objects with normalized
units expand. To avoid having objects fall off the page, do not use Fill
page under such circumstances.

The Lines/Text Tab

Use the Lines/Text tab, shown below, to control the line weights, font
characteristics, and headers for printed pages. The following table
summarizes the Lines/Text options:

1-5203

printpreview

Group Option Description

Lines Line
Width

Scale all lines by a percentage from 0
upward (100 being no change), print lines
at a specified point size, or default line
widths used on the plot

Min Width Smallest line width (in points) to use when
printing; defaults to 0.5 point

Text Font
Name

Select a system font for all text on plot, or
default to fonts currently used on the plot

1-5204

printpreview

Group Option Description

Font Size Scale all text by a percentage from 0
upward (100 being no change), print text
at a specified point size, or default to this
used on the plotFont

Weight
Select Normal ... Bold font styling for all
text from drop-down menu or default to the
font weights used on the plot

Font
Angle

Select Normal, Italic or Oblique font
styling for all text from drop-down menu or
default to the font angles used on the plot

Header Header
Text

Type the text to appear on the header at
the upper left of printed pages, or leave
blank for no header

Date Style Select a date format to have today’s date
appear at the upper left of printed pages,
or none for no date

The Color Tab

Use the Color tab, shown below, to control how colors are printed for
lines and backgrounds. The following table summarizes the Color
options:

1-5205

printpreview

Group Option Description

Color Scale Black and
White

Select to print lines and text in black
and white, but use color for patches
and other objects

Gray Scale Convert colors to shades of gray on
printed pages

1-5206

printpreview

Group Option Description

Color Print everything in color, matching
colors on plot; select RGB (default) or
CMYK color model for printing

Background
Color

Same as
figure

Print the figure’s background color
as it is

Custom Select a color name, or type a
colorspec for the background; white
(default) implies no background
color, even on colored paper.

The Advanced Tab

Use the Advanced tab, shown below, to control finer details of printing,
such as limits and ticks, renderer, resolution, and the printing of
UIControls. The following table summarizes the Advanced options:

1-5207

printpreview

Group Option Description

Axes limits
and ticks

Recompute
limits and ticks

Redraw x- and y-axes ticks and
limits based on printed plot size
(default)

Keep limits and
ticks

Use the x- and y-axes ticks and
limits shown on the plot when
printing the previewed figure

Miscellaneous Renderer Select a rendering algorithm for
printing: painters, zbuffer,
opengl, or auto (default)

Resolution Select resolution to print at in
dots per inch: 150, 300, 600, or
auto (default), or type in any
other positive value

Print
UIControls

Print all visible UIControls in
the figure (default), or uncheck
to exclude them from being
printed

Alternatives Use File > Print Preview on the figure window menu to access the
Print Preview dialog box, described below. For details, see “Using
Print Preview”.

See Also printdlg | pagesetupdlg

How To • How to Print or Export

1-5208

prod

Purpose Product of array elements

Syntax B = prod(A)
B = prod(A,dim)
B = prod(___ ,type)

Description B = prod(A) returns the product of the array elements of A.

• If A is a vector, then prod(A) returns the product of the elements.

• If A is a nonempty matrix, then prod(A) treats the columns of A as
vectors and returns a row vector of the products of each column.

• If A is an empty 0-by-0 matrix, prod(A) returns 1.

• If A is a multidimensional array, then prod(A) acts along the first
nonsingleton dimension and returns an array of products. The size of
this dimension reduces to 1 while the sizes of all other dimensions
remain the same.

prod computes and returns B as single if the input, A, is single. For
all other numeric and logical data types, prod computes and returns B
as double.

B = prod(A,dim) returns the products along dimension dim. For
example, if A is a matrix, prod(A,2) is a column vector containing the
products of each row.

B = prod(___ ,type) multiplies in and returns an array in the class
specified by type, using any of the input arguments in the previous
syntaxes. type can be 'double' or 'native'.

Input
Arguments

A - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

1-5209

prod

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical
Complex Number Support: Yes

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The
size(B,dim) is 1, while the sizes of all other dimensions remain the
same.

Consider a two-dimensional input array, A.

• If dim = 1, then prod(A,1) returns a row vector containing the
product of the elements in each column.

• If dim = 2, then prod(A,2) returns a column vector containing the
product of the elements in each row.

prod returns A if dim is greater than ndims(A).

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

1-5210

prod

type - Output class
'double' | 'native'

Output class, specified as 'double' or 'native', defines the data type
that the operation is performed in and output in.

• If type is 'double', then prod computes and returns a double
precision array, regardless of the input data type. For example, if A is
single, then prod multiplies in and returns in double.

• If type is 'native', prod multiplies natively and returns an array
with the same data type as the input array A. For example, if A is an
8-bit unsigned integer, prod multiplies natively and returns B with
data type uint8.

Data Types
char

Output
Arguments

B - Product array
scalar | vector | matrix | multidimensional array

Product array, returned as a scalar, vector, matrix, or multidimensional
array.

The class of B is as follows:

• If the type argument is not used and the input is not single, then
the output is double.

• If the type argument is not used and the input is single, then the
output is single.

• If the type argument specifies 'double', then the output is double
regardless of the input data type.

• If the type argument specifies 'native', then the output is the same
data type as the input.

Definitions First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array
whose size is not equal to 1.

1-5211

prod

For example:

• If X is a 1-by-n row vector, then the second dimension is the first
nonsingleton dimension of X.

• If X is a 1-by-0-by-n empty array, then the second dimension is the
first nonsingleton dimension of X.

• If X is a 1-by-1-by-3 array, then the third dimension is the first
nonsingleton dimension of X.

Examples Product of Elements in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A=[1:3:7;2:3:8;3:3:9]

A =

1 4 7
2 5 8
3 6 9

Find the product of the elements in each column.

B = prod(A)

B =

6 120 504

The length of the first dimension is 1 , and the length of the second
dimension matches size(A,2).

Logical Input with Double Output

Create an array of logical values.

A = [true false; true true]

1-5212

prod

A =

1 0
1 1

Find the product of the elements in each column.

B = prod(A)

B =

1 0

The output is double.

class(B)

ans =

double

Product of Elements in Each Row

Create a 3-by-3 array whose elements correspond to their linear indices.

A=[1:3:7;2:3:8;3:3:9]

A =

1 4 7
2 5 8
3 6 9

Find the product of the elements in each row and reduce the length of
the second dimension to 1.

dim = 2;
B = prod(A,dim)

1-5213

prod

B =

28
80

162

The length of the first dimension matches size(A,1), and the length of
the second dimension is 1.

Product of Elements in Each Plane

Create a 3-by-3-by-2 array whose elements correspond to their linear
indices.

A=[1:3:7;2:3:8;3:3:9];
A(:,:,2)=[10:3:16;11:3:17;12:3:18]

A(:,:,1) =

1 4 7
2 5 8
3 6 9

A(:,:,2) =

10 13 16
11 14 17
12 15 18

Find the product of each element in the first plane with its corresponding
element in the second plane.

dim = 3;
B = prod(A,dim)

B =

1-5214

prod

10 52 112
22 70 136
36 90 162

The length of the first dimension matches size(A,1), the length of
the second dimension matches size(A,2), and the length of the third
dimension is 1.

Single-Precision Input treated as Double

Create a 3-by-3 array of single-precision values.

A = single([1200 1500 1800; 1300 1600 1900; 1400 1700 2000])

A =

1200 1500 1800
1300 1600 1900
1400 1700 2000

Find the product of the elements in each row by performing the
multiplication in double precision.

B = prod(A,2,'double')

B =

1.0e+09 *

3.2400
3.9520
4.7600

The output is double precision.

class(B)

ans =

1-5215

prod

double

Integer Data Type for Input and Output

Create a 3-by-3 array of 8-bit unsigned integers.

A = uint8([1:3:7;2:3:8;3:3:9])

A =

1 4 7
2 5 8
3 6 9

Find the product of the elements in each column natively in uint8.

B = prod(A,'native')

B =

6 120 255

The result is an array of 8-bit unsigned integers.

class(B)

ans =

uint8

See Also cumprod | diff | sum | ndims

1-5216

profile

Purpose Profile execution time for function

Syntax profile on
profile -history
profile -nohistory
profile -history -historysize integer
profile -timer clock
profile -history -historysize integer -timer clock
profile off
profile resume
profile clear
profile viewer
S = profile('status')
stats = profile('info')

Description The profile function helps you debug and optimize MATLAB code
files by tracking their execution time. For each MATLAB function,
MATLAB local function, or MEX-function in the file, profile records
information about execution time, number of calls, parent functions,
child functions, code line hit count, and code line execution time.
Some people use profile simply to see the child functions; see also
matlab.codetools.requiredFilesAndProducts for that purpose. To
open the Profiler graphical user interface, use the profile viewer
syntax. By default, Profiler time is CPU time. The total time reported
by the Profiler is not the same as the time reported using the tic and
toc functions or the time you would observe using a stopwatch.

Note If your system uses Intel multi-core chips, you may want to
restrict the active number of CPUs to 1 for the most accurate and
efficient profiling. See “Multi-Core Processors — Setting for Most
Accurate Profiling on Windows Systems” or “Multi-Core Processors —
Setting for Most Accurate Profiling on Linux Systems” for details on
how to do this.

1-5217

profile

profile on starts the Profiler, clearing previously recorded profile
statistics. Note the following:

• You can specify all, none, or a subset, of the history, historysize
and timer options with the profile on syntax.

• You can specify options in any order, including before or after on.

• If the Profiler is currently on and you specify profile with one of the
options, MATLAB software returns an error message and the option
has no effect. For example, if you specify profile timer real,
MATLAB returns the following error: The profiler has already
been started. TIMER cannot be changed.

• To change options, first specify profile off, and then specify
profile on or profile resume with new options.

profile -history records the exact sequence of function calls. The
profile function records, by default, up to 1,000,000 function entry
and exit events. For more than 1,000,000 events, profile continues to
record other profile statistics, but not the sequence of calls. To change
the number of function entry and exit events that the profile function
records, use the historysize option. By default, the history option
is not enabled.

profile -nohistory disables further recording of the history (exact
sequence of function calls). Use the -nohistory option after having
previously set the -history option. All other profiling statistics
continue to be collected.

profile -history -historysize integer specifies the number of
function entry and exit events to record. By default, historysize
is set to 1,000,000.

profile -timer clock specifies the type of time to use. Valid values
for clock are:

• 'cpu'— The Profiler uses computer time (the default).

• 'real' — The Profiler uses wall-clock time.

1-5218

profile

For example, cpu time for the pause function is typically small, but real
time accounts for the actual time paused, and therefore would be larger.

profile -history -historysize integer -timer clock specifies all
of the options. Any order is acceptable, as is a subset.

profile off stops the Profiler.

profile resume restarts the Profiler without clearing previously
recorded statistics.

profile clear clears the statistics recorded by profile.

profile viewer stops the Profiler and displays the results in the
Profiler window. For more information, see Profiling for Improving
Performance in the Desktop Tools and Development Environment
documentation.

S = profile('status') returns a structure containing information
about the current status of the Profiler. The table lists the fields in the
order that they appear in the structure.

Field Values
Default
Value

ProfilerStatus 'on' or 'off' off

DetailLevel 'mmex' ’mmex’

Timer 'cpu' or 'real' ’cpu’

HistoryTracking'on' or 'off' ’off’

HistorySize integer 1000000

stats = profile('info') stops the Profiler and displays a structure
containing the results. Use this function to access the data generated
by profile. The table lists the fields in the order that they appear
in the structure.

1-5219

profile

Field Description

FunctionTable Structure array containing statistics
about each function called

FunctionHistory Array containing function call history

ClockPrecision Precision of the profile function’s time
measurement

ClockSpeed Estimated clock speed of the CPU

Name Name of the profiler

The FunctionTable field is an array of structures, where each structure
contains information about one of the functions or local functions called
during execution. The following table lists these fields in the order
that they appear in the structure.

Field Description

CompleteName Full path to FunctionName, including local
functions

FunctionName Function name; includes local functions

FileName Full path to FunctionName, with file extension,
excluding local functions

Type MATLAB functions, MEX-functions, and
many other types of functions including
MATLAB local functions, nested functions, and
anonymous functions

NumCalls Number of times the function was called

TotalTime Total time spent in the function and its child
functions

TotalRecursiveTime No longer used.

Children FunctionTable indices to child functions

Parents FunctionTable indices to parent functions

1-5220

profile

Field Description

ExecutedLines Array containing line-by-line details for the
function being profiled.

Column 1: Number of the line that executed.
If a line was not executed, it does not appear
in this matrix.

Column 2: Number of times the line was
executed

Column 3: Total time spent on that line.
Note: The sum of Column 3 entries does not
necessarily add up to the function’s TotalTime.

IsRecursive BOOLEAN value: Logical 1 (true) if recursive,
otherwise logical 0 (false)

PartialData BOOLEAN value: Logical 1 (true) if function
was modified during profiling, for example by
being edited or cleared. In that event, data
was collected only up until the point when the
function was modified.

Examples Profile, View Results, and Save Profile Data as HTML

This example profiles the MATLAB magic command and then displays
the results in the Profiler window. The example then retrieves the
profile data on which the HTML display is based and uses the profsave
command to save the profile data in HTML form.

profile on
plot(magic(35))
profile viewer
p = profile('info');
profsave(p,'profile_results')

1-5221

profile

Profile, Save Profile Data to a MAT-File, and View Results

Another way to save profile data is to store it in a MAT-file. This
example stores the profile data in a MAT-file, clears the profile data
from memory, and then loads the profile data from the MAT-file. This
example also shows a way to bring the reloaded profile data into the
Profiler graphical interface as live profile data, not as a static HTML
page.

p = profile('info');
save myprofiledata p
clear p
load myprofiledata
profview(0,p)

Profile and Show Results Including History

This example illustrates an effective way to view the results of profiling
when the history option is enabled. The history data describes the
sequence of functions entered and exited during execution. The profile
command returns history data in the FunctionHistory field of the
structure it returns. The history data is a 2-by-n array. The first row
contains Boolean values, where 0 means entrance into a function and
1 means exit from a function. The second row identifies the function
being entered or exited by its index in the FunctionTable field.
This example reads the history data and displays it in the MATLAB
Command Window.

profile on -history

plot(magic(4));

p = profile('info');

for n = 1:size(p.FunctionHistory,2)

if p.FunctionHistory(1,n)==0

str = 'entering function: ';

else

str = 'exiting function: ';

end

disp([str p.FunctionTable(p.FunctionHistory(2,n)).FunctionName])

1-5222

profile

end

See Also matlab.codetools.requiredFilesAndProducts | mlint | profsave

Related
Examples

• Profiling for Improving Performance
• “Profiling Parallel Code”

1-5223

profsave

Purpose Save profile report in HTML format

Syntax profsave
profsave(profinfo)
profsave(profinfo,dirname)

Description profsave executes the profile('info') function and saves the results
in HTML format. profsave creates a separate HTML file for each
function listed in the FunctionTable field of the structure returned by
profile. By default, profsave stores the HTML files in a subfolder of
the current folder named profile_results.

profsave(profinfo) saves the profiling results, profinfo, in HTML
format. profinfo is a structure of profiling information returned by the
profile('info') function.

profsave(profinfo,dirname) saves the profiling results, profinfo,
in HTML format. profsave creates a separate HTML file for each
function listed in the FunctionTable field of profinfo and stores them
in the folder specified by dirname.

Examples Run profile and save the results.

profile on
plot(magic(5))
profile off
profsave(profile('info'),'myprofile_results')

See Also profile

How To • Profiling for Improving Performance

1-5224

propedit

Purpose Open Property Editor

Syntax propedit
propedit(handle_list)

Description propedit starts the Property Editor, a graphical user interface to the
properties of graphics objects. If no current figure exists, propedit
will create one.

propedit(handle_list) edits the properties for the object (or objects)
in handle_list.

Starting the Property Editor enables plot editing mode for the figure.

See Also inspect | plotedit | propertyeditor

1-5225

propedit (COM)

Purpose Open built-in property page for control

Syntax h.propedit
propedit(h)

Description h.propedit requests the control to display its built-in property page.
Note that some controls do not have a built-in property page. For those
controls, this command fails.

propedit(h) is an alternate syntax for the same operation.

Tips COM functions are available on Microsoft Windows systems only.

See Also inspect | get (COM)

1-5226

properties

Purpose Class property names

Syntax properties('classname')
properties(obj)
p = properties(...)

Description properties('classname') displays the names of the public properties
for the MATLAB class named by classname. The properties function
also displays inherited properties.

properties(obj) obj can be either a scalar object or an array of objects.
When obj is scalar, properties also returns dynamic properties.
See “Dynamic Properties — Adding Properties to an Instance” for
information on using dynamic properties.

p = properties(...) returns the property names in a cell array of
strings.

Definitions A property is public when its GetAccess attribute value is public and
its Hidden attribute value is false (default values for these attributes).
See “Property Attributes” for a complete list of attributes.

properties is also a MATLAB class-definition keyword. See classdef
for more information on class definition keywords.

Examples Retrieve the names of the public properties of class memmapfile and
store the result in a cell array of strings:

p = properties('memmapfile');
p
ans =

'writable'
'offset'
'format'
'repeat'
'filename'

1-5227

properties

Construct an instance of the MException class and get its properties
names:

me = MException('Msg:ID','MsgText');
properties(me)
Properties for class MException:

identifier
message
cause
stack

See Also fieldnames | events | methods

Tutorials • “Properties”

1-5228

propertyeditor

Purpose Show or hide Property Editor

Syntax propertyeditor('on')
propertyeditor('off')
propertyeditor
propertyeditor(figure_handle,...)

Description propertyeditor('on') displays the Property Editor tool on the current
figure.

propertyeditor('off') hides the Property Editor on the current
figure.

propertyeditor toggles the visibility of the Property Editor on the
current figure. You can also use propertyeditor('toggle')instead
for the same functionality.

propertyeditor(figure_handle,...) displays or hides the Property
Editor on the figure specified by figure_handle.

Tips If you call propertyeditor in a MATLAB program and subsequent
lines depend on the Property Editor being fully initialized, follow it by
drawnow to ensure complete initialization.

Alternatives To collectively enable Plotting Tools, use the large Plotting Tool icon

on the figure toolbar. To collectively disable the Plotting Tools,

use the smaller icon . Open or close the Property Editor tool from
the figure’s View menu. For details, see “Customize Objects in Graph”.

1-5229

propertyeditor

See Also plottools | plotbrowser | figurepalette | inspect

1-5230

matlab.mixin.util.PropertyGroup

Purpose Custom property list for object display

Description Use the PropertyGroup class to create custom property display lists for
class derived from matlab.mixin.CustomDisplay.

Construction P = matlab.mixin.util.PropertyGroup(propertyList) constructs a
property group with the supplied propertyList.

P = matlab.mixin.util.PropertyGroup(propertyList,title)
displays title above the list of properties.

Input Arguments

propertyList

The propertyList is either a cell array of property names, or a
scalar struct with property name-value pairs.

title

Text to display above properties.

Properties NumProperties

The number of properties in the PropertyList.

Attributes:

Dependent true

GetAccess public

GetObservable true

SetAccess private

Transient true

PropertyList

The list of properties to display, stored as a scalar struct or a cell
array of strings.

1-5231

matlab.mixin.util.PropertyGroup

Attributes:

GetAccess public

GetObservable true

SetAccess public

SetObservable true

Title

An optional Title for the PropertyGroup.

Attributes:

GetAccess public

GetObservable true

SetAccess public

SetObservable true

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

See Also matlab.mixin.CustomDisplay

Related
Examples

• “Custom Display Interface”
• “Customize Property Display”

Concepts • Property Attributes

1-5232

psi

Purpose Psi (polygamma) function

Syntax Y = psi(X)
Y = psi(k,X)

Description Y = psi(X) evaluates the ψ function for each element of array X. X
must be real and nonnegative. The ψ function, also known as the
digamma function, is the logarithmic derivative of the gamma function

 () ()
(log(()))

(()) /
()

x x
d x

dx
d x dx

x

=

=

=

digamma
Γ

Γ
Γ

Y = psi(k,X) evaluates the kth derivative of ψ at the elements of X.
psi(0,X) is the digamma function, psi(1,X) is the trigamma function,
psi(2,X) is the tetragamma function, etc.

Examples Example 1

Use the psi function to calculate Euler’s constant, γ.

format long
-psi(1)
ans =

0.57721566490153

-psi(0,1)
ans =

0.57721566490153

Example 2

The trigamma function of 2, psi(1,2), is the same as (π2/6) – 1.

format long
psi(1,2)

1-5233

psi

ans =
0.64493406684823

pi^2/6 - 1
ans =

0.64493406684823

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, Sections 6.3 and 6.4.

See Also gamma | gammainc | gammaln

1-5234

publish

Purpose Generate view of MATLAB file in specified format

Syntax publish(file)
publish(file,format)

publish(file,Name,Value)
publish(file,options)

my_doc = publish(file, ___)

Description publish(file) generates a view of a MATLAB file in HTML format for
sharing your code. For example, publish('myfile.m') executes the
code in myfile.m using the base workspace and saves the formatted
code and results in /html/myfile.html. The html subfolder is relative
to the file folder.

When MATLAB publishes a file, it can delete existing files from the
output folder that start with the same name as file.

publish(file,format) generates a view of a MATLAB file in the
specified file format. The resulting files save to the html subfolder for
all file formats.

publish(file,Name,Value) generates a view of the MATLAB file,
file, with options specified by one or more name-value pair arguments.

publish(file,options) uses the options structure to customize
the output, which is useful when you want to preconfigure and save
your options for repeated use. The options structure fields and
values correspond to names and values of name-value pair arguments,
respectively.

my_doc = publish(file, ___) generates a view of the MATLAB file
file, and returns a string indicating the path of the resulting output
file. It can include any of the input arguments in previous syntaxes.

1-5235

publish

Input
Arguments

file - MATLAB file
string

Full or partial path of the MATLAB file for which you want to generate
a presentation view, specified as a string.

Example: 'myfile.m'

format - Output format of published file
'html' (default) | 'doc' | 'latex' | 'ppt' | 'xml' | 'pdf'

Output format of published MATLAB file, specified as one of the
following string values.

Output Format String Value

Hypertext Markup Language 'html' (default)

Microsoft Word 'doc'

LaTeX 'latex'

Microsoft PowerPoint 'ppt'

Extensible Markup Language 'xml'

Portable Document Format 'pdf'

Example: publish('myfile.m','ppt');

options - Options for published output
MATLAB structure

Options for published output, specified as a structure. Use the options
structure instead of name-value pair arguments when you want to reuse
the same configuration for publishing multiple MATLAB code files.

The options structure field and values correspond to names and
values of the name-value pair arguments, respectively.

For example, to specify the PDF output format and the output folder
C:\myPublishedOutput, use:

1-5236

publish

options = struct('format','pdf','outputDir','C:\myPublishedOutput')

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'format','latex','showCode',false specifies LaTeX
output file format and excludes the code from the output.

Output Options

’format’ - Published output file format
'html' (default) | 'doc' | 'latex' | 'ppt' | 'xml' | 'pdf'

Published output file format, specified as the comma-separated pair
consisting of 'format' and one of the following string values.

Output Format String Value

Hypertext Markup Language 'html' (default)

Microsoft Word 'doc'

LaTeX 'latex'

Microsoft PowerPoint 'ppt'

Extensible Markup Language 'xml'

Portable Document Format 'pdf'

’outputDir’ - Output folder
'' (default) | full path

Output folder to which the published document is saved, specified
as the comma-separated pair consisting of 'outputDir' and the
full path. You must specify the full path as a string, for example
'C:\myPublishedOutput'.

1-5237

publish

The default value, '', specifies the html subfolder of the current folder.

’stylesheet’ - Extensible Stylesheet language (XSL) file
'' (default) | full path to XSL file name

Extensible Stylesheet Language (XSL) file to use when publishing
MATLAB code to HTML, XML, or LaTeX format, specified as the
comma-separated pair consisting of 'stylesheet' and the full
path to the XSL file. The full path must be a string, for example,
'C:\myStylesheet\stylesheet.xsl'

The default value, '', specifies the MATLAB default style sheet.

Figure Options

’createThumbnail’ - Thumbnail image creation
true (default) | false

Thumbnail image creation for the published document, specified as the
comma-separated pair consisting of 'createThumbnail' and either
true or false. You can use this thumbnail to represent your file in
HTML pages.

’figureSnapMethod’ - Published figure window appearance
'entireGUIWindow' (default) | 'print' | 'getframe' |
'entireFigureWindow'

Appearance of published figure windows, including window decorations
and background color, specified as the comma-separated pair consisting
of 'figureSnapMethod' and one of the following string values.

String Value
Window
Decorations

Background
Color

GUIs Figures GUIs Figures

'entireGUIWindow'
(default)

Included Excluded Matches
screen

White

'print' Excluded Excluded White White

1-5238

publish

(Continued)

'getframe' Excluded Excluded Matches
screen

Matches
screen

'entireFigureWindow' Included Included Matches
screen

Matches
screen

’imageFormat’ - Published image file format
'png' | 'epsc2' | 'jpg' | ...

Published image file format, specified as the comma-separated pair
consisting of 'imageFormat' and one of the following string values.

'format' Value Valid 'imageFormat' Value Default
'imageFormat'
Value

'doc' Any image format that
your installed version of
Microsoft Office can import,
including 'png' , 'jpg',
'bmp', and 'tiff'. If
the 'figureSnapMethod'
is 'print', then you can
also specify 'eps', 'epsc',
'eps2', 'ill', 'meta', and
'pdf'.

'png'

'html' Any format publishes
successfully. Ensure that
the tools you use to view and
process the output files can
display the output format you
specify.

'png'

1-5239

publish

(Continued)

'latex' Any format publishes
successfully. Ensure that
the tools you use to view and
process the output files can
display the output format you
specify.

'epsc2',
except when
'figureSnapMethod'
is any one of the
following:

• 'getframe'

• 'entireFigureWindow'

• 'entireGUIWindow'
and the
snapped
window is a
GUI window

In these cases the
default is 'png'

'pdf' 'bmp' or 'jpg'. 'bmp'

'ppt' Any format that your
installed version of Microsoft
Office can import, including
'png', 'jpg', 'bmp', and
'tiff'.

'png'

'xml' Any format publishes
successfully. Ensure that
the tools you use to view and
process the output files can
display the output format you
specify.

'png'

’maxHeight’ - Maximum height of published images
[] (default) | positive integer value

1-5240

publish

Maximum height of published images that the code generates, specified
as the comma-separated pair consisting of 'maxHeight' and one of
the following values:

• [] (default)—Unrestricted height. This value is always used when
the 'format' value is 'pdf'.

• Positive integer value that specifies the image height in pixels.

’maxWidth’ - Maximum width of published images
'' (default) | positive integer value

Maximum width of an image that the code generates, specified as
the comma-separated pair consisting of 'maxWidth' and one of the
following values:

• [] (default)—Unrestricted width. This value is always used when
the 'format' value is 'pdf'.

• Positive integer value that specifies the image width in pixels.

’useNewFigure’ - Create new figure
true (default) | false

A logical value that determines if MATLAB creates a new Figure window
for figures that the code generates, specified as the comma-separated
pair consisting of 'useNewFigure' and one of the following:

• true (default)—If the code generates a figure, then MATLAB creates
a Figure window with a white background, and at the default size
before publishing.

• false—MATLAB does not create a figure window.

This value enables you to use a figure with different properties for
publishing. For example, open a Figure window, change the size
and background color, and then publish your code. Figures in your
published document use the characteristics of the figure you opened
before publishing.

1-5241

publish

Code Options

’evalCode’ - Option to run code
true (default) | false

Option to evaluate code and include the MATLAB output in the
published view, specified as a logical value.

’catchError’ - Error handling during publishing
true (default) | false

Error handling during publishing, specified as the comma-separated
pair consisting of 'catchError' and one of the following logical values:

• true (default)—MATLAB continues publishing and includes the
error in the published file.

• false—MATLAB displays the error at the command line and does
not produce a published file.

’codeToEvaluate’ - Additional code to evaluate during publishing
string

Additional code to evaluate during publishing, specified as the
comma-separated pair consisting of 'codeToEvaluate' and the string
with the corresponding code. Use this option to specify code that does
not appear in the MATLAB file, for example to set the value of an input
argument for a function being published.

If this option is unspecified, MATLAB evaluates only the code in the
MATLAB file you are publishing.

’maxOutputLines’ - Maximum number of lines
Inf (default) | nonnegative integer value

Maximum number of lines in MATLAB output per cell evaluated
during publishing, specified as the comma-separated pair consisting of
'maxOutputLines' and one of the following values:

• Inf (default)—MATLAB includes all output lines in the published
output.

1-5242

publish

• Nonnegative integer—MATLAB truncates the number of lines in the
output at the number of lines you specify.

’showCode’ - Option to include code in published file
true (default) | false

Option to include code in published file, specified as the
comma-separated pair consisting of 'maxOutputLines' and a logical
value.

Tips • If 'format is 'html', MATLAB includes the code being published at
the end of the published HTML file as comments, even when you set
the 'showCode' option to false. Because MATLAB includes the
code as comments, this code does not display in a Web browser. This
enables you to use the grabcode function to extract the MATLAB
code from an HTML file, even when the file does not display the code.

Definitions Window Decorations

Window decorations include window title bar, toolbar, menu bar, and
window border.

Syntax Highlighting

Syntax highlighting colors various elements in code to help you identify
these elements while reading or editing code. By default, keywords are
blue, strings are purple, and unterminated strings are maroon.

MATLAB does not preserve syntax highlighting when you set 'format'
to 'latex' or 'ppt'.

Examples Generate HTML View of MATLAB Script

Generate an HTML view of the code, MATLAB results, and comments
in a MATLAB script.

Copy the example file, fourier_demo2.m, to your current folder.

copyfile(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','fourier_demo2.m'),'.','f')

1-5243

publish

Generate an HTML view of the MATLAB file.

publish('fourier_demo2.m');

The publish command executes the code for each cell in
fourier_demo2.m, and saves the file to /html/fourier_demo2.html.

View the HTML file.

web('html/fourier_demo2.html')

Generate View of MATLAB Script in Microsoft Word Format

Generate a Microsoft Word view of the code, MATLAB results, and
comments in a MATLAB script.

Copy the example file to your current folder.

copyfile(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','fourier_demo2.m'),'.','f')

Publish the file in Microsoft Word format.

publish('fourier_demo2.m','doc');

View the published output.

winopen('html/fourier_demo2.doc')

Publish MATLAB Script Using Name-Value Pairs to Customize
Output

Generate an HTML view of the code, MATLAB results, and comments
in a MATLAB script. Use name-value pair arguments to include
window decorations in the published output.

Copy the example file to your current folder.

copyfile(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','fourier_demo2.m'),'.','f')

1-5244

publish

Publish the example MATLAB file to HTML format.

publish('fourier_demo2.m', 'figureSnapMethod', 'entireFigureWindow')

The 'figureSnapMethod','entireFigureWindow' name-value pair
argument specifies to include the window decorations in the figures,
and to match the figure background color to the screen color.

View the published output.

web('html/fourier_demo2.html')

Customize publish Output Using Options Structure

Generate a Microsoft Word view of the code, MATLAB results, and
comments in a MATLAB script. Use a structure to customize the
published output.

Specifying options as a structure is useful when you want to
preconfigure and save your options for repeated use.

Copy the example file to your current folder.

copyfile(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','fourier_demo2.m'),'.','f')

Define options to customize the published output as a structure,
options_doc_nocode.

options_doc_nocode.format = 'doc';
options_doc_nocode.showCode = false;

Publish the file, specifying the options structure.

publish('fourier_demo2.m',options_doc_nocode);

Save File Path of Published Script to Variable

Generate an HTML view of a MATLAB script, and save the path of the
published HTML file to a variable.

This example assumes that the current folder is C:\my_MATLAB_files.

1-5245

publish

Copy the example file to your current folder.

copyfile(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','fourier_demo2.m'),'.','f')

Publish the MATLAB file, and save the path of the resulting published
HTML file to an output variable.

mydoc = publish('fourier_demo2.m')

mydoc =

C:\my_MATLAB_files\html\fourier_demo2.html

See Also grabcode | notebook

Concepts • “Publishing MATLAB Code”
• “Publishing Markup”

1-5246

PutCharArray

Purpose Store character array in Automation server

Syntax IDL Method Signature

PutCharArray([in] BSTR varname, [in] BSTR workspace,
[in] BSTR string)

Microsoft Visual Basic Client

PutCharArray(varname As String, workspace As String,
string As String)

MATLAB Client
h.PutCharArray('varname', 'workspace', 'string')
PutCharArray(h, 'varname', 'workspace', 'string')

Description h.PutCharArray('varname', 'workspace', 'string') stores the
character array in string in the specified workspace of the server
attached to handle h, assigning to it the variable varname. The
workspace argument can be either base or global. The function name
is case sensitive.

PutCharArray(h, 'varname', 'workspace', 'string') is an
alternate syntax.

Tips The character array specified in the string argument can have any
dimensions. However, PutCharArray changes the dimensions to a
1–by-n column-wise representation, where n is the number of characters
in the array. Executing the following commands in MATLAB illustrates
this behavior:

h = actxserver('matlab.application');
chArr = ['abc'; 'def'; 'ghk']
chArr =
abc
def
ghk

h.PutCharArray('Foo', 'base', chArr)

1-5247

PutCharArray

tstArr = h.GetCharArray('Foo', 'base')
tstArr =
adgbehcfk

Examples Visual Basic .NET Client

This example uses the Visual Basic MsgBox command to control flow
between MATLAB and the Visual Basic Client.

Dim Matlab As Object
Try

Matlab = GetObject(, "matlab.application")
Catch e As Exception

Matlab = CreateObject("matlab.application")
End Try
MsgBox("MATLAB window created; now open it...")

Open the MATLAB window, then click Ok.

Matlab.PutCharArray("str", "base", _
"He jests at scars that never felt a wound.")

MsgBox("In MATLAB, type" & vbCrLf _
& "str")

In the MATLAB window type str; MATLAB displays:

str =
He jests at scars that never felt a wound.

Click Ok.

MsgBox("closing MATLAB window...")

Click Ok to close and terminate MATLAB.

Matlab.Quit()

See Also GetCharArray | PutWorkspaceData | GetWorkspaceData | Execute

1-5248

PutFullMatrix

Purpose Matrix in Automation server workspace

Syntax IDL Method Signature

PutFullMatrix([in] BSTR varname, [in] BSTR workspace,
[in] SAFEARRAY(double) xreal, [in] SAFEARRAY(double) ximag)

Microsoft Visual Basic Client

PutFullMatrix([in] varname As String, [in] workspace As String,
[in] xreal As Double, [in] ximag As Double)

MATLAB Client
h.PutFullMatrix('varname','workspace',xreal,ximag)
PutFullMatrix(h,'varname','workspace',xreal,ximag)

Description h.PutFullMatrix('varname','workspace',xreal,ximag) stores a
matrix in the specified workspace of the server attached to handle h and
assigns it to variable varname. Use xreal and ximag for the real and
imaginary parts of the matrix. The matrix cannot be a scalar, an empty
array, or have more than two dimensions. The values for workspace
are base or global.

PutFullMatrix(h,'varname','workspace',xreal,ximag) is an
alternate syntax.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace.
These functions use the variant data type instead of safearray which
is not supported by VBScript.

Examples This example uses a Visual Basic .NET client to write a matrix to the
base workspace of the server:

Dim MatLab As Object
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim ZReal(4, 4) As Double
Dim ZImag(4, 4) As Double

1-5249

PutFullMatrix

Dim i, j As Integer

For i = 0 To 4
For j = 0 To 4
XReal(i, j) = Rnd() * 6
XImag(i, j) = 0
Next j

Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("M","base",XReal,XImag)
MatLab.GetFullMatrix("M","base",ZReal,ZImag)

Use a Visual Basic .NET client to write a matrix to the global workspace
of the server:

Dim MatLab As Object
Dim XReal(1,2) As Double
Dim XImag(1,2) As Double
Dim result As String
Dim i,j As Integer

For i = 0 To 1
For j = 0 To 2
XReal(i,j) = (j * 2 + 1) + i
XImag(i,j) = 1

Next j
Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("X","global",XReal,XImag)
result = Matlab.Execute("whos global")
MsgBox(result)

1-5250

PutFullMatrix

See Also GetFullMatrix | PutWorkspaceData | Execute

How To • “Exchanging Data with the Server”

1-5251

PutWorkspaceData

Purpose Data in Automation server workspace

Syntax IDL Method Signature

PutWorkspaceData([in] BSTR varname, [in] BSTR workspace,
[in] VARIANT data)

Microsoft Visual Basic Client

PutWorkspaceData(varname As String, workspace As String,
data As Object)

MATLAB Client
h.PutWorkspaceData('varname','workspace',data)
PutWorkspaceData(h,'varname','workspace',data)

Description h.PutWorkspaceData('varname','workspace',data) stores data in
the workspace of the server attached to handle h and assigns it to
varname. The values for workspace are base or global.

PutWorkspaceData(h,'varname','workspace',data) is an alternate
syntax.

Use PutWorkspaceData to pass numeric and character array data
respectively to the server. Do not use PutWorkspaceData on sparse
arrays, structures, or function handles. Use the Execute method for
these data types.

The GetWorkspaceData and PutWorkspaceData functions pass numeric
data as a variant data type. These functions are especially useful for
VBScript clients as VBScript does not support the safearray data type
used by GetFullMatrix and PutFullMatrix.

Examples Create an array in a Visual Basic .NET client and put it in the base
workspace of the MATLAB Automation server:

1 Create the Visual Basic application. Use the MsgBox command to
control flow between MATLAB and the application:

Dim Matlab As Object

1-5252

PutWorkspaceData

Dim data(6) As Double
Dim i As Integer
MatLab = CreateObject("matlab.application")
For i = 0 To 6

data(i) = i * 15
Next i
MatLab.PutWorkspaceData("A","base",data)
MsgBox("In MATLAB, type" & vbCrLf & "A")

2 Open the MATLAB window and type A. MATLAB displays:

A =
0 15 30 45 60 75 90

3 Click Ok to close and terminate MATLAB.

See Also GetWorkspaceData | PutFullMatrix | PutCharArray | Execute

How To • “Executing Commands in the MATLAB Server”

• “Exchanging Data with the Server”

1-5253

pwd

Purpose Identify current folder

Syntax pwd
currentFolder = pwd

Description pwd displays the MATLAB current folder.

currentFolder = pwd returns the current folder as a string to
currentFolder.

Alternatives • Use the Current Folder toolbar.

See Also cd | dir

1-5254

qmr

Purpose Quasi-minimal residual method

Syntax x = qmr(A,b)
qmr(A,b,tol)
qmr(A,b,tol,maxit)
qmr(A,b,tol,maxit,M)
qmr(A,b,tol,maxit,M1,M2)
qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = qmr(A,b,...)
[x,flag,relres] = qmr(A,b,...)
[x,flag,relres,iter] = qmr(A,b,...)
[x,flag,relres,iter,resvec] = qmr(A,b,...)

Description x = qmr(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. You can
specify A as a function handle, afun, such that afun(x,'notransp')
returns A*x and afun(x,'transp') returns A'*x.

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If qmr converges, a message to that effect is displayed. If qmr fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

qmr(A,b,tol) specifies the tolerance of the method. If tol is [], then
qmr uses the default, 1e-6.

qmr(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then qmr uses the default, min(n,20).

qmr(A,b,tol,maxit,M) and qmr(A,b,tol,maxit,M1,M2) use
preconditioners M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then qmr applies no

1-5255

qmr

preconditioner. M can be a function handle mfun such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

qmr(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then qmr uses the default, an all zero vector.

[x,flag] = qmr(A,b,...) also returns a convergence flag.

Flag Convergence

0 qmr converged to the desired tolerance tol within maxit
iterations.

1 qmr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 The method stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during qmr became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = qmr(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = qmr(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = qmr(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Examples Using qmr with a Matrix Input

This example shows how to use qmr with a matrix input. The code:

n = 100;
on = ones(n,1);

1-5256

qmr

A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8; maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x = qmr(A,b,tol,maxit,M1,M2);

displays the message:

qmr converged at iteration 9 to a solution...
with relative residual
5.6e-009

Using qmr with a Function Handle

This example replaces the matrix A in the previous example with
a handle to a matrix-vector product function afun. The example is
contained in a file run_qmr that

• Calls qmr with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_qmr
are available to afun.

The following shows the code for run_qmr:

function x1 = run_qmr
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = qmr(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

y = 4 * x;

1-5257

qmr

y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1=run_qmr;

MATLAB software displays the message

qmr converged at iteration 9 to a solution with relative residual
5.6e-009

Using qmr with a Preconditioner

This example demonstrates the use of a preconditioner.

Load A = west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12; maxit = 20;

Use qmr to find a solution at the requested tolerance and number of
iterations.

[x0,fl0,rr0,it0,rv0] = qmr(A,b,tol,maxit);

1-5258

qmr

fl0 is 1 because qmr does not converge to the requested tolerance 1e-12
within the requested 20 iterations. The seventeenth iterate is the best
approximate solution and is the one returned as indicated by it0 = 17.
MATLAB stores the residual history in rv0.

Plot the behavior of qmr.

semilogy(0:maxit,rv0/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-5259

qmr

The plot shows that the solution does not converge. You can use a
preconditioner to improve the outcome.

Create the preconditioner with ilu, since the matrix A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

1-5260

qmr

MATLAB cannot construct the incomplete LU as it would result in a
singular factor, which is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the
error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = qmr(A,b,tol,maxit,L,U);

fl1 is 0 because qmr drives the relative residual to 4.1410e-014 (the
value of rr1). The relative residual is less than the prescribed tolerance
of 1e-12 at the sixth iteration (the value of it1) when preconditioned
by the incomplete LU factorization with a drop tolerance of 1e-6. The
output rv1(1) is norm(b), and the output rv1(7) is norm(b-A*x2).

You can follow the progress of qmr by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0).

semilogy(0:it1,rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-5261

qmr

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Freund, Roland W. and Nöel M. Nachtigal, “QMR: A quasi-minimal
residual method for non-Hermitian linear systems,” SIAM Journal:
Numer. Math. 60, 1991, pp. 315–339.

1-5262

qmr

See Also bicg | bicgstab | cgs | function_handle | gmres | lsqr | ilu |
minres | pcg | symmlq | mldivide

1-5263

qr

Purpose Orthogonal-triangular decomposition

Syntax [Q,R] = qr(A)
[Q,R] = qr(A,0)
[Q,R,E] = qr(A)
[Q,R,E] = qr(A,'matrix')
[Q,R,e] = qr(A,'vector')
[Q,R,e] = qr(A,0)
X = qr(A)
X = qr(A,0)
R = qr(A)
R = qr(A,0)
[C,R] = qr(A,B)
[C,R,E] = qr(A,B)
[C,R,E] = qr(A,B,'matrix')
[C,R,e] = qr(A,B,'vector')
[C,R] = qr(A,B,0)
[C,R,e] = qr(A,B,0)

Description [Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper triangular
matrix R and an m-by-m unitary matrix Q so that A = Q*R.

[Q,R] = qr(A,0) produces the economy-size decomposition. If m > n,
only the first n columns of Q and the first n rows of R are computed. If
m<=n, this is the same as [Q,R] = qr(A).

If A is full:

[Q,R,E] = qr(A) or [Q,R,E] = qr(A,'matrix') produces unitary Q,
upper triangular R and a permutation matrix E so that A*E = Q*R. The
column permutation E is chosen so that abs(diag(R)) is decreasing.

[Q,R,e] = qr(A,'vector') returns the permutation information as a
vector instead of a matrix. That is, e is a row vector such that A(:,e)
= Q*R.

[Q,R,e] = qr(A,0) produces an economy-size decomposition in which
e is a permutation vector, so that A(:,e) = Q*R.

1-5264

qr

X = qr(A) and X = qr(A,0) return a matrix X such that triu(X) is the
upper triangular factor R.

If A is sparse:

R = qr(A) computes a Q-less QR decomposition and returns the upper
triangular factor R. Note that R = chol(A'*A). Since Q is often nearly
full, this is preferred to [Q,R] = QR(A).

R = qr(A,0) produces economy-size R. If m>n, R has only n rows. If
m<=n, this is the same as R = qr(A).

[Q,R,E] = qr(A) or [Q,R,E] = qr(A,'matrix') produces unitary Q,
upper triangular R and a permutation matrix E so that A*E = Q*R. The
column permutation E is chosen to reduce fill-in in R.

[Q,R,e] = qr(A,'vector') returns the permutation information as a
vector instead of a matrix. That is, e is a row vector such that A(:,e)
= Q*R.

[Q,R,e] = qr(A,0) produces an economy-size decomposition in which
e is a permutation vector, so that A(:,e) = Q*R.

[C,R] = qr(A,B), where B has as many rows as A, returns C = Q'*B.
The least-squares solution to A*X = B is X = R\C.

[C,R,E] = qr(A,B) or [C,R,E] = qr(A,B,'matrix'), also returns a
fill-reducing ordering. The least-squares solution to A*X = B is X =
E*(R\C).

[C,R,e] = qr(A,B,'vector') returns the permutation information
as a vector instead of a matrix. That is, the least-squares solution to
A*X = B is X(e,:) = R\C.

[C,R] = qr(A,B,0) produces economy-size results. If m>n, C and R have
only n rows. If m<=n, this is the same as [C,R] = qr(A,B).

[C,R,e] = qr(A,B,0) additionally produces a fill-reducing
permutation vector e. In this case, the least-squares solution to A*X =
B is X(e,:) = R\C.

1-5265

qr

Examples Find the least squares approximate solution to A*x = b with the Q-less
QR decomposition and one step of iterative refinement:

if issparse(A), R = qr(A);
else R = triu(qr(A)); end
x = R\(R'\(A'*b));
r = b - A*x;
err = R\(R'\(A'*r));
x = x + err;

See Also lu | chol | null | orth | qrdelete | qrinsert | qrupdate

1-5266

qrdelete

Purpose Remove column or row from QR factorization

Syntax [Q1,R1] = qrdelete(Q,R,j)
[Q1,R1] = qrdelete(Q,R,j,'col')
[Q1,R1] = qrdelete(Q,R,j,'row')

Description [Q1,R1] = qrdelete(Q,R,j) returns the QR factorization of the
matrix A1, where A1 is A with the column A(:,j) removed and [Q,R] =
qr(A) is the QR factorization of A.

[Q1,R1] = qrdelete(Q,R,j,'col') is the same as qrdelete(Q,R,j).

[Q1,R1] = qrdelete(Q,R,j,'row') returns the QR factorization of
the matrix A1, where A1 is A with the row A(j,:) removed and [Q,R] =
qr(A) is the QR factorization of A.

Examples A = magic(5);
[Q,R] = qr(A);
j = 3;
[Q1,R1] = qrdelete(Q,R,j,'row');

Q1 =
0.5274 -0.5197 -0.6697 -0.0578
0.7135 0.6911 0.0158 0.1142
0.3102 -0.1982 0.4675 -0.8037
0.3413 -0.4616 0.5768 0.5811

R1 =
32.2335 26.0908 19.9482 21.4063 23.3297

0 -19.7045 -10.9891 0.4318 -1.4873
0 0 22.7444 5.8357 -3.1977
0 0 0 -14.5784 3.7796

returns a valid QR factorization, although possibly different from

A2 = A;
A2(j,:) = [];
[Q2,R2] = qr(A2)

1-5267

qrdelete

Q2 =
-0.5274 0.5197 0.6697 -0.0578
-0.7135 -0.6911 -0.0158 0.1142
-0.3102 0.1982 -0.4675 -0.8037
-0.3413 0.4616 -0.5768 0.5811

R2 =
-32.2335 -26.0908 -19.9482 -21.4063 -23.3297

0 19.7045 10.9891 -0.4318 1.4873
0 0 -22.7444 -5.8357 3.1977
0 0 0 -14.5784 3.7796

Algorithms The qrdelete function uses a series of Givens rotations to zero out the
appropriate elements of the factorization.

See Also planerot | qr | qrinsert

1-5268

qrinsert

Purpose Insert column or row into QR factorization

Syntax [Q1,R1] = qrinsert(Q,R,j,x)
[Q1,R1] = qrinsert(Q,R,j,x,'col')
[Q1,R1] = qrinsert(Q,R,j,x,'row')

Description [Q1,R1] = qrinsert(Q,R,j,x) returns the QR factorization of the
matrix A1, where A1 is A = Q*R with the column x inserted before
A(:,j). If A has n columns and j = n+1, then x is inserted after the
last column of A.

[Q1,R1] = qrinsert(Q,R,j,x,'col') is the same as
qrinsert(Q,R,j,x).

[Q1,R1] = qrinsert(Q,R,j,x,'row') returns the QR factorization
of the matrix A1, where A1 is A = Q*R with an extra row, x, inserted
before A(j,:).

Examples A = magic(5);
[Q,R] = qr(A);
j = 3;
x = 1:5;
[Q1,R1] = qrinsert(Q,R,j,x,'row')

Q1 =
0.5231 0.5039 -0.6750 0.1205 0.0411 0.0225
0.7078 -0.6966 0.0190 -0.0788 0.0833 -0.0150
0.0308 0.0592 0.0656 0.1169 0.1527 -0.9769
0.1231 0.1363 0.3542 0.6222 0.6398 0.2104
0.3077 0.1902 0.4100 0.4161 -0.7264 -0.0150
0.3385 0.4500 0.4961 -0.6366 0.1761 0.0225

R1 =
32.4962 26.6801 21.4795 23.8182 26.0031

0 19.9292 12.4403 2.1340 4.3271
0 0 24.4514 11.8132 3.9931
0 0 0 20.2382 10.3392

1-5269

qrinsert

0 0 0 0 16.1948
0 0 0 0 0

returns a valid QR factorization, although possibly different from

A2 = [A(1:j-1,:); x; A(j:end,:)];
[Q2,R2] = qr(A2)

Q2 =
-0.5231 0.5039 0.6750 -0.1205 0.0411 0.0225
-0.7078 -0.6966 -0.0190 0.0788 0.0833 -0.0150
-0.0308 0.0592 -0.0656 -0.1169 0.1527 -0.9769
-0.1231 0.1363 -0.3542 -0.6222 0.6398 0.2104
-0.3077 0.1902 -0.4100 -0.4161 -0.7264 -0.0150
-0.3385 0.4500 -0.4961 0.6366 0.1761 0.0225

R2 =
-32.4962 -26.6801 -21.4795 -23.8182 -26.0031

0 19.9292 12.4403 2.1340 4.3271
0 0 -24.4514 -11.8132 -3.9931
0 0 0 -20.2382 -10.3392
0 0 0 0 16.1948
0 0 0 0 0

Algorithms The qrinsert function inserts the values of x into the jth column (row)
of R. It then uses a series of Givens rotations to zero out the nonzero
elements of R on and below the diagonal in the jth column (row).

See Also planerot | qr | qrdelete

1-5270

qrupdate

Purpose Rank 1 update to QR factorization

Syntax [Q1,R1] = qrupdate(Q,R,u,v)

Description [Q1,R1] = qrupdate(Q,R,u,v) when [Q,R] = qr(A) is the original
QR factorization of A, returns the QR factorization of A + u*v', where u
and v are column vectors of appropriate lengths.

Tips qrupdate works only for full matrices.

Examples The matrix

mu = sqrt(eps)

mu =

1.4901e-08

A = [ones(1,4); mu*eye(4)];

is a well-known example in least squares that indicates the dangers of
forming A'*A. Instead, we work with the QR factorization – orthonormal
Q and upper triangular R.

[Q,R] = qr(A);

As we expect, R is upper triangular.

R =

-1.0000 -1.0000 -1.0000 -1.0000
0 0.0000 0.0000 0.0000
0 0 0.0000 0.0000
0 0 0 0.0000
0 0 0 0

1-5271

qrupdate

In this case, the upper triangular entries of R, excluding the first row,
are on the order of sqrt(eps).

Consider the update vectors

u = [-1 0 0 0 0]'; v = ones(4,1);

Instead of computing the rather trivial QR factorization of this rank
one update to A from scratch with

[QT,RT] = qr(A + u*v')

QT =

0 0 0 0 1
-1 0 0 0 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0

RT =

1.0e-007 *

-0.1490 0 0 0
0 -0.1490 0 0
0 0 -0.1490 0
0 0 0 -0.1490
0 0 0 0

we may use qrupdate.

[Q1,R1] = qrupdate(Q,R,u,v)

Q1 =

-0.0000 -0.0000 -0.0000 -0.0000 1.0000
1.0000 -0.0000 -0.0000 -0.0000 0.0000

1-5272

qrupdate

0.0000 1.0000 -0.0000 -0.0000 0.0000
0.0000 0.0000 1.0000 -0.0000 0.0000

-0.0000 -0.0000 -0.0000 1.0000 0.0000

R1 =

1.0e-007 *
0.1490 0.0000 0.0000 0.0000

0 0.1490 0.0000 0.0000
0 0 0.1490 0.0000
0 0 0 0.1490
0 0 0 0

Note that both factorizations are correct, even though they are different.

Algorithms qrupdate uses the algorithm in section 12.5.1 of the third edition of
Matrix Computations by Golub and van Loan. qrupdate is useful since,
if we take N = max(m,n), then computing the new QR factorization
from scratch is roughly an O(N3) algorithm, while simply updating the
existing factors in this way is an O(N2) algorithm.

References [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

See Also cholupdate | qr

1-5273

quad

Purpose Numerically evaluate integral, adaptive Simpson quadrature

Compatibility quad will be removed in a future release. Use integral instead.

Syntax q = quad(fun,a,b)
q = quad(fun,a,b,tol)
q = quad(fun,a,b,tol,trace)
[q,fcnt] = quad(...)

Description Quadrature is a numerical method used to find the area under the
graph of a function, that is, to compute a definite integral.

q f x dx

a

b

 ()

q = quad(fun,a,b) tries to approximate the integral of function fun
from a to b to within an error of 1e-6 using recursive adaptive Simpson
quadrature. fun is a function handle. Limits a and b must be finite.
The function y = fun(x) should accept a vector argument x and return
a vector result y, the integrand evaluated at each element of x.

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

q = quad(fun,a,b,tol) uses an absolute error tolerance tol instead
of the default which is 1.0e-6. Larger values of tol result in fewer
function evaluations and faster computation, but less accurate results.
In MATLAB version 5.3 and earlier, the quad function used a less
reliable algorithm and a default relative tolerance of 1.0e-3.

q = quad(fun,a,b,tol,trace) with non-zero trace shows the values
of [fcnt a b-a Q] during the recursion.

[q,fcnt] = quad(...) returns the number of function evaluations.

The function quadl may be more efficient with high accuracies and
smooth integrands.

1-5274

quad

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Examples To compute the integral

1

2 53
0

2

x x
dx

 ,

write a function myfun that computes the integrand:

function y = myfun(x)
y = 1./(x.^3-2*x-5);

1-5275

quad

Then pass @myfun, a function handle to myfun, to quad, along with the
limits of integration, 0 to 2:

Q = quad(@myfun,0,2)

Q =

-0.4605

Alternatively, you can pass the integrand to quad as an anonymous
function handle F:

F = @(x)1./(x.^3-2*x-5);
Q = quad(F,0,2);

Algorithms quad implements a low order method using an adaptive recursive
Simpson’s rule.

Diagnostics quad may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of
roundoff error in the length of the original interval. A nonintegrable
singularity is possible.

'Maximum function count exceeded' indicates that the integrand
has been evaluated more than 10,000 times. A nonintegrable
singularity is likely.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

References [1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited,”
BIT, Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

See Also quad2d | dblquad | quadgk | quadl | quadv | trapz | triplequad |
function_handle | integral | integral2 | integral3

1-5276

http://www.inf.ethz.ch/personal/gander

quad

How To • “Anonymous Functions”

1-5277

quad2d

Purpose Numerically evaluate double integral, tiled method

Syntax q = quad2d(fun,a,b,c,d)
[q,errbnd] = quad2d(...)
q = quad2d(fun,a,b,c,d,param1,val1,param2,val2,...)

Description q = quad2d(fun,a,b,c,d) approximates the integral of fun(x,y)

over the planar region a x b≤ ≤ and c x y d x() ()≤ ≤ . fun is a function
handle, c and d may each be a scalar or a function handle.

All input functions must be vectorized. The function Z=fun(X,Y) must
accept 2-D matrices X and Y of the same size and return a matrix Z of
corresponding values. The functions ymin=c(X) and ymax=d(X) must
accept matrices and return matrices of the same size with corresponding
values.

[q,errbnd] = quad2d(...). errbnd is an approximate upper bound
on the absolute error, |Q - I|, where I denotes the exact value of the
integral.

q = quad2d(fun,a,b,c,d,param1,val1,param2,val2,...) performs
the integration as above with specified values of optional parameters:

AbsTol absolute error tolerance

RelTol relative error tolerance

quad2d attempts to satisfy ERRBND <= max(AbsTol,RelTol*|Q|). This
is absolute error control when |Q| is sufficiently small and relative
error control when |Q| is larger. A default tolerance value is used
when a tolerance is not specified. The default value of AbsTol is 1e-5.
The default value of RelTol is 100*eps(class(Q)). This is also the
minimum value of RelTol. Smaller RelTol values are automatically
increased to the default value.

MaxFunEvals Maximum allowed number of evaluations of fun
reached.

1-5278

quad2d

The MaxFunEvals parameter limits the number of vectorized calls to
fun. The default is 2000.

FailurePlot Generate a plot if MaxFunEvals is reached.

Setting FailurePlot to true generates a graphical representation
of the regions needing further refinement when MaxFunEvals is
reached. No plot is generated if the integration succeeds before
reaching MaxFunEvals. These (generally) 4-sided regions are mapped
to rectangles internally. Clusters of small regions indicate the areas of
difficulty. The default is false.

Singular Problem may have boundary singularities

With Singular set to true, quad2d will employ transformations to
weaken boundary singularities for better performance. The default is
true. Setting Singular to false will turn these transformations off,
which may provide a performance benefit on some smooth problems.

Examples Example 1

Integrate y x x ysin() cos()+ over ≤ ≤x 2 , 0 ≤ ≤y . The true value

of the integral is − 2 .

Q = quad2d(@(x,y) y.*sin(x)+x.*cos(y),pi,2*pi,0,pi)

Example 2

Integrate [() ()]/x y x y+ + + −1 2 2 11 over the triangle 0 1≤ ≤x and

0 1≤ ≤ −y x . The integrand is infinite at (0,0). The true value of the
integral is / /4 1 2− .

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2)

In Cartesian coordinates:

ymax = @(x) 1 - x;

1-5279

quad2d

Q = quad2d(fun,0,1,0,ymax)

In polar coordinates:

polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;
rmax = @(theta) 1./(sin(theta) + cos(theta));
Q = quad2d(polarfun,0,pi/2,0,rmax)

Limitations quad2d begins by mapping the region of integration to a rectangle.
Consequently, it may have trouble integrating over a region that does
not have four sides or has a side that cannot be mapped smoothly to a
straight line. If the integration is unsuccessful, some helpful tactics are
leaving Singular set to its default value of true, changing between
Cartesian and polar coordinates, or breaking the region of integration
into pieces and adding the results of integration over the pieces.

For instance:

fun = @(x,y)abs(x.^2 + y.^2 - 0.25);
c = @(x)-sqrt(1 - x.^2);
d = @(x)sqrt(1 - x.^2);
quad2d(fun,-1,1,c,d,'AbsTol',1e-8,...

'FailurePlot',true,'Singular',false);

Warning: Reached the maximum number of function evaluations (2000). The r
fails the global error test.

1-5280

quad2d

The failure plot shows two areas of difficulty, near the points (-1,0)
and (1,0) and near the circle .

Changing the value of Singular to true will cope with the geometric
singularities at (-1,0) and (1,0). The larger shaded areas may need
refinement but are probably not areas of difficulty.

Q = quad2d(fun,-1,1,c,d,'AbsTol',1e-8, ...
'FailurePlot',true,'Singular',true);

1-5281

quad2d

Warning: Reached the maximum number of function evaluations (2000). The r
passes the global error test.

From here you can take advantage of symmetry:

Q = 4*quad2d(fun,0,1,0,d,'Abstol',1e-8,...
'Singular',true,'FailurePlot',true)

Q =

1-5282

quad2d

0.9817

However, the code is still working very hard near the singularity. It
may not be able to provide higher accuracy:

Q = 4*quad2d(fun,0,1,0,d,'Abstol',1e-10,...
'Singular',true,'FailurePlot',true);

Warning: Reached the maximum number of function evaluations (2000). Th
passes the global error test.

1-5283

quad2d

At higher accuracy, a change in coordinates may work better.

polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;
Q = 4*quad2d(polarfun,0,pi/2,0,1,'AbsTol',1e-10);

It is best to put the singularity on the boundary by splitting the region
of integration into two parts:

Q1 = 4*quad2d(polarfun,0,pi/2,0,0.5,'AbsTol',5e-11);
Q2 = 4*quad2d(polarfun,0,pi/2,0.5,1,'AbsTol',5e-11);

1-5284

quad2d

Q = Q1 + Q2;

References [1] L.F. Shampine, "Matlab Program for Quadrature in 2D." Applied
Mathematics and Computation. Vol. 202, Issue 1, 2008, pp. 266–274.

See Also dblquad | quad | quadl | quadv | quadgk | triplequad |
function_handle | integral | integral2 | integral3

How To • “Anonymous Functions”

1-5285

quadgk

Purpose Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

Syntax q = quadgk(fun,a,b)
[q,errbnd] = quadgk(fun,a,b)
[q,errbnd] = quadgk(fun,a,b,param1,val1,param2,val2,...)

Description q = quadgk(fun,a,b) attempts to approximate the integral of a
scalar-valued function fun from a to b using high-order global adaptive
quadrature and default error tolerances. The function y = fun(x)
should accept a vector argument x and return a vector result y, where y
is the integrand evaluated at each element of x. fun must be a function
handle. Limits a and b can be -Inf or Inf. If both are finite, they can
be complex. If at least one is complex, the integral is approximated over
a straight line path from a to b in the complex plane.

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

[q,errbnd] = quadgk(fun,a,b) returns an approximate upper bound
on the absolute error, |Q - I|, where I denotes the exact value of the
integral.

[q,errbnd] = quadgk(fun,a,b,param1,val1,param2,val2,...)
performs the integration with specified values of optional parameters.
The available parameters are

Parameter Description

'AbsTol' Absolute error
tolerance.

The default value of
'AbsTol' is 1.e-10
(double), 1.e-5
(single).

quadgk attempts
to satisfy
errbnd <= max(AbsTol,RelTol*|Q|).
This is absolute error
control when |Q| is
sufficiently small and
relative error control

1-5286

quadgk

Parameter Description

'RelTol' Relative error
tolerance.

The default value of
'RelTol' is 1.e-6
(double), 1.e-4
(single).

when |Q| is larger. For
pure absolute error
control use 'AbsTol'
> 0 and'RelTol'= 0.
For pure relative error
control use 'AbsTol' =
0. Except when using
pure absolute error
control, the minimum
relative tolerance is
'RelTol' >= 100*eps(class(Q)).

'Waypoints' Vector of integration
waypoints.

If fun(x) has
discontinuities in the
interval of integration,
the locations should be
supplied as a Waypoints
vector. When a, b, and
the waypoints are all
real, only the waypoints
between a and b are
used, and they are
used in sorted order.
Note that waypoints
are not intended for
singularities in fun(x).
Singular points should be
handled by making them
endpoints of separate
integrations and adding
the results.

If a, b, or any entry of
the waypoints vector is
complex, the integration
is performed over a

1-5287

quadgk

Parameter Description

sequence of straight line
paths in the complex
plane, from a to the first
waypoint, from the first
waypoint to the second,
and so forth, and finally
from the last waypoint to
b.

'MaxIntervalCount'Maximum number of
intervals allowed.

The default value is
650.

The
'MaxIntervalCount'
parameter limits the
number of intervals
that quadgk uses at any
one time after the first
iteration. A warning
is issued if quadgk
returns early because
of this limit. Routinely
increasing this value is
not recommended, but
it may be appropriate
when errbnd is small
enough that the desired
accuracy has nearly been
achieved.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

1-5288

quadgk

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Examples Integrand with a singularity at an integration end point

Write a function myfun that computes the integrand:

function y = myfun(x)
y = exp(x).*log(x);

Then pass @myfun, a function handle to myfun, to quadgk, along with
the limits of integration, 0 to 1:

q = quadgk(@myfun,0,1)

q =

-1.3179

Alternatively, you can pass the integrand to quadgk as an anonymous
function handle F:

1-5289

quadgk

f = (@(x)exp(x).*log(x));
q = quadgk(f,0,1);

Oscillatory integrand on a semi-infinite interval

Integrate over a semi-infinite interval with specified tolerances, and
return the approximate error bound:

f = @(x)x.^5.*exp(-x).*sin(x);
[q,errbnd] = quadgk(f,0,inf,'RelTol',1e-8,'AbsTol',1e-12)

q =

-15.0000

errbnd =

9.4386e-009

Contour integration around a pole

Use Waypoints to integrate around a pole using a piecewise linear
contour:

f = @(z)1./(2*z - 1);
q = quadgk(f,-1-i,-1-i,'Waypoints',[1-i,1+i,-1+i])

q =

0.0000 + 3.1416i

Algorithms quadgk implements adaptive quadrature based on a Gauss-Kronrod
pair (15th and 7th order formulas).

Diagnostics quadgk may issue one of the following warnings:

'Minimum step size reached' indicates that interval subdivision
has produced a subinterval whose length is on the order of roundoff

1-5290

quadgk

error in the length of the original interval. A nonintegrable singularity
is possible.

'Reached the limit on the maximum number of intervals in
use' indicates that the integration was terminated before meeting the
tolerance requirements and that continuing the integration would
require more than MaxIntervalCount subintervals. The integral may
not exist, or it may be difficult to approximate numerically. Increasing
MaxIntervalCount usually does not help unless the tolerance
requirements were nearly met when the integration was previously
terminated.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

References [1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,”
Journal of Computational and Applied Mathematics, 211, 2008,
pp.131–140.

See Also quad2d | dblquad | quad | quadl | quadv | triplequad |
function_handle | integral | integral2 | integral3

How To • “Anonymous Functions”

1-5291

quadl

Purpose Numerically evaluate integral, adaptive Lobatto quadrature

quadl will be removed in a future release. Use integral instead.

Syntax q = quadl(fun,a,b)
q = quadl(fun,a,b,tol)
quadl(fun,a,b,tol,trace)
[q,fcnt] = quadl(...)

Description q = quadl(fun,a,b) approximates the integral of function fun from
a to b, to within an error of 10-6 using recursive adaptive Lobatto
quadrature. fun is a function handle. It accepts a vector x and returns
a vector y, the function fun evaluated at each element of x. Limits a
and b must be finite.

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

q = quadl(fun,a,b,tol) uses an absolute error tolerance of tol
instead of the default, which is 1.0e-6. Larger values of tol result in
fewer function evaluations and faster computation, but less accurate
results.

quadl(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a q] during the recursion.

[q,fcnt] = quadl(...) returns the number of function evaluations.

Use array operators .*, ./ and .^ in the definition of fun so that it can
be evaluated with a vector argument.

The function quad might be more efficient with low accuracies or
nonsmooth integrands.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function might be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function might be more efficient than quad at higher
accuracies with smooth integrands.

1-5292

quadl

• The quadgk function might be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Examples Pass the function handle, @myfun, to quadl:

Q = quadl(@myfun,0,2);

where the function myfun.m is:

function y = myfun(x)
y = 1./(x.^3-2*x-5);

Pass anonymous function handle F to quadl:

F = @(x) 1./(x.^3-2*x-5);
Q = quadl(F,0,2);

Algorithms quadl implements a high order method using an adaptive Gauss/Lobatto
quadrature rule.

1-5293

quadl

Diagnostics quadl might issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of
roundoff error in the length of the original interval. A nonintegrable
singularity is possible.

'Maximum function count exceeded' indicates that the integrand
has been evaluated more than 10,000 times. A nonintegrable
singularity is likely.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

References [1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited,”
BIT, Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

See Also quad2d | dblquad | quad | quadgk | triplequad | function_handle |
integral | integral2 | integral3

How To • “Anonymous Functions”

1-5294

http://www.inf.ethz.ch/personal/gander

quadv

Purpose Vectorized quadrature

quadv will be removed in a future release. Use integral with the
'ArrayValued' option instead.

Syntax Q = quadv(fun,a,b)
Q = quadv(fun,a,b,tol)
Q = quadv(fun,a,b,tol,trace)
[Q,fcnt] = quadv(...)

Description Q = quadv(fun,a,b) approximates the integral of the complex
array-valued function fun from a to b to within an error of 1.e-6 using
recursive adaptive Simpson quadrature. fun is a function handle. The
function Y = fun(x) should accept a scalar argument x and return
an array result Y, whose components are the integrands evaluated at
x. Limits a and b must be finite.

“Parameterizing Functions” explains how to provide addition
parameters to the function fun, if necessary.

Q = quadv(fun,a,b,tol) uses the absolute error tolerance tol for all
the integrals instead of the default, which is 1.e-6.

Note The same tolerance is used for all components, so the results
obtained with quadv are usually not the same as those obtained with
quad on the individual components.

Q = quadv(fun,a,b,tol,trace) with non-zero trace shows the values
of [fcnt a b-a Q(1)] during the recursion.

[Q,fcnt] = quadv(...) returns the number of function evaluations.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function might be most efficient for low accuracies with
nonsmooth integrands.

1-5295

quadv

• The quadl function might be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function might be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example,
it will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Examples For the parameterized array-valued function myarrayfun, defined by

function Y = myarrayfun(x,n)
Y = 1./((1:n)+x);

the following command integrates myarrayfun, for the parameter value
n = 10 between a = 0 and b = 1:

Qv = quadv(@(x)myarrayfun(x,10),0,1);

The resulting array Qv has 10 elements estimating Q(k) =
log((k+1)./(k)), for k = 1:10.

The entries in Qv are slightly different than if you compute the integrals
using quad in a loop:

1-5296

quadv

for k = 1:10
Qs(k) = quadv(@(x)myscalarfun(x,k),0,1);

end

where myscalarfun is:

function y = myscalarfun(x,k)
y = 1./(k+x);

See Also quad | quad2d | quadgk | quadl | dblquad | triplequad |
function_handle | integral | integral2 | integral3

1-5297

matlab.unittest.qualifications

Purpose Summary of classes in MATLAB Qualifications Interface

Description Qualifications are methods for testing values and responding to failures.
Qualification failures might or might not correspond to a test failure,
and they might or might not continue execution in the test when one
is encountered. To determine which qualification to use, see “Types of
Qualifications”.

matlab.unittest.qualifications.AssertableQualification to validate
preconditions of a test

matlab.unittest.qualifications.AssumableQualification to filter test content

matlab.unittest.qualifications.FatalAssertableQualification to abort test
execution

matlab.unittest.qualifications.VerifiableQualification to produce
soft-failure conditions

The package contains the following event data classes:

matlab.unittest.qualifications.ExceptionEventDataEvent data for ExceptionThrown
event listeners

matlab.unittest.qualifications.QualificationEventDataEvent data for qualification event
listeners

The package contains the following exception handling classes:

matlab.unittest.qualifications.AssertionFailedExceptionException used for assertion
failures

matlab.unittest.qualifications.AssumptionFailedExceptionException used for assumption
failures

matlab.unittest.qualifications.FatalAssertionFailedExceptionException used for fatal assertion
failures

1-5298

matlab.unittest.qualifications.Assertable

Purpose Qualification to validate preconditions of a test

Description The Assertable class provides a qualification to validate preconditions
of a test. Apart from actions performed for failures, the Assertable
class works the same as other matlab.unittest qualifications.

Upon an assertion failure, the Assertable class throws an
AssertionFailedException to inform the testing framework of the
failure. This is most useful when a failure at the assertion point renders
the rest of the current test method invalid, yet does not prevent proper
execution of other test methods. Often, you use assertions to ensure
that preconditions of the current test are not violated or that fixtures
are set up correctly. Make sure the test content is “Exception Safe” on
page 1-5301. If you cannot make the fixture teardown exception safe or
if you cannot recover it after failure, use fatal assertions instead.

Use assertions to allow remaining test methods to receive coverage
when preconditions are violated in a test and all fixture states are
restorable. Assertions also reduce the noise level of failures by not
performing later verifications that fail due the precondition failures.
In the event of a failure, however, the test framework marks the full
content of the test method that failed as incomplete. Therefore, if the
failure does not affect the preconditions of the test or cause problems
with fixture setup or teardown, use verifications, which give the added
information for added information that the full test content was run.

Methods
assertClass Assert exact class of specified

value

assertEmpty Assert value is empty

assertEqual Assert value is equal to specified
value

assertError Assert function throws specified
exception

1-5299

matlab.unittest.qualifications.Assertable

assertFail Produce unconditional assertion
failure

assertFalse Assert value is false

assertGreaterThan Assert value is greater than
specified value

assertGreaterThanOrEqual Assert value is greater than or
equal to specified value

assertInstanceOf Assert value is object of specified
type

assertLength Assert value has specified length

assertLessThan Assert value is less than specified
value

assertLessThanOrEqual Assert value is less than or equal
to specified value

assertMatches Assert string matches specified
regular expression

assertNotEmpty Assert value is not empty

assertNotEqual Assert value is not equal to
specified value

assertNotSameHandle Assert value is not handle to
specified instance

assertNumElements Assert value has specified
element count

assertReturnsTrue Assert function returns true when
evaluated

assertSameHandle Assert two values are handles to
same instance

assertSize Assert value has specified size

1-5300

matlab.unittest.qualifications.Assertable

assertSubstring Assert string contains specified
string

assertThat Assert that value meets specified
constraint

assertTrue Assert value is true

assertWarning Assert function issues specified
warning

assertWarningFree Assert function issues no
warnings

Events
AssertionFailed Triggered upon failing assertion.

A QualificationEventData
object is passed to listener
callback functions.

AssertionPassed Triggered upon passing assertion.
A QualificationEventData
object is passed to listener
callback functions.

Definitions Exception Safe

Test content is exception safe when all fixture teardown is performed
with addTeardown or through the appropriate object destructors when a
failure occurs. This ensures that the failure does not affect later testing
due to stale fixtures.

This code is not exception safe. After an assertion failure, the test
framework does not close the figure.

% Not exception safe
f = figure;
testCase.assertEqual(actual, expected);
close(f);

1-5301

matlab.unittest.qualifications.Assertable

This code is exception safe because the test framework closes the figure
in all cases.

% Exception safe
f = figure;
testCase.addTeardown(@close, f);
testCase.assertEqual(actual, expected);

However, tearing down a fixture using addTeardown does not guarantee
code is exception safe. This code shows a failure in assertEqual.

% Not exception safe
f = figure;
testCase.assertEqual(actual, expected);
testCase.addTeardown(@close, f);

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Test for Preconditions Using Assertions

Use assertable qualifications to test for preconditions. This example
will create a test case to write a polynomial to a MAT-file.

Create DocPolynomSaveLoadTest Test Case. Refer to the following
DocPolynomSaveLoadTest test case in the subsequent steps in this
example. The steps highlight specific code in the testSaveLoad
function; the code statements are not intended to be executed outside
the context of the class definition file.

DocPolynomSaveLoadTest Class Definition File

classdef DocPolynomSaveLoadTest < matlab.unittest.TestCase

methods (TestClassSetup)
function addDocPolynomClassToPath(testCase)

origPath = path;
testCase.addTeardown(@path, origPath);

1-5302

matlab.unittest.qualifications.Assertable

addpath(fullfile(matlabroot, ...
'help', 'techdoc', 'matlab_oop', 'examples'));

end
end

methods (Test)
function testSaveLoad(testCase)

import matlab.unittest.diagnostics.Diagnostic;

%% Phase 1: Setup
% Create a temporary working folder
tempFolder = tempname;
[success, message] = mkdir(tempFolder);
testCase.assertTrue(success, ...

Diagnostic.join('Could not create temporary folder.',.
message));

testCase.addTeardown(@() testCase.cleanUpTemporaryFolder(.
tempFolder));

% Change to the temporay folder and register the
% teardown, which restores the original folder
origFolder = pwd;
testCase.addTeardown(@cd, origFolder);
cd(tempFolder);

%% Phase 2: Exercise
% Save the instance to a mat file.
p = DocPolynom([1, 0, 1]);
save('DocPolynomFile', 'p');

% Validate Precondition. Save resulted in valid .mat file
testCase.assertEqual(exist('DocPolynomFile.mat','file'),..

2, Diagnostic.join(...
'mat file was not saved correctly.',@() dir(pwd)));

loaded = load('DocPolynomFile');

1-5303

matlab.unittest.qualifications.Assertable

%% Phase 3: Verify
testCase.verifyEqual(loaded.p, p,...

'Loaded polynom did not equal original polynom.');

%% Phase 4: Teardown
% Done inline via calls to addTeardown at the points
% at which the state was changed.

end
end

methods(Access=private)
function cleanUpTemporaryFolder(testCase,tempFolder)

% Clean up the temporary folder and fatally assert
% that it was correctly cleaned up.

import matlab.unittest.diagnostics.Diagnostic;

[success, message] = rmdir(tempFolder, 's');
testCase.fatalAssertTrue(success, ...

Diagnostic.join('Could not remove temporary folder.',...
message));

end
end

end

To execute the MATLAB commands in “Run DocPolynomSaveLoadTest
Test Case”, add the DocPolynomSaveLoadTest.m file to a folder on your
MATLAB path.

The testSaveLoad function consists of the following phases:

1-5304

matlab.unittest.qualifications.Assertable

• Phase 1: Setup — Create and verify precondition code.

• Phase 2: Exercise — Create a DocPolynom object and save it to a
MAT-file.

• Phase 3: Verify — Test that object was successfully saved.

• Phase 4: Teardown — Execute teardown code.

Define phase 1 precondition. For this test, use a temporary folder for
creating a DocPolynom object. The precondition for continuing with this
test is that the following commands execute successfully.

tempFolder = tempname;
[success, message] = mkdir(tempFolder);

Test the results of the mkdir function. Use the assertTrue method to
test the mkdir success argument for errors. If an assertion occurs, the
remainder of the testSaveLoad test method is invalid, and the test is
marked Incomplete.

testCase.assertTrue(success, ...
Diagnostic.join('Could not create the temporary folder.', ...

message));

If the mkdir function fails, MATLAB displays the diagnostic message,
Could not create the temporary folder, as well as the contents
of the mkdir message argument.

Add teardown fixture code. Creating a temporary folder is setup code,
which requires a corresponding call to the rmdir function to restore
MATLAB to the original state. Use the addTeardown method to ensure
the teardown code executes even when an exception is thrown in the
middle of the test method. This makes the test Exception Safe.

testCase.addTeardown(@() testCase.cleanUpTemporaryFolder(tempFolder));

Place teardown code in the helper function. Although the addTeardown
statement occurs in the same code block as the mkdir setup statement,

1-5305

matlab.unittest.qualifications.Assertable

the cleanUpTemporaryFolder code is executed in phase 4 of the test
method.

In the DocPolynomSaveLoadTest test case, the helper function,
cleanUpTemporaryFolder, executes the rmdir function.

Define the precondition for creating valid MAT-File. A precondition for
verifying that the DocPolynom object was correctly saved and loaded is
that the MAT-file, DocPolynomFile.mat, was successfully created. The
following code in the Phase 2: Exercise block tests this condition. If
an assertion occurs, the remainder of the testSaveLoad test method is
invalid, and the test is marked Failed and Incomplete.

testCase.assertEqual(exist('DocPolynomFile.mat','file'), 2, ...
Diagnostic.join('The mat file was not saved correctly.', ...
@() dir(pwd)));

If the file was not created, MATLAB displays the diagnostic message,
The mat file was not saved correctly, as well as the contents of
the temporary folder.

Run DocPolynomSaveLoadTest Test Case.

tc = DocPolynomSaveLoadTest;
run(tc);

Running DocPolynomSaveLoadTest
.
Done DocPolynomSaveLoadTest

See Also TestCase | Assumable | FatalAssertable | Verifiable |
matlab.unittest.qualifications | QualificationEventData

Concepts

1-5306

matlab.unittest.qualifications.Assertable.assertClass

Purpose Assert exact class of specified value

Syntax assertClass(assertable,actual,className)
assertClass(assertable,actual,metaClass)
assertClass(___ ,diagnostic)

Description assertClass(assertable,actual,className) asserts that actual is
a MATLAB value whose class is the class specified by className.

assertClass(assertable,actual,metaClass) asserts that actual is
a MATLAB value whose class is the class specified by the meta.class
instance metaClass. The instance must be an exact class match. See
assertInstanceOf to assert inclusion in a class hierarchy.

assertClass(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • The method is functionally equivalent to:

import matlab.unittest.constraints.IsOfClass;
assertable.assertThat(actual, IsOfClass(className));
assertable.assertThat(actual, IsOfClass(metaClass));

There exists more functionality when using the IsOfClass constraint
directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

className

Name of class, specified as a string.

metaClass

1-5307

matlab.unittest.qualifications.Assertable.assertClass

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyClass.

See Also assertThat | assertInstanceOf

1-5308

matlab.unittest.qualifications.Assertable.assertEmpty

Purpose Assert value is empty

Syntax assertEmpty(assertable,actual)
assertEmpty(assertable,actual,diagnostic)

Description assertEmpty(assertable,actual) asserts that actual is an empty
MATLAB value.

assertEmpty(assertable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
assertable.assertThat(actual, IsEmpty());

This method is a convenience method. There exists more functionality
when using the IsEmpty constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

1-5309

matlab.unittest.qualifications.Assertable.assertEmpty

Examples See examples for verifyEmpty.

See Also assertThat | assertNotEmpty | isempty

1-5310

matlab.unittest.qualifications.Assertable.assertEqual

Purpose Assert value is equal to specified value

Syntax assertEqual(assertable,actual,expected)
assertEqual(___ ,Name,Value)
assertEqual(___ ,diagnostic)

Description assertEqual(assertable,actual,expected) asserts that actual is
strictly equal to expected.

assertEqual(___ ,Name,Value) asserts equality with additional
options specified by one or more Name,Value pair arguments.

assertEqual(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to any of the following:

import matlab.unittest.constraints.IsEqualTo;
assertable.assertThat(actual, IsEqualTo(expected));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
assertable.assertThat(actual, IsEqualTo(expected, ...

'Within', AbsoluteTolerance(abstol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
assertable.assertThat(actual, IsEqualTo(expected, ...

'Within', RelativeTolerance(reltol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;
assertable.assertThat(actual, IsEqualTo(expected, ...

'Within', AbsoluteTolerance(abstol) | RelativeTolerance(reltol)

1-5311

matlab.unittest.qualifications.Assertable.assertEqual

There exists more functionality when using the IsEqualTo,
RelativeTolerance, and IsEqualTo constraints directly via
assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

expected

Expected value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’AbsTol’

’RelTol’

1-5312

matlab.unittest.qualifications.Assertable.assertEqual

Examples See examples for verifyEqual.

See Also assertThat | assertNotEqual

1-5313

matlab.unittest.qualifications.Assertable.assertError

Purpose Assert function throws specified exception

Syntax assertError(assertable,actual,identifier)
assertError(assertable,actual,metaClass)
assertError(___ ,diagnostic)

Description assertError(assertable,actual,identifier) asserts that actual
is a function handle that throws an exception with an error identifier
that is equal to identifier.

assertError(assertable,actual,metaClass) asserts that actual
is a function handle that throws an exception whose type is defined by
the meta.class instance specified in metaClass. This method does not
require the instance to be an exact class match, but rather it must be
in the specified class hierarchy, and that hierarchy must include the
MException class.

assertError(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.Throws;
assertable.assertThat(actual, Throws(identifier));
assertable.assertThat(actual, Throws(metaClass));

There exists more functionality when using the Throws constraint
directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

identifier

1-5314

matlab.unittest.qualifications.Assertable.assertError

Error identifier, specified as a string.

metaClass

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyError.

See Also assertThat | assertWarning | MException | error

1-5315

matlab.unittest.qualifications.Assertable.assertFail

Purpose Produce unconditional assertion failure

Syntax assertFail(assertable)
assertFail(assertable,diagnostic)

Description assertFail(assertable) produces an unconditional assertion failure
when encountered.

assertFail(assertable,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyFail.

1-5316

matlab.unittest.qualifications.Assertable.assertFalse

Purpose Assert value is false

Syntax assertFalse(assertable,actual)
assertFalse(assertable,actual,diagnostic)

Description assertFalse(assertable,actual) asserts that actual is a scalar
logical with the value of false.

assertFalse(assertable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method passes if and only if the actual value is a scalar logical
with a value of false. Therefore, entities such as empty arrays, false
valued arrays, and zero doubles produce failures when used in this
method, despite these entities exhibiting "false-like" behavior such as
bypassing the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsFalse;
assertable.assertThat(actual, IsFalse());

There exists more functionality when using the IsFalse constraint
directly via assertThat.

• Unlike assertTrue, this method may create a new constraint for each
call. For performance critical uses, consider using assertTrue.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

1-5317

matlab.unittest.qualifications.Assertable.assertFalse

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples For examples, see verifyFalse.

See Also assertThat | assertTrue

1-5318

matlab.unittest.qualifications.Assertable.assertGreaterTha

Purpose Assert value is greater than specified value

Syntax assertGreaterThan(assertable,actual,floor)
assertGreaterThan(assertable,actual,floor,diagnostic)

Description assertGreaterThan(assertable,actual,floor) asserts that all
elements of actual are greater than all the elements of floor.

assertGreaterThan(assertable,actual,floor,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThan;
assertable.assertThat(actual, IsGreaterThan(floor));

There exists more functionality when using the IsGreaterThan
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless
either one is scalar, at which point scalar expansion occurs.

floor

Minimum value, exclusive.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5319

matlab.unittest.qualifications.Assertable.assertGreaterThan

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyGreaterThan.

See Also assertThat | assertGreaterThanOrEqual |
assertLessThan | assertLessThanOrEqual | gt |
matlab.unittest.constraints.IsGreaterThan |
matlab.unittest.diagnostics.Diagnostic

1-5320

matlab.unittest.qualifications.Assertable.assertGreaterTha

Purpose Assert value is greater than or equal to specified value

Syntax assertGreaterThanOrEqual(assertable,actual,floor)
assertGreaterThanOrEqual(assertable,actual,floor,diagnostic)

Description assertGreaterThanOrEqual(assertable,actual,floor) asserts that
all elements of actual are greater than or equal to all the elements of
floor.

assertGreaterThanOrEqual(assertable,actual,floor,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
assertable.assertThat(actual, IsGreaterThanOrEqualTo(floor));

There exists more functionality when using the
IsGreaterThanOrEqualTo constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test. actual must be the same size as floor unless
either one is scalar, at which point scalar expansion occurs.

floor

Minimum value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5321

matlab.unittest.qualifications.Assertable.assertGreaterThanOrE

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyGreaterThanOrEqual.

See Also assertThat | assertGreaterThan |
assertLessThanOrEqual | assertLessThan | ge |
matlab.unittest.constraints.IsGreaterThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

1-5322

matlab.unittest.qualifications.Assertable.assertInstanceOf

Purpose Assert value is object of specified type

Syntax assertInstanceOf(assertable,actual,className)
assertInstanceOf(assertable,actual,metaClass)
assertInstanceOf(___ ,diagnostic)

Description assertInstanceOf(assertable,actual,className) asserts that
actual is a MATLAB value whose class is the class specified by
className.

assertInstanceOf(assertable,actual,metaClass) actual is a
MATLAB value whose class is the class specified by the meta.class
instance metaClass.

assertInstanceOf(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

assertable.assertThat(actual, IsInstanceOf(className));
assertable.assertThat(actual, IsInstanceOf(metaClass));

There exists more functionality when using the IsInstanceOf
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

className

Name of class, specified as a string.

metaClass

An instance of meta.class.

1-5323

matlab.unittest.qualifications.Assertable.assertInstanceOf

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyInstanceOf.

See Also assertThat | assertClass | isa

1-5324

matlab.unittest.qualifications.Assertable.assertLength

Purpose Assert value has specified length

Syntax assertLength(assertable,actual,expectedLength)
assertLength(assertable,actual,expectedLength,diagnostic)

Description assertLength(assertable,actual,expectedLength) that actual is
a MATLAB array whose length is expectedLength.

assertLength(assertable,actual,expectedLength,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasLength;
assertable.assertThat(actual, HasLength(expectedLength));

There exists more functionality when using the HasLength constraint
directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

expectedLength

The length of an array is defined as the largest dimension of that
array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5325

matlab.unittest.qualifications.Assertable.assertLength

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLength.

See Also assertThat | assertSize | assertNumElements | length

1-5326

matlab.unittest.qualifications.Assertable.assertLessThan

Purpose Assert value is less than specified value

Syntax assertLessThan(assertable,actual,ceiling)
assertLessThan(assertable,actual,ceiling,diagnostic)

Description assertLessThan(assertable,actual,ceiling) asserts that all
elements of actual are less than all the elements of ceiling.

assertLessThan(assertable,actual,ceiling,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThan;
assertable.assertThat(actual, IsLessThan(ceiling));

There exists more functionality when using the IsLessThan
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling
unless either one is scalar, at which point scalar expansion occurs.

ceiling

Maximum value, exclusive.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5327

matlab.unittest.qualifications.Assertable.assertLessThan

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLessThan.

See Also assertThat | assertLessThanOrEqual |
assertGreaterThan | assertGreaterThanOrEqual |
lt | matlab.unittest.constraints.IsLessThan |
matlab.unittest.diagnostics.Diagnostic

1-5328

matlab.unittest.qualifications.Assertable.assertLessThanO

Purpose Assert value is less than or equal to specified value

Syntax assertLessThanOrEqual(assertable,actual,ceiling)
assertLessThanOrEqual(assertable,actual,ceiling,diagnostic)

Description assertLessThanOrEqual(assertable,actual,ceiling) asserts that
all elements of actual are less than or equal to all the elements of
ceiling.

assertLessThanOrEqual(assertable,actual,ceiling,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThanOrEqualTo;
assertable.assertThat(actual, IsLessThanOrEqualTo(ceiling));

There exists more functionality when using the
IsLessThanOrEqualTo constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test. actual must be the same size as ceiling
unless either one is scalar, at which point scalar expansion occurs.

ceiling

Maximum value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5329

matlab.unittest.qualifications.Assertable.assertLessThanOrEqua

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLessThanOrEqual.

See Also assertThat | assertLessThan | assertGreaterThan
| assertGreaterThanOrEqual | le |
matlab.unittest.constraints.IsLessThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

1-5330

matlab.unittest.qualifications.Assertable.assertMatches

Purpose Assert string matches specified regular expression

Syntax assertMatches(assertable,actual,expression)
assertMatches(assertable,actual,expression,diagnostic)

Description assertMatches(assertable,actual,expression) asserts that
actual is a string that matches the regular expression defined by
expression.

assertMatches(assertable,actual,expression,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.Matches;
assertable.assertThat(actual, Matches(expression));

There exists more functionality when using the Matches constraint
directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

expression

The value to match, specified as a regular expression.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5331

matlab.unittest.qualifications.Assertable.assertMatches

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyMatches.

See Also assertThat | assertSubstring | regexp

1-5332

matlab.unittest.qualifications.Assertable.assertNotEmpty

Purpose Assert value is not empty

Syntax assertNotEmpty(assertable,actual)
assertNotEmpty(assertable,actual,diagnostic)

Description assertNotEmpty(assertable,actual) asserts that actual is a
non-empty MATLAB value.

assertNotEmpty(assertable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
assertable.assertThat(actual, ~IsEmpty());

There exists more functionality when using the IsEmpty constraint
directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

1-5333

matlab.unittest.qualifications.Assertable.assertNotEmpty

Examples See examples for verifyNotEmpty.

See Also assertThat | assertEmpty | isempty

1-5334

matlab.unittest.qualifications.Assertable.assertNotEqual

Purpose Assert value is not equal to specified value

Syntax assertNotEqual(assertable,actual,notExpected)
assertNotEqual(assertable,actual,notExpected,diagnostic)

Description assertNotEqual(assertable,actual,notExpected) asserts that
actual is not equal to notExpected.

assertNotEqual(assertable,actual,notExpected,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEqualTo;
assertable.assertThat(actual, ~IsEqualTo(notExpected));

There exists more functionality when using the IsEqualTo constraint
directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

notExpected

Value to compare.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5335

matlab.unittest.qualifications.Assertable.assertNotEqual

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNotEqual.

See Also assertThat | assertEqual

1-5336

matlab.unittest.qualifications.Assertable.assertNotSameH

Purpose Assert value is not handle to specified instance

Syntax assertNotSameHandle(assertable,actual,notExpectedHandle)
assertNotSameHandle(assertable,actual,notExpectedHandle,diagnostic)

Description assertNotSameHandle(assertable,actual,notExpectedHandle)
asserts that actual is a different size and/or does not contain the same
instances as the notExpectedHandle handle array.

assertNotSameHandle(assertable,actual,notExpectedHandle,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
assertable.assertThat(actual, ~IsSameHandleAs(notExpectedHandle));

There exists more functionality when using the IsSameHandleAs
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

notExpectedHandle

The handle array to compare.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5337

matlab.unittest.qualifications.Assertable.assertNotSameHandle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNotSameHandle.

See Also assertThat | assertSameHandle

1-5338

matlab.unittest.qualifications.Assertable.assertNumEleme

Purpose Assert value has specified element count

Syntax assertNumElements(assertable,actual,expectedElementCount)
assertNumElements(assertable,actual,expectedElementCount,diagnostic)

Description assertNumElements(assertable,actual,expectedElementCount)
asserts that actual is a MATLAB array with expectedElementCount
number of elements.

assertNumElements(assertable,actual,expectedElementCount,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasElementCount;
assertable.assertThat(actual, HasElementCount(expectedElementCount)

There exists more functionality when using the HasElementCount
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

expectedElementCount

The expected number of elements in the array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5339

matlab.unittest.qualifications.Assertable.assertNumElements

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNumElements.

See Also assertThat | assertSize | assertLength | numel

1-5340

matlab.unittest.qualifications.Assertable.assertReturnsTru

Purpose Assert function returns true when evaluated

Syntax assertReturnsTrue(assertable,actual)
assertReturnsTrue(assertable,actual,diagnostic)

Description assertReturnsTrue(assertable,actual) asserts that actual is a
function handle that returns a scalar logical whose value is true.

assertReturnsTrue(assertable,actual,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

Tips • It is a shortcut for quick custom comparison functionality that can be
defined quickly, and possibly inline. It can be preferable over simply
evaluating the function directly and using assertTrue because the
function handle will be shown in the diagnostics, thus providing more
insight into the failure condition which is lost when using assertTrue.

• This method is functionally equivalent to:

import matlab.unittest.constraints.ReturnsTrue;
assertable.assertThat(actual, ReturnsTrue());

There exists more functionality when using the ReturnsTrue
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The function handle to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5341

matlab.unittest.qualifications.Assertable.assertReturnsTrue

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyReturnsTrue.

See Also assertThat | assertTrue

1-5342

matlab.unittest.qualifications.Assertable.assertSameHand

Purpose Assert two values are handles to same instance

Syntax assertSameHandle(assertable,actual,expectedHandle)
assertSameHandle(assertable,actual,expectedHandle,diagnostic)

Description assertSameHandle(assertable,actual,expectedHandle) asserts
that actual is the same size and contains the same instances as the
expectedHandle handle array.

assertSameHandle(assertable,actual,expectedHandle,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
assertable.assertThat(actual, IsSameHandleAs(expectedHandle));

There exists more functionality when using the IsSameHandleAs
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

expectedHandle

The expected handle array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5343

matlab.unittest.qualifications.Assertable.assertSameHandle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySameHandle.

See Also assertThat | assertNotSameHandle | handle

1-5344

matlab.unittest.qualifications.Assertable.assertSize

Purpose Assert value has specified size

Syntax assertSize(assertable,actual,expectedSize)
assertSize(assertable,actual,expectedSize,diagnostic)

Description assertSize(assertable,actual,expectedSize) asserts that actual
is a MATLAB array whose size is expectedSize.

assertSize(assertable,actual,expectedSize,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasSize;
assertable.assertThat(actual, HasSize(expectedSize));

There exists more functionality when using the HasSize constraint
directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

expectedSize

The expected sizes of each dimension the array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5345

matlab.unittest.qualifications.Assertable.assertSize

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySize.

See Also assertThat | assertLength | assertNumElements | size

1-5346

matlab.unittest.qualifications.Assertable.assertSubstring

Purpose Assert string contains specified string

Syntax assertSubstring(assertable,actual,substring)
assertSubstring(assertable,actual,substring,diagnostic)

Description assertSubstring(assertable,actual,substring) asserts that
actual is a string that contains substring.

assertSubstring(assertable,actual,substring,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.ContainsSubstring;
assertable.assertThat(actual, ContainsSubstring(substring));

There exists more functionality when using the ContainsSubstring
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

substring

The value to match, specified as a string.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5347

matlab.unittest.qualifications.Assertable.assertSubstring

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySubstring.

See Also assertThat | assertMatches | strfind

1-5348

matlab.unittest.qualifications.Assertable.assertThat

Purpose Assert that value meets specified constraint

Syntax assertThat(assertable,actual,constraint)
assertThat(assertable,actual,constraint,diagnostic)

Description assertThat(assertable,actual,constraint) asserts that actual is
a value that satisfies the constraint provided.

If the constraint is not satisfied, an assertion failure is produced
utilizing only the framework diagnostic generated by the constraint.

assertThat(assertable,actual,constraint,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

When using this signature, both the diagnostic information contained
within diagnostic is used in addition to the diagnostic information
provided by the constraint.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The value to test.

constraint

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

1-5349

matlab.unittest.qualifications.Assertable.assertThat

Examples See examples for verifyThat.

1-5350

matlab.unittest.qualifications.Assertable.assertTrue

Purpose Assert value is true

Syntax assertTrue(assertable,actual)
assertTrue(assertable,actual,diagnostic)

Description assertTrue(assertable,actual) asserts that actual is a scalar
logical with the value of true.

assertTrue(assertable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method passes if and only if the actual value is a scalar logical
with a value of true. Therefore, entities such as true valued arrays
and non-zero doubles produce qualification failures when used in this
method, despite these entities exhibiting "true-like" behavior such as
triggering the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsTrue;
assertable.assertThat(actual, IsTrue());

There exists more functionality when using the IsTrue constraint
directly via assertThat.

Use of this method for performance benefits can come at the
expense of less diagnostic information, and may not provide the
same level of strictness adhered to by other constraints such as
IsEqualTo. A similar approach that is generally less performant
but can provide slightly better diagnostic information is the use of
assertReturnsTrue, which at least shows the display of the function
evaluated to generate the failing result.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

1-5351

matlab.unittest.qualifications.Assertable.assertTrue

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyTrue.

See Also assertThat | assertFalse | assertReturnsTrue

1-5352

matlab.unittest.qualifications.Assertable.assertWarning

Purpose Assert function issues specified warning

Syntax assertWarning(assertable,actual,warningID)
assertWarning(assertable,actual,warningID,diagnostic)
[output1,...,outputN] = assertWarning(___)

Description assertWarning(assertable,actual,warningID) asserts that actual
issues a warning with the identifier warningID.

assertWarning(assertable,actual,warningID,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = assertWarning(___) also returns the
output arguments output1,...,outputN that are produced when
invoking actual.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesWarnings;
assertable.assertThat(actual, IssuesWarnings({warningID}));

There exists more functionality when using the IssuesWarnings
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The function handle to test.

warningID

Warning ID, specified as a string.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

1-5353

matlab.unittest.qualifications.Assertable.assertWarning

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output
Arguments

output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned
as any type. The argument type is specified by the actual
argument list.

Examples See examples for verifyWarning.

See Also assertThat | assertError | assertWarningFree | warning

1-5354

matlab.unittest.qualifications.Assertable.assertWarningFr

Purpose Assert function issues no warnings

Syntax assertWarningFree(assertable,actual)
assertWarningFree(assertable,actual,diagnostic)
[output1,...,outputN] = assertWarningFree(___)

Description assertWarningFree(assertable,actual) asserts that actual is a
function handle that issues no warnings.

assertWarningFree(assertable,actual,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = assertWarningFree(___) also returns
the output arguments output1,...,outputN that are produced when
invoking actual.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesNoWarnings;
assertable.assertThat(actual, IssuesNoWarnings());

There exists more functionality when using the IssuesNoWarnings
constraint directly via assertThat.

Input
Arguments

assertable

The matlab.unittest.TestCase instance which is used to pass or
fail the assertion in conjunction with the test running framework.

actual

The function handle to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5355

matlab.unittest.qualifications.Assertable.assertWarningFree

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output
Arguments

output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned
as any type. The argument type is specified by the actual
argument list.

Examples See examples for verifyWarningFree.

See Also assertThat | assertWarning | warning

1-5356

matlab.unittest.qualifications.AssertionFailedException

Purpose Exception used for assertion failures

Description The AssertionFailedException class provides an exception used for
assertion failures. This class is used exclusively by the Assertable
qualification type.

See Also Assertable | MException

1-5357

matlab.unittest.qualifications.Assumable

Purpose Qualification to filter test content

Description The Assumable class provides a qualification to filter test content.
Apart from actions performed in the event of failures, the Assumable
class works the same as other matlab.unittest qualifications.

Upon an assumption failure, the Assumable class informs the testing
framework of the failure by throwing an AssumptionFailedException.
The test framework then marks the test content as filtered and
continues testing. Often, assumptions are used to ensure that the test
is run only when certain preconditions are met. However, running the
test without satisfying the preconditions does not produce a test failure.
Ensure that the test content is “Exception Safe” on page 1-5361. If the
failure condition is meant to produce a test failure, use assertions or
verifications instead of assumptions.

The attributes specified in the TestCase method definition determine
which tests are filtered. The following behavior occurs when the test
framework encounters an assumption failure inside of a TestCase
method:

• If you define the TestCase method using the Test attribute, the
framework marks the entire method as filtered and runs subsequent
test methods.

• If you define the TestCase method using the TestMethodSetup
or TestMethodTeardown attributes, the test framework marks the
method to run for that instance as filtered.

• If you define the TestCase method using the TestClassSetup or
TestClassTeardown attributes, the test framework filters the entire
TestCase class.

Filtering test content using assumptions does not produce test failures.
Therefore, dead test code can result. Avoid this by monitoring filtered
tests.

1-5358

matlab.unittest.qualifications.Assumable

Methods
assumeClass Assume exact class of specified

value

assumeEmpty Assume value is empty

assumeEqual Assume value is equal to specified
value

assumeError Assume function throws specified
exception

assumeFail Produce unconditional
assumption failure

assumeFalse Assume value is false

assumeGreaterThan Assume value is greater than
specified value

assumeGreaterThanOrEqual Assume value is greater than or
equal to specified value

assumeInstanceOf Assume value is object of specified
type

assumeLength Assume value has specified
length

assumeLessThan Assume value is less than
specified value

assumeLessThanOrEqual Assume value is less than or
equal to specified value

assumeMatches Assume string matches specified
regular expression

assumeNotEmpty Assume value is not empty

assumeNotEqual Assume value is not equal to
specified value

assumeNotSameHandle Assume value is not handle to
specified instance

1-5359

matlab.unittest.qualifications.Assumable

assumeNumElements Assume value has specified
element count

assumeReturnsTrue Assume function returns true
when evaluated

assumeSameHandle Assume two values are handles
to same instance

assumeSize Assume value has specified size

assumeSubstring Assume string contains specified
string

assumeThat Assume value meets specified
constraint

assumeTrue Assume value is true

assumeWarning Assume function issues specified
warning

assumeWarningFree Assume function issues no
warnings

Events
AssumptionFailed Triggered upon failing

assumption. A
QualificationEventData object
is passed to listener callback
functions.

AssumptionPassed Triggered upon passing
assumption. A
QualificationEventData object
is passed to listener callback
functions.

1-5360

matlab.unittest.qualifications.Assumable

Definitions Exception Safe

Test content is exception safe when all fixture teardown is performed
with addTeardown or through the appropriate object destructors when a
failure occurs. This ensures that the failure does not affect later testing
due to stale fixtures.

This code is not exception safe. After an assertion failure, the test
framework does not close the figure.

% Not exception safe
f = figure;
testCase.assumeEqual(actual, expected);
close(f);

This code is exception safe because the test framework closes the figure
in all cases.

% Exception safe
f = figure;
testCase.addTeardown(@close, f);
testCase.assumeEqual(actual, expected);

However, tearing down a fixture using addTeardown does not guarantee
code is exception safe. This code shows a failure in assumeEqual.

% Not exception safe
f = figure;
testCase.assumeEqual(actual, expected);
testCase.addTeardown(@close, f);

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Write TestClassSetup Method Using Assumptions

Assumptions assure that a test runs only when certain preconditions
are satisfied and when such an event should not produce a test failure.
When an assumption failure occurs, the test is marked as filtered.

1-5361

matlab.unittest.qualifications.Assumable

Create IsSupportedTest test case. Refer to the following
IsSupportedTest test case in the subsequent steps in this example,
which highlight specific functions in the file.

IsSupportedTest Class Definition File

classdef IsSupportedTest < matlab.unittest.TestCase
methods(TestClassSetup)

function TestPlatform(testcase)
testcase.assumeFalse(ispc,...

'Do not run any of these tests on Windows.');
end

end
methods(Test)

function test1(testcase)
%write test code here

end
end

end

To execute the MATLAB commands in this example, add the
IsSupportedTest.m file to a folder on your MATLAB path.

Write Test to Verify Platform. All tests in this test case must run on
UNIX platforms only. The TestPlatform function uses the assumeFalse
method to test if MATLAB is running on a Windows platform. If it
is, the test fails.

function TestPlatform(testcase)
testcase.assumeFalse(ispc,...

'Do not run any of these tests on Windows.');
end

Make TestPlatform a TestClassSetup Test. To make the
TestPlatform test a precondition, add it inside the methods
(TestClassSetup) block.

1-5362

matlab.unittest.qualifications.Assumable

Run the test case. Create a test case object and run the tests on a
Windows platform.

tc = IsSupportedTest;
res = tc.run;

Running IsSupportedTest

==
All tests in IsSupportedTest were filtered.

Test Diagnostic: Do not run any of these tests on Windows.
Details

==

Done IsSupportedTest

Failure Summary:

Name Failed Incomplete Reason(s)
==
IsSupportedTest/test1 X Filtered by assumption

The test(s) were filtered, and did not run (marked Incomplete).

For more information, click the Details link.

==
The TestClassSetup or TestClassTeardown for IsSupportedTest was filter
All tests in this class were also filtered as a result.

Test Diagnostic:

Do not run any of these tests on Windows.

Framework Diagnostic:

1-5363

matlab.unittest.qualifications.Assumable

assumeFalse failed.
--> The value must evaluate to "false".

Actual Value:
1

Stack Information:

In C:\Program Files\MATLAB\R2013a\toolbox\matlab\testframework\+matla
In c:\work\IsSupportedTest.m (IsSupportedTest.TestPlatform) at 4

===

The link to IsSupportedTest.TestPlatform under Stack
Information takes you to the failed assumeFalse method.

See Also TestCase | Verifiable | FatalAssertable | Assertable |
matlab.unittest.qualifications | QualificationEventData

Concepts • “Dynamically Filtered Tests”

1-5364

matlab.unittest.qualifications.Assumable.assumeClass

Purpose Assume exact class of specified value

Syntax assumeClass(assumable,actual,className)
assumeClass(assumable,actual,metaClass)
assumeClass(___ ,diagnostic)

Description assumeClass(assumable,actual,className) assumes that actual is
a MATLAB value whose class is the class specified by className.

assumeClass(assumable,actual,metaClass) assumes that actual is
a MATLAB value whose class is the class specified by the meta.class
instance metaClass. The instance must be an exact class match. See
assumeInstanceOf to assume inclusion in a class hierarchy.

assumeClass(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • The method is functionally equivalent to:

import matlab.unittest.constraints.IsOfClass;
assumable.assumeThat(actual, IsOfClass(className));
assumable.assumeThat(actual, IsOfClass(metaClass));

There exists more functionality when using the IsOfClass constraint
directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

className

Name of class, specified as a string.

metaClass

1-5365

matlab.unittest.qualifications.Assumable.assumeClass

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyClass.

See Also assumeThat | assumeInstanceOf

1-5366

matlab.unittest.qualifications.Assumable.assumeEmpty

Purpose Assume value is empty

Syntax assumeEmpty(assumable,actual)
assumeEmpty(assumable,actual,diagnostic)

Description assumeEmpty(assumable,actual) assumes that actual is an empty
MATLAB value.

assumeEmpty(assumable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
assumable.assumeThat(actual, IsEmpty());

There exists more functionality when using the IsEmpty constraint
directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5367

matlab.unittest.qualifications.Assumable.assumeEmpty

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyEmpty.

See Also assumeThat | assumeNotEmpty | isempty

1-5368

matlab.unittest.qualifications.Assumable.assumeEqual

Purpose Assume value is equal to specified value

Syntax assumeEqual(assumable,actual,expected)
assumeEqual(___ ,Name,Value)
assumeEqual(___ ,diagnostic)

Description assumeEqual(assumable,actual,expected) assumes that actual is
strictly equal to expected.

assumeEqual(___ ,Name,Value) assumes equality with additional
options specified by one or more Name,Value pair arguments.

assumeEqual(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to any of the following:

import matlab.unittest.constraints.IsEqualTo;
assumable.assumeThat(actual, IsEqualTo(expected));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
assumable.assumeThat(actual, IsEqualTo(expected, ...

'Within', AbsoluteTolerance(abstol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
assumable.assumeThat(actual, IsEqualTo(expected, ...

'Within', RelativeTolerance(reltol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;
assumable.assumeThat(actual, IsEqualTo(expected, ...

'Within', AbsoluteTolerance(abstol) | RelativeTolerance(reltol)

1-5369

matlab.unittest.qualifications.Assumable.assumeEqual

There exists more functionality when using the IsEqualTo,
RelativeTolerance, and IsEqualTo constraints directly via
assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

expected

Expected value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’AbsTol’

’RelTol’

1-5370

matlab.unittest.qualifications.Assumable.assumeEqual

Examples See examples for verifyEqual.

See Also assumeThat | assumeNotEqual

1-5371

matlab.unittest.qualifications.Assumable.assumeError

Purpose Assume function throws specified exception

Syntax assumeError(assumable,actual,identifier)
assumeError(assumable,actual,metaClass)
assumeError(___ ,diagnostic)

Description assumeError(assumable,actual,identifier) assumes that actual
is a function handle that throws an exception with an error identifier
that is equal to identifier.

assumeError(assumable,actual,metaClass) assumes that actual
is a function handle that throws an exception whose type is defined by
the meta.class instance specified in metaClass. This method does not
require the instance to be an exact class match, but rather it must be
in the specified class hierarchy, and that hierarchy must include the
MException class.

assumeError(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.Throws;
assumable.assumeThat(actual, Throws(identifier));
assumable.assumeThat(actual, Throws(metaClass));

There exists more functionality when using the Throws constraint
directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

identifier

1-5372

matlab.unittest.qualifications.Assumable.assumeError

Error identifier, specified as a string.

metaClass

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyError.

See Also assumeThat | assumeWarning | MException | error

1-5373

matlab.unittest.qualifications.Assumable.assumeFail

Purpose Produce unconditional assumption failure

Syntax assumeFail(assumable)
assumeFail(assumable,diagnostic)

Description assumeFail(assumable) produces an unconditional assumption failure
when encountered.

assumeFail(assumable,diagnostic)also displays the diagnostic
information in diagnostic upon a failure.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyFail.

1-5374

matlab.unittest.qualifications.Assumable.assumeFalse

Purpose Assume value is false

Syntax assumeFalse(assumable,actual)
assumeFalse(assumable,actual,diagnostic)

Description assumeFalse(assumable,actual) assumes that actual is a scalar
logical with the value of false.

assumeFalse(assumable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method passes if and only if the actual value is a scalar logical
with a value of false. Therefore, entities such as empty arrays, false
valued arrays, and zero doubles produce failures when used in this
method, despite these entities exhibiting "false-like" behavior such as
bypassing the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsFalse;
assumable.assumeThat(actual, IsFalse());

There exists more functionality when using the IsFalse constraint
directly via assumeThat.

• Unlike assumeTrue, this method may create a new constraint for
each call. For performance critical uses, consider using assumeTrue.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

diagnostic

1-5375

matlab.unittest.qualifications.Assumable.assumeFalse

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples For examples, see verifyFalse.

See Also assumeThat | assumeTrue

1-5376

matlab.unittest.qualifications.Assumable.assumeGreaterT

Purpose Assume value is greater than specified value

Syntax assumeGreaterThan(assumable,actual,floor)
assumeGreaterThan(assumable,actual,floor,diagnostic)

Description assumeGreaterThan(assumable,actual,floor) assumes that all
elements of actual are greater than all the elements of floor.

assumeGreaterThan(assumable,actual,floor,diagnostic) also
displays the diagnostic information in diagnostic upon a failure

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThan;
assumable.assumeThat(actual, IsGreaterThan(floor));

There exists more functionality when using the IsGreaterThan
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as floor unless
either one is scalar, at which point scalar expansion occurs.

floor

Minimum value, exclusive.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5377

matlab.unittest.qualifications.Assumable.assumeGreaterThan

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyGreaterThan.

See Also assumeThat | assumeGreaterThanOrEqual |
assumeLessThanOrEqual | assumeLessThan | gt |
matlab.unittest.constraints.IsGreaterThan |
matlab.unittest.diagnostics.Diagnostic

1-5378

matlab.unittest.qualifications.Assumable.assumeGreaterT

Purpose Assume value is greater than or equal to specified value

Syntax assumeGreaterThanOrEqual(assumable,actual,floor)
assumeGreaterThanOrEqual(assumable,actual,floor,diagnostic)

Description assumeGreaterThanOrEqual(assumable,actual,floor) assumes that
all elements of actual are greater than or equal to all the elements of
floor.

assumeGreaterThanOrEqual(assumable,actual,floor,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
assumable.assumeThat(actual, IsGreaterThanOrEqualTo(floor));

There exists more functionality when using the
IsGreaterThanOrEqualTo constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as floor unless
either one is scalar, at which point scalar expansion occurs.

floor

Minimum value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5379

matlab.unittest.qualifications.Assumable.assumeGreaterThanO

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyGreaterThanOrEqual.

See Also assumeThat | assumeGreaterThan |
assumeLessThanOrEqual | assumeLessThan | ge |
matlab.unittest.constraints.IsGreaterThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

1-5380

matlab.unittest.qualifications.Assumable.assumeInstanceO

Purpose Assume value is object of specified type

Syntax assumeInstanceOf(assumable,actual,className)
assumeInstanceOf(assumable,actual,metaClass)
assumeInstanceOf(___ ,diagnostic)

Description assumeInstanceOf(assumable,actual,className) assumes that
actual is a MATLAB value whose class is the class specified by
className.

assumeInstanceOf(assumable,actual,metaClass) actual is a
MATLAB value whose class is the class specified by the meta.class
instance metaClass.

assumeInstanceOf(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsInstanceOf;
assumable.assumeThat(actual, IsInstanceOf(className));
assumable.assumeThat(actual, IsInstanceOf(metaClass));

There exists more functionality when using the IsInstanceOf
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

className

Name of class, specified as a string.

metaClass

1-5381

matlab.unittest.qualifications.Assumable.assumeInstanceOf

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyInstanceOf.

See Also assumeThat | assumeClass | isa

1-5382

matlab.unittest.qualifications.Assumable.assumeLength

Purpose Assume value has specified length

Syntax assumeLength(assumable,actual,expectedLength)
assumeLength(assumable,actual,expectedLength,diagnostic)

Description assumeLength(assumable,actual,expectedLength) assumes that
actual is a MATLAB array whose length is expectedLength.

assumeLength(assumable,actual,expectedLength,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasLength;
assumable.assumeThat(actual, HasLength(expectedLength));

There exists more functionality when using the HasLength constraint
directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

expectedLength

The length of an array is defined as the largest dimension of that
array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5383

matlab.unittest.qualifications.Assumable.assumeLength

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLength.

See Also assumeThat | assumeSize | assumeNumElements | length

1-5384

matlab.unittest.qualifications.Assumable.assumeLessThan

Purpose Assume value is less than specified value

Syntax assumeLessThan(assumable,actual,ceiling)
assumeLessThan(assumable,actual,ceiling,diagnostic)

Description assumeLessThan(assumable,actual,ceiling) assumes that all
elements of actual are less than all the elements of ceiling.

assumeLessThan(assumable,actual,ceiling,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThan;
assumable.assumeThat(actual, IsLessThan(ceiling));

There exists more functionality when using the IsLessThan
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as ceiling
unless either one is scalar, at which point scalar expansion occurs.

ceiling

Maximum value, exclusive.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5385

matlab.unittest.qualifications.Assumable.assumeLessThan

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLessThan.

See Also assumeThat | assumeLessThanOrEqual |
assumeGreaterThan | assumeGreaterThanOrEqual |
lt | matlab.unittest.constraints.IsLessThan |
matlab.unittest.diagnostics.Diagnostic

1-5386

matlab.unittest.qualifications.Assumable.assumeLessThan

Purpose Assume value is less than or equal to specified value

Syntax assumeLessThanOrEqual(assumable,actual,ceiling)
assumeLessThanOrEqual(assumable,actual,ceiling,diagnostic)

Description assumeLessThanOrEqual(assumable,actual,ceiling) assumes that
all elements of actual are less than or equal to all the elements of
ceiling.

assumeLessThanOrEqual(assumable,actual,ceiling,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThanOrEqualTo;
assumable.assumeThat(actual, IsLessThanOrEqualTo(ceiling));

There exists more functionality when using the
IsLessThanOrEqualTo constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as ceiling
unless either one is scalar, at which point scalar expansion occurs.

ceiling

Maximum value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5387

matlab.unittest.qualifications.Assumable.assumeLessThanOrEq

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLessThanOrEqual.

See Also assumeThat | assumeLessThan | assumeGreaterThan
| assumeGreaterThanOrEqual | le |
matlab.unittest.constraints.IsLessThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

1-5388

matlab.unittest.qualifications.Assumable.assumeMatches

Purpose Assume string matches specified regular expression

Syntax assumeMatches(assumable,actual,expression)
assumeMatches(assumable,actual,expression,diagnostic)

Description assumeMatches(assumable,actual,expression) assumes that
actual is a string that matches the regular expression defined by
expression.

assumeMatches(assumable,actual,expression,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.Matches;
assumable.assumeThat(actual, Matches(expression));

There exists more functionality when using the Matches constraint
directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The string to test.

expression

The value to match, specified as a regular expression.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5389

matlab.unittest.qualifications.Assumable.assumeMatches

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyMatches.

See Also assumeThat | assumeSubstring | regexp

1-5390

matlab.unittest.qualifications.Assumable.assumeNotEmpt

Purpose Assume value is not empty

Syntax assumeNotEmpty(assumable,actual)
assumeNotEmpty(assumable,actual,diagnostic)

Description assumeNotEmpty(assumable,actual) assumes that actual is a
non-empty MATLAB value.

assumeNotEmpty(assumable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
assumable.assumeThat(actual, ~IsEmpty());

There exists more functionality when using the IsEmpty constraint
directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5391

matlab.unittest.qualifications.Assumable.assumeNotEmpty

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNotEmpty.

See Also assumeThat | assumeEmpty | isempty

1-5392

matlab.unittest.qualifications.Assumable.assumeNotEqua

Purpose Assume value is not equal to specified value

Syntax assumeNotEqual(assumable,actual,notExpected)
assumeNotEqual(assumable,actual,notExpected,diagnostic)

Description assumeNotEqual(assumable,actual,notExpected) assumes that
actual is not equal to notExpected.

assumeNotEqual(assumable,actual,notExpected,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEqualTo;
assumable.assumeThat(actual, ~IsEqualTo(notExpected));

There exists more functionality when using the IsEqualTo constraint
directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

notExpected

Value to compare.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5393

matlab.unittest.qualifications.Assumable.assumeNotEqual

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNotEqual.

See Also assumeThat | assumeEqual

1-5394

matlab.unittest.qualifications.Assumable.assumeNotSame

Purpose Assume value is not handle to specified instance

Syntax assumeNotSameHandle(assumable,actual,notExpectedHandle)
assumeNotSameHandle(assumable,actual,notExpectedHandle,diagnostic)

Description assumeNotSameHandle(assumable,actual,notExpectedHandle)
assumes that actual is a different size and/or does not contain the
same instances as the notExpectedHandle handle array.

assumeNotSameHandle(assumable,actual,notExpectedHandle,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
assumable.assumeThat(actual, ~IsSameHandleAs(notExpectedHandle));

There exists more functionality when using the IsSameHandleAs
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

notExpectedHandle

The handle array to compare.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5395

matlab.unittest.qualifications.Assumable.assumeNotSameHand

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNotSameHandle.

See Also assumeThat | assumeSameHandle

1-5396

matlab.unittest.qualifications.Assumable.assumeNumElem

Purpose Assume value has specified element count

Syntax assumeNumElements(assumable,actual,expectedElementCount)
assumeNumElements(assumable,actual,expectedElementCount,diagnostic)

Description assumeNumElements(assumable,actual,expectedElementCount)
assumes that actual is a MATLAB array with
expectedElementCount number of elements.

assumeNumElements(assumable,actual,expectedElementCount,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasElementCount;
assumable.assumeThat(actual, HasElementCount(expectedElementCount))

There exists more functionality when using the HasElementCount
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

expectedElementCount

The expected number of elements in the array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5397

matlab.unittest.qualifications.Assumable.assumeNumElements

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNumElements.

See Also assumeThat | assumeSize | assumeLength | numel

1-5398

matlab.unittest.qualifications.Assumable.assumeReturnsT

Purpose Assume function returns true when evaluated

Syntax assumeReturnsTrue(assumable,actual)
assumeReturnsTrue(assumable,actual,diagnostic)

Description assumeReturnsTrue(assumable,actual) assumes that actual is a
function handle that returns a scalar logical whose value is true.

assumeReturnsTrue(assumable,actual,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

Tips • It is a shortcut for quick custom comparison functionality that
can be defined quickly, and possibly inline. It can be preferable
over simply evaluating the function directly and using assumeTrue
because the function handle will be shown in the diagnostics, thus
providing more insight into the failure condition which is lost when
using assumeTrue.

• This method is functionally equivalent to:

import matlab.unittest.constraints.ReturnsTrue;
assumable.assumeThat(actual, ReturnsTrue());

There exists more functionality when using the ReturnsTrue
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The function handle to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

1-5399

matlab.unittest.qualifications.Assumable.assumeReturnsTrue

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyReturnsTrue.

See Also assumeThat | assumeTrue

1-5400

matlab.unittest.qualifications.Assumable.assumeSameHa

Purpose Assume two values are handles to same instance

Syntax assumeSameHandle(assumable,actual,expectedHandle)
assumeSameHandle(assumable,actual,expectedHandle,diagnostic)

Description assumeSameHandle(assumable,actual,expectedHandle) assumes
that actual is the same size and contains the same instances as the
expectedHandle handle array.

assumeSameHandle(assumable,actual,expectedHandle,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
assumable.assumeThat(actual, IsSameHandleAs(expectedHandle));

There exists more functionality when using the IsSameHandleAs
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

expectedHandle

The expected handle array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5401

matlab.unittest.qualifications.Assumable.assumeSameHandle

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySameHandle.

See Also assumeThat | assumeNotSameHandle | handle

1-5402

matlab.unittest.qualifications.Assumable.assumeSize

Purpose Assume value has specified size

Syntax assumeSize(assumable,actual,expectedSize)
assumeSize(assumable,actual,expectedSize,diagnostic)

Description assumeSize(assumable,actual,expectedSize) assumes that actual
is a MATLAB array whose size is expectedSize.

assumeSize(assumable,actual,expectedSize,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasSize;
assumable.assumeThat(actual, HasSize(expectedSize));

There exists more functionality when using the HasSize constraint
directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

expectedSize

The expected sizes of each dimension the array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5403

matlab.unittest.qualifications.Assumable.assumeSize

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySize.

See Also assumeThat | assumeLength | assumeNumElements | size

1-5404

matlab.unittest.qualifications.Assumable.assumeSubstring

Purpose Assume string contains specified string

Syntax assumeSubstring(assumable,actual,substring)
assumeSubstring(assumable,actual,substring,diagnostic)

Description assumeSubstring(assumable,actual,substring) assumes that
actual is a string that contains substring.

assumeSubstring(assumable,actual,substring,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.ContainsSubstring;
assumable.assumeThat(actual, ContainsSubstring(substring));

There exists more functionality when using the ContainsSubstring
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

substring

The value to match, specified as a string.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5405

matlab.unittest.qualifications.Assumable.assumeSubstring

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySubstring.

See Also assumeThat | assumeMatches | strfind

1-5406

matlab.unittest.qualifications.Assumable.assumeThat

Purpose Assume value meets specified constraint

Syntax assumeThat(assumable,actual,constraint)
assumeThat(assumable,actual,constraint,diagnostic)

Description assumeThat(assumable,actual,constraint) assumes that actual is
a value that satisfies the constraint provided.

If the constraint is not satisfied, an assumption failure is produced
utilizing only the framework diagnostic generated by the constraint.

assumeThat(assumable,actual,constraint,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

When using this signature, both the diagnostic information contained
within diagnostic is used in addition to the diagnostic information
provided by the constraint.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The value to test.

constraint

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5407

matlab.unittest.qualifications.Assumable.assumeThat

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyThat.

1-5408

matlab.unittest.qualifications.Assumable.assumeTrue

Purpose Assume value is true

Syntax assumeTrue(assumable,actual)
assumeTrue(assumable,actual,diagnostic)

Description assumeTrue(assumable,actual) assumes that actual is a scalar
logical with the value of true.

assumeTrue(assumable,actual,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method passes if and only if the actual value is a scalar logical
with a value of true. Therefore, entities such as true valued arrays
and nonzero doubles produce qualification failures when used in this
method, despite these entities exhibiting "true-like" behavior such as
triggering the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsTrue;
assumable.assumeThat(actual, IsTrue());

There exists more functionality when using the IsTrue constraint
directly via assumeThat.

Use of this method for performance benefits can come at the
expense of less diagnostic information, and may not provide the
same level of strictness adhered to by other constraints such as
IsEqualTo. A similar approach that is generally less performant
but can provide slightly better diagnostic information is the use of
assumeReturnsTrue, which at least shows the display of the function
evaluated to generate the failing result.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

1-5409

matlab.unittest.qualifications.Assumable.assumeTrue

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyTrue.

See Also assumeThat | assumeFalse | assumeReturnsTrue

1-5410

matlab.unittest.qualifications.Assumable.assumeWarning

Purpose Assume function issues specified warning

Syntax assumeWarning(assumable,actual,warningID)
assumeWarning(assumable,actual,warningID,diagnostic)
[output1,...,outputN] = assumeWarning(___)

Description assumeWarning(assumable,actual,warningID) assumes that actual
issues a warning with the identifier warningID.

assumeWarning(assumable,actual,warningID,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = assumeWarning(___) also return the
output arguments output1,...,outputN that are produced when
invoking actual.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesWarnings;
assumable.assumeThat(actual, IssuesWarnings({warningID}));

There exists more functionality when using the IssuesWarnings
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The function handle to test.

warningID

Warning ID, specified as a string.

diagnostic

1-5411

matlab.unittest.qualifications.Assumable.assumeWarning

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output
Arguments

output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned
as any type. The argument type is specified by the actual
argument list.

Examples See examples for verifyWarning.

See Also assumeThat | assumeError | assumeWarningFree | warning

1-5412

matlab.unittest.qualifications.Assumable.assumeWarning

Purpose Assume function issues no warnings

Syntax assumeWarningFree(assumable,actual)
assumeWarningFree(assumable,actual,diagnostic)
[output1,...,outputN] = assumeWarningFree(___)

Description assumeWarningFree(assumable,actual) assumes that actual is a
function handle that issues no warnings.

assumeWarningFree(assumable,actual,diagnostic) also displays
the diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = assumeWarningFree(___) also returns
the output arguments output1,...,outputN that are produced when
invoking actual.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesNoWarnings;
assumable.assumeThat(actual, IssuesNoWarnings());

There exists more functionality when using the IssuesNoWarnings
constraint directly via assumeThat.

Input
Arguments

assumable

The matlab.unittest.TestCase instance which is used to pass
or fail the assumption in conjunction with the test running
framework.

actual

The function handle to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5413

matlab.unittest.qualifications.Assumable.assumeWarningFree

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output
Arguments

output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned
as any type. The argument type is specified by the actual
argument list.

Examples See examples for verifyWarningFree.

See Also assumeThat | assumeWarning | warning

1-5414

matlab.unittest.qualifications.AssumptionFailedException

Purpose Exception used for assumption failures

Description The AssumptionFailedException class provides an exception used for
assumption failures. This class is used exclusively by the Assumable
qualification type.

See Also Assumable | MException

1-5415

matlab.unittest.qualifications.ExceptionEventData

Purpose Event data for ExceptionThrown event listeners

Description The ExceptionEventData class holds event data for ExceptionThrown
event listeners. ExceptionThrown event listeners are callback
functions that you register with the testing framework to listen for the
TestRunner to encounter an error during execution of test content.
Typically, authors of custom plugins use this class. Only the test
framework constructs this class directly.

Properties Exception

Unexpected exception caught by TestRunner during its execution
of test content

See Also matlab.unittest.TestRunner |
matlab.unittest.plugins.TestRunnerPlugin | MException

Concepts

1-5416

matlab.unittest.qualifications.FatalAssertable

Purpose Qualification to abort test execution

Description The FatalAssertable class provides a qualification to abort
test execution. Apart from actions performed for failures, the
FatalAssertable class works the same as matlab.unittest
qualifications.

Upon a fatal assertion failure, the FatalAssertable class
informs the testing framework of the failure by throwing a
FatalAssertionFailedException. The test running framework then
displays diagnostic information for the failure and aborts the entire test
session. This is useful when the software under test contains so many
errors that it does not make sense to continue the test session. Also,
you can use fatal assertions in fixture teardown to guarantee the fixture
state is restored correctly. If it is not restored, the full testing session
will aborts and indicates to restart MATLAB before you resume testing.
This allows later tests to run in a consistent MATLAB state. If you
can recover the fixture teardown and make it “Exception Safe” on page
1-5419 for failures, use assertions instead.

Fatal assertions prevent false test failures due to the failure of a
fundamental test. They also prevent false test failures when a prior test
failed to restore test fixtures. If the test framework cannot properly
tear down fixtures, restart MATLAB to ensure testing can resume in a
clean state.

Methods
fatalAssertClass Fatally assert exact class of

specified value

fatalAssertEmpty Fatally assert value is empty

fatalAssertEqual Fatally assert value is equal to
specified value

fatalAssertError Fatally assert function throws
specified exception

1-5417

matlab.unittest.qualifications.FatalAssertable

fatalAssertFail Produce unconditional fatal
assertion failure

fatalAssertFalse Fatally assert value is false

fatalAssertGreaterThanOrEqual Fatally assert value is greater
than or equal to specified value

fatalAssertInstanceOf Fatally assert value is object of
specified type

fatalAssertLength Fatally assert value has specified
length

fatalAssertLessThan Fatally assert value is less than
specified value

fatalAssertLessThanOrEqual Fatally assert value is less than
or equal to specified value

fatalAssertMatches Fatally assert string matches
specified regular expression

fatalAssertNotEmpty Fatally assert value is not empty

fatalAssertNotEqual Fatally assert value is not equal
to specified value

fatalAssertNotSameHandle Fatally assert value is not handle
to specified instance

fatalAssertNumElements Fatally assert value has specified
element count

fatalAssertReturnsTrue Fatally assert function returns
true when evaluated

fatalAssertSameHandle Fatally assert two values are
handles to same instance

fatalAssertSize Fatally assert value has specified
size

fatalAssertSubstring Fatally assert string contains
specified string

1-5418

matlab.unittest.qualifications.FatalAssertable

fatalAssertThat Fatally assert value meets
specified constraint

fatalAssertTrue Fatally assert value is true

fatalAssertWarning Fatally assert function issues
specified warning

fatalAssertWarningFree Fatally assert function issues no
warnings

Events
FatalAssertionFailed Triggered upon failing

fatal assertion. A
QualificationEventData object
is passed to listener callback
functions.

FatalAssertionPassed Triggered upon passing
fatal assertion. A
QualificationEventData object
is passed to listener callback
functions.

Definitions Exception Safe

Test content is exception safe when all fixture teardown is performed
with addTeardown or through the appropriate object destructors when a
failure occurs. This ensures that the failure does not affect later testing
due to stale fixtures.

This code is not exception safe. After an assertion failure, the test
framework does not close the figure.

% Not exception safe
f = figure;
testCase.fatalAssertEqual(actual, expected);
close(f);

1-5419

matlab.unittest.qualifications.FatalAssertable

This code is exception safe because the test framework closes the figure
in all cases.

% Exception safe
f = figure;
testCase.addTeardown(@close, f);
testCase.fatalAssertEqual(actual, expected);

However, tearing down a fixture using addTeardown does not guarantee
code is exception safe. This code shows a failure in fatalAssertEqual.

% Not exception safe
f = figure;
testCase.fatalAssertEqual(actual, expected);
testCase.addTeardown(@close, f);

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Write Helper Function Using Fatal Assertions

A fatal assertion renders the remainder of the current test method
invalid because the state is unrecoverable. A helper function is a
function in the TestCase class but not located within any of the methods
block statement. Execution of these functions is not controlled by the
matlab.unittest framework.

Add the DocPolynomSaveLoadTest.m file to a folder on your MATLAB
path. Refer to the helper function, cleanUpTemporaryFolder, in the
DocPolynomSaveLoadTest test case.

DocPolynomSaveLoadTest Class Definition File

classdef DocPolynomSaveLoadTest < matlab.unittest.TestCase

methods (TestClassSetup)
function addDocPolynomClassToPath(testCase)

origPath = path;

1-5420

matlab.unittest.qualifications.FatalAssertable

testCase.addTeardown(@path, origPath);
addpath(fullfile(matlabroot, ...

'help', 'techdoc', 'matlab_oop', 'examples'));
end

end

methods (Test)
function testSaveLoad(testCase)

import matlab.unittest.diagnostics.Diagnostic;

%% Phase 1: Setup
% Create a temporary working folder
tempFolder = tempname;
[success, message] = mkdir(tempFolder);
testCase.assertTrue(success, ...

Diagnostic.join('Could not create temporary folder.',.
message));

testCase.addTeardown(@() testCase.cleanUpTemporaryFolder(.
tempFolder));

% Change to the temporay folder and register the
% teardown, which restores the original folder
origFolder = pwd;
testCase.addTeardown(@cd, origFolder);
cd(tempFolder);

%% Phase 2: Exercise
% Save the instance to a mat file.
p = DocPolynom([1, 0, 1]);
save('DocPolynomFile', 'p');

% Validate Precondition. Save resulted in valid .mat file
testCase.assertEqual(exist('DocPolynomFile.mat','file'),..

2, Diagnostic.join(...
'mat file was not saved correctly.',@() dir(pwd)));

1-5421

matlab.unittest.qualifications.FatalAssertable

loaded = load('DocPolynomFile');

%% Phase 3: Verify
testCase.verifyEqual(loaded.p, p,...

'Loaded polynom did not equal original polynom.');

%% Phase 4: Teardown
% Done inline via calls to addTeardown at the points
% at which the state was changed.

end
end

methods(Access=private)
function cleanUpTemporaryFolder(testCase,tempFolder)

% Clean up the temporary folder and fatally assert
% that it was correctly cleaned up.

import matlab.unittest.diagnostics.Diagnostic;

[success, message] = rmdir(tempFolder, 's');
testCase.fatalAssertTrue(success, ...

Diagnostic.join('Could not remove temporary folder.',...
message));

end
end

end

Make the cleanUpTemporaryFolder function a helper function by
placing it inside a separate methods block.

methods(Access=private)
function cleanUpTemporaryFolder(testCase, tempFolder)

1-5422

matlab.unittest.qualifications.FatalAssertable

% code
end

end

Use the fatalAssertTrue method to test the rmdir success argument
for errors. If a fatal assertion occurs, the test run is aborted.

function cleanUpTemporaryFolder(testCase, tempFolder)

import matlab.unittest.diagnostics.Diagnostic;

[success, message] = rmdir(tempFolder, 's');
testCase.fatalAssertTrue(success, ...

Diagnostic.join('Could not remove the temporary folder.',...
message));

end

If the rmdir function fails, then this test has failed to restore the state
of MATLAB and the machine at initial startup. Aborting prevents
subsequent tests to fail because MATLAB is left in an unexpected state
by this test.

See Also TestCase | Verifiable | Assumable | Assertable |
matlab.unittest.qualifications | QualificationEventData

Concepts

1-5423

matlab.unittest.qualifications.FatalAssertable.fatalAssertClass

Purpose Fatally assert exact class of specified value

Syntax fatalAssertClass(fatalAssertable,actual,className)
fatalAssertClass(fatalAssertable,actual,metaClass)
fatalAssertClass(___ ,diagnostic)

Description fatalAssertClass(fatalAssertable,actual,className) fatally
asserts that actual is a MATLAB value whose class is the class
specified by className.

fatalAssertClass(fatalAssertable,actual,metaClass) fatally
asserts that actual is a MATLAB value whose class is the class
specified by the meta.class instance metaClass.

fatalAssertClass(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • The method is functionally equivalent to:

import matlab.unittest.constraints.IsOfClass;
fatalAssertable.fatalAssertThat(actual, IsOfClass(className));
fatalAssertable.fatalAssertThat(actual, IsOfClass(metaClass));

There exists more functionality when using the IsOfClass constraint
directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

className

Name of class, specified as a string.

metaClass

1-5424

matlab.unittest.qualifications.FatalAssertable.fatalAssertC

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyClass.

See Also fatalAssertThat | fatalAssertInstanceOf

1-5425

matlab.unittest.qualifications.FatalAssertable.fatalAssertEmpty

Purpose Fatally assert value is empty

Syntax fatalAssertEmpty(fatalAssertable,actual)
fatalAssertEmpty(fatalAssertable,actual,diagnostic)

Description fatalAssertEmpty(fatalAssertable,actual) fatally asserts that
actual is an empty MATLAB value.

fatalAssertEmpty(fatalAssertable,actual,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
fatalAssertable.fatalAssertThat(actual, IsEmpty());

There exists more functionality when using the IsEmpty constraint
directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5426

matlab.unittest.qualifications.FatalAssertable.fatalAssertE

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyEmpty.

See Also fatalAssertThat | fatalAssertNotEmpty | isempty

1-5427

matlab.unittest.qualifications.FatalAssertable.fatalAssertEqual

Purpose Fatally assert value is equal to specified value

Syntax fatalAssertEqual(fatalAssertable,actual,expected)
fatalAssertEqual(___ ,Name,Value)
fatalAssertEqual(___ ,diagnostic)

Description fatalAssertEqual(fatalAssertable,actual,expected) fatally
asserts that actual is strictly equal to expected .

fatalAssertEqual(___ ,Name,Value) fatally asserts equality
with additional options specified by one or more Name,Value pair
arguments.

fatalAssertEqual(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to any of the following:

import matlab.unittest.constraints.IsEqualTo;
fatalAssertable.fatalAssertThat(actual, IsEqualTo(expected));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
fatalAssertable.fatalAssertThat(actual, IsEqualTo(expected, ...

'Within', AbsoluteTolerance(abstol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
fatalAassertable.fatalAssertThat(actual, IsEqualTo(expected, ...

'Within', RelativeTolerance(reltol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;
fatalAssertable.fatalAssertThat(actual, IsEqualTo(expected, ...

'Within', AbsoluteTolerance(abstol) | RelativeTolerance(reltol)));

1-5428

matlab.unittest.qualifications.FatalAssertable.fatalAssertE

There exists more functionality when using the IsEqualTo,
RelativeTolerance, and IsEqualTo constraints directly via
fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

expected

Expected value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’AbsTol’

’RelTol’

1-5429

matlab.unittest.qualifications.FatalAssertable.fatalAssertEqual

Examples See examples for verifyEqual.

See Also fatalAssertThat | fatalAssertNotEqual

1-5430

matlab.unittest.qualifications.FatalAssertable.fatalAssertE

Purpose Fatally assert function throws specified exception

Syntax fatalAssertError(fatalAssertable,actual,identifier)
fatalAssertError(fatalAssertable,actual,metaClass)
fatalAssertError(___ ,diagnostic)

Description fatalAssertError(fatalAssertable,actual,identifier) fatally
asserts that actual is a function handle that throws an exception with
an error identifier that is equal to identifier.

fatalAssertError(fatalAssertable,actual,metaClass) fatally
asserts that actual is a function handle that throws an exception whose
type is defined by the meta.class instance specified in metaClass. This
method does not require the instance to be an exact class match, but
rather it must be in the specified class hierarchy, and that hierarchy
must include the MException class..

fatalAssertError(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.Throws;
fatalAssertable.fatalAssertThat(actual, Throws(identifier));
fatalAssertable.fatalAssertThat(actual, Throws(metaClass));

There exists more functionality when using the Throws constraint
directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

identifier

Error identifier, specified as a string.

metaClass

1-5431

matlab.unittest.qualifications.FatalAssertable.fatalAssertError

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyError.

See Also fatalAssertThat | fatalAssertWarning | MException | error

1-5432

matlab.unittest.qualifications.FatalAssertable.fatalAssertF

Purpose Produce unconditional fatal assertion failure

Syntax fatalAssertFail(fatalAssertable)
fatalAssertFail(fatalAssertable,diagnostic)

Description fatalAssertFail(fatalAssertable) produces an unconditional fatal
assertion failure when encountered.

fatalAssertFail(fatalAssertable,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyFail.

1-5433

matlab.unittest.qualifications.FatalAssertable.fatalAssertFalse

Purpose Fatally assert value is false

Syntax fatalAssertFalse(fatalAssertable,actual)
fatalAssertFalse(fatalAssertable,actual,diagnostic)

Description fatalAssertFalse(fatalAssertable,actual) fatally asserts that
actual is a scalar logical with the value of false.

fatalAssertFalse(fatalAssertable,actual,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method passes if and only if the actual value is a scalar logical
with a value of false. Therefore, entities such as empty arrays, false
valued arrays, and zero doubles produce failures when used in this
method, despite these entities exhibiting "false-like" behavior such as
bypassing the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsFalse;
fatalAssertable.fatalAssertThat(actual, IsFalse());

There exists more functionality when using the IsFalse constraint
directly via fatalAssertThat.

• Unlike fatalAssertTrue, this method may create a new constraint
for each call. For performance critical uses, consider using
fatalAssertTrue.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

diagnostic

1-5434

matlab.unittest.qualifications.FatalAssertable.fatalAssertF

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyFalse.

See Also fatalAssertThat | fatalAssertTrue

1-5435

matlab.unittest.qualifications.FatalAssertable.fatalAssertGreate

Purpose Fatally assert value is greater than specified value

Syntax fatalAssertGreaterThan(fatalAssertable,actual,floor)
fatalAssertGreaterThan(fatalAssertable,actual,floor,diagnostic)

Description fatalAssertGreaterThan(fatalAssertable,actual,floor) fatally
asserts that all elements of actual are greater than all the elements of
floor.

fatalAssertGreaterThan(fatalAssertable,actual,floor,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

matlab.unittest.constraints.IsGreaterThan;
fatalAssertable.fatalAssertThat(actual, IsGreaterThan(floor));

There exists more functionality when using the IsGreaterThan
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as floor unless
either one is scalar, at which point scalar expansion occurs.

floor

Minimum value, exclusive.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5436

matlab.unittest.qualifications.FatalAssertable.fatalAssertG

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyGreaterThan.

See Also fatalAssertThat | fatalAssertGreaterThanOrEqual |
fatalAssertLessThan | fatalAssertLessThanOrEqual
| gt | matlab.unittest.constraints.IsGreaterThan |
matlab.unittest.diagnostics.Diagnostic

1-5437

matlab.unittest.qualifications.FatalAssertable.fatalAssertGreate

Purpose Fatally assert value is greater than or equal to specified value

Syntax fatalAssertGreaterThanOrEqual(fatalAssertable,actual,floor)
fatalAssertGreaterThanOrEqual(fatalAssertable,actual,floor,

diagnostic)

Description fatalAssertGreaterThanOrEqual(fatalAssertable,actual,floor)
fatally asserts that all elements of actual are greater than or equal to
all the elements of floor.

fatalAssertGreaterThanOrEqual(fatalAssertable,actual,floor,
diagnostic) also displays the diagnostic information in diagnostic
upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
fatalAssertable.fatalAssertThat(actual, IsGreaterThanOrEqualTo(floor));

There exists more functionality when using the
IsGreaterThanOrEqualTo constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as floor unless
either one is scalar, at which point scalar expansion occurs.

floor

Minimum value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

1-5438

matlab.unittest.qualifications.FatalAssertable.fatalAssertG

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyGreaterThanOrEqual.

See Also fatalAssertThat | fatalAssertGreaterThan |
fatalAssertLessThanOrEqual | fatalAssertLessThan | ge |
matlab.unittest.constraints.IsGreaterThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

1-5439

matlab.unittest.qualifications.FatalAssertable.fatalAssertInstan

Purpose Fatally assert value is object of specified type

Syntax fatalAssertInstanceOf(fatalAssertable,actual,className)
fatalAssertInstanceOf(fatalAssertable,actual,metaClass)
fatalAssertInstanceOf(___ ,diagnostic)

Description fatalAssertInstanceOf(fatalAssertable,actual,className)
fatally asserts that actual is a MATLAB value whose class is the class
specified by className.

fatalAssertInstanceOf(fatalAssertable,actual,metaClass)
actual is a MATLAB value whose class is the class specified by the
meta.class instance metaClass.

fatalAssertInstanceOf(___ ,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsInstanceOf;
fatalAssertable.fatalAssertThat(actual, IsInstanceOf(className));
fatalAssertable.fatalAssertThat(actual, IsInstanceOf(metaClass));

There exists more functionality when using the IsInstanceOf
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

className

Name of class, specified as a string.

metaClass

1-5440

matlab.unittest.qualifications.FatalAssertable.fatalAssertI

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyInstanceOf.

See Also fatalAssertThat | fatalAssertClass | isa

1-5441

matlab.unittest.qualifications.FatalAssertable.fatalAssertLength

Purpose Fatally assert value has specified length

Syntax fatalAssertLength(fatalAssertable,actual,expectedLength)
fatalAssertLength(fatalAssertable,actual,expectedLength,diagnostic)

Description fatalAssertLength(fatalAssertable,actual,expectedLength)
fatally asserts that actual is a MATLAB array whose length is
expectedLength.

fatalAssertLength(fatalAssertable,actual,expectedLength,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasLength;
fatalAssertable.fatalAssertThat(actual, HasLength(expectedLength));

There exists more functionality when using the HasLength constraint
directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

expectedLength

The length of an array is defined as the largest dimension of that
array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5442

matlab.unittest.qualifications.FatalAssertable.fatalAssertL

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLength.

See Also fatalAssertThat | fatalAssertSize | fatalAssertNumElements |
length

1-5443

matlab.unittest.qualifications.FatalAssertable.fatalAssertLessTh

Purpose Fatally assert value is less than specified value

Syntax fatalAssertLessThan(fatalAssertable,actual,ceiling)
fatalAssertLessThan(fatalAssertable,actual,ceiling,diagnostic)

Description fatalAssertLessThan(fatalAssertable,actual,ceiling) fatally
asserts that all elements of actual are less than all the elements
of ceiling.

fatalAssertLessThan(fatalAssertable,actual,ceiling,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThan;
assertable.assertThat(actual, IsLessThan(ceiling));

There exists more functionality when using the IsLessThan
constraint directly via assertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as ceiling
unless either one is scalar, at which point scalar expansion occurs.

ceiling

Maximum value, exclusive.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5444

matlab.unittest.qualifications.FatalAssertable.fatalAssertL

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLessThan.

See Also fatalAssertThat | fatalAssertLessThanOrEqual |
fatalAssertGreaterThan | fatalAssertGreaterThanOrEqual
| lt | matlab.unittest.constraints.IsLessThan |
matlab.unittest.diagnostics.Diagnostic

1-5445

matlab.unittest.qualifications.FatalAssertable.fatalAssertLessTh

Purpose Fatally assert value is less than or equal to specified value

Syntax fatalAssertLessThanOrEqual(fatalAssertable,actual,ceiling)
fatalAssertLessThanOrEqual(fatalAssertable,actual,ceiling,diagnostic)

Description fatalAssertLessThanOrEqual(fatalAssertable,actual,ceiling)
fatally asserts that all elements of actual are less than or equal to all
the elements of ceiling.

fatalAssertLessThanOrEqual(fatalAssertable,actual,ceiling,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThanOrEqualTo;
fatalAssertable.fatalAssertThat(actual, IsLessThanOrEqualTo(ceiling));

There exists more functionality when using the
IsLessThanOrEqualTo constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as ceiling
unless either one is scalar, at which point scalar expansion occurs.

actual

The value to test.

ceiling

Maximum value.

diagnostic

1-5446

matlab.unittest.qualifications.FatalAssertable.fatalAssertL

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyLessThanOrEqual.

See Also fatalAssertThat | fatalAssertLessThan |
fatalAssertGreaterThan | fatalAssertGreaterThanOrEqual
| le | matlab.unittest.constraints.IsLessThanOrEqualTo |
matlab.unittest.diagnostics.Diagnostic

1-5447

matlab.unittest.qualifications.FatalAssertable.fatalAssertMatch

Purpose Fatally assert string matches specified regular expression

Syntax fatalAssertMatches(fatalAssertable,actual,expression)
fatalAssertMatches(fatalAssertable,actual,expression,diagnostic)

Description fatalAssertMatches(fatalAssertable,actual,expression) fatally
asserts that actual is a string that matches the regular expression
defined by expression.

fatalAssertMatches(fatalAssertable,actual,expression,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.Matches;
fatalAssertable.fatalAssertThat(actual, Matches(expression));

There exists more functionality when using the Matches constraint
directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

expression

The value to match, specified as a regular expression.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5448

matlab.unittest.qualifications.FatalAssertable.fatalAssertM

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyMatches.

See Also fatalAssertThat | fatalAssertSubstring | regexp

1-5449

matlab.unittest.qualifications.FatalAssertable.fatalAssertNotEm

Purpose Fatally assert value is not empty

Syntax fatalAssertNotEmpty(fatalAssertable,actual)
fatalAssertNotEmpty(fatalAssertable,actual,diagnostic)

Description fatalAssertNotEmpty(fatalAssertable,actual) fatally asserts that
actual is a non-empty MATLAB value.

fatalAssertNotEmpty(fatalAssertable,actual,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
fatalAssertable.fatalAssertThat(actual, ~IsEmpty());

There exists more functionality when using the IsEmpty constraint
directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5450

matlab.unittest.qualifications.FatalAssertable.fatalAssertN

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNotEmpty.

See Also fatalAssertThat | fatalAssertEmpty | isempty

1-5451

matlab.unittest.qualifications.FatalAssertable.fatalAssertNotEq

Purpose Fatally assert value is not equal to specified value

Syntax fatalAssertNotEqual(fatalAssertable,actual,notExpected)
fatalAssertNotEqual(fatalAssertable,actual,notExpected,diagnostic)

Description fatalAssertNotEqual(fatalAssertable,actual,notExpected)
fatally asserts that actual is not equal to notExpected.

fatalAssertNotEqual(fatalAssertable,actual,notExpected,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEqualTo;
fatalAssertable.fatalAssertThat(actual, ~IsEqualTo(notExpected));

There exists more functionality when using the IsEqualTo constraint
directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

notExpected

Value to compare.

Examples See examples for verifyNotEqual.

See Also fatalAssertThat | fatalAssertEqual

1-5452

matlab.unittest.qualifications.FatalAssertable.fatalAssertN

Purpose Fatally assert value is not handle to specified instance

Syntax fatalAssertNotSameHandle(fatalAssertable,actual,notExpectedHandle)
fatalAssertNotSameHandle(fatalAssertable,actual,notExpectedHandle,

diagnostic)

Description fatalAssertNotSameHandle(fatalAssertable,actual,notExpectedHandle)
fatally asserts that actual is a different size and/or does not contain
the same instances as the notExpectedHandle handle array.

fatalAssertNotSameHandle(fatalAssertable,actual,notExpectedHandle,
diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
fatalAssertable.fatalAssertThat(actual, ~IsSameHandleAs(notExpectedH

There exists more functionality when using the IsSameHandleAs
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

notExpectedHandle

The handle array to compare.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

1-5453

matlab.unittest.qualifications.FatalAssertable.fatalAssertNotSa

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNotSameHandle.

See Also fatalAssertThat | fatalAssertSameHandle

1-5454

matlab.unittest.qualifications.FatalAssertable.fatalAssertN

Purpose Fatally assert value has specified element count

Syntax fatalAssertNumElements(fatalAssertable,actual,expectedElementCount)
fatalAssertNumElements(fatalAssertable,actual,expectedElementCount,

diagnostic)

Description fatalAssertNumElements(fatalAssertable,actual,expectedElementCount)
fatally asserts that actual is a MATLAB array with
expectedElementCount number of elements.

fatalAssertNumElements(fatalAssertable,actual,expectedElementCount,
diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasElementCount;
fatalAssertable.fatalAssertThat(actual, HasElementCount(expectedElem

There exists more functionality when using the HasElementCount
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

expectedElementCount

The expected number of elements in the array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

1-5455

matlab.unittest.qualifications.FatalAssertable.fatalAssertNumE

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyNumElements.

See Also fatalAssertThat | fatalAssertSize | fatalAssertLength | numel

1-5456

matlab.unittest.qualifications.FatalAssertable.fatalAssertR

Purpose Fatally assert function returns true when evaluated

Syntax fatalAssertReturnsTrue(fatalAssertable,actual)
fatalAssertReturnsTrue(fatalAssertable,actual,diagnostic)

Description fatalAssertReturnsTrue(fatalAssertable,actual) fatally asserts
that actual is a function handle that returns a scalar logical whose
value is true.

fatalAssertReturnsTrue(fatalAssertable,actual,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • It is a shortcut for quick custom comparison functionality that can
be defined quickly, and possibly inline. It can be preferable over
simply evaluating the function directly and using fatalAssertTrue
because the function handle will be shown in the diagnostics, thus
providing more insight into the failure condition which is lost when
using fatalAssertTrue.

• This method is functionally equivalent to:

import matlab.unittest.constraints.ReturnsTrue;
fatalAssertable.fatalAssertThat(actual, ReturnsTrue());

There exists more functionality when using the ReturnsTrue
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The function handle to test.

diagnostic

1-5457

matlab.unittest.qualifications.FatalAssertable.fatalAssertReturn

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyReturnsTrue.

See Also fatalAssertThat | fatalAssertTrue

1-5458

matlab.unittest.qualifications.FatalAssertable.fatalAssertS

Purpose Fatally assert two values are handles to same instance

Syntax fatalAssertSameHandle(fatalAssertable,actual,expectedHandle)
fatalAssertSameHandle(fatalAssertable,actual,expectedHandle,

diagnostic)

Description fatalAssertSameHandle(fatalAssertable,actual,expectedHandle)
fatally asserts that actual is the same size and contains the same
instances as the expectedHandle handle array.

fatalAssertSameHandle(fatalAssertable,actual,expectedHandle,
diagnostic) also displays the diagnostic information in
diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
fatalAssertable.fatalAssertThat(actual, IsSameHandleAs(expectedHandl

There exists more functionality when using the IsSameHandleAs
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

expectedHandle

The expected handle array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

1-5459

matlab.unittest.qualifications.FatalAssertable.fatalAssertSameH

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySameHandle.

See Also fatalAssertThat | fatalAssertNotSameHandle | handle

1-5460

matlab.unittest.qualifications.FatalAssertable.fatalAssertS

Purpose Fatally assert value has specified size

Syntax fatalAssertSize(fatalAssertable,actual,expectedSize)
fatalAssertSize(fatalAssertable,actual,expectedSize,diagnostic)

Description fatalAssertSize(fatalAssertable,actual,expectedSize) fatally
asserts that actual is a MATLAB array whose size is expectedSize.

fatalAssertSize(fatalAssertable,actual,expectedSize,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasSize;
fatalAssertable.fatalAssertThat(actual, HasSize(expectedSize));

There exists more functionality when using the HasSize constraint
directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

expectedSize

The expected sizes of each dimension the array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5461

matlab.unittest.qualifications.FatalAssertable.fatalAssertSize

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySize.

See Also fatalAssertThat | fatalAssertLength | fatalAssertNumElements
| size

1-5462

matlab.unittest.qualifications.FatalAssertable.fatalAssertS

Purpose Fatally assert string contains specified string

Syntax fatalAssertSubstring(fatalAssertable,actual,substring)
fatalAssertSubstring(fatalAssertable,actual,substring,diagnostic)

Description fatalAssertSubstring(fatalAssertable,actual,substring) fatally
asserts that actual is a string that contains substring.

fatalAssertSubstring(fatalAssertable,actual,substring,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.ContainsSubstring;
fatalAssertable.fatalAssertThat(actual,...
ContainsSubstring(substring));

There exists more functionality when using the ContainsSubstring
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

substring

The value to match, specified as a string.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5463

matlab.unittest.qualifications.FatalAssertable.fatalAssertSubstr

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifySubstring.

See Also fatalAssertThat | fatalAssertMatches | strfind

1-5464

matlab.unittest.qualifications.FatalAssertable.fatalAssertT

Purpose Fatally assert value meets specified constraint

Syntax fatalAssertThat(fatalAssertable,actual,constraint)
fatalAssertThat(fatalAssertable,actual,constraint,diagnostic)

Description fatalAssertThat(fatalAssertable,actual,constraint) fatally
asserts that actual is a value that satisfies the constraint provided.

If the constraint is not satisfied, a fatal assertion failure is produced
utilizing only the framework diagnostic generated by the constraint.

fatalAssertThat(fatalAssertable,actual,constraint,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

When using this signature, both the diagnostic information contained
within diagnostic is used in addition to the diagnostic information
provided by the constraint.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The value to test.

constraint

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5465

matlab.unittest.qualifications.FatalAssertable.fatalAssertThat

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyThat.

1-5466

matlab.unittest.qualifications.FatalAssertable.fatalAssertT

Purpose Fatally assert value is true

Syntax fatalAssertTrue(fatalAssertable,actual)
fatalAssertTrue(fatalAssertable,actual,diagnostic)

Description fatalAssertTrue(fatalAssertable,actual) fatally asserts that
actual is a scalar logical with the value of true.

fatalAssertTrue(fatalAssertable,actual,diagnostic) also
displays the diagnostic information in diagnostic upon a failure.

Tips • This method passes if and only if the actual value is a scalar logical
with a value of true. Therefore, entities such as true valued arrays
and nonzero doubles produce qualification failures when used in this
method, despite these entities exhibiting "true-like" behavior such as
triggering the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsTrue;
fatalAssertable.fatalAssertThat(actual, IsTrue());

There exists more functionality when using the IsTrue constraint
directly via fatalAssertThat.

However, this method is optimized for performance and does not
construct a new IsTrue constraint for each call. Sometimes such
use can come at the expense of less diagnostic information. Use the
fatalAssertReturnsTrue method for a similar approach which may
provide better diagnostic information.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

1-5467

matlab.unittest.qualifications.FatalAssertable.fatalAssertTrue

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples See examples for verifyTrue.

See Also fatalAssertThat | fatalAssertFalse | fatalAssertReturnsTrue

1-5468

matlab.unittest.qualifications.FatalAssertable.fatalAssertW

Purpose Fatally assert function issues specified warning

Syntax fatalAssertWarning(fatalAssertable,actual,warningID)
fatalAssertWarning(fatalAssertable,actual,warningID,diagnostic)
[output1,...,outputN] = fatalAssertWarning(___)

Description fatalAssertWarning(fatalAssertable,actual,warningID) fatally
asserts that actual issues a warning with the identifier warningID.

fatalAssertWarning(fatalAssertable,actual,warningID,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = fatalAssertWarning(___) also returns
the output arguments output1,...,outputN that are produced when
invoking actual.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesWarnings;
fatalAssertable.fatalAssertThat(actual, IssuesWarnings({warningID})

There exists more functionality when using the IssuesWarnings
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The function handle to test.

warningID

Warning ID, specified as a string.

diagnostic

1-5469

matlab.unittest.qualifications.FatalAssertable.fatalAssertWarni

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output
Arguments

output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned
as any type. The argument type is specified by the actual
argument list.

Examples See examples for verifyWarning.

See Also fatalAssertThat | fatalAssertError | fatalAssertWarningFree
| warning

1-5470

matlab.unittest.qualifications.FatalAssertable.fatalAssertW

Purpose Fatally assert function issues no warnings

Syntax fatalAssertWarningFree(fatalAssertable,actual)
fatalAssertWarningFree(fatalAssertable,actual,diagnostic)
[output1,...,outputN] = fatalAssertWarningFree(___)

Description fatalAssertWarningFree(fatalAssertable,actual) fatally asserts
that actual is a function handle that issues no warnings.

fatalAssertWarningFree(fatalAssertable,actual,diagnostic)
also displays the diagnostic information in diagnostic upon a failure.

[output1,...,outputN] = fatalAssertWarningFree(___) also
returns the output arguments output1,...,outputN that are
produced when invoking actual.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesNoWarnings;
fatalAssertable.fatalAssertThat(actual, IssuesNoWarnings());

There exists more functionality when using the IssuesNoWarnings
constraint directly via fatalAssertThat.

Input
Arguments

fatalAssertable

The matlab.unittest.TestCase instance which is used to pass
or fail the fatal assertion in conjunction with the test running
framework.

actual

The function handle to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5471

matlab.unittest.qualifications.FatalAssertable.fatalAssertWarni

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output
Arguments

output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned
as any type. The argument type is specified by the actual
argument list.

Examples See examples for verifyWarningFree.

See Also fatalAssertThat | fatalAssertWarning | warning

1-5472

matlab.unittest.qualifications.FatalAssertionFailedExceptio

Purpose Exception used for fatal assertion failures

Description The FatalAssertionFailedException class provides an exception
used for fatal assertion failures. This class is used exclusively by the
FatalAssertable qualification type.

See Also FatalAssertable | MException

1-5473

matlab.unittest.qualifications.QualificationEventData

Purpose Event data for qualification event listeners

Description The QualificationEventData class holds event data for qualification
event listeners. Qualification event listeners are callback functions
that you register with the testing framework to listen for passing
and/or failing qualifications. Qualifications can be assertions, fatal
assertions, assumptions or verifications performed on test content.
The corresponding qualification classes define these events. Typically,
authors of custom plugins use this class. Only the test framework
constructs this class directly.

Properties ActualValue

Value tested to satisfy the qualification logic of the Constraint

Constraint

Instance of matlab.unittest.constraints.Constraint used
for the qualification

When you use a qualification method on a TestCase or Fixture
object, the Constraint property contains the underlying
constraint used for the qualification. For example, if you
use the verifyEqual method, the underlying constraint is the
IsEqualTo constraint. Therefore, if you invoke the constraint’s
getDiagnosticFor method, the diagnostic result can appear
different than what the test framework displays.

TestDiagnostic

Diagnostic specified in the qualification, represented as a string,
function handle, or instance of the Diagnostic class

TestDiagnosticResult

Result of diagnostic specified in the qualification, represented as
a character array

FrameworkDiagnosticResult

1-5474

matlab.unittest.qualifications.QualificationEventData

Result of diagnostic from constraint used for the qualification,
represented as a character array

Stack

Function call stack leading up to the qualification event,
represented as a structure array

See Also matlab.unittest.qualifications.Assertable |
matlab.unittest.qualifications.Assumable |
matlab.unittest.qualifications.FatalAssertable
| matlab.unittest.qualifications.Verifiable |
matlab.unittest.fixtures.Fixture

Concepts

1-5475

matlab.unittest.qualifications.Verifiable

Purpose Qualification to produce soft-failure conditions

Description The Verifiable class provides a qualification to produce soft-failure
conditions. Apart from actions performed for failures, the Verifiable
class works the same as other matlab.unittest qualifications.

Upon a verification failure, the Verifiable class informs the testing
framework of the failure, including all diagnostic information associated
with the failure, but continues to execute the currently running test
without throwing an MException. This is most useful when a failure at
the verification point is not fatal to the remaining test content. Often,
you use verifications as the primary verification of a Four-Phase Test.
Use other qualification types, such as assertions, fatal assertions, and
assumptions, to test for violation of preconditions or incorrect test setup.

Since verifications do not throw MExecptions, all test content runs
to completion even when verification failures occur. This helps you
understand how close a piece of software is to meeting the test suite
requirements. Qualification types that throw exceptions do not provide
this insight, since once an exception is thrown an arbitrary amount
of code remains that is not reached or exercised. Verifications also
provide more testing coverage in failure conditions. However, when you
overuse verifications, they can produce excess noise for a single failure
condition. If a failure condition will cause later qualification points to
also fail, use assertions or fatal assertions instead.

Methods
verifyClass Verify exact class of specified

value

verifyEmpty Verify value is empty

verifyEqual Verify value is equal to specified
value

verifyError Verify function throws specified
exception

1-5476

matlab.unittest.qualifications.Verifiable

verifyFail Produce unconditional
verification failure

verifyFalse Verify value is false

verifyGreaterThan Verify value is greater than
specified value

verifyGreaterThanOrEqual Verify value is greater than or
equal to specified value

verifyInstanceOf Verify value is object of specified
type

verifyLength Verify value has specified length

verifyLessThan Verify value is less than specified
value

verifyLessThanOrEqual Verify value is less than or equal
to specified value

verifyMatches Verify string matches specified
regular expression

verifyNotEmpty Verify value is not empty

verifyNotEqual Verify value is not equal to
specified value

verifyNotSameHandle Verify value is not handle to
specified instance

verifyNumElements Verify value has specified element
count

verifyReturnsTrue Verify function returns true when
evaluated

verifySameHandle Verify two values are handles to
same instance

verifySize Verify value has specified size

1-5477

matlab.unittest.qualifications.Verifiable

verifySubstring Verify string contains specified
string

verifyThat Verify value meets given
constraint

verifyTrue Verify value is true

verifyWarning Verify function issues specified
warning

verifyWarningFree Verify function issues no
warnings

Events
VerificationFailed Triggered upon failing

verification. A
QualificationEventData object
is passed to listener callback
functions.

VerificationPassed Triggered upon passing
verification. A
QualificationEventData object
is passed to listener callback
functions.

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Write Test Methods Using Verifications

Verifications produce and record failures without throwing an
exception, meaning the currently running test runs to completion. This
example creates a test case to verify arithmetic operations on objects
of the DocPolynom example class.

1-5478

matlab.unittest.qualifications.Verifiable

Create the DocPolynomTest Test Case. Refer to the following
DocPolynomTest test case in the subsequent steps in this example,
which highlight specific functions in the file.

DocPolynomTest Class Definition File

classdef DocPolynomTest < matlab.unittest.TestCase
% Tests the DocPolynom class.

properties
msgEqn = 'Equation under test: ';

end

methods (TestClassSetup)
function addDocPolynomClassToPath(testCase)

testCase.addTeardown(@path,addpath(fullfile(matlabroot,...
'help', 'techdoc', 'matlab_oop', 'examples')));

end
end

methods (Test)
function testConstructor(testCase)

p = DocPolynom([1, 0, 1]);
testCase.verifyClass(p, ?DocPolynom);

end

function testAddition(testCase)
p1 = DocPolynom([1, 0, 1]);
p2 = DocPolynom([5, 2]);

actual = p1 + p2;
expected = DocPolynom([1, 5, 3]);

msg = [testCase.msgEqn,...
'(x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3'];

testCase.verifyEqual(actual, expected, msg);
end

1-5479

matlab.unittest.qualifications.Verifiable

function testMultiplication(testCase)
p1 = DocPolynom([1, 0, 3]);
p2 = DocPolynom([5, 2]);

actual = p1 * p2;
expected = DocPolynom([5, 2, 15, 6]);

msg = [testCase.msgEqn,...
'(x^2 + 3) * (5*x + 2) = 5*x^3 + 2*x^2 + 15*x + 6'];

testCase.verifyEqual(actual, expected, msg);
end

end
end

To execute the MATLAB commands in this example, add the
DocPolynomTest.m file to a folder on your MATLAB path.

Write Test to Verify Constructor. Create a function, testConstructor,
using the verifyClass method to test the DocPolynom class constructor.

function testConstructor(testCase)
p = DocPolynom([1, 0, 1]);
testCase.verifyClass(p, ?DocPolynom);

end

Write Tests to Verify Operations. In the testAddition function, use
the verifyEqual method to test the equation (x^2 + 1) + (5*x + 2)
= x^2 + 5*x + 3. The verifyEqual method includes this equation in
the diagnostic argument.

function testAddition(testCase)
p1 = DocPolynom([1, 0, 1]);
p2 = DocPolynom([5, 2]);

actual = p1 + p2;

1-5480

matlab.unittest.qualifications.Verifiable

expected = DocPolynom([1, 5, 3]);

msg = [testCase.msgEqn,...
'(x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3'];

testCase.verifyEqual(actual, expected, msg);
end

The function, testMultiplication, tests multiplication operations.

Run the tests in the DocPolynomTest test case.

tc = DocPolynomTest;
ts = matlab.unittest.TestSuite.fromClass(?DocPolynomTest);
res = run(ts);

Running DocPolynomTest
...
Done DocPolynomTest

All tests passed.

See Also TestCase | Assumable | FatalAssertable | Assertable |
matlab.unittest.qualifications | QualificationEventData

Concepts

External
Web Sites

• Four-Phase Test

1-5481

http://xunitpatterns.com/Four Phase Test.html

matlab.unittest.qualifications.Verifiable.verifyClass

Purpose Verify exact class of specified value

Syntax verifyClass(verifiable,actual,className)
verifyClass(verifiable,actual,metaClass)
verifyClass(___ ,diagnostic)

Description verifyClass(verifiable,actual,className) verifies that actual is
a MATLAB value whose class is the class specified by className.

verifyClass(verifiable,actual,metaClass) verifies that actual is
a MATLAB value whose class is the class specified by the meta.class
instance metaClass. The instance must be an exact class match. Use
verifyInstanceOf to verify inclusion in a class hierarchy.

verifyClass(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • The method is functionally equivalent to the following methods:

import matlab.unittest.constraints.IsOfClass;
verifiable.verifyThat(actual, IsOfClass(className));
verifiable.verifyThat(actual, IsOfClass(metaClass));

There exists more functionality when using the IsOfClass constraint
directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

className

Name of class, specified as a string.

metaClass

1-5482

matlab.unittest.qualifications.Verifiable.verifyClass

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test a Class

These interactive tests verify the class of the number, 5.

Create a TestCase object and the value to test.

testCase = matlab.unittest.TestCase.forInteractiveUse;
actvalue = 5;

Verify class of actvalue is double.

verifyClass(testCase, actvalue, 'double');

Interactive verification passed.

Verify class of actvalue is char.

verifyClass(testCase, actvalue, 'char');

Interactive verification failed.

Framework Diagnostic:

1-5483

matlab.unittest.qualifications.Verifiable.verifyClass

verifyClass failed.
--> The value's class is incorrect.

Actual Class:
double

Expected Class:
char

Actual Value:
5

Test fails.

Test a Function Handle

These interactive tests verify function handles, specified as a meta.class
instance, ?function_handle.

Create a TestCase object.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Create a function handle.

fh = @sin;
verifyClass(testCase, fh, ?function_handle);

Interactive verification passed.

Test the function name.

fh = 'sin';
verifyClass(testCase, fh, ?function_handle);

Interactive verification failed.

Framework Diagnostic:

1-5484

matlab.unittest.qualifications.Verifiable.verifyClass

verifyClass failed.
--> The value's class is incorrect.

Actual Class:
char

Expected Class:
function_handle

Actual Value:
sin

Test fails.

Test a Derived Class

Verify that a derived class is not the same class as its base class.

Create a class, BaseExample.

classdef BaseExample
end

Create a derived class, DerivedExample.

classdef DerivedExample < BaseExample
end

Verify the classes are not equal.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyClass(testCase, DerivedExample(), ?BaseExample);

Interactive verification failed.

Framework Diagnostic:

verifyClass failed.
--> The value's class is incorrect.

1-5485

matlab.unittest.qualifications.Verifiable.verifyClass

Actual Class:
DerivedExample

Expected Class:
BaseExample

Actual Value:
DerivedExample with no properties.

Test fails.

Test Class of Output Value

Use verifyClass to test the add5 function returns a double value.

Function for unit testing:

function res = add5(x)
%ADD5 Increment input by 5.
if ~isa(x,'numeric')

error('add5:InputMustBeNumeric','Input must be numeric.');
end
res = x + 5;
end

TestCase class containing test methods:

classdef Add5Test < matlab.unittest.TestCase
methods (Test)

function testDoubleOut(testCase)
actOutput = add5(1);
testCase.verifyClass(actOutput,'double');

end
function testNonNumericInput(testCase)

testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric');
end

end
end

1-5486

matlab.unittest.qualifications.Verifiable.verifyClass

Create a test suite from the Add5Test class file.

suite = matlab.unittest.TestSuite.fromFile('Add5Test.m');

result = run(suite);

Running Add5Test
..
Done Add5Test

See Also matlab.unittest.constraints | matlab.unittest.qualifications
| verifyThat | verifyInstanceOf |
matlab.unittest.constraints.IsOfClass |
matlab.unittest.diagnostics.Diagnostic

1-5487

matlab.unittest.qualifications.Verifiable.verifyEmpty

Purpose Verify value is empty

Syntax verifyEmpty(verifiable,actual)
verifyEmpty(___ ,diagnostic)

Description verifyEmpty(verifiable,actual) verifies that actual is an empty
MATLAB value.

verifyEmpty(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
verifiable.verifyThat(actual, IsEmpty());

There exists more functionality when using the IsEmpty constraint
directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5488

matlab.unittest.qualifications.Verifiable.verifyEmpty

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test for Empty Strings

Create a TestCase object.

testCase = matlab.unittest.TestCase.forInteractiveUse;

verifyEmpty(testCase, '');

Interactive verification passed.

Test for Empty Arrays

An array with any zero dimension is empty.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEmpty(testCase, ones(2, 5, 0, 3));

Interactive verification passed.

verifyEmpty(testCase, [2 3], 'Array is not empty.');

Interactive verification failed.

Test Diagnostic:

Array is not empty.

Framework Diagnostic:

verifyEmpty failed.
--> The value must be empty.
--> The value has a size of [1 2].

Actual Value:

1-5489

matlab.unittest.qualifications.Verifiable.verifyEmpty

2 3

Test failed.

Test for Empty Cell Arrays

Test empty cell array, {}.

matlab.unittest.TestCase.forInteractiveUse;
verifyEmpty(testCase, {}, 'Cell array is not empty.');

Interactive verification passed.

A cell array of empty arrays is not empty.

verifyEmpty(testCase, {[], [], []}, 'Cell array is not empty.');

Interactive verification failed.

Test Diagnostic:

Cell array is not empty.

Framework Diagnostic:

verifyEmpty failed.
--> The value must be empty.
--> The value has a size of [1 3].

Actual Value:
[] [] []

Test failed.

Test for Empty Test Suite

Test for empty object, emptyTestSuite.

1-5490

matlab.unittest.qualifications.Verifiable.verifyEmpty

testCase = matlab.unittest.TestCase.forInteractiveUse;
emptyTestSuite = matlab.unittest.TestSuite.empty;
verifyEmpty(testCase, emptyTestSuite);

Interactive verification passed.

See Also matlab.unittest.constraints | matlab.unittest.qualifications
| verifyThat | verifyNotEmpty | isempty
| matlab.unittest.constraints.IsEmpty |
matlab.unittest.diagnostics.Diagnostic

1-5491

matlab.unittest.qualifications.Verifiable.verifyEqual

Purpose Verify value is equal to specified value

Syntax verifyEqual(verifiable,actual,expected)
verifyEqual(___ ,Name,Value)
verifyEqual(___ ,diagnostic)

Description verifyEqual(verifiable,actual,expected)) verifies that actual is
strictly equal to expected.

verifyEqual(___ ,Name,Value) verifies equality with additional
options specified by one or more Name,Value pair arguments.

verifyEqual(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure

Tips • This method is functionally equivalent to any of the following:

import matlab.unittest.constraints.IsEqualTo;
verifiable.verifyThat(actual, IsEqualTo(expected));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
verifiable.verifyThat(actual, IsEqualTo(expected, ...

'Within', AbsoluteTolerance(abstol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.RelativeTolerance;
verifiable.verifyThat(actual, IsEqualTo(expected, ...

'Within', RelativeTolerance(reltol)));

import matlab.unittest.constraints.IsEqualTo;
import matlab.unittest.constraints.AbsoluteTolerance;
import matlab.unittest.constraints.RelativeTolerance;
verifiable.verifyThat(actual, IsEqualTo(expected, ...

'Within', AbsoluteTolerance(abstol) | RelativeTolerance(reltol)));

1-5492

matlab.unittest.qualifications.Verifiable.verifyEqual

There exists more functionality when using the IsEqualTo,
RelativeTolerance, and IsEqualTo constraints directly via
verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

expected

Expected value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’AbsTol’

’RelTol’

1-5493

matlab.unittest.qualifications.Verifiable.verifyEqual

Examples Comparing Numeric Values

Numeric values are equivalent if they are of the same class with
equivalent size, complexity, and sparsity.

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

A value is equal to itself.

verifyEqual(testCase, 5, 5);

Interactive verification passed.

Values must have equal sizes.

verifyEqual(testCase, [5 5], 5);

Interactive verification failed.

Framework Diagnostic:

verifyEqual failed.
--> NumericComparator failed.

--> Sizes do not match.

Actual double size:
1 2

Expected double size:
1 1

Actual Value:
5 5

Expected Value:
5

Test failed.

1-5494

matlab.unittest.qualifications.Verifiable.verifyEqual

Test Classes

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEqual(testCase, int8(5), int16(5));

Interactive verification failed.

Framework Diagnostic:

verifyEqual failed.
--> NumericComparator failed.

--> Classes do not match.

Actual Class:
int8

Expected Class:
int16

Actual Value:
5

Expected Value:
5

Test failed.

Test Cell Arrays

Each element of a cell array must be equal in value, class, and size.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEqual(testCase, {'cell', struct, 5}, {'cell', struct, 5});

Interactive verification passed.

Test Numeric Tolerances

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyEqual(testCase, 4.95, 5);

1-5495

matlab.unittest.qualifications.Verifiable.verifyEqual

Interactive verification failed.

Test Diagnostic:

4.95 is not equal to 5

Framework Diagnostic:

verifyEqual failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
4.950000000000000

Expected Value:
5

Test failed.

verifyEqual(testCase, 1.5, 2, 'AbsTol', 1)

Interactive verification passed.

verifyEqual(testCase, 1.5, 2, 'RelTol', 0.1, ...
'Difference between actual and expected exceeds relative tolerance')

Interactive verification failed.

Test Diagnostic:

Difference between actual and expected exceeds relative tolerance

1-5496

matlab.unittest.qualifications.Verifiable.verifyEqual

Framework Diagnostic:

verifyEqual failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".
--> RelativeTolerance failed.

--> The value was not within relative tolerance.

Tolerance Definition:
abs(expected - actual) <= tolerance .* abs(expected)

Tolerance Value:
0.100000000000000

Actual Value:
1.500000000000000

Expected Value:
2

Test failed.

See Also verifyThat | verifyNotEqual |
matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.AbsoluteTolerance
| matlab.unittest.constraints.RelativeTolerance
| matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5497

matlab.unittest.qualifications.Verifiable.verifyError

Purpose Verify function throws specified exception

Syntax verifyError(verifiable,actual,identifier)
verifyError(verifiable,actual,metaClass)
verifyError(___ ,diagnostic)

Description verifyError(verifiable,actual,identifier) verifies that actual
is a function handle that throws an exception with an error identifier
that is equal to identifier.

verifyError(verifiable,actual,metaClass) verifies that actual
is a function handle that throws an exception whose type is defined by
the meta.class instance specified in metaClass. This method does not
require the instance to be an exact class match, but rather it must be
in the specified class hierarchy, and that hierarchy must include the
MException class.

verifyError(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.Throws;
verifiable.verifyThat(actual, Throws(identifier));
verifiable.verifyThat(actual, Throws(metaClass));

There exists more functionality when using the Throws constraint
directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

identifier

1-5498

matlab.unittest.qualifications.Verifiable.verifyError

Error identifier, specified as a string.

metaClass

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test for Error IDs

testCase = matlab.unittest.TestCase.forInteractiveUse;

% Passing scenarios
%%%%%%%%%%%%%%%%%%%%
verifyError(testCase, @() error('SOME:error:id','Error!'), 'SOME:error
verifyError(testCase, @testCase.assertFail, ...

?matlab.unittest.qualifications.AssertionFailedException);

% Failing scenarios
%%%%%%%%%%%%%%%%%%%%
verifyError(testCase, 5, 'some:id', '5 is not a function handle');
verifyError(testCase, @testCase.verifyFail, ...

?matlab.unittest.qualifications.AssertionFailedException, ...
'Verifications dont throw exceptions.');

verifyError(testCase, @() error('SOME:id'), 'OTHER:id', 'Wrong id');
verifyError(testCase, @() error('whoops'), ...

?matlab.unittest.qualifications.AssertionFailedException, ...
'Wrong type of exception thrown');

1-5499

matlab.unittest.qualifications.Verifiable.verifyError

Test Error Condition

Create testNonNumericInput to test if function throws expected error
message, add5:InputMustBeNumeric, for unexpected condition, input
is char.

Function for unit testing:

function res = add5(x)
%ADD5 Increment input by 5.
if ~isa(x,'numeric')

error('add5:InputMustBeNumeric','Input must be numeric.');
end
res = x + 5;
end

TestCase class containing test methods:

classdef Add5Test < matlab.unittest.TestCase
methods (Test)

function testDoubleOut(testCase)
actOutput = add5(1);
testCase.verifyClass(actOutput,'double');

end
function testNonNumericInput(testCase)

testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric');
end

end
end

Create a test suite from the Add5Test class file.

suite = matlab.unittest.TestSuite.fromFile('Add5Test.m');

result = run(suite);

Running Add5Test

1-5500

matlab.unittest.qualifications.Verifiable.verifyError

..
Done Add5Test

See Also verifyThat | verifyWarning | MException |
error | matlab.unittest.constraints.Throws
| matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5501

matlab.unittest.qualifications.Verifiable.verifyFail

Purpose Produce unconditional verification failure

Syntax verifyFail(verifiable)
verifyFail(verifiable,diagnostic)

Description verifyFail(verifiable) produces an unconditional verification
failure when encountered.

verifyFail(verifiable,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test for Failure Condition

An example of where this method may be used is in a callback function
that should not be executed in a given scenario. A test can confirm
this does not occur by unconditionally performing a failure if the code
path is reached.

Create a handle class, MyHandle, with a SomethingHappened event.

1-5502

matlab.unittest.qualifications.Verifiable.verifyFail

classdef MyHandle < handle
events

SomethingHappened
end

end

Create a file, ListenerTest, on your MATLAB path that contains the
following TestCase class.

classdef ListenerTest < matlab.unittest.TestCase
methods(Test)

function testDisabledListeners(testCase)
h = MyHandle;

% Add a listener to a test helper method
listener = h.addlistener('SomethingHappened', ...

@testCase.shouldNotGetCalled);

% Passing scenario (code path is not reached)
%%%%%%%%%%%%%%%%%%%%
% Disabled listener should not invoke callbacks
listener.Enabled = false;
h.notify('SomethingHappened');

% Failing scenario (code path is reached)
%%%%%%%%%%%%%%%%%%%%
% Enabled listener invoke callback and fail
listener.Enabled = true;
h.notify('SomethingHappened');

end
end

methods
function shouldNotGetCalled(testCase, ~, ~)

% A test helper callback method that should not execute
testCase.verifyFail('This listener callback should not hav

end

1-5503

matlab.unittest.qualifications.Verifiable.verifyFail

end

end

From the command prompt, run the test.

run(ListenerTest);

Running ListenerTest

===
Verification failed in ListenerTest/testDisabledListeners.

Test Diagnostic:

This listener callback should not have executed

Stack Information:

In C:\Desktop\ListenerTest.m (ListenerTest.shouldNotGetCalled) at 27
In C:\\Desktop\ListenerTest.m (@(varargin)testCase.shouldNotGetCalled
In C:\Desktop\ListenerTest.m (ListenerTest.testDisabledListeners) at

===
.
Done ListenerTest

Failure Summary:

Name Failed Incomplete Reason(s)
===
ListenerTest/testDisabledListeners X Failed by ve

See Also matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5504

matlab.unittest.qualifications.Verifiable.verifyFalse

Purpose Verify value is false

Syntax verifyFalse(verifiable,actual)
verifyFalse(___ ,diagnostic)

Description verifyFalse(verifiable,actual) verifies that actual is a scalar
logical with the value of false.

verifyFalse(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method passes if and only if the actual value is a scalar logical
with a value of false. Therefore, entities such as empty arrays, false
valued arrays, and zero doubles produce failures when used in this
method, despite these entities exhibiting "false-like" behavior such as
bypassing the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsFalse;
verifiable.verifyThat(actual, IsFalse());

There exists more functionality when using the IsFalse constraint
directly via verifyThat.

• Unlike verifyTrue, this method may create a new constraint for each
call. For performance critical uses, consider using verifyTrue.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

diagnostic

1-5505

matlab.unittest.qualifications.Verifiable.verifyFalse

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test MATLAB Logical Functions

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Test true.

verifyFalse(testCase, true);

Interactive verification failed.

Framework Diagnostic:

verifyFalse failed.
--> The value must evaluate to "false".

Actual Value:
1

Test failed.

Test false.

verifyFalse(testCase, false);

1-5506

matlab.unittest.qualifications.Verifiable.verifyFalse

Interactive verification passed.

Test the Value 0

The number 0 is a double value, not a logical value.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyFalse(testCase, 0);

Interactive verification failed.

Framework Diagnostic:

verifyFalse failed.
--> The value must be logical. It is of type "double".

Actual Value:
0

Test failed.

Test Array of Logical Values

To be false, the value must be scalar.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyFalse(testCase, [false false false]);

Interactive verification failed.

Framework Diagnostic:

verifyFalse failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
0 0 0

1-5507

matlab.unittest.qualifications.Verifiable.verifyFalse

Test failed.

Test an array of mixed logical values.

verifyFalse(testCase, [false true false], ...
'A mixed array of logicals is not the one false value');

Interactive verification failed.

Test Diagnostic:

A mixed array of logicals is not the one false value

Framework Diagnostic:

verifyFalse failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
0 1 0

Test failed.

See Also verifyThat | verifyTrue |
matlab.unittest.diagnostics.Diagnostic
| matlab.unittest.constraints.IsFalse |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5508

matlab.unittest.qualifications.Verifiable.verifyGreaterThan

Purpose Verify value is greater than specified value

Syntax verifyGreaterThan(verifiable,actual,floor)
verifyGreaterThan(___ ,diagnostic)

Description verifyGreaterThan(verifiable,actual,floor) verifies that all
elements of actual are greater than all the elements of floor.

verifyGreaterThan(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

matlab.unittest.constraints.IsGreaterThan;
verifiable.verifyThat(actual, IsGreaterThan(floor));

There exists more functionality when using the IsGreaterThan
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as floor unless
either one is scalar, at which point scalar expansion occurs.

floor

Minimum value, exclusive.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5509

matlab.unittest.qualifications.Verifiable.verifyGreaterThan

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Compare Two Numbers

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify 3 is greater than 2.

verifyGreaterThan(testCase, 3, 2);

Interactive verification passed.

Test if 5 is greater than 9.

verifyGreaterThan(testCase, 5, 9);

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThan failed.
--> The value must be greater than the minimum value.

Actual Value:
5

Minimum Value (Exclusive):
9

Test failed.

1-5510

matlab.unittest.qualifications.Verifiable.verifyGreaterThan

Compare an Array to a Scalar

Test if each element is greater than the FLOOR value, 2.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyGreaterThan(testCase, [5 6 7], 2);

Interactive verification passed.

Test if value 5 is greater than each element in the FLOOR array, [1
2 3].

verifyGreaterThan(testCase, 5, [1 2 3]);

Interactive verification passed.

Test if each element in the matrix is greater than the FLOOR value, 4.

verifyGreaterThan(testCase, [1 2 3; 4 5 6], 4);

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThan failed.
--> Each element must be greater than the minimum value.

Failing Indices:
1 2 3 5

Actual Value:
1 2 3
4 5 6

Minimum Value (Exclusive):
4

Test failed.

1-5511

matlab.unittest.qualifications.Verifiable.verifyGreaterThan

Compare Arrays

Test if each element is greater than each corresponding element of the
FLOOR array, [4 -9 0].

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyGreaterThan(testCase, [5 -3 2], [4 -9 0]);

Interactive verification passed.

Compare an array to itself.

verifyGreaterThan(testCase, eye(2), eye(2));

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThan failed.
--> Each element must be greater than each corresponding element of the m

Failing Indices:
1 2 3 4

Actual Value:
1 0
0 1

Minimum Value (Exclusive):
1 0
0 1

Test failed.

See Also verifyThat | verifyGreaterThanOrEqual |
verifyLessThanOrEqual | verifyLessThan | gt
| matlab.unittest.constraints.IsGreaterThan

1-5512

matlab.unittest.qualifications.Verifiable.verifyGreaterThan

| matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5513

matlab.unittest.qualifications.Verifiable.verifyGreaterThanOrEq

Purpose Verify value is greater than or equal to specified value

Syntax verifyGreaterThanOrEqual(verifiable,actual,floor)
verifyGreaterThanOrEqual(___ ,diagnostic)

Description verifyGreaterThanOrEqual(verifiable,actual,floor) that all
elements of actual are greater than or equal to all the elements of
floor.

verifyGreaterThanOrEqual(___ ,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsGreaterThanOrEqualTo;
verifiable.verifyThat(actual, IsGreaterThanOrEqualTo(floor));

There exists more functionality when using the
IsGreaterThanOrEqualTo constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as floor unless
either one is scalar, at which point scalar expansion occurs.

floor

Minimum value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5514

matlab.unittest.qualifications.Verifiable.verifyGreaterThan

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Compare Two Numbers

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify 3 is greater than 2.

verifyGreaterThanOrEqual(testCase, 3, 2);

Interactive verification passed.

Verify 3 is greater than or equal to 3.

verifyGreaterThanOrEqual(testCase, 3, 3);

Interactive verification passed.

Test if 5 is greater than 9.

verifyGreaterThanOrEqual(testCase, 5, 9);

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThanOrEqual failed.
--> The value must be greater than or equal to the minimum value.

Actual Value:
5

1-5515

matlab.unittest.qualifications.Verifiable.verifyGreaterThanOrEq

Minimum Value (Inclusive):
9

Test failed.

Compare an Array to a Scalar

Test if each element is greater than or equal to the FLOOR value, 2.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyGreaterThanOrEqual(testCase, [5 2 7], 2);

Interactive verification passed.

Test if each element in the matrix is greater than or equal to the FLOOR
value, 4.

verifyGreaterThanOrEqual(testCase, [1 2 3; 4 5 6], 4);

Interactive verification failed.

Framework Diagnostic:

verifyGreaterThanOrEqual failed.
--> Each element must be greater than or equal to the minimum value.

Failing Indices:
1 3 5

Actual Value:
1 2 3
4 5 6

Minimum Value (Inclusive):
4

1-5516

matlab.unittest.qualifications.Verifiable.verifyGreaterThan

Compare Arrays

Test if each element is greater than or equal to each corresponding
element of the FLOOR array, [4 -3 0].

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyGreaterThanOrEqual(testCase, [5 -3 2], [4 -3 0]);

Interactive verification passed.

Compare an array to itself.

verifyGreaterThanOrEqual(testCase, eye(2), eye(2));

Interactive verification passed.

See Also verifyThat | verifyGreaterThan |
verifyLessThan | verifyLessThanOrEqual | ge |
matlab.unittest.constraints.IsGreaterThanOrEqualTo
| matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5517

matlab.unittest.qualifications.Verifiable.verifyInstanceOf

Purpose Verify value is object of specified type

Syntax verifyInstanceOf(verifiable,actual,className)
verifyInstanceOf(verifiable,actual,metaClass)
verifyInstanceOf(___ ,diagnostic)

Description verifyInstanceOf(verifiable,actual,className) verifies that
actual is a MATLAB value whose class is the class specified by
className.

verifyInstanceOf(verifiable,actual,metaClass) actual is a
MATLAB value whose class is the class specified by the meta.class
instance metaClass.

verifyInstanceOf(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsInstanceOf;
verifiable.verifyThat(actual, IsInstanceOf(className));
verifiable.verifyThat(actual, IsInstanceOf(metaClass));

There exists more functionality when using the IsInstanceOf
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

className

Name of class, specified as a string.

metaClass

1-5518

matlab.unittest.qualifications.Verifiable.verifyInstanceOf

An instance of meta.class.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test a Class

These interactive tests verify the class of the number, 5.

Create a TestCase object and the value to test.

testCase = matlab.unittest.TestCase.forInteractiveUse;
actvalue = 5;

Verify actvalue is an instance of class double.

verifyInstanceOf(testCase, actvalue, 'double');

Interactive verification passed.

Verify if actvalue is an instance of char.

verifyInstanceOf(testCase, 5, 'char');

Interactive verification failed.

Framework Diagnostic:

verifyInstanceOf failed.

1-5519

matlab.unittest.qualifications.Verifiable.verifyInstanceOf

--> The value must be an instance of the expected type.

Actual Class:
double

Expected Type:
char

Actual Value:
5

Test failed.

Test a Function Handle

These tests verify function handles, specified as a meta.class instance,
?function_handle.

Create a function handle.

fh = @sin;
testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyInstanceOf(testCase, fh, ?function_handle);

Interactive verification passed.

Test the function name.

fh = 'sin';
verifyInstanceOf(testCase, fh, ?function_handle);

Interactive verification failed.

Framework Diagnostic:

verifyInstanceOf failed.
--> The value must be an instance of the expected type.

Actual Class:

1-5520

matlab.unittest.qualifications.Verifiable.verifyInstanceOf

char
Expected Type:

function_handle

Actual Value:
sin

Test failed.

Test a Derived Class

Verify that a derived class is not the same class as its base class.

Create a class, BaseExample.

classdef BaseExample
end

Create a derived class, DerivedExample.

classdef DerivedExample < BaseExample
end

Verify DerivedExample is an instance of BaseExample.

testCase = matlab.unittest.TestCase.forInteractiveUse;
testCase.verifyInstanceOf(DerivedExample(), ?BaseExample);

Interactive verification passed.

Verify BaseExample is not an instance of DerivedExample.

testCase.verifyInstanceOf(BaseExample(), ?DerivedExample);

Interactive verification failed.

Framework Diagnostic:

1-5521

matlab.unittest.qualifications.Verifiable.verifyInstanceOf

verifyInstanceOf failed.
--> The value must be an instance of the expected type.

Actual Class:
BaseExample

Expected Type:
DerivedExample

Actual Value:
BaseExample with no properties.

Test failed.

See Also verifyThat | verifyClass | isa |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints.IsInstanceOf |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5522

matlab.unittest.qualifications.Verifiable.verifyLength

Purpose Verify value has specified length

Syntax verifyLength(verifiable,actual,expectedLength)
verifyLength(___ ,diagnostic)

Description verifyLength(verifiable,actual,expectedLength) verifies that
actual is a MATLAB array whose length is expectedLength.

verifyLength(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasLength;
verifiable.verifyThat(actual, HasLength(expectedLength));

There exists more functionality when using the HasLength constraint
directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

expectedLength

The length of an array is defined as the largest dimension of that
array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5523

matlab.unittest.qualifications.Verifiable.verifyLength

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test Array Lengths

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify length of array is the expected value, 5.

verifyLength(testCase, ones(2, 5, 3), 5, 'User diagnostic');

Interactive verification passed.

Length of array is not the expected value, 3.

verifyLength(testCase, [2 3], 3);

Interactive verification failed.

Framework Diagnostic:

verifyLength failed.
--> The array has an incorrect length.

Actual Length:
2

Expected Length:
3

Actual Array:
2 3

1-5524

matlab.unittest.qualifications.Verifiable.verifyLength

Test failed.

The length of a 2x3 array is 3.

verifyLength(testCase, [1 2 3; 4 5 6], 3);

Interactive verification passed.

Verify the length of a 2x3 array is not the number of elements, 6.

verifyLength(testCase, [1 2 3; 4 5 6], 6);

Interactive verification failed.

Framework Diagnostic:

verifyLength failed.
--> The array has an incorrect length.

Actual Length:
3

Expected Length:
6

Actual Array:
1 2 3
4 5 6

Test failed.

verifyLength(testCase, eye(2), 4);

Interactive verification failed.

Framework Diagnostic:

1-5525

matlab.unittest.qualifications.Verifiable.verifyLength

verifyLength failed.
--> The array has an incorrect length.

Actual Length:
2

Expected Length:
4

Actual Array:
1 0
0 1

Test Cell Array Lengths

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLength(testCase, {'somestring', 'someotherstring'}, 2);

Interactive verification passed.

See Also verifyThat | verifySize | verifyNumElements |
length | matlab.unittest.diagnostics.Diagnostic
| matlab.unittest.constraints.HasLength |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5526

matlab.unittest.qualifications.Verifiable.verifyLessThan

Purpose Verify value is less than specified value

Syntax verifyLessThan(verifiable,actual,ceiling)
verifyLessThan(___ ,diagnostic)

Description verifyLessThan(verifiable,actual,ceiling) verifies that all
elements of actual are less than all the elements of ceiling.

verifyLessThan(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThan;
verifiable.verifyThat(actual, IsLessThan(ceiling));

There exists more functionality when using the IsLessThan
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test. actual must be the same size as ceiling
unless either one is scalar, at which point scalar expansion occurs.

ceiling

Maximum value, exclusive.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5527

matlab.unittest.qualifications.Verifiable.verifyLessThan

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Compare Two Numbers

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify 2 is less than 3.

verifyLessThan(testCase, 2, 3);

Interactive verification passed.

Test if 9 is less than 5.

verifyLessThan(testCase, 9, 5);

Interactive verification failed.

Framework Diagnostic:

verifyLessThan failed.
--> The value must be less than the maximum value.

Actual Value:
9

Maximum Value (Exclusive):
5

Test failed.

1-5528

matlab.unittest.qualifications.Verifiable.verifyLessThan

Compare an Array to a Scalar

Test if each element is less than the CEILING value, 9.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLessThan(testCase, [5 6 7], 9);

Interactive verification passed.

Test if each element in the matrix is less than the CEILING value, 4.

verifyLessThan(testCase, [1 2 3; 4 5 6], 4);

Interactive verification failed.

Framework Diagnostic:

verifyLessThan failed.
--> Each element must be less than the maximum value.

Failing Indices:
2 4 6

Actual Value:
1 2 3
4 5 6

Maximum Value (Exclusive):
4

Test failed.

Compare Arrays

Test if each element is less than each corresponding element of the
CEILING array, [7 -1 8].

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLessThan(testCase, [5 -3 2], [7 -1 8]);

1-5529

matlab.unittest.qualifications.Verifiable.verifyLessThan

Interactive verification passed.

Compare an array to itself.

verifyLessThan(testCase, eye(2), eye(2));

Interactive verification failed.

Framework Diagnostic:

verifyLessThan failed.
--> Each element must be less than each corresponding element of the maxi

Failing Indices:
1 2 3 4

Actual Value:
1 0
0 1

Maximum Value (Exclusive):
1 0
0 1

Test failed.

See Also verifyThat | verifyLessThanOrEqual |
verifyGreaterThan | verifyGreaterThanOrEqual
| lt | matlab.unittest.constraints.IsLessThan
| matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5530

matlab.unittest.qualifications.Verifiable.verifyLessThanOrE

Purpose Verify value is less than or equal to specified value

Syntax verifyLessThanOrEqual(verifiable,actual,ceiling)
verifyLessThanOrEqual(___ ,diagnostic)

Description verifyLessThanOrEqual(verifiable,actual,ceiling) verifies that
all elements of actual are less than or equal to all the elements of
ceiling.

verifyLessThanOrEqual(___ ,diagnostic) also displays the
diagnostic information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsLessThanOrEqualTo;
verifiable.verifyThat(actual, IsLessThanOrEqualTo(ceiling));

There exists more functionality when using the
IsLessThanOrEqualTo constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

ceiling

Maximum value.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5531

matlab.unittest.qualifications.Verifiable.verifyLessThanOrEqual

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Compare Two Numbers

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify 2 is less than 3.

verifyLessThanOrEqual(testCase, 2, 3);

Interactive verification passed.

Verify 3 is less than or equal to 3.

verifyLessThanOrEqual(testCase, 3, 3);

Interactive verification passed.

Test if 9 is less than 5.

verifyLessThanOrEqual(testCase, 9, 5);

Interactive verification failed.

Framework Diagnostic:

verifyLessThanOrEqual failed.
--> The value must be less than or equal to the maximum value.

Actual Value:
9

1-5532

matlab.unittest.qualifications.Verifiable.verifyLessThanOrE

Maximum Value (Inclusive):
5

Test failed.

Compare an Array to a Scalar

Test if each element is less than or equal to the ceiling value, 7.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLessThanOrEqual(testCase, [5 2 7], 7);

Interactive verification passed.

Test if each element in the matrix is less than or equal to the ceiling
value, 4.

verifyLessThanOrEqual(testCase, [1 2 3; 4 5 6], 4);

Interactive verification failed.

Framework Diagnostic:

verifyLessThanOrEqual failed.
--> Each element must be less than or equal to the maximum value.

Failing Indices:
4 6

Actual Value:
1 2 3
4 5 6

Maximum Value (Inclusive):
4

Test failed.

1-5533

matlab.unittest.qualifications.Verifiable.verifyLessThanOrEqual

Compare Arrays

Test if each element is less than or equal to each corresponding element
of the ceiling array, [5 -3 8].

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyLessThanOrEqual(testCase, [5 -3 2], [5 -3 8]);

Interactive verification passed.

Compare an array to itself.

verifyLessThanOrEqual(testCase, eye(2), eye(2));

Interactive verification passed.

See Also verifyThat | verifyLessThan | verifyGreaterThan
| verifyGreaterThanOrEqual | le |
matlab.unittest.constraints.IsLessThanOrEqualTo
| matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5534

matlab.unittest.qualifications.Verifiable.verifyMatches

Purpose Verify string matches specified regular expression

Syntax verifyMatches(verifiable,actual,expression)
verifyMatches(___ ,diagnostic)

Description verifyMatches(verifiable,actual,expression) that actual is a
string that matches the regular expression defined by expression.

verifyMatches(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.Matches;
verifiable.verifyThat(actual, Matches(expression));

There exists more functionality when using the Matches constraint
directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The string to test.

expression

The value to match, specified as a regular expression.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5535

matlab.unittest.qualifications.Verifiable.verifyMatches

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test for String Matches

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify that strings matches a regular expression.

verifyMatches(testCase, 'Some String', 'Some [Ss]tring', ...
'My result should have matched the expression');

Interactive verification passed.

verifyMatches(testCase, 'Another string', '(Some |An)other');

Interactive verification passed.

verifyMatches(testCase, 'Another 3 strings', '^Another \d+ strings?$');

Interactive verification passed.

verifyMatches(testCase, '3 more strings', '\d+ strings?');

Interactive verification failed.

Framework Diagnostic:

verifyMatches failed.
--> The string did not match the regular expression.

Actual String:
3 more strings

1-5536

matlab.unittest.qualifications.Verifiable.verifyMatches

Regular Expression:
\d+ strings?

Test failed.

See Also verifyThat | verifySubstring | regexp |
matlab.unittest.diagnostics.Diagnostic
| matlab.unittest.constraints.Matches |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5537

matlab.unittest.qualifications.Verifiable.verifyNotEmpty

Purpose Verify value is not empty

Syntax verifyNotEmpty(verifiable,actual)
verifyNotEmpty(___ ,diagnostic)

Description verifyNotEmpty(verifiable,actual) verifies that actual is a
non-empty MATLAB value.

verifyNotEmpty(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEmpty;
verifiable.verifyThat(actual, ~IsEmpty());

There exists more functionality when using the IsEmpty constraint
directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5538

matlab.unittest.qualifications.Verifiable.verifyNotEmpty

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test for Non-Empty Strings

Create a TestCase object.

testCase = matlab.unittest.TestCase.forInteractiveUse;

verifyNotEmpty(testCase, '');

Interactive verification failed.

Framework Diagnostic:

verifyNotEmpty failed.
--> The value must not be empty.
--> The value has a size of [0 0].

Actual Value:
''

Test failed.

Test for Non-Empty Arrays

An array with any zero dimension is empty.

Test array [2 3].

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEmpty(testCase, [2 3]);

Interactive verification passed.

Test array with a zero dimension.

verifyNotEmpty(testCase, ones(2, 5, 0, 3));

1-5539

matlab.unittest.qualifications.Verifiable.verifyNotEmpty

Interactive verification failed.

Framework Diagnostic:

verifyNotEmpty failed.
--> The value must not be empty.
--> The value has a size of [2 5 0 3].

Actual Value:
Empty array: 2-by-5-by-0-by-3

Test failed.

Test for Non-Empty Cell Arrays

A cell array of empty arrays is not empty.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEmpty(testCase, {[], [], []}, '');

Interactive verification passed.

Test for Non-Empty Test Suite

Test an empty object, emptyTestSuite.

emptyTestSuite = matlab.unittest.TestSuite.empty;
testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEmpty(testCase, emptyTestSuite);

Interactive verification failed.

Framework Diagnostic:

verifyNotEmpty failed.
--> The value must not be empty.

1-5540

matlab.unittest.qualifications.Verifiable.verifyNotEmpty

--> The value has a size of [0 0].

Actual Value:
0x0 TestCase array with no properties.

Test failed.

See Also verifyThat | verifyEmpty | isempty |
matlab.unittest.diagnostics.Diagnostic
| matlab.unittest.constraints.IsEmpty |
matlab.unittest.constraints.BooleanConstraint.not |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5541

matlab.unittest.qualifications.Verifiable.verifyNotEqual

Purpose Verify value is not equal to specified value

Syntax verifyNotEqual(verifiable,actual,notExpected)
verifyNotEqual(___ ,diagnostic)

Description verifyNotEqual(verifiable,actual,notExpected) verifies that
actual is not equal to notExpected.

verifyNotEqual(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsEqualTo;
verifiable.verifyThat(actual, ~IsEqualTo(notExpected));

There exists more functionality when using the IsEqualTo constraint
directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

notExpected

Value to compare.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5542

matlab.unittest.qualifications.Verifiable.verifyNotEqual

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Compare Numeric Values

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Compare a value to itself.

verifyNotEqual(testCase, 5, 5);

Interactive verification failed.

Framework Diagnostic:

verifyNotEqual failed.
--> NumericComparator passed.

Actual Value:
5

Prohibited Value:
5

Test failed.

Compare different number values.

verifyNotEqual(testCase, 4.95, 5, '4.95 should be different from 5');

Interactive verification passed.

Values 4.95 and 5 are not equal.

1-5543

matlab.unittest.qualifications.Verifiable.verifyNotEqual

Compare values of different sizes.

verifyNotEqual(testCase, [5 5], 5, '[5 5] is not equal to 5');

Interactive verification passed.

Values are not equal.

Compare Classes

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEqual(testCase, int8(5), int16(5), 'Classes dont match');

Interactive verification passed.

Compare Cell Arrays

Test a cell array by comparing each element.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNotEqual(testCase, {'cell', struct, 5}, {'cell', struct, 5});

Interactive verification failed.

Framework Diagnostic:

verifyNotEqual failed.
--> CellComparator passed.

Actual Value:
'cell' [1x1 struct] [5]

Prohibited Value:
'cell' [1x1 struct] [5]

Test failed.

See Also verifyThat | verifyEqual |
matlab.unittest.diagnostics.Diagnostic |

1-5544

matlab.unittest.qualifications.Verifiable.verifyNotEqual

matlab.unittest.constraints.IsEqualTo |
matlab.unittest.constraints.BooleanConstraint.not |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5545

matlab.unittest.qualifications.Verifiable.verifyNotSameHandle

Purpose Verify value is not handle to specified instance

Syntax verifyNotSameHandle(verifiable,actual,notExpectedHandle)
verifyNotSameHandle(___ ,diagnostic)

Description verifyNotSameHandle(verifiable,actual,notExpectedHandle)
verifies that actual is a different size and/or does not contain the same
instances as the notExpectedHandle handle array.

verifyNotSameHandle(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
verifiable.verifyThat(actual, ~IsSameHandleAs(notExpectedHandle));

There exists more functionality when using the IsSameHandleAs
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

notExpectedHandle

The handle array to compare.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5546

matlab.unittest.qualifications.Verifiable.verifyNotSameHa

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test Handles from Same Class

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Create a handle class, ExampleHandle.

classdef ExampleHandle < handle
end

Create two handle variables.

h1 = ExampleHandle;
h2 = ExampleHandle;

Handles point to different objects.

verifyNotSameHandle(testCase, h1, h2);

Interactive verification passed.

Show matching handle combinations.

verifyNotSameHandle(testCase, [h1 h2 h1], [h1 h2 h1]);

Interactive verification failed.

Framework Diagnostic:

verifyNotSameHandle failed.

1-5547

matlab.unittest.qualifications.Verifiable.verifyNotSameHandle

--> The two handles must not refer to the same handle, or should have
different sizes.

Actual Value:
1x3 ExampleHandle array with no properties.

Handle Object:
1x3 ExampleHandle array with no properties.

Test failed.

The order of the handle arguments matters.

verifyNotSameHandle(testCase, [h1 h2], [h2 h1]);

Interactive verification passed.

Test a handle with itself.

verifyNotSameHandle(testCase, h1, h1);

Interactive verification failed.

Framework Diagnostic:

verifyNotSameHandle failed.
--> The two handles must not refer to the same handle, or should have
different sizes.

Actual Value:
ExampleHandle with no properties.

Handle Object:
ExampleHandle with no properties.

Test failed.

Variables are not same size.

1-5548

matlab.unittest.qualifications.Verifiable.verifyNotSameHa

verifyNotSameHandle(testCase, h2, [h2 h2]);

Interactive verification passed.

Variables are the same size.

verifyNotSameHandle(testCase, [h1 h1], [h1 h1]);

Interactive verification failed.

Framework Diagnostic:

verifyNotSameHandle failed.
--> The two handles must not refer to the same handle, or should have
different sizes.

Actual Value:
1x2 ExampleHandle array with no properties.

Handle Object:
1x2 ExampleHandle array with no properties.

Test failed.

See Also verifySameHandle | verifyThat |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints.IsSameHandleAs |
matlab.unittest.constraints.BooleanConstraint.not |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5549

matlab.unittest.qualifications.Verifiable.verifyNumElements

Purpose Verify value has specified element count

Syntax verifyNumElements(verifiable,actual,expectedElementCount)
verifyNumElements(___ ,diagnostic)

Description verifyNumElements(verifiable,actual,expectedElementCount)
verifies that actual is a MATLAB array with expectedElementCount
number of elements.

verifyNumElements(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasElementCount;
verifiable.verifyThat(actual, HasElementCount(expectedElementCount));

There exists more functionality when using the HasElementCount
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

expectedElementCount

The expected number of elements in the array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5550

matlab.unittest.qualifications.Verifiable.verifyNumElemen

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test Matrices

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

n = 7;
verifyNumElements(testCase, eye(n), n^2);

Interactive verification passed.

verifyNumElements(testCase, 3, 1);

Interactive verification passed.

verifyNumElements(testCase, [1 2 3; 4 5 6], 5);

Interactive verification failed.

Framework Diagnostic:

verifyNumElements failed.
--> The value did not have the correct number of elements.

Actual Number of Elements:
6

Expected Number of Elements:
5

Actual Value:

1-5551

matlab.unittest.qualifications.Verifiable.verifyNumElements

1 2 3
4 5 6

Test failed.

Test Cell Array

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNumElements(testCase, {'SomeString', 'SomeOtherString'}, 2);

Interactive verification passed.

Test Structure

s.Field1 = 1;
s.Field2 = 2;
testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyNumElements(testCase, s, 2);

Interactive verification failed.

Framework Diagnostic:

verifyNumElements failed.
--> The value did not have the correct number of elements.

Actual Number of Elements:
1

Expected Number of Elements:
2

Actual Value:
Field1: 1
Field2: 2

Test failed.

1-5552

matlab.unittest.qualifications.Verifiable.verifyNumElemen

See Also verifyThat | verifySize | verifyLength | numel
| matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints.HasElementCount |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5553

matlab.unittest.qualifications.Verifiable.verifyReturnsTrue

Purpose Verify function returns true when evaluated

Syntax verifyReturnsTrue(verifiable,actual)
verifyReturnsTrue(___ ,diagnostic)

Description verifyReturnsTrue(verifiable,actual) verifies that actual is a
function handle that returns a scalar logical whose value is true.

verifyReturnsTrue(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • It is a shortcut for quick custom comparison functionality that can be
defined quickly, and possibly inline. It can be preferable over simply
evaluating the function directly and using verifyTrue because the
function handle will be shown in the diagnostics, thus providing more
insight into the failure condition which is lost when using verifyTrue.

• This method is functionally equivalent to:

import matlab.unittest.constraints.ReturnsTrue;
verifiable.verifyThat(actual, ReturnsTrue());

There exists more functionality when using the ReturnsTrue
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The function handle to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

1-5554

matlab.unittest.qualifications.Verifiable.verifyReturnsTrue

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test if Condition is True

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyReturnsTrue(testCase, @true);

Interactive verification passed.

Verify that it is true that two numbers are equal.

verifyReturnsTrue(testCase, @() isequal(1,1));

Interactive verification passed.

Verify that it is true that two letters are not the same.

verifyReturnsTrue(testCase, @() ~strcmp('a','b'));

Interactive verification passed.

Cause verification to fail by trying to verify that “false” evaluates to
“true”.

verifyReturnsTrue(testCase, @false);

Interactive verification failed.

Framework Diagnostic:

1-5555

matlab.unittest.qualifications.Verifiable.verifyReturnsTrue

verifyReturnsTrue failed.
--> The function handle should have evaluated to "true".
--> Returned value:

0

Actual Function Handle:
@false

Test failed.

Cause verification to fail by having the test specified in the function
handle return a vector of logical values not a scalar logical value.

verifyReturnsTrue(testCase, @() strcmp('a',{'a','a'}));

Interactive verification failed.

Framework Diagnostic:

verifyReturnsTrue failed.
--> The function handle should have returned a scalar. The return value h
--> Returned value:

1 1

Actual Function Handle:
@()strcmp('a',{'a','a'})

Test failed.

Cause verification to fail by having the test specified in the function
handle return a double not a logical.

verifyReturnsTrue(testCase, @() exist('exist'));

Interactive verification failed.

1-5556

matlab.unittest.qualifications.Verifiable.verifyReturnsTrue

Framework Diagnostic:

verifyReturnsTrue failed.
--> The function handle should have returned a logical value. It was o
--> Returned value:

5

Actual Function Handle:
@()exist('exist')

Test failed.

See Also verifyThat | verifyTrue |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints.ReturnsTrue |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5557

matlab.unittest.qualifications.Verifiable.verifySameHandle

Purpose Verify two values are handles to same instance

Syntax verifySameHandle(verifiable,actual,expectedHandle)
verifySameHandle(___ ,diagnostic)

Description verifySameHandle(verifiable,actual,expectedHandle) verifies
that actual is the same size and contains the same instances as the
expectedHandle handle array.

verifySameHandle(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IsSameHandleAs;
verifiable.verifyThat(actual, IsSameHandleAs(expectedHandle));

There exists more functionality when using the IsSameHandleAs
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

expectedHandle

The expected handle array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5558

matlab.unittest.qualifications.Verifiable.verifySameHandle

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test Handles from Same Class

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Create a handle class, ExampleHandle.

classdef ExampleHandle < handle
end

Create two handle variables.

h1 = ExampleHandle;
h2 = ExampleHandle;

Show matching handle combinations.

verifySameHandle(testCase, h1, h1);

Interactive verification passed.

verifySameHandle(testCase, [h1 h1], [h1 h1]);

Interactive verification passed.

verifySameHandle(testCase, [h1 h2 h1], [h1 h2 h1]);

Interactive verification passed.

Handles must point to same object.

1-5559

matlab.unittest.qualifications.Verifiable.verifySameHandle

verifySameHandle(testCase, h1, h2);

Interactive verification failed.

Framework Diagnostic:

verifySameHandle failed.
--> Values do not refer to the same handle.

Actual Value:
ExampleHandle with no properties.

Expected Handle Object:
ExampleHandle with no properties.

Test failed.

Size of handle objects must match.

verifySameHandle(testCase, [h1 h1], h1);

Interactive verification failed.

Framework Diagnostic:

verifySameHandle failed.
--> Sizes do not match.

Actual Value Size : [1 2]
Expected Handle Object Size : [1 1]

Actual Value:
1x2 ExampleHandle array with no properties.

Expected Handle Object:
ExampleHandle with no properties.

Test failed.

1-5560

matlab.unittest.qualifications.Verifiable.verifySameHandle

Order of arguments is important.

verifySameHandle(testCase, [h1 h2], [h2 h1]);

Interactive verification failed.

Framework Diagnostic:

verifySameHandle failed.
--> Some elements in the handle array refer to the wrong handle.

Actual Value:
1x2 ExampleHandle array with no properties.

Expected Handle Object:
1x2 ExampleHandle array with no properties.

Test failed.

See Also verifyThat | verifyNotSameHandle | handle
| matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints.IsSameHandleAs |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5561

matlab.unittest.qualifications.Verifiable.verifySize

Purpose Verify value has specified size

Syntax verifySize(verifiable,actual,expectedSize)
verifySize(___ ,diagnostic)

Description verifySize(verifiable,actual,expectedSize) verifies that actual
is a MATLAB array whose size is expectedSize.

verifySize(___ ,diagnostic) also displays the diagnostic information
in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.HasSize;
verifiable.verifyThat(actual, HasSize(expectedSize));

There exists more functionality when using the HasSize constraint
directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

expectedSize

The expected sizes of each dimension the array.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5562

matlab.unittest.qualifications.Verifiable.verifySize

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test Arrays

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

verifySize(testCase, ones(2, 5, 3), [2 5 3]);

Interactive verification passed.

verifySize(testCase, [1 2 3; 4 5 6], [2 3]);

Interactive verification passed.

verifySize(testCase, [2 3], [3 2]);

Interactive verification failed.

Framework Diagnostic:

verifySize failed.
--> The value had an incorrect size.

Actual Size:
1 2

Expected Size:
3 2

Actual Value:
2 3

Test failed.

1-5563

matlab.unittest.qualifications.Verifiable.verifySize

Number of elements is not the same as size.

verifySize(testCase, [1 2 3; 4 5 6], [6 1]);

Interactive verification failed.

Framework Diagnostic:

verifySize failed.
--> The value had an incorrect size.

Actual Size:
2 3

Expected Size:
6 1

Actual Value:
1 2 3
4 5 6

Test failed.

verifySize(testCase, eye(2), [4 1]);

Interactive verification failed.

Framework Diagnostic:

verifySize failed.
--> The value had an incorrect size.

Actual Size:
2 2

Expected Size:
4 1

1-5564

matlab.unittest.qualifications.Verifiable.verifySize

Actual Value:
1 0
0 1

Test failed.

Test Cell Array

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifySize(testCase, {'SomeString', 'SomeOtherString'}, [1 2]);

Interactive verification passed.

See Also verifyThat | verifyLength | verifyNumElements |
size | matlab.unittest.diagnostics.Diagnostic
| matlab.unittest.constraints.HasSize |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5565

matlab.unittest.qualifications.Verifiable.verifySubstring

Purpose Verify string contains specified string

Syntax verifySubstring(verifiable,actual,substring)
verifySubstring(___ ,diagnostic)

Description verifySubstring(verifiable,actual,substring) verifies that
actual is a string that contains substring.

verifySubstring(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.ContainsSubstring;
verifiable.verifyThat(actual, ContainsSubstring(substring));

There exists more functionality when using the ContainsSubstring
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The string to test.

substring

The value to match, specified as a string.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

1-5566

matlab.unittest.qualifications.Verifiable.verifySubstring

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test for Substrings

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Test that a substring is contained in a string.

verifySubstring(testCase, 'SomeLongString', 'Long');

Interactive verification passed.

Show that case matters.

verifySubstring(testCase, 'SomeLongString', 'lonG');

Interactive verification failed.

Framework Diagnostic:

verifySubstring failed.
--> The string must contain the substring.

Actual String:
SomeLongString

Expected Substring:
lonG

Test failed.

Cause the verification to fail by testing a substring that isn’t contained
in the actual string.

1-5567

matlab.unittest.qualifications.Verifiable.verifySubstring

verifySubstring(testCase, 'SomeLongString', 'OtherString');

Interactive verification failed.

Framework Diagnostic:

verifySubstring failed.
--> The string must contain the substring.

Actual String:
SomeLongString

Expected Substring:
OtherString

Test failed.

Show that the verification will fail if the substring is longer than the
actual string.

verifySubstring(testCase, 'SomeLongString', 'SomeLongStringThatIsLonger')

Interactive verification failed.

Framework Diagnostic:

verifySubstring failed.
--> The string must contain the substring.

Actual String:
SomeLongString

Expected Substring:
SomeLongStringThatIsLonger

Test failed.

1-5568

matlab.unittest.qualifications.Verifiable.verifySubstring

See Also verifyThat | verifyMatches | strfind |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints.ContainsSubstring |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5569

matlab.unittest.qualifications.Verifiable.verifyThat

Purpose Verify value meets given constraint

Syntax verifyThat(verifiable,actual,constraint)
verifyThat(___ ,diagnostic)

Description verifyThat(verifiable,actual,constraint) verifies that actual is
a value that satisfies the constraint provided.

If the constraint is not satisfied, a verification failure is produced
utilizing only the framework diagnostic generated by the constraint.

verifyThat(___ ,diagnostic) also displays the diagnostic information
in diagnostic upon a failure.

When using this signature, both the diagnostic information contained
within diagnostic is used in addition to the diagnostic information
provided by the constraint.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The value to test.

constraint

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

1-5570

matlab.unittest.qualifications.Verifiable.verifyThat

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test Conditions Using Constraints

testCase = matlab.unittest.TestCase.forInteractiveUse;

% Passing scenarios
%%%%%%%%%%%%%%%%%%%%
import matlab.unittest.constraints.IsTrue;
verifyThat(testCase, true, IsTrue);

import matlab.unittest.constraints.IsEqualTo;
verifyThat(testCase, 5, IsEqualTo(5), '5 should be equal to 5');

import matlab.unittest.constraints.IsGreaterThan;
import matlab.unittest.constraints.HasNaN;
verifyThat(testCase, [5 NaN], IsGreaterThan(10) | HasNaN, ...

'The value was not greater than 10 or NaN');

% Failing scenarios
%%%%%%%%%%%%%%%%%%%%
import matlab.unittest.constraints.AnyCellOf;
import matlab.unittest.constraints.ContainsSubstring;
verifyThat(testCase, AnyCellOf({'cell','of','strings'}), ...

ContainsSubstring('char'),'Test description');

import matlab.unittest.constraints.HasSize;
verifyThat(testCase, zeros(10,4,2), HasSize([10,5,2]), ...

@() disp('A function handle diagnostic.'));

import matlab.unittest.constraints.IsEmpty;
verifyThat(testCase, 5, IsEmpty);

1-5571

matlab.unittest.qualifications.Verifiable.verifyThat

See Also matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints.Constraint |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5572

matlab.unittest.qualifications.Verifiable.verifyTrue

Purpose Verify value is true

Syntax verifyTrue(verifiable,actual)
verifyTrue(___ ,diagnostic)

Description verifyTrue(verifiable,actual) verifies that actual is a scalar
logical with the value of true.

verifyTrue(___ ,diagnostic) also displays the diagnostic information
in diagnostic upon a failure.

Tips • This method passes if and only if the actual value is a scalar logical
with a value of true. Therefore, entities such as true valued arrays
and nonzero doubles produce qualification failures when used in this
method, despite these entities exhibiting "true-like" behavior such as
triggering the execution of code inside of "if" statements.

• This method is functionally equivalent to:

import matlab.unittest.constraints.IsTrue;
verifiable.verifyThat(actual, IsTrue());

There exists more functionality when using the IsTrue constraint
directly via verifyThat.

Use of this method for performance benefits can come at the expense
of less diagnostic information, and may not provide the same level
of strictness adhered to by other constraints such as IsEqualTo. A
similar approach that is generally less performant but can provide
slightly better diagnostic information is the use of verifyReturnsTrue,
which at least shows the display of the function evaluated to generate
the failing result.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

1-5573

matlab.unittest.qualifications.Verifiable.verifyTrue

actual

The value to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Examples Test MATLAB Logical Functions

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Test true.

verifyTrue(testCase, true);

Interactive verification passed.

Test false.

verifyTrue(testCase, false);

Interactive verification failed.

Framework Diagnostic:

verifyTrue failed.

1-5574

matlab.unittest.qualifications.Verifiable.verifyTrue

--> The value must evaluate to "true".

Actual Value:
0

Test failed.

Test the Value 1

The number 1 is a double value, not a logical value.

A double value of 1 is not true.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyTrue(testCase, 1);

Interactive verification failed.

Framework Diagnostic:

verifyTrue failed.
--> The value must be logical. It is of type "double".

Actual Value:
1

Test failed.

Test Array of Logical Values

To be true, the value must be scalar.

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyTrue(testCase, [true true true]);

Interactive verification failed.

Framework Diagnostic:

1-5575

matlab.unittest.qualifications.Verifiable.verifyTrue

verifyTrue failed.
--> The value must be scalar. It has a size of [1 3].

Actual Value:
1 1 1

Test failed.

Optimized comparison that trades speed for less diagnostics.

verifyTrue(testCase, ~isempty(strfind('string', 'ring')), ...
'Could not find expected string');

See Also verifyThat | verifyFalse | verifyReturnsTrue
| matlab.unittest.diagnostics.Diagnostic
| matlab.unittest.constraints.IsTrue |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5576

matlab.unittest.qualifications.Verifiable.verifyWarning

Purpose Verify function issues specified warning

Syntax verifyWarning(verifiable,actual,warningID)
verifyWarning(___ ,diagnostic)
[output1,...,outputN] = verifyWarning(___)

Description verifyWarning(verifiable,actual,warningID) verifies that actual
issues a warning with the identifier warningID.

verifyWarning(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

[output1,...,outputN] = verifyWarning(___) also returns the
output arguments output1,...,outputN that are produced when
invoking actual.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesWarnings;
verifiable.verifyThat(actual, IssuesWarnings({warningID}));

There exists more functionality when using the IssuesWarnings
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The function handle to test.

warningID

Warning ID, specified as a string.

diagnostic

1-5577

matlab.unittest.qualifications.Verifiable.verifyWarning

Diagnostic information to display upon a failure, specified as one
of the following:

• string

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output
Arguments

output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned
as any type. The argument type is specified by the actual
argument list.

Examples Test warning Function

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Verify actual warning ID is the same as input warning ID.

verifyWarning(testCase, @() warning('SOME:warning:id','Warning!'), ...
'SOME:warning:id');

Interactive verification passed.

verifyWarning(testCase, @() warning('SOME:other:id', 'Warning message'),.
'SOME:warning:id', 'Did not issue specified warning');

Warning: Warning message
> In @()warning('SOME:other:id','Warning message')

In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 43
In WarningQualificationConstraint>WarningQualificationConstraint.invoke
In IssuesWarnings>IssuesWarnings.invoke at 364

1-5578

matlab.unittest.qualifications.Verifiable.verifyWarning

In IssuesWarnings>IssuesWarnings.issuesExpectedWarnings at 411
In IssuesWarnings>IssuesWarnings.satisfiedBy at 240
In QualificationDelegate>QualificationDelegate.qualifyThat at 90
In QualificationDelegate>QualificationDelegate.qualifyWarning at 196
In Verifiable>Verifiable.verifyWarning at 701

Interactive verification failed.

Test Diagnostic:

Did not issue specified warning

Framework Diagnostic:

verifyWarning failed.
--> The function handle did not issue a correct warning profile.

The expected warning profile ignores:
Set
Count
Order

--> The function handle did not issue the correct warnings.

Missing Warnings:
SOME:warning:id

Actual Warning Profile:
SOME:other:id

Expected Warning Profile:
SOME:warning:id

Evaluated Function:
@()warning('SOME:other:id','Warning message')

Test a Function Without Warnings

Test the true function, which does not issue warnings.

1-5579

matlab.unittest.qualifications.Verifiable.verifyWarning

testCase = matlab.unittest.TestCase.forInteractiveUse;
verifyWarning(testCase, @true, 'SOME:warning:id', ...
'@true did not issue any warning');

Interactive verification failed.

Test Diagnostic:

@true did not issue any warning

Framework Diagnostic:

verifyWarning failed.
--> The function handle did not issue a correct warning profile.

The expected warning profile ignores:
Set
Count
Order

--> The function handle did not issue any warnings.

Expected Warning Profile:
SOME:warning:id

Evaluated Function:
@true

Test failed.

Test Function With Output Arguments

Create a helper function that generates a warning and returns output.

function varargout = helper()
warning('SOME:warning:id','Warning!');
varargout = {123, 'abc'};

end

1-5580

matlab.unittest.qualifications.Verifiable.verifyWarning

Call helper.

testCase = matlab.unittest.TestCase.forInteractiveUse;
[actualOut1, actualOut2] = verifyWarning(testCase, @helper, ...

'SOME:warning:id');

Interactive verification passed.

See Also verifyThat | verifyError | verifyWarningFree |
warning | matlab.unittest.diagnostics.Diagnostic
| matlab.unittest.constraints.IssuesWarnings |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5581

matlab.unittest.qualifications.Verifiable.verifyWarningFree

Purpose Verify function issues no warnings

Syntax verifyWarningFree(verifiable,actual)
verifyWarningFree(___ ,diagnostic)
output1,...,outputN = verifyWarningFree(___)

Description verifyWarningFree(verifiable,actual) verifies that actual is a
function handle that issues no warnings.

verifyWarningFree(___ ,diagnostic) also displays the diagnostic
information in diagnostic upon a failure.

output1,...,outputN = verifyWarningFree(___) also returns the
output arguments output1,...,outputN that are produced when
invoking actual.

Tips • This method is functionally equivalent to:

import matlab.unittest.constraints.IssuesNoWarnings;
verifiable.verifyThat(actual, IssuesNoWarnings());

There exists more functionality when using the IssuesNoWarnings
constraint directly via verifyThat.

Input
Arguments

verifiable

The matlab.unittest.TestCase instance which is used to pass
or fail the verification in conjunction with the test running
framework.

actual

The function handle to test.

diagnostic

Diagnostic information to display upon a failure, specified as one
of the following:

• string

1-5582

matlab.unittest.qualifications.Verifiable.verifyWarningFre

• function handle

• matlab.unittest.diagnostics.Diagnostic object

Diagnostic values can be nonscalar. For more information, see
matlab.unittest.diagnostics.Diagnostic.

Output
Arguments

output1,...,outputN

Output arguments, 1 through n (if any), from actual, returned
as any type. The argument type is specified by the actual
argument list.

Examples Test for Warnings from MATLAB Functions

Create a TestCase object for interactive testing.

testCase = matlab.unittest.TestCase.forInteractiveUse;

Test the why function.

verifyWarningFree(testCase, @why);

The bald and not excessively bald and not excessively smart hamster ob
Interactive verification passed.

This is a randomly-generated message.

Test the true function.

verifyWarningFree(testCase, @true);

Interactive verification passed.

Test the false function.

actualOutputFromFalse = verifyWarningFree(testCase, @false);

Interactive verification passed.

1-5583

matlab.unittest.qualifications.Verifiable.verifyWarningFree

Test a value that is not a function handle.

verifyWarningFree(testCase, 5,'diagnostic');

Interactive verification failed.

Test Diagnostic:

diagnostic

Framework Diagnostic:

verifyWarningFree failed.
--> The value must be an instance of the expected type.

Actual Class:
double

Expected Type:
function_handle

Actual Value:
5

Test failed.

Test a function that generates warning.

verifyWarningFree(testCase, @() warning('some:id', 'Message'));

Warning: Message
> In @()warning('some:id','Message')

In FunctionHandleConstraint>FunctionHandleConstraint.invoke at 43
In WarningQualificationConstraint>WarningQualificationConstraint.invoke
In IssuesNoWarnings>IssuesNoWarnings.issuesNoWarnings at 131
In IssuesNoWarnings>IssuesNoWarnings.satisfiedBy at 82
In QualificationDelegate>QualificationDelegate.qualifyThat at 90

1-5584

matlab.unittest.qualifications.Verifiable.verifyWarningFre

In QualificationDelegate>QualificationDelegate.qualifyWarningFree at
In Verifiable>Verifiable.verifyWarningFree at 757

Interactive verification failed.

Framework Diagnostic:

verifyWarningFree failed.
--> The function issued warnings.

Warnings Issued:
some:id

Evaluated Function:
@()warning('some:id','Message')

Test failed.

See Also verifyThat | verifyWarning | warning |
matlab.unittest.diagnostics.Diagnostic |
matlab.unittest.constraints.IssuesNoWarnings |
matlab.unittest.constraints | matlab.unittest.qualifications

1-5585

questdlg

Purpose Create and open question dialog box

Syntax button = questdlg('qstring')
button = questdlg('qstring','title')
button = questdlg('qstring','title',default)
button = questdlg('qstring','title','str1','str2',default)
button =
questdlg('qstring','title','str1','str2','str3',default)
button = questdlg('qstring','title', ..., options)

Description button = questdlg('qstring') displays a modal dialog box
presenting the question 'qstring'. The dialog has three default
buttons, Yes, No, and Cancel. If the user presses one of these three
buttons, button is set to the name of the button pressed. If the user
presses the close button on the dialog without making a choice, button
is set to the empty string. If the user presses the Return key, button is
set to 'Yes'. 'qstring' is a cell array or a string that automatically
wraps to fit within the dialog box.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

button = questdlg('qstring','title') displays a question dialog
with 'title' displayed in the dialog’s title bar.

button = questdlg('qstring','title',default) specifies which
push button is the default in the event that the Return key is pressed.
'default' must be 'Yes', 'No', or 'Cancel'.

button = questdlg('qstring','title','str1','str2',default)
creates a question dialog box with two push buttons labeled 'str1'
and 'str2'. default specifies the default button selection and must
be 'str1' or 'str2'.

1-5586

questdlg

button =
questdlg('qstring','title','str1','str2','str3',default)
creates a question dialog box with three push buttons labeled 'str1',
'str2', and 'str3'. default specifies the default button selection and
must be 'str1', 'str2', or 'str3'.

When default is specified, but is not set to one of the button names,
pressing the Enter key displays a warning and the dialog remains open.

button = questdlg('qstring','title', ..., options) replaces
the string default with a structure, options. The structure specifies
which button string is the default answer, and whether to use TeX to
interpret the question string, qstring. Button strings and dialog titles
cannot use TeX interpretation. The options structure must include the
fields Default and Interpreter, both strings. It can include other
fields, but questdlg does not use them. You can set Interpreter to
'none' or 'tex'. If the Default field does not contain a valid button
name, a command window warning is issued and the dialog box does
not respond to pressing the Enter key.

Examples Example 1

Create a dialog that requests a dessert preference and encode the
resulting choice as an integer.

% Construct a questdlg with three options
choice = questdlg('Would you like a dessert?', ...
'Dessert Menu', ...
'Ice cream','Cake','No thank you','No thank you');

% Handle response
switch choice

case 'Ice cream'
disp([choice ' coming right up.'])
dessert = 1;

case 'Cake'
disp([choice ' coming right up.'])
dessert = 2;

case 'No thank you'
disp('I''ll bring you your check.')

1-5587

questdlg

dessert = 0;
end

To access the return value assigned to dessert, save the example as a
function, for example choosedessert, by inserting this line on top:

function dessert = choosedessert

You can generalize the function by providing the cases as string or cell
array calling arguments.

As the example shows, case statements can contain white space (but
are case-sensitive).

Example 2

Specify an options structure to use the TeX interpreter to format a
question.

options.Interpreter = 'tex';
% Include the desired Default answer
options.Default = 'Don''t know';
% Create a TeX string for the question
qstring = 'Is \Sigma(\alpha - \beta) < 0?';
choice = questdlg(qstring,'Boundary Condition',...

'Yes','No','Don''t know',options)

1-5588

questdlg

See Also dialog | errordlg | helpdlg | inputdlg | listdlg | msgbox |
warndlg | figure | textwrap | uiwait | uiresume

1-5589

quit

Purpose Terminate MATLAB program

Alternatives As an alternative to the quit function, use the Close box in the MATLAB
desktop.

Syntax quit
quit cancel
quit force

Description quit displays a confirmation dialog box if the confirm upon quitting
preference is selected, and if confirmed or if the confirmation preference
is not selected, terminates MATLAB after running finish.m, if
finish.m exists. The workspace is not automatically saved by quit. To
save the workspace or perform other actions when quitting, create a
finish.m file to perform those actions. For example, you can display a
custom dialog box to confirm quitting using a finish.m file—see the
following examples for details. If an error occurs while finish.m is
running, quit is canceled so that you can correct your finish.m file
without losing your workspace.

quit cancel is for use in finish.m and cancels quitting. It has no effect
anywhere else.

quit force bypasses finish.m and terminates MATLAB. Use this to
override finish.m, for example, if an errant finish.m will not let you
quit.

Tips When using Handle Graphics objects in finish.m, use uiwait, waitfor,
or drawnow so that figures are visible. See the reference pages for these
functions for more information.

If you want MATLAB to display the following confirmation dialog box
after running quit, select Preferences in the Environment section
on the Home tab. Then select the check box for Confirm before exiting
MATLAB, and click OK.

1-5590

quit

Examples Two sample finish.m files are included with MATLAB. Use them
to help you create your own finish.m, or rename one of the files to
finish.m to use it.

• finishsav.m—Saves the workspace to a MAT-file when MATLAB
quits.

• finishdlg.m—Displays a dialog allowing you to cancel quitting; it
uses quit cancel and contains the following code:

button = questdlg('Ready to quit?', ...
'Exit Dialog','Yes','No','No');

switch button
case 'Yes',

disp('Exiting MATLAB');
%Save variables to matlab.mat
save

case 'No',
quit cancel;

end

See Also exit | save | finish | startup

How To • “Stop Execution”

1-5591

Quit (COM)

Purpose Terminate MATLAB Automation server

Syntax IDL Method Signature

void Quit(void)

Microsoft Visual Basic Client

Quit

MATLAB Client
h.Quit
Quit(h)

Description h.Quit terminates the MATLAB server session attached to handle h.
The MATLAB object is active until all references have been released,
such as when the variable in a function call goes out of scope.

The function name is case-sensitive.

Quit(h) is an alternate syntax.

1-5592

quiver

Purpose Quiver or velocity plot

Syntax quiver(x,y,u,v)
quiver(u,v)
quiver(...,scale)
quiver(...,LineSpec)
quiver(...,LineSpec,'filled')
quiver(...,'PropertyName',PropertyValue,...)
quiver(axes_handle,...)
h = quiver(...)

Description A quiver plot displays velocity vectors as arrows with components (u,v)
at the points (x,y).

For example, the first vector is defined by components u(1),v(1) and is
displayed at the point x(1),y(1).

quiver(x,y,u,v) plots vectors as arrows at the coordinates specified in
each corresponding pair of elements in x and y. The matrices x, y, u,
and v must all be the same size and contain corresponding position and
velocity components. However, x and y can also be vectors, as explained
in the next section. By default, the arrows are scaled to just not overlap,
but you can scale them to be longer or shorter if you want.

quiver(u,v) draws vectors specified by u and v at equally spaced
points in the x-y plane.

quiver(...,scale) automatically scales the arrows to fit within the
grid and then stretches them by the factor scale. scale = 2 doubles
their relative length, and scale = 0.5 halves the length. Use scale = 0
to plot the velocity vectors without automatic scaling. You can also tune
the length of arrows after they have been drawn by choosing the Plot

Edit tool, selecting the quivergroup object, opening the Property
Editor, and adjusting the Length slider.

1-5593

quiver

quiver(...,LineSpec) specifies line style, marker symbol, and color
using any valid LineSpec. quiver draws the markers at the origin
of the vectors.

quiver(...,LineSpec,'filled') fills markers specified by LineSpec.

quiver(...,'PropertyName',PropertyValue,...) specifies property
name and property value pairs for the quivergroup objects the function
creates.

quiver(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = quiver(...) returns the handle to the quivergroup object.

Expanding x- and y-Coordinates

MATLAB expands x and y if they are not matrices. This expansion is
equivalent to calling meshgrid to generate matrices from vectors:

[x,y] = meshgrid(x,y);
quiver(x,y,u,v)

In this case, the following must be true:

length(x) = n and length(y) = m, where [m,n] = size(u) = size(v).

The vector x corresponds to the columns of u and v, and vector y
corresponds to the rows of u and v.

Examples Plot Vector Velocities

Use quiver to display an arrow at each data point in x and y such that
the arrow direction and length represent the corresponding values in
u and v.

[x,y] = meshgrid(0:0.2:2,0:0.2:2);
u = cos(x).*y;
v = sin(x).*y;

figure

1-5594

quiver

quiver(x,y,u,v)

Show Gradient with Quiver Plot

Plot the gradient of the function .

[X,Y] = meshgrid(-2:.2:2);
Z = X.*exp(-X.^2 - Y.^2);
[DX,DY] = gradient(Z,.2,.2);

1-5595

quiver

figure
contour(X,Y,Z)
hold on
quiver(X,Y,DX,DY)
hold off

See Also contour | LineSpec | plot | quiver3

How To • “Display Quiver Plot Over Contour Plot”

1-5596

quiver3

Purpose 3-D quiver or velocity plot

Syntax quiver3(x,y,z,u,v,w)
quiver3(z,u,v,w)
quiver3(...,scale)
quiver3(...,LineSpec)
quiver3(...,LineSpec,'filled')
quiver3(...,'PropertyName',PropertyValue,...)
quiver3(axes_handle,...)
h = quiver3(...)

Description A three-dimensional quiver plot displays vectors with components
(u,v,w) at the points (x,y,z), where u,v,w,x,y, and z all have real
(non-complex) values.

quiver3(x,y,z,u,v,w) plots vectors with directions determined by
components (u,v,w) at points determined by (x,y,z). The matrices
x,y,z,u,v,w must all be the same size and contain the corresponding
position and vector components.

quiver3(z,u,v,w) plots vectors with directions determined by
components (u,v,w) at equally spaced points along the surface z. For
each vector (u(i,j),v(i,j),w(i,j)), the column index j determines
the x-value of the point on the surface, the row index i determines the
y-value, and z(i,j) determines the z-value. That is, quiver3 locates
the vector at the point on the surface (j,i,z(i,j)). The quiver3
function automatically scales the vectors to prevent overlapping based
on the distance between them.

quiver3(...,scale) automatically scales the vectors to prevent them
from overlapping, and then multiplies them by scale. scale = 2 doubles
their relative length, and scale = 0.5 halves them. Use scale = 0 to
plot the vectors without the automatic scaling.

1-5597

quiver3

quiver3(...,LineSpec) specifies line style, marker symbol, and color
using any valid LineSpec. quiver3 draws the markers at the origin
of the vectors.

quiver3(...,LineSpec,'filled') fills markers specified by LineSpec.

quiver3(...,'PropertyName',PropertyValue,...) specifies
property name and property value pairs for the quivergroup object the
function creates.

quiver3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = quiver3(...) returns a handle to the quivergroup object.

Examples Create 3-D Quiver Plot

Define the data.

x = -3:0.5:3;
y = -3:0.5:3;
[X,Y] = meshgrid(x, y);
Z = Y.^2 - X.^2;
[U,V,W] = surfnorm(Z);

Plot vectors with components (U,V,W) at points that are equally spaced
in the x-direction and y-direction with heights determined by Z.

figure
quiver3(Z,U,V,W)
view(-35,45)

1-5598

quiver3

Plot Surface Normals

Plot the surface normals of the function .

[X,Y] = meshgrid(-2:0.25:2,-1:0.2:1);
Z = X.* exp(-X.^2 - Y.^2);
[U,V,W] = surfnorm(X,Y,Z);

figure
quiver3(X,Y,Z,U,V,W,0.5);

1-5599

quiver3

hold on
surf(X,Y,Z);
view(-35,45)
axis ([-2 2 -1 1 -.6 .6])
hold off

See Also axis | contour | LineSpec | plot | plot3 | quiver | surfnorm | view

1-5600

quiver3

How To • “Projectile Path Over Time”

1-5601

Quivergroup Properties

Purpose Define quivergroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for quivergroup objects.

See Plot Objects for more information on quivergroup objects.

Quivergroup
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of quivergroup objects in legends. Specifies
whether this quivergroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
quivergroup object is displayed in a figure legend.

IconDisplayStyle
Value

Purpose

on Include the quivergroup object in a legend as
one entry, but not its children objects

off Do not include the quivergroup or its
children in a legend (default)

children Include only the children of the quivergroup
as separate entries in the legend

1-5602

Quivergroup Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

AutoScale
{on} | off

Autoscale arrow length. Based on average spacing in the x
and y directions, AutoScale scales the arrow length to fit
within the grid-defined coordinate data and keeps the arrows
from overlapping. After autoscaling, quiver applies the
AutoScaleFactor to the arrow length.

AutoScaleFactor
scalar (default = 0.9)

User-specified scale factor. When AutoScale is on, the quiver
function applies this user-specified autoscale factor to the arrow
length. A value of 2 doubles the length of the arrows; 0.5 halves
the length.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

1-5603

Quivergroup Properties

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press
a mouse button while the pointer is over this object, but not
over another graphics object. See the HitTestArea property for
information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

1-5604

Quivergroup Properties

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
array of graphics object handles

Children of the quivergroup object. An array containing the
handles of all line objects parented to this object (whether visible
or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

Color
ColorSpec

1-5605

Quivergroup Properties

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color. See “Adding Arrows and Lines to Graphs”.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

1-5606

Quivergroup Properties

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the quivergroup object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

1-5607

Quivergroup Properties

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

1-5608

Quivergroup Properties

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching

1-5609

Quivergroup Properties

the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and

1-5610

Quivergroup Properties

the figure CurrentObject property) as a result of a mouse click on
the line objects that compose the quiver plot. If HitTest is off,
clicking this object selects the object below it (which is usually
the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. Select plot
objects by:

• Clicking quiver arrows (default).

• Clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the quiver lines
(excluding the baseline) to select the object. When HitTestArea
is on, you can select this object by clicking anywhere within the
extent of the plot (that is, anywhere within a rectangle that
encloses all the arrows).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

1-5611

Quivergroup Properties

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of quivergroup object.

1-5612

Quivergroup Properties

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

Use LineStyle none when you want to place a marker at each
point but do not want the points connected with a line (see the
Marker property).

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Marker
character (see table)

Marker symbol. Specifies marks that display at data points. You
can set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

1-5613

Quivergroup Properties

Specifier Marker Type

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto— Uses same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Fill color for closed-shape markers. The fill color for markers that
are closed shapes (circle, square, diamond, pentagram, hexagram,
and the four triangles).

1-5614

Quivergroup Properties

• ColorSpec — User-defined color.

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Sets the fill color to the axes Color property. If the axes
Color property is none, sets the fill color to the figure Color.

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

MaxHeadSize
scalar (default = 0.2

Maximum size of arrowhead. A value determining the maximum
size of the arrowhead relative to the length of the arrow.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object

1-5615

Quivergroup Properties

is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

ShowArrowHead
{on} | off

Display arrowheads on vectors. When this property is on,
MATLAB draws arrowheads on the vectors displayed by quiver.
When you set this property to off, quiver draws the vectors as
lines without arrowheads.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, use findobj to
find the object’s handle. The following statement changes the
FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

1-5616

Quivergroup Properties

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given type
within a plotting hierarchy. For stem objects, Type is ’hggroup’.
This statement finds all the hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

UData
matrix

1-5617

Quivergroup Properties

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),VData(1),WData(1).

UDataSource
string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the UData. The default value is an empty array.

set(h,'UDataSource','UDatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
UDataSource does not change the object’s UData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

VData
matrix

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),VData(1),WData(1).

1-5618

Quivergroup Properties

VDataSource
MATLAB variable, as a string

Link VData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the VData. The default value is an empty array.

set(h,'VDataSource','VDatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
VDataSource does not change the object’s VData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

WData
matrix

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),VData(1),WData(1).

WDataSource
MATLAB variable, as a string

Link WData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the WData. The default value is an empty array.

1-5619

Quivergroup Properties

set(h,'WDataSource','WDatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
WDataSource does not change the object’s WData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

XData
vector | matrix

X-axis coordinates of arrows. The quiver function draws an
individual arrow at each x-axis location in the XData array.XData
can be either a matrix equal in size to all other data properties
or for 2-D, a vector equal in length to the number of columns in
UData or VData. That is, length(XData) == size(UData,2).

If you do not specify XData (which is the input argument X), the
quiver function uses the indices of UData to create the quiver
graph. See the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData
(by setting the XData property or specifying the input argument
X), the quiver function sets this property to manual.

1-5620

Quivergroup Properties

If you set XDataMode to auto after having specified XData, the
quiver function resets the x tick-mark labels to the indices of the
U, V, and W data, overwriting any previous values.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

set(h,'XDataSource','xdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector | matrix

Y-axis coordinates of arrows. The quiver function draws an
individual arrow at each y-axis location in the YData array. YData
can be either a matrix equal in size to all other data properties or
for 2-D, a vector equal in length to the number of rows in UData or
VData. That is, length(YData) == size(UData,1).

1-5621

Quivergroup Properties

If you do not specify YData (which is the input argument Y), the
quiver function uses the indices of VData to create the quiver
graph. See the YDataMode property for related information.

The input argument Y in the quiver function calling syntax
assigns values to YData.

YDataMode
{auto} | manual

Use automatic or user-specified y-axis values. If you specify YData
(by setting the YData property or specifying the input argument
Y), MATLAB sets this property to manual.

If you set YDataMode to auto after having specified YData,
MATLAB resets the y tick-mark labels to the indices of the U, V,
and W data, overwriting any previous values.

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

set(h,'YDataSource','Ydatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

1-5622

Quivergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector | matrix

Z-axis coordinates of arrows. The quiver function draws an
individual arrow at each z-axis location in the ZData array. ZData
must be a matrix equal in size to XData and YData.

The input argument Z in the quiver3 function calling syntax
assigns values to ZData.

1-5623

qz

Purpose QZ factorization for generalized eigenvalues

Syntax [AA,BB,Q,Z] = qz(A,B)
[AA,BB,Q,Z,V,W] = qz(A,B)
qz(A,B,flag)

Description The qz function gives access to intermediate results in the computation
of generalized eigenvalues.

[AA,BB,Q,Z] = qz(A,B) for square matrices A and B, produces upper
quasitriangular matrices AA and BB, and unitary matrices Q and Z such
that Q*A*Z = AA, and Q*B*Z = BB. For complex matrices, AA and BB
are triangular.

[AA,BB,Q,Z,V,W] = qz(A,B) also produces matrices V and W whose
columns are generalized eigenvectors.

qz(A,B,flag) for real matrices A and B, produces one of two
decompositions depending on the value of flag:

'complex' Produces a possibly complex decomposition
with a triangular AA. For compatibility with
earlier versions, 'complex' is the default.

'real' Produces a real decomposition with a
quasitriangular AA, containing 1-by-1 and
2-by-2 blocks on its diagonal.

If AA is triangular, the diagonal elements of AA and BB, = diag()AA

and = diag()BB , are the generalized eigenvalues that satisfy

A V B V
W A W B

* * * *
’* ’* ’* ’*

=
=

The eigenvalues produced by

 = eig(,)A B

1-5624

qz

are the ratios of the αs and βs.

 = . /

If AA is not triangular, it is necessary to further reduce the 2-by-2 blocks
to obtain the eigenvalues of the full system.

See Also eig

1-5625

rand

Purpose Uniformly distributed pseudorandom numbers

Syntax r = rand
r = rand(n)
r = rand(sz1,...,szN)
r = rand(sz)

r = rand(classname)
r = rand(n,classname)
r = rand(sz1,...,szN,classname)
r = rand(sz,classname)

r = rand('like',p)
r = rand(n,'like',p)
r = rand(sz1,...,szN,'like',p)
r = rand(sz,'like',p)

Description r = rand returns a pseudorandom scalar drawn from the standard
uniform distribution on the open interval (0,1).

r = rand(n) returns an n-by-nmatrix of pseudorandom uniform values.

r = rand(sz1,...,szN) returns a sz1-by-...-by-szN array of
pseudorandom uniform values where sz1,...,szN indicates the size
of each dimension. For example, rand(3,4) returns a 3-by-4 array
of pseudorandom values.

r = rand(sz) is an array of pseudorandom uniform values where the
size vector, sz, defines size(r). For example, rand([3,4]) returns a
3-by-4 array of pseudorandom values.

1-5626

rand

Note The size inputs sz1,...,szN, as well as the elements of the
size vector sz, should be nonnegative integers. Negative integers are
treated as 0.

r = rand(classname) returns a pseudorandom uniform value where
the string, classname, specifies the data type. classname can be either
'single' or 'double'.

r = rand(n,classname) returns an n-by-n array of pseudorandom
uniform values of data type classname.

r = rand(sz1,...,szN,classname) returns a sz1-by-...-by-szN array
of pseudorandom uniform values of data type classname.

r = rand(sz,classname) returns an array of pseudorandom uniform
values where the size vector, sz, defines size(r) and classname
defines class(r).

r = rand('like',p) returns a pseudorandom uniform value of the
same data type as the numeric variable, p.

r = rand(n,'like',p) returns an n-by-n array of pseudorandom
uniform values like p.

r = rand(sz1,...,szN,'like',p) returns a sz1-by-...-by-szN array of
pseudorandom uniform values like p

r = rand(sz,'like',p) returns an array of pseudorandom uniform
values like p where the size vector, sz, defines size(r).

1-5627

rand

The sequence of numbers produced by rand is determined by the
internal settings of the uniform random number generator that
underlies rand, randi, and randn. You can control that shared random
number generator using rng.

Note Use the rng function instead of rand or randn with the 'seed',
'state', or 'twister' inputs. For more information, see “Replace
Discouraged Syntaxes of rand and randn”

Examples Example 1

Generate values from the uniform distribution on the interval [a, b]:

r = a + (b-a).*rand(100,1);

Example 2

Use the randi function, instead of rand, to generate integer values from
the uniform distribution on the set 1:100:

r = randi(100,1,5);

Example 3

Reset the random number generator used by rand, randi, and randn
to its default startup settings, so that rand produces the same random
numbers as if you restarted MATLAB:

rng('default')
rand(1,5)
ans =

0.8147 0.9058 0.1270 0.9134 0.6324

Example 4

Save the settings for the random number generator used by rand,
randi, and randn, generate 5 values from rand, restore the settings,
and repeat those values:

1-5628

rand

s = rng;
u1 = rand(1,5)
u1 =

0.0975 0.2785 0.5469 0.9575 0.9649

rng(s);
u2 = rand(1,5)
u2 =

0.0975 0.2785 0.5469 0.9575 0.9649

u2 contains exactly the same values as u1.

Example 5

Reinitialize the random number generator used by rand, randi, and
randn with a seed based on the current time. rand returns different
values each time you do this. Note that it is usually not necessary to do
this more than once per MATLAB session as it may affect the statistical
properties of the random numbers MATLAB produces:

rng('shuffle');
rand(1,5);

See Also randi | randn | rng | @RandStream | rand (RandStream) | sprand |
sprandn | randperm

Related
Examples

• “Random Numbers within a Specific Range”

Concepts • “Class Support for Array-Creation Functions”

1-5629

rand (RandStream)

Purpose Uniformly distributed random numbers

Class RandStream

Syntax r = rand(s,n)
r = rand(s,m,n)
r = rand(s,[m,n])
r = rand(s,m,n,p,...)
r = rand(s,[m,n,p,...])
r = rand(s)
r = rand(s,size(A))
r = rand(..., 'double')
r = rand(..., 'single')

Description r = rand(s,n) returns an n-by-n matrix containing pseudorandom
values drawn from the standard uniform distribution on the open
interval (0,1). The values are drawn from the random stream s.

r = rand(s,m,n) or r = rand(s,[m,n]) returns an m-by-n matrix.

r = rand(s,m,n,p,...) or r = rand(s,[m,n,p,...]) returns an
m-by-n-by-p-by-... array.

r = rand(s) returns a scalar.

r = rand(s,size(A)) returns an array the same size as A.

r = rand(..., 'double') or r = rand(..., 'single') returns an
array of uniform values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by rand is determined by the
internal state of the random number stream s. Resetting that stream
to the same fixed state allows computations to be repeated. Setting

1-5630

rand (RandStream)

the stream to different states leads to unique computations, however,
it does not improve any statistical properties.

See Also rand | @RandStream | randi (RandStream) | randn (RandStream) |
randperm (RandStream)

1-5631

randi

Purpose Uniformly distributed pseudorandom integers

Syntax r = randi(imax)
r = randi(imax,n)
r = randi(imax,sz1,...,szN)
r = randi(imax,sz)

r = randi(imax,classname)
r = randi(imax,n,classname)
r = randi(imax,sz1,...szN,classname)
r = randi(imax,sz,classname)

r = randi(imax,'like',p)
r = randi(imax,n,'like',p)
r = randi(imax,sz1,...szN,'like',p)
r = randi(imax,sz,'like',p)

r = randi([imin,imax], ___)

Description r = randi(imax) returns a pseudorandom scalar between 1 and imax.
This is the same as r = randi(imax,1).

r = randi(imax,n) returns an n-by-nmatrix containing pseudorandom
integers drawn from the discrete uniform distribution on the interval
[1,imax].

r = randi(imax,sz1,...,szN) returns a sz1-by-...-by-szN array of
pseudorandom integers where sz1,...,szN indicates the size of each
dimension. For example, randi(10,3,4) returns a 3-by-4 array of
pseudorandom integers between 1 and 10.

r = randi(imax,sz) returns an array of pseudorandom integers where
the size vector, sz, defines size(r). For example, randi(10,[3,4])
returns a 3-by-4 array of pseudorandom integers between 1 and 10.

1-5632

randi

Note The size inputs sz1,...,szN, as well as the elements of the
size vector sz, should be nonnegative integers. Negative integers are
treated as 0.

r = randi(imax,classname) returns a pseudorandom integer where
the string, classname specifies the data type. classname can be
'single', 'double', 'int8', 'uint8', 'int16', 'uint16', 'int32',
or 'uint32'.

r = randi(imax,n,classname) returns an n-by-n array of
pseudorandom integers of data type classname.

r = randi(imax,sz1,...szN,classname) returns a sz1-by-...-by-szN
array of pseudorandom integers of data type classname.

r = randi(imax,sz,classname) returns an array of pseudorandom
integers where the size vector, sz, defines size(r) and classname
defines class(r).

r = randi(imax,'like',p) returns a pseudorandom integer of the
same data type as the numeric variable, p.

r = randi(imax,n,'like',p) returns an n-by-n array of
pseudorandom integers like p.

r = randi(imax,sz1,...szN,'like',p) returns a sz1-by-...-by-szN
array of pseudorandom integers like p.

r = randi(imax,sz,'like',p) returns an array of pseudorandom
integers like p where the size vector, sz, defines size(r).

1-5633

randi

r = randi([imin,imax], ___) returns an array containing integers
drawn from the discrete uniform distribution on the interval [imin,imax]
using any of the above syntaxes.

If you specify a distribution range using two numbers, [imin,imax],
both numbers must be integers that satisfy imin ≤ imax. If you specify
the range using only the upper bound, imax, it must be a positive
integer (greater than zero).

The sequence of numbers produced by randi is determined by the
settings of the uniform random number generator that underlies rand,
randn, and randi. randi uses one uniform random value to create each
integer random value. You can control that shared random number
generator using rng.

Examples Example 1

Generate a 100-by-1 array of integer values from the uniform
distribution on the set 1:10:

r = randi(10,100,1);

Example 2

Generate a 100-by-1 array of integers drawn uniformly from 1:10:

r = randi(10,100,1,'uint32');

Example 3

Generate a 100-by-1 array of integer values drawn uniformly from
-10:10:

r = randi([-10 10],100,1);

Example 4

Reset the random number generator used by rand, randi, and randn to
its default startup settings, so that randi produces the same random
numbers as if you restarted MATLAB:

rng('default');

1-5634

randi

randi(10,1,5)

ans =
9 10 2 10 7

Example 5

Save the settings for the random number generator used by rand,
randi, and randn, generate 5 values from randi, restore the settings,
and repeat those values:

s = rng;
i1 = randi(10,1,5)
i1 =

1 3 6 10 10
rng(s);
i2 = randi(10,1,5)
i2 =

1 3 6 10 10

i2 contains exactly the same values as i1.

Example 6

Reinitialize the random number generator used by rand, randi, and
randn with a seed based on the current time. randi returns different
values each time you do this. Note that it is usually not necessary to
do this more than once per MATLAB session:

rng('shuffle');
randi(10,1,5);

Tips • The arrays returned by randi might contain repeated integer values.
This behavior is sometimes referred to as sampling with replacement.
Use randperm if you require all unique values.

See Also rand | randn | rng | @RandStream | randi (RandStream) | randperm

1-5635

randi

Related
Examples

• “Random Integers”

Concepts • “Class Support for Array-Creation Functions”

1-5636

randi (RandStream)

Purpose Uniformly distributed pseudorandom integers

Class RandStream

Syntax r = randi(s,imax,n)
r = randi(s,imax,m,n)
r = randi(s,imax,[m,n])
r = randi(s,imax,m,n,p,...)
r = randi(s,imax,[m,n,p,...])
r = randi(s,imax)
r = randi(s,imax,size(A))
r = randi(s,[imin,imax],...)
r = randi(...,classname)

Description r = randi(s,imax,n) returns an n-by-n matrix containing
pseudorandom integer values drawn from the discrete uniform
distribution on 1:imax. randi draws those values from the random
stream s.

r = randi(s,imax,m,n) or r = randi(s,imax,[m,n]) returns an
m-by-n matrix.

r = randi(s,imax,m,n,p,...) or r = randi(s,imax,[m,n,p,...])
returns an m-by-n-by-p-by-... array.

r = randi(s,imax) returns a scalar.

r = randi(s,imax,size(A)) returns an array the same size as A.

r = randi(s,[imin,imax],...) returns an array containing integer
values drawn from the discrete uniform distribution on imin:imax.

r = randi(...,classname) returns an array of integer values of class
classname. classname does not support 64-bit integers.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

1-5637

randi (RandStream)

The arrays returned by randi might contain repeated integer values.
This is sometimes referred to as sampling with replacement. To get
unique integer values, sometimes referred to as sampling without
replacement, use randperm (RandStream).

The sequence of numbers produced by randi is determined by the
internal state of the random stream s. randi uses one uniform value
from s to generate each integer value. Resetting s to the same fixed
state allows computations to be repeated. Setting the stream to
different states leads to unique computations, however, it does not
improve any statistical properties.

See Also randi | RandStream | rand (RandStream) | randn (RandStream) |
randperm (RandStream)

1-5638

randn

Purpose Normally distributed pseudorandom numbers

Syntax r = randn
r = randn(n)
r = randn(sz1,...,szN)
r = randn(sz)

r = randn(classname)
r = randn(n,classname)
r = randn(sz1,...,szN,classname)
r = randn(sz,classname)

r = randn('like',p)
r = randn(n,'like',p)
r = randn(sz1,...,szN,'like',p)
r = randn(sz,'like',p)

Description r = randn returns a psuedorandom scalar drawn from the standard
normal distribution.

r = randn(n) returns an n-by-n matrix containing pseudorandom
normal values.

r = randn(sz1,...,szN) returns a sz1-by-...-by-szN array of
pseudorandom normal values where sz1,...,szN indicates the size
of each dimension. For example, randn(3,4) returns a 3-by-4 array
of pseudorandom values.

r = randn(sz) returns an array of pseudorandom normal values
where the size vector, sz, defines size(r). For example, randn([3,4])
returns a 3-by-4 array of pseudorandom values.

1-5639

randn

Note The size inputs sz1,...,szN, as well as the elements of the
size vector sz, should be nonnegative integers. Negative integers are
treated as 0.

r = randn(classname) returns a pseudorandom normal value where
the string, classname, specifies the data type. classname can be either
'single' or 'double'.

r = randn(n,classname) returns an n-by-n array of pseudorandom
normal values of data type classname.

r = randn(sz1,...,szN,classname) returns a sz1-by-...-by-szN array
of pseudorandom normal values of data type classname.

r = randn(sz,classname) returns an array of pseudorandom normal
values where the size vector, sz, defines size(r) and classname
defines class(r).

r = randn('like',p) returns a pseudorandom normal value of the
same data type as the numeric variable, p.

r = randn(n,'like',p) returns an n-by-n array of pseudorandom
normal values like p.

r = randn(sz1,...,szN,'like',p) returns a sz1-by-...-by-szN array
of pseudorandom normal values like p

r = randn(sz,'like',p) returns an array of pseudorandom normal
values like p where the size vector, sz, defines size(r).

1-5640

randn

The sequence of numbers produced by randn is determined by the
settings of the uniform random number generator that underlies rand,
randn, and randi. randn uses one or more uniform random values to
create each normal random value. You can control that shared random
number generator using rng.

Note Use the rng function instead of rand or randn with the 'seed',
'state', or 'twister' inputs. For more information, see “Replace
Discouraged Syntaxes of rand and randn”

Examples Example 1

Generate values from a normal distribution with mean 1 and standard
deviation 2:

r = 1 + 2.*randn(100,1);

Example 2

Generate values from a bivariate normal distribution with specified
mean vector and covariance matrix:

mu = [1 2];
Sigma = [1 .5; .5 2]; R = chol(Sigma);
z = repmat(mu,100,1) + randn(100,2)*R;

Example 3

Reset the random number generator used by rand, randi, and randn to
its default startup settings, so that randn produces the same random
numbers as if you restarted MATLAB:

rng('default');
randn(1,5)
ans =

0.5377 1.8339 -2.2588 0.8622 0.3188

1-5641

randn

Example 4

Save the settings for the random number generator used by rand,
randi, and randn, generate 5 values from randn, restore the settings,
and repeat those values:

s = rng;
z1 = randn(1,5)
z1 =

-1.3077 -0.4336 0.3426 3.5784 2.7694
rng(s);
z2 = randn(1,5)
z2 =

-1.3077 -0.4336 0.3426 3.5784 2.7694

z2 contains exactly the same values as z1.

Example 5

Reinitialize the random number generator used by rand, randi, and
randn with a seed based on the current time. randn returns different
values each time you do this. Note that it is usually not necessary to
do this more than once per MATLAB session:

rng('shuffle');
randn(1,5)

See Also rand | randi | rng | @RandStream | randn (RandStream)

Related
Examples

• “Random Numbers from Normal Distribution with Specific Mean
and Variance”

Concepts • “Class Support for Array-Creation Functions”

1-5642

randn (RandStream)

Purpose Normally distributed pseudorandom numbers

Class RandStream

Syntax r = randn(s,m,n)
r = randn(s,[m,n])
r = randn(s,m,n,p,...)
r = randn(s,[m,n,p,...])
r = randn(s)
r = randn(s,size(A))
r = randn(...,'double')
r = randn(...,'single')

Description r = randn(s,n) returns an n-by-n matrix containing pseudorandom
values drawn from the standard normal distribution. randn draws
those values from the random stream s.

r = randn(s,m,n) or r = randn(s,[m,n]) returns an m-by-n matrix.

r = randn(s,m,n,p,...) or r = randn(s,[m,n,p,...]) returns
an m-by-n-by-p-by-... array.

r = randn(s) returns a scalar.

r = randn(s,size(A)) returns an array the same size as A.

r = randn(...,'double') or r = randn(...,'single') returns an
array of uniform values of the specified class.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

The sequence of numbers produced by randn is determined by the
internal state of the random stream s. randn uses one or more uniform
values from s to generate each normal value. Resetting that stream to
the same fixed state allows computations to be repeated. Setting the

1-5643

randn (RandStream)

stream to different states leads to unique computations, however, it
does not improve any statistical properties.

See Also randn | RandStream | rand (RandStream) | randi (RandStream)

1-5644

randperm

Purpose Random permutation

Syntax p = randperm(n)
p = randperm(n,k)

Description p = randperm(n) returns a row vector containing a random
permutation of the integers from 1 to n inclusive.

p = randperm(n,k) returns a row vector containing k unique integers
selected randomly from 1 to n inclusive.

Tips For p = randperm(n,k), p contains k unique values. randperm
performs k-permutations (sampling without replacement). To allow
repeated values in the output (sampling with replacement), use
randi(n,1,k).

randperm uses the same random number generator as rand, randi, and
randn. You control this generator with rng.

Examples randperm(6)

might be the vector

[3 2 6 4 1 5]

or it might be some other permutation of the integers from 1 to 6,
depending on the state of the random number generator. Two successive
calls to randperm would in most cases return two different vectors:

randperm(6)
ans =

5 2 6 4 1 3

randperm(6)
ans =

4 1 6 2 3 5

1-5645

randperm

randperm(6,3)

might be the vector

[4 2 5]

or it might be some other permutation of any three integers from 1 to 6
inclusive, depending on the state of the random number generator.

See Also permute | nchoosek | randi | randperm(RandStream) | perms | rng

1-5646

randperm (RandStream)

Purpose Random permutation

Class RandStream

Syntax p = randperm(s,n)
p = randperm(s,n,k)

Description p = randperm(s,n) returns a row vector containing a random
permutation of integers from 1 to n inclusive. randperm(s,n) uses
random values drawn from the random stream s.

p = randperm(s,n,k) returns a row vector containing k unique
integers selected randomly from 1 to n inclusive.

Tips For p = randperm(s,n,k), p contains k unique values. randperm
performs k-permutations (sampling without replacement). To allow
repeated values in the output (sampling with replacement), use
randi(s,n,1,k).

Examples Create a random stream s and generate a random permutation of the
integers from 1 to 6 based on s:

s = RandStream('mt19937ar','Seed',0);
randperm(s,6)

MATLAB returns the vector

[6 3 5 1 2 4]

Use the random stream s to generate three integers between 1 and 10:

randperm(s,10,3)
ans =

1 8 9

See Also permute | randperm | nchoosek | perms | rand | randi (RandStream)

1-5647

RandStream

Purpose Random number stream

Constructor RandStream

Description Pseudorandom numbers in MATLAB come from one or more random
number streams. The simplest way to generate arrays of random
numbers is to use rand, randn, or randi. These functions all rely on
the same stream of uniform random numbers, known as the global
stream. You can create other streams that act separately from the
global stream, and you can use their rand, randi, or randn methods to
generate arrays of random numbers. You can also create a random
number stream and make it the global stream.

To create a single random number stream, use the RandStream
constructor. To create multiple independent random number streams,
use RandStream.create. The rng function provides a simple interface
to create a new global stream.

stream = RandStream.getGlobalStream returns the global random
number stream, that is, the one currently used by the rand, randi,
and randn functions.

prevstream = RandStream.setGlobalStream(stream) designates the
random number stream stream as the new global stream to be used by
the rand, randi, and randn functions, and returns the previous global
stream.

A random number stream s has properties that control its behavior.
Access or assign to a property using p = s.Property or s.Property =
p. The following table lists defined properties:

1-5648

RandStream

Properties Property Description

Type (Read-only) Generator algorithm
used by the stream. The list of
possible generators is given by
RandStream.list.

Seed (Read-only) Seed value used to create
the stream.

NumStreams (Read-only) Number of streams in the
group in which the current stream was
created.

StreamIndex (Read-only) Index of the current stream
from among the group of streams with
which it was created.

State Internal state of the generator. You
should not depend on the format of
this property. The value you assign
to S.State must be a value read from
S.State previously. Use reset to
return a stream to a predictable state
without having previously read from
the State property.

The sequence of random numbers
produced by a random number stream
s is determined by the internal state of
its random number generator. Saving
and restoring the generator’s internal
state with the State property allows
you to reproduce a sequence of random
numbers.

1-5649

RandStream

Property Description

Substream Index of the substream to which
the stream is currently set. The
default is 1. Multiple substreams
are not supported by all generator
types; the multiplicative lagged
Fibonacci generator (mlfg6331_64) and
combined multiple recursive generator
(mrg32k3a) support substreams.

NormalTransform Transformation algorithm used by
randn(s, ...) to generate normal
pseudorandom values. Possible
values are 'Ziggurat', 'Polar', or
'Inversion'.

Antithetic Logical value indicating whether S
generates antithetic pseudorandom
values, that is, the usual values
subtracted from 1. The default is false.

FullPrecision Logical value indicating whether
S generates values using its full
precision. Some generators can create
pseudorandom values faster, but with
fewer random bits, if FullPrecision is
false. The default is true.

Methods Method Description

RandStream Create a random number stream.

RandStream.create Create multiple independent random
number streams.

get Get the properties of a random stream
object.

1-5650

RandStream

Method Description

list List available random number
generator algorithms.

set Set random stream property.

RandStream.getGlobalStreamGet the global random number stream.

RandStream.setGlobalStreamSet global random number stream.

reset Reset a stream to its initial internal
state

rand Pseudorandom numbers from a uniform
distribution

randn Pseudorandom numbers from a
standard normal distribution

randi Pseudorandom integers from a uniform
discrete distribution

randperm Random permutation of a set of values

Examples Example 1

Create a single stream and designate it as the current global stream:

s = RandStream('mt19937ar','Seed',1);
RandStream.setGlobalStream(s);

Example 2

Create three independent streams:

[s1,s2,s3] = RandStream.create('mrg32k3a','NumStreams',3);
r1 = rand(s1,100000,1);
r2 = rand(s2,100000,1);
r3 = rand(s3,100000,1);
corrcoef([r1,r2,r3])

1-5651

RandStream

Example 3

Create only one stream from a set of three independent streams, and
designate it as the current global stream:

s2 = RandStream.create('mrg32k3a','NumStreams',3,...
'StreamIndices',2);

RandStream.setGlobalStream(s2);

Example 4

Reset the global random number stream that underlies rand, randi,
and randn back to its beginning, to reproduce previous results:

stream = RandStream.getGlobalStream;
reset(stream);

Example 5

Save and restore the current global stream’s state to reproduce the
output of rand:

stream = RandStream.getGlobalStream;
savedState = stream.State;
u1 = rand(1,5)
u1 =

0.8147 0.9058 0.1270 0.9134 0.6324

stream.State = savedState;
u2 = rand(1,5)
u2 =

0.8147 0.9058 0.1270 0.9134 0.6324

u2 contains exactly the same values as u1.

Example 6

Reset the global random number stream to its initial settings. This
causes rand, randi, and randn to start over, as if in a new MATLAB
session:

s = RandStream('mt19937ar','Seed',0);

1-5652

RandStream

RandStream.setGlobalStream(s);

Example 7

Reinitialize the global random number stream using a seed based on the
current time. This causes rand, randi, and randn to return different
values in different MATLAB sessions. It is usually not desirable to do
this more than once per MATLAB session as it may affect the statistical
properties of the random numbers MATLAB produces:

s = RandStream('mt19937ar','Seed','shuffle');
RandStream.setGlobalStream(s);

Example 8

Change the transformation algorithm that randn uses to create normal
pseudorandom values from uniform values. This does not replace or
reset the global stream.

stream = RandStream.getGlobalStream;
stream.NormalTransform = 'inversion'

See Also rand | rng | randn | randi

1-5653

RandStream constructor

Purpose Random number stream

Class RandStream

Syntax s = RandStream('gentype')
s = RandStream('gentype',Name,Value)

Description s = RandStream('gentype') creates a random number stream that
uses the uniform pseudorandom number generator algorithm specified
by gentype. RandStream.list returns all possible values for gentype,
or see “Choosing a Random Number Generator” for details on generator
algorithms.

s = RandStream('gentype',Name,Value) allows you to specify one or
more optional Name,Value pairs to control creation of the stream.

Once you have created a random, you can use
RandStream.setGlobalStream to make it the global stream, so that the
functions rand, randi, and randn draw values from it.

Parameters for RandStream are:

Parameter Description

Seed Nonnegative scalar integer with
which to initialize all streams.
Seeds must be an integer between
0 and 232 − 1 or 'shuffle' to
create a seed based on the current
time. Default is 0.

NormalTransform Transformation algorithm used
by randn(s, ...) to generate
normal pseudorandom values.
Possible values are 'Ziggurat',
'Polar', or 'Inversion'.

1-5654

RandStream constructor

Examples Example 1

Create a random number stream, make it the global stream, and save
and restore its state to reproduce the output of randn:

s = RandStream('mrg32k3a');
RandStream.setGlobalStream(s);
savedState = s.State;
z1 = randn(1,5)
z1 =

-0.1894 -1.4426 -0.3592 0.8883 -0.4337
s.State = savedState;
z2 = randn(1,5)
z2 =

-0.1894 -1.4426 -0.3592 0.8883 -0.4337

z2 contains exactly the same values as z1.

Example 2

Return rand, randi, and randn to their default startup settings:

s = RandStream('mt19937ar','Seed',0)
RandStream.setGlobalStream(s);

Example 3

Replace the current global random number stream with a stream whose
seed is based on the current time, so rand, randi, and randn will
return different values in different MATLAB sessions. It is usually not
desirable to do this more than once per MATLAB session as it may affect
the statistical properties of the random numbers MATLAB produces:

s = RandStream('mt19937ar','Seed','shuffle');
RandStream.setGlobalStream(s);

Tips • Streams created using RandStream might not be independent from
each other. Use RandStream.create to create multiple streams that
are independent.

1-5655

RandStream constructor

See Also RandStream | RandStream.rand | RandStream.randn |
RandStream.randi | RandStream.getGlobalStream |
RandStream.setGlobalStream | RandStream.list | rng |
RandStream.create

1-5656

RandStream.getGlobalStream

Purpose Current global random number stream

Class @RandStream

Syntax stream = RandStream.getGlobalStream

Description stream = RandStream.getGlobalStream returns the current global
random number stream.

rand, randi, and randn all rely on the same stream of uniform
pseudorandom numbers, known as the global stream. rand draws
one value from that stream to generate each uniform value it returns.
randi draws one uniform value from that stream to generate each
integer value it returns. And randn draws one or more uniform values
to generate each normal value it returns. Note that there are also rand,
randi, and randn methods for which you specify a specific random
stream from which to draw values.

Note The rng function is a shorter alternative for many common uses
of RandStream.getGlobalStream.

See Also RandStream | rng | RandStream.setGlobalStream | rand | randi
| randn

Concepts • “Creating and Controlling a Random Number Stream”
• “Managing the Global Stream”

1-5657

RandStream.setGlobalStream

Purpose Set global random number stream

Syntax prevstream = RandStream.setGlobalStream(stream)

Description prevstream = RandStream.setGlobalStream(stream) designates the
random number stream, specified as stream, to be the global stream
that the rand, randi, and randn functions draw values from. It returns
the previous global random number stream as prevstream.

rand, randi, and randn all rely on the same stream of uniform
pseudorandom numbers, known as the global stream. rand draws
one value from that stream to generate each uniform value it returns.
randi draws one uniform value from that stream to generate each
integer value it returns. And randn draws one or more uniform values
to generate each normal value it returns. Note that there are also rand,
randi, and randn methods for which you specify a specific random
stream from which to draw values.

Note The rng function is a shorter alternative for many common uses
of RandStream.setGlobalStream.

See Also RandStream | RandStream.getGlobalStream | rng | rand | randi
| randn

Concepts • “Creating and Controlling a Random Number Stream”
• “Managing the Global Stream”

1-5658

rank

Purpose Rank of matrix

Syntax k = rank(A)
k = rank(A,tol)

Description The rank function provides an estimate of the number of linearly
independent rows or columns of a full matrix.

k = rank(A) returns the number of singular values of A that are larger
than the default tolerance, max(size(A))*eps(norm(A)).

k = rank(A,tol) returns the number of singular values of A that are
larger than tol.

Tips Use sprank to determine the structural rank of a sparse matrix.

Algorithms There are a number of ways to compute the rank of a matrix. MATLAB
software uses the method based on the singular value decomposition,
or SVD. The SVD algorithm is the most time consuming, but also the
most reliable.

The rank algorithm is

s = svd(A);
tol = max(size(A))*eps(max(s));
r = sum(s > tol);

See Also sprank

1-5659

rat

Purpose Rational fraction approximation

Syntax R = rat(X)
R = rat(X,tol)

[N,D] = rat(___)

Description R = rat(X) returns the rational fraction approximation of X to within
the default tolerance, 1e-6*norm(X(:),1). The approximation is a
string containing the truncated continued fractional expansion.

R = rat(X,tol) approximates X to within the tolerance, tol.

[N,D] = rat(___) returns two arrays, N and D, such that N./D
approximates X, using any of the above syntaxes.

Input
Arguments

X - Input array
numeric array

Input array, specified as a numeric array of class single or double.

Data Types
single | double
Complex Number Support: Yes

tol - Tolerance
scalar

Tolerance, specified as a scalar. N and D approximate X, such that N./D
- X < tol. The default tolerance is 1e-6*norm(X(:),1).

Output
Arguments

R - Continued fraction
string

Continued fraction, returned as a string. The accuracy of the rational
approximation via continued fractions increases with the number of
terms.

1-5660

rat

N - Numerator
numeric array

Numerator, returned as a numeric array. N./D approximates X.

D - Denominator
numeric array

Denominator, returned as a numeric array. N./D approximates X.

Examples Approximate Value of

Approximate the value of π using a rational representation of the
quantity pi.

The mathematical quantity π is not a rational number, but the quantity
pi that approximates it is a rational number since all floating-point
numbers are rational.

Find the rational representation of pi.

format rat
pi

ans =

355/113

The resulting expression is a string. You also can use rats(pi) to get
the same answer.

Use rat to see the continued fractional expansion of pi.

R = rat(pi)

R =

3 + 1/(7 + 1/(16))

1-5661

rat

The resulting string is an approximation by continued fractional
expansion. If you consider the first two terms of the expansion, you get

the approximation 3
1
7

22
7

 , which only agrees with pi to 2 decimals.

However, if you consider all three terms printed by rat, you can recover
the value 355/113, which agrees with pi to 6 decimals.

3
1

7
1

16

355
113

 .

Specify a tolerance for additional accuracy in the approximation.

R = rat(pi,1e-7)

R =

3 + 1/(7 + 1/(16 + 1/(-294)))

The resulting approximation, 104348/33215, agrees with pi to 9
decimals.

Express Array Elements as Ratios

Create a 4-by-4 matrix.

format short;
X = hilb(4)

X =

1.0000 0.5000 0.3333 0.2500
0.5000 0.3333 0.2500 0.2000
0.3333 0.2500 0.2000 0.1667
0.2500 0.2000 0.1667 0.1429

Express the elements of X as ratios of small integers using rat.

1-5662

rat

[N,D] = rat(X)

N =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

D =

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

The two matrices, N and D, approximate X with N./D.

View the elements of X as ratios using format rat.

format rat
X

X =

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

In this form, it is clear that N contains the numerators of each fraction
and D contains the denominators.

Algorithms Even though all floating-point numbers are rational numbers, it
is sometimes desirable to approximate them by simple rational
numbers, which are fractions whose numerator and denominator are

1-5663

rat

small integers. Rational approximations are generated by truncating
continued fraction expansions.

The rat function approximates each element of X by a continued
fraction of the form

N
D

D
D

D
Dk

1

2

3

1
1

1
...

.

The Ds are obtained by repeatedly picking off the integer part and
then taking the reciprocal of the fractional part. The accuracy of the
approximation increases exponentially with the number of terms
and is worst when X = sqrt(2). For X = sqrt(2) , the error with k
terms is about 2.68*(.173)^k, so each additional term increases the
accuracy by less than one decimal digit. It takes 21 terms to get full
floating-point accuracy.

See Also rats | format

1-5664

rats

Purpose Rational output

Syntax S = rats(X)
S = rats(X,strlen)

Description S = rats(X) returns a string containing the rational approximations
to the elements of X using the default string length of 13. The rational
output is the same as that produced by format rat.

rats returns asterisks for elements that cannot be printed in the
allotted space, but which are not negligible compared to the other
elements in X.

S = rats(X,strlen) returns a string of length strlen. The rational
approximation uses a tolerance that is inversely proportional to string
length.

Input
Arguments

X - Input array
numeric array

Input array, specified as a numeric array of class single or double.

Data Types
single | double

strlen - String length
positive integer

String length, specified as a positive integer. The default string length
is 13, which allows for 6 elements in 78 spaces.

Output
Arguments

S - Rational output
string

Rational output, returned as a string.

1-5665

rats

Examples Rational Representation of Matrix

Create a 4-by-4 matrix.

format short
X = hilb(4)

X =

1.0000 0.5000 0.3333 0.2500
0.5000 0.3333 0.2500 0.2000
0.3333 0.2500 0.2000 0.1667
0.2500 0.2000 0.1667 0.1429

View the rational representation of the matrix using rats.

R = rats(X)

R =

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

The result is the same as using format rat.

Adjust Output String Length

Find the rational representation of pi with the default string length
and approximation tolerance.

rats(pi)

ans =

355/113

The result is the same as using format rat.

1-5666

rats

Adjust the string length of the output, which also adjusts the
approximation tolerance.

rats(pi,20)

ans =

104348/33215

The resulting rational approximation has greater accuracy. As the
string length increases, the tolerance decreases.

Adjust the string length again to achieve greater accuracy.

rats(pi,25)

ans =

1146408/364913

The resulting approximation agrees with pi to 10 decimal places.

Algorithms The format rat command uses the same internal algorithm, with the
default strlen, as rats.

rats obtains rational approximations with [N,D] = rat(X,tol), where
tol is min(10^(-(strlen-1)/2)*norm(X(isfinite(X)),1),.1).
Thus, the tolerance is inversely proportional to the string length,
strlen.

See Also rat | format

1-5667

rbbox

Purpose Create rubberband box for area selection

Syntax rbbox
rbbox(initialRect)
rbbox(initialRect,fixedPoint)
rbbox(initialRect,fixedPoint,stepSize)
finalRect = rbbox(...)

Description rbbox initializes and tracks a rubberband box in the current figure. It
sets the initial rectangular size of the box to 0, anchors the box at the
figure’s CurrentPoint, and begins tracking from this point.

rbbox(initialRect) specifies the initial location and size of the
rubberband box as [x y width height], where x and y define the
lower left corner, and width and height define the size. initialRect
is in the units specified by the current figure’s Units property, and
measured from the lower left corner of the figure window. The corner of
the box closest to the pointer position follows the pointer until rbbox
receives a button-up event.

rbbox(initialRect,fixedPoint) specifies the corner of the box that
remains fixed. All arguments are in the units specified by the current
figure’s Units property, and measured from the lower left corner of
the figure window. fixedPoint is a two-element vector, [x y]. The
tracking point is the corner diametrically opposite the anchored corner
defined by fixedPoint.

rbbox(initialRect,fixedPoint,stepSize) specifies how frequently
the rubberband box is updated. When the tracking point exceeds
stepSize figure units, rbbox redraws the rubberband box. The default
stepsize is 1.

finalRect = rbbox(...) returns a four-element vector, [x y width
height], where x and y are the x and y components of the lower left
corner of the box, and width and height are the dimensions of the box.

1-5668

rbbox

Tips rbbox is useful for defining and resizing a rectangular region:

• For box definition, initialRect is [x y 0 0], where (x,y) is the
figure’s CurrentPoint.

• For box resizing, initialRect defines the rectangular region that
you resize (e.g., a legend). fixedPoint is the corner diametrically
opposite the tracking point.

rbbox returns immediately if a button is not currently pressed.
Therefore, you use rbbox with waitforbuttonpress so that the mouse
button is down when rbbox is called. rbbox returns when you release
the mouse button.

Examples Assuming the current view is view(2), use the current axes’
CurrentPoint property to determine the extent of the rectangle in
dataspace units:

f = figure;
a = axes('Parent',f);
k = waitforbuttonpress;
point1 = get(a,'CurrentPoint'); % button down detected
finalRect = rbbox; % return figure units
point2 = get(a,'CurrentPoint'); % button up detected
point1 = point1(1,1:2); % extract x and y
point2 = point2(1,1:2);
p1 = min(point1,point2); % calculate locations
offset = abs(point1-point2); % and dimensions
x = [p1(1) p1(1)+offset(1) p1(1)+offset(1) p1(1) p1(1)];
y = [p1(2) p1(2) p1(2)+offset(2) p1(2)+offset(2) p1(2)];
hold on
axis manual
plot(x,y) % redraw in dataspace units

See Also axis | dragrect | waitforbuttonpress

1-5669

../ref/axes_props.html#CurrentPoint

rcond

Purpose Reciprocal condition number

Syntax C = rcond(A)

Description C = rcond(A) returns an estimate for the reciprocal condition of A in
1-norm. If A is well conditioned, rcond(A) is near 1.0. If A is badly
conditioned, rcond(A) is near 0.

Input
Arguments

A - Input matrix
square numeric matrix

Input matrix, specified as a square numeric matrix.

Data Types
single | double

Output
Arguments

C - Reciprocal condition number
scalar

Reciprocal condition number, returned as a scalar. The data type of
C is the same as A.

The reciprocal condition number is a scale-invariant measure of how
close a given matrix is to the set of singular matrices.

• If C is near 0, the matrix is nearly singular and badly conditioned.

• If C is near 1.0, the matrix is well conditioned.

Examples Sensitivity of Badly Conditioned Matrix

Examine the sensitivity of a badly conditioned matrix.

A notable matrix that is symmetric and positive definite, but badly
conditioned, is the Hilbert matrix. The elements of the Hilbert matrix
are H(i,j) = 1/(i + j -1).

Create a 10-by-10 Hilbert matrix.

A = hilb(10);

1-5670

rcond

Find the reciprocal condition number of the matrix.

C = rcond(A)

C =

2.8286e-14

The reciprocal condition number is small, so A is badly conditioned.

The condition of A has an effect on the solutions of similar linear
systems of equations. To see this, compare the solution of Ax = b to that
of the perturbed system, Ax = b + 0.01.

Create a column vector of ones and solve Ax = b.

b = ones(10,1);
x = A\b;

Now change b by 0.01 and solve the perturbed system.

b1 = b + 0.01;
x1 = A\b1;

Compare the solutions, x and x1.

norm(x-x1)

ans =

1.1250e+05

Since A is badly conditioned, a small change in b produces a very large
change (on the order of 1e5) in the solution to x = A\b. The system is
sensitive to perturbations.

Find Condition of Identity Matrix

Examine why the reciprocal condition number is a more accurate
measure of singularity than the determinant.

1-5671

rcond

Create a 5-by-5 multiple of the identity matrix.

A = eye(5)*0.01;

This matrix is full rank and has five equal singular values, which you
can confirm by calculating svd(A).

Calculate the determinant of A.

det(A)

ans =

1.0000e-10

Although the determinant of the matrix is close to zero, A is actually
very well conditioned and not close to being singular.

Calculate the reciprocal condition number of A.

rcond(A)

ans =

1

The matrix has a reciprocal condition number of 1 and is, therefore,
very well conditioned. Use rcond(A) or cond(A) rather than det(A) to
confirm singularity of a matrix.

Tips • rcond is a more efficient but less reliable method of estimating the
condition of a matrix compared to the condition number, cond.

See Also cond | condest | norm | normest | rank | svd

1-5672

rdivide, ./

Purpose Right array division

Syntax x = A./B
x = rdivide(A,B)

Description x = A./B divides each element of A by the corresponding element of B.
Inputs A and B must have the same size unless one is a scalar value.
A scalar value is expanded into an array of the same size as the other
input.

x = rdivide(A,B) is an alternative way to divide A by B, but is rarely
used. It enables operator overloading for classes.

Input
Arguments

A - Numerator
numeric array | sparse numeric array

Numerator, specified as a full or sparse numeric array. If B is an integer
data type, A must be the same integer type or a scalar double.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

B - Denominator
numeric array | sparse numeric array

Denominator, specified as a full or sparse numeric array. If A is an
integer data type, B must be the same integer type or a scalar double.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

1-5673

rdivide, ./

Output
Arguments

x - Solution
numeric array | sparse numeric array

Solution, returned as a full or sparse numeric array. If either A or B is
an integer data type, then x is that same integer data type.

Examples Divide Two Numeric Arrays

Create two numeric arrays, A and B, and divide the second array, B,
into the first, A.

A = [2 4 6 8; 3 5 7 9];
B = 10*ones(2,4);
x = A./B

x =

0.2000 0.4000 0.6000 0.8000
0.3000 0.5000 0.7000 0.9000

Integer Division

Divide an int16 scalar value by each element of an int16 vector.

a = int16(10);
b = int16([3 4 6]);
x = a./b

x =

3 3 2

MATLAB rounds the results when dividing integer data types.

Divide Scalar by Array

Create an array and divide it into a scalar.

C = 5;
D = magic(3);

1-5674

rdivide, ./

x = C./D

x =

0.6250 5.0000 0.8333
1.6667 1.0000 0.7143
1.2500 0.5556 2.5000

When you specify a scalar value to be divided by an array, the scalar
value expands into an array of the same size, then element-by-element
division is performed.

Tips • When dividing integers, use idivide for more rounding options.

• MATLAB does not support complex integer division.

See Also ldivide | mldivide | mrdivide | idivide

1-5675

VideoReader.read

Purpose Read video frame data from file

Syntax video = read(obj)
video = read(obj,index)
video = read(___ ,'native')

Description video = read(obj) reads in all video frames from the file associated
with obj. The read method returns a H-by-W-by-B-by-F matrix, video,
where H is the image frame height, W is the image frame width, B is
the number of bands in the image (for example, 3 for RGB), and F is
the number of frames read.

video = read(obj,index) reads only the specified frames. index
can be a single number or a two-element array representing an index
range of the video stream.

video = read(___ ,'native') returns data in the format specified by
the VideoFormat property, and can include any of the input arguments
in the previous syntaxes.

Input
Arguments

obj

Name of multimedia object created with VideoReader.

index

Frames to read, where the first frame number is 1. Use Inf to
represent the last frame of the file.

For example:

video = read(obj, 1); % first frame only
video = read(obj, [1 10]); % first 10 frames
video = read(obj, Inf); % last frame only
video = read(obj, [50 Inf]); % frame 50 thru end

MATLAB cannot determine the number of frames in a variable
frame rate file until you read the last frame. If the requested
index extends beyond the end of the file, read returns either a

1-5676

VideoReader.read

warning or an error. For more information, see “Read Variable
Frame Rate Video”.

Default: [1 Inf]

Output
Arguments

video

Array of data representing video frames, returned in a format
dependent on the VideoFormat property of obj. For most files,
the data type and dimensions of video are as follows. Note that
when the VideoFormat property of obj is 'Indexed', the data
type and dimensions of video depend on whether you call read
with the 'native' argument.

Value of
obj.VideoFormat

Data Type of
video

Dimensions
of video

Description

'RGB24' uint8 H-by-W-by-3-by-FRGB24 image

'Grayscale',
without
specifying
'native'

uint8 H-by-W-by-1-by-FGrayscale
image

'Indexed',
without
specifying
'native'

uint8 H-by-W-by-3-by-FRGB24 image

'Grayscale'
or 'Indexed',
specifying
'native'

struct 1-by-F MATLAB
movie, which
is an array
of frame
structure
arrays, each
containing
the fields
cdata and
colormap.

1-5677

VideoReader.read

H is the image frame height, W is the image frame width, and F
is the number of frames read.

For Motion JPEG 2000 files, the data type and dimensions of
video are as follows.

Value of
obj.VideoFormat

Data Type of
video

Dimensions
of video

Description

'Mono8' uint8 H-by-W-by-1-by-FMono image

'Mono8
Signed'

int8 H-by-W-by-1-by-FMono signed
image

'Mono16' uint16 H-by-W-by-1-by-FMono image

'Mono16
Signed'

int16 H-by-W-by-1-by-FMono signed
image

'RGB24' uint8 H-by-W-by-3-by-FRGB24 image

'RGB24
Signed'

uint8 H-by-W-by-3-by-FRGB24 signed
image

'RGB48' uint16 H-by-W-by-3-by-FRGB48 image

'RGB48
Signed'

int16 H-by-W-by-3-by-FRGB48 signed
image

Examples Read and Play Back Movie File

Read and play back the movie file xylophone.mp4.

xyloObj = VideoReader('xylophone.mp4');

nFrames = xyloObj.NumberOfFrames;
vidHeight = xyloObj.Height;
vidWidth = xyloObj.Width;

Preallocate the movie structure.

mov(1:nFrames) = ...

1-5678

VideoReader.read

struct('cdata',zeros(vidHeight,vidWidth, 3,'uint8'),...
'colormap',[]);

Read one frame at a time.

for k = 1 : nFrames
mov(k).cdata = read(xyloObj,k);

end

Size a figure based on the video’s width and height.

hf = figure;
set(hf, 'position', [150 150 vidWidth vidHeight])

Play back the movie once at the video’s frame rate.

movie(hf, mov, 1, xyloObj.FrameRate);

See Also movie | VideoReader

How To • “Read Video Files”

1-5679

Tiff.read

Purpose Read entire image

Syntax imageData = tiffobj.read()
[Y,Cb,Cr] = tiffobj.read()

Description imageData = tiffobj.read() reads the image data from the current
image file directory (IFD) in the TIFF file associated with the Tiff
object, tiffobj.

[Y,Cb,Cr] = tiffobj.read()reads the YCbCr component data from
the current directory in the TIFF file. Depending upon the values of
the YCbCrSubSampling tag, the size of the Cb and Cr channels might
differ from the Y channel.

Examples Open a Tiff object and read data from the TIFF file:

t = Tiff('example.tif','r');
imageData = t.read();
t.close();

See Also Tiff.write | imread

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-5680

readasync

Purpose Read data asynchronously from device

Syntax readasync(obj)
readasync(obj,size)

Description readasync(obj) initiates an asynchronous read operation on the serial
port object, obj.

readasync(obj,size) asynchronously reads, at most, the number of
bytes given by size. If size is greater than the difference between the
InputBufferSize property value and the BytesAvailable property
value, an error is returned.

Tips Before you can read data, you must connect obj to the device with the
fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to perform a read
operation while obj is not connected to the device.

Only use readasync to configure the ReadAsyncMode property to manual.
readasync is ignored if used when ReadAsyncMode is continuous.

The TransferStatus property indicates if an asynchronous read
or write operation is in progress. You can write data while an
asynchronous read is in progress because serial ports have separate
read and write pins. You can stop asynchronous read and write
operations with the stopasync function.

You can monitor the amount of data stored in the input buffer
with the BytesAvailable property. Additionally, you can use the
BytesAvailableFcn property to execute a callback function when the
terminator or the specified amount of data is read.

Rules for Completing an Asynchronous Read Operation

An asynchronous read operation with readasync completes when one
of these conditions is met:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

1-5681

readasync

• The specified number of bytes is read.

• The input buffer is filled (if size is not specified).

Because readasync checks for the terminator, this function can be
slow. To increase speed, you might want to configure ReadAsyncMode to
continuous and continuously return data to the input buffer as soon
as it is available from the device.

Examples This example creates the serial port object s on a Windows platform.
It connects s to a Tektronix TDS 210 oscilloscope, configures s to read
data asynchronously only if readasync is issued, and configures the
instrument to return the peak-to-peak value of the signal on channel 1.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'manual';
fprintf(s,'Measurement:Meas1:Source CH1')
fprintf(s,'Measurement:Meas1:Type Pk2Pk')
fprintf(s,'Measurement:Meas1:Value?')

Begin reading data asynchronously from the instrument using
readasync. When the read operation is complete, return the data to the
MATLAB workspace using fscanf.

readasync(s)
s.BytesAvailable

ans =
15

out = fscanf(s)

out =
2.0399999619E0

fclose(s)

1-5682

readasync

See Also fopen | stopasync | BytesAvailable | BytesAvailableFcn |
ReadAsyncMode | Status | TransferStatus

1-5683

Tiff.readEncodedStrip

Purpose Read data from specified strip

Syntax stripData = tiffobj.readEncodedStrip(stripNumber)
[Y,Cb,Cr] = tiffobj.readEncodedStrip(stripNumber)

Description stripData = tiffobj.readEncodedStrip(stripNumber) reads data
from the strip specified by stripNumber. Strip numbers are one-based
numbers.

[Y,Cb,Cr] = tiffobj.readEncodedStrip(stripNumber) reads
YCbCr component data from the specified strip. The size of the
chrominance components Cb and Cr might differ from the size
of the luminance component Y depending on the value of the
YCbCrSubSampling tag.

readEncodeStrip clips the last strip, if the strip extends past the
ImageLength boundary.

Examples Read a Strip

Read the first strip in the second image of a TIFF file.

Create a Tiff object associated with the example file, example.tif, and
make the second image the current directory.

t = Tiff('example.tif','r');
t.setDirectory(2);

Read the data in the first strip. Then, close the Tiff object.

data = t.readEncodedStrip(1);
t.close();

References This method corresponds to the TIFFReadEncodedStrip function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.readEncodedTile | Tiff.isTiled

1-5684

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

Tiff.readEncodedStrip

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-5685

Tiff.readEncodedTile

Purpose Read data from specified tile

Syntax tileData = tiffobj.readEncodedTile(tileNumber)
[Y,Cb,Cr] = tiffobj.readEncodedTile(tileNumber)

Description tileData = tiffobj.readEncodedTile(tileNumber) reads data from
the tile specified by tileNumber. Tile numbers are one-based numbers.

[Y,Cb,Cr] = tiffobj.readEncodedTile(tileNumber) reads YCbCr
component data from the specified tile. The size of the chrominance
components Cb and Cr might differ from the size of the luminance
component Y, depending on the value of the YCbCrSubSampling tag.

readEncodedTile clips tiles on the last row or right-most column of
an image if the tile extends past the ImageLength and ImageLength
boundaries.

Examples Read a Tile

Create a Tiff object associated with the example file, example.tif.
Then, read the first tile of data.

t = Tiff('example.tif','r');
data = t.readEncodedTile(1);
t.close();

References

This method corresponds to the TIFFReadEncodedTile function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.readEncodedStrip | Tiff.isTiled

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-5686

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

Tiff.readRGBAImage

Purpose Read image using RGBA interface

Syntax [RGB,alpha] = readRGBAImage()

Description [RGB,alpha] = readRGBAImage() reads an entire image using the
RGBA interface. RGB consists of an m-by-n-by-3 colormetric image, where
m and n are the height and width of the tile, respectively. alpha is the
associated alpha matting. If the image does not have associated alpha
matting, then alpha is a matrix with all values set to 255 (transparent).

The pixel values may be transformed depending upon the values of
the following tags:

PhotometricInterpretation

BitsPerSample

SamplesPerPixel

Orientation

ExtraSamples

ColorMap

Examples Return all image data as RGB, with associated alpha matting.

t = Tiff('example.tif','r');
t.setDirectory(2);
[RGB,A] = t.readRGBAImage();
t.close();

References This method corresponds to the TIFFReadRGBAImage function in the
LibTIFF C API.

To use this method, you must be familiar with LibTIFF version 4.0.0,
as well as the TIFF specification and technical notes. View this
documentation at LibTiff - TIFF Library and Utilities.

See Also Tiff.readRGBAStrip | Tiff.readRGBATile | Tiff.read

1-5687

http://www.remotesensing.org/libtiff/

Tiff.readRGBAImage

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-5688

Tiff.readRGBAStrip

Purpose Read strip data using RGBA interface

Syntax [RGB,alpha] = readRGBAStrip(row)

Description [RGB,alpha] = readRGBAStrip(row) reads a strip using the RGBA
interface. row is a one-based number of any row contained by the strip.
RGB consists of an m-by-n-by-3 colormetric image, where m and n are
the height and width of the strip, respectively. alpha is the associated
alpha matting. If the image does not have associated alpha matting,
then alpha is a matrix with all values set to 255 (transparent).

The strip is clipped if the strip boundary extends past the end of the
image.

The pixel values may be transformed depending upon the values of
the following tags:

PhotometricInterpretation

BitsPerSample

SamplesPerPixel

Orientation

ExtraSamples

ColorMap

Examples Open a Tiff object and read the strip of data that contains the first row,
using the RGBA interface, from the example file, example.tif

t = Tiff('example.tif','r');
t.setDirectory(2);
[RGB,A] = t.readRGBAStrip(1);
t.close();

References This method corresponds to the TIFFReadRGBAStrip function in the
LibTIFF C API.

1-5689

Tiff.readRGBAStrip

To use this method, you must be familiar with LibTIFF version 4.0.0,
as well as the TIFF specification and technical notes. View this
documentation at LibTiff - TIFF Library and Utilities.

See Also Tiff.readRGBATile | Tiff.readRGBAImage

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-5690

http://www.remotesensing.org/libtiff/

Tiff.readRGBATile

Purpose Read tile data using RGBA interface

Syntax [RGB,alpha] = readRGBATile(row,col)

Description [RGB,alpha] = readRGBATile(row,col) reads a tile using the RGBA
interface. row and col are the one-based row and column numbers of
any pixel in the requested tile. RGB consists of an m-by-n-by-3 colormetric
image, where m and n are the height and width of the tile, respectively.
alpha is the associated alpha matting. If the image does not have
associated alpha matting, then alpha is a matrix with all values set
to 255 (transparent).

The tile is clipped if the tile boundaries extend past the edges of the
image.

The pixel values may be transformed depending upon the values of
the following tags:

PhotometricInterpretation

BitsPerSample

SamplesPerPixel

Orientation

ExtraSamples

ColorMap

Examples Open a Tiff object and read the first tile using the RGBA interface.

t = Tiff('example.tif','r');
t.setDirectory(1);
[RGB,A] = t.readRGBATile(1,1);
t.close();

References This method corresponds to the TIFFReadRGBATile function in the
LibTIFF C API.

1-5691

Tiff.readRGBATile

To use this method, you must be familiar with LibTIFF version 4.0.0,
as well as the TIFF specification and technical notes. View this
documentation at LibTiff - TIFF Library and Utilities.

See Also Tiff.readRGBAStrip | Tiff.readRGBAImage

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-5692

http://www.remotesensing.org/libtiff/

Remove

Purpose Convenience function for static .NET System.Delegate Remove method

Syntax result = Remove(combinedDelegate,removedDelegate)

Description result = Remove(combinedDelegate,removedDelegate) removes last
instance of the removedDelegate delegate from the combinedDelegate
delegate.

Input
Arguments

combinedDelegate

.NET System.Delegate object. The combined delegate from which to
remove the removedDelegate delegate.

removedDelegate

.NET System.Delegate object. The delegate to remove from the
combinedDelegate delegate.

Output
Arguments

result

.NET System.Delegate object. A new delegate which is the same as
the combinedDelegate delegate except without the last instance of the
removedDelegate delegate.

Alternatives Use the static Remove method of the System.Delegate class.

See Also RemoveAll | Combine

How To • “Combine and Remove .NET Delegates”

Related
Links

• MSDN System.Delegate.Remove Method reference page

1-5693

http://msdn.microsoft.com/en-us/library/system.delegate.remove.aspx

RemoveAll

Purpose Convenience function for static .NET System.Delegate RemoveAll
method

Syntax result = RemoveAll(combinedDelegate,removedDelegate)

Description result = RemoveAll(combinedDelegate,removedDelegate) removes
all instances of removedDelegate from combinedDelegate.

Input
Arguments

combinedDelegate

.NET System.Delegate object. The combined delegate from which to
remove all instances of the removedDelegate delegate.

removedDelegate

.NET System.Delegate object. The delegate to remove from the
combinedDelegate delegate.

Output
Arguments

result

.NET System.Delegate object. A new delegate which is the same as
the combinedDelegate delegate except without all instances of the
removedDelegate delegate.

Alternatives Use the static RemoveAll method of the System.Delegate class.

See Also Remove | Combine

How To • “Combine and Remove .NET Delegates”

Related
Links

• MSDN System.Delegate.RemoveAll Method reference page

1-5694

http://msdn.microsoft.com/en-us/library/system.delegate.removeall.aspx

timeseries

Purpose Create timeseries object

Description Time series are data vectors sampled over time, in order, often at
regular intervals. They are distinguished from randomly sampled
data that form the basis of many other data analyses. Time series
represent the time-evolution of a dynamic population or process. The
linear ordering of time series gives them a distinctive place in data
analysis, with a specialized set of techniques. Time series analysis is
concerned with:

• Identifying patterns

• Modeling patterns

• Forecasting values

Construction ts = timeseries creates an empty time-series object.

ts = timeseries(tsname) creates an empty time-series object using
the name, tsname, for the time-series object. This name can differ from
the time-series variable name.

ts = timeseries(data) creates the time-series object using the
specified data.

ts = timeseries(data,time) creates the time-series object using the
specified data and time.

ts = timeseries(data,time,quality) specifies quality in terms of
codes defined by QualityInfo.Code.

ts = timeseries(data,'Name',tsname) creates the time-series object
using the specified data and the name, tsname.

ts = timeseries(data,time,'Name',tsname) creates the time-series
object using the specified data, time, and the name, tsname.

ts = timeseries(data,time,quality,'Name',tsname) uses the
specified quality and the name, tsname.

1-5695

timeseries

Input Arguments

data

The time-series data, which can be an array of samples

tsname

Time-series name specified as a string

Default: ’ ’

time

The time vector.

When time values are date strings, you must specify Time as a cell
array of date strings. When the time vector contains duplicate
values:

• Duplicated values must occupy contiguous elements.

• Time values must not be decreasing.

Interpolating time-series data using methods like resample and
synchronize can produce different results depending on whether
the input timeseries contains duplicate times.

Default: A time vector that ranges from 0 to N-1 with a 1-second
interval, where N is the number of samples.

quality

An integer vector with values-128 to 127 that specifies the quality
in terms of codes defined by QualityInfo.Code

When Quality is a vector:

• Quality must have the same length as the time vector.

• Each Quality value applies to the corresponding data sample.

1-5696

timeseries

When Quality is an array:

• Quality must have the same size as the data array.

• Each Quality value applies to the corresponding data value of
the ts.data array.

Properties Data

Time-series data, where each data sample corresponds to a
specific time

The data can be a scalar, a vector, or a multidimensional array.
Either the first or last dimension of the data must align with Time.

By default, NaNs represent missing or unspecified data. Set the
TreatNaNasMissing property to determine how missing data is
treated in calculations.

Attributes:

Dependent true

DataInfo

Contains fields for storing contextual information about Data:

• Unit — String that specifies data units

• Interpolation — A tsdata.interpolation object that
specifies the interpolation method for this timeseries object.

Fields of the tsdata.interpolation object include:

- Fhandle— Function handle to a user-defined interpolation
function

- Name — String that specifies the name of the interpolation
method. Predefined methods include 'linear' and 'zoh'
(zero-order hold). 'linear' is the default.

• UserData— Any user-defined information entered as a string

1-5697

timeseries

Events

An array of tsdata.event objects that stores event information
for this timeseries object.

You add events by using the addevent method. Fields of the
tsdata.event object include the following:

• EventData— Any user-defined information about the event

• Name— String that specifies the name of the event

• Time— Time value when this event occurs, specified as a real
number or a date string

• Units — Time units

• StartDate—A reference date specified in MATLAB date-string
format. StartDate is empty when you have a numerical
(non-date-string) time vector.

IsTimeFirst

Logical value (true or false) specifies whether the time vector
is aligned with the first or last dimension of the Data array. The
value is false for 3-D and higher dimensional data and true
otherwise.

• true— The first dimension of the data array is aligned with the
time vector. For example, ts = timeseries(rand(3,3),1:3);

• false — The last dimension of the data array is
aligned with the time vector. For example: ts =
timeseries(rand(3,4,5),1:5);

Attributes:

Dependent true

SetAccess 'protected'

Length

1-5698

timeseries

Length of the time vector in the timeseries object

Attributes:

Dependent true

SetAccess 'protected'

Name

The timeseries object name entered as a string, tsname.

This name can differ from the name of the timeseries variable in
the MATLAB workspace.

Quality

An integer vector or array containing values -128 to 127 that
specify the quality in terms of codes defined by QualityInfo.Code.

When Quality is a vector, it must have the same length as
the time vector. In this case, each Quality value applies to a
corresponding data sample.

When Quality is an array, it must have the same size as the
data array. In this case, each Quality value applies to the
corresponding value of the data array.

Attributes:

Dependent true

QualityInfo

Provides a lookup table that converts numerical Quality codes
to readable descriptions.

QualityInfo fields include the following:

• Code — Integer vector containing values -128 to 127 that
define the “dictionary” of quality codes. You can assign one of
these integer values to each Data value by using the Quality
property.

1-5699

timeseries

• Description — Cell vector of strings, where each element
provides a readable description of the associated quality Code.

• UserData— Stores any additional user-defined information.

Lengths of Code and Description must match.

Time

Array of time values.

When TimeInfo.StartDate is empty, the numerical Time
values are measured relative to 0 in specified units. When
TimeInfo.StartDate is defined, the time values are date strings
measured relative to the StartDate in specified units.

The length of Time must be the same as either the first or the
last dimension of Data. When the data contains three or more
dimensions, the length of Time matches the size of the last data
dimension. Otherwise, the length of Time matches the size of the
first data dimension.

Attributes:

Dependent true

TimeInfo

Uses the following fields for storing contextual information about
Time:

• Units— Time units having any of following values: 'weeks',
'days', 'hours', 'minutes', 'seconds', 'milliseconds',
'microseconds', or 'nanoseconds'

• Start — Start time

• End — End time (read only)

• Increment— Interval between two subsequent time values

• Length— Length of the time vector (read only)

1-5700

timeseries

• Format — String defining the date string display format.
See the MATLAB datestr function reference page for more
information.

• StartDate — Date string defining the reference date. See
the MATLAB setabstime function reference page for more
information.

• UserData— Stores any additional user-defined information

TreatNaNasMissing

Logical value that specifies how to treat NaN values in Data:

• true— (Default) Treats all NaN values as missing data except
during statistical calculations.

• false — Includes NaN values in statistical calculations, in
which case NaN values are propagated to the result.

UserData

Generic field for data of any class that you want to add to the
object.

Default: []

Methods Time-Series Methods

• Methods to Query and Set Object Properties and Plot the Data on
page 5702

• Methods to Manipulate Data and Time on page 5702

• Event Methods on page 5703

• Methods to Arithmetically Combine timeseriesObjects on page 5704

• Methods to Calculate Descriptive Statistics for a timeseries Object
on page 5705

1-5701

timeseries

Methods to Query and Set Object Properties and Plot the Data
get Query timeseries object property values.

getdatasamplesize Return the size of each data sample in a
timeseries object.

getqualitydesc Return data quality descriptions based on
the Quality property values assigned to a
timeseries object.

plot Plot the timeseries object.

set Set timeseries property values.

Methods to Manipulate Data and Time
addsample Add a data sample to a timeseries object.

append Concatenate timeseries objects in the
time dimension.

ctranspose Transpose a timeseries object.

delsample Delete a sample from a timeseries object.

detrend Subtract the mean or best-fit line and
remove all NaNs from time-series data.

filter Shape frequency content of time-series
data using a 1-D digital filter.

getabstime Extract a date-string time vector from a
timeseries object into a cell array.

getdatasamples Extract a subset of data samples from an
existing timeseries object into an array
using a subscripted indexed array.

getsamples Extract a subset of data samples from
an existing timeseries object into a
new timeseries object using a subscript
indexed array.

1-5702

timeseries

(Continued)

getinterpmethod Get the interpolation method for a
timeseries object.

getsampleusingtime Extract data samples from an existing
timeseries object into a new timeseries
object based on specified start and end
time values.

idealfilter Apply an ideal pass or notch (noncausal)
filter to a timeseries object.

resample Select or interpolate data in a timeseries
object using a new time vector.

setabstime Set the time values in the time vector as
date strings.

setinterpmethod Set interpolation method for a timeseries
object.

setuniformtime Assign uniform time vector to timeseries
object.

synchronize Synchronize and resample two timeseries
objects using a common time vector.

transpose Transpose a timeseries object.

Event Methods
To construct an event object, use the constructor tsdata.event. For
an example of defining events for a time-series object, see “Defining
Events”.

addevent Add one or more events to a timeseries
object.

delevent Delete one or more events from a
timeseries object.

1-5703

timeseries

(Continued)

gettsafteratevent Create a new timeseries object by
extracting the samples from an existing
time series that occur after or at a specified
event.

gettsafterevent Create a new timeseries object by
extracting the samples that occur after
a specified event from an existing time
series.

gettsatevent Create a new timeseries object by
extracting the samples that occur at the
same time as a specified event from an
existing time series.

gettsbeforeatevent Create a new timeseries object by
extracting the samples that occur before or
at a specified event from an existing time
series.

gettsbeforeevent Create a new timeseries object by
extracting the samples that occur before
a specified event from an existing time
series.

gettsbetweenevents Create a new timeseries object by
extracting the samples that occur between
two specified events from an existing time
series.

Methods to Arithmetically Combine timeseries Objects
+ Addition of the corresponding data values of

timeseries objects.

- Subtraction of the corresponding data values of
timeseries objects.

.* Element-by-element multiplication of
timeseries data.

1-5704

timeseries

(Continued)

* Matrix-multiply timeseries data.

./ Right element-by-element division of
timeseries data.

/ Right matrix division of timeseries data.

.\ Element-by-element left-array divide of
timeseries data.

\ Left matrix division of timeseries data.

Methods to Calculate Descriptive Statistics for a timeseries Object
iqr Return the interquartile range of timeseries

data.

max Return the maximum value of timeseries data.

mean Return the mean of timeseries data.

median Return the median of timeseries data.

min Return the minimum of timeseries data.

std Return the standard deviation of timeseries
data.

sum Return the sum of timeseries data.

var Return the variance of timeseries data.

Definitions timeseries
The time-series object, called timeseries, is a MATLAB variable
that contains time-indexed data and properties in a single, coherent
structure. For example, in addition to data and time values, you can
also use the time-series object to store events, descriptive information
about data and time, data quality, and the interpolation method.

1-5705

timeseries

Data Sample

A time-series data sample consists of one or more values recorded at a
specific time. The number of data samples in a time series is the same
as the length of the time vector.

For example, suppose that ts.data has the size 3-by-4-by-5 and the
time vector has the length 5. Then, the number of samples is 5 and the
total number of data values is 3 x 4 x 5 = 60.

Time Vector

A time vector of a timeseries object can be either numerical (double)
values or valid MATLAB date strings.

When the timeseries TimeInfo.StartDate property is empty, the
numerical time values are measured relative to 0 (or another numerical
value) in specified units. In this case, the time vector is described as
relative (that is, it contains time values that are not associated with a
specific start date).

When TimeInfo.StartDate is nonempty, the time values are date
strings measured relative to StartDate in specified units. In this case,
the time vector is described as absolute (that is, it contains time values
that are associated with a specific calendar date).

MATLAB supports the following date-string formats for time-series
applications.

Date-String Format Usage Example

dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17

dd-mmm-yyyy 01-Mar-2000

mm/dd/yy 03/01/00

mm/dd 03/01

HH:MM:SS 15:45:17

HH:MM:SS PM 3:45:17 PM

HH:MM 15:45

1-5706

timeseries

Date-String Format Usage Example

HH:MM PM 3:45 PM

mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17

mmm.dd,yyyy Mar.01,2000

mm/dd/yyyy 03/01/2000

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Create a timeseries object called 'LaunchData' that contains four
data sets, each stored as a column of length 5 and using the default
time vector:

b = timeseries(rand(5, 4),'Name','LaunchData')

Create a timeseries object containing a single data set of length 5 and
a time vector starting at 1 and ending at 5:

b = timeseries(rand(5,1),[1 2 3 4 5])

Create a timeseries object called 'FinancialData' containing five
data points at a single time point:

b = timeseries(rand(1,5),1,'Name','FinancialData')

See Also tscollection | tsdata.event

How To • “MATLAB Objects”

1-5707

timeseries.addsample

Purpose Add data sample to timeseries object

Syntax ts1 = addsample(ts, s)
ts1 = addsample(ts, 'Data', data-value,
'Time',time-value,..., Name,

Value)

Description ts1 = addsample(ts, s) adds one or more new data samples stored
in a structure s to the timeseries object ts.

ts1 = addsample(ts, 'Data', data-value,
'Time',time-value,..., Name, Value) adds one or more data
samples to the timeseries object ts along with additional options
specified by one or more Name,Value pair arguments.

Tips • If N is the number of data samples, you can get the sample size of
each time with SampleSize = getsamplesize(ts).

When ts.IsTimeFirst is true, the size of the data is
N-by-SampleSize. When ts.IsTimeFirst is false, the size of the
data is SampleSize-by-N.

Input
Arguments

s

A structure that you must define before passing as an argument
to addsample. It consists of the following optional fields:

• s.data

• s.time

• s.quality

• s.overwriteflag

data-value

A numeric data value.

time-value

1-5708

timeseries.addsample

A valid time vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Quality’

Array of data quality codes.

Default: []

’OverwriteFlag’

Logical value that controls whether to overwrite a data sample
at the same time with the new sample you are adding to your
timeseries object. When set to true, the new sample overwrites
the old sample at the same time.

Default: false

Output
Arguments

ts1

The timeseries object that results when you add the specified
samples to the original timeseries object.

Definitions data sample

One or more values recorded at a specific time. The number of data
samples in a time series is the same as the length of the time vector.

Examples Add a data value of 420 at time 3:

ts = ts.addsample('Time',3,'Data',420);

1-5709

timeseries.addsample

Add a data value of 420 at time 3 and specify quality code 1 for this data
value. Set the OverwriteFlag to overwrite an existing value at time 3.

ts = ts.addsample('Data',3.2,'Quality',1,'OverwriteFlag',...
true,'Time',3);

See Also timeseries | delsample | getdatasamples

1-5710

timeseries.append

Purpose Concatenate time series objects in time dimension

Syntax ts = append(ts1,ts2, ... tsn)

Description ts = append(ts1,ts2, ... tsn) creates a new timeseries object
by concatenating timeseries ts1, ts2, and so on, along the time
dimension.

Tips • A single overlapping time between each input time series is valid, as
long as the overlapping samples are identical.

• The time vectors must not overlap by a nonzero amount. That is, the
last time in ts1 must be earlier than or equal to the first time in ts2.

• The sample size of the time series must be the same.

Input
Arguments

ts1

The first timeseries object that you want to append.

ts2

The second timeseries object that you want to append.

tsn

The nth timeseries object that you want to append.

Output
Arguments

ts

The timeseries object that results from appending the input
timeseries objects.

Examples After creating timeseries objects, ts1 and ts2, append them:

ts1 = timeseries(rand(5,1),[1 2 3 4 5]);
ts2 = timeseries(rand(5,1),[6 7 8 9 10]);
ts3 = append(ts1, ts2)

See Also timeseries

1-5711

timeseries.ctranspose

Purpose Transpose timeseries object

Syntax ts1 = ctranspose(ts)

Description ts1 = ctranspose(ts) returns a new timeseries object ts1 with the
IsTimeFirst value set to opposite of what it is for ts. For example,
if ts has the first data dimension aligned with the time vector, ts1
has the last data dimension aligned with the time vector as a result of
this operation.

Tips • The overloaded ctranspose method for timeseries objects does
not transpose the data. Instead, this method changes whether
the first or the last dimension of the data aligns with the time
vector. To transpose the data, you must transpose the Data property
of the timeseries object. For example, you can use the syntax
ctranspose(ts.Data) or (ts.Data)'. The Data property value
must be a 2-D array.

• Consider a timeseries object with 10 samples with the property
IsTimeFirst = True. When you transpose this object, the data size
changes from 10-by-1 to 1-by-1-by-10. Note that the first dimension
of the Data property is shown explicitly.

The following table summarizes the size for Data property of
the timeseries object (up to three dimensions) before and after
transposing.

Data Size Before and After Transposing

Size of Original Data Size of Transposed Data

N-by-1 1-by-1-by-N

N-by-M M-by-1-by-N

N-by-M-by-L M-by-L-by-N

1-5712

timeseries.ctranspose

Input
Arguments

ts

The timeseries object you want to transpose.

Output
Arguments

ts1

The transposed timeseries object.

Examples Suppose that a timeseries object ts has ts.data size 10-by-3-by-2
and its time vector has a length of 10. The IsTimeFirst property of
ts is set to true, which means that the first dimension of the data is
aligned with the time vector. ctranspose(ts) modifies ts, such that
the last dimension of the data is now aligned with the time vector. This
permutes the data, such that the size of ts.Data becomes 3-by-2-by-10.

See Also timeseries | transpose

1-5713

timeseries.delsample

Purpose Remove sample from timeseries object

Syntax ts1 = delsample(ts,Name,Value)

Description ts1 = delsample(ts,Name,Value) deletes samples from the
timeseries object ts based on the specified Name,Value pair
arguments.

Input
Arguments

ts

A timeseries object.

Name-Value
Pair
Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Index

The indices of the time vector that correspond to the samples you
want to delete.

Value

The time values that correspond to the samples you want to delete.

Output
Arguments

ts1

The timeseries object that results from removing the specified
samples.

Examples Create a timeseries object, and then remove samples:

ts = timeseries(rand(5,1),[10 20 30 40 50]);

% Remove data sample at time index 1

ts1 = delsample(ts,'Index', 1)

1-5714

timeseries.delsample

% Remove data sample at time value 20:

ts2 = delsample(ts,'Value', [20])

See Also set | timeseries

1-5715

timeseries.detrend

Purpose Subtract mean or best-fit line and all NaNs from timeseries object

Syntax ts1 = detrend(ts, method)
ts1 = detrend(ts, method, index)

Description ts1 = detrend(ts, method) subtracts either a mean or a best-fit
line from time-series data, using the specified method. Usually for
FFT processing.

ts1 = detrend(ts, method, index) uses the optional index to
specify the columns or rows to detrend.

Tips • You cannot apply detrend totimeseries data with more than two
dimensions.

Input
Arguments

ts

The timeseries object from which you want to subtract the mean
or best-fit line and all NaNs.

method

A string that specifies one of the following detrend methods:

• 'constant' — Subtracts the mean.

• 'linear' — Subtracts the best-fit line.

index

An integer array that specifies the columns or rows to detrend
when ts.IsTimeFirst is true.

Output
Arguments

ts1

The timeseries object resulting from detrending the input
timeseries object.

See Also timeseries

1-5716

timeseries.filter

Purpose Shape frequency content of time-series

Syntax ts1 = filter(ts, numerator, denominator)
ts1=filter(ts, numerator, denominator, index)

Description ts1 = filter(ts, numerator, denominator) applies the transfer
function filter b(z−1)/a(z−1) to the data in the timeseries object ts. b
and a are the coefficient arrays of the transfer function numerator and
denominator, respectively.

ts1=filter(ts, numerator, denominator, index) uses the
optional index integer array to specify either the columns or rows to
filter, depending on the value of ts.IsTimeFirst.

Tips • The time-series data must be uniformly sampled to use this filter.

• The following function

y = filter(b,a,x)

creates filtered data y by processing the data in vector x with the
filter described by vectors a and b.

• The filter function is a general tapped delay-line filter, described
by the difference equation:

a(1)y(n) = b(1)x(n) + b(2)x(n − 1) + ... + b(nb)x(n − nb + 1) − a (2)y(n
− 1) − ... − a(Na)y(n − Nb + 1).

Here, n is the index of the current sample, Na is the order of
the polynomial described by vector a, and Nb is the order of the
polynomial described by vector b. The output y(n) is a linear
combination of current and previous inputs, x(n) x(n −1)..., and
previous outputs, y(n − 1) y(n − 2)... .

• You use the discrete filter to shape the data by applying a transfer
function to the input signal.

1-5717

timeseries.filter

Depending on your objectives, the transfer function you choose might
alter both the amplitude and the phase of the variations in the data
at different frequencies to produce either a smoother or a rougher
output.

• In digital signal processing (DSP), it is customary to write transfer
functions as rational expressions in z−1 and to order the numerator
and denominator terms in ascending powers of z−1.

Taking the z-transform of the difference equation

a(1)y(n) = b(1)x(n) + b(2)x(n −1) + ... + b(nb)x(n − nb + 1) − a (2)y(n
− 1) − ... − a(na)y(na + 1),

results in the transfer function

Y z H z X z
b b z b nb z

a a z

nb
() () ()

() () ... ()

() .
= = + + +

() + +
−

− − +

−
1

1 1

1
1 2

1 2 ... ()
(),

+ − +a na z
X z

na 1

where Y(z) is the z-transform of the filtered output y(n). The
coefficients b and a are unchanged by the z-transform.

Input
Arguments

ts

The first timeseries object for which you want to shape the
frequency content.

numerator

The coefficient array of the transfer function numerator.

denominator

The coefficient array of the transfer function denominator.

index

An integer array that specifies the columns or rows to filter when
ts.IsTimeFirst is true.

1-5718

timeseries.filter

Output
Arguments

ts1

The timeseries object that results from filtering the input
timeseries object.

Examples Apply Transfer Function to Time Series Data

This example applies the following transfer function to the data in
count.dat:

Load the matrix count into the workspace:

load count.dat;

Create a time-series object based on this matrix:

count1=timeseries(count(:,1),[1:24]);

Enter the coefficients of the denominator ordered in ascending powers
of to represent :

a = [1 0.2];

Enter the coefficients of the numerator to represent :

b = [2 3];

Call the filter method:

filter_count = filter(count1, b, a);

Compare the original data and the shaped data with an overlaid plot of
the two curves:

plot(count1,'-.'), grid on, hold on
plot(filter_count,'-')

1-5719

timeseries.filter

legend('Original Data','Shaped Data',2)

See Also timeseries | idealfilter

1-5720

timeseries.get

Purpose Query timeseries object property values

Syntax get(ts)
value = get(ts, PropertyName)

Description get(ts) displays all properties and values of the timeseries object,
ts.

value = get(ts, PropertyName) returns the property value for the
specified timeseries object. The following syntax is equivalent:

value = ts.PropertyName

Input
Arguments

ts

A timeseries object.

PropertyName

String specifying the name of a timeseries property. For a list
of timeseries properties, see timeseries.

Output
Arguments

value

String containing the value associated with the specified property.

Examples Create a timeseries object, and then get the name. This example gets
the name three different ways:

ts1 = timeseries(rand(5,1),[1 2 3 4 5], 'Name', 'MyTimeseries');
get(ts1)
get(ts1, 'Name')
value = ts1.Name

See Also timeseries | set

1-5721

timeseries.getabstime

Purpose Extract date-string time vector into cell array

Syntax getabstime(ts)

Description getabstime(ts) extracts the time vector from the timeseries object
ts as a cell array of date strings.

Tips • To define the time vector relative to a calendar date, set the
TimeInfo.StartDate property of the timeseries object. When the
TimeInfo.StartDate format is a valid datestr format, the output
strings from getabstime have the same format.

Input
Arguments

ts

The timeseries object from which you want to extract the time
vector.

Examples The following example extracts a time vector as a cell array of date
strings from a timeseries object.

First, create a timeseries object.

ts = timeseries([3 6 8 0 10]);

The default time vector for ts is [0 1 2 3 4], which starts at 0 and
increases in 1-second increments. The length of the time vector is equal
to the length of the data.

Next, set the StartDate property.

ts.TimeInfo.StartDate = '10/27/2005 07:05:36';

Extract the time vector.

getabstime(ts)

MATLAB returns:

'27-Oct-2005 07:05:36'

1-5722

timeseries.getabstime

'27-Oct-2005 07:05:37'
'27-Oct-2005 07:05:38'
'27-Oct-2005 07:05:39'
'27-Oct-2005 07:05:40'

Change the date-string format of the time vector, and then extract the
time vector with the new date-string format:

ts.TimeInfo.Format = 'mm/dd/yy';
getabstime(ts)

MATLAB returns:

'10/27/05'
'10/27/05'
'10/27/05'
'10/27/05'
'10/27/05'

See Also timeseries | setabstime | datestr

1-5723

timeseries.getdatasamples

Purpose Returns subset of time series samples using subscripted index array

Syntax datasamples = getdatasamples(ts, i)

Description datasamples = getdatasamples(ts, i) returns an array
corresponding to the samples indicated by the array, i.

Input
Arguments

ts

The timeseries object from which you want to exact samples.

i

An array of linear indices or logical values that specifies the time
value or values for which you want to extract the corresponding
samples.

Output
Arguments

datasamples

The array that results from extracting the samples corresponding
to the time value or values, ts.time(i).

Examples After creating a timeseries object, ts, extract the second and third
data samples into an array:

ts = timeseries(rand(5,1),[1 2 3 4 5]);
samples = getdatasamples(ts, [2 3])

See Also timeseries | getsamples | resample

1-5724

timeseries.getdatasamplesize

Purpose Size of data sample in timeseries object

Syntax getdatasamplesize(ts)

Description getdatasamplesize(ts) returns the size of each data sample in a
timeseries object.

Input
Arguments

ts

String specifying the name of a timeseries object.

Definitions data sample

One or more scalar values recorded at a specific time. The number of
data samples is the same as the length of the time vector.

Examples After loading data and creating a timeseries object, get the size of
a data sample:

% Load a 24-by-3 data array:
load count.dat

% Create a timeseries object with 24 time values:
count_ts = timeseries(count,[1:24],'Name','VehicleCount')

% Get the size of the data sample for this timeseries object:
getdatasamplesize(count_ts)

MATLAB returns the following, which indicates that the size of each
data sample in count_ts is 1-by-3. In other words, MATLAB stores
each data sample as a row with three values.

ans =

1 3

See Also timeseries | set

1-5725

timeseries.getinterpmethod

Purpose Interpolation method for timeseries object

Syntax getinterpmethod(ts)

Description getinterpmethod(ts) returns the interpolation method that the
timeseries object ts, uses as a string.

Input
Arguments

ts

The timeseries object from which you want to extract the
interpolation method.

Definitions interpolation method

Predefined interpolation methods are zero-order hold, zoh, and linear
interpolation, linear. Linear interpolation is the default.

Examples Create a timeseries object, and then get its interpolation method:

ts = timeseries(rand(5));
getinterpmethod(ts)

MATLAB returns:

linear

See Also timeseries | setinterpmethod

1-5726

timeseries.getqualitydesc

Purpose Data quality descriptions

Syntax getqualitydesc(ts)

Description getqualitydesc(ts) returns a cell array of data quality descriptions
based on the Quality values you assigned to a timeseries object, ts.

Input
Arguments

ts

A timeseries object.

Examples Create a timeseries object, and then get the data quality description
strings for ts:

% Create a timeseries object, ts, with Data,
Time, and Quality
% values, respectively:

ts = timeseries([3; 4.2; 5; 6.1; 8], 1:5, [1; 0; 1; 0; 1]);

% Set the QualityInfo property, including Code and Description:

ts.QualityInfo.Code = [0 1];
ts.QualityInfo.Description = {'good' 'bad'};

% Get the data quality description strings for ts:
getqualitydesc(ts)

MATLAB returns:

ans =

'bad'
'good'
'bad'
'good'
'bad'

1-5727

timeseries.getqualitydesc

See Also timeseries

1-5728

timeseries.getsamples

Purpose Subset of time series samples using subscripted index array

Syntax ts1 = getsamples(ts, i)

Description ts1 = getsamples(ts, i) returns a new timeseries object by
extracting samples from timeseries ts corresponding to the time or
times indicated by the subscripted index array, i.

Input
Arguments

ts

The timeseries object from which you want to exact samples.

i

A subscripted index array that specifies the time value or values
for which you want to extract the corresponding samples.

Output
Arguments

ts1

The timeseries object that results from extracting the samples
corresponding to the time value or values ts.time(i) .

Examples After creating a timeseries object, ts, extract the data samples at
times 2 and 3 into a new timeseries object, ts1:

ts = timeseries(rand(5,1),[1 2 3 4 5]);
ts1 = getdatasamples(ts, ts.time([2 3]))

See Also timeseries | getdatasamples | resample

1-5729

timeseries.getsampleusingtime

Purpose Extract data samples into new timeseries object

Syntax ts1 = getsampleusingtime(ts, time)
ts1 = getsampleusingtime(ts, starttime, endtime)

Description ts1 = getsampleusingtime(ts, time) returns a new timeseries
object, ts1, with a single sample corresponding to specified time in ts.

ts1 = getsampleusingtime(ts, starttime, endtime) returns
a new timeseries object, ts1, with samples between the times
starttime and endtime in ts.

Tips • If the time vector in ts is not relative to a calendar date, then
starttime and endtime must be numeric.

• If the time vector in ts is relative to a calendar date, then starttime
and endtime values must be dates—either strings or datenum values.

Input
Arguments

ts

The timeseries object from which you want to extract data
samples.

time

The time corresponding to data sample you want to extract.

starttime

The time corresponding to the first data sample you want to
extract.

endtime

The time corresponding to the last data sample you want to
extract.

Output
Arguments

ts1

A timeseries object that contains the subset of data samples
from the original timeseries object.

1-5730

timeseries.getsampleusingtime

See Also timeseries

1-5731

timeseries.idealfilter

Purpose Apply ideal (noncausal) filter to timeseries object

Syntax ts1 = idealfilter(ts, interval, filtertype)
ts1 = idealfilter(ts, interval, filtertype, index)

Description ts1 = idealfilter(ts, interval, filtertype) applies an ideal
filter of filtertype to one or more frequency intervals that interval
specifies for the timeseries object, ts.

ts1 = idealfilter(ts, interval, filtertype, index) applies an
ideal filter and uses the optional index integer array to specify the
columns or rows to filter.

Tips • Ideal filters require data to have a mean of zero and prepare the data
by subtracting its mean. You can restore the filtered signal amplitude
by adding the mean of the input data to the filter output values.

• Use the ideal notch filter when you want to remove variations in a
specific frequency range. Alternatively, use the ideal pass filter to
allow only the variations in a specific frequency range.

• If the time-series data is sampled nonuniformly, filtering resamples
this data on a uniform time vector.

• All NaNs in the time series are interpolated before filtering, using the
interpolation method you assigned to the timeseries object.

Input
Arguments

ts

The timeseries object to which you want to apply an ideal filter.

interval

The frequency interval (specified in cycles per time unit) at which
you want the ideal filter applied. To specify several frequency
intervals, use an n-by-2 array of start and end frequencies, where
n represents the number of intervals.

filtertype

1-5732

timeseries.idealfilter

A string specifying the type of filter you want to apply, either
pass or notch.

index

An integer array that specifies the columns or rows to filter when
ts.IsTimeFirst is true.

Output
Arguments

ts1

The timeseries object that results when you apply an ideal filter
to the original timeseries object.

Definitions ideal filter

Filters are ideal in the sense that they are not realizable. An ideal filter
is noncausal and the ends of the filter amplitude are perfectly flat in the
frequency domain.

Examples Apply Ideal Notch and Pass Filters

This example first applies an ideal notch filter to the data in count.dat.
Then, it applies a pass filter to the data.

Load the count matrix into the workspace:

load count.dat;

Create a timeseries object from column one of this matrix. Specify a
time vector that ranges from 1 to 24 s in 1-s intervals.

count1=timeseries(count(:,1),1:24);

Obtain the mean of the data:

countmean = mean(count1);

Enter the frequency interval, in hertz, for filtering the data:

interval=[0.08 0.2];

1-5733

timeseries.idealfilter

Invoke an ideal notch filter:

idealfilter_countn = idealfilter(count1,interval,'notch');

Compare the original data and the shaped data on a line plot:

plot(count1,'-.'), grid on, hold on
plot(idealfilter_countn,'-')

Restore the mean to the filtered data and show it on the line plot,
adding a legend and a title:

countn_restored = idealfilter_countn + countmean;
plot(countn_restored,':');
title('Notch Filter')
legend('Original Data','Shaped Data','Mean Restored',...

'Location','NorthWest')

1-5734

timeseries.idealfilter

Close the Figure window:

close

Then, repeat the process using a pass rather than a notch filter:

figure
plot(count1,'-.'), grid on, hold on
idealfilter_countp = idealfilter(count1,interval,'pass');
plot(idealfilter_countp,'-')

1-5735

timeseries.idealfilter

countp_restored = idealfilter_countp + countmean;
plot(countp_restored,':');
title('Pass Filter')
legend('Original Data','Shaped Data','Mean Restored',...

'Location','NorthWest')

See Also timeseries | filter

1-5736

timeseries.iqr

Purpose Interquartile range of timeseries data

Syntax ts_iqr = iqr(ts)
iqr(ts, Name, Value)

Description ts_iqr = iqr(ts) returns the interquartile range of ts.Data.

iqr(ts, Name, Value) reruns the interquatrile range of ts.Data with
the specified Name, Value pairs.

Input
Arguments

ts

The timeseries object for which you want the interquartile range
of timeseries data.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MissingData’

A string specifying one of two possible values, remove or
interpolate, indicating how to treat missing data during the
calculation.

Default: remove

’Quality’

A vector of integers, indicating which quality codes represent
missing samples (for vector data) or missing observations (for
data arrays with two or more dimensions).

Output
Arguments

ts_iqr

The interquartile range of ts.Data, as follows:

1-5737

timeseries.iqr

• When ts.Data is a vector, ts_iqr is the difference between the
75th and the 25th percentiles of the ts.Data values.

• When ts.Data is a matrix, and IsTimeFirst is true, and the
first dimension of ts is aligned with time, then ts_iqr is a
row vector containing the interquartile range of each column
of ts.Data.

When ts.Data is an N-dimensional array, iqr always operates
along the first nonsingleton dimension of ts.Data.

Examples Create a time series with a missing value, represented by NaN, and
then calculate the interquartile range of ts.Data after removing the
missing value from the calculation:

ts = timeseries([3.0 NaN 5 6.1 8], 1:5);
iqr(ts,'MissingData','remove')

MATLAB returns:

3.0500

See Also max | mean | median | min | std | sum | timeseries | var

1-5738

timeseries.max

Purpose Maximum value of timeseries data

Syntax ts_max = max(ts)
ts_max = max(ts,Name,Value)

Description ts_max = max(ts) returns the maximum value in the timeseries
data.

ts_max = max(ts,Name,Value) returns the maximum value in the
timeseries data with additional options specified by one or more
Name,Value pair arguments.

Input
Arguments

ts

The timeseries object for which you want to determine the
maximum data value.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MissingData’

A string specifying one of two possible values, remove or
interpolate, indicating how to treat missing data during the
calculation.

Default: remove

’Quality’

A vector of integers, indicating which quality codes represent
missing samples (for vector data) or missing observations (for
data arrays with two or more dimensions).

1-5739

timeseries.max

Output
Arguments

ts_max

The maximum data value in the specified timeseries object, as
follows:

• When ts.Data is a vector, ts_max is the maximum value of
ts.Data values.

• When ts.Data is a matrix, IsTimeFirst is true, and the
first dimension of ts is aligned with time, then ts_max is a
row vector containing the maximum value of each column of
ts.Data.

When ts.Data is an N-dimensional array, max always operates
along the first nonsingleton dimension of ts.Data.

Examples The following example illustrates how to find the maximum values
in multivariate time-series data:

% Load a 24-by-3 data array:
load count.dat

% Create a timeseries object with 24 time values:
count_ts = timeseries(count,[1:24],'Name','CountPerSecond')

% Find the maximum in each data column for this timeseries object:

max(count_ts)

MATLAB returns:

114 145 257

See Also iqr | mean | median | min | std | sum | timeseries | var

1-5740

timeseries.mean

Purpose Mean value of timeseries data

Syntax ts_mn = mean(ts)
ts_mn = mean(ts,Name,Value)

Description ts_mn = mean(ts) returns the mean value of ts.Data.

ts_mn = mean(ts,Name,Value) returns the mean value of ts.Data
with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

ts

The timeseries object for which you want the mean value of data.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MissingData’

A string specifying one of two possible values, remove or
interpolate, indicating how to treat missing data during the
calculation.

Default: remove

’Quality’

A vector of integers, indicating which quality codes represent
missing samples (for vector data) or missing observations (for
data arrays with two or more dimensions).

’Weighting’

1-5741

timeseries.mean

A string specifying one of two possible values, none or time.
When you specify time, larger time values correspond to larger
weights.

Output
Arguments

ts_mn

The mean value of ts.Data, as follows:

• When ts.Data is a vector, ts_mn is the mean value of ts.Data
values.

• When ts.Data is a matrix, and IsTimeFirst is true and the
first dimension of ts is aligned with time, then ts_mn is a row
vector containing the mean value of each column of ts.Data.

When ts.Data is an N-dimensional array, mean always operates
along the first nonsingleton dimension of ts.Data.

Examples Find the mean values in multivariate time-series data:

% Load a 24-by-3 data array:

load count.dat

% Create a timeseries object with 24 time values:

count_ts = timeseries(count,[1:24],'Name','CountPerSecond')

% Find the mean of each data column for this timeseries object:

mean(count_ts)

MATLAB returns:

32.0000 46.5417 65.5833

1-5742

timeseries.mean

Algorithms MATLAB determines weighting by:

1 Attaching a weighting to each time value, depending on its order,
as follows:

• First time point — The duration of the first time interval (t(2) -
t(1)).

• Time point that is neither the first nor last time point — The
duration between the midpoint of the previous time interval to the
midpoint of the subsequent time interval ((t(k + 1) - t(k))/2
+ (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval ((t(end)
- t(end - 1)).

2 Normalizing the weighting for each time by dividing each weighting
by the mean of all weightings.

Note If the timeseries object is uniformly sampled, then the
normalized weighting for each time is 1.0. Therefore, time weighting
has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also timeseries | timeseries.iqr | timeseries.max |
timeseries.median | timeseries.min | timeseries.std |
timeseries.sum | timeseries.var

1-5743

timeseries.median

Purpose Median value of timeseries data

Syntax ts_med = median(ts)
ts_med = method(ts,Name,Value)

Description ts_med = median(ts) returns the median value of ts.Data.

ts_med = method(ts,Name,Value) returns the median value of
ts.Data with additional options specified by one or more Name,Value
pair arguments.

Input
Arguments

ts

The timeseries object for which you want the median data value.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MissingData’

A string specifying one of two possible values, remove or
interpolate, indicating how to treat missing data during the
calculation.

Default: remove

’Quality’

A vector of integers, indicating which quality codes represent
missing samples (for vector data) or missing observations (for
data arrays with two or more dimensions).

’Weighting’

1-5744

timeseries.median

A string specifying one of two possible values, none or time.
When you specify time, larger time values correspond to larger
weights.

Output
Arguments

ts_med

The median value of ts.Data, as follows:

• When ts.Data is a vector, ts_med is the mean value of ts.Data
values.

• When ts.Data is a matrix, and IsTimeFirst is true, and the
first dimension of ts is aligned with time, then ts_med is a row
vector containing the median value of each column of ts.Data.

When ts.Data is an N-dimensional array, median always operates
along the first nonsingleton dimension of ts.Data.

Examples The following example finds the median values in multivariate
time-series data. MATLAB finds the median independently for each
data column in the timeseries object:

% Load a 24-by-3 data array:

load count.dat

% Create a timeseries object with 24 time values:

count_ts = timeseries(count,[1:24],'Name','CountPerSecond');

% Find the median of each data column for this timeseries object:

median(count_ts)

MATLAB returns:

23.5000 36.0000 39.0000

1-5745

timeseries.median

Algorithms MATLAB determines weighting by:

1 Attaching a weighting to each time value, depending on its order,
as follows:

• First time point — The duration of the first time interval (t(2) -
t(1)).

• Time point that is neither the first nor last time point — The
duration between the midpoint of the previous time interval to the
midpoint of the subsequent time interval ((t(k + 1) - t(k))/2
+ (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval ((t(end)
- t(end - 1)).

2 Normalizing the weighting for each time by dividing each weighting
by the mean of all weightings.

Note If the timeseries object is uniformly sampled, then the
normalized weighting for each time is 1.0. Therefore, time weighting
has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also iqr | max | mean | min | std | sum | timeseries | var

1-5746

timeseries.min

Purpose Minimum value of timeseries data

Syntax ts_min = min(ts)
ts_min = method(ts,Name,Value)

Description ts_min = min(ts) returns the minimum value in the timeseries
data.

ts_min = method(ts,Name,Value)uses additional options specified by
one or more Name,Value pair arguments.

Input
Arguments

ts

The timeseries object for which you want the minimum data
value.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MissingData’

A string specifying one of two possible values, remove or
interpolate, indicating how to treat missing data during the
calculation.

Default: remove

’Quality’

A vector of integers, indicating which quality codes represent
missing samples (for vector data) or missing observations (for
data arrays with two or more dimensions).

1-5747

timeseries.min

Output
Arguments

ts_min

The minimum value of ts.Data, as follows:

• When ts.Data is a vector, ts_min is the minimum value of
ts.Data values.

• When ts.Data is a matrix, and IsTimeFirst is true, and the
first dimension of ts is aligned with time, then ts_min is a
row vector containing the minimum value of each column of
ts.Data.

When ts.Data is an N-dimensional array, min always operates
along the first nonsingleton dimension of ts.Data.

Examples The following example finds the minimum values in multivariate
time-series data. MATLAB finds the minimum independently for each
data column in the timeseries object.

% Load a 24-by-3 data array:

load count.dat

% Create a timeseries object with 24 time values:

count_ts = timeseries(count,[1:24],'Name','CountPerSecond');

% Find the minimum in each data column for this timeseries object:

min(count_ts)

MATLAB returns:

7 9 7

See Also iqr | max | mean | median | std | sum | timeseries | var

1-5748

timeseries.plot

Purpose Plot time series

Syntax plot(ts)
plot(tsc.tsname)
plot(ts,linespec)
plot(tsc.tsname,linespec)
plot(ts,Name, Value)
plot(tsc.tsname,Name, Value)

Description plot(ts) plots the timeseries data ts against time and interpolates
values between samples by using either zero-order-hold ('zoh') or
linear interpolation (the default). The plot displays in the current axes.
MATLAB creates a title and axes, if none exists.

plot(tsc.tsname) plots the timeseries object, tsname that is part
of the tscollection, tsc.

plot(ts,linespec) plots the timeseries data using a line graph and
applies the specified linespec to lines, markers, or both.

plot(tsc.tsname,linespec) plots the timeseries object that is part
of a timeseries collection as a line graph and applies the specified
linespec to lines, markers, or both.

plot(ts,Name, Value) plots a line graph of the time series data using
the values specified for lineseries properties.

plot(tsc.tsname,Name, Value) plots a line graph of the timeseries
object that is part of the specified timeseries collection using the
values specified for lineseries properties.

Tips • The timeseries/plot method generates titles and axis labels
automatically. These labels are:

- Plot Title — 'Time Series Plot: <name>'

where <name> is the string assigned to ts.Name, or by default,
'unnamed'

- X-Axis Label — 'Time (<units>)'

1-5749

timeseries.plot

where <units> is the value of the ts.TimeInfo.Units field, which
defaults to 'seconds'

- Y-Axis Label — '<name>'

where <name> is the string assigned to ts.Name, or by default,
'unnamed'

• You can place new time series data on a time series plot (by setting
hold on, for example, and issuing another timeseries/plot
command). When you add data to a plot, the title and axis labels
become blank strings to avoid labeling confusion. You can add your
own labels after plotting using the title, xlabel, and ylabel
commands.

• Time series events, when defined, are marked in the plot with a
circular marker with red fill. You can also specify markers for all
data points using a linespec or name/value syntax in addition to any
event markers your data defines. The event markers plot on top of
the markers you define.

• The value assigned to ts.DataInfo.Interpolation.Name controls
the type of interpolation the plot method uses when plotting
and resampling time series data. Invoke the timeseries method
setinterpmethod to change default linear interpolation to zero-order
hold interpolation (staircase). This method creates a new timeseries
object, with which you can overwrite the original one if you want. For
example, to cause time series ts to use zero-order hold interpolation,
type the following:

ts = ts.setinterpmethod('zoh');

Input
Arguments

ts

A timeseries object.

tsc

A tscollection.

tsname

1-5750

timeseries.plot

The name of a timeseries object within the tscollection .

Examples Plot Time Series Object with Specified Start Date

Create a time series object, set the start date, and then plot the time
vector relative to the start date.

x = [2 5 8 2 11 3 6];
ts1 = timeseries(x,1:7);
ts1.Name = 'Daily Count';
ts1.TimeInfo.Units = 'days';
ts1.TimeInfo.StartDate='01-Jan-2011'; % Set start date.
ts1.TimeInfo.Format = 'mmm dd, yy'; % Set format for display on x-ax
ts1.Time=ts1.Time-ts1.Time(1); % Express time relative to the s
plot(ts1)

1-5751

timeseries.plot

Plot Two Time Series Objects on the Same Axes

Create two time series objects from traffic count data, and then plot
them in sequence on the same axes. Add an event to one series, which
is automatically displayed with a red marker.

load count.dat;
count1=timeseries(count(:,1),1:24);
count1.Name = 'Oak St. Traffic Count';
count1.TimeInfo.Units = 'hours';

1-5752

timeseries.plot

plot(count1,':b'), grid on

Obtain time of maximum value and add it as an event:

[~,index] = max(count1.Data);
max_event = tsdata.event('peak',count1.Time(index));
max_event.Units = 'hours';

Add the event to the time series:

1-5753

timeseries.plot

count1 = addevent(count1,max_event);

Replace plot with new one showing the event:

plot(count1,'.-b'), grid on

Make a new time series object from column 2 of the same data source:

count2=timeseries(count(:,2),1:24);
count2.Name = 'Maple St. Traffic Count';

1-5754

timeseries.plot

count2.TimeInfo.Units = 'Hours';

Turn hold on to add the new data to the plot:

hold on

The plot method does not add labels to a held plot. Use property/value
pairs to customize markers:

plot(count2,'s-m','MarkerSize',6),

1-5755

timeseries.plot

Labels are erased, so generate them manually:

title('Time Series: Oak Street and Maple Street')
xlabel('Hour of day')
ylabel('Vehicle count')

Add a legend in the upper left:

legend('Oak St.','Maple St.','Location','northwest')

1-5756

timeseries.plot

See Also timeseries | setinterpmethod | tscollection | tsdata.event
| plot

1-5757

timeseries.resample

Purpose Select or interpolate timeseries data using new time vector

Syntax ts1 = resample(ts, time)
ts1 = resample(ts, time, interp_method)
ts1 = resample(ts, time, interp_method, code)

Description ts1 = resample(ts, time) resamples the timeseries object,
ts, using the new time vector. The resample method uses the
default interpolation method, which you can view by using the
getinterpmethod(ts) syntax.

ts1 = resample(ts, time, interp_method) resamples the
timeseries object ts using the specified interpolation method,
interp_method.

ts1 = resample(ts, time, interp_method, code) resamples the
timeseries object ts using the interpolation method given by the
string interp_method. MATLAB applies the code to all samples.

Input
Arguments

ts

The timeseries object that you want to resample.

time

The time vector you want to use to resample the timeseries
object.

When ts uses date strings and time is numeric, then time is
treated as specified relative to the ts.TimeInfo.StartDate
property and in the same units that ts uses.

interp_method

A string specifying the interpolation method. Valid interpolation
methods are linear and zero-order hold, zoh .

Default: linear

code

1-5758

timeseries.resample

An integer value that specifies the user-defined Quality code for
resampling. MATLAB applies this Quality code to all samples.

Output
Arguments

ts1

The timeseries object that results when you interpolate the
original timeseries object with a new time vector.

Examples This example shows how to resample a timeseries object.

Create a timeseries object.

ts1 = timeseries([1.1; 2.9; 3.7; 4.0; 3.0],1:5,'Name','speed');

View the time, data, and interpolation method.

ts1.time
ts1.data
ts1.getinterpmethod

Resample ts1 using its default interpolation method.

res_ts=resample(ts1,[1 1.5 3.5 4.5 4.9]);

View the time, data, and interpolation method for the resampled object.

res_ts.time
res_ts.data
res_ts.getinterpmethod

See Also timeseries | getinterpmethod | setinterpmethod | synchronize

1-5759

timeseries.set

Purpose Set properties of timeseries object

Syntax set(ts, PropertyName, Value)
set(ts, PropertyName)
set(ts)

Description set(ts, PropertyName, Value) sets the named property, Name, of the
timeseries object, ts, to the value, Value. The following syntax is
equivalent:

ts.Property = Value

set(ts, PropertyName) displays the value of the named property for
the timeseries object, ts.

set(ts) displays all properties and values of the timeseries object ts.

Input
Arguments

ts

A timeseries object.

PropertyName

A string specifying the name of a timeseries property. For a list
of timeseries properties, see timeseries.

Value

The value to which you want to set the named property.

Examples Create a timeseries, set its name to mytimeseries, and then view
the timeseries properties:

ts1 = timeseries(rand(5,1),[1 2 3 4 5]);
set(ts1, 'Name', 'mytimeseries')
set(ts1)

See Also timeseries | get

1-5760

timeseries.setabstime

Purpose Set times of timeseries object as date strings

Syntax ts1=setabstime(ts, times)
ts1=setabstime(ts, times, format)

Description ts1=setabstime(ts, times) sets the times in ts to the date strings
specified in times.

ts1=setabstime(ts, times, format) explicitly specifies the
date-string format, format, used in times.

Input
Arguments

ts

The timeseries object for which you want to set times as date
strings.

times

A cell array of strings or a char array containing valid date or
time values in the same date format.

format

The date-string format used for the time values.

Output
Arguments

ts1

The timeseries object that results from setting times as date
strings on the original timeseries object.

Examples Create a timeseries object, and then set the absolute time vector:

ts = timeseries(rand(3,1))
ts1 = setabstime(ts,{'12-DEC-2005 12:34:56',...

'12-DEC-2005 13:34:56','12-DEC-2005 14:34:56'})

% View each timeseries object in the Variable Edtior to see the
% differences in the time vectors for each.

See Also datestr | getabstime | timeseries

1-5761

timeseries.setinterpmethod

Purpose Set default interpolation method for timeseries object

Syntax ts = setinterpmethod(ts, method)
ts = setinterpmethod(ts, fhandle)
ts = setinterpmethod(ts, interpobj)

Description ts = setinterpmethod(ts, method) sets the default interpolation
method, method, for timeseries object, ts, and outputs it to ts1.

ts = setinterpmethod(ts, fhandle) sets the default interpolation
method for timeseries object ts, where fhandle is a function handle
to the interpolation method.

ts = setinterpmethod(ts, interpobj) sets the default
interpolation method for timeseries object ts, where interpobj is a
tsdata.interpolation object that directly replaces the interpolation
object stored in ts.

Tips • This method is case sensitive.

Input
Arguments

ts

The timeseries object for which you want to set the default
interpolation method.

method

A string specifying the interpolation method. Valid values are
linear and zero-order hold, zoh.

Default: linear

fhandle

A function handle to the interpolation method. The order of input
arguments defining the function handle must be new_time, time,
and data. The single output argument must be the interpolated
data only.

interpobj

1-5762

timeseries.setinterpmethod

A tsdata.interpolation object a tsdata.interpolation object
that directly replaces the interpolation object stored in ts.

Output
Arguments

ts1

The timeseries object that results when you set the interpolation
method for the original timeseries object.

Examples Set the default interpolation method for timeseries object ts to zero
order hold:

ts = timeseries(rand(100,1),1:100);
ts = setinterpmethod(ts,'zoh');
plot(ts);

Set the default interpolation method for timeseries object ts, where
fhandle is a function handle to the interpolation method defined by
function handle myFuncHandle:

ts = timeseries(rand(100,1),1:100);
myFuncHandle = @(new_time, time, data)...

interp1(time, data, new_time,...
'linear','extrap');

ts = setinterpmethod(ts, myFuncHandle);
ts = resample(ts, [-5:0.1:10]);
plot(ts);

Set the default interpolation method for timeseries object ts to a
tsdata.interpolation object:

ts = timeseries(rand(100,1),1:100);
myFuncHandle = @(new_time, time, data)...

interp1(time, data, new_time,...
'linear','extrap');

myInterpObj = tsdata.interpolation(myFuncHandle);
ts = setinterpmethod(ts,myInterpObj);
plot(ts);

1-5763

timeseries.setinterpmethod

See Also timeseries | getinterpmethod

1-5764

timeseries.setuniformtime

Purpose Modify uniform time vector of timeseries object

Syntax ts2 = setuniformtime(ts1,'StartTime',StartTime)
ts2 = setuniformtime(ts1,'Interval',Interval)
ts2 = setuniformtime(ts1,'EndTime',EndTime)
ts2 =
setuniformtime(ts1,'StartTime',StartTime,'Interval',Interval)
ts2 =
setuniformtime(ts1,'StartTime',StartTime,'EndTime',EndTime)
ts2 =
setuniformtime(ts1,'Interval',Interval,'EndTime',EndTime)

Description ts2 = setuniformtime(ts1,'StartTime',StartTime) returns
the time series with a modified uniform time vector, determined
from the StartTime and Interval 1. EndTime = StartTime +
(length(ts1) - 1). The unit of time is unchanged.

ts2 = setuniformtime(ts1,'Interval',Interval) sets the
StartTime to 0, and uses EndTime = (length(ts1) - 1)*Interval.

ts2 = setuniformtime(ts1,'EndTime',EndTime) sets the StartTime
to 0, and uses Interval = EndTime/(length(ts1) -1).

ts2 =
setuniformtime(ts1,'StartTime',StartTime,'Interval',Interval)
uses EndTime = StartTime + (length(ts1) - 1) * Interval.

ts2 =
setuniformtime(ts1,'StartTime',StartTime,'EndTime',EndTime)uses
Interval = (EndTime - StartTime)/(length(ts1) - 1).

ts2 =
setuniformtime(ts1,'Interval',Interval,'EndTime',EndTime)
uses StartTime = EndTime - (length(ts1) - 1) * Interval.

Input
Arguments

ts1

timeseries object to which you want to assign a uniform time
vector.

1-5765

timeseries.setuniformtime

StartTime

Start time of uniform time vector, specified as a numeric value.

Interval

Time interval of uniform time vector, specified as a numeric scalar
value.

EndTime

End time of uniform time vector specified as a numeric scalar
value.

Output
Arguments

ts2

Time series with uniform time vector, returned as a timeseries
object.

Examples Specify New Start Time

Modify the uniform time vector of time series data by specifying a new
start time.

1 Load the sample data.

load count.dat;

2 Create a timeseries object.

count_ts = timeseries(count,1:length(count),'Name','CountPerSecond');

3 Modify uniform time vector of count_ts.

count_ts = setuniformtime(count_ts,'StartTime',10);

The start time of the time vector is 10 seconds. setuniformtime
uses a default time interval of 1 and computes the end time using:
EndTime = StartTime + (length(count_ts) - 1)* Interval.

1-5766

timeseries.setuniformtime

Specify New Start and End Times

Modify the uniform time vector of time series data by specifying a new
start time and end time.

1 Load sample data.

load count.dat;

2 Create timeseries object.

count_ts = timeseries(count,1:length(count),'Name','CountPerSecond');

3 Assign a uniform time vector to count_ts.

count_ts2 = setuniformtime(count_ts,'StartTime',10,'EndTime',20);

The start time of the time vector is now 10 seconds, and the end
time is now 20 seconds. MATLAB computes the time interval using:
Interval = (EndTime - StartTime)/(length(count_ts) - 1)

See Also timeseries

1-5767

timeseries.synchronize

Purpose Synchronize and resample two timeseries objects using common time
vector

Syntax [ts1 ts2] = synchronize(ts1,ts2, synchronizemethod)
[ts1 ts2] = synchronize(ts1,ts2, Name,Value)

Description [ts1 ts2] = synchronize(ts1,ts2, synchronizemethod) creates
two new timeseries objects by synchronizing ts1 and ts2 using a
common time vector and the specified method.

[ts1 ts2] = synchronize(ts1,ts2, Name,Value) creates the two
new timeseries objects with additional options specified by one or
more Name,Value pair arguments.

Input
Arguments

ts1

One of the timeseries objects that you want to synchronize and
resample.

ts2

The other timeseries object that you want to synchronize and
resample.

synchronizemethod

A string that defines the method for synchronizing the timeseries
object. It can be any one of the following:

• Union— Resample timeseries objects using a time vector that
is a union of the time vectors of ts1 and ts2 on the time range
where the two time vectors overlap.

• Intersection — Resample timeseries objects on a time
vector that is the intersection of the time vectors of ts1 and ts2.

• Uniform— Requires an additional argument as follows:

[ts1 ts2] = synchronize(ts1,ts2,'Uniform','Interval',value)

1-5768

timeseries.synchronize

This method resamples time series on a uniform time
vector, where value specifies the time interval between two
consecutive samples. The uniform time vector is the overlap of
the time vectors of ts1 and ts2. The interval units are the
smaller units of ts1 and ts2.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InterpMethod’

Forces the specified interpolation method (over the default
method) for this synchronize operation. Can be either a string,
linear or zoh, or a tsdata.interpolation object that contains a
user-defined interpolation method.

Default: linear

’QualityCode’

Integer (between -128 and 127) used as the quality code for both
time series after the synchronization.

’KeepOriginalTimes’

Logical value (true or false) indicating whether the new time
series should keep the original time values.

’tolerance’

Real number used as the tolerance for differentiating two time
values when comparing the ts1 and ts2 time vectors. The default
tolerance is 1e-10. For example, when the sixth time value in
ts1 is 5+(1e-12) and the sixth time value in ts2 is 5-(1e-13),
both values are treated as 5 by default. To differentiate those

1-5769

timeseries.synchronize

two times, you can set 'tolerance' to a smaller value such as
1e-15, for example.

Output
Arguments

ts1

One of the timeseries objects that you synchronized and
resampled.

ts2

The other timeseries object that you synchronized and
resampled.

Examples This example illustrates how the KeepOriginalTime property affects
synchronization.

% Create two timeseries, such that ts1.timeinfo.StartDate
% is one day after ts2.timeinfo.StartDate:

ts1 = timeseries([1 2],[datestr(now); datestr(now+1)]);
ts2 = timeseries([1 2],[datestr(now-1); datestr(now)]);

% If you use this code, then ts1.timeinfo.StartDate
% is changed to match ts2.TimeInfo.StartDate
% and ts1.Time changes to 1:

[ts1 ts2] = synchronize(ts1,ts2,'union');

% But if you use this code, then ts1.timeinfo.StartDate
% is unchanged and ts1.Time is still 0:

[ts1 ts2] = synchronize(ts1,ts2,'union','KeepOriginalTimes',true);

See Also set | timeseries

1-5770

timeseries.transpose

Purpose Transpose timeseries object

Syntax ts1 = transpose(ts)

Description ts1 = transpose(ts) returns a new timeseries object, ts1, with
IsTimeFirst value set to the opposite of what it is for ts. For example,
if ts has the first data dimension aligned with the time vector, ts1 has
the last data dimension aligned with the time vector.

Tips • The transpose function that is overloaded for timeseries objects
does not transpose the data. Instead, this function changes whether
the first or the last dimension of the data aligns with the time vector.
To transpose the data, transpose the Data property of the time
series. For example, you can use the syntax transpose(ts.Data) or
(ts.Data).'. The value of the Data property must be a 2-D array.

• Consider a time series with 10 samples with the property
IsTimeFirst = True. When you transpose this time series, the
data size changes from 10-by-1 to 1-by-1-by-10. Note that the first
dimension of the Data property is shown explicitly.

The following table summarizes how the size for timeseries data (up
to three dimensions) display before and after transposing.

Data Size Before and After Transposing

Size of Original Data Size of Transposed Data

N-by-1 1-by-1-by-N

N-by-M M-by-1-by-N

N-by-M-by-L M-by-L-by-N

Input
Arguments

ts

The timeseries object that you want to transpose.

1-5771

timeseries.transpose

Output
Arguments

ts1

The timeseries object that is the result of transposing the
original timeseries object.

Examples Suppose that a timeseries object, ts, has ts.Data size 10-by-3-by-2
and its time vector has a length of 10. The IsTimeFirst property of ts
is true, which means that the first dimension of the data aligns with
the time vector. transpose(ts) modifies the timeseries object, such
that the last dimension of the data now aligns with the time vector. This
permutes the data, such that the size of ts.Data becomes 3-by-2-by-10.

See Also timeseries | transpose

1-5772

timeseries.std

Purpose Standard deviation of timeseries data

Syntax ts_std = std(ts)
ts_std = std(ts,Name,Value)

Description ts_std = std(ts) returns the standard deviation of the timeseries
data.

ts_std = std(ts,Name,Value) specifies additional options specified
with one or more Name,Value pair arguments.

Input
Arguments

ts

The timeseries object for which you want the standard deviation
of the data.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MissingData’

A string specifying one of two possible values, remove or
interpolate, indicating how to treat missing data during the
calculation.

Default: remove

’Quality’

A vector of integers, indicating which quality codes represent
missing samples (for vector data) or missing observations (for
data arrays with two or more dimensions).

’Weighting’

1-5773

timeseries.std

A string specifying one of two possible values, none or time.
When you specify time, larger time values correspond to larger
weights.

Output
Arguments

ts_std

The standard deviation of ts.Data values as follows:

• When ts.Data is a vector, ts_std is the standard deviation
of ts.Data values.

• When ts.Data is a matrix, and IsTimeFirst is true, and the
first dimension of ts is aligned with time, then ts_std is the
standard deviation of each column of ts.Data.

When ts.Data is an N-dimensional array, std always operates
along the first nonsingleton dimension of ts.Data.

Examples The following example finds the standard deviation for a timeseries
object. MATLAB calculates the standard deviation for each data column
in the timeseries object.

% Load a 24-by-3 data array:

load count.dat

% Create a timeseries object with 24 time values:

count_ts = timeseries(count,1:24,'Name','CountPerSecond');

% Calculate the standard deviation of each data column for this
% timeseries object:

std(count_ts)

MATLAB returns:

25.3703 41.4057 68.0281

1-5774

timeseries.std

Algorithms MATLAB determines weighting by:

1 Attaching a weighting to each time value, depending on its order,
as follows:

• First time point — The duration of the first time interval (t(2) -
t(1)).

• Time point that is neither the first nor last time point — The
duration between the midpoint of the previous time interval to the
midpoint of the subsequent time interval ((t(k + 1) - t(k))/2
+ (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval ((t(end)
- t(end - 1)).

2 Normalizing the weighting for each time by dividing each weighting
by the mean of all weightings.

Note If the timeseries object is uniformly sampled, then the
normalized weighting for each time is 1.0. Therefore, time weighting
has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also iqr | max | mean | median | min | sum | timeseries | var

1-5775

timeseries.sum

Purpose Sum of timeseries data

Syntax ts_sm = sum(ts)
ts_sm = sum(ts,Name,Value)

Description ts_sm = sum(ts) returns the sum of the timeseries data.

ts_sm = sum(ts,Name,Value) specifies additional options with one or
more Name,Value pair arguments.

Input
Arguments

ts

The timeseries object for which you want the sum of the data.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MissingData’

A string specifying one of two possible values, remove or
interpolate, indicating how to treat missing data during the
calculation.

Default: remove

’Quality’

A vector of integers, indicating which quality codes represent
missing samples (for vector data) or missing observations (for
data arrays with two or more dimensions).

’Weighting’

1-5776

timeseries.sum

A string specifying one of two possible values, none or time.
When you specify time, larger time values correspond to larger
weights.

Output
Arguments

ts_sm

The sum of the timeseries data, as follows:

• When ts.Data is a vector, ts_sm is the sum of ts.Data values.

• When ts.Data is a matrix, and IsTimeFirst is true, and the
first dimension of ts is aligned with time, then ts_sm is a row
vector containing the sum of each column of ts.Data.

When ts.Data is a N-dimensional array, sum always operates
along the first nonsingleton dimension of ts.Data.

Examples Calculate the sum of each data column for a timeseries object:

% Load a 24-by-3 data array:

load count.dat

% Create a timeseries object with 24 time values:

count_ts = timeseries(count,1:24,'Name','CountPerSecond');

% Calculate the sum of each data column for this timeseries object:

sum(count_ts)

MATLAB returns:

768 1117 1574

1-5777

timeseries.sum

Algorithms MATLAB determines weighting by:

1 Attaching a weighting to each time value, depending on its order,
as follows:

• First time point — The duration of the first time interval (t(2) -
t(1)).

• Time point that is neither the first nor last time point — The
duration between the midpoint of the previous time interval to the
midpoint of the subsequent time interval ((t(k + 1) - t(k))/2
+ (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval ((t(end)
- t(end - 1)).

2 Normalizing the weighting for each time by dividing each weighting
by the mean of all weightings.

Note If the timeseries object is uniformly sampled, then the
normalized weighting for each time is 1.0. Therefore, time weighting
has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also iqr | max | mean | median | min | std | timeseries | var

1-5778

timeseries.var

Purpose Variance of timeseries data

Syntax ts_var = var(ts)
ts_var = var(ts,Name,Value)

Description ts_var = var(ts) returns the variance of ts.data.

ts_var = var(ts,Name,Value)uses additional options specified by one
or more Name,Value pair arguments.

Input
Arguments

ts

The timeseries object for which you want the variance of the
data.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MissingData’

A string specifying one of two possible values, remove or
interpolate, indicating how to treat missing data during the
calculation.

Default: remove

’Quality’

A vector of integers, indicating which quality codes represent
missing samples (for vector data) or missing observations (for
data arrays with two or more dimensions).

’Weighting’

1-5779

timeseries.var

A string specifying one of two possible values, none or time.
When you specify time, larger time values correspond to larger
weights.

Output
Arguments

ts_var

The variance of ts.data, as follows:

• When ts.Data is a vector, then ts_var is the variance of
ts.Data values.

• When ts.Data is a matrix, and IsTimeFirst is true, and the
first dimension of ts is aligned with time, then ts_var is a row
vector containing the variance of each column of ts.Data.

When ts.Data is an N-dimensional array, var always operates
along the first nonsingleton dimension of ts.Data.

Examples The following example calculates the variance values of a multivariate
timeseries object. MATLAB calculates the variance independently for
each data column in the timeseries object.

Load a 24-by-3 data array. Then create a timeseries object with 24
time values.

load count.dat
count_ts = timeseries(count,[1:24],'Name','CountPerSecond');

Calculate the variance of each data column.

var(count_ts)

MATLAB returns:

1.0e+03 *
0.6437 1.7144 4.6278

1-5780

timeseries.var

Algorithms MATLAB determines weighting by:

1 Attaching a weighting to each time value, depending on its order,
as follows:

• First time point — The duration of the first time interval (t(2) -
t(1)).

• Time point that is neither the first nor last time point — The
duration between the midpoint of the previous time interval to the
midpoint of the subsequent time interval ((t(k + 1) - t(k))/2
+ (t(k) - t(k - 1))/2).

• Last time point — The duration of the last time interval ((t(end)
- t(end - 1)).

2 Normalizing the weighting for each time by dividing each weighting
by the mean of all weightings.

Note If the timeseries object is uniformly sampled, then the
normalized weighting for each time is 1.0. Therefore, time weighting
has no effect.

3 Multiplying the data for each time by its normalized weighting.

See Also iqr | max | mean | median | min | std | timeseries | sum

1-5781

triangulation

Purpose Triangulation in 2-D or 3-D

Description Use triangulation to create an in-memory representation of any 2-D
or 3-D triangulation data that is in matrix format, such as the matrix
output from the delaunay function or other software tools. When your
data is represented using triangulation, you can perform topological
and geometric queries, which you can use to develop geometric
algorithms. For example, you can find the triangles or tetrahedra
attached to a vertex, those that share an edge, their circumcenters,
and other features.

Construction TR = triangulation(T,P) creates a 2-D or 3-D triangulation
representation using the triangulation connectivity list, T, and the
points in matrix P.

TR = triangulation(T,x,y) creates a 2-D triangulation
representation with the point coordinates specified as column vectors,
x and y.

TR = triangulation(T,x,y,z) creates a 3-D triangulation
representation with the point coordinates specified as column vectors,
x, y, and z.

Input Arguments

T

Triangulation connectivity list, specified as an m-by-n matrix,
where m is the number of triangles or tetrahedra, and n is the
number of vertices per triangle or tetrahedron. Each element in T
is a “Vertex ID” on page 1-5784. Each row of T contains the vertex
IDs that define a triangle or tetrahedron.

P

Points, specified as a matrix whose columns are the x, y, (and
possibly z) coordinates of the triangulation points. The row
numbers of P are the vertex IDs in the triangulation.

x

1-5782

triangulation

x-coordinates vector, specified as a column vector containing the
x-coordinates of the triangulation points.

y

y-coordinates vector, specified as a column vector containing the
y-coordinates of the triangulation points.

z

z-coordinates vector, specified as a column vector containing the
z-coordinates of the triangulation points.

Properties Points

Points in the triangulation, represented as a matrix containing
the following information:

• Each row in TR.Points contains the coordinates of a vertex.

• Each row number of TR.Points is a vertex ID.

ConnectivityList

Triangulation connectivity list, represented as a matrix. This
matrix contains the following information:

• Each element in TR.ConnectivityList is a vertex ID.

• Each row represents a triangle or tetrahedron in the
triangulation.

• Each row number of TR.ConnectivityList is a “Triangle or
Tetrahedron ID” on page 1-5784.

Methods
barycentricToCartesian Converts point coordinates from

barycentric to Cartesian

cartesianToBarycentric Converts point coordinates from
Cartesian to barycentric

1-5783

triangulation

circumcenter Circumcenter of triangle or
tetrahedron

edgeAttachments Triangles or tetrahedra attached
to specified edge

edges Triangulation edges

faceNormal Triangulation face normal

featureEdges Triangulation sharp edges

freeBoundary Triangulation facets referenced
by only one triangle or
tetrahedron

incenter Incenter of triangle or
tetrahedron

isConnected Test if two vertices are connected
by edge

neighbors Neighbors to specified triangle or
tetrahedron

size Size of triangulation connectivity
list

vertexAttachments Triangles or tetrahedra attached
to specified vertex

vertexNormal Triangulation vertex normal

Definitions Vertex ID

A row number of the matrix, TR.Points. Use this ID to refer a specific
vertex in the triangulation.

Triangle or Tetrahedron ID

A row number of the matrix, TR.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

1-5784

triangulation

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples 2-D Triangulation

Define the points in the triangulation.

P = [2.5 8.0
6.5 8.0
2.5 5.0
6.5 5.0
1.0 6.5
8.0 6.5];

Define the triangles. This is the triangulation connectivity list.

T = [5 3 1;
3 2 1;
3 4 2;
4 6 2];

Create the triangulation representation.

TR = triangulation(T,P)

TR =

triangulation with properties:

Points: [6x2 double]
ConnectivityList: [4x3 double]

Examine the coordinates of the vertices of the first triangle.

TR.Points(TR.ConnectivityList(1,:),:)

ans =

1.0000 6.5000

1-5785

triangulation

2.5000 5.0000
2.5000 8.0000

See Also delaunayTriangulation

1-5786

triangulation.barycentricToCartesian

Purpose Converts point coordinates from barycentric to Cartesian

Syntax PC = barycentricToCartesian(TR,ti,B)

Description PC = barycentricToCartesian(TR,ti,B) returns the Cartesian
coordinates of the points in B. Each row, B(j,:), contains the
barycentric coordinates of a point with respect to the triangle or
tetrahedron, ti(j). The point, PC(j,:), is the jth point represented
in Cartesian coordinates.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

ti

Triangle or tetrahedron IDs, specified as a column vector.

B

Barycentric coordinates, specified as a matrix. Each row, B(j,:),
contains the barycentric coordinates of a point with respect to the
triangle or tetrahedron, ti(j).

Output
Arguments

PC

Cartesian coordinates, returned as a matrix. The point, PC(j,:),
is the jth point represented in Cartesian coordinates.

Definitions Triangle or Tetrahedron ID

A row number of the matrix, TR.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Examples Barycentric Coordinates Converted to Cartesian Coordinates

Create a triangulation from a set of points, P, and triangulation
connectivity list, T.

1-5787

triangulation.barycentricToCartesian

P = [2.5 8.0
6.5 8.0
2.5 5.0
6.5 5.0
1.0 6.5
8.0 6.5];

T = [5 3 1;
3 2 1;
3 4 2;
4 6 2];

TR = triangulation(T,P);

Specify the first triangle.

ti = 1;

Specify the barycentric coordinates of the second point in the triangle.

B = [0 1 0];

Convert the point to Cartesian coordinates.

PC = barycentricToCartesian(TR,ti,B)

PC =

2.5000 5.0000

Mapped Incenters of Deformed Triangulation

Create a Delaunay triangulation from a set of points.

x = [0 4 8 12 0 4 8 12]';

1-5788

triangulation.barycentricToCartesian

y = [0 0 0 0 8 8 8 8]';
DT = delaunayTriangulation(x,y);

Calculate the Cartesian coordinates of the incenters.

cc = incenter(DT);

Plot the original triangulation and reference points.

figure
subplot(1,2,1);
triplot(DT);
hold on;
plot(cc(:,1),cc(:,2),'*r');
hold off;
axis equal;

1-5789

triangulation.barycentricToCartesian

Create a new triangulation which is a deformed version of DT .

ti = DT.ConnectivityList;
y = [0 0 0 0 16 16 16 16]';
TR = triangulation(ti,x,y);

Compute the barycentric coordinates for the incenters of DT, and use
them to compute the Cartesian coordinates of the analogous points in TR.

b = cartesianToBarycentric(DT,[1:length(ti)]',cc);

1-5790

triangulation.barycentricToCartesian

xc = barycentricToCartesian(TR,[1:length(ti)]',b);

Plot the deformed triangulation and mapped locations of the reference
points.

subplot(1,2,2);
triplot(TR);
hold on;
plot(xc(:,1),xc(:,2),'*r');
hold off;
axis equal;

1-5791

triangulation.barycentricToCartesian

See Also cartesianToBarycentric | delaunayTriangulation

1-5792

triangulation.cartesianToBarycentric

Purpose Converts point coordinates from Cartesian to barycentric

Syntax B = cartesianToBarycentric(TR,ti,PC)

Description B = cartesianToBarycentric(TR,ti,PC) returns the barycentric
coordinates of the points in PC. Each row, PC(j,:), contains the
Cartesian coordinates of a point you want to convert. B(j,:) are the
barycentric coordinates of the point, PC(j,:), with respect to triangle
or tetrahedron, ti(j).

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

ti

Triangle or tetrahedron IDs, specified as a column vector.

PC

Cartesian coordinates, specified as a matrix. Each row, PC(j,:),
contains the Cartesian coordinates of a point with respect to
triangle or tetrahedron, ti(j).

Output
Arguments

B

Barycentric coordinates, returned as a matrix. B(j,:) are the
barycentric coordinates of PC(j,:) with respect to ti(j).

Definitions Triangle or Tetrahedron ID

A row number of the matrix, TR.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Examples Cartesian Coordinates Coverted to Barycentric Coordinates

Create a triangulation from a set of points, P, and triangulation
connectivity list, T.

1-5793

triangulation.cartesianToBarycentric

P = [2.5 8.0
6.5 8.0
2.5 5.0
6.5 5.0
1.0 6.5
8.0 6.5];

T = [5 3 1;
3 2 1;
3 4 2;
4 6 2];

TR = triangulation(T,P);

Specify the first triangle.

ti = 1;

Get the coordinates of the third vertex in the first triangle.

PC = TR.Points(TR.ConnectivityList(1,3),:)

PC =

2.5000 8.0000

Convert the point to barycentric coordinates.

B = cartesianToBarycentric(TR,ti,PC)

B =

0 0 1

1-5794

triangulation.cartesianToBarycentric

Mapped Incenters of Deformed Triangulation

Create a Delaunay triangulation from a set of points.

x = [0 4 8 12 0 4 8 12]';
y = [0 0 0 0 8 8 8 8]';
DT = delaunayTriangulation(x,y);

Calculate the Cartesian coordinates of the incenters.

cc = incenter(DT);

Plot the original triangulation and reference points.

figure
subplot(1,2,1);
triplot(DT);
hold on;
plot(cc(:,1),cc(:,2),'*r');
hold off;
axis equal;

1-5795

triangulation.cartesianToBarycentric

Create a new triangulation which is a deformed version of DT .

ti = DT.ConnectivityList;
y = [0 0 0 0 16 16 16 16]';
TR = triangulation(ti,x,y);

Compute the barycentric coordinates for the incenters of DT, and use
them to compute the Cartesian coordinates of the analogous points in TR.

b = cartesianToBarycentric(DT,[1:length(ti)]',cc);

1-5796

triangulation.cartesianToBarycentric

xc = barycentricToCartesian(TR,[1:length(ti)]',b);

Plot the deformed triangulation and mapped locations of the reference
points.

subplot(1,2,2);
triplot(TR);
hold on;
plot(xc(:,1),xc(:,2),'*r');
hold off;
axis equal;

1-5797

triangulation.cartesianToBarycentric

See Also barycentricToCartesian | delaunayTriangulation

1-5798

triangulation.circumcenter

Purpose Circumcenter of triangle or tetrahedron

Syntax CC = circumcenter(TR,ti)
[CC,r] = circumcenter(TR,ti)
CC = circumcenter(TR)
[CC,r] = circumcenter(TR)

Description CC = circumcenter(TR,ti) returns the coordinates of the
circumcenter of each triangle or tetrahedron specified in ti.

[CC,r] = circumcenter(TR,ti) also returns the corresponding radii
of the circumscribed circles or spheres.

CC = circumcenter(TR) returns the circumcenters of all triangles or
tetrahedra in the triangulation.

[CC,r] = circumcenter(TR) also returns the corresponding radii of
the circumscribed circles or spheres for the entire triangulation.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

ti

Triangle or tetrahedron IDs, specified as a column vector.

Output
Arguments

CC

Circumcenters, returned as a matrix. Each row, CC(j,:),
contains the coordinates of the circumcenter of ti(j).

r

Radii of the circumscribed circles or spheres, returned as a
vector. The radius at r(j) corresponds to the circle or sphere
circumscribing ti(j).

1-5799

triangulation.circumcenter

Definitions Triangle or Tetrahedron ID

A row number of the matrix, TR.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Examples Circumcenters in 2-D Triangulation

Load 2-D triangulation data and create a triangulation representation.

load trimesh2d
TR = triangulation(tri,x,y);

Compute the circumcenters.

CC = circumcenter(TR);
triplot(TR)
axis([-50 350 -50 350]);
axis equal;
hold on;
plot(CC(:,1),CC(:,2),'*r');
hold off;

1-5800

triangulation.circumcenter

The circumcenters represent points on the medial axis of the polygon.

Circumcenters in 3-D Delaunay Triangulation

Create the Delaunay triangulation using a random set of points, P.

P = gallery('uniformdata',10,3,0);
DT = delaunayTriangulation(P);

Calculate the circumcenters of the first five tetrahedra in DT.

1-5801

triangulation.circumcenter

CC = circumcenter(DT,[1:5]')

CC =

0.9626 0.3892 0.0928
6.3458 0.2377 3.1814
0.4820 0.9064 0.5176

-1.2993 1.8384 -1.2185
-0.1595 1.0852 -0.2536

See Also incenter | delaunayTriangulation

1-5802

triangulation.edgeAttachments

Purpose Triangles or tetrahedra attached to specified edge

Syntax ti = edgeAttachments(TR,vstart,vend)
ti = edgeAttachments(TR,E)

Description ti = edgeAttachments(TR,vstart,vend) returns the triangles or
tetrahedra attached to the specified edges. To specify the edges, use the
vectors, vstart and vend. These vectors contain the “Vertex ID” on
page 1-5804 at the start and end of each edge.

ti = edgeAttachments(TR,E) specifies the starting and ending
vertices of each edge in a 2-column matrix, E.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

vstart

IDs of starting vertices, specified as a column vector of vertex IDs.
Each ID refers to a vertex at the start of an edge.

vend

IDs of ending vertices, specified as a column vector of vertex IDs.
Each ID refers to a vertex at the end of an edge.

E

IDs of the edge vertices, specified as a 2-column matrix of vertex
IDs. Each row of E corresponds to an edge and contains two IDs:

• E(j,1) is the ID of the vertex at the start of an edge.

• E(j,2) is the ID of the vertex at end of the edge.

Output
Arguments

ti

IDs of the triangles or tetrahedra attached to the edges, returned
as an m-by-1 cell array. Each cell in ti contains the IDs of the

1-5803

triangulation.edgeAttachments

attached triangles or tetrahedra. The attachments to the edge
located between the vertices, vstart(j) and vend(j), or E(j,:),
are returned in ti{j}. The attachments are returned in a cell
array because the number of triangles or tetrahedra associated
with each edge can vary.

Definitions Vertex ID

A row number of the matrix, TR.Points. Use this ID to refer a specific
vertex in the triangulation.

Triangle or Tetrahedron ID

A row number of the matrix, TR.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Examples Edge Attachments in 3-D Triangulation

Load 2-D triangulation data and create a triangulation representation.

load tetmesh
TR = triangulation(tet,X);

Define the starting and ending vertices of the edges.

vstart = [15; 21];
vend = [936; 716];

Find the edge attachments.

ti = edgeAttachments(TR,vstart,vend);

Examine the attachments to the first edge.

ti{1}

ans =

927 2060 3438 3423 2583 4690

1-5804

triangulation.edgeAttachments

Edge Attachments in 2-D Delaunay Triangulation

Create a Delaunay triangulation.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
DT = delaunayTriangulation(x,y);

Find the triangles attached to edge (1,5).

ti = edgeAttachments(DT,1,5);
ti{:}

ans =

4 1

See Also edges | vertexAttachments | delaunayTriangulation

1-5805

triangulation.edges

Purpose Triangulation edges

Syntax E = edges(TR)

Description E = edges(TR) returns the triangulation edges as a matrix of vertex
IDs. The vertices referenced in E indicate the beginning and end of
each edge.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

Output
Arguments

E

Edge vertex IDs, returned as a 2-column matrix. Each row of E
corresponds to an edge and contains two IDs:

• E(j,1) is the ID of the vertex at the start of the edge.

• E(j,2) is the ID of the vertex at end of the edge.

Definitions Vertex ID

A row number of the matrix, TR.Points. Use this ID to refer a specific
vertex in the triangulation.

Examples Edges in a 2-D Triangulation

Load 2-D triangulation data and create a triangulation representation.

load trimesh2d
TR = triangulation(tri,x,y);

Find the edges in the triangulation.

E = edges(TR);

List the first five edges.

1-5806

triangulation.edges

E(1:5,:)

ans =

1 2
1 118
1 119
1 120
2 3

Edges in a 2-D Delaunay Triangulation

Create 2-D Delaunay triangulation from a set of 10 random points.

X = gallery('uniformdata',[10, 2],0);
DT = delaunayTriangulation(X);

Find the edges in the triangulation.

E = edges(DT)

E =

1 3
1 4
1 5
1 6
1 9
2 4
2 5
2 6
2 7
2 8
2 10
3 4
3 7
3 10
4 6
4 10

1-5807

triangulation.edges

5 6
5 8
5 9
6 9
7 8
7 10

See Also edgeAttachments | delaunayTriangulation

1-5808

triangulation.faceNormal

Purpose Triangulation face normal

Syntax FN = faceNormal(TR,ti)
FN = faceNormal(TR)

Description FN = faceNormal(TR,ti) returns the unit normal vector to each
triangle specified by ti. The faceNormal function supports only 2-D
triangulations.

FN = faceNormal(TR) returns the unit normal vectors to all triangles.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

ti

Triangle IDs, specified as a column vector.

Output
Arguments

FN

Face normals, returned as a matrix. Each row, FN(j,:), is the
unit normal vector to triangle ti(j).

If you do not specify ti, then faceNormal returns the unit normal
information for the entire triangulation. In this case, the normal
associated with TR.ConnectivityList(j,:) is FN(j,:).

Definitions Triangle ID

A row number of the matrix, TR.ConnectivityList. You use this ID
to refer a specific triangle.

Examples Plot Unit Normals to Facets on a Spherical Surface

Create a set of random points on a spherical surface.

theta = gallery('uniformdata',[100,1],0)*2*pi;
phi = gallery('uniformdata',[100,1],1)*pi;

1-5809

triangulation.faceNormal

x = cos(theta).*sin(phi);
y = sin(theta).*sin(phi);
z = cos(phi);

Triangulate the points with delaunayTriangulation.

DT = delaunayTriangulation(x,y,z);

Find the free boundary facets and use them to create a triangulation
representation for plotting.

[T,Xb] = freeBoundary(DT);
TR = triangulation(T,Xb);

Plot the triangulation.

figure
trisurf(T,Xb(:,1),Xb(:,2),Xb(:,3), ...

'FaceColor', 'cyan', 'faceAlpha', 0.8);
axis equal;
hold on;

% Calulate the incenters and face normals.
P = incenter(TR);
fn = faceNormal(TR);

% Display the normal vectors on the surface.
quiver3(P(:,1),P(:,2),P(:,3), ...

fn(:,1),fn(:,2),fn(:,3),0.5, 'color','r');
hold off;

1-5810

triangulation.faceNormal

See Also freeBoundary | delaunayTriangulation

1-5811

triangulation.featureEdges

Purpose Triangulation sharp edges

Syntax FE = featureEdges(TR,filterangle)

Description FE = featureEdges(TR,filterangle) returns the feature edges in
a 2-D triangulation.

Use this method to extract the sharp edges in the surface mesh for
display purposes. A feature edge is an edge that has any of the following
attributes:

• The edge is shared by only one triangle.

• The edge is shared by more than two triangles.

• The edge is shared by a pair of triangles with angular deviation
greater than the filterangle.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

filterangle

Filter angle, specified as a scalar value in the range [0,π].
featureEdges returns adjacent triangles that have a dihedral
angle that deviates from π by an angle greater than filterangle.

Output
Arguments

FE

Feature edge vertex IDs, returned as a two-column matrix. Each
row of FE corresponds to a feature edge and contains two IDs:

• FE(j,1) is the ID of the vertex at the start of the edge.

• FE(j,2) is the ID of the vertex at end of the edge.

1-5812

triangulation.featureEdges

Definitions Vertex ID

A row number of the matrix, TR.Points. Use this ID to refer a specific
vertex in the triangulation.

Examples Feature Edges Shown on a Surface

Use featureEdges to find the feature edges of a surface and display
them on a plot.

Create a surface triangulation.

x = [0 0 0 0 0 3 3 3 3 3 3 6 6 6 6 6 9 9 9 9 9 9]';
y = [0 2 4 6 8 0 1 3 5 7 8 0 2 4 6 8 0 1 3 5 7 8]';
DT = delaunayTriangulation(x,y);
T = DT(:,:);

Elevate the 2-D mesh to create a surface.

z = [0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0]';
subplot(1,2,1);
trisurf(T,x,y,z,'FaceColor','cyan');
axis equal;

1-5813

triangulation.featureEdges

Compute the feature edges using a filter angle of pi/6.

TR = triangulation(T,x,y,z);
fe = featureEdges(TR,pi/6)';
subplot(1,2,2);
trisurf(TR,'FaceColor','cyan','EdgeColor',...
'none','FaceAlpha',0.8);
axis equal;

% Add the feature edges to the plot.

1-5814

triangulation.featureEdges

hold on;
plot3(x(fe), y(fe), z(fe), 'k', 'LineWidth',1.5);
hold off;

See Also edges | delaunayTriangulation

1-5815

triangulation.freeBoundary

Purpose Triangulation facets referenced by only one triangle or tetrahedron

Syntax FBtri = freeBoundary(TR)
[FBtri,FBpoints] = freeBoundary(TR)

Description FBtri = freeBoundary(TR) returns the free boundary facets of
TR.ConnectivityList. A facet in TR is on the free boundary if it is
referenced by only one triangle or tetrahedron.

[FBtri,FBpoints] = freeBoundary(TR) also returns a matrix
containing the vertices of the free boundary facets.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

Output
Arguments

FBtri

Triangulation connectivity list, returned as a matrix that contains
the following information:

• Each row in FBtri represents a facet on the free boundary.

• Each element is a “Vertex ID” on page 1-5817.

The vertex IDs in FBtri reference a specific matrix, depending on
the syntax you choose:

• If you call freeBoundary with one output argument, then the
elements of FBtri are row numbers of TR.Points.

• If you call freeBoundary with two output arguments, then the
elements of FBtri are row numbers of FBpoints.

FBpoints

1-5816

triangulation.freeBoundary

Free boundary points, returned as a matrix containing the
coordinates of the vertices of the free boundary facets. Each row
of FBpoints contains coordinates of a vertex.

Definitions Vertex ID

A row number of the matrix, TR.Points or FBpoints. Use this ID to
refer a specific vertex in the triangulation.

Examples Surface of 3-D Triangulation

Use freeBoundary to extract the facets of a 3-D triangulation that
cover the surface of an object.

Load a 3-D triangulation.

load tetmesh;
TR = triangulation(tet,X);

Compute the boundary triangulation.

[FBtri,FBpoints] = freeBoundary(TR);

Plot the boundary triangulation.

trisurf(FBtri,FBpoints(:,1),FBpoints(:,2),FBpoints(:,3), ...
'FaceColor','cyan','FaceAlpha', 0.8);

1-5817

triangulation.freeBoundary

Free Boundary of 2-D Delaunay Triangulation

Use freeBoundary when you want to highlight the outer edges of a
2-D Delaunay triangulation.

Create a triangulation from a random set of points.

x = gallery('uniformdata',[20,1],0);
y = gallery('uniformdata',[20,1],1);
DT = delaunayTriangulation(x,y);

1-5818

triangulation.freeBoundary

Find the free boundary edges.

fe = freeBoundary(DT)';

Plot the mesh and highlight the free boundary edges in red.

triplot(DT);
hold on;
plot(x(fe),y(fe),'-r','LineWidth',2) ;
hold off;

1-5819

triangulation.freeBoundary

See Also featureEdges | faceNormal | delaunayTriangulation

1-5820

triangulation.incenter

Purpose Incenter of triangle or tetrahedron

Syntax IC = incenter(TR,ti)
[IC,r] = incenter(TR,ti)

Description IC = incenter(TR,ti) returns the coordinates of the incenter of each
triangle or tetrahedron specified by ti.

[IC,r] = incenter(TR,ti) also returns the radii of the inscribed
circles or spheres.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

ti

Triangle or tetrahedron IDs, specified as a column vector.

Output
Arguments

IC

Incenters, returned as a matrix. Each row of IC contains the
coordinates of an incenter. For example, IC(j,:) is the incenter
of ti(j).

r

Radii of the inscribed circles or spheres, returned as a vector.
r(j) is the radius of the inscribed circle or sphere whose center
is IC(j,:).

Definitions Triangle or Tetrahedron ID

A row number of the matrix, TR.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Examples Find Incenters in 3-D Triangulation

Load a 3-D triangulation.

1-5821

triangulation.incenter

load tetmesh

Calculate the incenters of the first five tetrahedra.

TR = triangulation(tet,X);
IC = incenter(TR,[1:5]')

IC =

-6.1083 -31.0234 8.1439
-2.1439 -31.0283 5.8742
-1.9555 -31.9463 7.4112
-4.3019 -30.8460 10.5169
-3.1596 -29.3642 6.1851

Find Incenters in 2-D Delaunay Triangulation

Create the Delaunay triangulation.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
DT = delaunayTriangulation(x,y);

Calculate incenters of the triangles

IC = incenter(DT)

IC =

0.2071 0.5000
0.5000 0.7929
0.7929 0.5000
0.5000 0.2071

1-5822

triangulation.incenter

Plot the triangles and incenters.

triplot(DT);
axis equal;
axis([-0.2 1.2 -0.2 1.2]);
hold on;
plot(IC(:,1),IC(:,2),'*r');
hold off;

1-5823

triangulation.incenter

See Also circumcenter | delaunayTriangulation

1-5824

triangulation.isConnected

Purpose Test if two vertices are connected by edge

Syntax tf = isConnected(TR,vstart,vend)
tf = isConnected(TR,E)

Description tf = isConnected(TR,vstart,vend) returns a logical array of true
or false values that indicate whether the specified pairs of vertices
are connected by an edge. Element tf(j) is true when the vertices,
vstart(j) and vend(j), are connected by an edge.

tf = isConnected(TR,E) specifies the edge start and end indices in
matrix E. Element tf(j) is true when the vertices, E(j,1) and E(j,2),
are connected by an edge.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

vstart

IDs of start vertices, specified as a column vector. Each vertex ID
refers to a vertex at the start of an edge.

vend

IDs of end vertices, specified as a column vector. Each vertex ID
refers to a vertex at the end of an edge.

E

IDs of the edge vertices, specified as a two-column matrix. Each
row of E corresponds to a candidate edge and contains two IDs:

• E(j,1) is the ID of the vertex at the start of a candidate edge.

• E(j,2) is the ID of the vertex at end of the edge.

1-5825

triangulation.isConnected

Output
Arguments

tf

Logical values, returned as a column vector. Element tf(j) is
true when either of the following are true:

• The vertices, vstart(j) and vend(j), are connected by an
edge.

• The vertices, E(j,1) and E(j,2), are connected by an edge.

Otherwise, tf(j) is false.

Definitions Vertex ID

A row number of the matrix, TR.Points. Use this ID to refer a specific
vertex in the triangulation.

Examples Determine Whether Vertices are connected by an Edge in 2-D

Load a 2-D triangulation.

load trimesh2d
TR = triangulation(tri,x,y);

Determine whether vertices 3 and 117 are connected by an edge.

isConnected(TR,3,117)

ans =

1

The vertices are connected by an edge.

Determine whether vertices 3 and 164 are connected by an edge.

isConnected(TR,3,164)

ans =

1-5826

triangulation.isConnected

0

The vertices are not connected by an edge.

Determine Whether Vertices are connected by an Edge in 3-D

X = gallery('uniformdata',[10,3],0);
DT = delaunayTriangulation(X);

Determine whether vertices 2 and 7 are connected by an edge.

E = [2 7];
isConnected(DT,E)

ans =

1

The vertices are connected by an edge.

See Also edges | edgeAttachments | delaunayTriangulation

1-5827

triangulation.neighbors

Purpose Neighbors to specified triangle or tetrahedron

Syntax N = neighbors(TR,ti)
N = neighbors(TR)

Description N = neighbors(TR,ti) returns the neighbors of the triangles or
tetrahedra specified in ti.

N = neighbors(TR) returns the neighbors of all the triangles or
tetrahedra.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

ti

Triangle or tetrahedron IDs, specified as a column vector.

Output
Arguments

TN

IDs of the neighboring triangles or tetrahedra, returned as a
matrix. The elements in TN(i,:) are the neighbors associated
with ti(i).

By convention, TN(i,j) is the neighbor opposite the jth vertex
of ti(i). If a triangle or tetrahedron has one or more boundary
facets, the nonexistent neighbors are represented as NaN values
in TN.

Definitions Triangle or Tetrahedron ID

A row number of the matrix, TR.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Vertex ID

A row number of the matrix, TR.Points. Use this ID to refer a specific
vertex in the triangulation.

1-5828

triangulation.neighbors

Examples Query Neighbors in 2-D Delaunay Triangulation

Create a Delaunay triangulation from a set of random points.

x = gallery('uniformdata',[10,1],0);
y = gallery('uniformdata',[10,1],1);
DT = delaunayTriangulation(x,y);

Find the neighbors of the first triangle.

TN = neighbors(DT,1)

TN =

NaN 4 5

The first triangle has a boundary edge and two neighbors.

Examine the vertex IDs of the first neighbor, TN(2).

DT.ConnectivityList(TN(2),:)

ans =

2 4 7

Query Neighbors in 3-D Triangulation

Create the Delaunay triangulation.

load tetmesh
TR = triangulation(tet,X);

Find the neighbors to each triangle in the triangulation.

TN = neighbors(TR);

Find the neighbors of the fifth tetrahedron.

TN(5,:)

1-5829

triangulation.neighbors

ans =

2360 1539 2 1851

Examine the vertex IDs of the first neighbor, TN(1).

TR.ConnectivityList(TN(1),:)

ans =

1093 891 893 858

See Also edgeAttachments | delaunayTriangulation

1-5830

triangulation.size

Purpose Size of triangulation connectivity list

Syntax sz = size(TR)

Description sz = size(TR) returns the size the triangulation connectivity list.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

Output
Arguments

sz

Size of connectivity list, returned as a two-element row vector.
The first element, sz(1) is the number of triangles or tetrahedra
in the triangulation, and sz(2) is the number of vertices per
triangle or tetrahedron.

Examples Size of 2-D Triangulation

Create a triangulation.

P = [2.5 8.0
6.5 8.0
2.5 5.0
6.5 5.0
1.0 6.5
8.0 6.5];

T = [5 3 1;
3 2 1;
3 4 2;
4 6 2];

TR = triangulation(T,P);

Get the size of the connectivity list.

1-5831

triangulation.size

size(TR)

ans =

4 3

The triangulation has 4 triangles, and each triangle has 3 vertices.

See Also size | delaunayTriangulation

1-5832

triangulation.vertexAttachments

Purpose Triangles or tetrahedra attached to specified vertex

Syntax ti = vertexAttachments(TR,vi)
ti = vertexAttachments(TR)

Description ti = vertexAttachments(TR,vi) returns the triangles or tetrahedra
attached to the specified vertices, vi.

ti = vertexAttachments(TR) returns the triangles or tetrahedra
attached to every vertex in the triangulation.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

vi

Query vertices, specified as a column vector of vertex IDs.

Output
Arguments

ti

IDs of the triangles or tetrahedra attached to the vertices,
returned as an m-by-1 cell array. Each cell in ti contains the
IDs of the attached triangles or tetrahedra. ti{j} contains the
attachments to the vertex, vi(j). The attachments are returned
in a cell array because the number of triangles or tetrahedra
associated with each vertex can vary.

Definitions Triangle or Tetrahedron ID

A row number of the matrix, TR.ConnectivityList. Use this ID to
refer a specific triangle or tetrahedron.

Vertex ID

A row number of the matrix, TR.Points. Use this ID to refer a specific
vertex in the triangulation.

1-5833

triangulation.vertexAttachments

Examples Attachments to Specific Vertex in 2-D Delaunay Triangulation

Locate and plot the attachments to a specific vertex.

Create a Delaunay triangulation from a set of random points.

x = gallery('uniformdata',[20,1],0);
y = gallery('uniformdata',[20,1],1);
DT = delaunayTriangulation(x,y);

Find the triangles attached to the fifth vertex.

ti = vertexAttachments(DT,5);
ti{:}

ans =

18 23 21 22

Plot the triangulation.

triplot(DT);
hold on;

% Plot the triangles attached to vertex 5 (in red).
triplot(DT(ti{:},:),x,y,'Color','r');
hold off;

1-5834

triangulation.vertexAttachments

See Also edgeAttachments | delaunayTriangulation

1-5835

triangulation.vertexNormal

Purpose Triangulation vertex normal

Syntax VN = vertexNormal(TR,vi)
VN = vertexNormal(TR)

Description VN = vertexNormal(TR,vi) returns the unit normal vector to each of
the specified vertices in vi.

VN = vertexNormal(TR) returns the normal information for all vertices
in the triangulation.

Input
Arguments

TR

Triangulation representation, see triangulation or
delaunayTriangulation.

vi

IDs of vertices to query, specified as a column vector. Each
element in vi is a “Vertex ID” on page 1-5836.

Output
Arguments

VN

Vertex normals, returned a matrix. Each row, VN(j,:), is the
unit normal vector at the vertex vi(j). The vector at VN(j,:) is
the average unit normal of the faces attached to vertex vi(j).

If you do not specify vi, then vertexNormal returns the unit
normal information for all vertices in the triangulation. In this
case, the normal associated with TR.Points(j,:) is VN(j,:).

Definitions Vertex ID

A row number of the matrix, TR.Points. Use this ID to refer a specific
vertex in the triangulation.

Examples Unit Normal Vectors to the Surface of a Cube

Create a 3-D triangulation representing the volume of a cube.

1-5836

triangulation.vertexNormal

[X,Y,Z] = meshgrid(1:4);
X = X(:);
Y = Y(:);
Z = Z(:);
dt = delaunayTriangulation(X,Y,Z);

Find the surfaces of the cube and isolate them in a 2-D triangulation.

[Tfb,Xfb] = freeBoundary(dt);
TR = triangulation(Tfb,Xfb);

Find the unit normal vectors to the triangles on the surface of the cube.

vn = vertexNormal(TR);

Plot the results.

trisurf(TR,'FaceColor', [0.8 0.8 1.0]);
axis equal
hold on
quiver3(Xfb(:,1),Xfb(:,2),Xfb(:,3),...

vn(:,1),vn(:,2),vn(:,3),0.5,'color','b');
hold off

1-5837

triangulation.vertexNormal

See Also freeBoundary | delaunayTriangulation

1-5838

readtable

Purpose Create table from file

Syntax T = readtable(filename)
T = readtable(filename,Name,Value)

Description T = readtable(filename) creates a table by reading column oriented
data from a file.

readtable determines the file format from the file name’s extension:

• .txt, .dat, or .csv for delimited text files

• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet
files

readtable creates one variable in T for each column in the file and
reads variable names from the first row of the file. By default, the
variables created are double if the entire column is numeric, or cell
arrays of strings if any element in a column is not numeric.

T = readtable(filename,Name,Value) creates a table from a file
with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify not to read the first row of the file as
variable names.

Input
Arguments

filename - Name of file to read
string

Name of the file to read, specified as a string. If filename includes
the file extension, then readtable determines the file format from the
extension. Otherwise, you must specify the 'FileType' name-value
pair arguments to indicate the type of file.

On Windows systems with Microsoft Excel software, readtable reads
any Excel spreadsheet file format recognized by your version of Excel.
If your system does not have Excel for Windows, readtable operates

1-5839

readtable

in basic import mode, and reads only XLS, XLSX, XLSM, XLTX, and
XLTM files.

For a delimited text file, readtable converts empty fields in the
file to either NaN (for a numeric variable) or the empty string (for a
string-valued variable). All lines in the text file must have the same
number of delimiters. readtable ignores insignificant white space in
the file.

Example: 'myFile.xlsx'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ReadVariableNames',false indicates that the first row of
the file does not correspond to variable names.

’FileType’ - Type of file
'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of
'FileType' and the string 'text' or 'spreadsheet'.

You must specify the 'FileType' name-value pair argument if the
filename input argument does not include the file extension or if the
extension is other than one of the following.

• .txt, .dat, or .csv for delimited text files

• .xls, .xlsb, .xlsm, .xlsx, .xltm, .xltx, or .ods for spreadsheet
files

Example: 'FileType','text'

’ReadVariableNames’ - Indicator for reading first row as variable
names
true (default) | false | 1 | 0

1-5840

readtable

Indicator for reading the first row as variable names, specified as the
comma-separated pair consisting of 'ReadVariableNames' and either
true, false, 1, or 0.

true The first row of the region to read contains the
variable names for the table. This is the default
behavior.

If both the 'ReadVariableNames' and
'ReadRowNames' logical indicators are true,
then readtable saves the name in the first
column of the first row of the region to read
as the first dimension name in the property,
T.Properties.DimensionNames.

false The first row of the region to read contains the first
row of data in the table.

readtable creates default variable names of the
form 'Var1',...,'VarN', where N is the number
of variables.

’ReadRowNames’ - Indicator for reading the first column as row
names
false (default) | true | 0 | 1

Indicator for reading first column as row names, specified as the
comma-separated pair consisting of 'ReadRowNames' and either false,
true, 0, or 1.

1-5841

readtable

false The first column of the region to read contains
the first variable in the table. It does not contain
the row names for the table. This is the default
behavior.

true The first column of the region to read contains the
row names for the table.

If both the 'ReadVariableNames' and
'ReadRowNames' logical indicators are true,
then readtable saves the name in the first
column of the first row of the region to read
as the first dimension name in the property,
T.Properties.DimensionNames.

’TreatAsEmpty’ - Strings to treat as empty value
string | cell array of strings

Strings to treat as empty value, specified as the comma-separated pair
consisting of 'TreatAsEmpty' and a string or a cell array of strings.
Table elements corresponding to these are set to NaN.

'TreatAsEmpty' only applies to numeric columns in the file, and
readtable does not accept numeric literals, such as '-99'.

Example: 'TreatAsEmpty','N/A' sets N/A within numeric columns
to NaN.

Example: 'TreatAsEmpty',{'.','NA','N/A'} sets ., NA and N/A
within numeric columns to NaN.

’Delimiter’ - Field delimiter character
string

Field delimiter character, specified as the comma-separated pair
consisting of 'Delimiter' and one of the following strings:

1-5842

readtable

','

'comma'

Comma. This is the default behavior.

' '

'space'

Space

'\t'

'tab'

Tab

';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

You can use the 'Delimiter' name-value pair only with delimited text
files.

Example: 'Delimiter','space'

’HeaderLines’ - Number of lines to skip at beginning of file
0 (default) | positive integer

Number of lines to skip at beginning of file, specified as the
comma-separated pair consisting of 'HeaderLines' and a positive
integer.

You can use the 'HeaderLines' name-value pair only with delimited
text files.

Data Types
single | double

’Format’ - Format of columns in file
string of one or more conversion specifiers

Format of the columns in the file, specified as the comma-separated pair
consisting of 'Format' and a string of one or more conversion specifiers.

1-5843

readtable

By default, the variables created are either double, if the entire column
is numeric, or cell arrays of strings, if any element in a column is not
numeric.

The conversion specifiers are the same as those accepted by the
textscan function. If you specify the 'Format' name-value pair
argument, you can specify any of the name-value pair arguments
accepted by the textscan function.

Specifying the format can significantly improve speed for some large
files.

You can use the 'Format' name-value pair only with delimited text files.

’Sheet’ - Worksheet to read
1 (default) | positive integer indicating worksheet index | string
containing worksheet name

Worksheet to read, specified as the comma-separated pair consisting
of 'Sheet' and a positive integer indicating the worksheet index or a
string containing the worksheet name. The worksheet name string
cannot contain a colon (:). To determine the names of sheets in a
spreadsheet file, use [status,sheets] = xlsfinfo(filename).

You can use the 'Sheet' name-value pair only with spreadsheet files.

Example: 'Sheet',2

’Range’ - Rectangular portion of worksheet to read
string

Rectangular portion of the worksheet to read, specified as the
comma-separated pair consisting of 'Range' and a string.

Specify the range using the syntax 'Corner1:Corner2', where Corner1
and Corner2 are two opposing corners that define the region to read.
For example, 'D2:H4' represents the 3-by-5 rectangular region between
the two corners D2 and H4 on the worksheet. The 'Range' name-value
pair argument is not case sensitive, and uses Excel A1 reference style
(see Excel help).

1-5844

readtable

If the spreadsheet contains figures or other nontablular information,
use the 'Range' name-value pair argument to read only the tabular
data. By default, readtable reads data from a spreadsheet contiguously
out to the right-most column that contains data, including any empty
columns that precede it.

You can use the 'Range' name-value pair only with spreadsheet files.

Example: 'Range','D2:H4'

’Basic’ - Indicator for reading in basic mode
true | false | 1 | 0

Indicator for reading in basic mode, specified as the comma-separated
pair consisting of 'Basic' and either true, false, 1, or 0.

basic mode is the default for systems without Excel for Windows. In
basic mode, readtable:

• Reads XLS, XLSX, XLSM, XLTX, and XLTM files only.

• Does not support the 'Range' name-value pair argument when
reading XLS files.

• Imports all dates as Excel serial date numbers. Excel serial date
numbers use a different reference date than MATLAB date numbers.

You can use the 'Basic' name-value pair only with spreadsheet files.

Output
Arguments

T - Output table
table

Output table, returned as a table. The table can store metadata such as
descriptions, variable units, variable names, and row names. For more
information, see Table Properties.

Examples Create Table from Text File

Create a file, myCsvTable.dat, that contains the following
comma-separated column oriented data.

1-5845

readtable

LastName,Gender,Age,Height,Weight,Smoker
Smith,M,38,71,176,1
Johnson,M,43,69,163,0
Williams,F,38,64,131,0
Jones,F,40,67,133,0
Brown,F,49,64,119,0

Create a table from the comma-separated text file.

T = readtable('myCsvTable.dat')

T =

LastName Gender Age Height Weight Smoker
__________ ______ ___ ______ ______ ______

'Smith' 'M' 38 71 176 1
'Johnson' 'M' 43 69 163 0
'Williams' 'F' 38 64 131 0
'Jones' 'F' 40 67 133 0
'Brown' 'F' 49 64 119 0

T contains one variable for each column in the file and readtable the
entries in first line of the file as variable names.

Create Table from Text File without Column Headings

Create a file, mySpaceDelimTable.txt, that contains the following
space delimited, column oriented data.

M 45 45 NY true
F 41 32 CA false
M 40 34 MA false

Create a table from the space delimited text file that does not contain
variable names as column headings.

T = readtable('mySpaceDelimTable.txt',...
'Delimiter',' ','ReadVariableNames',false)

1-5846

readtable

T =

Var1 Var2 Var3 Var4 Var5
____ ____ ____ ____ _______

'M' 45 45 'NY' 'true'
'F' 41 32 'CA' 'false'
'M' 40 34 'MA' 'false'

T contains default variable names.

Create and Format Table from Text File

Create a file, myCsvTable.dat, that contains the following
comma-separated column oriented data.

LastName,Gender,Age,Height,Weight,Smoker
Smith,M,38,71,176,1
Johnson,M,43,69,163,0
Williams,F,38,64,131,0
Jones,F,40,67,133,0
Brown,F,49,64,119,0

Create a table from the comma-separated text file. Format the first
two variables as strings, the third variable as uint32, and the next
two variables as double-precision, floating-point numbers. Format the
last variable as a string.

T = readtable('myCsvTable.dat','Format','%s%s%u%f%f%s')

T =

LastName Gender Age Height Weight Smoker
__________ ______ ___ ______ ______ ______

'Smith' 'M' 38 71 176 '1'
'Johnson' 'M' 43 69 163 '0'
'Williams' 'F' 38 64 131 '0'
'Jones' 'F' 40 67 133 '0'

1-5847

readtable

'Brown' 'F' 49 64 119 '0'

The conversion specifiers are %s for a cell array of strings, %f for double,
and %u for uint32.

Create Table from Spreadsheet Including Row Names

Create a table from a spreadsheet that contains variable names in the
first row and row names in the first column.

T = readtable('patients.xls','ReadRowNames',true);

Display the first five rows and first four variables of the table.

T(1:5,1:4)

ans =

Gender Age Location Height
________ ___ ___________________________ ______

Smith 'Male' 38 'County General Hospital' 71
Johnson 'Male' 43 'VA Hospital' 69
Williams 'Female' 38 'St. Mary's Medical Center' 64
Jones 'Female' 40 'VA Hospital' 67
Brown 'Female' 49 'County General Hospital' 64

View the DimensionNames property of the table.

T.Properties.DimensionNames

ans =

'LastName' 'Variable'

'LastName' is the name in the first column of the first row of the
spreadsheet.

1-5848

readtable

Read Specific Range of Data from Spreadsheet

Create a table from the 5-by-3 rectangular region between the two
corners C2 and E6 on the spreadsheet patients.xls. Do not use the
first row of this region as variable names.

T = readtable('patients.xls',...
'Range','C2:E6',...
'ReadVariableNames',false)

T =

Var1 Var2 Var3
____ ___________________________ ____

38 'County General Hospital' 71
43 'VA Hospital' 69
38 'St. Mary's Medical Center' 64
40 'VA Hospital' 67
49 'County General Hospital' 64

T contains default variable names.

See Also writetable | table | textscan

Related
Examples

• “Access Data in a Table”

1-5849

real

Purpose Real part of complex number

Syntax X = real(Z)

Description X = real(Z) returns the real part of the elements of the complex array
Z.

Examples real(2+3*i) is 2.

See Also abs | angle | conj | i | j | imag

1-5850

reallog

Purpose Natural logarithm for nonnegative real arrays

Syntax Y = reallog(X)

Description Y = reallog(X) returns the natural logarithm of each element in array
X. Array X must contain only nonnegative real numbers. The size of Y is
the same as the size of X.

Examples M = magic(4)

M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

reallog(M)

ans =
2.7726 0.6931 1.0986 2.5649
1.6094 2.3979 2.3026 2.0794
2.1972 1.9459 1.7918 2.4849
1.3863 2.6391 2.7081 0

See Also log | realpow | realsqrt

1-5851

realmax

Purpose Largest positive floating-point number

Syntax n = realmax

Description n = realmax returns the largest finite floating-point number in IEEE
double precision.

realmax('double') is the same as realmax with no arguments.

realmax('single') returns the largest finite floating-point number
in IEEE single precision.

Examples Find the value of the constant realmax:

ndouble = realmax
nsingle = realmax('single')

ndouble =

1.7977e+308

nsingle =

3.4028e+38

See Also eps | realmin | intmax

Tutorials • “Floating-Point Numbers”

1-5852

realmin

Purpose Smallest positive normalized floating-point number

Syntax n = realmin
realmin('double')
realmin('single')

Description n = realmin returns the smallest positive normalized floating-point
number in IEEE double precision.

realmin('double') is the same as realmin with no arguments.

realmin('single') returns the smallest positive normalized
floating-point number in IEEE single precision.

Examples Find the value of the constant realmin:

ndouble = realmin
nsingle = realmin('single')

ndouble =

2.2251e-308

nsingle =

1.1755e-38

See Also eps | realmax | intmin

Tutorials • “Floating-Point Numbers”

1-5853

realpow

Purpose Array power for real-only output

Syntax Z = realpow(X,Y)

Description Z = realpow(X,Y) raises each element of array X to the power of its
corresponding element in array Y. Arrays X and Ymust be the same size.
The range of realpow is the set of all real numbers, i.e., all elements of
the output array Z must be real.

Examples X = -2*ones(3,3)

X =
-2 -2 -2
-2 -2 -2
-2 -2 -2

Y = pascal(3)

ans =
1 1 1
1 2 3
1 3 6

realpow(X,Y)

ans =
-2 -2 -2
-2 4 -8
-2 -8 64

See Also reallog | realsqrt | power | mpower

1-5854

realsqrt

Purpose Square root for nonnegative real arrays

Syntax Y = realsqrt(X)

Description Y = realsqrt(X) returns the square root of each element of array X.
Array X must contain only nonnegative real numbers. The size of Y is
the same as the size of X.

Examples M = magic(4)

M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

realsqrt(M)

ans =
4.0000 1.4142 1.7321 3.6056
2.2361 3.3166 3.1623 2.8284
3.0000 2.6458 2.4495 3.4641
2.0000 3.7417 3.8730 1.0000

See Also reallog | realpow | sqrt | sqrtm

1-5855

record

Purpose Record data and event information to file

Syntax record(obj)
record(obj,'switch')

Description record(obj) toggles the recording state for the serial port object, obj.

record(obj,'switch') initiates or terminates recording for obj.
switch can be on or off. If switch is on, recording is initiated. If
switch is off, recording is terminated.

Tips Before you can record information to disk, obj must be connected to
the device with the fopen function. A connected serial port object has
a Status property value of open. An error is returned if you attempt
to record information while obj is not connected to the device. Each
serial port object must record information to a separate file. Recording
is automatically terminated when obj is disconnected from the device
with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
Debugging: Recording Information to Disk.

Examples This example creates the serial port object s on a Windows platform.
It connects s to the device, configures s to record information to a file,
writes and reads text data, and then disconnects s from the device.

s = serial('COM1');
fopen(s)
s.RecordDetail = 'verbose';
s.RecordName = 'MySerialFile.txt';
record(s,'on')
fprintf(s,'*IDN?')
out = fscanf(s);
record(s,'off')

1-5856

record

fclose(s)

See Also fclose | fopen | RecordDetail | RecordMode | RecordName |
RecordStatus | Status

1-5857

audiorecorder.record

Purpose Record audio to audiorecorder object

Syntax record(recorderObj)
record(recorderObj, length)

Description record(recorderObj) records audio from an input device, such
as a microphone connected to your system. recorderObj is an
audiorecorder object that defines the sample rate, bit depth, and other
properties of the recording.

record(recorderObj, length) records for the number of seconds
specified by length.

Examples Record 5 seconds of your speech with a microphone:

myVoice = audiorecorder;

% Define callbacks to show when
% recording starts and completes.
myVoice.StartFcn = 'disp(''Start speaking.'')';
myVoice.StopFcn = 'disp(''End of recording.'')';

record(myVoice, 5);

To listen to the recording, call the play method:

play(myVoice);

See Also audiorecorder | getaudiodata | recordblocking

How To • “Record Audio”

• “Record or Play Audio within a Function”

1-5858

audiorecorder.recordblocking

Purpose Record audio to audiorecorder object, holding control until recording
completes

Syntax recordblocking(recorderObj, length)

Description recordblocking(recorderObj, length) records audio from an
input device, such as a microphone connected to your system, for the
number of seconds specified by length. The recordblocking method
does not return control until recording completes. recorderObj is an
audiorecorder object that defines the sample rate, bit depth, and other
properties of the recording.

Examples Record 5 seconds of your speech with a microphone, and play it back:

myVoice = audiorecorder;

disp('Start speaking.');
recordblocking(myVoice, 5);
disp('End of recording. Playing back ...');

play(myVoice);

See Also audiorecorder | getaudiodata | record

How To • “Record Audio”

1-5859

rectangle

Purpose Create 2-D rectangle object

Syntax rectangle
rectangle('Position',[x,y,w,h])
rectangle('Curvature',[x,y])
rectangle('PropertyName',propertyvalue,...)
h = rectangle(...)

Properties For a list of properties, see Rectangle Properties.

Description rectangle draws a rectangle with Position [0,0,1,1] and Curvature
[0,0] (i.e., no curvature).

rectangle('Position',[x,y,w,h]) draws the rectangle from the point
x,y and having a width of w and a height of h. Specify values in axes
data units.

Note that, to display a rectangle in the specified proportions, you need
to set the axes data aspect ratio so that one unit is of equal length along
both the x and y axes. You can do this with the command axis equal or
daspect([1,1,1]).

rectangle('Curvature',[x,y]) specifies the curvature of the rectangle
sides, enabling it to vary from a rectangle to an ellipse. The horizontal
curvature x is the fraction of width of the rectangle that is curved along
the top and bottom edges. The vertical curvature y is the fraction of the
height of the rectangle that is curved along the left and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum
curvature). A value of [0,0] creates a rectangle with square sides.
A value of [1,1] creates an ellipse. If you specify only one value
for Curvature, then the same length (in axes data units) is curved
along both horizontal and vertical sides. The amount of curvature is
determined by the shorter dimension.

rectangle('PropertyName',propertyvalue,...) draws the
rectangle using the values for the property name/property value pairs
specified and default values for all other properties. For a description of
the properties, see Rectangle Properties.

1-5860

rectangle

h = rectangle(...) returns the handle of the rectangle object created.

Tips Rectangle objects are 2-D and can be drawn in an axes only if the view is
[0 90] (i.e., view(2)). Rectangles are children of axes and are defined
in coordinates of the axes data.

Examples This example sets the data aspect ratio to [1,1,1] so that the rectangle
is displayed in the specified proportions (daspect). Note that the
horizontal and vertical curvature can be different. Also, note the effects
of using a single value for Curvature.

rectangle('Position',[0.59,0.35,3.75,1.37],...
'Curvature',[0.8,0.4],...

'LineWidth',2,'LineStyle','--')
daspect([1,1,1])

Specifying a single value of [0.4] for Curvature produces

1-5861

rectangle

A Curvature of [1] produces a rectangle with the shortest side
completely round:

This example creates an ellipse and colors the face red.

rectangle('Position',[1,2,5,10],'Curvature',[1,1],...
'FaceColor','r')

daspect([1,1,1])
xlim([0,7])

1-5862

rectangle

ylim([1,13])

Setting
Default
Properties

You can set default rectangle properties on the axes, figure, and root
object levels:

set(0,'DefaultRectangleProperty',PropertyValue...)
set(gcf,'DefaultRectangleProperty',PropertyValue...)
set(gca,'DefaultRectangleProperty',PropertyValue...)

where Property is the name of the rectangle property whose default
value you want to set and PropertyValue is the value you are
specifying. Use set and get to access the surface properties.

1-5863

rectangle

See Also line | patch | annotation | Rectangle Properties

1-5864

Rectangle Properties

Purpose Define rectangle properties

Creating
Rectangle
Objects

Use rectangle to create rectangle objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• “Customize Objects in Graph” is an interactive tool that enables you
to see and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Rectangle
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Handle of Annotation object. The Annotation property enables
you to specify whether this rectangle object is represented in a
figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the rectangle
object is displayed in a figure legend:

1-5865

Rectangle Properties

IconDisplayStyle
Value

Purpose

on Represent this rectangle object in a legend
(default)

off Do not include this rectangle object in a
legend

children Same as on because rectangle objects do not
have children

Setting the IconDisplayStyle property

Set the IconDisplayStyle of a graphics object with handle hobj
to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

1-5866

Rectangle Properties

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press a
mouse button while the pointer is over the rectangle object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of object associated with the button down event and an event
structure, which is empty for this property).

1-5867

Rectangle Properties

The following example shows how to access the callback object’s
handle as well as the handle of the figure that contains the object
from the callback function.

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a rectangle object and the button_down
function is on your MATLAB path. The following statement
assigns the button_down function to the ButtonDownFcn property:

set(h,'ButtonDownFcn',@button_down)

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
vector of handles

The empty matrix; rectangle objects have no children.

Clipping
{on} | off

1-5868

Rectangle Properties

Clipping mode. MATLAB clips rectangles to the axes plot box
by default. If you set Clipping to off, rectangles are displayed
outside the axes plot box. This can occur if you create a rectangle,
set hold to on, freeze axis scaling (axis set to manual), and then
create a larger rectangle.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Executes
when MATLAB creates a rectangle object. You must define
this property as a default value for rectangles or in a call to the
rectangle function to create a new rectangle object. For example,
the statement:

set(0,'DefaultRectangleCreateFcn',@rect_create)

defines a default value for the rectangle CreateFcn property on
the root level that sets the axes DataAspectRatio whenever you
create a rectangle object. The callback function must be on your
MATLAB path when you execute the above statement.

function rect_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

axh = get(src,'Parent');
set(axh,'DataAspectRatio',[1,1,1]))

end

MATLAB executes this function after setting all rectangle
properties. Setting this property on an existing rectangle object
has no effect. The function must define at least two input
arguments (handle of object created and an event structure, which
is empty for this property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function

1-5869

Rectangle Properties

and is also accessible through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

Curvature
one- or two-element vector [x,y]

Amount of horizontal and vertical curvature. Specifies the
curvature of the rectangle sides, which enables the shape of the
rectangle to vary from rectangular to ellipsoidal. The horizontal
curvature x is the fraction of width of the rectangle that is curved
along the top and bottom edges. The vertical curvature y is the
fraction of the height of the rectangle that is curved along the
left and right edges.

The values of x and y can range from 0 (no curvature) to 1
(maximum curvature). A value of [0,0] creates a rectangle with
square sides. A value of [1,1] creates an ellipse. If you specify
only one value for Curvature, then the same length (in axes data
units) is curved along both horizontal and vertical sides. The
amount of curvature is determined by the shorter dimension.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Delete rectangle callback function. Executes when you delete the
rectangle object (for example, when you issue a delete command
or clear the axes cla or figure clf).

For example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

1-5870

Rectangle Properties

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property).

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the rectangle object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

1-5871

Rectangle Properties

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EdgeColor
{ColorSpec} | none

Color of the rectangle edges. Specifies the color of the rectangle
edges as a color or specifies that no edges be drawn.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase rectangle objects. Use alternative erase modes for creating
animated sequences, where control of the way individual objects
are redrawn is necessary to improve performance and obtain the
desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase the rectangle when it is moved or
destroyed. While the object is still visible on the screen after
erasing with EraseMode none, you cannot print it because
MATLAB stores no information about its former location.

• xor—Draw and erase the rectangle by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath the rectangle.

1-5872

Rectangle Properties

However, the rectangle’s color depends on the color of whatever
is beneath it on the display.

• background — Erase the rectangle by drawing it in the axes
background Color, or the figure background Color if the axes
Color is none. This damages objects that are behind the erased
rectangle, but rectangles are always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

FaceColor
ColorSpec | {none}

Color of rectangle face. Specifies the color of the rectangle face,
which is not colored by default.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

• on — Handles are always visible.

1-5873

Rectangle Properties

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. Determines if the rectangle can become
the current object (as returned by the gco command and the
figure CurrentObject property) as a result of a mouse click on the

1-5874

Rectangle Properties

rectangle. If HitTest is off, clicking the rectangle selects the
object below it (which might be the axes containing it).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

1-5875

Rectangle Properties

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of rectangle edge.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Width of the rectangle edge line. Specify this value in points. 1
point = 1/72 inch. The default value is 0.5 points.

1-5876

Rectangle Properties

Parent
handle of axes, hggroup, or hgtransform

Parent of rectangle object. Contains the handle of the rectangle
object’s parent. The parent of a rectangle object is the axes,
hggroup, or hgtransform object that contains it.

Position
four-element vector [x,y,width,height]

Location and size of rectangle. Specifies the location and size of
the rectangle in the data units of the axes. The point defined by
x, y specifies one corner of the rectangle, and width and height
define the size in units along the x- and y-axes respectively.

Selected
on | off

Is object selected? When this property is on MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by drawing
handles at each vertex. When SelectionHighlight is off,
MATLAB does not draw the handles.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

1-5877

Rectangle Properties

Type
string (read-only)

Class of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For rectangle objects, Type is
always ’rectangle’.

UIContextMenu
handle of uicontextmenu object

Associate a context menu with the rectangle. Assign this property
the handle of a uicontextmenu object created in the same figure
as the rectangle. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever you
right-click over the rectangle.

UserData
matrix

User-specified data. Data you want to associate with the rectangle
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

Visible
{on} | off

Rectangle visibility. By default, all rectangles are visible. When
set to off, the rectangle is not visible, but still exists, and you
can get and set its properties.

See Also rectangle

1-5878

rectint

Purpose Rectangle intersection area

Syntax area = rectint(A,B)

Description area = rectint(A,B) returns the area of intersection of the rectangles
specified by position vectors A and B.

If A and B each specify one rectangle, the output area is a scalar.

A and B can also be matrices, where each row is a position vector. area is
then a matrix giving the intersection of all rectangles specified by A with
all the rectangles specified by B. That is, if A is n-by-4 and B is m-by-4,
then area is an n-by-m matrix where area(i,j) is the intersection area
of the rectangles specified by the ith row of A and the jth row of B.

Note A position vector is a four-element vector [x,y,width,height],
where the point defined by x and y specifies one corner of the rectangle,
and width and height define the size in units along the x and y axes
respectively.

See Also polyarea

1-5879

recycle

Purpose Set option to move deleted files to recycle folder

Syntax status = recycle
oldState = recycle(state)

Description status = recycle returns the current state for recycling files you
remove using the delete function. When status is off, the delete
function permanently removes the files. When status is on, deleted
files move to a different location. For details, see the Tips section.

oldState = recycle(state) sets the recycle option for MATLAB to
the specified state, either on or off. The previousStat value is the
recycle state before running the statement.

Input
Arguments

state - State of recycle option
'on' | 'off'

State of the recycle option, specified as 'on' or 'off'.

Examples View Current Recycling State

Start from a state where file recycling is off. Verify the current recycle
state.

state = recycle

state =

off

Turn File Recycling On

Turn file recycling on. Then, delete an existing file and move it to the
recycle bin or temporary folder.

recycle('on');
delete('myfile.txt')

1-5880

recycle

Tips • The location for storing recycled files varies by platform, as follows:

- Microsoft Windows systems — Recycle bin.

- Apple Macintosh systems — Trash.

- Linux systems — Subfolder with the prefix MATLAB_Files_ in the
system temporary folder, as returned by the tempdir function.

• The general preference for Deleting files sets the state of the
recycle function at startup. When you change the preference, it
changes the state of recycle. However, when you change the state of
recycle, it does not change the preference.

See Also delete | dir | ls | rmdir

Concepts • “General Preferences”

1-5881

reducepatch

Purpose Reduce number of patch faces

Syntax reducepatch(p,r)
nfv = reducepatch(p,r)
nfv = reducepatch(fv,r)
nfv = reducepatch(p)
nfv = reducepatch(fv)
reducepatch(...,'fast')
reducepatch(...,'verbose')
nfv = reducepatch(f,v,r)
[nf,nv] = reducepatch(...)

Description reducepatch(p,r) reduces the number of faces of the patch identified
by handle p, while attempting to preserve the overall shape of the
original object. The MATLAB software interprets the reduction factor
r in one of two ways depending on its value:

• If r is less than 1, r is interpreted as a fraction of the original number
of faces. For example, if you specify r as 0.2, then the number of faces
is reduced to 20% of the number in the original patch.

• If r is greater than or equal to 1, then r is the target number of faces.
For example, if you specify r as 400, then the number of faces is
reduced until there are 400 faces remaining.

nfv = reducepatch(p,r) returns the reduced set of faces and vertices
but does not set the Faces and Vertices properties of patch p. The
struct nfv contains the faces and vertices after reduction.

nfv = reducepatch(fv,r) performs the reduction on the faces and
vertices in the struct fv.

nfv = reducepatch(p) and nfv = reducepatch(fv)uses a reduction
value of 0.5.

reducepatch(...,'fast') assumes the vertices are unique and does
not compute shared vertices.

reducepatch(...,'verbose') prints progress messages to the
command window as the computation progresses.

1-5882

reducepatch

nfv = reducepatch(f,v,r)performs the reduction on the faces in f
and the vertices in v.

[nf,nv] = reducepatch(...) returns the faces and vertices in the
arrays nf and nv.

Tips If the patch contains nonshared vertices, MATLAB computes shared
vertices before reducing the number of faces. If the faces of the patch
are not triangles, MATLAB triangulates the faces before reduction. The
faces returned are always defined as triangles.

The number of output triangles may not be exactly the number specified
with the reduction factor argument (r), particularly if the faces of the
original patch are not triangles.

Examples This example illustrates the effect of reducing the number of faces to
only 15% of the original value.

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
set(p,'facecolor','w','EdgeColor','b');
daspect([1,1,1])
view(3)
figure;
h = axes;
p2 = copyobj(p,h);
reducepatch(p2,0.15)
daspect([1,1,1])
view(3)

1-5883

reducepatch

1-5884

reducepatch

See Also isosurface | isocaps | isonormals | smooth3 | subvolume |
reducevolume

How To • Vector Field Displayed with Cone Plots

1-5885

reducevolume

Purpose Reduce number of elements in volume data set

Syntax [nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz])
[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz])
nv = reducevolume(...)

Description [nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz]) reduces the
number of elements in the volume by retaining every Rxth element in
the x direction, every Ryth element in the y direction, and every Rzth

element in the z direction. If a scalar R is used to indicate the amount
or reduction instead of a three-element vector, the MATLAB software
assumes the reduction to be [R R R].

The arrays X, Y, and Z define the coordinates for the volume V. The
reduced volume is returned in nv, and the coordinates of the reduced
volume are returned in nx, ny, and nz.

[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz]) assumes the arrays
X, Y, and Z are defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p), where
[m,n,p] = size(V).

nv = reducevolume(...) returns only the reduced volume.

Examples This example uses a data set that is a collection of MRI slices of a
human skull. This data is processed in a variety of ways:

• The 4-D array is squeezed (squeeze) into three dimensions and
then reduced (reducevolume) so that what remains is every fourth
element in the x and y directions and every element in the z direction.

• The reduced data is smoothed (smooth3).

• The outline of the skull is an isosurface generated as a patch (p1)
whose vertex normals are recalculated to improve the appearance
when lighting is applied (patch, isosurface, isonormals).

• A second patch (p2) with an interpolated face color draws the end
caps (FaceColor) isocaps).

• The view of the object is set (view, axis, daspect).

1-5886

reducevolume

• A 100-element grayscale colormap provides coloring for the end caps
(colormap).

• Adding a light to the right of the camera illuminates the object
(camlight, lighting).

load mri
D = squeeze(D);
[x,y,z,D] = reducevolume(D,[4,4,1]);
D = smooth3(D);
p1 = patch(isosurface(x,y,z,D, 5,'verbose'),...

'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1);
p2 = patch(isocaps(x,y,z,D, 5),...

'FaceColor','interp','EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight; lighting gouraud

See Also isosurface | isocaps | isonormals | smooth3 | subvolume |
reducepatch

1-5887

refresh

Purpose Redraw current figure

Syntax refresh
refresh(h)

Description refresh erases and redraws the current figure.

refresh(h) redraws the figure identified by h.

1-5888

refreshdata

Purpose Refresh data in graph when data source is specified

Syntax refreshdata
refreshdata(figure_handle)
refreshdata(object_handles)
refreshdata(object_handles,'workspace')

Description refreshdata evaluates any data source properties (XDataSource,
YDataSource, or ZDataSource) on all objects in graphs in the current
figure. If the specified data source has changed, the MATLAB software
updates the graph to reflect this change.

Note The variable assigned to the data source property must be in the
base workspace or you must specify the workspace option as 'caller'.

refreshdata(figure_handle) refreshes the data of the objects in the
specified figure.

refreshdata(object_handles) refreshes the data of the objects
specified in object_handles or the children of those objects. Therefore,
object_handles can contain figure, axes, or plot object handles.

refreshdata(object_handles,'workspace') enables you to specify
whether the data source properties are evaluated in the base workspace
or the workspace of the function in which refreshdata was called.
workspace is a string that can be

• base— Evaluate the data source properties in the base workspace.

• caller — Evaluate the data source properties in the workspace of
the function that called refreshdata.

Tips The Linked Plots feature (see documentation for linkdata) sets up data
sources for graphs and synchronizes them with the workspace variables
they display. When you use this feature, you do not also need to call

1-5889

refreshdata

refreshdata, as it is essentially automatically triggered every time a
data source changes.

If you are not using the Linked Plots feature, you need to set the
XDataSource, YDataSource, and/or ZDataSource properties of a graph
in order to use refreshdata. You can do that programmatically, as
shown in the examples below, or use the Property Editor, one of the
plotting tools. In the Property Editor, select the graph (e.g., a lineseries
object) and type in (or select from the drop-down choices) the name(s)
of the workspace variable(s) from which you want the plot to refresh,
in the fields labelled X Data Source, Y Data Source, and/or Z Data
Source. The call to refreshdata causes the graph to update.

Examples Refresh Graph with Updated Data

Plot a sine wave and return the line handle, h.

x = linspace(0,8);
y = sin(x);
figure
h = plot(x,y);

1-5890

refreshdata

Identify the data sources for the plot by setting the XDataSource and
YDataSource properties of the line to x and y, respectively. Then, modify
y. Call refreshdata so that the graph updates with the changes to y.

set(h,'XDataSource','x');
set(h,'YDataSource','y');

y = sin(x.^3);
refreshdata

1-5891

refreshdata

How To • plot objects

• “Updating Plot Object Axis and Color Data”

1-5892

regexp

Purpose Match regular expression (case sensitive)

Syntax startIndex = regexp(str,expression)
[startIndex,endIndex] = regexp(str,expression)

out = regexp(str,expression,outkey)
[out1,...,outN] =
regexp(str,expression,outkey1,...,outkeyN)

___ = regexp(___ ,option1,...,optionM)

Description startIndex = regexp(str,expression) returns the starting index
of each substring of str that matches the character patterns specified
by the regular expression. If there are no matches, startIndex is an
empty array.

[startIndex,endIndex] = regexp(str,expression) returns the
starting and ending indices of all matches.

out = regexp(str,expression,outkey) returns the output specified
by outkey. For example, if outkey is 'match', then regexp returns the
substrings that match the expression rather than their starting indices.

[out1,...,outN] =
regexp(str,expression,outkey1,...,outkeyN) returns the outputs
specified by multiple output keywords, in the specified order.
For example, if you specify 'match','tokens', then regexp
returns substrings that match the entire expression and tokens
that match parts of the expression.

___ = regexp(___ ,option1,...,optionM) modifies the search using
the specified option flags. For example, specify 'ignorecase' to
perform a case-insensitive match. You can include any of the inputs and
request any of the outputs from previous syntaxes.

1-5893

regexp

Input
Arguments

str - Input text
string | cell array of strings

Input text, specified as a string or a cell array of strings. Each string
can be of any length and contain any characters.

If str and expression are both cell arrays, they must have the same
dimensions.

Data Types
char | cell

expression - Regular expression
string | cell array of strings

Regular expression, specified as a string or a cell array of strings. Each
expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space
characters. Use them to construct a generalized pattern of characters.

Metacharacter Description Example

. Any single character, including
white space

'..ain' matches sequences of five
consecutive characters that end with
'ain'.

[c1c2c3] Any character contained within
the brackets. The following
characters are treated literally:
$ | . * + ? and - when not
used to indicate a range.

'[rp.]ain' matches 'rain' or
'pain' or `.ain'.

1-5894

regexp

Metacharacter Description Example

[^c1c2c3] Any character not contained
within the brackets. The
following characters are treated
literally: $ | . * + ? and
- when not used to indicate a
range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and `*ain'. For
example, it matches 'gain', 'lain',
or 'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character
in the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For
English character sets, \w is
equivalent to [a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not
alphabetic, numeric, or
underscore. For English
character sets, \W is equivalent
to [^a-zA-Z_0-9]

'\W*' identifies a substring that is
not a word.

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end
with the letter n, followed by a
white-space character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit
followed by any non-white-space
character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character;
equivalent to [^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

1-5895

regexp

Metacharacter Description Example

\oN or \o{N} Character of octal value N '\o{40}' matches the space
character, defined by octal 40.

\xN or \x{N} Character of hexadecimal value
N

'\x2C'matches the comma character,
defined by hex 2C.

Character Representation

Operator Description

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\char Any character with special meaning in regular expressions that you want
to match literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a string pattern must occur in
the matching string.

Quantifier
Matches the expression when
it occurs... Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.

expr? 0 times or 1 time. '\w*(\.m)?' matches words that
optionally end with the extension .m.

1-5896

regexp

Quantifier
Matches the expression when
it occurs... Example

expr+ 1 or more times consecutively. '' matches
an HTML tag when the file
name contains one or more characters.

expr{m,n} At least m times, but no more than
n times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to *
and +, respectively.

''
matches an <a> HTML tag when
the file name contains one or more
characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive
digits.

Quantifiers can appear in three modes, described in the following table.
q represents any of the quantifiers in the previous table.

Mode Description Example

exprq Greedy expression: match as many
characters as possible.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few
characters as necessary.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*?>' ends each
match at the first occurrence of the
closing bracket (>):

1-5897

regexp

Mode Description Example

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as
much as possible, but do not rescan
any portions of the string.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*+>' does not
return any matches, because the
closing bracket is captured using .*,
and is not rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to
multiple elements, or disable backtracking in a specific group.

Grouping
Operator Description Example

(expr) Group elements of the expression
and capture tokens.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}'
matches two consecutive patterns
of a vowel followed by a nonvowel,
such as 'anon'.

Without grouping,
'[aeiou][^aeiou]{2}'matches a
vowel followed by two nonvowels.

1-5898

regexp

Grouping
Operator Description Example

(?>expr) Group atomically. Do not backtrack
within the group to complete the
match, and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using
the atomic group, Z is captured
using .* and is not rescanned.

(expr1|expr2)Match expression expr1 or
expression expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress
tokens or group atomically.

'(let|tel)\w+' matches words in
a string that start with let or tel.

Anchors

Anchors in the expression match the beginning or end of the string
or word.

Anchor Matches the... Example

^expr Beginning of the input string. '^M\w*' matches a word starting
with M at the beginning of the string.

expr$ End of the input string. '\w*m$' matches words ending with
m at the end of the string.

\<expr Beginning of a word. '\<n\w*' matches any words
starting with n.

expr\> End of a word. '\w*e\>'matches any words ending
with e.

Lookaround Assertions

Lookaround assertions look for string patterns that immediately
precede or follow the intended match, but are not part of the match.

1-5899

regexp

The pointer remains at the current location, and characters that
correspond to the test expression are not captured or discarded.
Therefore, lookahead assertions can match overlapping character
groups.

Lookaround
Assertion Description Example

expr(?=test) Look ahead for characters that
match test.

'\w*(?=ing)' matches strings that
are followed by ing, such as 'Fly'
and 'fall' in the input string
'Flying, not falling.'

expr(?!test) Look ahead for characters that do
not match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that
match test..

'(?<=re)\w*' matches strings that
follow 're', such as 'new', 'use',
and 'cycle' in the input string
'renew, reuse, recycle'

(?<!test)expr Look behind for characters that do
not match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do
not precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation
is equivalent to a logical AND.

Operation Description Example

(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches
consonants.

(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches
consonants.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given
condition, and then use the outcome to determine which string, if any,

1-5900

regexp

to match next. These operators support logical OR, and if or if/else
conditions.

Conditions can be tokens, lookaround operators, or dynamic expressions
of the form (?@cmd). Dynamic expressions must return a logical or
numeric value.

Conditional
Operator Description Example

expr1|expr2 Match expression expr1 or
expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+'matches words
in a string that start with let
or tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'
matches a drive name, such as
C:\, when run on a Windows
system.

(?(cond)expr1|expr2) If condition cond is true, then
match expr1. Otherwise,
match expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins with
Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing
part of the regular expression in parentheses. You can refer to a token
by its sequence in the string (an ordinal token), or assign names to
tokens for easier code maintenance and readable output.

1-5901

regexp

Ordinal Token
Operator Description Example

(expr) Capture in a token the
characters that match the
enclosed expression.

'Joh?n\s(\w*)' captures a
token that contains the last
name of any person with the
first name John or Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such
as 'title' from the string
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise,
match expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins with
Mr.

Named Token
Operator Description Example

(?<name>expr) Capture in a named token
the characters that match the
enclosed expression.

'(?<month>\d+)-(?<day>\d+)-(?<yr>\d+)'
creates named tokens for the
month, day, and year in an
input date string of the form
mm-dd-yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</\k<tag>>'
captures tokens for HTML tags,
such as 'title' from the string
'<title>Some text</title>'.

(?(name)expr1|expr2) If the named token is found,
then match expr1. Otherwise,
match expr2.

'Mr(?<sex>s?)\..*?(?(sex)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins
with Mr.

1-5902

regexp

Note If an expression has nested parentheses, MATLAB captures
tokens that correspond to the outermost set of parentheses. For
example, given the search pattern '(and(y|rew))', MATLAB creates a
token for 'andrew' but not for 'y' or 'rew'.

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a
regular expression to determine the text to match.

The parentheses that enclose dynamic expressions do not create a
capturing group.

Operator Description Example

(??expr) Parse expr and include the
resulting string in the match
expression.

When parsed, expr must
correspond to a complete, valid
regular expression. Dynamic
expressions that use the backslash
escape character (\) require two
backslashes: one for the initial
parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters
to match by reading a digit at
the beginning of the string. The
dynamic expression is enclosed
in a second set of parentheses
so that the resulting match is
captured in a token. For instance,
matching '5XXXXX' captures
tokens for '5' and 'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include
the string returned by the
command in the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at
least four characters long, such
as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard
any output the command returns.
(Helpful for diagnosing regular
expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include
double letters (such as pp), and
displays intermediate results.

1-5903

regexp

Within dynamic expressions, use the following operators to define
replacement strings.

Replacement
String Operator

Description

$& or $0 Portion of the input string that is currently a match

$` Portion of the input string that precedes the current match

$' Portion of the input string that follows the current match (use
$'' to represent the string $')

$N Nth token

$<name> Named token

${cmd} String returned when MATLAB executes the command, cmd

Comments

Characters Description Example

(?#comment) Insert a comment in the regular
expression. The comment text is
ignored when matching the input
string.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An
alternative to using a search flag within an expression is to pass an
option input argument.

Flag Description

(?-i) Match letter case (default for regexp and regexprep).

(?i) Do not match letter case (default for regexpi).

1-5904

regexp

Flag Description

(?s) Match dot (.) in the pattern string with any character (default).

(?-s) Match dot in the pattern with any character that is not a newline
character.

(?-m) Match the ^ and $ metacharacters at the beginning and end of
a string (default).

(?m) Match the ^ and $metacharacters at the beginning and end of a line.

(?-x) Include space characters and comments when matching (default).

(?x) Ignore space characters and comments when matching. Use '\ '
and '\#' to match space and # characters.

The expression that the flag modifies can appear either after the
parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:),
such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger
expression.

Data Types
char | cell

outkey - Keyword that indicates which outputs to return
'start' | 'end' | 'tokenExtents' | 'match' | 'tokens' | 'names'
| 'split'

Keyword that indicates which outputs to return, specified as one of
the following strings.

1-5905

regexp

Output Keyword Returns

'start' Starting indices of all matches,
startIndex

'end' Ending indices of all matches, endIndex

'tokenExtents' Starting and ending indices of all tokens

'match' Text of each substring that matches the
pattern in expression

'tokens' Text of each captured token in str

'names' Name and text of each named token

'split' Text of nonmatching substrings of str

Data Types
char

option - Search option
'once' | 'warnings' | 'ignorecase' | 'emptymatch' |
'dotexceptnewline' | 'lineanchors' | ...

Search option, specified as a string. Options come in pairs: one option
that corresponds to the default behavior, and one option that allows you
to override the default. Specify only one option from a pair. Options
can appear in any order.

Default Override Description

'all' 'once' Match the expression as many times as
possible (default), or only once.

'nowarnings' 'warnings' Suppress warnings (default), or display them.

'matchcase' 'ignorecase' Match letter case (default), or ignore case.

'noemptymatch' 'emptymatch' Ignore zero length matches (default), or
include them.

1-5906

regexp

Default Override Description

'dotall' 'dotexceptnewline' Match dot with any character (default), or all
except newline (\n).

'stringanchors' 'lineanchors' Apply ^ and $ metacharacters to the
beginning and end of a string (default), or to
the beginning and end of a line.

'literalspacing' 'freespacing' Include space characters and comments when
matching (default), or ignore them. With
freespacing, use '\ ' and '\#' to match
space and # characters.

Data Types
char

Output
Arguments

startIndex - Starting index of each match
row vector | cell array of row vectors

Starting indices of each match, returned as a row vector or cell array,
as follows:

• If str and expression are both strings, the output is a row vector
(or, if there are no matches, an empty array).

• If str or expression is a cell array of strings, the output is a cell
array of row vectors. The output cell array has the same dimensions
as the input cell array.

• If str and expression are both cell arrays, they must have the same
dimensions. The output is a cell array with the same dimensions.

endIndex - Ending index of each match
row vector | cell array of row vectors

Ending index of each match, returned as a row vector or cell array,
as follows:

• If str and expression are both strings, the output is a row vector
(or, if there are no matches, an empty array).

1-5907

regexp

• If str or expression is a cell array of strings, the output is a cell
array of row vectors. The output cell array has the same dimensions
as the input cell array.

• If str and expression are both cell arrays, they must have the same
dimensions. The output is a cell array with the same dimensions.

out - Information about matches
numeric array | cell array | structure array

Information about matches, returned as a numeric, cell, or structure
array. The information in the output depends upon the value you
specify for outkey, as follows.

Output
Keyword

Output Description Output Type and Dimensions

'start' Starting indices of
matches

'end' Ending indices of
matches

For both 'start' and 'end':

• If str and expression are both strings,
the output is a row vector (or, if there are no
matches, an empty array).

• If str or expression is a cell array of
strings, the output is a cell array of row
vectors. The output cell array has the same
dimensions as the input cell array.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

1-5908

regexp

Output
Keyword

Output Description Output Type and Dimensions

'tokenExtents' Starting and ending
indices of all tokens

By default, when returning all matches:

• If str and expression are both strings, the
output is a 1-by-n-cell array, where n is the
number of matches. Each cell contains an
m-by-2 numeric array of indices, where m is
the number of tokens in the match.

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n cell array, where
each inner cell contains an m-by-2 numeric
array.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

When you specify the 'once' option to return
only one match, the output is either an m-by-2
numeric array or a cell array with the same
dimensions as str and/or expression.

If a token is expected at a particular index N,
but is not found, then MATLAB returns extents
for that token of [N,N-1].

1-5909

regexp

Output
Keyword

Output Description Output Type and Dimensions

'match' Text of each substring
that matches
the pattern in
expression

By default, when returning all matches:

• If str and expression are both strings, the
output is a 1-by-n-cell array of strings, where
n is the number of matches.

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n cell array of
strings.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

When you specify the 'once' option to return
only one match, the output is either a string or
a cell array of strings with the same dimensions
as str and expression.

'tokens' Text of each captured
token in str

By default, when returning all matches:

• If str and expression are both strings,
the output is a 1-by-n-cell array, where n is
the number of matches. Each cell contains a
1-by-m cell array of strings, where m is the
number of tokens in the match.

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n cell array, where
each inner cell contains a 1-by-m cell array
of strings.

1-5910

regexp

Output
Keyword

Output Description Output Type and Dimensions

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

When you specify the 'once' option to return
only one match, the output is a 1-by-m cell array
of strings or a cell array that has the same
dimensions as str and/or expression.

If a token is expected at a particular index, but
is not found, then MATLAB returns an empty
string for the token, ''.

'names' Name and text of
each named token

For all matches:

• If str and expression are both strings, the
output is a 1-by-n structure array, where n is
the number of matches. The structure field
names correspond to the token names.

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n structure array.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

'split' Text of nonmatching
substrings of str

For all matches:

• If str and expression are both strings, the
output is a 1-by-n-cell array of strings, where
n is the number of nonmatching strings.

1-5911

regexp

Output
Keyword

Output Description Output Type and Dimensions

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n cell array of
strings.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

Examples Find Patterns in Single Strings

Find words that start with c, end with t, and contain one or more
vowels between them.

str = 'bat cat can car coat court CUT ct CAT-scan';
expression = 'c[aeiou]+t';
startIndex = regexp(str,expression)

startIndex =

5 17

The regular expression 'c[aeiou]+t' specifies this pattern:

• c must be the first character.

• c must be followed by one of the characters inside the brackets,
[aeiou].

• The bracketed pattern must occur one or more times, as indicated
by the + operator.

1-5912

regexp

• t must be the last character, with no characters between the
bracketed pattern and the t.

Values in startIndex indicate the index of the first character of each
word that matches the regular expression. The matching word cat
starts at index 5, and coat starts at index 17. The words CUT and CAT
do not match because they are uppercase.

Find Patterns in Multiple Strings

Find the location of capital letters and spaces within strings in a cell
array.

str = {'Madrid, Spain','Romeo and Juliet','MATLAB is great'};
capExpr = '[A-Z]';
spaceExpr = '\s';

capStartIndex = regexp(str,capExpr);
spaceStartIndex = regexp(str,spaceExpr);

capStartIndex and spaceStartIndex are cell arrays because the input
str is a cell array.

View the indices for the capital letters.

celldisp(capStartIndex)

capStartIndex{1} =

1 9

capStartIndex{2} =

1 11

1-5913

regexp

capStartIndex{3} =

1 2 3 4 5 6

View the indices for the spaces.

celldisp(spaceStartIndex)

spaceStartIndex{1} =

8

spaceStartIndex{2} =

6 10

spaceStartIndex{3} =

7 10

Return Substrings Using match Keyword

Capture words within a string that contain the letter x.

str = 'EXTRA! The regexp function helps you relax.';
expression = '\w*x\w*';
matchStr = regexp(str,expression,'match')

1-5914

regexp

matchStr =

'regexp' 'relax'

The regular expression '\w*x\w*' specifies that the string:

• Begins with any number of alphanumeric or underscore characters,
\w*.

• Contains the lowercase letter x.

• Ends with any number of alphanumeric or underscore characters
after the x, including none, as indicated by \w*.

Split String at Delimiter Using split Keyword

Split a string into several substrings, where each substring is delimited
by a ^ character.

str = ['Split ^this string into ^several pieces'];
expression = '\^';
splitStr = regexp(str,expression,'split')

splitStr =

'Split ' 'this string into ' 'several pieces'

Because the carat symbol has special meaning in regular expressions,
precede it with the escape character, a backslash (\). To split a string
at other delimiters, such as a semicolon, you do not need to include
the backslash.

1-5915

regexp

Return Both Matching and Nonmatching Substrings

Capture parts of a string that match a regular expression using the
'match' keyword, and the remaining parts that do not match using
the 'split' keyword.

str = 'She sells sea shells by the seashore.';
expression = '[Ss]h.';
[match,noMatch] = regexp(str,expression,'match','split')

match =

'She' 'she' 'sho'

noMatch =

'' ' sells sea ' 'lls by the sea' 're.'

The regular expression '[Ss]h.' specifies that:

• S or s is the first character.

• h is the second character.

• The third character can be anything, including a space, as indicated
by the dot (.).

When the first (or last) character in a string matches a regular
expression, the first (or last) return value from the 'split' keyword
is an empty string.

Optionally, reassemble the original string from the substrings.

combinedStr = strjoin(noMatch,match)

combinedStr =

1-5916

regexp

She sells sea shells by the seashore.

Capture Substrings of Matches Using Ordinal Tokens

Find the names of HTML tags by defining a token within a regular
expression. Tokens are indicated with parentheses, ().

str = '<title>My Title</title><p>Here is some text.</p>';
expression = '<(\w+).*>.*</\1>';
[tokens,matches] = regexp(str,expression,'tokens','match');

The regular expression <(\w+).*>.*</\1> specifies this pattern:

• <(\w+) finds an opening angle bracket followed by one or more
alphanumeric or underscore characters. Enclosing \w+ in parentheses
captures the name of the HTML tag in a token.

• .*> finds any number of additional characters, such as HTML
attributes, and a closing angle bracket.

• </\1> finds the end tag corresponding to the first token (indicated by
\1). The end tag has the form <\tagname>.

View the tokens and matching substrings.

celldisp(tokens)

tokens{1}{1} =
title

tokens{2}{1} =
p

celldisp(matches)

matches{1} =
<title>My Title</title>

1-5917

regexp

matches{2} =
<p>Here is some text.</p>

Capture Substrings of Matches Using Named Tokens

Parse dates that can appear with either the day or the month first, in
these forms: mm/dd/yyyy or dd-mm-yyyy. Use named tokens to identify
each part of the date.

str = '01/11/2000 20-02-2020 03/30/2000 16-04-2020';
expression = ['(?<month>\d+)/(?<day>\d+)/(?<year>\d+)|'...

'(?<day>\d+)-(?<month>\d+)-(?<year>\d+)'];
tokenNames = regexp(str,expression,'names');

The regular expression specifies this pattern:

• (?<name>\d+) finds one or more numeric digits and assigns the
result to the token indicated by name.

• | is the logical or operator, which indicates that there are two
possible patterns for dates. In the first pattern, slashes (/) separate
the tokens. In the second pattern, hyphens (-) separate the tokens.

View the named tokens.

for k = 1:length(tokenNames)
disp(tokenNames(k))

end

month: '01'
day: '11'

year: '2000'

month: '02'
day: '20'

year: '2020'

month: '03'
day: '30'

year: '2000'

1-5918

regexp

month: '04'
day: '16'

year: '2020'

Perform Case-Insensitive Matches

Find both uppercase and lowercase instances of a word.

By default, regexp performs case-sensitive matching.

str = 'A string with UPPERCASE and lowercase text.';
expression = '\w*case';
matchStr = regexp(str,expression,'match')

matchStr =

'lowercase'

The regular expression specifies that the string:

• Begins with any number of alphanumeric or underscore characters,
\w*.

• Ends with the literal text case.

The regexpi function uses the same syntax as regexp, but performs
case-insensitive matching.

matchWithRegexpi = regexpi(str,expression,'match')

matchWithRegexpi =

'UPPERCASE' 'lowercase'

1-5919

regexp

Alternatively, disable case-sensitive matching for regexp using the
'ignorecase' option.

matchWithIgnorecase = regexp(str,expression,'match','ignorecase')

matchWithIgnorecase =

'UPPERCASE' 'lowercase'

For multiple expressions, disable case-sensitive matching for selected
expressions using the (?i) search flag.

expression = {'(?-i)\w*case';...
'(?i)\w*case'};

matchStr = regexp(str,expression,'match');
celldisp(matchStr)

matchStr{1}{1} =

lowercase

matchStr{2}{1} =

UPPERCASE

matchStr{2}{2} =

lowercase

1-5920

regexp

Parse Strings with Newline Characters

Create a string that contains a newline, \n, and parse the string using a
regular expression.

str = sprintf('abc\n de');
expression = '.*';
matchStr = regexp(str,expression,'match')

matchStr =

[1x7 char]

By default, the dot (.) matches every character, including the newline,
and returns a single match that is equivalent to the original string.

Exclude newline characters from the match using the
'dotexceptnewline' option. This returns separate matches for each
line of text.

matchStrNoNewline = regexp(str,expression,'match','dotexceptnewline')

matchStrNoNewline =

'abc' ' de'

Find the first or last character of each line using the ^ or $
metacharacters and the 'lineanchors' option.

expression = '.$';
lastInLine = regexp(str,expression,'match','lineanchors')

lastInLine =

1-5921

regexp

'c' 'e'

Definitions Tokens

Tokens are portions of the matched text that correspond to portions of
the regular expression. To create tokens, enclose part of the regular
expression in parentheses.

For example, this expression finds a date of the form dd-mmm-yyyy,
including tokens for the day, month, and year.

str = 'Here is a date: 01-Apr-2020';
expression = '(\d+)-(\w+)-(\d+)';

mydate = regexp(str,expression,'tokens');
mydate{:}

ans =
'01' 'April' '2020'

You can associate names with tokens so that they are more easily
identifiable:

str = 'Here is a date: 01-Apr-2020';
expression = '(?<day>\d+)-(?<month>\w+)-(?<year>\d+)';

mydate = regexp(str,expression,'names')

mydate =
day: '01'

month: 'Apr'
year: '2020'

For more information, see “Tokens in Regular Expressions”.

Algorithms MATLAB parses each input string from left to right, attempting to
match the text in the string with the first element of the regular

1-5922

regexp

expression. During this process, MATLAB skips over any text that
does not match.

When MATLAB finds the first match, it continues parsing the string to
match the second piece of the expression, and so on.

Tips • Use strfind to find an exact character match within a string. Use
regexp to look for a pattern of characters.

See Also regexpi | regexprep | regexptranslate | strfind | strjoin |
strsplit | strrep

Concepts • “Regular Expressions”
• “Lookahead Assertions in Regular Expressions”
• “Dynamic Regular Expressions”

1-5923

regexpi

Purpose Match regular expression (case insensitive)

Syntax startIndex = regexpi(str,expression)
[startIndex,endIndex] = regexpi(str,expression)

out = regexpi(str,expression,outkey)
[out1,...,outN] =
regexpi(str,expression,outkey1,...,outkeyN)

___ = regexpi(___ ,option1,...,optionM)

Description startIndex = regexpi(str,expression) returns the starting index
of each substring of str that matches the character patterns specified
by the regular expression, without regard to letter case. If there are no
matches, startIndex is an empty array.

[startIndex,endIndex] = regexpi(str,expression) returns the
starting and ending indices of all matches.

out = regexpi(str,expression,outkey) returns the output specified
by outkey. For example, if outkey is 'match', then regexpi returns
the substrings that match the expression rather than their starting
indices.

[out1,...,outN] =
regexpi(str,expression,outkey1,...,outkeyN) returns the outputs
specified by multiple output keywords, in the specified order.
For example, if you specify 'match','tokens', then regexpi
returns substrings that match the entire expression and tokens
that match parts of the expression.

___ = regexpi(___ ,option1,...,optionM) modifies the search using
the specified option flags. For example, specify 'matchcase' to perform
a case-sensitive match. You can include any of the inputs and request
any of the outputs from previous syntaxes.

1-5924

regexpi

Input
Arguments

str - Input text
string | cell array of strings

Input text, specified as a string or a cell array of strings. Each string
can be of any length and contain any characters.

If str and expression are both cell arrays, they must have the same
dimensions.

Data Types
char | cell

expression - Regular expression
string | cell array of strings

Regular expression, specified as a string or a cell array of strings. Each
expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space
characters. Use them to construct a generalized pattern of characters.

Metacharacter Description Example

. Any single character, including
white space

'..ain' matches sequences of five
consecutive characters that end with
'ain'.

[c1c2c3] Any character contained within
the brackets. The following
characters are treated literally:
$ | . * + ? and - when not
used to indicate a range.

'[rp.]ain' matches 'rain' or
'pain' or `.ain'.

1-5925

regexpi

Metacharacter Description Example

[^c1c2c3] Any character not contained
within the brackets. The
following characters are treated
literally: $ | . * + ? and
- when not used to indicate a
range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and `*ain'. For
example, it matches 'gain', 'lain',
or 'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character
in the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For
English character sets, \w is
equivalent to [a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not
alphabetic, numeric, or
underscore. For English
character sets, \W is equivalent
to [^a-zA-Z_0-9]

'\W*' identifies a substring that is
not a word.

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end
with the letter n, followed by a
white-space character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit
followed by any non-white-space
character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character;
equivalent to [^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

1-5926

regexpi

Metacharacter Description Example

\oN or \o{N} Character of octal value N '\o{40}' matches the space
character, defined by octal 40.

\xN or \x{N} Character of hexadecimal value
N

'\x2C'matches the comma character,
defined by hex 2C.

Character Representation

Operator Description

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\char Any character with special meaning in regular expressions that you want
to match literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a string pattern must occur in
the matching string.

Quantifier
Matches the expression when
it occurs... Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.

expr? 0 times or 1 time. '\w*(\.m)?' matches words that
optionally end with the extension .m.

1-5927

regexpi

Quantifier
Matches the expression when
it occurs... Example

expr+ 1 or more times consecutively. '' matches
an HTML tag when the file
name contains one or more characters.

expr{m,n} At least m times, but no more than
n times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to *
and +, respectively.

''
matches an <a> HTML tag when
the file name contains one or more
characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive
digits.

Quantifiers can appear in three modes, described in the following table.
q represents any of the quantifiers in the previous table.

Mode Description Example

exprq Greedy expression: match as many
characters as possible.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few
characters as necessary.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*?>' ends each
match at the first occurrence of the
closing bracket (>):

1-5928

regexpi

Mode Description Example

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as
much as possible, but do not rescan
any portions of the string.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*+>' does not
return any matches, because the
closing bracket is captured using .*,
and is not rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to
multiple elements, or disable backtracking in a specific group.

Grouping
Operator Description Example

(expr) Group elements of the expression
and capture tokens.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}'
matches two consecutive patterns
of a vowel followed by a nonvowel,
such as 'anon'.

Without grouping,
'[aeiou][^aeiou]{2}'matches a
vowel followed by two nonvowels.

1-5929

regexpi

Grouping
Operator Description Example

(?>expr) Group atomically. Do not backtrack
within the group to complete the
match, and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using
the atomic group, Z is captured
using .* and is not rescanned.

(expr1|expr2)Match expression expr1 or
expression expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress
tokens or group atomically.

'(let|tel)\w+' matches words in
a string that start with let or tel.

Anchors

Anchors in the expression match the beginning or end of the string
or word.

Anchor Matches the... Example

^expr Beginning of the input string. '^M\w*' matches a word starting
with M at the beginning of the string.

expr$ End of the input string. '\w*m$' matches words ending with
m at the end of the string.

\<expr Beginning of a word. '\<n\w*' matches any words
starting with n.

expr\> End of a word. '\w*e\>'matches any words ending
with e.

Lookaround Assertions

Lookaround assertions look for string patterns that immediately
precede or follow the intended match, but are not part of the match.

1-5930

regexpi

The pointer remains at the current location, and characters that
correspond to the test expression are not captured or discarded.
Therefore, lookahead assertions can match overlapping character
groups.

Lookaround
Assertion Description Example

expr(?=test) Look ahead for characters that
match test.

'\w*(?=ing)' matches strings that
are followed by ing, such as 'Fly'
and 'fall' in the input string
'Flying, not falling.'

expr(?!test) Look ahead for characters that do
not match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that
match test..

'(?<=re)\w*' matches strings that
follow 're', such as 'new', 'use',
and 'cycle' in the input string
'renew, reuse, recycle'

(?<!test)expr Look behind for characters that do
not match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do
not precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation
is equivalent to a logical AND.

Operation Description Example

(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches
consonants.

(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches
consonants.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given
condition, and then use the outcome to determine which string, if any,

1-5931

regexpi

to match next. These operators support logical OR, and if or if/else
conditions.

Conditions can be tokens, lookaround operators, or dynamic expressions
of the form (?@cmd). Dynamic expressions must return a logical or
numeric value.

Conditional
Operator Description Example

expr1|expr2 Match expression expr1 or
expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+'matches words
in a string that start with let
or tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'
matches a drive name, such as
C:\, when run on a Windows
system.

(?(cond)expr1|expr2) If condition cond is true, then
match expr1. Otherwise,
match expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins with
Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing
part of the regular expression in parentheses. You can refer to a token
by its sequence in the string (an ordinal token), or assign names to
tokens for easier code maintenance and readable output.

1-5932

regexpi

Ordinal Token
Operator Description Example

(expr) Capture in a token the
characters that match the
enclosed expression.

'Joh?n\s(\w*)' captures a
token that contains the last
name of any person with the
first name John or Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such
as 'title' from the string
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise,
match expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins with
Mr.

Named Token
Operator Description Example

(?<name>expr) Capture in a named token
the characters that match the
enclosed expression.

'(?<month>\d+)-(?<day>\d+)-(?<yr>\d+)'
creates named tokens for the
month, day, and year in an
input date string of the form
mm-dd-yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</\k<tag>>'
captures tokens for HTML tags,
such as 'title' from the string
'<title>Some text</title>'.

(?(name)expr1|expr2) If the named token is found,
then match expr1. Otherwise,
match expr2.

'Mr(?<sex>s?)\..*?(?(sex)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins
with Mr.

1-5933

regexpi

Note If an expression has nested parentheses, MATLAB captures
tokens that correspond to the outermost set of parentheses. For
example, given the search pattern '(and(y|rew))', MATLAB creates a
token for 'andrew' but not for 'y' or 'rew'.

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a
regular expression to determine the text to match.

The parentheses that enclose dynamic expressions do not create a
capturing group.

Operator Description Example

(??expr) Parse expr and include the
resulting string in the match
expression.

When parsed, expr must
correspond to a complete, valid
regular expression. Dynamic
expressions that use the backslash
escape character (\) require two
backslashes: one for the initial
parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters
to match by reading a digit at
the beginning of the string. The
dynamic expression is enclosed
in a second set of parentheses
so that the resulting match is
captured in a token. For instance,
matching '5XXXXX' captures
tokens for '5' and 'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include
the string returned by the
command in the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at
least four characters long, such
as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard
any output the command returns.
(Helpful for diagnosing regular
expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include
double letters (such as pp), and
displays intermediate results.

1-5934

regexpi

Within dynamic expressions, use the following operators to define
replacement strings.

Replacement
String Operator

Description

$& or $0 Portion of the input string that is currently a match

$` Portion of the input string that precedes the current match

$' Portion of the input string that follows the current match (use
$'' to represent the string $')

$N Nth token

$<name> Named token

${cmd} String returned when MATLAB executes the command, cmd

Comments

Characters Description Example

(?#comment) Insert a comment in the regular
expression. The comment text is
ignored when matching the input
string.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An
alternative to using a search flag within an expression is to pass an
option input argument.

Flag Description

(?-i) Match letter case (default for regexp and regexprep).

(?i) Do not match letter case (default for regexpi).

1-5935

regexpi

Flag Description

(?s) Match dot (.) in the pattern string with any character (default).

(?-s) Match dot in the pattern with any character that is not a newline
character.

(?-m) Match the ^ and $ metacharacters at the beginning and end of
a string (default).

(?m) Match the ^ and $metacharacters at the beginning and end of a line.

(?-x) Include space characters and comments when matching (default).

(?x) Ignore space characters and comments when matching. Use '\ '
and '\#' to match space and # characters.

The expression that the flag modifies can appear either after the
parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:),
such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger
expression.

Data Types
char | cell

outkey - Keyword that indicates which outputs to return
'start' | 'end' | 'tokenExtents' | 'match' | 'tokens' | 'names'
| 'split'

Keyword that indicates which outputs to return, specified as one of
the following strings.

1-5936

regexpi

Output Keyword Returns

'start' Starting indices of all matches,
startIndex

'end' Ending indices of all matches, endIndex

'tokenExtents' Starting and ending indices of all tokens

'match' Text of each substring that matches the
pattern in expression

'tokens' Text of each captured token in str

'names' Name and text of each named token

'split' Text of nonmatching substrings of str

Data Types
char

option - Search option
'once' | 'warnings' | 'matchcase' | 'emptymatch' |
'dotexceptnewline' | 'lineanchors' | ...

Search option, specified as a string. Options come in pairs: one option
that corresponds to the default behavior, and one option that allows you
to override the default. Specify only one option from a pair. Options
can appear in any order.

Default Override Description

'all' 'once' Match the expression as many times as
possible (default), or only once.

'nowarnings' 'warnings' Suppress warnings (default), or display them.

'ignorecase' 'matchcase' Ignore letter case (default), or match case.

'noemptymatch' 'emptymatch' Ignore zero length matches (default), or
include them.

1-5937

regexpi

Default Override Description

'dotall' 'dotexceptnewline' Match dot with any character (default), or all
except newline (\n).

'stringanchors' 'lineanchors' Apply ^ and $ metacharacters to the
beginning and end of a string (default), or to
the beginning and end of a line.

'literalspacing' 'freespacing' Include space characters and comments when
matching (default), or ignore them. With
freespacing, use '\ ' and '\#' to match
space and # characters.

Data Types
char

Output
Arguments

startIndex - Starting index of each match
row vector | cell array of row vectors

Starting indices of each match, returned as a row vector or cell array,
as follows:

• If str and expression are both strings, the output is a row vector
(or, if there are no matches, an empty array).

• If str or expression is a cell array of strings, the output is a cell
array of row vectors. The output cell array has the same dimensions
as the input cell array.

• If str and expression are both cell arrays, they must have the same
dimensions. The output is a cell array with the same dimensions.

endIndex - Ending index of each match
row vector | cell array of row vectors

Ending index of each match, returned as a row vector or cell array,
as follows:

• If str and expression are both strings, the output is a row vector
(or, if there are no matches, an empty array).

1-5938

regexpi

• If str or expression is a cell array of strings, the output is a cell
array of row vectors. The output cell array has the same dimensions
as the input cell array.

• If str and expression are both cell arrays, they must have the same
dimensions. The output is a cell array with the same dimensions.

out - Information about matches
numeric array | cell array | structure array

Information about matches, returned as a numeric, cell, or structure
array. The information in the output depends upon the value you
specify for outkey, as follows.

Output
Keyword

Output Description Output Type and Dimensions

'start' Starting indices of
matches

'end' Ending indices of
matches

For both 'start' and 'end':

• If str and expression are both strings,
the output is a row vector (or, if there are no
matches, an empty array).

• If str or expression is a cell array of
strings, the output is a cell array of row
vectors. The output cell array has the same
dimensions as the input cell array.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

1-5939

regexpi

Output
Keyword

Output Description Output Type and Dimensions

'tokenExtents' Starting and ending
indices of all tokens

By default, when returning all matches:

• If str and expression are both strings, the
output is a 1-by-n-cell array, where n is the
number of matches. Each cell contains an
m-by-2 numeric array of indices, where m is
the number of tokens in the match.

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n cell array, where
each inner cell contains an m-by-2 numeric
array.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

When you specify the 'once' option to return
only one match, the output is either an m-by-2
numeric array or a cell array with the same
dimensions as str and/or expression.

If a token is expected at a particular index N,
but is not found, then MATLAB returns extents
for that token of [N,N-1].

1-5940

regexpi

Output
Keyword

Output Description Output Type and Dimensions

'match' Text of each substring
that matches
the pattern in
expression

By default, when returning all matches:

• If str and expression are both strings, the
output is a 1-by-n-cell array of strings, where
n is the number of matches.

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n cell array of
strings.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

When you specify the 'once' option to return
only one match, the output is either a string or
a cell array of strings with the same dimensions
as str and expression.

'tokens' Text of each captured
token in str

By default, when returning all matches:

• If str and expression are both strings,
the output is a 1-by-n-cell array, where n is
the number of matches. Each cell contains a
1-by-m cell array of strings, where m is the
number of tokens in the match.

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n cell array, where
each inner cell contains a 1-by-m cell array
of strings.

1-5941

regexpi

Output
Keyword

Output Description Output Type and Dimensions

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

When you specify the 'once' option to return
only one match, the output is a 1-by-m cell array
of strings or a cell array that has the same
dimensions as str and/or expression.

If a token is expected at a particular index, but
is not found, then MATLAB returns an empty
string for the token, ''.

'names' Name and text of
each named token

For all matches:

• If str and expression are both strings, the
output is a 1-by-n structure array, where n is
the number of matches. The structure field
names correspond to the token names.

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n structure array.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

'split' Text of nonmatching
substrings of str

For all matches:

• If str and expression are both strings, the
output is a 1-by-n-cell array of strings, where
n is the number of nonmatching strings.

1-5942

regexpi

Output
Keyword

Output Description Output Type and Dimensions

• If str or expression is a cell array of
strings, the output is a cell array with the
same dimensions as the input cell array.
Each cell contains a 1-by-n cell array of
strings.

• If str and expression are both cell arrays,
they must have the same dimensions.
The output is a cell array with the same
dimensions.

Examples Pattern Matching

Find words that start with c, end with t, and contain one or more
vowels between them.

str = 'bat cat can car COAT court cut ct CAT-scan';
expression = 'c[aeiou]+t';
startIndex = regexpi(str,expression)

startIndex =
5 17 28 35

Values in startIndex indicate the index of the first character of each
word that matches the regular expression.

The regular expression 'c[aeiou]+t' specifies this pattern:

• c must be the first character.

• c must be followed by one of the characters inside the brackets,
[aeiou].

• The bracketed pattern must occur one or more times, as indicated
by the + operator.

1-5943

regexpi

• t must be the last character, with no characters between the
bracketed pattern and the t.

Case-Sensitive Match

Match letter case in all or part of an expression.

By default, regexpi performs case-insensitive matching.

str = 'A string with UPPERCASE and lowercase text.';
expression = '\w*case';
matchStr = regexpi(str,expression,'match')

matchStr =
'UPPERCASE' 'lowercase'

Use the regexp function with the same syntax as regexpi to perform
case-sensitive matching.

matchWithRegexp = regexp(str,expression,'match')

matchWithRegexp =
'lowercase'

To disable case-sensitive matching for regexp, use the 'ignorecase'
option.

matchWithIgnorecase = regexp(str,expression,'match','ignorecase')

matchWithIgnorecase =
'UPPERCASE' 'lowercase'

For multiple expressions, enable and disable case-insensitive matching
for selected expressions using the (?i) and (?-i) search flags.

expression = {'(?-i)\w*case';...
'(?i)\w*case'};

matchStr = regexp(str,expression,'match');
celldisp(matchStr)

1-5944

regexpi

matchStr{1}{1} =
lowercase

matchStr{2}{1} =
UPPERCASE

matchStr{2}{2} =
lowercase

Definitions Tokens

Tokens are portions of the matched text that correspond to portions of
the regular expression. To create tokens, enclose part of the regular
expression in parentheses.

For example, this expression finds a date of the form dd-mmm-yyyy,
including tokens for the day, month, and year.

str = 'Here is a date: 01-Apr-2020';
expression = '(\d+)-(\w+)-(\d+)';

mydate = regexp(str,expression,'tokens');
mydate{:}

ans =
'01' 'April' '2020'

You can associate names with tokens so that they are more easily
identifiable:

str = 'Here is a date: 01-Apr-2020';
expression = '(?<day>\d+)-(?<month>\w+)-(?<year>\d+)';

mydate = regexp(str,expression,'names')

mydate =
day: '01'

month: 'Apr'
year: '2020'

1-5945

regexpi

For more information, see “Tokens in Regular Expressions”.

See Also regexp | regexprep | regexptranslate | strfind | strjoin |
strsplit | strrep

Concepts • “Lookahead Assertions in Regular Expressions”
• “Dynamic Regular Expressions”

1-5946

regexprep

Purpose Replace string using regular expression

Syntax newStr = regexprep(str,expression,replace)
newStr =
regexprep(str,expression,replace,option1,...optionM)

Description newStr = regexprep(str,expression,replace) replaces the text in
str that matches expression with the text described by replace.
The regexprep function returns the updated text in newStr.

• If str is a string, then newStr is also a string, even when
expression or replace is a cell array of strings. When expression
is a cell array, regexprep applies the first expression to the string,
and then applies each subsequent expression to the preceding result.

• If str is a cell array, then newStr is a cell array with the same
dimensions as str. For each element of str, the regexprep function
applies each expression in sequence.

• If there are no matches to expression, then newStr is equivalent
to str.

newStr =
regexprep(str,expression,replace,option1,...optionM) modifies
the search using the specified options. For example, specify
'ignorecase' to perform a case-insensitive match.

Input
Arguments

str - Text to update
string | cell array of strings

Text to update, specified as a string or a cell array of strings.

Data Types
char | cell

expression - Regular expression
string | cell array of strings

1-5947

regexprep

Regular expression, specified as a string or a cell array of strings. Each
expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space
characters. Use them to construct a generalized pattern of characters.

Metacharacter Description Example

. Any single character, including
white space

'..ain' matches sequences of five
consecutive characters that end with
'ain'.

[c1c2c3] Any character contained within
the brackets. The following
characters are treated literally:
$ | . * + ? and - when not
used to indicate a range.

'[rp.]ain' matches 'rain' or
'pain' or `.ain'.

[^c1c2c3] Any character not contained
within the brackets. The
following characters are treated
literally: $ | . * + ? and
- when not used to indicate a
range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and `*ain'. For
example, it matches 'gain', 'lain',
or 'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character
in the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For
English character sets, \w is
equivalent to [a-zA-Z_0-9]

'\w*' identifies a word.

1-5948

regexprep

Metacharacter Description Example

\W Any character that is not
alphabetic, numeric, or
underscore. For English
character sets, \W is equivalent
to [^a-zA-Z_0-9]

'\W*' identifies a substring that is
not a word.

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end
with the letter n, followed by a
white-space character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit
followed by any non-white-space
character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character;
equivalent to [^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space
character, defined by octal 40.

\xN or \x{N} Character of hexadecimal value
N

'\x2C'matches the comma character,
defined by hex 2C.

Character Representation

Operator Description

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

1-5949

regexprep

Operator Description

\v Vertical tab

\char Any character with special meaning in regular expressions that you want
to match literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a string pattern must occur in
the matching string.

Quantifier
Matches the expression when
it occurs... Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.

expr? 0 times or 1 time. '\w*(\.m)?' matches words that
optionally end with the extension .m.

expr+ 1 or more times consecutively. '' matches
an HTML tag when the file
name contains one or more characters.

expr{m,n} At least m times, but no more than
n times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to *
and +, respectively.

''
matches an <a> HTML tag when
the file name contains one or more
characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive
digits.

Quantifiers can appear in three modes, described in the following table.
q represents any of the quantifiers in the previous table.

1-5950

regexprep

Mode Description Example

exprq Greedy expression: match as many
characters as possible.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few
characters as necessary.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*?>' ends each
match at the first occurrence of the
closing bracket (>):

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as
much as possible, but do not rescan
any portions of the string.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*+>' does not
return any matches, because the
closing bracket is captured using .*,
and is not rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to
multiple elements, or disable backtracking in a specific group.

1-5951

regexprep

Grouping
Operator Description Example

(expr) Group elements of the expression
and capture tokens.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}'
matches two consecutive patterns
of a vowel followed by a nonvowel,
such as 'anon'.

Without grouping,
'[aeiou][^aeiou]{2}'matches a
vowel followed by two nonvowels.

(?>expr) Group atomically. Do not backtrack
within the group to complete the
match, and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using
the atomic group, Z is captured
using .* and is not rescanned.

(expr1|expr2)Match expression expr1 or
expression expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress
tokens or group atomically.

'(let|tel)\w+' matches words in
a string that start with let or tel.

Anchors

Anchors in the expression match the beginning or end of the string
or word.

1-5952

regexprep

Anchor Matches the... Example

^expr Beginning of the input string. '^M\w*' matches a word starting
with M at the beginning of the string.

expr$ End of the input string. '\w*m$' matches words ending with
m at the end of the string.

\<expr Beginning of a word. '\<n\w*' matches any words
starting with n.

expr\> End of a word. '\w*e\>'matches any words ending
with e.

Lookaround Assertions

Lookaround assertions look for string patterns that immediately
precede or follow the intended match, but are not part of the match.

The pointer remains at the current location, and characters that
correspond to the test expression are not captured or discarded.
Therefore, lookahead assertions can match overlapping character
groups.

Lookaround
Assertion Description Example

expr(?=test) Look ahead for characters that
match test.

'\w*(?=ing)' matches strings that
are followed by ing, such as 'Fly'
and 'fall' in the input string
'Flying, not falling.'

expr(?!test) Look ahead for characters that do
not match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

1-5953

regexprep

Lookaround
Assertion Description Example

(?<=test)expr Look behind for characters that
match test..

'(?<=re)\w*' matches strings that
follow 're', such as 'new', 'use',
and 'cycle' in the input string
'renew, reuse, recycle'

(?<!test)expr Look behind for characters that do
not match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do
not precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation
is equivalent to a logical AND.

Operation Description Example

(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches
consonants.

(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches
consonants.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given
condition, and then use the outcome to determine which string, if any,
to match next. These operators support logical OR, and if or if/else
conditions.

Conditions can be tokens, lookaround operators, or dynamic expressions
of the form (?@cmd). Dynamic expressions must return a logical or
numeric value.

1-5954

regexprep

Conditional
Operator Description Example

expr1|expr2 Match expression expr1 or
expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+'matches words
in a string that start with let
or tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'
matches a drive name, such as
C:\, when run on a Windows
system.

(?(cond)expr1|expr2) If condition cond is true, then
match expr1. Otherwise,
match expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins with
Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing
part of the regular expression in parentheses. You can refer to a token
by its sequence in the string (an ordinal token), or assign names to
tokens for easier code maintenance and readable output.

Ordinal Token
Operator Description Example

(expr) Capture in a token the
characters that match the
enclosed expression.

'Joh?n\s(\w*)' captures a
token that contains the last
name of any person with the
first name John or Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such

1-5955

regexprep

Ordinal Token
Operator Description Example

as 'title' from the string
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise,
match expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins with
Mr.

Named Token
Operator Description Example

(?<name>expr) Capture in a named token
the characters that match the
enclosed expression.

'(?<month>\d+)-(?<day>\d+)-(?<yr>\d+)'
creates named tokens for the
month, day, and year in an
input date string of the form
mm-dd-yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</\k<tag>>'
captures tokens for HTML tags,
such as 'title' from the string
'<title>Some text</title>'.

(?(name)expr1|expr2) If the named token is found,
then match expr1. Otherwise,
match expr2.

'Mr(?<sex>s?)\..*?(?(sex)her|his)
\w*' matches strings that
include her when the string
begins with Mrs, or that include
his when the string begins
with Mr.

1-5956

regexprep

Note If an expression has nested parentheses, MATLAB captures
tokens that correspond to the outermost set of parentheses. For
example, given the search pattern '(and(y|rew))', MATLAB creates a
token for 'andrew' but not for 'y' or 'rew'.

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a
regular expression to determine the text to match.

The parentheses that enclose dynamic expressions do not create a
capturing group.

Operator Description Example

(??expr) Parse expr and include the
resulting string in the match
expression.

When parsed, expr must
correspond to a complete, valid
regular expression. Dynamic
expressions that use the backslash
escape character (\) require two
backslashes: one for the initial
parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters
to match by reading a digit at
the beginning of the string. The
dynamic expression is enclosed
in a second set of parentheses
so that the resulting match is
captured in a token. For instance,
matching '5XXXXX' captures
tokens for '5' and 'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include
the string returned by the
command in the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at
least four characters long, such
as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard
any output the command returns.
(Helpful for diagnosing regular
expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include
double letters (such as pp), and
displays intermediate results.

1-5957

regexprep

Within dynamic expressions, use the following operators to define
replacement strings.

Replacement
String Operator

Description

$& or $0 Portion of the input string that is currently a match

$` Portion of the input string that precedes the current match

$' Portion of the input string that follows the current match (use
$'' to represent the string $')

$N Nth token

$<name> Named token

${cmd} String returned when MATLAB executes the command, cmd

Comments

Characters Description Example

(?#comment) Insert a comment in the regular
expression. The comment text is
ignored when matching the input
string.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An
alternative to using a search flag within an expression is to pass an
option input argument.

Flag Description

(?-i) Match letter case (default for regexp and regexprep).

(?i) Do not match letter case (default for regexpi).

1-5958

regexprep

Flag Description

(?s) Match dot (.) in the pattern string with any character (default).

(?-s) Match dot in the pattern with any character that is not a newline
character.

(?-m) Match the ^ and $ metacharacters at the beginning and end of
a string (default).

(?m) Match the ^ and $metacharacters at the beginning and end of a line.

(?-x) Include space characters and comments when matching (default).

(?x) Ignore space characters and comments when matching. Use '\ '
and '\#' to match space and # characters.

The expression that the flag modifies can appear either after the
parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:),
such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger
expression.

Data Types
char | cell

replace - Replacement text
string | cell array of strings

Replacement text, specified as a string or a cell array of strings, as
follows:

• If replace is a single string and expression is a cell array of strings,
then regexprep uses the same replacement text for each expression.

1-5959

regexprep

• If replace is a cell array of N strings and expression is a single
string, then regexprep attempts N matches and replacements.

• If both replace and expression are cell arrays of strings, then they
must contain the same number of elements. regexprep pairs each
replace element with its matching element in expression.

The replacement text can include regular characters, special characters
(such as tabs or new lines), or string operators, as shown in the
following tables.

Replacement
String Operator

Description

$& or $0 Portion of the input string that is currently a match

$` Portion of the input string that precedes the current match

$' Portion of the input string that follows the current match (use
$'' to represent the string $')

$N Nth token

$<name> Named token

${cmd} String returned when MATLAB executes the command, cmd

Operator Description

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

1-5960

regexprep

Operator Description

\v Vertical tab

\char Any character with special meaning in regular expressions that you want
to match literally (for example, use \\ to match a single backslash)

Data Types
char | cell

option - Search or replacement option
'once' | N | 'warnings' | 'ignorecase' | 'preservecase' |
'emptymatch' | 'dotexceptnewline' | 'lineanchors' | ...

Search or replacement option, specified as a string or an integer value,
as shown in the following table.

Options come in sets: one option that corresponds to the default
behavior, and one or two options that allow you to override the default.
Specify only one option from a set. Options can appear in any order.

Default Override Description

'once' Match and replace the expression as many
times as possible (default), or only once.

'all'

N Replace only the Nth occurrence of the match,
where N is an integer value.

'nowarnings' 'warnings' Suppress warnings (default), or display them.

'ignorecase' Match letter case (default), or ignore case
while matching and replacing.

'matchcase'

'preservecase' Ignore case while matching, but preserve
the case of corresponding characters in the
original string while replacing.

'noemptymatch' 'emptymatch' Ignore zero length matches (default), or
include them.

1-5961

regexprep

Default Override Description

'dotall' 'dotexceptnewline' Match dot with any character (default), or all
except newline (\n).

'stringanchors' 'lineanchors' Apply ^ and $ metacharacters to the
beginning and end of a string (default), or to
the beginning and end of a line.

'literalspacing' 'freespacing' Include space characters and comments when
matching (default), or ignore them. With
freespacing, use '\ ' and '\#' to match
space and # characters.

Data Types
char

Output
Arguments

newStr - Updated text
string | cell array of strings

Updated text, returned as a string or a cell array of strings. The data
type of newStr is the same as the data type of str.

Examples Update a Single String

Replace words that begin with M, end with y, and have at least one
character between them.

str = 'My flowers may bloom in May';
expression = 'M(\w+)y';
replace = 'April';

newStr = regexprep(str,expression,replace)

newStr =

My flowers may bloom in April

1-5962

regexprep

Include Tokens in Replacement Text

Replace variations of the phrase 'walk up' by capturing the letters
that follow 'walk' in a token.

str = 'I walk up, they walked up, we are walking up.';
expression = 'walk(\w*) up';
replace = 'ascend$1';

newStr = regexprep(str,expression,replace)

newStr =

I ascend, they ascended, we are ascending.

Include Dynamic Expression in Replacement Text

Replace lowercase letters at the beginning of sentences with their
uppercase equivalents using the upper function.

str = 'here are two sentences. neither is capitalized.';
expression = '(^|\.)\s*.';
replace = '${upper($0)}';

newStr = regexprep(str,expression,replace)

newStr =

Here are two sentences. Neither is capitalized.

The regular expression matches single characters (.) that follow the
beginning of the string (^) or a period (\.) and any whitespace (\s*).
The replace expression calls the upper function for the currently
matching character ($0).

Update Multiple Strings

Replace each occurrence of a double letter in a set of strings with the
symbols '--'.

1-5963

regexprep

str = { ...
'Whose woods these are I think I know.' ; ...
'His house is in the village though;' ; ...
'He will not see me stopping here' ; ...
'To watch his woods fill up with snow.'};

expression = '(.)\1';
replace = '--';
newStr = regexprep(str,expression,replace)

newStr =

'Whose w--ds these are I think I know.'
'His house is in the vi--age though;'
'He wi-- not s-- me sto--ing here'
'To watch his w--ds fi-- up with snow.'

Preserve Case in Original String

Ignore letter case in the regular expression when finding matches, but
mimic the letter case of the original string when updating.

str = 'My flowers may bloom in May';
expression = 'M(\w+)y';
replace = 'April';

newStr = regexprep(str,expression,replace,'preservecase')

newStr =

My flowers april bloom in April

Replace Zero-Length Matches

Insert text at the beginning of a string using the '^' operator, which
returns a zero-length match, and the 'emptymatch' keyword.

str = 'abc';
expression = '^';

1-5964

regexprep

replace = '__';

newStr = regexprep(str,expression,replace,'emptymatch')

newStr =

__abc

See Also regexp | strcmp | strfind | strrep

Concepts • “Lookahead Assertions in Regular Expressions”
• “Tokens in Regular Expressions”
• “Dynamic Regular Expressions”

1-5965

regexptranslate

Purpose Translate string into regular expression

Syntax s2 = regexptranslate(type, s1)

Description s2 = regexptranslate(type, s1) translates string s1 into a regular
expression string s2 that you can then use as input into one of the
MATLAB regular expression functions such as regexp. The type
input can be either one of the following strings that define the type of
translation to be performed. See “Regular Expressions” in the MATLAB
Programming Fundamentals documentation for more information.

Type Description

'escape' Translate all special characters (e.g., ’$’, ’.’, ’?’, ’[’) in
string s1 so that they are treated as literal characters
when used in the regexp and regexprep functions. The
translation inserts an escape character (’\’) before each
special character in s1. Return the new string in s2.

'wildcard' Translate all wildcard and ’.’ characters in string s1 so
that they are treated as literal wildcards and periods
when used in the regexp and regexprep functions. The
translation replaces all instances of ’*’ with ’.*’, all
instances of ’?’ with ’.’, and all instances of ’.’ with ’\.’.
Return the new string in s2.

Examples Example 1 — Using the ’escape’ Option

Because regexp interprets the sequence ’\n’ as a newline character, it
cannot locate the two consecutive characters ’\’ and ’n’ in this string:

str = 'The sequence \n generates a new line';
pat = '\n';

regexp(str, pat)
ans =

[]

1-5966

regexptranslate

To have regexp interpret the expression expr as the characters ’\’ and
’n’, first translate the expression using regexptranslate:

pat2 = regexptranslate('escape', pat)
pat2 =

\\n

regexp(str, pat2)
ans =

14

Example 2 — Using ’escape’ In a Replacement String

Replace the word ’walk’ with ’ascend’ in this string, treating the
characters ’$1’ as a token designator:

str = 'I walk up, they walked up, we are walking up.';
pat = 'walk(\w*) up';

regexprep(str, pat, 'ascend$1')
ans =

I ascend, they ascended, we are ascending.

Make another replacement on the same string, this time treating the
’$1’ as literal characters:

regexprep(str, pat, regexptranslate('escape', 'ascend$1'))
ans =

I ascend$1, they ascend$1, we are ascend$1.

Example 3 — Using the ’wildcard’ Option

Given the following string of filenames, pick out just the MAT-files. Use
regexptranslate to interpret the ’*’ wildcard as ’\w+’ instead of as
a regular expression quantifier:

files = ['test1.mat, myfile.mat, newfile.txt, ' ...
'jan30.mat, table3.xls'];

regexp(files, regexptranslate('wildcard', '*.mat'), 'match')

1-5967

regexptranslate

ans =

'test1.mat, myfile.mat, newfile.txt, jan30.mat'

To see the translation, you can type

regexptranslate('wildcard','*.mat')
ans =

\w+\.mat

See Also regexp | regexpi | regexprep

How To • “Regular Expressions”

1-5968

registerevent

Purpose Associate event handler for COM object event at run time

Syntax h.registerevent(eventhandler)
registerevent(h, eventhandler)

Description h.registerevent(eventhandler) registers event handler routines
with their corresponding events. The eventhandler argument can be
either a string that specifies the name of the event handler function,
or a function handle that maps to that function. Strings used in the
eventhandler argument are not case sensitive.

registerevent(h, eventhandler) is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Show events in the MATLAB sample control:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.events

Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)
Event_Args = void Event_Args(int16 typeshort,

int32 typelong, double typedouble, string typestring,
bool typebool)

MATLAB displays all events associated with the instance of the control.

Register all events with the same event handler routine, sampev:

h.registerevent('sampev');
h.eventlisteners

ans =
'Click' 'sampev'

1-5969

registerevent

'DblClick' 'sampev'
'MouseDown' 'sampev'
'Event_Args' 'sampev'

Register individual events:

%Unregister existing events
h.unregisterallevents;
%Register specific events
h.registerevent({'click' 'myclick'; ...

'dblclick' 'my2click'});
h.eventlisteners

ans =
'click' 'myclick'
'dblclick' 'my2click'

Register events using a function handle (@sampev) instead of the
function name:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);
registerevent(h, @sampev);

See Also events (COM) | eventlisteners | unregisterevent |
unregisterallevents | isevent

How To • “Writing Event Handlers”

1-5970

rehash

Purpose Refresh function and file system path caches

Syntax rehash
rehash path
rehash toolbox
rehash pathreset
rehash toolboxreset
rehash toolboxcache

Description rehash with no arguments updates the MATLAB list of known
files and classes for directories on the search path that are not in
matlabroot/toolbox. It compares the timestamps for loaded functions
against their timestamps on disk. It clears loaded functions if the files
on disk are newer. All of this normally happens each time MATLAB
displays the Command Window prompt. Use rehash with no arguments
only when you run a program file that updates another program file,
and the calling file needs to reuse the updated version of the second file
before the calling file has finished running.

rehash path performs the same updates as rehash, but uses a different
technique for detecting the files and directories that require updates.
Run rehash path only if you receive a warning during MATLAB
startup notifying you that MATLAB could not tell if a directory has
changed, and you encounter problems with MATLAB not using the
most current versions of your program files.

rehash toolbox performs the same updates as rehash path, except it
updates the list of known files and classes for all directories on the
search path, including those in matlabroot/toolbox. Run rehash
toolbox when you change, add, or remove files in matlabroot/toolbox
during a session. Typically, you should not make changes to files and
directories in matlabroot/toolbox.

rehash pathreset performs the same updates as rehash path, and also
ensures the known files and classes list follows precedence rules for
shadowed functions.

1-5971

rehash

rehash toolboxreset performs the same updates as rehash toolbox,
and also ensures the known files and classes list follows precedence
rules for shadowed functions.

rehash toolboxcache performs the same updates as rehash toolbox,
and also updates the cache file. This is the equivalent of clicking the
Update Toolbox Path Cache button in the General Preferences
dialog box.

See Also addpath | clear | matlabroot | path | rmpath

How To • “Toolbox Path Caching in MATLAB”

• “What Is the MATLAB Search Path?”

1-5972

release

Purpose Release COM interface

Syntax h.release
release(h)

Description h.release releases the interface and all resources used by the interface.
You must release the handle when you are done with the interface. A
released interface is no longer valid. MATLAB generates an error if you
try to use an object that represents that interface.

release(h) is an alternate syntax.

Releasing the interface does not delete the control itself (see the delete
function), since other interfaces on that object might still be active.

COM functions are available on Microsoft Windows systems only.

See Also delete (COM) | actxcontrol | actxserver

How To • Releasing Interfaces

1-5973

Relational Operators (handle)

Purpose Equality and sorting of handle objects

Syntax TF = eq(H1,H2)
TF = ne(H1,H2)
TF = lt(H1,H2)
TF = le(H1,H2)
TF = gt(H1,H2)
TF = ge(H1,H2)

Description TF = eq(H1,H2)

TF = ne(H1,H2)

TF = lt(H1,H2)

TF = le(H1,H2)

TF = gt(H1,H2)

TF = ge(H1,H2)

For each pair of input arrays (H1 and H2), a logical array of the
same size is returned in which each element is an element-wise
equality or comparison test result. These methods perform scalar
expansion in the same way as the MATLAB built-in functions. See
relationaloperators for more information.

You can make the following assumptions about the result of a handle
comparison:

• The same two handles always compare as equal and the repeated
comparison of any two handles always yields the same result in the
same MATLAB session.

• Different handles are always not-equal.

• The order of handle values is purely arbitrary and has no connection
to the state of the handle objects being compared.

• If the input arrays belong to different classes (including the case
where one input array belongs to a non-handle class such as double)
then the comparison is always false.

1-5974

Relational Operators (handle)

• If a comparison is made between a handle object and an object of a
dominant class, the method of the dominant class is invoked. You
should generally test only like objects because a dominant class
might not define one of these methods.

• An error occurs if the input arrays are not the same size and neither
is scalar.

Use isequal when you want to determine if handle objects with
different handles have the same data in all object properties.

See Also handle | meta.class

1-5975

rem

Purpose Remainder after division

Syntax R = rem(X,Y)

Description R = rem(X,Y) returns the remainder after division of X by Y. In
general, if Y does not equal 0, R = rem(X,Y) returns X - n.*Y, where
n = fix(X./Y). If Y is not an integer and the quotient X./Y is within
roundoff error of an integer, then n is that integer. Inputs X and Y must
have the same dimensions unless one of them is a scalar double. If one
of the inputs has an integer data type, then the other input must be of
the same integer data type or be a scalar double.

The following are true by convention:

• rem(X,0) is NaN.

• rem(X,X) for X~=0 is 0.

• rem(X,Y) for X~=Y and Y~=0 has the same sign as X.

Input
Arguments

X - Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a scalar, vector, matrix, or multidimensional
array. Must be a real-valued number of any numerical type.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | char

Y - Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a scalar, vector, matrix, or multidimensional array.
Must be a real-valued number of any numerical type.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | char

1-5976

rem

Examples Remainder of Two Scalars

Compute the remainder after dividing 5 into 23.

X = 23;
Y = 5;
R = rem(X,Y)

R =

3

Remainder of a Vector

Create a vector, then use rem to find the remainder after dividing a
scalar into each element of the vector.

X = 1:5;
Y = 3;
R = rem(X,Y)

R =

1 2 0 1 2

When you specify one or more of the inputs as an array, the rem function
acts on each array element independently.

Remainder of Two Arrays

Create two 3-by-3 matrices, then use rem to find the remainder after
dividing Y into X.

X = [1 2 3;4 5 6;7 8 9];
Y = [9 8 7;6 5 4;3 2 1];
R = rem(X,Y)

R =

1 2 3

1-5977

rem

4 0 2
1 0 0

Inputs X and Y must have the same dimensions unless one is a scalar
double.

Forced Rounding in rem

If Y is not an integer and X./Y is within roundoff error of an integer,
then rem rounds to that integer for its calculation. The size of the
roundoff error is very small.

X = 2;
Y = 2 - eps(2)

Y =

2.0000

It looks like Y is trivially equal to 2, but in fact there is an infinitesimal
difference.

2 - Y

ans =

4.4409e-16

This difference is forced to zero by rem if it is small enough.

R = rem(X,Y)

R =

0

Make the difference a little larger and the forced rounding disappears.

Y = 2 - eps(4);

1-5978

rem

R = rem(X,Y)

R =

8.8818e-16

Difference Between rem and mod

Define X and Y with different signs.

X = 5;
Y = -2;

Compute the remainder after division with rem, then compute the
modulus after division with mod.

R = rem(X,Y)

R =

1

M = mod(X,Y)

M =

-1

rem(X,Y) and mod(X,Y) are equal if X and Y have the same sign, but
differ by Y if X and Y have different signs. Notice that rem retains the
sign of X, while mod retains the sign of Y.

See Also mod

1-5979

containers.Map.remove

Purpose Remove key-value pairs from containers.Map object

Syntax remove(mapObj,keySet)

Description remove(mapObj,keySet) erases all specified keys, and the values
associated with them, from mapObj. Input keySet can be a scalar key or
a cell array of keys.

Input
Arguments

mapObj

Object of class containers.Map.

keySet

Scalar value, string, or cell array that specifies keys in mapObj to
delete.

Examples Remove Key-Value Pairs from a Map

Create a map and view the keys and the Count property:

myKeys = {'a','b','c','d'};
myValues = [1,2,3,4];
mapObj = containers.Map(myKeys,myValues);

mapKeys = keys(mapObj)
mapCount = mapObj.Count

The initial map contains four key-value pairs:

mapKeys =
'a' 'b' 'c' 'd'

mapCount =
4

Remove the pairs corresponding to keys b and d:

keySet = {'b','d'};

1-5980

containers.Map.remove

remove(mapObj,keySet)

mapKeys = keys(mapObj)
mapCount = mapObj.Count

The modified map contains two key-value pairs:

mapKeys =
'a' 'c'

mapCount =
2

See Also containers.Map | keys | values | isKey

1-5981

removecats

Purpose Remove categories from categorical array

Syntax B = removecats(A)
B = removecats(A,oldcats)

Description B = removecats(A) removes unused categories from the categorical
array, A. The output categorical array, B, has the same size and values
as A. However, B possibly has fewer categories.

B = removecats(A,oldcats) removes the categories specified by
oldcats. The function removecats removes categories, but does not
remove any elements of the array. Therefore, elements of B, whose
values correspond to oldcats, are undefined.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

oldcats - Categories to remove
string | cell array of strings

Categories to remove, specified as a string or cell array of strings. The
default is all the unused categories from A.

Examples Remove All Unused Categories

Create a categorical array representing political parties of four people.

A = categorical({'republican' 'democrat' 'democrat' 'republican'},...
{'democrat' 'republican' 'independent'})

A =

republican democrat democrat republican

A is a 1-by-4 categorical array.

1-5982

removecats

Summarize the categorical array, A.

summary(A)

democrat republican independent
2 2 0

A has three categories. democrat appears twice in the array,
republican appears twice in the array, and independent is unused.

Remove the unused category, independent.

B = removecats(A)

B =

republican democrat democrat republican

B has the same values as A.

Display the categories of B.

categories(B)

ans =

'democrat'
'republican'

B has fewer categories than A.

Remove Categories with Corresponding Values Used in A

Create a categorical array, A, containing modes of transportation.

A = categorical({'plane' 'car'; 'train' 'car'; 'plane' 'car'})

A =

plane car

1-5983

removecats

train car
plane car

A is a 3-by-2 categorical array.

Display the categories of A.

categories(A)

ans =

'car'
'plane'
'train'

A has three categories, car, plane, and train.

Remove the category, train.

B = removecats(A,'train')

B =

plane car
<undefined> car
plane car

The element that was from the category train is now undefined.

Display the categories of B.

categories(B)

ans =

'car'
'plane'

B has one fewer category than A.

1-5984

removecats

Tips • ~ismember(categories(A),unique(A) returns logical true (1) for
any unused category of A.

See Also categories | summary | addcats | iscategory | mergecats |
renamecats | reordercats

1-5985

removets

Purpose Remove timeseries objects from tscollection object

Syntax tsc = removets(tsc,Name)

Description tsc = removets(tsc,Name) removes one or more timeseries objects
with the name specified in Name from the tscollection object tsc. Name
can either be a string or a cell array of strings.

Examples The following example shows how to remove a time series from a
tscollection.

1 Create two timeseries objects, ts1 and ts2.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0],1:5,'name','acceleration');

ts2=timeseries([3.2 4.2 6.2 8.5 1.1],1:5,'name','speed');

2 Create a tscollection object tsc, which includes ts1 and ts2.

tsc=tscollection({ts1 ts2});

3 To view the members of tsc, type the following at the MATLAB
prompt:

tsc

The response is

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

1-5986

removets

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of ts1 and ts2, respectively.

4 Remove ts2 from tsc.

tsc=removets(tsc,'speed');

5 To view the current members of tsc, type the following at the
MATLAB prompt:

tsc

The response is

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:
acceleration

The remaining member of tsc is acceleration. The timeseries speed
has been removed.

See Also addts | tscollection

1-5987

renamecats

Purpose Rename categories in categorical array

Syntax B = renamecats(A,newnames)
B = renamecats(A,oldnames,newnames)

Description B = renamecats(A,newnames) renames all the categories in the
categorical array, A. Elements of B use the new category names.

B = renamecats(A,oldnames,newnames) renames only the categories
specified by oldnames.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array.

newnames - New category names for B
string | cell array of strings

New category names for B, specified as a string or a cell array of strings.
The new category names must be unique, and must not duplicate any
existing names.

oldnames - Old category names from A
string | cell array of strings

Old category names from A, specified as a string or a cell array of strings.

Examples Rename All Categories

Create a categorical array containing states from New England.

A = categorical({'MA';'ME';'CT';'VT';'ME';'NH';'VT';'MA';'NH';'CT';'RI'})

A =

MA

1-5988

renamecats

ME
CT
VT
ME
NH
VT
MA
NH
CT
RI

A is an 11-by-1 categorical array.

Display the categories of A.

categories(A)

ans =

'CT'
'MA'
'ME'
'NH'
'RI'
'VT'

A has six categories.

Rename the categories to use the full state name instead of the
abbreviation.

B = renamecats(A,{'Connecticut','Massachusetts',...
'Maine','New Hampshire','Rhode Island' 'Vermont'})

B =

Massachusetts
Maine

1-5989

renamecats

Connecticut
Vermont
Maine
New Hampshire
Vermont
Massachusetts
New Hampshire
Connecticut
Rhode Island

Elements of B use the new category names.

Display the categories of B.

categories(B)

ans =

'Connecticut'
'Massachusetts'
'Maine'
'New Hampshire'
'Rhode Island'
'Vermont'

Rename One Category

Create a categorical array containing colors.

A = categorical({'red' 'blue'; 'purple' 'white'; 'green' 'red'})

A =

red blue
purple white
green red

A is a 3-by-2 categorical array.

1-5990

renamecats

Display the categories of A.

categories(A)

ans =

'blue'
'green'
'purple'
'red'
'white'

A has five categories that are listed in alphabetical order.

Change the category name from purple to violet.

B = renamecats(A,'purple','violet')

B =

red blue
violet white
green red

The element B(2,1) is violet instead of purple.

Display the categories of B.

categories(B)

ans =

'blue'
'green'
'violet'
'red'
'white'

1-5991

renamecats

violet replaces purple and the categories are no longer in alphabetical
order. Note that the category has not changed its position.

Tips • Renaming categories does not change their position in categories(B).
Use reordercats to change the category ordering. For example,
you can use B = reordercats(B,sort(categories(B))) to put the
categories in alphabetical order.

See Also categories | addcats | removecats | iscategory | mergecats |
reordercats

1-5992

reordercats

Purpose Reorder categories in categorical array

Syntax B = reordercats(A)
B = reordercats(A,neworder)

Description B = reordercats(A) reorders the categories in the categorical array, A,
to be in alphanumeric order.

The order of the categories is used by functions such as summary and
hist. Furthermore, if the categorical array is ordinal, the order of the
categories defines their mathematical ordering. The first category
specified is the smallest and the last category is the largest.

B = reordercats(A,neworder) puts the categories in the order
specified by neworder.

Input
Arguments

A - Categorical array
vector | matrix | multidimensional array

Categorical array, specified as a vector, matrix, or multidimensional
array. If A is an ordinal categorical array, a reordering of the categories
changes the mathematical meaning. Consequently, the relational
operators, such as greater than and less than, might return different
results.

neworder - New category order for B
cell array of strings

New category order for B, specified as a cell array of strings. neworder
must be a permutation of categories(A).

Examples Alphabetize Categories of Nonordinal Categorical Array

Create two categorical arrays, X and Y.

X = categorical({'frog';'cat';'cat';'ant';'frog'})

Y = categorical({'deer';'bear';'eagle';'deer'})

1-5993

reordercats

X =

frog
cat
cat
ant
frog

Y =

deer
bear
eagle
deer

X is a 5-by-1 categorical array. The categories of X are the sorted unique
values from the array: {'ant';'cat';'frog'}.

Y is a 4-by-1 categorical array. The categories of Y are the sorted unique
values from the array: {'bear';'deer';'eagle'}.

Concatenate X and Y into a single categorical array, A.

A = [X;Y]

A =

frog
cat
cat
ant
frog
deer
bear
eagle
deer

1-5994

reordercats

vertcat appends the values from Y to the values from X.

List the categories of the categorical array, A.

acats = categories(A)

acats =

'ant'
'cat'
'frog'
'bear'
'deer'
'eagle'

vertcat appends the categories of Y to the categories from X. The
categories of A are not in alphabetical order.

Reorder the categories of A into alphabetical order.

B = reordercats(A)

B =

frog
cat
cat
ant
frog
deer
bear
eagle
deer

The output categorical array, B, has the same contents as the input
categorical array, A.

List the categories of the categorical array, B.

1-5995

reordercats

bcats = categories(B)

bcats =

'ant'
'bear'
'cat'
'deer'
'eagle'
'frog'

The categories of B are in alphabetical order.

Reorder Categories in Nonordinal Categorical Array

Create a categorical array containing the color of various items.

A = categorical({'red';'green';'blue';'red';'green';'red';'blue';'blue'})

A =

red
green
blue
red
green
red
blue
blue

A is an 8-by-1 categorical array.

Display the categories of A.

categories(A)

ans =

'blue'

1-5996

reordercats

'green'
'red'

The categories of A are in alphabetical order and have no mathematical
meaning.

Reorder the categories to match the order commonly used for colors.

B = reordercats(A,{'red','green','blue'})

B =

red
green
blue
red
green
red
blue
blue

B contains the same values as A.

Display the categories of B.

categories(B)

ans =

'red'
'green'
'blue'

B is not ordinal and the order of the categories has no mathematical
meaning. Although the categories appear in the order of the color
spectrum, relational operations, such as greater than and less than,
have no meaning.

1-5997

reordercats

Reorder Categories in Ordinal Categorical Array

Create an ordinal categorical array, A, containing modes of
transportation. Order the categories based on the average price of
travel.

A = categorical({'plane';'car'; 'train';'car';'plane';'car'},...
{'car','train','plane'},'Ordinal',true)

A =

plane
car
train
car
plane
car

A is a 6-by-1 ordinal categorical array.

Display the categories of A.

categories(A)

ans =

'car'
'train'
'plane'

Since A is ordinal, car < train < plane.

Reorder the categories to reflect a decrease in the cost of train travel.

B = reordercats(A,{'train','car','plane'})

B =

plane

1-5998

reordercats

car
train
car
plane
car

B contains the same values as A.

Display the categories of B.

categories(B)

ans =

'train'
'car'
'plane'

The mathematical ordering of the categories is now train < car <
plane. The results from relational operations, min, and max reflect the
new category ordering.

Tips • To convert the categorical array, B, to an ordinal categorical
array, use B = categorical(B,'Ordinal',true). Furthermore,
you can specify the order of the categories with B =
categorical(B,valueset,'Ordinal',true) where the order of the
values in valueset defines the category order.

See Also categories | addcats | removecats | iscategory | mergecats |
renamecats

1-5999

FTP.rename

Purpose Rename file on FTP server

Syntax rename(ftpobj,oldname,newname)

Description rename(ftpobj,oldname,newname) changes the name of the file
oldname to newname in the current folder on an FTP server.

Input
Arguments

ftpobj

FTP object created by ftp.

oldname

String enclosed in single quotation marks that specifies the
original name of the file.

newname

String enclosed in single quotation marks that specifies a new
name for the file.

Examples Suppose that hypothetical FTP server ftp.testsite.com contains a
file named testfile.m. Rename the file to final.m:

test = ftp('ftp.testsite.com');
rename(test, 'testfile.m', 'final.m');
close(test);

See Also delete | dir | ftp | mget | mput

1-6000

repmat

Purpose Replicate and tile array

Syntax B = repmat(A,n)
B = repmat(A,sz1,sz2,...,szN)
B = repmat(A,sz)

Description B = repmat(A,n) returns an n-by-n tiling of A. The size of B is size(A)
* n

B = repmat(A,sz1,sz2,...,szN) specifies a list of scalars,
sz1,sz2,...,szN, to describe an N-D tiling of A. The size of B is
[size(A,1)*sz1, size(A,2)*sz2,...,size(A,n)*szN]. For example,
repmat([1 2; 3 4],2,3) returns a 4-by-6 matrix.

B = repmat(A,sz) specifies a row vector, sz, instead of a list of scalars,
to describe the tiling of A. This syntax returns the same output as the
previous syntax. For example, repmat([1 2; 3 4],[2 3]) returns the
same result as repmat([1 2; 3 4],2,3).

Input
Arguments

A - Input array
scalar | vector | array | cell array | table | structure | object

Input array, specified as a scalar, vector, array, cell array, table,
structure, or object.

Example: 1

Example: [1 2 3]

Example: [1 2; 3 4]

Example: {'foo',[20 30 40]}

Example: table(rand(5,1),rand(5,1))

Example: struct('Age',25,'Weight',110)

n - Uniform tiling factor
scalar

1-6001

repmat

Uniform tiling factor, specified as a scalar value. The n argument
creates an n-by-n tiling of A. If n is 0 or negative, the result is an empty
array.

Example: 3

sz1,sz2,...,szN - Tiling factors for each dimension of A
two or more scalars

Tiling factors for each dimension of A, specified as two or more scalar
values. If any tiling factor is 0 or negative, the result is an empty array.

Example: 2,3

Example: 2,3,4,2

sz - Tiling vector
row vector

Tiling vector, specified as a row vector. If any value in sz is 0 or
negative, the result is an empty array.

Example: [2 3]

Example: [2 3 4 2]

Tips • You can use bsxfun to tile arrays and perform a binary operation
in a single pass. In some cases, bsxfun provides a simpler
and more memory efficient solution. For example, to add the
vectors, x=1:5 and y=(1:10)' to produce a 10-by-5 array, use
bsxfun(@plus,x,y) instead of repmat(x,10,1) + repmat(y,1,5).

• You can use other functions to get the same result as repmat when A
is a scalar of a certain type.

repmat Syntax Equivalent Alternative

repmat(NaN,m,n) NaN(m,n)

repmat(single(inf),m,n) inf(m,n,'single')

repmat(int8(0),m,n) zeros(m,n,'int8')

1-6002

repmat

repmat Syntax Equivalent Alternative

repmat(uint32(1),m,n) ones(m,n,'uint32')

repmat(eps,m,n) eps(ones(m,n))

Examples Replicate and Tile a Matrix

Create a diagonal matrix.

A = diag([100 200 300])

A =

100 0 0
0 200 0
0 0 300

Create a 2-by-2 tiling of A.

B = repmat(A,2)

B =

100 0 0 100 0 0
0 200 0 0 200 0
0 0 300 0 0 300

100 0 0 100 0 0
0 200 0 0 200 0
0 0 300 0 0 300

Replicate and Tile an N-D Array

Create a 2-by-2-by-2 array.

A = zeros(2,2,2);
A(:,:,1) = diag([10 20]);
A(:,:,2) = diag([55 99]);
A

1-6003

repmat

A(:,:,1) =

10 0
0 20

A(:,:,2) =

55 0
0 99

Create a 3-by-3 tiling of A.

B = repmat(A,3)

B(:,:,1) =

10 0 10 0 10 0
0 20 0 20 0 20

10 0 10 0 10 0
0 20 0 20 0 20

10 0 10 0 10 0
0 20 0 20 0 20

B(:,:,2) =

55 0 55 0 55 0
0 99 0 99 0 99

55 0 55 0 55 0
0 99 0 99 0 99

55 0 55 0 55 0
0 99 0 99 0 99

Vertical Stack of Row Vectors

Create a row vector.

1-6004

repmat

A = 1:4

A =

1 2 3 4

Create a vertical stack of four copies of A.

B = repmat(A,4,1)

B =

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

B contains 4 copies of A in the first dimension and 1 copy in the second
dimension. This result is equivalent to B = repmat(A,[4 1]).

Horizontal Stack of Column Vectors

Create a column vector.

A = (1:3)'

A =

1
2
3

Create a horizontal stack of four copies of A.

B = repmat(A,1,4)

B =

1 1 1 1

1-6005

repmat

2 2 2 2
3 3 3 3

B contains 1 copy of A in the first dimension and 4 copies in the second
dimension. This result is equivalent to B = repmat(A,[1 4]).

Replicate and Tile a Complex Scalar Value

Define a complex scalar value.

A = 5+1i;

Create a 3-by-2 tiling of A.

B = repmat(A,[3 2])

B =

5.0000 + 1.0000i 5.0000 + 1.0000i
5.0000 + 1.0000i 5.0000 + 1.0000i
5.0000 + 1.0000i 5.0000 + 1.0000i

B contains 3 copies of A in the first dimension and 2 copies in the second
dimension. This result is equivalent to B = repmat(A,3,2).

Replicate and Tile a Cell Array

Create a cell array containing a string and numeric values.

A = {'Values'; 10; 105}

A =

'Values'
[10]
[105]

Create a 3-by-2 tiling of A.

B = repmat(A,[3 2])

1-6006

repmat

B =

'Values' 'Values'
[10] [10]
[105] [105]
'Values' 'Values'
[10] [10]
[105] [105]
'Values' 'Values'
[10] [10]
[105] [105]

B contains 3 copies of A in the first dimension and 2 copies in the second
dimension. This result is equivalent to B = repmat(A,3,2).

See Also bsxfun | Inf | NaN | ones | zeros | reshape | meshgrid | ndgrid

1-6007

resample (tscollection)

Purpose Select or interpolate data in tscollection using new time vector

Syntax tsc = resample(tsc,Time)
tsc = resample(tsc,Time,interp_method)
tsc = resample(tsc,Time,interp_method,code)

Description tsc = resample(tsc,Time) resamples the tscollection object
tsc on the new Time vector. When tsc uses date strings and Time
is numeric, Time is treated as numerical specified relative to the
tsc.TimeInfo.StartDate property and in the same units that tsc uses.
The resample method uses the default interpolation method for each
time series member.

tsc = resample(tsc,Time,interp_method) resamples the
tscollection object tsc using the interpolation method given by the
string interp_method. Valid interpolation methods include 'linear'
and 'zoh' (zero-order hold).

tsc = resample(tsc,Time,interp_method,code) resamples the
tscollection object tsc using the interpolation method given by the
string interp_method. The integer code is a user-defined quality code
for resampling, applied to all samples.

Examples The following example shows how to resample a tscollection that
consists of two timeseries members.

1 Create two timeseries objects.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0],1:5,'name','acceleration');

ts2=timeseries([3.2 4.2 6.2 8.5 1.1],1:5,'name','speed');

2 Create a tscollection tsc.

tsc=tscollection({ts1 ts2});

The time vector of the collection tsc is [1:5], which is the same as
for ts1 and ts2 (individually).

1-6008

resample (tscollection)

3 Get the interpolation method for acceleration by typing

tsc.acceleration

MATLAB responds with

Time Series Object: acceleration

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method linear
Size [1 1 5]
Data type double

4 Set the interpolation method for speed to zero-order hold by typing

setinterpmethod(tsc.speed,'zoh')

MATLAB responds with

Time Series Object: acceleration

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

1-6009

resample (tscollection)

Data characteristics

Interpolation method zoh
Size [1 1 5]
Data type double

5 Resample the time-series collection tsc by individually resampling
each time-series member of the collection and using its interpolation
method.

res_tsc=resample(tsc,[1 1.5 3.5 4.5 4.9])

See Also getinterpmethod | setinterpmethod | tscollection

1-6010

reset

Purpose Reset graphics object properties to their defaults

Syntax reset(h)

Description reset(h) resets all properties on the object identified by h to their
default values. Properties that do not have default values are not
affected.

To obtain the default value of a property defined on the root level, use
this statement.

get(0,'DefaultFigureColor')

If h is a figure, the MATLAB software does not reset Position, Units,
WindowStyle, or PaperUnits. If h is an axes, MATLAB does not reset
Position and Units.

Examples reset(gca) resets the properties of the current axes.

reset(gcf) resets the properties of the current figure.

See Also cla | clf | gca | gcf | hold

1-6011

reset (RandStream)

Purpose Reset random number stream

Class RandStream

Syntax reset(s)
reset(s,seed)

Description reset(s) resets the generator for the random stream, s, to the internal
state corresponding to its seed. This is similar to clearing s and
recreating it using RandStream(Type,...), except that reset does not
set the stream’s NormalTransform, Antithetic, and FullPrecision
properties to their original values.

reset(s,seed) resets the generator for the random stream, s, to the
internal state corresponding to seed (the seed value), and it updates
the seed property of s. The value of seed must be an integer between
0 and 232 − 1. Resetting a stream’s seed can invalidate independence
with other streams.

Note Resetting a stream should be used primarily for reproducing
results.

Examples Example 1

Reset a random number stream to its initial state. This does not create
a random number stream, it simply resets the stream:

stream = RandStream('twister','Seed',0)

stream =

mt19937ar random stream
Seed: 0

NormalTransform: Ziggurat

1-6012

reset (RandStream)

reset(stream);
stream.Seed

ans =

0

Example 2

Reset a random number stream using a specific seed:

stream = RandStream('twister','Seed',0)

stream =

mt19937ar random stream
Seed: 0

NormalTransform: Ziggurat

reset(stream,1);
stream.Seed

ans =

1

See Also RandStream | RandStream.getGlobalStream

1-6013

reshape

Purpose Reshape array

Syntax B = reshape(A,m,n)
B = reshape(A,[m n])
B = reshape(A,m,n,p,...)
B = reshape(A,[m n p ...])
B = reshape(A,...,[],...)

Description B = reshape(A,m,n) or B = reshape(A,[m n]) returns the m-by-n
matrix B whose elements are taken column-wise from A. An error results
if A does not have m*n elements.

B = reshape(A,m,n,p,...) or B = reshape(A,[m n p ...]) returns
an n-dimensional array with the same elements as A but reshaped
to have the size m-by-n-by-p-by-.... The product of the specified
dimensions, m*n*p*..., must be the same as numel(A).

B = reshape(A,...,[],...) calculates the length of the dimension
represented by the placeholder [], such that the product of the
dimensions equals numel(A). The value of numel(A) must be evenly
divisible by the product of the specified dimensions. You can use only
one occurrence of [].

Examples Reshape a 3-by-4 matrix into a 2-by-6 matrix.

A =
1 4 7 10
2 5 8 11
3 6 9 12

B = reshape(A,2,6)

B =
1 3 5 7 9 11
2 4 6 8 10 12

B = reshape(A,2,[])

B =

1-6014

reshape

1 3 5 7 9 11
2 4 6 8 10 12

See Also shiftdim | squeeze | circshift | permute | repmat | colon (:)

1-6015

residue

Purpose Convert between partial fraction expansion and polynomial coefficients

Syntax [r,p,k] = residue(b,a)
[b,a] = residue(r,p,k)

Description The residue function converts a quotient of polynomials to pole-residue
representation, and back again.

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of
a partial fraction expansion of the ratio of two polynomials, b(s) and
a(s), of the form

b s
a s

b s b s b s b

a s a s a s a

m m m
m

n n n
n

()
()

1 2
1

3
2

1

1 2
1

3
2

 11

where bj and aj are the jth elements of the input vectors b and a.

[b,a] = residue(r,p,k) converts the partial fraction expansion back
to the polynomials with coefficients in b and a.

Definitions If there are no multiple roots, then

b s
a s

r
s p

r
s p

r
s p

k sn

n

()
()

()

1

1

2

2

The number of poles n is

n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector is empty if length(b) < length(a);
otherwise

length(k) = length(b)-length(a)+1

If p(j) = ... = p(j+m-1) is a pole of multiplicity m, then the
expansion includes terms of the form

1-6016

residue

r

s p

r

s p

r

s p
j

j

j

j

j m

j
m

 1
2

1

() ()

Arguments b,a Vectors that specify the coefficients of the polynomials in
descending powers of s

r Column vector of residues

p Column vector of poles

k Row vector of direct terms

Algorithms It first obtains the poles with roots. Next, if the fraction is nonproper,
the direct term k is found using deconv, which performs polynomial
long division. Finally, the residues are determined by evaluating the
polynomial with individual roots removed. For repeated roots, resi2
computes the residues at the repeated root locations.

Limitations Numerically, the partial fraction expansion of a ratio of polynomials
represents an ill-posed problem. If the denominator polynomial, a(s),
is near a polynomial with multiple roots, then small changes in the
data, including roundoff errors, can make arbitrarily large changes in
the resulting poles and residues. Problem formulations making use of
state-space or zero-pole representations are preferable.

Examples If the ratio of two polynomials is expressed as

b s
a s

s s s

s s

()
()

5 3 2 7

4 8 3

3 2

3

then

b = [5 3 -2 7]
a = [-4 0 8 3]

and you can calculate the partial fraction expansion as

1-6017

residue

[r, p, k] = residue(b,a)

r =
-1.4167
-0.6653
1.3320

p =
1.5737

-1.1644
-0.4093

k =
-1.2500

Now, convert the partial fraction expansion back to polynomial
coefficients.

[b,a] = residue(r,p,k)

b =
-1.2500 -0.7500 0.5000 -1.7500

a =
1.0000 -0.0000 -2.0000 -0.7500

The result can be expressed as

b s
a s

s s s

s s

()
()

. . . .

. .
.

1 25 0 75 0 50 1 75

2 00 0 75

3 2

3

Note that the result is normalized for the leading coefficient in the
denominator.

References [1] Oppenheim, A.V. and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, 1975, p. 56.

1-6018

residue

See Also deconv | poly | roots

1-6019

restoredefaultpath

Purpose Restore default search path

Alternatives As an alternative to the restoredefaultpath function, use the Set
Path dialog box.

Syntax restoredefaultpath
restoredefaultpath; matlabrc

Description restoredefaultpath sets the search path to include only folders for
MathWorks installed products. Use restoredefaultpath when you are
having problems with the search path.

restoredefaultpath; matlabrc sets the search path to include only
folders for MathWorks installed products and corrects search path
problems encountered during startup.

MATLAB does not support issuing restoredefaultpath from a UNC
path name. Doing so might result in MATLAB being unable to find
files on the search path. If you do issue restoredefaultpath from a
UNC path name, restore the expected behavior by changing the current
folder to an absolute path, and then reissuing restoredefaultpath.

See Also addpath | genpath | matlabrc | rmpath | savepath

How To • “Path Unsuccessfully Set at Startup”

• “What Is the MATLAB Search Path?”

1-6020

rethrow

Purpose Reissue error

Note As of version 7.5, MATLAB supports error handling that is
based on the MException class. Calling rethrow with a structure
argument, as described on this page, is now replaced by calling rethrow
with an MException object, as described on the reference page for
rethrow(MException). rethrow called with a structure input will be
removed in a future version.

Syntax rethrow(errorStruct)

Description rethrow(errorStruct) reissues the error specified by errorStruct.
The currently running function terminates and control returns to the
keyboard (or to any enclosing catch block). The errorStruct argument
must be a MATLAB structure containing at least the message and
identifier fields:

Fieldname Description

message Text of the error message

identifier Message identifier of the error message

stack Information about the error from the program stack

See "Message Identifiers" in the MATLAB documentation for more
information on the syntax and usage of message identifiers.

Tips The errorStruct input can contain the field stack, identical in format
to the output of the dbstack command. If the stack field is present, the
stack of the rethrown error will be set to that value. Otherwise, the
stack will be set to the line at which the rethrow occurs.

1-6021

rethrow

Examples rethrow is usually used in conjunction with try, catch statements to
reissue an error from a catch block after performing catch-related
operations. For example,

try
do_something

catch
do_cleanup
rethrow(previous_error)

end

See Also rethrow(MException) | throw(MException) |
throwAsCaller(MException) | assert | error | MException |
try, catch

1-6022

rethrow (MException)

Purpose Reissue existing exception

Syntax rethrow(exception)

Description rethrow(exception) forces an exception (i.e., error report) to be
reissued by MATLAB after the error reporting process has been
temporarily suspended to diagnose or remedy the problem. MATLAB
typically responds to errors by terminating the currently running
program. Errors occurring within a try block, however, bypass this
mechanism and transfer control of the program to error handling code
in the catch block instead. This enables you to write your own error
handling procedures for parts of your program that require them.

The exception input is a scalar object of the MException class that
contains information about the cause and location of the error.

The code segment below shows the format of a typical try/catch
statement.

try try block
program-code |
program-code |

: V
catch exception catch block

error-handling code |
: |

rethrow(exception) V
end

An error detected within the try block causes MATLAB to enter the
corresponding catch block. The error record constructed by MATLAB in
the process of reporting this error passes to the try, catch command
in the statement

catch exception

Error handling code within the catch block uses the information in the
error record to address the problem in some predefined manner. The

1-6023

rethrow (MException)

catch block shown here ends with a rethrow statement which throws
the exception returned in the catch statement, and then terminates
the function:

rethrow(exception)

The most significant difference between rethrow and other MATLAB
functions that throw exceptions is in how rethrow handles a piece of
the exception record called the stack. The stack keeps a record of where
the error occurred and what functions were called in the process. It is
a struct array composed of the following fields, where each element of
the array represents an exception:

Fields of the Exception
Stack

Description

line Line number from which the exception
was thrown.

name Name of the function being executed at
the time.

file Name of the file containing that function.

Functions such as error, assert, or throw, create the stack with the
location from which they were executed. Calling rethrow, however,
preserves information from the original exception. In doing so, rethrow
enables you to retrace the path taken to the source of the error.

Tips There are four ways to throw an exception in MATLAB (see the list
below). Use the first of these when testing the outcome of some action
for failure and reporting the failure to MATLAB. Use one of the
remaining techniques to throw an existing exception.

• Test the result of some action taken by your program. If the result is
found to be incorrect or unexpected, compose an appropriate message
and message identifier, and pass these to MATLAB using the error
function.

1-6024

rethrow (MException)

• Reissue the original exception by throwing the initial error record
unmodified. Use the MException rethrow method to do this.

• Collect additional information on the cause of the error, store it in a
new or modified error record, and issue a new exception based on that
record. Use the MException addCause and throw methods to do this.

• Make it appear that the error originated in the caller of the currently
running function. Use the MException throwAsCaller method to
do this.

rethrow can only issue a previously caught exception. Calling rethrow
on an exception that was not previously thrown is an error.

Examples This example shows the difference between using throw and rethrow
at the end of a catch block. The combineArrays function vertically
concatenates arrays A and B. When the two arrays have rows of unequal
length, the function throws an error.

The first time you run the function, comment out the rethrow command
at the end of the catch block so that the function calls throw instead:

function C = combineArrays(A, B)
try

catAlongDim1(A, B); % Line 3
catch exception

throw(exception) % Line 5
% rethrow(exception) % Line 6

end

function catAlongDim1(V1, V2)
C = cat(1, V1, V2); % Line 10

When MATLAB throws the exception, it reports an error on line 5 which
is the line that calls throw. In some cases, that might be what you want
but, in this case, it does not show the true source of the error.

A = 4:3:19; B = 3:4:19;
combineArrays(A, B)

1-6025

rethrow (MException)

Error using combineArrays (line 5)
CAT arguments dimensions are not consistent.

Make the following changes to combineArrays.m so that you use
rethrow instead:

% throw(exception) % Line 5
rethrow(exception) % Line 6

Run the function again. This time, line 10 is the first line reported
which is where the MATLAB concatenation function cat was called and
the exception originated. The next error reported is on line 3 which is
where the call to catAlongDim1 was called:

combineArrays(A, B)

Error using cat
CAT arguments dimensions are not consistent.

Error in combineArrays>catAlongDim1 (line 10)
C = cat(1, V1, V2); % Line 10

Error in combineArrays (line 3)
catAlongDim1(A, B); % Line 3

See Also throw(MException) | throwAsCaller(MException)
| last(MException) | getReport(MException) |
addCause(MException) | assert | error | MException |
try, catch

1-6026

return

Purpose Return to invoking function

Syntax return

Description return causes a normal return to the invoking function or to the
keyboard. It also terminates keyboard mode.

Examples This determinant function uses return to handle the special case of an
empty matrix:

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)

d = 1;
return

else
...

end

See Also while | keyboard | for | error | end | disp | continue | break
| if | switch

1-6027

Tiff.rewriteDirectory

Purpose Write modified metadata to existing IFD

Syntax tiffobj.rewriteDirectory()

Description tiffobj.rewriteDirectory() writes modified metadata (tag) data to
an existing directory. Use this tag when you want to change the value
of a tag in an existing image file directory.

Examples Modify Value of Tag

Write a sample TIFF file, mytif.tif. Create a TIFF object associated
with this file.

imdata = peaks(256);
imwrite(imdata,'mytif.tif');
t = Tiff('mytif.tif','r+');

Modify the value of a tag.

t.setTag('Software','MATLAB');
t.rewriteDirectory();
t.close();

References

This method corresponds to the TIFFRewriteDirectory function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.writeDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-6028

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

rgb2hsv

Purpose Convert RGB colormap to HSV colormap

Syntax cmap = rgb2hsv(M)
hsv_image = rgb2hsv(rgb_image)

Description cmap = rgb2hsv(M) converts an RGB colormap M to an HSV colormap
cmap. Both colormaps are m-by-3 matrices. The elements of both
colormaps are in the range 0 to 1.

The columns of the input matrix M represent intensities of red, green,
and blue, respectively. The columns of the output matrix cmap represent
hue, saturation, and value, respectively.

hsv_image = rgb2hsv(rgb_image) converts the RGB image to the
equivalent HSV image. RGB is an m-by-n-by-3 image array whose three
planes contain the red, green, and blue components for the image. HSV
is returned as an m-by-n-by-3 image array whose three planes contain
the hue, saturation, and value components for the image.

See Also brighten | colormap | hsv2rgb | rgbplot

1-6029

rgb2ind

Purpose Convert RGB image to indexed image

Syntax [X,map] = rgb2ind(RGB,n)
X = rgb2ind(RGB, map)
[X,map] = rgb2ind(RGB, tol)
[___] = rgb2ind(___ ,dither_option)

Description [X,map] = rgb2ind(RGB,n) converts the RGB image to an indexed
image X using minimum variance quantization and dithering. map
contains at most n colors. n must be less than or equal to 65,536.

X = rgb2ind(RGB, map) converts the RGB image to an indexed
image X with colormap map using the inverse colormap algorithm and
dithering. size(map,1) must be less than or equal to 65,536.

[X,map] = rgb2ind(RGB, tol) converts the RGB image to an indexed
image X using uniform quantization and dithering. map contains at most
(floor(1/tol)+1)^3 colors. tol must be between 0.0 and 1.0.

[___] = rgb2ind(___ ,dither_option) enables or disables dithering.
dither_option is a string that can have one of these values.

'dither'
(default)

Dithers, if necessary, to achieve better color
resolution at the expense of spatial resolution

'nodither' Maps each color in the original image to the
closest color in the new map. No dithering is
performed.

Note The values in the resultant image X are indexes into the colormap
map and should not be used in mathematical processing, such as
filtering operations.

Class
Support

The input image can be of class uint8, uint16, single, or double. If
the length of map is less than or equal to 256, the output image is of
class uint8. Otherwise, the output image is of class uint16.

1-6030

rgb2ind

The value 0 in the output array X corresponds to the first color in the
colormap.

Tips • If you specify tol, rgb2ind uses uniform quantization to convert the
image. This method involves cutting the RGB color cube into smaller
cubes of length tol.

• If you specify n, rgb2ind uses minimum variance quantization. This
method involves cutting the RGB color cube into smaller boxes (not
necessarily cubes) of different sizes, depending on how the colors are
distributed in the image. If the input image actually uses fewer colors
than the number you specify, the output colormap is also smaller.

• If you specify map, rgb2ind uses colormap mapping, which involves
finding the colors in map that best match the colors in the RGB image.

Algorithms • Uniform Quantization— Uniform quantization cuts the RGB color
cube into smaller cubes of length tol. For example, if you specify a
tol of 0.1, the edges of the cubes are one-tenth the length of the RGB
cube. The total number of small cubes is:

n = (floor(1/tol)+1)^3

Each cube represents a single color in the output image. Therefore,
the maximum length of the colormap is n. rgb2ind removes any
colors that don’t appear in the input image, so the actual colormap
can be much smaller than n.

• Minimum Variance Quantization — Minimum variance
quantization cuts the RGB color cube into smaller boxes (not
necessarily cubes) of different sizes, depending on how the colors
are distributed in the image. If the input image actually uses fewer
colors than the number specified, the output colormap is also smaller.

• Inverse Colormap— The inverse colormap algorithm quantizes the
specified colormap into 32 distinct levels per color component. Then,
for each pixel in the input image, the closest color in the quantized
colormap is found.

1-6031

rgb2ind

Examples Read and display a truecolor uint8 JPEG image of a nebula.

RGB = imread('ngc6543a.jpg');
figure('Name','RGB Image')
imagesc(RGB)
axis image
zoom(4)

Convert RGB to an indexed image with 32 colors

1-6032

rgb2ind

[IND,map] = rgb2ind(RGB,32);
figure('Name','Indexed image with 32 Colors')
imagesc(IND)
colormap(map)
axis image
zoom(4)

1-6033

rgb2ind

References
[1] Spencer W. Thomas, "Efficient Inverse Color Map Computation",
Graphics Gems II, (ed. James Arvo), Academic Press: Boston. 1991.
(includes source code)

See Also cmunique | dither | imapprox | ind2rgb

1-6034

rgbplot

Purpose Plot colormap

Syntax rgbplot(cmap)

Description rgbplot(cmap) plots the three columns of cmap, where cmap is an
m-by-3 colormap matrix. rgbplot draws the first column in red, the
second in green, and the third in blue.

Examples Copper Colormap

Plot the RGB values of the copper colormap.

rgbplot(copper)

1-6035

rgbplot

Summer Colormap

Plot the RGB values of the summer colormap.

rgbplot(summer)

1-6036

rgbplot

See Also colormap

1-6037

ribbon

Purpose Ribbon plot

Syntax ribbon(Y)
ribbon(X,Y)
ribbon(X,Y,width)
ribbon(axes_handle,...)
h = ribbon(...)

Description ribbon(Y) plots the columns of Y as three-dimensional ribbons of
uniform width using X = 1:size(Y,1). Ribbons advance along the
x-axis centered on tick marks at unit intervals, three-quarters of a unit
in width. Ribbon maps values in X to colors in colormap linearly. To
change ribbon colors in the graph, change the colormap.

ribbon(X,Y) plots three dimensional ribbons for data in Y, centered at
locations specified in X. X and Y are vectors or matrices of the same
size. Additionally, X can be a row or a column vector, and Y a matrix
with length(X) rows. When Y is a matrix, ribbon plots each column in
Y as a ribbon at the corresponding X location.

ribbon(X,Y,width) specifies the width of the ribbons. The default is
0.75. If width = 1, the ribbons touch, leaving no space between them
when viewed down the z-axis. If width > 1, ribbons overlap and can
intersect.

ribbon(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ribbon(...) returns a vector of handles to surface graphics
objects. ribbon returns one handle per strip.

Examples Create a ribbon plot of the peaks function.

[x,y] = meshgrid(-3:.5:3,-3:.1:3);
z = peaks(x,y);

1-6038

ribbon

ribbon(y,z)
xlabel('X')
ylabel('Y')
zlabel('Z')
colormap hsv

See Also plot | plot3 | surface | waterfall

1-6039

rmappdata

Purpose Remove application-defined data

Syntax rmappdata(h,name)

Description rmappdata(h,name) removes the application-defined data name from
the object specified by handle h.

Tips Application data is data that is meaningful to or defined by your
application which you attach to a figure or any GUI component (other
than ActiveX controls) through its AppData property. Only Handle
Graphics MATLAB objects use this property.

See Also getappdata | isappdata | setappdata

1-6040

rmdir

Purpose Remove folder

Syntax rmdir(folderName)
rmdir(folderName,'s')
[status, message, messageid] = rmdir(folderName,'s')

Description rmdir(folderName) removes the folder folderName from the current
folder if folderName is empty. If folderName is not in the current
folder, then specify the relative path or the full path for folderName.

rmdir(folderName,'s') removes the folder folderName and its
contents from the current folder. With the 's' option, rmdir attempts
to remove all subfolders and files in folderName regardless of their
write permissions.

[status, message, messageid] = rmdir(folderName,'s') removes
the folder folderName and its contents from the current folder,
returning the status, a message, and the MATLAB message ID.

Tips • If you specify the 's' flag or include a wildcard in the folder name,
MATLAB produces an error if it is unable to remove all folders.
The error message lists the folder and files that MATLAB could not
remove.

Input
Arguments

folderName

String specifying the absolute or relative path name of the folder you
want to remove.

Default: None

’s’

Literal string that directs rmdir to remove all subfolders and files in
the specified folder, regardless of their write permissions. The result for
read-only files follows the practices of the operating system.

1-6041

rmdir

Default: rmdir does not remove subfolders and files in the
specified folder.

Output
Arguments

status

Logical scalar indicating the outcome of the rmdir operation. The status
value is 1 if the operation was successful and 0 if it returned an error.

message

String containing the warning or error message text if the operation is
unsuccessful. An empty string, if the operation is successful.

messageid

String containing the warning or error message ID, if the operation is
unsuccessful. MATLAB returns an empty string if the operation is
successful.

Examples These examples remove an empty folder, myfiles, assuming it is in the
current folder:

% Remove myfiles from the current folder:

rmdir('myfiles')

% Use the relative path to remove myfiles. Assuming
% the current folder is matlab/work and myfiles is in
% d:/matlab/work/project, type this:

rmdir('project/myfiles')

% Use the full path to remove myfiles, assuming
% the current folder is matlab/work and myfiles is in
% d:/matlab/work/project:

rmdir('d:/matlab/work/project/myfiles')

1-6042

rmdir

This example removes the myfiles folder and its contents, assuming
myfiles is in the current folder:

rmdir('myfiles','s')

This example unsuccessfully attempts to remove the myfiles folder and
its contents. It directs MATLAB to display the results.

[stat, mess, id]=rmdir('myfiles')

MATLAB returns:

stat =
0

mess =

No directories were removed.

id =

MATLAB:RMDIR:NoDirectoriesRemoved

This example successfully removes the myfiles folder and its contents.
It directs MATLAB to display the results.

[stat, mess]=rmdir('myfiles','s')

MATLAB returns:

stat =
1

mess =

1-6043

rmdir

''

Alternatives Open the Current Folder browser by running filebrowser. Then, in
the Current Folder browser, right-click the folder name and select
Delete from the context menu.

See Also | cd | copyfile | delete | dir | fileattrib | filebrowser | mkdir
| movefile

1-6044

FTP.rmdir

Purpose Remove folder on FTP server

Syntax rmdir(ftpobj,folder)

Description rmdir(ftpobj,folder) removes the specified folder from the current
folder on an FTP server.

Input
Arguments

ftpobj

FTP object created by ftp.

folder

String enclosed in single quotation marks that specifies the name
of the folder to delete.

Examples Remove the folder temp from the hypothetical FTP server
ftp.testsite.com:

test = ftp('ftp.testsite.com');
rmdir(test, 'temp');

See Also cd | delete | dir | ftp | mkdir

1-6045

rmfield

Purpose Remove fields from structure

Syntax s = rmfield(s,field)

Description s = rmfield(s,field) removes the specified field or fields from
structure array s. Specify multiple fields using a cell array of strings.
The dimensions of s remain the same.

Input
Arguments

s - Input structure
structure array

Input structure, specified as a structure array.

Data Types
struct

field - Field name or names
character array | cell array of strings

Field name or names, specified as a character array or a cell array of
strings.

Example: 'f1'

Example: {'f1';'f2'}

Data Types
char | cell

Examples Remove Single Field

Define a scalar structure with fields named a, b, and c.

s.a = 1;
s.b = 2;
s.c = 3;

Remove field b.

field = 'b';

1-6046

rmfield

s = rmfield(s,field)

s =
a: 1
c: 3

Remove Multiple Fields

Define a scalar structure with fields first, second, third, and fourth.

S.first = 1;
S.second = 2;
S.third = 3;
S.fourth = 4;

Remove fields first and fourth.

fields = {'first','fourth'};
S = rmfield(S,fields)

S =
second: 2
third: 3

See Also fieldnames | isfield | orderfields

Concepts • “Generate Field Names from Variables”

1-6047

rmpath

Purpose Remove folders from search path

Syntax rmpath(folderName)

Description rmpath(folderName) removes the specified folder from the search path.

Input
Arguments

folderName - Name of folder
string

Name of folder to remove from the search path, specified as a string.
Use the full path name for folderName.

Example: 'c:\matlab\work'

Example: '/home/user/matlab'

Examples Remove Folder from Search Path

Remove /usr/local/matlab/mytools from the search path.

rmpath('/usr/local/matlab/mytools')

See Also addpath | savepath | path

Concepts • “What Is the MATLAB Search Path?”

1-6048

rmpref

Purpose Remove preference

Syntax rmpref('group','pref')
rmpref('group',{'pref1','pref2',...'prefn'})
rmpref('group')

Description rmpref('group','pref') removes the preference specified by group
and pref. It is an error to remove a preference that does not exist.

rmpref('group',{'pref1','pref2',...'prefn'}) removes each
preference specified in the cell array of preference names. It is an error
if any of the preferences do not exist.

rmpref('group') removes all the preferences for the specified group.
It is an error to remove a group that does not exist.

Examples addpref('mytoolbox','version','1.0')
rmpref('mytoolbox')

See Also addpref | getpref | ispref | setpref | uigetpref | uisetpref

1-6049

rng

Purpose Control random number generation

Syntax rng(sd)
rng('shuffle')
rng(sd, generator)
rng('shuffle', generator)
rng('default')
scurr = rng
rng(s)
sprev = rng(...)

Description
Note To use the rng function instead of rand or randn with the 'seed',
'state', or 'twister' inputs, see the documentation on “Replace
Discouraged Syntaxes of rand and randn”

rng(sd) seeds the random number generator using the nonnegative
integer sd so that rand, randi, and randn produce a predictable
sequence of numbers.

rng('shuffle') seeds the random number generator based on the
current time so that rand, randi, and randn produce a different
sequence of numbers after each time you call rng.

rng(sd, generator) and rng('shuffle', generator) additionally
specify the type of the random number generator used by rand, randi,
and randn. The generator input is one of:

Generator Description

'twister' Mersenne Twister

'combRecursive' Combined Multiple Recursive

'multFibonacci' Multiplicative Lagged Fibonacci

'v5uniform' Legacy MATLAB 5.0 uniform generator

1-6050

rng

Generator Description

'v5normal' Legacy MATLAB 5.0 normal generator

'v4' Legacy MATLAB 4.0 generator

rng('default') puts the settings of the random number generator
used by rand, randi, and randn to their default values so that they
produce the same random numbers as if you restarted MATLAB. In this
release, the default settings are the Mersenne Twister with seed 0.

scurr = rng returns the current settings of the random number
generator used by rand, randi, and randn. The settings are returned in
a structure scurr with fields ’Type’, ’Seed’, and ’State’.

rng(s) restores the settings of the random number generator used by
rand, randi, and randn back to the values captured previously with a
command such as s = rng.

sprev = rng(...) returns the previous settings of the random number
generator used by rand, randi, and randn before changing the settings.

Examples Example 1 — Retrieve and Restore Generator Settings

Save the current generator settings in s:

s = rng;

Call rand to generate a vector of random values:

x = rand(1,5)

x =

0.8147 0.9058 0.1270 0.9134 0.6324

Restore the original generator settings by calling rng. Generate a new
set of random values and verify that x and y are equal:

rng(s);
y = rand(1,5)

1-6051

rng

y =

0.8147 0.9058 0.1270 0.9134 0.6324

Example 2 — Restore Settings for Legacy Generator

Use the legacy generator.

sprev = rng(0,'v5uniform')

sprev =
Type: 'twister'
Seed: 0

State: [625x1 uint32]

x = rand

x =

0.9501

Restore the previous settings by calling rng:

rng(sprev)

See Also rand | randi | randn | RandStream | now

Related
Examples

• “Generate Random Numbers That Are Repeatable”
• “Generate Random Numbers That Are Different”

Concepts • “Why Do Random Numbers Repeat After Startup?”

1-6052

root object

Purpose Root

Description The root is a graphics object that corresponds to the computer screen.
There is only one root object and it has no parent. The children of the
root object are figures.

The root object exists when you start MATLAB; you never have to
create it and you cannot destroy it. Use set and get to access the root
properties.

Object
Hierarchy

%���

�����

&'�� (���)����

See Also diary | echo | figure | format | gcf | get | set | Root Properties

1-6053

Root Properties

Purpose Root properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

Root
Properties

This section provides a description of properties. Curly braces { }
enclose default values.

BusyAction

cancel | {queue}

Not used by the root object.

ButtonDownFcn
string

Not used by the root object.

CallbackObject
handle (read-only)

Handle of current callback’s object. Contains the handle of the
object whose callback routine is currently executing. If no callback
routines are executing, this property contains an empty double
array []. See also the gco command.

Children
vector of handles

Handles of child objects. A vector containing the handles of
all nonhidden figure objects (see HandleVisibility for more

1-6054

Root Properties

information). You can change the order of the handles and thereby
change the sorting order of the figures on the display.

Clipping
{on} | off

Clipping mode. This property has no effect on the root object.

CommandWindowSize
[columns rows]

Note The CommandWindowSize root property will be removed in
a future release. To determine the number of columns and rows
that display in the Command Window, given its current size, call
matlab.desktop.commandwindow.size.

Current size of command window. Size of the MATLAB command
window, in a two-element vector. The first element is the number
of columns wide and the second element is the number of rows tall.

For example, a value of [50,25] means that 50 characters can
display across the Command Window, and 25 lines can display
without scrolling.

Enabling the Command Window Display preference Set matrix
display width to eighty columns forces the returned value for
number of columns wide to be 80 regardless of the window width.

CreateFcn
The root object does not use this property.

CurrentFigure
figure handle

Handle of the current figure, which is the one most recently
created, clicked in, or made current with the statement:

1-6055

Root Properties

figure(h) % h is a figure handle

which re-sorts the figure to the top of the figures displayed on
the screen, or:

set(0,'CurrentFigure',h)

which does not re-sort the figures. In these statements, h is the
handle of an existing figure. If there are no figure objects:

get(0,'CurrentFigure')

returns an empty double array. Note, however, that gcf always
returns a figure handle. Calling gcf creates a new figure if there
are no existing figure objects that can become the current figure
(for example, figures with hidden handles cannot become the
current figure).

DeleteFcn
string

This property is not used because you cannot delete the root object.

Diary
on | {off}

Diary file mode. When this property is on, MATLAB maintains
a file (whose name is specified by the DiaryFile property) that
saves a copy of all keyboard input and most of the resulting
output. See also the diary command.

DiaryFile
string

Diary file name. The default name is diary. Set this property to
the name of the file MATLAB uses write the command-line diary
when the Diary property is set to on.

Echo
on | {off}

1-6056

Root Properties

Script echoing mode. When Echo is on, MATLAB displays each
line of a script file as it executes. See also the echo command.

ErrorMessage
string

Text of last error message. Contains the last error message issued
by MATLAB.

FixedWidthFontName
font name

Fixed-width font to use for axes, text, and uicontrols whose
FontName is set to FixedWidth. MATLAB uses the font name
specified for this property as the value for axes, text, and uicontrol
FontName properties when their FontName property is FixedWidth.

Specifying the font name with this property eliminates the need
to hardcode font names in MATLAB applications and thereby
enables these applications to run without modification in locales
where non-ASCII character sets are required. In these cases,
MATLAB attempts to set the value of FixedWidthFontName to the
correct value for a given locale.

MATLAB application developers should not change this property,
but should create axes, text, and uicontrols with FontName
properties set to FixedWidth when they want to use a fixed-width
font for these objects.

MATLAB end users can set this property if they do not want to
use the preselected value. Courier is the default in locales that
use Latin-based characters.

Format
short | {shortE} | long | longE | bank |
hex | + | rat

1-6057

Root Properties

Output format mode. Format used to display numbers. See also
the format command.

• short — Fixed-point format with 5 digits

• shortE— Floating-point format with 5 digits

• shortG— Fixed- or floating-point format displaying as many
significant figures as possible with 5 digits

• long— Scaled fixed-point format with 15 digits

• longE— Floating-point format with 15 digits

• longG — Fixed- or floating-point format displaying as many
significant figures as possible with 15 digits

• bank — Fixed-format of dollars and cents

• hex — Hexadecimal format

• + — Displays + and - symbols

• rat— Approximation by ratio of small integers

FormatSpacing
compact | {loose}

Output format spacing (see also format command).

• compact— Suppress extra line feeds for more compact display.

• loose— Display extra line feeds for a more readable display.

HandleVisibility
{on} | callback | off

This property is not useful on the root object because the handle
is always 0.

HitTest
{on} | off

This property is not useful on the root object.

1-6058

Root Properties

Interruptible
{on} | off

This property is not useful on the root object.

Language
string

System environment setting.

MonitorPositions
Width and height of monitors, in pixels. Contains information
about the size and relative location of monitors connected to your
computer. The information returned by the MonitorPosition
property depends on which computer system you are using.

Windows Systems

Windows systems define one monitor as device 1, which becomes
the reference by which MATLAB determines other monitor
positions. The position data is of the form:

[xmin2,ymin2,xmax2,ymax2;
xmin1,ymin1,xmax1,ymax1]

The values for minimum and maximum are relative to the origin.

The following picture show the values returned when querying
the MonitorPositions property on a Windows system having two
monitors arranged as shown.

1-6059

Root Properties

The MonitorPositions property contains an n-by-4 array, with
each row representing a monitor position. The first row is the nth

monitor and the last row corresponds to device 1.

The monitor labeled as device 1 in the Windows control panel
remains the reference monitor that defines the position of the
origin however you reposition the monitors.

Linux Systems

On Linux systems, the upper-left corner of a rectangle enclosing
the system monitors forms the origin. The position data is of the
form:

1-6060

Root Properties

[xP yP widthP heightP;
xS yS widthS heightS]

Where the values represent the offset from the left (x), the offset
from the top (y), and the width and height of the monitor. The
MonitorPositions property contains an n-by-4 array, with each
row representing a monitor position. The first row is the position
of the primary monitor.

The following picture show the values returned when querying
the MonitorPositions property on a Linux system that has two
monitors arranged as shown.

1-6061

Root Properties

MATLAB on Linux reads control panel settings only at startup.
MATLAB does not recognize changes made to the arrangement of
monitors during a MATLAB session.

Macintosh Systems

MATLAB on Macintosh systems recognize only the main monitor.
The position data is of the form:

[x,y,width,height-menuHieght]

Where the values are x = 0, y = 0, monitor width, and monitor
height minus the height of the menubar.

The main monitor is determined by which display has the menu
bar. The System Preferences Displays control panel provides a
way to arrange representations of multiple displays, and set one
as the main monitor. To make another display the main monitor,
drag the representation of the menu bar in the panel from the
default display to the other display.

Parent
handle

Handle of parent object. This property always contains an empty
double array, because the root object has no parent.

PointerLocation
[x,y]

Current location of pointer. A vector containing the x- and
y-coordinates of the pointer position, measured from the lower left
corner of the screen. Move the pointer by changing the values of
this property. The Units property determines the units of this
measurement.

PointerLocation always contains the current pointer location,
even if the pointer is not in a MATLAB window. A callback

1-6062

Root Properties

routine querying the PointerLocation property can get a value
that is different from the location of the pointer when the callback
was triggered. This difference results from delays in callback
execution caused by competition for system resources.

On Apple Macintosh platforms, you cannot change the pointer
location using the set command.

PointerWindow
handle (read-only)

Handle of window containing the pointer. MATLAB sets this
property to the handle of the figure containing the pointer. If the
pointer is not in a MATLAB window, the value of this property
is 0. A callback routine querying the PointerWindow can get the
wrong window handle if you move the pointer to another window
before the callback executes. This error results from delays in
callback execution caused by competition for system resources.

RecursionLimit
integer

Number of nested MATLAB file calls. The limit of the number
of nested calls to MATLAB files that MATLAB makes before
stopping (or potentially running out of memory). By default the
value is set to a large value. Setting this property to a smaller
value (something like 150, for example) should prevent MATLAB
from running out of memory and instead causes MATLAB to issue
an error when it reaches the limit.

ScreenDepth
bits per pixel

Screen depth. The depth of the display bitmap (the number of bits
per pixel). The maximum number of simultaneously displayed
colors on the current graphics device is 2 raised to this power.

1-6063

Root Properties

ScreenDepth supersedes the BlackAndWhite property. To
override automatic hardware checking, set this property to 1.
Then MATLAB assumes the display is monochrome. Setting
ScreenDepth to 1 is useful if MATLAB is running on color
hardware but is being displayed on a monochrome terminal. Such
a situation can cause MATLAB to determine erroneously that
the display is color.

ScreenPixelsPerInch
Display resolution

DPI setting for your display. Contains the setting of your display
resolution specified in your system preferences.

ScreenSize
four-element rectangle vector (read-only)

Screen size. A four-element vector:

[left,bottom,width,height]

that defines the display size. left and bottom are 0 for all Units
except pixels, in which case left and bottom are both 1. width
and height are the screen dimensions in units specified by the
Units property.

Determining Screen Size

Note that the screen size in absolute units (for example, inches) is
determined by dividing the number of pixels in width and height
by the screen DPI (see the ScreenPixelPerInch property). This
value is approximate and might not represent the actual size of
the screen.

Note that the ScreenSize property is static. Its values are
read-only at MATLAB startup and not updated if system display
settings change. Also, the values returned might not represent

1-6064

Root Properties

the usable screen size for application developers due to the
presence of other GUIs, such as the Microsoft Windows task bar.

Selected
on | off

This property has no effect on the root object.

SelectionHighlight
{on} | off

This property has no effect on the root object.

ShowHiddenHandles
on | {off}

Show or hide handles marked as hidden. When set to on, this
property disables handle hiding and exposes all object handles
regardless of the setting of an object’s HandleVisibility
property. When set to off, all objects so marked remain hidden
within the graphics hierarchy.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. While it is not necessary to
identify the root object with a tag (since its handle is always 0),
you can use this property to store any string value, which you can
later retrieve using get.

Type
string (read-only)

Class of graphics object. For the root object, Type is always the
string root.

UIContextMenu
handle

1-6065

Root Properties

This property is not used by the root object.

Units
{pixels} | normalized | inches | centimeters | points
| characters

Unit of measurement. Specifies the units MATLAB uses to
interpret size and location data contained in the PointerLocation
and ScreenSize properties. All units are measured from the
lower left corner of the screen.

• normalized—Map the lower left corner of the screen to (0,0)
and the upper right corner to (1.0,1.0).

• inches, centimeters, and points — Absolute units. 1 point
= 1/72 inch.

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

If you change the value of Units, it is good practice to return it to
its default value after completing your operation, so as not to affect
other functions that assume Units is set to the default value.

UserData
matrix

User-specified data. Data you want to associate with the root
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

Visible
{on} | off

Object visibility. This property has no effect on the root object.

See Also root object

1-6066

roots

Purpose Polynomial roots

Syntax r = roots(c)

Description r = roots(c) returns a column vector whose elements are the roots
of the polynomial c.

Row vector c contains the coefficients of a polynomial, ordered in
descending powers. If c has n+1 components, the polynomial it
represents is c1s

n + … + cns + cn + 1.

Tips Note the relationship of this function to p = poly(r), which returns
a row vector whose elements are the coefficients of the polynomial.
For vectors, roots and poly are inverse functions of each other, up to
ordering, scaling, and roundoff error.

Examples The polynomial s3 – 6s2 – 72s – 27 is represented in MATLAB software
as

p = [1 -6 -72 -27]

The roots of this polynomial are returned in a column vector by

r = roots(p)

r =
12.1229
-5.7345
-0.3884

Algorithms The algorithm simply involves computing the eigenvalues of the
companion matrix:

A = diag(ones(n-1,1),-1);
A(1,:) = -c(2:n+1)./c(1);
eig(A)

1-6067

roots

It is possible to prove that the results produced are the exact
eigenvalues of a matrix within roundoff error of the companion matrix
A, but this does not mean that they are the exact roots of a polynomial
with coefficients within roundoff error of those in c.

See Also fzero | poly | residue

1-6068

rose

Purpose Angle histogram plot

Syntax rose(theta)
rose(theta,x)
rose(theta,nbins)
rose(axes_handle,...)
h = rose(...)
[tout,rout] = rose(...)

Description rose(theta) creates an angle histogram, which is a polar plot showing
the distribution of values grouped according to their numeric range,
showing the distribution of theta in 20 angle bins or less. The vector
theta, expressed in radians, determines the angle of each bin from the
origin. The length of each bin reflects the number of elements in theta
that fall within a group, which ranges from 0 to the greatest number of
elements deposited in any one bin.

rose(theta,x) uses the vector x to specify the number and the
locations of bins. length(x) is the number of bins and the values of x
specify the center angle of each bin. For example, if x is a five-element
vector, rose distributes the elements of theta in five bins centered
at the specified x values.

rose(theta,nbins) plots nbins equally spaced bins in the range [0,
2*pi]. The default is 20.

rose(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = rose(...) returns the handle of the line object used to create
the graph.

[tout,rout] = rose(...) returns the vectors tout and rout so
polar(tout,rout) generates the histogram for the data. This syntax
does not generate a plot.

1-6069

rose

Examples Create Rose Histogram

Load the sunspot.dat data set which contains the 2-column matrix
sunspot. Store the second column of the data set as theta.

load sunspot.dat
theta = sunspot(:,2);

Create a rose histogram of theta using 12 bins.

figure
rose(theta,12)

1-6070

rose

See Also compass | feather | hist | line | polar

1-6071

rosser

Purpose Classic symmetric eigenvalue test problem

Syntax A = rosser
A = rosser(classname)

Description A = rosser returns the Rosser matrix in double precision.

A = rosser(classname) returns the Rosser matrix with a class
specified by classname. Specify classname as 'single' to return the
Rosser matrix in single precision.

Input
Arguments

classname - Input class
'double' (default) | 'single'

Input class, specified as 'double' (default) or 'single'. rosser(C)
produces a matrix of the specified class.

Examples Generate the Rosser matrix

rosser returns the Rosser matrix.

rosser

ans =
611 196 -192 407 -8 -52 -49 29
196 899 113 -192 -71 -43 -8 -44

-192 113 899 196 61 49 8 52
407 -192 196 611 8 44 59 -23
-8 -71 61 8 411 -599 208 208

-52 -43 49 44 -599 411 208 208
-49 -8 8 59 208 208 99 -911
29 -44 52 -23 208 208 -911 99

Generate matrix of class ‘single’

Specify classname as single to return a Rosser matrix of that class.

Y = rosser('single')

1-6072

rosser

whos('Y')

Y =

611 196 -192 407 -8 -52 -49 29
196 899 113 -192 -71 -43 -8 -44

-192 113 899 196 61 49 8 52
407 -192 196 611 8 44 59 -23
-8 -71 61 8 411 -599 208 208

-52 -43 49 44 -599 411 208 208
-49 -8 8 59 208 208 99 -911
29 -44 52 -23 208 208 -911 99

Name Size Bytes Class Attributes

Y 8x8 256 single

Definitions Rosser Matrix

The Rosser matrix is a well known matrix used, for example, to evaluate
eigenvalue algorithms. The matrix is 8-by-8 with integer elements.
It has:

• A double eigenvalue

• Three nearly equal eigenvalues

• Dominant eigenvalues of the opposite sign

• A zero eigenvalue

• A small, nonzero eigenvalue

See Also eig

1-6073

rot90

Purpose Rotate array 90 degrees

Syntax B = rot90(A)
B = rot90(A,k)

Description B = rot90(A) rotates array A counterclockwise by 90 degrees. For
multidimensional arrays, rot90 rotates in the plane formed by the first
and second dimensions.

B = rot90(A,k) rotates array A counterclockwise by k*90 degrees,
where k is an integer.

Input
Arguments

A - Input array
vector | matrix | array | cell array | categorical array | table

Input array, specified as a vector, matrix, array, cell array, categorical
array, or table of any data type.
Complex Number Support: Yes

k - Rotation constant
integer

Rotation constant, specified as an integer. Specify k to rotate by k*90
degrees rather than nesting calls to rot90.

Example: rot90(A,-2) rotates A by -180 degrees and is equivalent to
rot90(A,2), which rotates by 180 degrees.

Examples Rotate Column Vector

Create a column vector of sequential elements.

A = (1:5)'

A =

1
2

1-6074

rot90

3
4
5

Rotate A counterclockwise by 90 degrees using rot90.

B = rot90(A)

B =

1 2 3 4 5

The result, B, has the same elements as A but a different orientation.

Rotate Multidimensional Array

Create a 3-by-3-by-2 cell array of strings.

A = cat(3,{'a' 'b' 'c';'d' 'e' 'f';'g' 'h' 'i'},{'j' 'k' 'l';'m' 'n'

A(:,:,1) =

'a' 'b' 'c'
'd' 'e' 'f'
'g' 'h' 'i'

A(:,:,2) =

'j' 'k' 'l'
'm' 'n' 'o'
'p' 'q' 'r'

Rotate the cell array by 270 degrees.

B = rot90(A,3)

B(:,:,1) =

1-6075

rot90

'g' 'd' 'a'
'h' 'e' 'b'
'i' 'f' 'c'

B(:,:,2) =

'p' 'm' 'j'
'q' 'n' 'k'
'r' 'o' 'l'

The function rotates each page of the array independently. Since a full
360 degree rotation (k = 4) leaves the array unchanged, rot90(A,3) is
equivalent to rot90(A,-1).

Tips • Use the flip function to flip arrays in any dimension.

See Also flip | flipud | fliplr

1-6076

rotate

Purpose Rotate object about specified origin and direction

Syntax rotate(h,direction,alpha)
rotate(...,origin)

Description The rotate function rotates a graphics object in three-dimensional
space.

rotate(h,direction,alpha) rotates the graphics object h by alpha
degrees. direction is a two- or three-element vector that describes the
axis of rotation in conjunction with the origin of the axis of rotation. The
default origin of the axis of rotation is the center of the plot box. This
point is not necessarily the origin of the axes.

Positive alpha is defined as the righthand-rule angle about the direction
vector as it extends from the origin of rotation.

If h is an array of handles, all objects must be children of the same axes.

rotate(...,origin) specifies the origin of the axis of rotation as a
three-element vector [x0,y0,z0].

Tips The rotation transformation modifies the object’s data. This technique
is different from that used by view and rotate3d, which modify only
the viewpoint.

The axis of rotation is defined by an origin of rotation and a point P.
Specify P as the spherical coordinates [theta phi] or as the Cartesian
coordinates [xp,yp,zp].

1-6077

rotate

In the two-element form for direction, theta is the angle in the x-y
plane counterclockwise from the positive x-axis. phi is the elevation of
the direction vector from the x-y plane.

The three-element form for direction specifies the axis direction using
Cartesian coordinates. The direction vector is the vector from the origin
of rotation to P.

1-6078

rotate

Examples Rotate Plot Around x-Axis

Create a surface plot of the peaks function and return the surface
handle.

hSurface = surf(peaks(20));

Rotate the surface plot 25 degrees around its x-axis.

direction = [1 0 0];

1-6079

rotate

rotate(hSurface,direction,25)

Rotate Plot Around y-Axis

Create a surface plot of the peaks function and return the surface
handle.

hSurface = surf(peaks(20));

1-6080

rotate

Rotate the surface plot 25 degrees around its y-axis.

direction = [0 1 0];
rotate(hSurface,direction,25)

1-6081

rotate

Rotate Plot Around x-Axis and y-Axis

Create a surface plot of the peaks function and return the surface
handle.

hSurface = surf(peaks(20));

1-6082

rotate

Rotate the surface plot 25 degrees around its x-axis and y-axis.

direction = [1 1 0];
rotate(hSurface,direction,25)

1-6083

rotate

Tips rotate changes the values of the Xdata, Ydata, and Zdata properties
to rotate graphics objects.

See Also rotate3d | sph2cart | view | CameraPosition | CameraTarget |
CameraUpVector | CameraViewAngle

1-6084

rotate3d

Purpose Rotate 3-D view using mouse

Syntax rotate3d on
rotate3d off
rotate3d
rotate3d(figure_handle,...)
rotate3d(axes_handle,...)
h = rotate3d(figure_handle)

Description rotate3d on enables mouse-base rotation on all axes within the
current figure.

rotate3d off disables interactive axes rotation in the current figure.

rotate3d toggles interactive axes rotation in the current figure.

rotate3d(figure_handle,...) enables rotation within the specified
figure instead of the current figure.

rotate3d(axes_handle,...) enables rotation only in the specified
axes.

h = rotate3d(figure_handle) returns a rotate3d mode object for
figure figure_handle for you to customize the mode’s behavior.

Using Rotate Mode Objects

You access the following properties of rotate mode objects via get and
modify some of them using set.

• FigureHandle <handle>— The associated figure handle, a read-only
property that cannot be set

• Enable 'on'|'off' — Specifies whether this figure mode is
currently enabled on the figure

• RotateStyle 'orbit'|'box'— Sets the method of rotation

'orbit' rotates the entire axes; 'box' rotates a plot-box outline
of the axes.

1-6085

rotate3d

Rotate3D Mode Callbacks

You can program the following callbacks for rotate3d mode operations.

• ButtonDownFilter <function_handle> — Function to intercept
ButtonDown events

The application can inhibit the rotate operation under circumstances
the programmer defines, depending on what the callback returns.
The input function handle should reference a function with two
implicit arguments (similar to handle callbacks):

function [res] = myfunction(obj,event_obj)
% obj handle to the object that has been clicked on
% event_obj handle to event data object (empty in this release)
% res [output] logical flag to determine whether the rotate

operation should take place or the 'ButtonDownFcn'
property of the object should take precedence

• ActionPreCallback <function_handle> — Function to execute
before rotating

Set this callback to listen to when a rotate operation will start. The
input function handle should reference a function with two implicit
arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data

The event data has the following field:

Axes The handle of the axes that is being panned

• ActionPostCallback <function_handle> — Function to execute
after rotating

1-6086

rotate3d

Set this callback to listen to when a rotate operation has finished.
The input function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on
% event_obj object containing struct of event data (same as the
% event data of the 'ActionPreCallback' callback)

Rotate3D Mode Utility Functions

The following functions in pan mode query and set certain of its
properties.

• flags = isAllowAxesRotate(h,axes) — Function querying
permission to rotate axes

Calling the function isAllowAxesRotate on the rotate3d object, h,
with a vector of axes handles, axes, as input will return a logical
array of the same dimension as the axes handle vector which indicate
whether a rotate operation is permitted on the axes objects.

• setAllowAxesRotate(h,axes,flag)— Function to set permission
to pan axes

Calling the function setAllowAxesRotate on the rotate3d object, h,
with a vector of axes handles, axes, and a logical scalar, flag, will
either allow or disallow a rotate operation on the axes objects.

Examples Example 1

Rotate the plot using the mouse:

surf(peaks);
rotate3d on;

Example 2

Rotate the plot using the "Plot Box" rotate style:

1-6087

rotate3d

surf(peaks);
h = rotate3d;
set(h,'RotateStyle','box','Enable','on');

Example 3

Create two axes as subplots and then prevent one from rotating:

ax1 = subplot(1,2,1);
surf(peaks);
h = rotate3d;
set(h,'Enable','on')
ax2 = subplot(1,2,2);
surf(membrane);
setAllowAxesRotate(h,ax2,false); % disable rotating for second plot

Example 4

Create a buttonDown callback for rotate mode objects to trigger.
Copy the following code to a new file, execute it, and observe rotation
behavior:

function demo_mbd
% Allow a line to have its own 'ButtonDownFcn' callback
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');
h = rotate3d;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse-click on the line
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

1-6088

rotate3d

Example 5

Create callbacks for pre- and post-buttonDown events for rotate3D
mode objects to trigger. Copy the following code to a new file, execute
it, and observe rotation behavior:

function demo_mbd2
% Listen to rotate events
surf(peaks);
h = rotate3d;
set(h,'ActionPreCallback',@myprecallback);
set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');

function myprecallback(obj,evd)
disp('A rotation is about to occur.');

function mypostcallback(obj,evd)
newView = round(get(evd.Axes,'View'));
msgbox(sprintf('The new view is [%d %d].',newView));

Tips When enabled, rotate3d provides continuous rotation of axes and
the objects it contains through mouse movement. A numeric readout
appears in the lower left corner of the figure during rotation, showing
the current azimuth and elevation of the axes. Releasing the mouse
button removes the animated box and the readout. This differs from
the camorbit function in that while the rotate3d tool modifies the
View property of the axes, the camorbit function fixes the aspect ratio
and modifies the CameraTarget, CameraPosition and CameraUpVector
properties of the axes. See Axes Properties for more information.

You can also enable 3-D rotation from the figure Tools menu or the
figure toolbar.

You can create a rotate3d mode object once and use it to customize the
behavior of different axes, as example 3 illustrates. You can also change
its callback functions on the fly.

1-6089

rotate3d

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is the
figure WindowButtonMotionFcn callback, which can be changed from
within a mode. Therefore, if you are creating a GUI that updates a
figure’s callbacks, the GUI should some keep track of which interactive
mode is active, if any, before attempting to do this.

When you assign different 3-D rotation behaviors to different subplot
axes via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse will carry over
to the linked axes, regardless of the behavior you previously set for
the other axes.

Alternatives Use the Rotate3D tool on the figure toolbar to enable and disable
rotate3D mode on a plot, or select Rotate 3D from the figure’s Tools
menu. For details, see “Rotate in 3-D”.

See Also camorbit | pan | rotate | view | zoom | Axes Properties

1-6090

../ref/figure_props.html#WindowButtonMotionFcn

round

Purpose Round to nearest integer

Syntax Y = round(X)

Description Y = round(X) rounds the elements of X to the nearest integers. Positive
elements with a fractional part of 0.5 round up to the nearest positive
integer. Negative elements with a fractional part of -0.5 round down
to the nearest negative integer. For complex X, the imaginary and real
parts are rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =

Columns 1 through 4

-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6

7.0000 2.4000 + 3.6000i

round(a)

ans =

Columns 1 through 4

-2.0000 0 3.0000 6.0000

Columns 5 through 6

7.0000 2.0000 + 4.0000i

See Also ceil | fix | floor

1-6091

rowfun

Purpose Apply function to table rows

Syntax B = rowfun(func,A)
B = rowfun(func,A,Name,Value)

Description B = rowfun(func,A) applies the function func to each row of the table
A and returns the results in the table B.

func accepts size(A,2) inputs.

B = rowfun(func,A,Name,Value) applies the function func to each
row of the table A with additional options specified by one or more
Name,Value pair arguments.

For example, you can specify which variables to pass to the function
func and how to call func.

Input
Arguments

func - Function
function handle

Function, specified as a function handle. You can define the function
in a file or as an anonymous function. If func corresponds to more
than one function file (that is, if func represents a set of overloaded
functions), MATLAB determines which function to call based on the
class of the input arguments.

func can accept no more than size(A,2) inputs. By default, rowfun
returns the first output of func. To return more than one output from
func, use the 'NumOutputs' or 'OutputVariableNames' name-value
pair arguments.

Example: func = @(x,y) x.^2+y.^2; takes two inputs and finds the
sum of the squares.

A - Input table
table

Input table, specified as a table.

1-6092

rowfun

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'InputVariables',2 uses only the second variable in A
as an input to func.

’InputVariables’ - Variables of A to pass to func
positive integer | vector of positive integers | variable name | cell
array of variable names | logical vector | ...

Variables of A to pass to func, specified as the comma-separated pair
consisting of 'InputVariables' and a positive integer, vector of
positive integers, variable name, cell array of variable names, logical
vector, or an anonymous function that returns a logical scalar. If you
specify 'InputVariables' as an anonymous function that returns a
logical scalar, rowfun only passes the variables in A where the specified
function returns 1 (true).

’GroupingVariables’ - One or more variables in A that define
groups of rows
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

One or more variables in A that define groups of rows, specified as
the comma-separated pair consisting of 'GroupingVariables' and a
positive integer, vector of positive integers, variable name, cell array of
variable names, or logical vector.

A grouping variable can be a numeric vector, logical vector, string (or
character array), cell array of strings, or a categorical vector. Rows in A
that have the same grouping variable values belong to the same group.
rowfun applies func to each group of rows, rather than separately to
each row of A. The output, B, contains one row for each group.

1-6093

rowfun

’SeparateInputs’ - Indicator for calling func with separate inputs
true (default) | false | 1 | 0

Indicator for calling func with separate inputs, specified as the
comma-separated pair consisting of 'SeparateInputs' and either
true, false, 1, or 0.

true func expects separate inputs. rowfun calls func
with size(A,2) inputs, one argument for each data
variable.

This is the default behavior.

false func expects one vector containing all inputs.
rowfun creates the input vector to func by
concatenating the values in each row of A.

’ExtractCellContents’ - Indicator to pass values from cell variables
to func
false (default) | true | 0 | 1

Indicator to pass values from cell variables to func, specified as the
comma-separated pair consisting of 'ExtractCellContents' and either
false, true, 0, or 1.

true rowfun extracts the contents of a variable in A
whose data type is cell and passes the values,
rather than the cells, to func

For grouped computation, the values within
each group in a cell variable must allow vertical
concatenation.

false rowfun passes the cells of a variable in A whose data
type is cell to func.

This is the default behavior.

’OutputVariableNames’ - Variable names for outputs of func
string | cell array of nonempty, distinct strings

1-6094

rowfun

Variable names for outputs of func, specified as the comma-separated
pair consisting of 'OutputVariableNames' and a string or a cell array
of nonempty, distinct strings. The number of strings must equal the
number of outputs desired from func.

Furthermore, the strings must be valid MATLAB identifiers. If valid
MATLAB identifiers are not available for use as variable names,
MATLAB uses a cell array of N strings of the form {'Var1' ...
'VarN'} where N is the number of variables. You can determine valid
MATLAB variable names using the function isvarname.

’NumOutputs’ - Number of outputs from func
0 | positive integer

Number of outputs from func, specified as the comma-separated pair
consisting of 'NumOutputs' and 0 or a positive integer. The integer
must be less than or equal to the possible number of outputs from func.

Example: 'NumOutputs',2 causes rowfun to call func with two
outputs.

’OutputFormat’ - Format of B
'table' (default) | 'uniform' | 'cell'

Format of B, specified as the comma-separated pair consisting of
'OutputFormat' and either the string 'table', 'uniform', or 'cell'.

'table' rowfun returns a table with one variable for each output
of func. For grouped computation, B, also contains the
grouping variables.

'table' allows you to use a function that returns values
of different sizes or data types. However, for ungrouped
computation, all of the outputs from func must have one
row each time it is called. For grouped computation, all
of the outputs from func must have the same number of
rows.

1-6095

rowfun

This is the default output format.

'uniform' rowfun concatenates the values returned by func into a
vector. All of the outputs from func must be scalars with
the same data type.

'cell' rowfun returns B as a cell array. 'cell' allows you to
use a function that returns values of different sizes or
data types.

’ErrorHandler’ - Function to call if func fails
function handle

Function to call if func fails, specified as the comma-separated pair
consisting of 'ErrorHandler' and a function handle. Define this
function so that it rethrows the error or returns valid outputs for
function func.

MATLAB calls the specified error-handling function with two input
arguments:

• A structure with these fields:

identifier Error identifier.

message Error message text.

index Row or group index at which the error occurred.

• The set of input arguments to function func at the time of the error.

For example,

function [A, B] = errorFunc(S, varargin)
warning(S.identifier, S.message);
A = NaN; B = NaN;

1-6096

rowfun

Output
Arguments

B - Output table
table

Output table, returned as a table. The table can store metadata such as
descriptions, variable units, variable names, and row names. For more
information, see Table Properties.

Examples Apply Function with Single Output to Rows

Apply the function hypot to each row of the 5-by-2 table A to find the
shortest distance between the variables x and y.

Create a table, A, with two variables of numeric data.

x = gallery('integerdata',10,[5,1],2);
y = gallery('integerdata',10,[5,1],8);

A = table(x,y)

A =

x y
_ __

9 1
4 5
3 2
7 3
1 10

Apply the function, hypot to each row of A. The function hypot takes
two inputs and returns one output.

B = rowfun(@hypot,A,'OutputVariableNames','z')

B =

z

1-6097

rowfun

9.0554
6.4031
3.6056
7.6158
10.05

B is a table.

Append the function output, B, to the input table, A.

[A B]

ans =

x y z
_ __ ______

9 1 9.0554
4 5 6.4031
3 2 3.6056
7 3 7.6158
1 10 10.05

Apply Function with Multiple Outputs to Rows

Define and apply a geometric Brownian motion model to a range of
parameters.

Create a function in a file named gbmSim.m that contains the following
code.

function [m,mtrue,s,strue] = gbmSim(mu,sigma)
% Discrete approximation to geometric Brownian motion
%
% [m,mtrue,s,strue] = gbmSim(mu,sigma) computes the
% simulated mean, true mean, simulated standard deviation,
% and true standard deviation based on the parameters mu and sigma.

1-6098

rowfun

numReplicates = 1000; numSteps = 100;
y0 = 1;
t1 = 1;
dt = t1 / numSteps;
y1 = y0*prod(1 + mu*dt + sigma*sqrt(dt)*randn(numSteps,numReplicates))
m = mean(y1); s = std(y1);
% Theoretical values
mtrue = y0 * exp(mu*t1); strue = mtrue * sqrt(exp(sigma^2*t1) - 1);

gbmSim accepts two inputs, mu and sigma, and returns four outputs, m,
mtrue, s, and strue.

Define the table, params, containing the parameters to input to the
Brownian Motion Model.

mu = [-.5; -.25; 0; .25; .5];
sigma = [.1; .2; .3; .2; .1];

params = table(mu,sigma)

params =

mu sigma
----- -----
-0.5 0.1

-0.25 0.2
0 0.3

0.25 0.2
0.5 0.1

Apply the function, gbmSim to the rows of the table, params.

stats = rowfun(@gbmSim,params,...
'OutputVariableNames',...
{'simulatedMean' 'trueMean' 'simulatedStd' 'trueStd'})

stats =

1-6099

rowfun

simulatedMean trueMean simulatedStd trueStd
_____________ ________ ____________ ________

0.60501 0.60653 0.05808 0.060805
0.77916 0.7788 0.161 0.15733
1.0024 1 0.3048 0.30688
1.2795 1.284 0.25851 0.25939
1.6498 1.6487 0.16285 0.16529

The 4 strings specified by the 'OutputVariableNames' name-value pair
argument indicate that rowfun should obtain 4 outputs from gbmSim.
You can specify fewer output variable names to return fewer outputs
from gbmSim.

Append the function output, stats, to the input, params.

[params stats]

ans =

mu sigma simulatedMean trueMean simulatedStd trueSt
_____ _____ _____________ ________ ____________ ______

-0.5 0.1 0.60501 0.60653 0.05808 0.0608
-0.25 0.2 0.77916 0.7788 0.161 0.157

0 0.3 1.0024 1 0.3048 0.306
0.25 0.2 1.2795 1.284 0.25851 0.259
0.5 0.1 1.6498 1.6487 0.16285 0.165

Apply Function to Groups of Rows

Create a table, A, where g is a grouping variable.

g = gallery('integerdata',3,[15,1],1);
x = gallery('uniformdata',[15,1],9);
y = gallery('uniformdata',[15,1],2);

A = table(g,x,y)

1-6100

rowfun

A =

g x y
_ _______ ________

3 0.24756 0.87516
3 0.4358 0.3179
3 0.97755 0.27323
2 0.85995 0.6765
3 0.30063 0.071171
2 0.26589 0.19659
3 0.13338 0.52908
2 0.7425 0.17176
1 0.85692 0.86996
2 0.24286 0.24369
3 0.19492 0.84291
2 0.39076 0.55766
1 0.29683 0.35681
1 0.39031 0.2324
2 0.18726 0.6476

Define the anonymous function, func, to compute the average difference
between x and y.

func = @(x,y) mean(x-y);

Find the average difference between variables in groups 1, 2, and 3
defined by the grouping variable, g.

B = rowfun(func,A,...
'GroupingVariable','g',...
'OutputVariableName','MeanDiff')

B =

g GroupCount MeanDiff
_ __________ ________

1-6101

rowfun

1 1 3 0.028298
2 2 6 0.032569
3 3 6 -0.10327

The variable GroupCount indicates the number of rows in A for each
group.

See Also varfun | cellfun | structfun | arrayfun | isvarname

Concepts • “Anonymous Functions”

1-6102

rref

Purpose Reduced row echelon form

Syntax R = rref(A)
[R,jb] = rref(A)
[R,jb] = rref(A,tol)

Description R = rref(A) produces the reduced row echelon form of A using
Gauss Jordan elimination with partial pivoting. A default tolerance
of (max(size(A))*eps *norm(A,inf)) tests for negligible column
elements.

[R,jb] = rref(A) also returns a vector jb such that:

• r = length(jb) is this algorithm’s idea of the rank of A.

• x(jb) are the pivot variables in a linear system Ax = b.

• A(:,jb) is a basis for the range of A.

• R(1:r,jb) is the r-by-r identity matrix.

[R,jb] = rref(A,tol) uses the given tolerance in the rank tests.

Roundoff errors may cause this algorithm to compute a different value
for the rank than rank, orth and null. Additionally, use mldivide to
solve linear systems when high precision is required.

Examples Use rref on a rank-deficient magic square:

A = magic(4), R = rref(A)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

R =
1 0 0 1
0 1 0 3

1-6103

rref

0 0 1 -3
0 0 0 0

See Also inv | lu | rank

1-6104

rsf2csf

Purpose Convert real Schur form to complex Schur form

Syntax [U,T] = rsf2csf(U,T)

Description The complex Schur form of a matrix is upper triangular with the
eigenvalues of the matrix on the diagonal. The real Schur form has the
real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2
blocks on the diagonal.

[U,T] = rsf2csf(U,T) converts the real Schur form to the complex
form.

Arguments U and T represent the unitary and Schur forms of a matrix
A, respectively, that satisfy the relationships: A = U*T*U' and U'*U =
eye(size(A)). See schur for details.

Examples Given matrix A,

1 1 1 3
1 2 1 1
1 1 3 1

-2 1 1 4

with the eigenvalues

4.8121 1.9202 + 1.4742i 1.9202 + 1.4742i 1.3474

Generating the Schur form of A and converting to the complex Schur
form

[u,t] = schur(A);
[U,T] = rsf2csf(u,t)

yields a triangular matrix T whose diagonal (underlined here for
readability) consists of the eigenvalues of A.

U =

1-6105

rsf2csf

-0.4916 -0.2756 - 0.4411i 0.2133 + 0.5699i -0.3428

-0.4980 -0.1012 + 0.2163i -0.1046 + 0.2093i 0.8001

-0.6751 0.1842 + 0.3860i -0.1867 - 0.3808i -0.4260

-0.2337 0.2635 - 0.6481i 0.3134 - 0.5448i 0.2466

T =

4.8121 -0.9697 + 1.0778i -0.5212 + 2.0051i -1.0067

0 1.9202 + 1.4742i 2.3355 0.1117 + 1.6547i

0 0 1.9202 - 1.4742i 0.8002 + 0.2310i

0 0 0 1.3474

See Also schur

1-6106

run

Purpose Run MATLAB script

Syntax run(scriptname)

Description run(scriptname) runs the MATLAB script specified by scriptname.

Input
Arguments

scriptname - Full or relative script path
string

Full or relative script path to a MATLAB script, specified as a string.
scriptname can specify any file type that MATLAB can execute, such
as MATLAB script files, Simulink models, or MEX-files.

Tips • run executes scripts not currently on the MATLAB path. However,
you should use cd or addpath to navigate to or to add the appropriate
folder, making a script executable by entering its name alone.

• scriptname can access any variables in the current workspace.

• run changes to the folder that contains the script, executes it, and
resets back to the original folder. If the script itself changes folders,
then run does not revert to the original folder, unless scriptname
changes to the folder in which this script resides.

• If scriptname corresponds to both a .m file and a P-file residing in
the same folder, then run executes the P-file. This occurs even if you
specify scriptname with a .m extension.

• If a script is not on the MATLAB path, executing the run command
caches the script. In the same session and after calling run, you can
edit the script using an external editor. Call clear scriptname
before calling run again to use the changed version of the script
rather than the cached version. If you edit the script with the
MATLAB editor, run executes the changed version and there is no
need to call clear scriptname.

Examples Run Script Not on Current Path

Create a temporary folder and copy an example MATLAB script to it.

1-6107

run

tmp = tempname;
mkdir(tmp);
runtmp = fullfile(tmp,'buckyball.m');
demodir = fullfile(matlabroot,'toolbox','matlab',...

'demos','buckydem.m');
copyfile(demodir,runtmp);

Run the new script.

run(runtmp)

1-6108

run

See Also cd | path | addpath | pwd

Concepts • “Files and Folders that MATLAB Accesses”

1-6109

runtests

Purpose Run set of tests

Syntax results = runtests(tests)
results = runtests(tests,Name,Value)

Description results = runtests(tests) runs a set of tests, and returns the
results as a TestResult object.

results = runtests(tests,Name,Value) runs a set of tests
with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

tests - Array of tests
string | cell array of strings

Suite of tests specified as a string or cell array of strings. Each string in
the cell array can contain the name of a test class, a test file, a package
that containing your test classes, or a folder containing your test files.

Example: 'mypackage.MyTestClass'

Example: 'ATestFile.m'

Example: pwd

Example:
{'mypackage.MyTestClass','ATestFile.m',pwd,'mypackage.subpackage'}

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

’Recursively’ - Indicator to run tests in subfolders and
subpackages

1-6110

runtests

false (default) | true | 0 | 1

Indicator to run tests in subfolders and subpackages, specified as false
or true (0 or 1). By default runtests runs tests in the specified folder
or package and not in their subfolders or subpackages.

Data Types
logical

’Name’ - Name of suite element
string

String indicating the name of the suite element. For the testing
framework to run a test, the Name property of the test element must
match the specified name. Use the wildcard character, *, to match any
number of characters. Use the question mark character, ?, to match
to exactly one character.

’ParameterProperty’ - Name of parameterization property
string

String indicating the name of a property that defines a parameter used
by the test suite element. Use the wildcard character, *, to match any
number of characters. Use the question mark character, ?, to match
to exactly one character.

’ParameterName’ - Name of parameter
string

String indicating the name of a parameter used by the test suite
element. Use the wildcard character, *, to match any number of
characters. Use the question mark character, ?, to match to exactly
one character.

’BaseFolder’ - Name of base folder
string

String indicating the name of the folder that contains the file defining
the test class or function. For the testing framework to run a test, the
test element must be contained in the specified base folder. Use the

1-6111

runtests

wildcard character, *, to match any number of characters. Use the
question mark character, ?, to match to exactly one character. For test
classes defined in packages, the base folder is the parent of the top-level
package folder.

Examples Run Tests Using File Name

Create the test file shown below, and save it as runtestsExampleTest.m
on your MATLAB path.

function tests = runtestsExampleTest
tests = functiontests(localfunctions);

function testFunctionOne(testCase)

Run the tests.

results = runtests('runtestsExampleTest.m');

Running runtestsExampleTest
.
Done runtestsExampleTest

Run Tests in Subdirectory

If it doesn’t already exist, create the test file, runtestsExampleTest.m,
in the example above.

Create a subdirectory, tmpTest, and, in that directory, create the
following runtestsExampleSubFolderTest.m file.

function tests = runtestsExampleSubFolderTest
tests = functiontests(localfunctions);

function testFunctionTwo(testCase)

Run the tests from the directory above tmpTest by setting
'Recursively' to true.

1-6112

runtests

results = runtests(pwd,'Recursively',true);

Running runtestsExampleTest
.
Done runtestsExampleTest

Running runtestsExampleSubFolderTest
.
Done runtestsExampleSubFolderTest

runtests ran the tests in both the current directory and the
subdirectory.

If you do not specify the 'Recursively' property for the runtests
function, it does not run the test in the subdirectory.

results = runtests(pwd);

Running runtestsExampleTest
.
Done runtestsExampleTest

Run Select Parameterized Tests

In your working folder, create testZeros.m. This class contains four
test methods.

classdef testZeros < matlab.unittest.TestCase
properties (TestParameter)

type = {'single','double','uint16'};
outSize = struct('s2d',[3 3], 's3d',[2 5 4]);

end

methods (Test)

1-6113

runtests

function testClass(testCase, type, outSize)
testCase.verifyClass(zeros(outSize,type), type);

end

function testSize(testCase, outSize)
testCase.verifySize(zeros(outSize), outSize);

end

function testDefaultClass(testCase)
testCase.verifyClass(zeros, 'double');

end
function testDefaultSize(testCase)

testCase.verifySize(zeros, [1 1]);
end

function testDefaultValue(testCase)
testCase.verifyEqual(zeros,0);

end
end

end

The full test suite has 11 test elements: 6 from the testClass method,
2 from the testSize method, and 1 each from the testDefaultClass,
testDefaultSize, and testDefaultValue methods.

At the command prompt, run the test elements that use the outSize
parameter property.

runtests('testZeros','ParameterProperty','outSize')

Running testZeros
........
Done testZeros

ans =

1-6114

runtests

1x8 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration

Totals:
8 Passed, 0 Failed, 0 Incomplete.
0.013499 seconds testing time.

runtests executed eight tests that use the outSize parameter property:
six from the testClass method and two from the testSize method.

At the command prompt, run the test elements that use the singe
parameter name.

runtests('testZeros','ParameterName','single')

Running testZeros
..
Done testZeros

c =

1x2 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration

Totals:
2 Passed, 0 Failed, 0 Incomplete.

1-6115

runtests

0.0034442 seconds testing time.

runtests executed the two tests from the testClass method that use
the outSize parameter name.

See Also matlab.unittest.TestResult | matlab.unittest.TestRunner |
matlab.unittest.TestSuite | functiontests

Related
Examples

• “Write Function-Based Unit Tests”
• “Write Simple Test Case Using Functions”
• “Write Test Using Setup and Teardown Functions”

1-6116

save

Purpose Save workspace variables to file

Syntax save(filename)
save(filename,variables)
save(filename,variables,fmt)
save(filename,variables,version)
save(filename,variables,'-append')

save filename

Description save(filename) saves all variables from the current workspace in a
MATLAB formatted binary file (MAT-file) called filename. If filename
already exists, save overwrites the file.

save(filename,variables) saves only the variables or fields of a
structure array specified by variables.

save(filename,variables,fmt) saves in the file format specified
by fmt. The variables argument is optional. If you do not specify
variables, the save function saves all variables in the workspace.

save(filename,variables,version) saves to the MAT-file version
specified by version. The variables argument is optional, as described
above.

save(filename,variables,'-append') adds new variables to an
existing file, and does not overwrite it. The variables argument is
optional, as described above.

To append to a Version 6 MAT-file, you must also include '-v6' as
an input argument.

save filename is the command form of the syntax. Command form
requires fewer special characters. You do not need to type parentheses

1-6117

save

or enclose input strings in single quotes. Separate inputs with spaces
instead of commas.

For example, to save a file named test.mat, these statements are
equivalent:

save test.mat % command form
save('test.mat') % function form

You can include any of the inputs described in previous syntaxes. For
example, to save the variable named X:

save test.mat X % command form
save('test.mat','X') % function form

Do not use command form when any of the inputs, such as filename,
are variables.

Input
Arguments

filename - Name of file
'matlab.mat' (default) | string

Name of file, specified as a string. If you do not specify filename, the
save function saves to a file named matlab.mat.

If filename has no extension (that is, no text after a period), and the
value of format is -mat (the default), then MATLAB appends .mat. If
filename does not include a full path, MATLAB saves to the current
folder. You must have permission to write to the file.

When using the command form of save, it is unnecessary to enclose
input strings in single quotes. However, if filename contains a space,
you must enclose the argument in single quotes. For example, save
'filename withspace.mat'.

Example: 'myFile.mat'

Data Types
char

variables - Names of variables to save

1-6118

save

string

Names of variables to save, specified as one or more strings. When
using the command form of save, you do not need to enclose input
strings in single quotes. variables can be in one of the following forms.

Form of variables Input Variables to Save

var1,...,varN Save the listed variables, specified as
individual strings.
Use the '*' wildcard to
match patterns. For example,
save('filename.mat','A*') saves
all variables in the file that start with
A.

'-regexp',expr1,...,exprN Save only the variables whose names
match the regular expressions,
specified as strings. For example,
save('filename.mat','-regexp','^Mon','^Tue
saves only the variables in the file
whose names begin with Mon or Tues.

'-struct',structName Store the fields of the scalar structure
specified by structName as individual
variables in the file. For example,
save('filename.mat','-struct','S')
saves the scalar structure, S.

'-struct',structName,field1,...,fieldNStore the specified fields of
the specified scalar structure
as individual variables
in the file. For example,
save('filename.mat,'-struct','S','a','b')
saves the fields S.a and S.b.

'-struct',structName,'-regexp',expr1,...,exprNStore only the fields whose names
match the regular expressions,
specified as strings.

1-6119

save

Data Types
char

fmt - File format
'-mat' (default) | '-ascii' | '-ascii','-tabs' |
'-ascii','-double' | '-ascii','-double','-tabs'

File format, specified as one of the following strings. When using the
command form of save, you do not need to enclose input strings in
single quotes, for example, save myFile.txt -ascii -tabs.

Value of fmt File Format

'-mat' Binary MAT-file format.

'-ascii' Text format with 8 digits of
precision.

'-ascii','-tabs' Tab-delimited text format with 8
digits of precision.

'-ascii','-double' Text format with 16 digits of
precision.

'-ascii','-double','-tabs' Tab-delimited text format with
16 digits of precision.

For MAT-files, data saved on one machine and loaded on another
machine retains as much accuracy and range as the different machine
floating-point formats allow.

Use one of the text formats to save MATLAB numeric values to text
files. In this case:

• Each variable must be a two-dimensional double array.

• The output includes only the real component of complex numbers.

• MATLAB writes data from each variable sequentially to the file.
If you plan to use the load function to read the file, all variables
must have the same number of columns. The load function creates a
single variable from the file.

1-6120

save

If you specify a text format and any variable is a two-dimensional
character array, then MATLAB translates characters to their
corresponding internal ASCII codes. For example, 'abc' appears in a
text file as:

9.7000000e+001 9.8000000e+001 9.9000000e+001

version - MAT-file version
'-v7.3' | '-v7' | '-v6' | '-v4'

MAT-file version, specified as one of the following strings. When using
the command form of save, you do not need to enclose input strings
in single quotes.

Value
of
version

Can Load
in MATLAB
Versions Supported Features

'-v7.3' 7.3 (R2006b) or
later

Version 7.0 features, plus support for
data items greater than or equal to 2
GB on 64-bit systems.

'-v7' 7.0 (R14) or
later

Version 6 features, plus data
compression and Unicode character
encoding. Unicode encoding enables
file sharing between systems that use
different default character encoding
schemes.

'-v6' 5 (R8) or later Version 4 features, plus N-dimensional
arrays, cell arrays and structures,
and variable names greater than 19
characters.

'-v4' all Two-dimensional double, character,
and sparse arrays.

If any data items require features that the specified version does not
support, MATLAB does not save those items and issues a warning. You

1-6121

save

cannot specify a version later than your current version of MATLAB
software.

To view or set the default version for MAT-files, select aMAT-file save
format option in the General Preferences.

Examples Save All Workspace Variables to MAT-File

Save all variables from the workspace in a binary MAT-file, test.mat.
If filename is a variable, you must use function syntax.

filename = 'test.mat';
save(filename)

Otherwise, you also can use command syntax.

save test.mat

Remove the variables from the workspace, and then retrieve the data
with the load function.

clear
load('test.mat')

Save Specific Variables to MAT-File

Create and save two variables, p and q, to a file called pqfile.mat.

p = rand(1,10);
q = ones(10);
save('pqfile.mat','p','q')

MATLAB saves the variables to the file, pqfile.mat, in the current
folder.

You also can use command syntax to save the variables, p and q.

save pqfile.mat p q

1-6122

save

Save Data to ASCII File

Create two variables, save them to an ASCII file, and then view the
contents of the file.

p = rand(1,10);
q = ones(10);
save('pqfile.txt','p','q','-ascii')
type('pqfile.txt')

The type function displays the contents of the file.

Alternatively, use command syntax for the save operation.

save pqfile.txt p q -ascii

Save Structure Fields as Individual Variables

Create a structure, s1, that contains three fields, a, b, and c.

s1.a = 12.7;
s1.b = {'abc',[4 5; 6 7]};
s1.c = 'Hello!';

Save the fields of structure s1 as individual variables in a file called
newstruct.mat.

save('newstruct.mat','-struct','s1');

Check the contents of the file using the whos function.

disp('Contents of newstruct.mat:')
whos('-file','newstruct.mat')

Contents of newstruct.mat:
Name Size Bytes Class Attributes

a 1x1 8 double
b 1x2 262 cell

1-6123

save

c 1x6 12 char

Save Variables to Version 7.3 MAT-File

Create two variables and save them to a version 7.3 MAT-file called
example.mat.

A = rand(5);
B = magic(10);
save('example.mat','A','B','-v7.3')

You also can use command syntax for the save operation.

save example.mat A B -v7.3

Append Variable to MAT-File

Save two variables to a MAT-file. Then, append a third variable to
the same file.

p = rand(1,10);
q = ones(10);
save('test.mat','p','q')

View the contents of the MAT-file.

whos('-file','test.mat')

Name Size Bytes Class Attributes

p 1x10 80 double
q 10x10 800 double

Create a new variable, a, and append it to the MAT-file.

a = 50;
save('test.mat','a','-append')

View the contents of the MAT-file.

whos('-file','test.mat')

1-6124

save

Name Size Bytes Class Attributes

a 1x1 8 double
p 1x10 80 double
q 10x10 800 double

The variable, a, is appended to test.mat, without overwriting the
previous variables, p and q.

Note To append to a Version 6 MAT-file, specify both '-v6' and
'-append'. For example, to save variable a to the file, test.mat, call:

save('test.mat','a','-v6','-append')

Tips • For more flexibility in creating ASCII files, use dlmwrite or fprintf.

See Also clear | hgsave | load | matfile | regexp | saveas | whos

Concepts • “What Is the MATLAB Workspace?”
• “Save, Load, and Delete Workspace Variables”
• “Write to Delimited Data Files”
• “Regular Expressions”

1-6125

save (COM)

Purpose Serialize control object to file

Syntax h.save('filename')
save(h, 'filename')

Description h.save('filename') saves the COM control object, h, to the file
specified in the string, filename.

save(h, 'filename') is an alternate syntax for the same operation.

Note The COM save function is only supported for controls at this time.

Tips COM functions are available on Microsoft Windows systems only.

Examples Create an mwsamp control and save its original state to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get

MATLAB displays the original values:

ans =
Label: 'Label'

Radius: 20

1-6126

save (COM)

See Also load (COM) | actxcontrol | actxserver | release | delete (COM)

1-6127

save (serial)

Purpose Save serial port objects and variables to file

Syntax save filename
save filename obj1 obj2...

Description save filename saves all MATLAB variables to the file filename. If an
extension is not specified for filename, then the .mat extension is used.

save filename obj1 obj2... saves the serial port objects obj1
obj2... to the file filename.

Tips You can use save in the functional form as well as the command form
shown above. When using the functional form, you must specify the
filename and serial port objects as strings. For example. to save the
serial port object s to the file MySerial.mat on a Windows platform

s = serial('COM1');
save('MySerial','s')

Any data that is associated with the serial port object is not
automatically stored in the file. For example, suppose there is data in
the input buffer for obj. To save that data to a file, you must bring
it into the MATLAB workspace using one of the synchronous read
functions, and then save to the file using a separate variable name. You
can also save data to a text file with the record function.

You return objects and variables to the MATLAB workspace with the
load command. Values for read-only properties are restored to their
default values upon loading. For example, the Status property is
restored to closed. To determine if a property is read-only, examine
its reference pages.

Examples This example illustrates how to use the command and functional form
of save on a Windows platform.

s = serial('COM1');
set(s,'BaudRate',2400,'StopBits',1)
save MySerial1 s

1-6128

save (serial)

set(s,'BytesAvailableFcn',@mycallback)
save('MySerial2','s')

See Also load | record | Status

1-6129

saveas

Purpose Save figure or Simulink block diagram using specified format

Alternatives Use File > Save As on the figure window menu to access the Save
As dialog, in which you can select a graphics format. For details, see
“Exporting in a Specific Graphics Format” in the MATLAB Graphics
documentation. Sizes of files written to image formats by this GUI and
by saveas can differ due to disparate resolution settings.

Syntax saveas(h,'filename.ext')
saveas(h,'filename','format')

Description saveas(h,'filename.ext') saves the figure or Simulink block
diagram with the handle h to the file filename.ext. The format of the
file is determined by the extension, ext. Allowable values for ext are
listed in this table.

You can pass the handle of any Handle Graphics object to saveas,
which then saves the parent figure to the object you specified should h
not be a figure handle. This means that saveas cannot save a subplot
without also saving all subplots in its parent figure.

Text Value Format

ai Adobe Illustrator ‘88

Support for this format will be removed in a future
release.

bmp Windows bitmap

emf Enhanced metafile

eps EPS Level 1

fig MATLAB figure (invalid for Simulink block
diagrams)

jpg JPEG image (invalid for Simulink block diagrams)

m MATLAB file (invalid for Simulink block
diagrams)

1-6130

saveas

Text Value Format

pbm Portable bitmap

pcx Paintbrush 24-bit

pdf Portable Document Format

pgm Portable Graymap

png Portable Network Graphics

ppm Portable Pixmap

tif TIFF image, compressed

saveas(h,'filename','format') saves the figure or Simulink block
diagram with the handle h to the file called filename using the specified
format. The filename can have an extension, but the extension is not
used to define the file format. If no extension is specified, the standard
extension corresponding to the specified format is automatically
appended to the filename.

Allowable values for format are the extensions in the table above and
the device drivers and graphic formats supported by print. The drivers
and graphic formats supported by print include additional file formats
not listed in the table above. When using a print device type to specify
format for saveas, do not prefix it with -d.

Tips You can use open to open files saved using saveas with an m or fig
extension. Other saveas and print formats are not supported by open.
Both the Save As and Export Setup dialog boxes that you access
from a figure’s File menu use saveas with the format argument, and
support all device and file types listed above.

1-6131

saveas

Note Whenever you specify a format for saving a figure with the
Save As menu item , that file format is used again the next time
you save that figure or a new one. If you do not want to save in the
previously-used format, use Save As and be sure to set the Save as
type drop-down menu to the kind of file you want to write. However,
saving a figure with the saveas function and a format does not change
the Save as type setting in the GUI.

If you want to control the size or resolution of figures saved in image
(bit-mapped) formats, such as BMP or JPG, use the print command and
specify dots-per-inch resolution with the r switch.

Examples Example 1: Specify File Extension

Save the current figure that you annotated using the Plot Editor to a
file named pred_prey using the MATLAB fig format. This allows you
to open the file pred_prey.fig at a later time and continue editing it
with the Plot Editor.

saveas(gcf,'pred_prey.fig')

Example 2: Specify File Format but No Extension

Save the current figure, using a Portable Document format, to the file
logo. Use the pdf extension from the above table to specify the format.
The file created is logo.pdf.

saveas(gcf,'logo', 'pdf')

The file created is logo.pdf. MATLAB automatically appends the pdf
extension because no extension was specified.

Example 3: Specify File Format and Extension

Save the current figure to the file star.eps using the Level 2 Color
PostScript format. If you use doc print or help print, you can see from

1-6132

saveas

the table for print device types that the device type for this format is
-dpsc2. The file created is star.eps.

saveas(gcf,'star.eps', 'psc2')

In another example, save the current Simulink block diagram to the file
trans.tiff using the TIFF format with no compression. From the
table for print device types, you can see that the device type for this
format is -dtiffn. The file created is trans.tiff.

saveas(gcf,'trans.tiff', 'tiffn')

Example 4: Saving a Simulink Diagram

Save a Simulink diagram from command line. The file is saved as
counters.bmp

sldemo_tank
saveas(get_param('sldemo_tank','Handle'),'topmodel.bmp');

Using get_param, get the handle of the model and save using the
saveas command. The file can be saved in any desired standard image
formats.

See Also hgsave | open | print | save_system

1-6133

savefig

Purpose Save figure to FIG-file

Syntax savefig(filename)
savefig(h,filename)

Description savefig(filename) saves the current figure to a FIG-file named
filename.

savefig(h,filename) saves one or more figures referred to by h, where
h can be a single figure handle or an array of figure handles.

Input
Arguments

h - Handle to one or more figures
single figure handle | array of figure handles

Handle to one or more figures, specified as a single figure handle or
an array of figure handles.

filename - file name
'Untitled.fig' (default) | string

File name, specified as a string. If you do not specify a file name, then
MATLAB saves the file as Untitled.fig, which is the default.

If the specified string does not include a .fig file extension, then
MATLAB appends the extension. savefig does not accept other file
extensions.

Example: 'ExampleFile.fig'

Examples Save Current Figure to FIG-File

Create a surface plot of the peaks function. Save the figure to the file
PeaksFile.fig. Close the figure after saving it.

figure;
surf(peaks);
savefig('PeaksFile.fig');
close(gcf)

1-6134

savefig

To open the figure, use the command openfig('PeaksFile.fig').

Save Multiple Figures to FIG-File

Create two plots and store the figure handles in array h. Save the
figures to the file TwoFiguresFile.fig. Close the figures after saving
them.

h(1) = figure;
z = peaks;
surf(z)

h(2) = figure;
plot(z)

savefig(h,'TwoFiguresFile.fig');
close(h)

To open the two figures, use the command
openfig('TwoFiguresFile.fig').

Tips • You must use MATLAB to open files saved using savefig. To open
the file, pass the file name to the function openfig, hgload, or open.
For example,

openfig('ExampleFile.fig')

opens the file, ExampleFile.fig, in MATLAB.

• savefig saves the full MATLAB figure. To save only part of a figure,
such as an axes, or to save handles in addition to the data, use the
save function to create a MAT-file.

See Also openfig | save | open | load

1-6135

saveobj

Purpose Modify save process for object

Syntax b = saveobj(a)

Description b = saveobj(a) is called by the save function if the class of a defines a
saveobj method. save writes the returned value, b, to the MAT-file.

Define a loadobj method to take the appropriate action when loading
the object.

If A is an array of objects, MATLAB invokes saveobj separately for
each object saved.

Examples Call the superclass saveobj method from the subclass implementation
of saveobj with the following syntax:

classdef mySub < super
methods

function sobj = saveobj(obj)
% Call superclass saveobj method
sobj = saveobj@super(obj);
% Perform subclass save operations
...

end
...
end

...
end

See “Saving and Loading Objects from Class Hierarchies”.

Update object when saved:

function b = saveobj(a)
% If the object does not have an account number,
% Add account number to AccountNumber property
if isempty(a.AccountNumber)

a.AccountNumber = getAccountNumber(a);

1-6136

saveobj

end
b = a;

end

See “Maintaining Class Compatibility”.

See Also save | load | loadobj

Tutorials • “Control Save and Load”

1-6137

savepath

Purpose Save current search path

Alternatives As an alternative to the savepath function, use the Set Path dialog box.

Syntax savepath
savepath folderName/pathdef.m
status = savepath...

Description savepath updates the MATLAB search path for all users on the system
so that the path can be reused in a future session. savepath saves the
search path to the pathdef.m file that MATLAB located at startup, or
to the current folder if a pathdef.m file exists there. To save the search
path programmatically each time you exit MATLAB, use savepath in a
finish.m file.. On a Windows system with User Account Control (UAC)
enabled, UAC might prompt you to allow the update operation because
it requires administrator-level permission.

savepath folderName/pathdef.m saves the current search path to
pathdef.m located in folderName. Use this form of the syntax if you
do not have write access to the current pathdef.m. If you do not
specify folderName, MATLAB saves pathdef.m in the current folder.
folderName can be a relative or absolute path. To use the saved search
path automatically in a future session, make folderName be the startup
folder for MATLAB.

status = savepath... returns 0 when savepath was successful and 1
when savepath failed.

Examples Save the current search path to pathdef.m, located in
I:/my_matlab_files:

savepath I:/my_matlab_files/pathdef.m

See Also addpath | cd | dir | finish | genpath | matlabroot | pathsep |
pathtool | rehash | restoredefaultpath | rmpath | startup |
userpath | what

1-6138

savepath

How To • “Running a Script When Exiting”

• “What Is the MATLAB Search Path?”

1-6139

scatter

Purpose Scatter plot

Syntax scatter(X,Y)
scatter(X,Y,S)
scatter(X,Y,S,C)
scatter(___ ,'fill')
scatter(___ ,markertype)
scatter(___ ,Name,Value)

scatter(axes_handle, ___)

h = scatter(___)

Description scatter(X,Y) displays circles at the locations specified by the vectors X
and Y. This type of graph is also known as a bubble plot.

scatter(X,Y,S) draws each circle with the size specified by S. To plot
each circle with equal size, specify S as a scalar. To plot each circle
with a specific size, specify S as a vector with length equal to the length
of X and Y.

scatter(X,Y,S,C) draws each circle with the color specified by C.

• If C is a color string or an RGB row vector, then all circles are plotted
with the specified color.

• If C is a three column matrix with the number of rows in C equal
to the length of X and Y, then each row of C specifies an RGB color
value for the corresponding circle.

• If C is a vector with length equal to the length of X and Y, then the
values in C are linearly mapped to the colors in the current colormap.

scatter(___ ,'fill') fills in the circles, using any of the input
argument combinations in the previous syntaxes.

1-6140

scatter

scatter(___ ,markertype) specifies the marker type.

scatter(___ ,Name,Value) specifies scattergroup property settings
using one or more Name,Value pair arguments.

scatter(axes_handle, ___) plots into the axes specified by
axes_handle instead of into the current axes (gca). The axes_handle
option can precede any of the input argument combinations in the
previous syntaxes.

h = scatter(___) returns the scattergroup object handle, h.

Input
Arguments

X - Value of data to display on x-axis
vector

Value of data to display on the x-axis, specified as a vector. X and Y
must be vectors of equal length.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

Y - Value of data to display on y-axis
vector

Value of data to display on the y-axis, specified as a vector. X and Y
must be vectors of equal length.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

S - Marker area
36 (default) | scalar | row or column vector | []

Marker area, specified as a scalar, a row or column vector, or []. The
values in S must be positive. The units for area are points squared.

1-6141

scatter

• If S is a scalar, then scatter plots all markers with the specified
area.

• If S is a row or column vector, then each entry in S specifies the area
for the corresponding marker. The length of S must equal the length
of X and Y, and corresponding entries in X, Y, and S determine the
location and area of each marker.

• If S is empty, then the default size of 36 points squared is used.

Example: 50

Example: [36,25,25,17,46]

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

C - Marker color
[0 0 1] (blue) (default) | color string | RGB row vector | three-column
matrix of RGB values | vector

Marker color, specified as a color string, an RGB row vector, a
three-column matrix of RGB values, or a vector. For an RGB row vector,
use a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities
must be in the range [0 1]. If you have three points in the scatter
plot and want the colors to be indices into the colormap, specify C as a
three-element column vector.

This table lists the predefined colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

1-6142

scatter

RGB Vector Short Name Long Name

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'k'

Example: [1,2,3,4]

Example: reshape([0,1,0,0,0,1,0.5,1,0.2],3,3)

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char

markertype - Marker type
'o' (default) | string

Marker type, specified as a string. This table lists the supported marker
types.

Specifier Marker Type

’o’ Circle

’+’ Plus sign

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

1-6143

scatter

Specifier Marker Type

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star
(pentagram)

’hexagram’ or ’h’ Six-pointed star (hexagram)

’none’ No marker

Example: 'p'

Data Types
char

axes_handle - Axes handle
handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'MarkerFaceColor','red' sets the marker face color to red.

For more information on these settings see scattergroup.

’LineWidth’ - Line width
0.5 (default) | scalar

Line width, specified as the comma-separated pair consisting of
'LineWidth' and a scalar in points. The scalar sets the width size of
the marker edge.

1-6144

scatter

Example: 'LineWidth',0.75

’MarkerEdgeColor’ - Marker edge color
'none' | 'auto' | 'flat' (default) | three-element RGB vector | string

Marker edge color, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and a color value. The color value can be one of the
supported strings or an RGB vector, listed in the following tables.

Specifier Result

'flat' Sets the color using the CData
property.

’auto’ Sets the color to the axes Color
property. If the axes Color
property is none, then sets the
color to the figure Color property.

’none’ Specifies no color, which makes
nonfilled markers invisible.

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

1-6145

scatter

RGB Vector Short Name Long Name

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerEdgeColor',[1 .8 .1]

’MarkerFaceColor’ - Marker face color
'none' (default) | 'auto' | 'flat' | three-element RGB vector | string

Marker face color, specified as the comma-separated pair consisting
of 'MarkerFaceColor' and a color value. MarkerFaceColor sets the
fill color for markers that are closed shapes (circle, square, diamond,
pentagram, hexagram, and the four triangles). The color value can be
one of the supported strings or an RGB vector, listed in the following
tables.

Specifier Result

'flat' Sets the fill color using the CData
property.

’auto’ Sets the fill color to the axes
Color property. If the axes
Color property is none, then sets
the fill color to the figure Color
property.

’none’ Makes the interior of the marker
transparent, allowing the
background to show through.

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

1-6146

scatter

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerFaceColor',[0 .8 1]

Output
Arguments

h - Scattergroup object handle
scalar

Scattergroup object handle, returned as a scalar. This is a unique
identifier, which you can use to query and modify the properties of the
scattergroup object.

Examples Create Scatter Plot

Define x to contain 200 equally spaced values between 0 and .
Initialize the random-number generator to make the output of rand
repeatable, and define y to contain cosine values with random noise.

x = linspace(0,3*pi,200);
rng(0,'twister');
y = cos(x)+ rand(1,200);

Create a scatter plot using the two vector inputs.

figure
scatter(x,y)

1-6147

scatter

scatter plots entries in x against corresponding entries in y.

Vary Circle Size

Load the sample data from seamount to get vectors x and y. Define s
as a vector of linearly spaced values between 1 and 50 that is the same
length as x. Create a scatter plot and vary the circle size. Use zoom to
zoom in on the scatter plot.

figure

1-6148

scatter

load seamount
s = linspace(1,50,length(x));
scatter(x,y,s)
zoom(2)

Corresponding entries in x, y, and s determine the location and size
of each marker.

1-6149

scatter

Vary Circle Color

Load the sample data from seamount to get vectors x and y. Define c
as a vector of linearly spaced values between 1 and 10 that is the same
length as x. Create a scatter plot and vary the circle color. Use zoom to
zoom in on the scatter plot.

figure
load seamount
s = 10;
c = linspace(1,10,length(x));
scatter(x,y,s,c)
zoom(2)

1-6150

scatter

Corresponding entries in x, y, and c determine the location and color of
each marker. Since s is a scalar value, all markers are the same size.

Vary Circle Size and Color

Load sample data from seamount to get vectors x, y, and z. Create a
scatter plot and vary the circle size and color. Fill in the circles and use
zoom to zoom in on the scatter plot.

figure

1-6151

scatter

load seamount
s = sqrt(-z/2);
c = z;
scatter(x,y,s,c,'fill')
zoom(2)

scatter plots each circle with a specific size and color determined by
the vectors s and c, respectively.

1-6152

scatter

Specify Marker Symbol

Initialize the random-number generator to make the output of rand
repeatable. Set up vectors x and y as sine and cosine values with
random noise.

rng(0,'twister');
theta = linspace(0,2*pi,150);
x = sin(theta) + 0.75*rand(1,150);
y = cos(theta) + 0.75*rand(1,150);

Create a scatter plot and set the marker type to diamonds with an area
of 140 points squared.

figure
s = 140;
scatter(x,y,s,'d')

1-6153

scatter

To fill in the diamonds, use the 'fill' option.

Specify Marker Properties

Initialize the random-number generator to make the output of rand
repeatable. Define vectors x and y as sine and cosine values with
random noise.

rng(0,'twister');
theta = linspace(0,2*pi,300);

1-6154

scatter

x = sin(theta) + 0.75*rand(1,300);
y = cos(theta) + 0.75*rand(1,300);

Create a scatter plot and set the marker size, edge color, face color, and
line width using Name,Value pair arguments.

figure
s = 40;
scatter(x,y,s,'MarkerEdgeColor','b',...

'MarkerFaceColor','c',...
'LineWidth',1.5)

1-6155

scatter

Specify Scatter Plot Axes

Load the sample data from seamount to get vectors x, y, and z.

load seamount

Create a figure with two subplots and return the handles to the two
subplot axes in array hs. Create a scatter plot in the upper subplot
using the axes handle, hs(1). In the lower subplot, create another
scatter plot from the same data sample and use filled, diamond markers.

1-6156

scatter

figure
hs(1) = subplot(1,2,1);
hs(2) = subplot(1,2,2);
s = 30;
c = z;
scatter(hs(1),x,y,s,c)
scatter(hs(2),x,y,s,c,'fill','d')

1-6157

scatter

Set Marker Properties Using the Handle

Use |sphere| to define vectors |x|, |y|, and |z|.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vectors s and c to specify the size and color for each marker.

S = repmat([70,50,20],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and return the scattergroup handle, h.

figure
h = scatter3(x,y,z,s,c);

1-6158

scatter

Use the handle to set the marker face color for the scatter plot.

set(h,'MarkerFaceColor',[0 .5 .5])

1-6159

scatter

See Also scatter3 | plot3 | scattergroup | ColorSpec | LineSpec

1-6160

scatter3

Purpose 3-D scatter plot

Syntax scatter3(X,Y,Z)
scatter3(X,Y,Z,S)
scatter3(X,Y,Z,S,C)
scatter3(___ ,'fill')
scatter3(___ ,markertype)
scatter3(___ ,Name,Value)

scatter3(axes_handle, ___)

h = scatter3(___)

Description scatter3(X,Y,Z) displays circles at the locations specified by the
vectors X, Y, and Z.

scatter3(X,Y,Z,S) draws each circle with the size specified by S. To
plot each circle with equal size, specify S as a scalar. To plot each circle
with a specific size, specify S as a vector.

scatter3(X,Y,Z,S,C) draws each circle with the color specified by C.

• If C is a color string or an RGB row vector, then all circles are plotted
with the specified color.

• If C is a three column matrix with the number of rows in C equal to
the length of X, Y, and Z, then each row of C specifies an RGB color
value for the corresponding circle.

• If C is a vector with length equal to the length of X, Y, and Z, then the
values in C are linearly mapped to the colors in the current colormap.

scatter3(___ ,'fill') fills in the circles, using any of the input
argument combinations in the previous syntaxes.

scatter3(___ ,markertype) specifies the marker type.

1-6161

scatter3

scatter3(___ ,Name,Value) specifies scattergroup property settings
using one or more Name,Value pair arguments.

scatter3(axes_handle, ___) plots into the axes specified by
axes_handle instead of into the current axes (gca). The axes_handle
option can precede any of the input argument combinations in the
previous syntaxes.

h = scatter3(___) returns the scattergroup object handle, h.

Input
Arguments

X - Value of data to display on x-axis
vector

Value of data to display on the x-axis, specified as a vector. X, Y, and Z
must be vectors of equal length.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

Y - Value of data to display on y-axis
(default) | vector

Value of data to display on the y-axis, specified as a vector. X, Y, and Z
must be vectors of equal length.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

Z - Value of data to display on z-axis
(default) | vector

Value of data to display on the z-axis, specified as a vector. X, Y, and Z
must be vectors of equal length.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

1-6162

scatter3

S - Marker area
36 (default) | scalar | vector | []

Marker area, specified as a scalar, a vector, or []. The values in S must
be positive. The units for area are points squared.

• If S is a scalar, then scatter3 plots all markers with the specified
area.

• If S is a row or column vector, then each entry in S specifies the area
for the corresponding marker. The length of S must equal the length
of X, Y and Z. Corresponding entries in X, Y, Z and S determine the
location and area of each marker.

• If S is empty, then the default size of 36 points squared is used.

Example: 50

Example: [36,25,25,17,46]

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

C - Marker color
[0 0 1] (blue) (default) | color string | RGB row vector | three-column
matrix of RGB values | vector

Marker color, specified as a color string, an RGB row vector, a
three-column matrix of RGB values, or a vector. For an RGB row vector,
use a three-element row vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities
must be in the range [0 1]. If you have three points in the scatter
plot and want the colors to be indices into the colormap, specify C as a
three-element column vector.

This table lists the predefined colors and their RGB equivalents.

1-6163

scatter3

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'y'

Example: [1,2,3,4]

Example: reshape([0,1,0,0,0,1,0.5,1,0.2],3,3)

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

markertype - Marker type
'o' (default) | string

Marker type, specified as a string. The table below lists the supported
marker types.

Specifier Marker Type

’o’ Circle

’+’ Plus sign

’*’ Asterisk

’.’ Point

’x’ Cross

1-6164

scatter3

Specifier Marker Type

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star
(pentagram)

’hexagram’ or ’h’ Six-pointed star (hexagram)

’none’ No marker

axes_handle - Axes handle
handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'MarkerFaceColor','red' sets the marker face color to red.

For more information on these properties see scattergroup.

’LineWidth’ - Line width
0.5 (default) | scalar

1-6165

scatter3

Line width, specified as the comma-separated pair consisting of
'LineWidth' and a scalar. The scalar sets the width size in points of
the marker edge.

Example: 'LineWidth',0.75

’MarkerEdgeColor’ - Marker edge color
'none' | 'auto' | 'flat' (default) | three-element RGB vector | string

Marker edge color, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and a color value. The color value can be one of the
supported strings or an RGB vector, listed in the following tables.

Specifier Result

'flat' Sets the color using the CData
property.

’auto’ Sets the color to the axes Color
property. If the axes Color
property is none, then sets the
color to the figure Color property.

’none’ Specifies no color, which makes
nonfilled markers invisible.

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

1-6166

scatter3

RGB Vector Short Name Long Name

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerEdgeColor',[1 .8 .1]

’MarkerFaceColor’ - Marker face color
'none' (default) | 'auto' | 'flat' | three-element RGB vector | string

Marker face color, specified as the comma-separated pair consisting
of 'MarkerFaceColor' and a color value. MarkerFaceColor sets the
fill color for markers that are closed shapes (circle, square, diamond,
pentagram, hexagram, and the four triangles). The color value can be
one of the supported strings or an RGB vector, listed in the following
tables.

Specifier Result

'flat' Sets the fill color using the CData
property.

’auto’ Sets the fill color to the axes
Color property. If the axes
Color property is none, then sets
the fill color to the figure Color
property.

’none’ Makes the interior of the marker
transparent, allowing the
background to show through.

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

1-6167

scatter3

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerFaceColor',[0 .8 1]

Output
Arguments

h - Scattergroup object handle
scalar

Scattergroup object handle, returned as a scalar. This is a unique
identifier, which you can use to query and modify the properties of the
scattergroup.

Examples Create 3-D Scatter Plot

Create a 3-D scatter plot. Use sphere to define vectors x, y, and z.

figure
[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];
scatter3(x,y,z)

1-6168

scatter3

Vary Marker Size

Use sphere to define vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vector s to specify the marker sizes.

1-6169

scatter3

S = repmat([100,50,5],numel(X),1);
s = S(:);

Create a 3-D scatter plot and use view to change the angle of the axes
in the figure.

figure
scatter3(x,y,z,s)
view(40,35)

1-6170

scatter3

Corresponding entries in x, y, z, and s determine the location and size
of each marker.

Vary Marker Color

Use sphere to define vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vectors s and c to specify the size and color of each marker.

S = repmat([50,25,10],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and use view to change the angle of the axes
in the figure.

figure
scatter3(x,y,z,s,c)
view(40,35)

1-6171

scatter3

Corresponding entries in x, y, z, and c determine the location and color
of each marker.

Fill in Markers

Initialize the random-number generator to make the output of rand
repeatable. Define vectors x and y as cosine and sine values with
random noise.

rng(0,'twister');

1-6172

scatter3

z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and fill in the markers. Use view to change
the angle of the axes in the figure.

figure
scatter3(x,y,z,'fill')
view(-30,10)

1-6173

scatter3

Set Marker Type

Initialize the random-number generator to make the output of rand
repeatable. Define vectors x and y as cosine and sine values with
random noise.

rng(0,'twister');
z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

1-6174

scatter3

Create a 3-D scatter plot and set the marker type. Use view to change
the angle of the axes in the figure.

figure
scatter3(x,y,z,'*')
view(-30,10)

1-6175

scatter3

Set Marker Properties

Initialize the random-number generator to make the output of rand
repeatable. Define vectors x and y as cosine and sine values with
random noise.

rng(0,'twister');
z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and set the marker edge color and the marker
face color. Use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,...

'MarkerEdgeColor','k',...
'MarkerFaceColor',[0 .75 .75])

view(-30,10)

1-6176

scatter3

Specify Axes for 3-D Scatter Plot

Load the seamount data set to get vectors x, y, and z.

load seamount

Create a figure with two subplots and return the handles to the two
axes in array hs. In each subplot, create a 3-D scatter plot. Specify the
marker properties for each scatter plot.

1-6177

scatter3

figure
hs(1) = subplot(2,1,1);
hs(2) = subplot(2,1,2);
scatter3(hs(1),x,y,z,'MarkerFaceColor',[0 .75 .75])
scatter3(hs(2),x,y,z,'*')

Set Marker Properties Using the Handle

Use |sphere| to define vectors |x|, |y|, and |z|.

1-6178

scatter3

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vectors s and c to specify the size and color for each marker.

S = repmat([70,50,20],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and return the scattergroup handle, h.

figure
h = scatter3(x,y,z,s,c);

1-6179

scatter3

Use the handle to set the marker face color for the scatter plot.

set(h,'MarkerFaceColor',[0 .5 .5])

1-6180

scatter3

See Also scatter | plot3 | scattergroup | ColorSpec | LineSpec

1-6181

Scattergroup Properties

Purpose Define scattergroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default property values for scattergroup
objects.

See Plot Objects for information on scattergroup objects.

Scattergroup
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of scattergroup objects in legends. Specifies
whether this scattergroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
scattergroup object is displayed in a figure legend.

IconDisplayStyle
Value

Purpose

on Include the scattergroup object in a legend
as one entry, but not its children objects

off Do not include the scattergroup or its
children in a legend (default)

children Include only the children of the scattergroup
as separate entries in the legend

1-6182

Scattergroup Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the

1-6183

Scattergroup Properties

running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press
a mouse button while the pointer is over this object, but not
over another graphics object. See the HitTestArea property for
information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

1-6184

Scattergroup Properties

CData
vector | m-by-3 matrix | ColorSpec

Color of markers. When CData is a vector the same length as XData
and YData, the values in CData are linearly mapped to the colors
in the current colormap. When CData is a length(XData)-by-3
matrix, it specifies the colors of the markers as RGB values.

CDataSource
string (MATLAB variable)

Link CData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the CData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change CData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata. See the refreshdata reference
page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Children
array of graphics object handles

1-6185

Scattergroup Properties

Children of the scattergroup object. An array containing the
handle of a patch object parented to the scattergroup object
(whether visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

1-6186

Scattergroup Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the scattergroup object in the legend. The
default is an empty string.

1-6187

Scattergroup Properties

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

1-6188

Scattergroup Properties

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

1-6189

Scattergroup Properties

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

1-6190

Scattergroup Properties

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the markers that compose the scatter plot. If HitTest is off,
clicking this object selects the object below it (which is usually
the axes containing it).

HitTestArea
on | {off}

Select the object by clicking markers or area of extent. Select plot
objects by:

• Clicking scatter markers (default).

• Clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the scatter markers to
select the object. When HitTestArea is on, you can select this
object by clicking anywhere within the extent of the plot (that
is, anywhere within a rectangle that encloses all the scatter
markers).

1-6191

Scattergroup Properties

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

1-6192

Scattergroup Properties

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Marker
character (see table)

Marker symbol. Specifies marks that display at data points. You
can set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

1-6193

Scattergroup Properties

Specifier Marker Type

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
ColorSpec | none | auto | {flat}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto — Uses same color as the axes Color property. If the
axes Color property is none, then sets the color to the figure
Color property.

• flat— Uses the CData property to set the color.

MarkerFaceColor
ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• ColorSpec — User-defined color.

1-6194

Scattergroup Properties

• none — Specifies no color, which makes the interior of the
marker transparent and allows the background to show
through..

• auto — Uses same color as the axes Color property. If the
axes Color property is none, then sets the color to the figure
Color property.

• flat— Uses the CData property to set the color.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

SizeData
square points

1-6195

Scattergroup Properties

Size of markers in square points. Area of the marker in the scatter
graph in units of points. Since there are 72 points to one inch, to
specify a marker that has an area of one square inch you would
use a value of 72^2.

SizeDataSource
string (MATLAB variable)

Link SizeData to MATLAB variable. Set this property to a
MATLAB variable that, by default, is evaluated in the base
workspace to generate the SizeData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change SizeData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata. See the refreshdata reference
page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

1-6196

Scattergroup Properties

For example, create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, use findobj to
find the object’s handle. The following statement changes the
FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For stemseries objects, Type is
’hggroup’. The following statement finds all the hggroup objects
in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

1-6197

Scattergroup Properties

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
array

X-coordinates of scatter markers. The scatter function draws
individual markers at each x-axis location in the XData array.
The input argument X in the scatter function calling syntax
assigns values to XData.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

set(h,'XDataSource','xdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

1-6198

Scattergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar | vector | matrix

Y-coordinates of scatter markers. The scatter function draws
individual markers at each y-axis location in the YData array.

The input argument Y in the scatter function calling syntax
assigns values to YData.

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

set(h,'YDataSource','Ydatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

1-6199

Scattergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector

Z-coordinates. A vector defining the z-coordinates for the graph.
XData and YData must be the same length and have the same
number of rows.

ZDataSource
MATLAB variable, as a string

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData. The default value is an empty array.

set(h,'ZDataSource','zdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
ZDataSource does not change the object’s ZData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

1-6200

schur

Purpose Schur decomposition

Syntax T = schur(A)
T = schur(A,flag)
[U,T] = schur(A,...)

Description The schur command computes the Schur form of a matrix.

T = schur(A) returns the Schur matrix T.

T = schur(A,flag) for real matrix A, returns a Schur matrix T in one
of two forms depending on the value of flag:

'complex' T is triangular and is complex if A is real and
has complex eigenvalues.

'real' T has the real eigenvalues on the diagonal and
the complex eigenvalues in 2-by-2 blocks on the
diagonal. 'real' is the default when A is real.

If A is complex, schur returns the complex Schur form in matrix T and
flag is ignored. The complex Schur form is upper triangular with the
eigenvalues of A on the diagonal.

The function rsf2csf converts the real Schur form to the complex
Schur form.

[U,T] = schur(A,...) also returns a unitary matrix U so that A =
U*T*U' and U'*U = eye(size(A)).

Examples H is a 3-by-3 eigenvalue test matrix:

H = [-149 -50 -154
537 180 546
-27 -9 -25]

Its Schur form is

schur(H)

1-6201

schur

ans =
1.0000 -7.1119 -815.8706

0 2.0000 -55.0236
0 0 3.0000

The eigenvalues, which in this case are 1, 2, and 3, are on the diagonal.
The fact that the off-diagonal elements are so large indicates that this
matrix has poorly conditioned eigenvalues; small changes in the matrix
elements produce relatively large changes in its eigenvalues.

See Also eig | hess | qz | rsf2csf

1-6202

script

Purpose Sequence of MATLAB statements in file

Description A script file is an external file that contains a sequence of MATLAB
statements. By typing the filename, you can obtain subsequent
MATLAB input from the file. Script files have a filename extension
of .m.

Scripts are the simplest kind of MATLAB program. They are useful
for automating blocks of MATLAB commands, such as computations
you have to perform repeatedly from the command line. Scripts can
operate on existing data in the workspace, or they can create new data
on which to operate. Although scripts do not return output arguments,
any variables that they create remain in the workspace, so you can
use them in further computations. In addition, scripts can produce
graphical output using commands like plot.

Scripts can contain any series of MATLAB statements. They require no
declarations or begin/end delimiters.

Like any MATLAB program, scripts can contain comments. Any text
following a percent sign (%) on a given line is comment text. Comments
can appear on lines by themselves, or you can append them to the end
of any executable line.

See Also echo | function | type

1-6203

scatteredInterpolant

Purpose Scattered data interpolation

Description Use scatteredInterpolant to perform interpolation on a 2-D or 3-D
“Scattered Data” on page 1-6207 set. For example, you can pass a set of
(x,y) points and values, v, to scatteredInterpolant, and it returns a
surface of the form v = F(x, y). This surface always passes through the
sample values at the point locations. You can evaluate this surface at
any query point, (xq,yq), to produce an interpolated value, vq.

Use scatteredInterpolant to create the “Interpolant” on page 1-6207,
F. Then, you can evaluate F at specific points using any of the following
syntaxes:

• Vq = F(Pq) specifies the query points in the matrix Pq. Each row in
Pq contains the coordinates of a query point.

• Vq = F(Xq,Yq) and Vq = F(Xq,Yq,Zq) specify the query points as
two or three matrices of equal size.

• Vq = F({xq,yq}) and Vq = F({xq,yq,zq}) specify the query points
as “Grid Vectors” on page 1-6207. The interpolated values are
returned in Vq. Use this syntax to conserve memory when you want
to query a large grid of points.

Construction F = scatteredInterpolant(x,y,v) creates an interpolant that fits
a surface of the form v = F(x,y). Vectors x and y specify the (x,y)
coordinates of the sample points. v is a vector that contains the sample
values associated with the points, (x,y).

F = scatteredInterpolant(x,y,z,v) creates a 3-D interpolant of
the form v = F(x,y,z).

F = scatteredInterpolant(P,v) specifies the coordinates of the
sample points as an array. The rows of P contain the (x, y) or (x, y, z)
coordinates for the values in v.

F = scatteredInterpolant(___ ,Method) specifies a string that
describes an interpolation method: 'nearest', 'linear', or 'natural'.
Specify Method as the last input argument in any of the first three
syntaxes.

1-6204

scatteredInterpolant

F = scatteredInterpolant(___ ,Method,ExtrapolationMethod)
specifies both the interpolation and extrapolation methods as
strings. Method can be one of three strings: 'nearest', 'linear',
or 'natural'. Specify ExtrapolationMethod as one of the following
strings: 'nearest', 'linear', or 'none'. Pass Method and
ExtrapolationMethod together as the last two input arguments in
any of the first three syntaxes.

F = scatteredInterpolant() creates an empty scattered data
interpolant. Use F.Points = P to initialize F with the points in matrix
P. Use F.Values = v to initialize F with the values in v.

Input Arguments

x

Sample points x-coordinates, specified as a vector of the same
size as v.

y

Sample points y-coordinates, specified as a vector of the same
size as v.

z

Sample points z-coordinates, specified as a vector of the same
size as v.

P

Sample points array, specified as an m-by-n matrix, where m is
the number of points and n is the dimension of the space where
the points reside. Each row of P contains the (x, y) or (x, y, z)
coordinates of a sample point.

v

Sample values vector, specified as a vector of that defines the
values at the sample points.

Method

1-6205

scatteredInterpolant

Interpolation method, specified as one of these strings.

Method String Description

'linear' (default) Linear interpolation.

'nearest' Nearest neighbor interpolation.

'natural' Natural neighbor interpolation.

ExtrapolationMethod

Extrapolation method, specified as one of these strings.

ExtrapolationMethod
String

Description

'linear' Linear extrapolation based on boundary
gradients. Default when Method is
'linear' or 'natural'.'nearest' Nearest neighbor extrapolation. This
method evaluates to the value of the
nearest neighbor on the boundary.
Default when Method = 'nearest'.

'none' No extrapolation. Any queries outside
the convex hull of F.Points return NaN.

Properties Points

Array of sample points (locations) for the values in F.Values.
Each row of F.Points contains the (x, y) or (x, y, z) coordinates
of a sample point.

Values

Vector of values associated with each point in F.Points.

Method

A string specifying the method used to interpolate the data:
'nearest', 'linear', or 'natural'.

1-6206

scatteredInterpolant

ExtrapolationMethod

A string specifying the method used to extrapolate the data:
'nearest', 'linear', or 'none'. A value of 'none' indicates
that extrapolation is disabled.

Definitions Interpolant

Interpolating function that you can evaluate at query locations.

Scattered Data

A set of points that have no structure among their relative locations.

Full Grid

A grid represented as a set of arrays. For example, you can create a full
grid using ndgrid.

Grid Vectors

A set of vectors that serve as a compact representation of a grid in
ndgrid format. For example, [X,Y] = ndgrid(xg,yg) returns a full
grid in the matrices X and Y. You can represent the same grid using
the grid vectors, xg and yg.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Indexing scatteredInterpolant supports index-based editing of the properties
of F. You can add or remove points in F.Points and update the
corresponding values in F.Values. For example, F.Points(5,:)
= [] removes the fifth point, and F.Values(5) = [] removes the
corresponding value.

Examples 2-D Interpolation

Define 200 random points.

xy = -2.5 + 5*gallery('uniformdata',[200 2],0);
x = xy(:,1);

1-6207

scatteredInterpolant

y = xy(:,2);

Sample an exponential function. These are the sample values for the
interpolant.

v = x.*exp(-x.^2-y.^2);

Create the interpolant.

F = scatteredInterpolant(x,y,v);

Evaluate the interpolant at query locations (,).

ti = -2:.25:2;
[xq,yq] = meshgrid(ti,ti);
vq = F(xq,yq);

Plot the result.

figure
mesh(xq,yq,vq);
hold on;
plot3(x,y,v,'o');
hold off;

1-6208

scatteredInterpolant

2-D Extrapolation

Query the interpolant at a single point outside the convex hull using
nearest neighbor extrapolation.

Define a matrix of 200 random points.

P = -2.5 + 5*gallery('uniformdata',[200 2],0);

1-6209

scatteredInterpolant

Sample an exponential function. These are the sample values for the
interpolant.

x = P(:,1);
y = P(:,2);
v = x.*exp(-x.^2-y.^2);

Create the interpolant, specifying linear interpolation and nearest
neighbor extrapolation.

F = scatteredInterpolant(P,v,'linear','nearest')

F =

scatteredInterpolant with properties:

Points: [200x2 double]
Values: [200x1 double]
Method: 'linear'

ExtrapolationMethod: 'nearest'

Evaluate the interpolant outside the convex hull.

vq = F(3.0,-1.5)

vq =

0.0031

Disable extrapolation and evaluate F at the same point.

F.ExtrapolationMethod = 'none';
vq = F(3.0,-1.5)

1-6210

scatteredInterpolant

vq =

NaN

Replacement of Sample Values

Replace the elements in the Values property when you want to change
the values at the sample points. You get immediate results when you
evaluate the new interpolant because the original triangulation has
not changed.

Create 50 random points.

x = -2.5 + 5*gallery('uniformdata',[50 1],0);
y = -2.5 + 5*gallery('uniformdata',[50 1],1);

Sample an exponential function. These are the sample values for the
interpolant.

v = x.*exp(-x.^2-y.^2);

Create the interpolant.

F = scatteredInterpolant(x,y,v)

F =

scatteredInterpolant with properties:

Points: [50x2 double]
Values: [50x1 double]
Method: 'linear'

ExtrapolationMethod: 'linear'

1-6211

scatteredInterpolant

Evaluate the interpolant at (1.40,1.90).

F(1.40,1.90)

ans =

0.0029

Change the interpolant sample values.

vnew = x.^2 + y.^2;
F.Values = vnew;

Evaluate the interpolant at (1.40,1.90).

F(1.40,1.90)

ans =

6.1109

See Also griddedInterpolant | interp1 | interp2 | interp3 | meshgrid |
ndgrid

How To • Class Attributes

• Property Attributes

• “Interpolating Gridded Data”

1-6212

sec

Purpose Secant of angle in radians

Syntax Y = sec(X)

Description Y = sec(X) returns the secant of the elements of X. The sec function
operates element-wise on arrays. The function accepts both real and
complex inputs. For real values of X in the interval [-Inf, Inf], sec
returns real values in the interval [-Inf ,-1] and [1,Inf]. For complex
values of X, sec returns complex values. All angles are in radians.

Input
Arguments

X - Input angle in radians
scalar value | vector | matrix | N-D array

Input angle in radians, specified as a real-valued or complex-valued
scalar value, vector, matrix or N-D array. The sec operation is
element-wise when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Secant of input angle
scalar value | vector | matrix | N-D array

Secant of input angle, returned as real-valued or complex-valued scalar
value, vector, matrix or N-D array.

Examples Plot Secant Function

Plot the secant over the domain and .

x1 = -pi/2+0.01:0.01:pi/2-0.01;
x2 = pi/2+0.01:0.01:(3*pi/2)-0.01;
plot(x1,sec(x1),x2,sec(x2)), grid on

1-6213

sec

Secant of Vector of Complex Angles

Calculate the secant of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = sec(x)

y =

1-6214

sec

0.6481 + 0.0000i -0.3985 + 0.0000i 0.0198 - 0.0308i

Definitions Secant Function

The secant of an angle, α, defined with reference to a right angled
triangle is

secant
hypotenuse

adjacent side
()

cosine
.

1 h
b

1-6215

sec

The secant of a complex angle, α, is

secant() .

2

e ei i

See Also secd | sech | asec | asecd | asech

1-6216

secd

Purpose Secant of argument in degrees

Syntax Y = secd(X)

Description Y = secd(X) returns the secant of the elements of X, which are
expressed in degrees.

Input
Arguments

X - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The secd operation is element-wise when
X is nonscalar.

Example:

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Secant of angle
scalar value | vector | matrix | N-D array

Secant of angle, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Secant of 90 degrees compared to secant of /2 radians

secd(90)

ans =

Inf

sec(pi/2)

ans =

1.6331e+16

1-6217

secd

secd(90) is infinite, whereas sec(pi/2) is large but finite.

Secant of vector of complex angles, specified in degrees

z = [35+i 15+2i 10+3i];
y = secd(z)

y =

1.2204 + 0.0149i 1.0346 + 0.0097i 1.0140 + 0.0094i

See Also sec | asec | asecd

1-6218

sech

Purpose Hyperbolic secant

Syntax Y = sech(X)

Description The sech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sech(X) returns an array the same size as X containing the
hyperbolic secant of the elements of X.

Examples Graph of Hyperbolic Secant Function

Graph the hyperbolic secant over the domain .

x = -2*pi:0.01:2*pi;
plot(x,sech(x)), grid on

1-6219

sech

Definitions Hyperbolic Secant

The hyperbolic secant of z is

sech()
cosh()

.z
z

1

See Also asech | sec | sinh | cosh

1-6220

selectmoveresize

Purpose Select, move, resize, or copy axes and uicontrol graphics objects

Syntax A = selectmoveresize
set(gca,'ButtonDownFcn','selectmoveresize')

Description selectmoveresize is useful as the callback routine for axes and
uicontrol button down functions. When executed, it selects the object
and allows you to move, resize, and copy it.

A = selectmoveresize returns a structure array containing

• A.Type: a string containing the action type, which can be Select,
Move, Resize, or Copy

• A.Handles: a list of the selected handles, or, for a Copy, an m-by-2
matrix containing the original handles in the first column and the
new handles in the second column

set(gca,'ButtonDownFcn','selectmoveresize') sets the
ButtonDownFcn property of the current axes to selectmoveresize:

See Also axes | uicontrol

1-6221

../ref/axes_props.html#ButtonDownFcn
../ref/uicontrol_props.html#ButtonDownFcn

matlab.unittest.selectors

Purpose Summary of classes in MATLAB Selectors Interface

Description Use selectors to filter or select elements of a test suite based on their
attributes. The matlab.unittest.selectors package consists of the
following selectors.

matlab.unittest.selectors.HasBaseFolderSelector for TestSuite elements
determined by folder

matlab.unittest.selectors.HasName Selector for TestSuite elements
determined by name

matlab.unittest.selectors.HasParameterSelector for TestSuite elements
determined by parameterization

matlab.unittest.selectors.HasSharedTestFixtureSelector for TestSuite elements
that use shared test fixture

See Also matlab.unittest.TestSuite.selectIf

1-6222

matlab.unittest.selectors.HasParameter

Purpose Selector for TestSuite elements determined by parameterization

Description The HasParameter selector filters TestSuite array elements determined
by parameterization.

Construction matlab.unittest.selectors.HasParameter constructs a selector
for TestSuite elements determined by their parameterization. When
you instantiate HasParameter without input arguments, the resulting
TestSuite array only contains elements that have parameterized test
methods.

matlab.unittest.selectors.HasParameter(Name,Value) constructs
a selector with additional options specified by one or more Name,Value
pair arguments. The selector filters based on the name of the property
that defines a parameter, the name of the parameter, and the value of
the parameter. For an element to be selected for the TestSuite array, it
must have at least one parameter that satisfies all the conditions.

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Property

Name of the property that defines the parameter
specified as a string or as an instance of the
matlab.unittest.constraints.Constraint class. If the
specified property name is a string, the testing framework creates
an IsEqualTo constraint with the input string, Property, as the
expected value.

Name

Name of the parameter specified as a string or as an instance of
the matlab.unittest.constraints.Constraint class. If the specified

1-6223

matlab.unittest.selectors.HasParameter

name is a string, the testing framework creates an IsEqualTo
constraint with the input string, Name, as the expected value.

Value

Value of the parameter specified as any MATLAB data type or as
an instance of the matlab.unittest.constraints.Constraint class.
If the specified property name is not a constraint, the testing
framework creates an IsEqualTo constraint with the input data,
Value, as the expected value.

Properties PropertyConstraint

Condition that the test element’s parameter property name must
satisfy to be included in the test suite, specified as an instance of
the Constraint in the Property input argument.

NameConstraint

Condition that the test element’s parameter name must satisfy
to be included in the test suite, specified as an instance of the
Constraint in the Name input argument.

ValueConstraint

Condition that the test element’s parameter property value must
satisfy to be included in the test suite, specified as an instance of
the Constraint in the Value input argument.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Filter Test Suite by Parameterization

In your working folder, create testZeros.m. This class contains four
test methods.

classdef testZeros < matlab.unittest.TestCase
properties (TestParameter)

type = {'single','double','uint16'};

1-6224

matlab.unittest.selectors.HasParameter

outSize = struct('s2d',3, 's3d',[2 5 4]);
end

methods (Test)
function testClass(testCase, type, outSize)

testCase.verifyClass(zeros(outSize,type), type);
end

function testSize(testCase, outSize)
testCase.verifySize(zeros(outSize), outSize);

end

function testDefaultClass(testCase)
testCase.verifyClass(zeros, 'double');

end
function testDefaultSize(testCase)

testCase.verifySize(zeros, [1 1]);
end

function testDefaultValue(testCase)
testCase.verifyEqual(zeros,0);

end
end

end

The test class contains two parameterized test methods, testClass
and testSize.

At the command prompt, create a test suite from the file.

s = matlab.unittest.TestSuite.fromFile('testZeros.m');
{s.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=single,outSize=s3d)'
'testZeros/testClass(type=double,outSize=s2d)'

1-6225

matlab.unittest.selectors.HasParameter

'testZeros/testClass(type=double,outSize=s3d)'
'testZeros/testClass(type=uint16,outSize=s2d)'
'testZeros/testClass(type=uint16,outSize=s3d)'
'testZeros/testSize(outSize=s2d)'
'testZeros/testSize(outSize=s3d)'
'testZeros/testDefaultClass'
'testZeros/testDefaultSize'
'testZeros/testDefaultValue'

The suite contains 11 test elements: 6 from the parameterized
testClass method, 2 from the parameterized testSize method,
and 1 from each of the testDefaultClass, testDefaultSize, and
testDefaultValue methods.

Select all of the test elements from parameterized test methods.

import matlab.unittest.selectors.HasParameter;

s1 = s.selectIf(HasParameter);
{s1.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=single,outSize=s3d)'
'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'
'testZeros/testClass(type=uint16,outSize=s2d)'
'testZeros/testClass(type=uint16,outSize=s3d)'
'testZeros/testSize(outSize=s2d)'
'testZeros/testSize(outSize=s3d)'

The suite contains the eight test elements from the two parameterized
test methods.

Select all of the test elements from nonparameterized test methods.

s2 = s.selectIf(~HasParameter);

1-6226

matlab.unittest.selectors.HasParameter

{s2.Name}'

ans =

'testZeros/testDefaultClass'
'testZeros/testDefaultSize'
'testZeros/testDefaultValue'

Select all test elements that are parameterized and have a property
named 'type' with a parameter name 'double'.

s3 = s.selectIf(HasParameter('Property','type', 'Name','double'));
{s3.Name}'

ans =

'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'

The resulting suite contains two elements. The testClass method is
the only method in testZeros that uses the 'type' property. Selecting
only 'double' from the parameters results in two test elements —
one for each value of 'outSize'.

Select all test elements that a have a parameter defined by a property
starting with 't'.

import matlab.unittest.constraints.StartsWithSubstring;

s4 = s.selectIf(HasParameter('Property',StartsWithSubstring('t')));
{s4.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=single,outSize=s3d)'
'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'

1-6227

matlab.unittest.selectors.HasParameter

'testZeros/testClass(type=uint16,outSize=s2d)'
'testZeros/testClass(type=uint16,outSize=s3d)'

The resulting suite contains the six parameterized test elements from
the testClass method. The testSize method is parameterized, but
the elements from the method are not included in the suite because the
method does not use a property that starts with 't'.

Select all test elements that are parameterized and test the zeros
function with a 2-D array. A parameter value representing a 2-D array
has a length of 1 (for example zeros(3)) or 2 (for example zeros(2,3)).

import matlab.unittest.constraints.HasLength;

s5 = s.selectIf(HasParameter('Property','outSize',...
'Value', HasLength(1)|HasLength(2)));

{s5.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=uint16,outSize=s2d)'
'testZeros/testSize(outSize=s2d)'

Select only the test element that tests that the output is a double data
type and that it has the correct size for a 2-D array.

s6 = s.selectIf(HasParameter('Property','type','Name','double')...
& HasParameter('Property','outSize','Name','s2d'))

s6 =

Test with properties:

Name: 'testZeros/testClass(type=double,outSize=s2d)'
Parameterization: [1x2 matlab.unittest.parameters.TestParameter]

SharedTestFixtures: []

1-6228

matlab.unittest.selectors.HasParameter

See Also selectIf | fromClass | fromFile | fromFolder |
fromMethod | fromPackage | matlab.unittest.selectors
| matlab.unittest.parameters

Related
Examples

• “Create Basic Parameterized Test”
• “Create Advanced Parameterized Test”

Concepts

1-6229

matlab.unittest.selectors.HasSharedTestFixture

Purpose Selector for TestSuite elements that use shared test fixture

Description The HasSharedTestFixture selector filters TestSuite array elements
based on shared test fixtures.

Construction matlab.unittest.selectors.HasSharedTestFixture(f) constructs
a selector for TestSuite elements based on their required shared test
fixtures. For an element to be selected for the TestSuite array, it must
use a fixture that is compatible with the specified fixture, f.

Input Arguments

f - Shared test fixture
Fixture

Shared test fixture specified as a matlab.unittest.fixtures.Fixture
instance. The TestSuite array element must use the shared text
fixture, f, to be selected for the TestSuite.

Properties ExpectedFixture

The shared test fixture that a TestSuite array element must use
to be selected for the TestSuite. The ExpectedFixture property
is specified as a matlab.unittest.fixtures.Fixture in the input
argument, f.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Filter Test Suite by Shared Test Fixtures

Create a package folder, +mytestpackage, in your current working
folder. This package contains two test classes.

In the +mytestpackage folder, create AExampleTest.m. This class
contains two tests that use a suppressed warnings fixture.

classdef (SharedTestFixtures={matlab.unittest.fixtures.SuppressedWarnings

1-6230

matlab.unittest.selectors.HasSharedTestFixture

'MATLAB:rmpath:DirNotFound')})...
AExampleTest < matlab.unittest.TestCase

methods (Test)
function testOne(testCase)

% test code
end
function testTwo(testCase)

% test code
end

end
end

In the +mytestpackage folder, create BExampleTest.m. This class
contains one test that uses a shared path fixture and a suppressed
warnings fixture.

classdef (SharedTestFixtures={...
matlab.unittest.fixtures.PathFixture(...
fullfile(matlabroot,'help', 'techdoc', 'matlab_oop', 'examples
matlab.unittest.fixtures.SuppressedWarningsFixture(...
'MATLAB:rmpath:DirNotFound')}) ...
BExampleTest < matlab.unittest.TestCase

methods(Test)
function testPathAdd(testCase)

% test code
end

end
end

At the command prompt, define the following fixtures.

pf = matlab.unittest.fixtures.PathFixture(...
fullfile(matlabroot,'help','techdoc','matlab_oop','examples'));

swf = matlab.unittest.fixtures.SuppressedWarningsFixture(...
'MATLAB:rmpath:DirNotFound');

Create a test suite from the package.

1-6231

matlab.unittest.selectors.HasSharedTestFixture

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasSharedTestFixture;

suite = TestSuite.fromPackage('mytestpackage')

suite =

1x3 Test array with properties:

Name
Parameterization
SharedTestFixtures

The test suite has three test elements.

Create a filtered suite that only contains tests that use the path fixture,
pf.

s1 = suite.selectIf(HasSharedTestFixture(pf));

The resulting suite, s1, contains the test element from BExampleTest.m,
since the test in that class uses the shared test fixture, pf.

Alternatively, pass the selector to the TestSuite.fromPackage
method instead of generating a full test suite, and then using the
TestSuite.selectIf method to filter the suite.

s1 = TestSuite.fromPackage('mytestpackage', HasSharedTestFixture(pf));

Create a filtered test suite that contains tests that use the suppressed
warnings fixture, swf, but not the path fixture, pf.

s2 = suite.selectIf(~HasSharedTestFixture(pf) & HasSharedTestFixture(swf)

The test suite, s2, only contains the two test elements from
AExampleTest.m. Tests in BExampleTest.m are excluded because, in
addition to the suppressed warnings fixture, they use the path fixture.

1-6232

matlab.unittest.selectors.HasSharedTestFixture

Create a filtered suite that only contains tests that use the path fixture
to a different location.

pf2 = matlab.unittest.fixtures.PathFixture(fullfile(matlabroot));
s3 = TestSuite.fromPackage('mytestpackage', HasSharedTestFixture(pf2)

s3 =

1x0 Test array with properties:

Name
Parameterization
SharedTestFixtures

The test suite does not contain any test elements. The tests in
BExampleTest.m use a shared path fixture, but the selected path
fixture, pf2, adds a different folder to the path so its tests are not
included in the suite.

See Also selectIf | fromClass | fromFile | fromFolder | fromMethod |
fromPackage | matlab.unittest.selectors

Concepts

1-6233

matlab.unittest.selectors.HasBaseFolder

Purpose Selector for TestSuite elements determined by folder

Description The HasBaseFolder selector filters TestSuite array elements
determined by the name of the folder that contains the file that defines
the test class or function.

Construction matlab.unittest.selectors.HasBaseFolder(f) constructs a
selector for TestSuite elements determined by the folder, f, which
contains the file that defines the test class or function. You
can specify the base folder as a string or as an instance of the
matlab.unittest.constraints.Constraint class. If the specified
base folder, f, is a string instead of a Constraint, the testing framework
creates an IsEqualTo constraint with the input string, f, as the expected
value.

For a test element to be included in the suite, the file that defines it
must be contained in the specified base folder. For test classes defined
in packages, the base folder is the parent of the top-level package folder.
The base folder never contains any folders that start with '+' or '@'.

Input Arguments

f - Base folder
string | Constraint

Base folder specified as a string or a
matlab.unittest.constraints.Constraint instance. The
following conditions must be satisfied for the test element to
be selected for the TestSuite:

• If f is a string, the test element’s base folder must exactly
match the specified folder.

• If f is a constraint, the test element’s base folder must satisfy
the specified constraint.

1-6234

matlab.unittest.selectors.HasBaseFolder

Properties Constraint

Condition the base folder must satisfy to be included
in the test suite, specified as an instance of the
matlab.unittest.constraints.Constraints class.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Filter Test Suite by Base Folder

Create a folder, MyTests, in your current working folder. In this folder,
create two subfolders, Feature1 and Feature2.

In a new file, Feature1_Test.m, in the Feature1 subfolder, create the
following test class.

classdef Feature1_Test < matlab.unittest.TestCase
methods (Test)

function testA1(testCase)
% test code

end
function testB1(testCase)

% test code
end

end
end

In a new file, Feature2_Test.m, in the Feature2 subfolder, create the
following test class.

classdef Feature2_Test < matlab.unittest.TestCase
methods (Test)

function testA2(testCase)
% test code

end
function testB2(testCase)

% test code

1-6235

matlab.unittest.selectors.HasBaseFolder

end
end

end

If necessary, set your current working folder to the folder above
MyTests. At the command prompt, create a test suite from the MyTests
folder and examine the contents.

import matlab.unittest.TestSuite
import matlab.unittest.selectors.HasBaseFolder;
import matlab.unittest.constraints.ContainsSubstring;

suite = TestSuite.fromFolder('MyTests', 'IncludingSubfolders', true);
{suite.Name}

ans =

'Feature1_Test/testA1' 'Feature1_Test/testB1' 'Feature2_Test/te

The suite contains the four tests from the two test files.

Select all test quite elements for classes that are defined in the
'Feature1' folder.

s1 = suite.selectIf(HasBaseFolder(fullfile(pwd,'MyTests','Feature1')));
{s1.Name}

ans =

'Feature1_Test/testA1' 'Feature1_Test/testB1'

The filtered test suite contains only test elements from the Feature1
folder.

Select all the test suite elements for classes that are defined in folders
that do not contain the string 'Feature1', and then examine the
contents.

s1 = suite.selectIf(HasBaseFolder(...

1-6236

matlab.unittest.selectors.HasBaseFolder

fullfile(pwd,'MyTests','Feature1')));
{s1.Name}

ans =

'Feature2_Test/testA2' 'Feature2_Test/testB2'

The filtered test suite only contains test elements from the Feature2
folder.

Alternatively, to generate a filtered suite directly, pass the selector to
the TestSuite.fromFolder method.

s1 = TestSuite.fromFolder('MyTests',...
~HasBaseFolder(ContainsSubstring('Feature1')),...
'IncludingSubfolders',true);

See Also selectIf | fromClass | fromFile | fromFolder | fromMethod |
fromPackage | matlab.unittest.selectors

Concepts

1-6237

matlab.unittest.selectors.HasName

Purpose Selector for TestSuite elements determined by name

Description The HasName selector filters TestSuite array elements determined by
the test element name.

Construction matlab.unittest.selectors.HasName(n) constructs a selector
for TestSuite elements determined by the test element name,
n. You can specify the name as a string or as an instance of the
matlab.unittest.constraints.Constraint class. If the specified
name, n, is a string, the testing framework creates an IsEqualTo
constraint with the input string, n, as the expected value.

For a test element to be included in the suite, the test element must
have the same name as the specified name.

Input Arguments

n - Test element name
string | Constraint

Test element name specified as a string or
matlab.unittest.constraints.Constraint instance. The
following conditions must be satisfied for the test element to
be selected for the TestSuite:

• If n is a string, the test element’s name must exactly match
the specified name.

• If n is a constraint, the test element’s name must satisfy the
specified constraint.

Properties Constraint

Condition the test element name must satisfy to be
included in the test suite, specified as an instance of the
matlab.unittest.constraints.Constraints class.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB documentation.

1-6238

matlab.unittest.selectors.HasName

Examples Filter Test Suite by Name

Create the following test class in a file, ExampleTest.m, in your current
working folder.

classdef ExampleTest < matlab.unittest.TestCase
methods(Test)

function testPathAdd(testCase)
% test code

end
function testOne(testCase)

% test code
end
function testTwo(testCase)

% test code
end

end
end

At the command prompt, create a test suite from the ExampleTest.m
file and examine the contents.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasName;
import matlab.unittest.constraints.EndsWithSubstring;

suite = TestSuite.fromFile('ExampleTest.m');
{suite.Name}

ans =

'ExampleTest/testPathAdd' 'ExampleTest/testOne' 'ExampleTest

The suite contains three tests.

Select all the test suite elements that have the name
'ExampleTest/testPathAdd', and examine the contents.

s1 = suite.selectIf(HasName('ExampleTest/testPathAdd'));

1-6239

matlab.unittest.selectors.HasName

{s1.Name}

ans =

'ExampleTest/testPathAdd'

The filtered test suite only contains one test element.

Select all the test suite elements that end in either 'One' or 'Two',
and examine the contents.

s1 = suite.selectIf(HasName(EndsWithSubstring('One')) | ...
HasName(EndsWithSubstring('Two')));

{s1.Name}

ans =

'ExampleTest/testOne' 'ExampleTest/testTwo'

At the time of the test suite construction, create a test suite that only
contains tests with the substring 'One'.

import matlab.unittest.constraints.ContainsSubstring;
s2 = TestSuite.fromFile('ExampleTest.m',...

HasName(ContainsSubstring('One')))

s2 =

Test with properties:

Name: 'ExampleTest/testOne'
Parameterization: []

SharedTestFixtures: []

See Also selectIf | fromClass | fromFile | fromFolder | fromMethod |
fromPackage | matlab.unittest.selectors

Concepts

1-6240

semilogx

Purpose Semilogarithmic plot

Syntax semilogx(Y)
semilogx(X1,Y1,...)
semilogx(X1,Y1,LineSpec,...)
semilogx(...,'PropertyName',PropertyValue,...)
h = semilogx(...)

Description semilogx plot data as logarithmic scales for the x-axis.

semilogx(Y) creates a plot using a base 10 logarithmic scale for the
x-axis and a linear scale for the y-axis. It plots the columns of Y versus
their index if Y contains real numbers. semilogx(Y) is equivalent to
semilogx(real(Y), imag(Y)) if Y contains complex numbers. semilogx
ignores the imaginary component in all other uses of this function.

semilogx(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or
Yn is a matrix, semilogx plots the vector argument versus the rows or
columns of the matrix, along the dimension of the matrix whose length
matches the length of the vector. If the matrix is square, its columns
plot against the vector if their lengths match.

semilogx(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples. LineSpec determines line style, marker
symbol, and color of the plotted lines.

semilogx(...,'PropertyName',PropertyValue,...) sets property
values for all lineseries properties graphics objects created by
semilogx.

h = semilogx(...) return a vector of handles to lineseries graphics
objects, one handle per line.

1-6241

semilogx

Tips If you do not specify a color when plotting more than one line,
semilogx automatically cycle through the colors and line styles in the
order specified by the current axes ColorOrder and LineStyleOrder
properties.

You can mix Xn,Yn pairs with Xn,Yn,LineSpec triples; for example,

semilogx(X1,Y1,X2,Y2,LineSpec,X3,Y3)

If you attempt to add a loglog, semilogx, or semilogy plot to a linear
axis mode graph with hold on, the axis mode remains as it is and the
new data plots as linear.

Renderer Support

The OpenGL renderer does not support logarithmic-scale axes.
MATLAB automatically selects a different renderer when using
logarithmic scaling. If you set the figure Renderer property to opengl,
axis scales become linear. See the figure Renderer property for more
information on renderers.

Examples Logarithmic Scale for x-Axis

Create a plot with a logarithmic scale for the x-axis and a linear scale
for the y-axis.

x = 0:1000;
y = log(x);

figure
semilogx(x,y)

1-6242

semilogx

See Also line | LineSpec | loglog | plot | semilogy

1-6243

semilogy

Purpose Semilogarithmic plot

Syntax semilogy(Y)
semilogy(X1,Y1,...)
semilogy(X1,Y1,LineSpec,...)
semilogy(...,'PropertyName',PropertyValue,...)
h = semilogy(...)

Description semilogy plots data with logarithmic scale for the y-axis.

semilogy(Y) creates a plot using a base 10 logarithmic scale for the
y-axis and a linear scale for the x-axis. It plots the columns of Y versus
their index if Y contains real numbers. semilogy(Y) is equivalent to
semilogy(real(Y), imag(Y)) if Y contains complex numbers. semilogy
ignores the imaginary component in all other uses of this function.

semilogy(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or
Yn is a matrix, semilogy plots the vector argument versus the rows or
columns of the matrix, along the dimension of the matrix whose length
matches the length of the vector. If the matrix is square, its columns
plot against the vector if their lengths match.

semilogy(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples. LineSpec determines line style, marker
symbol, and color of the plotted lines.

semilogy(...,'PropertyName',PropertyValue,...) sets property
values for all lineseries properties graphics objects created by
semilogy.

h = semilogy(...) returns a vector of handles to lineseries graphics
objects, one handle per line.

1-6244

semilogy

Tips If you do not specify a color when plotting more than one line,
semilogy automatically cycle through the colors and line styles in the
order specified by the current axes ColorOrder and LineStyleOrder
properties.

You can mix Xn,Yn pairs with Xn,Yn,LineSpec triples; for example,

semilogy(X1,Y1,X2,Y2,LineSpec,X3,Y3)

If you attempt to add a loglog, semilogx, or semilogy plot to a linear
axis mode graph with hold on, the axis mode remains as it is and the
new data plots as linear.

Renderer Support

The OpenGL renderer does not support logarithmic-scale axes.
MATLAB automatically selects a different renderer when using
logarithmic scaling. If you set the figure Renderer property to opengl,
axis scales become linear. See the figure Renderer property for more
information on renderers.

Examples Logarithmic Scale for y-Axis

Create a plot with a logarithmic scale for the y-axis and a linear scale
for the x-axis.

x = 0:0.1:10;
y = exp(x);

figure
semilogy(x,y);

1-6245

semilogy

See Also line | LineSpec | loglog | plot | semilogx

1-6246

sendmail

Purpose Send email message to address list

Syntax sendmail(recipients,subject)
sendmail(recipients,subject,message)
sendmail(recipients,subject,message,attachments)

Description sendmail(recipients,subject) sends email to recipients with
the specified subject. The recipients input is a string for a single
address, or a cell array of strings for multiple addresses.

sendmail(recipients,subject,message) includes the specified
message. If message is a string, sendmail automatically wraps text
at 75 characters. To force a line break in the message text, use 10,
as shown in the Examples. If message is a cell array of strings, each
cell represents a new line of text.

sendmail(recipients,subject,message,attachments) attaches the
files listed in the string or cell array attachments.

Tips • The sendmail function does not support HTML-formatted messages.
However, you can send HTML files as attachments.

• If sendmail cannot determine your email address or outgoing SMTP
mail server from your system registry, specify those settings using
the setpref function. For example:

setpref('Internet','SMTP_Server','my_server.example.com');
setpref('Internet','E_mail','my_email@example.com');

To identify the SMTP server for the call to setpref, check the
preferences for your electronic mail application, or consult your email
system administrator. If you cannot easily determine the server
name, try 'mail', which is a common default, such as:

setpref('Internet','SMTP_Server','mail');

• By default, the sendmail function does not support email servers
that require authentication. To support these servers, change your

1-6247

sendmail

system settings and set preferences for the SMTP user name and
password, with commands in the following form:

props = java.lang.System.getProperties;
props.setProperty('mail.smtp.auth','true');

setpref('Internet','SMTP_Username','myaddress@example.com');
setpref('Internet','SMTP_Password','mypassword');

• To override the default character encoding, set the preference for
email character encoding as follows:

setpref('Internet','E_mail_Charset',encoding);

where encoding is a string specifying the character encoding, such
as 'SJIS'.

Examples Send a message with two attachments to a hypothetical email address:

sendmail('user@otherdomain.com',...
'Test subject','Test message',...
{'folder/attach1.html','attach2.doc'});

Send a message with forced line breaks (using 10) to a hypothetical
email address:

sendmail('user@otherdomain.com','New subject', ...
['Line1 of message' 10 'Line2 of message' 10 ...
'Line3 of message' 10 'Line4 of message']);

The resulting message is:

Line1 of message
Line2 of message
Line3 of message
Line4 of message

1-6248

sendmail

Gmail™ servers require authentication and an encrypted connection
(SSL) on port 465. Change your system settings to use your Gmail
server and send a test message to your Gmail account:

% Modify these two lines to reflect
% your account and password.
myaddress = 'myaddress@gmail.com';
mypassword = 'mypassword';

setpref('Internet','E_mail',myaddress);
setpref('Internet','SMTP_Server','smtp.gmail.com');
setpref('Internet','SMTP_Username',myaddress);
setpref('Internet','SMTP_Password',mypassword);

props = java.lang.System.getProperties;
props.setProperty('mail.smtp.auth','true');
props.setProperty('mail.smtp.socketFactory.class', ...

'javax.net.ssl.SSLSocketFactory');
props.setProperty('mail.smtp.socketFactory.port','465');

sendmail(myaddress, 'Gmail Test', 'This is a test message.');

Alternatives On Windows systems with Microsoft Outlook®, you can send email
directly through Outlook by accessing the COM server with actxserver.
For an example, see Solution 1-RTY6J.

See Also getpref | setpref

How To • “Specify Proxy Server Settings for Connecting to the Internet”

1-6249

http://www.mathworks.com/support/solutions/en/data/1-RTY6J/index.html?solution=1-RTY6J

serial

Purpose Create serial port object

Syntax obj = serial('port')
obj = serial('port','PropertyName',PropertyValue,...)

Description obj = serial('port') creates a serial port object associated with the
serial port specified by port. If port does not exist, or if it is in use, you
will not be able to connect the serial port object to the device.

Port object name will depend upon the platform that the serial port is
on. instrhwinfo (’serial’) provides a list of available serial ports. This
list is an example of serial constructors on different platforms:

Platform Serial Port Constructor

Linux and Linux 64 serial('/dev/ttyS0');

Mac OS X 64 serial('/dev/tty.KeySerial1');

Windows 32 and
Windows 64

serial('com1');

obj = serial('port','PropertyName',PropertyValue,...) creates
a serial port object with the specified property names and property
values. If an invalid property name or property value is specified, an
error is returned and the serial port object is not created.

Tips When you create a serial port object, these property values are
automatically configured:

• The Type property is given by serial.

• The Name property is given by concatenating Serial with the port
specified in the serial function.

• The Port property is given by the port specified in the serial
function.

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can

1-6250

serial

specify property names without regard to case, and you can make use of
property name completion. For example, the following commands are
all valid on a Windows platform.

s = serial('COM1','BaudRate',4800);
s = serial('COM1','baudrate',4800);
s = serial('COM1','BAUD',4800);

Refer to Configuring Property Values for a list of serial port object
properties that you can use with serial.

Before you can communicate with the device, it must be connected to
obj with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt a read or
write operation while the object is not connected to the device. You can
connect only one serial port object to a given serial port.

Examples This example creates the serial port object s1 associated with the serial
port COM1 on a Windows platform.

s1 = serial('COM1');

The Type, Name, and Port properties are automatically configured.

get(s1,{'Type','Name','Port'})
ans =

'serial' 'Serial-COM1' 'COM1'

To specify properties during object creation

s2 = serial('COM2','BaudRate',1200,'DataBits',7);

See Also fclose | fopen | Name | Port | Status | Type

1-6251

serialbreak

Purpose Send break to device connected to serial port

Syntax serialbreak(obj)
serialbreak(obj,time)

Description serialbreak(obj) sends a break of 10 milliseconds to the device
connected to the serial port object, obj.

serialbreak(obj,time) sends a break to the device with a duration,
in milliseconds, specified by time. Note that the duration of the break
might be inaccurate under some operating systems.

Tips For some devices, the break signal provides a way to clear the hardware
buffer.

Before you can send a break to the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to send a
break while obj is not connected to the device.

serialbreak is a synchronous function, and blocks the command line
until execution is complete.

If you issue serialbreak while data is being asynchronously written,
an error is returned. In this case, you must call the stopasync function
or wait for the write operation to complete.

See Also fopen | stopasync | Status

1-6252

set

Purpose Set Handle Graphics object properties

Syntax set(H,'PropertyName',PropertyValue,...)
set(H,a)
set(H,pn,pv,...)
set(H,pn,MxN_pv)
a = set(h)
pv = set(h,'PropertyName')

Description
Note Do not use the set function on Java objects as it will cause a
memory leak. For more information, see “Accessing Private and Public
Data”

set(H,'PropertyName',PropertyValue,...) sets the named
properties to the specified values on the object(s) identified by H. H can
be a vector of handles, in which case set sets the properties’ values for
all the objects. If H is empty (that is, []), set does nothing, but does
not return an error or warning.

set(H,a) sets the named properties to the specified values on the
object(s) identified by H. a is a structure array whose field names are
the object property names and whose field values are the values of the
corresponding properties.

set(H,pn,pv,...) sets the named properties specified in the cell
array pn to the corresponding value in the cell array pv for all objects
identified in H.

set(H,pn,MxN_pv) sets n property values on each of m graphics objects,
where m = length(H) and n is equal to the number of property names
contained in the cell array pn. This allows you to set a given group of
properties to different values on each object.

a = set(h) returns the user-settable properties and possible values for
the object identified by h. a is a structure array whose field names are
the object’s property names and whose field values are the possible
values of the corresponding properties. If you do not specify an output

1-6253

set

argument, the MATLAB software displays the information on the
screen. h must be scalar.

pv = set(h,'PropertyName') returns the possible values for the
named property. If the possible values are strings, set returns each in
a cell of the cell array pv. For other properties, set returns a statement
indicating that PropertyName does not have a fixed set of property
values. If you do not specify an output argument, MATLAB displays the
information on the screen. h must be scalar.

Note Consult the specific object page (figure, axes, and so on) to
determine what properties you can set.

Tips You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set.

Setting Property Units

Note that if you are setting both the FontSize and the FontUnits
properties in one function call, you must set the FontUnits property
first so that the MATLAB software can correctly interpret the specified
FontSize. The same applies to figure and axes uints — always set the
Units property before setting properties whose values you want to be
interpreted in those units. For example,

f = figure('Units','characters',...
'Position',[30 30 120 35]);

Examples Set the Color property of the current axes to blue.

axes;
set(gca,'Color','b')

Change all the lines in a plot to black.

plot(peaks)
set(findobj('Type','line'),'Color','k')

1-6254

set

You can define a group of properties in a structure to better organize
your code. For example, these statements define a structure called
active, which contains a set of property definitions used for the
uicontrol objects in a particular figure. When this figure becomes the
current figure, MATLAB changes the colors and enables the controls.

active.BackgroundColor = [.7 .7 .7];
active.Enable = 'on';
active.ForegroundColor = [0 0 0];

if gcf == control_fig_handle
set(findobj(control_fig_handle,'Type','uicontrol'),active)

end

You can use cell arrays to set properties to different values on each
object. For example, these statements define a cell array to set three
properties,

PropName(1) = {'BackgroundColor'};
PropName(2) = {'Enable'};
PropName(3) = {'ForegroundColor'};

These statements define a cell array containing three values for each of
three objects (i.e., a 3-by-3 cell array).

PropVal(1,1) = {[.5 .5 .5]};
PropVal(1,2) = {'off'};
PropVal(1,3) = {[.9 .9 .9]};
PropVal(2,1) = {[1 0 0]};
PropVal(2,2) = {'on'};
PropVal(2,3) = {[1 1 1]};
PropVal(3,1) = {[.7 .7 .7]};
PropVal(3,2) = {'on'};
PropVal(3,3) = {[0 0 0]};

Now pass the arguments to set,

set(H,PropName,PropVal)

1-6255

set

where length(H) = 3 and each element is the handle to a uicontrol.

Setting Different Values for the Same Property on Multiple
Objects

Suppose you want to set the value of the Tag property on five line
objects, each to a different value. Note how the value cell array needs to
be transposed to have the proper shape.

h = plot(rand(5));
set(h,{'Tag'},{'line1','line2','line3','line4','line5'}')

Setting Different Values for Multiple Properties on Multiple
Objects

Suppose you want to set the values of the Marker and Tag properties on
three different stemseries objects to different values. Each row of the
value cell array corresponds to an object in h and contains two values,
one for the Marker property and one for the Tag property.

x = 0:30;
y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';
h = stem(x,y);
set(h,{'Marker','Tag'},...

{'o','Decaying Exponential';...
'square','Growing Exponential';...
'*','Steady State'})

See Also findobj | gca | gcf | gco | gcbo | get

1-6256

audioplayer.set

Purpose Set property values for audioplayer object

Syntax set(obj,Name,Value)
set(obj,cellOfNames,cellOfValues)
set(obj,structOfProperties)
settableProperties = set(obj)

Description set(obj,Name,Value) sets the named property to the specified value
for the object obj.

set(obj,cellOfNames,cellOfValues) sets the properties listed in
the cell array cellOfNames to the corresponding values in the cell
array cellOfValues. Each cell array must contain the same number
of elements.

set(obj,structOfProperties) sets the properties identified by each
field of the structure array structOfProperties to the values of the
associated fields.

settableProperties = set(obj) returns the names of the
properties that you can set in a structure array. The field names of
settableProperties are the property names.

Tips The set function allows combinations of property name/value pairs, cell
array pairs, and structure arrays in the same function call.

Examples View the list of properties that you can set for an audioplayer object:

load handel.mat;
handelObj = audioplayer(y, Fs);
set(handelObj)

Set the Tag and UserData properties of an audioplayer object using a
structure array:

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

1-6257

audioplayer.set

load handel.mat;
handelObj = audioplayer(y, Fs);
set(handelObj, newValues)

% View the values all properties.
get(handelObj)

Alternatives To set the value of a single property, you can use dot notation. Reference
each property as though it is a field of a structure array. For example,
set the Tag property for an object called handelObj (as created in the
Examples):

handelObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(handelObj, 'Tag', 'This is my tag.');

See Also audioplayer | get

1-6258

audiorecorder.set

Purpose Set property values for audiorecorder object

Syntax set(obj,Name,Value)
set(obj,cellOfNames,cellOfValues)
set(obj,structOfProperties)
settableProperties = set(obj)

Description set(obj,Name,Value) sets the named property to the specified value
for the object obj.

set(obj,cellOfNames,cellOfValues) sets the properties listed in
the cell array cellOfNames to the corresponding values in the cell
array cellOfValues. Each cell array must contain the same number
of elements.

set(obj,structOfProperties) sets the properties identified by each
field of the structure array structOfProperties to the values of the
associated fields.

settableProperties = set(obj) returns the names of the
properties that you can set in a structure array. The field names of
settableProperties are the property names.

Tips The set function allows combinations of property name/value pairs, cell
array pairs, and structure arrays in the same function call.

Examples View the list of properties that you can set for an audiorecorder object:

recorderObj = audiorecorder;
set(recorderObj)

Set the Tag and UserData properties of an audiorecorder object using
a structure array:

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

1-6259

audiorecorder.set

recorderObj = audiorecorder;
set(recorderObj, newValues)

% View the values all properties.
get(recorderObj)

Alternatives To set the value of a single property, you can use dot notation. Reference
each property as though it is a field of a structure array. For example,
set the Tag property for an object called recorderObj (as created in
the Examples):

recorderObj.Tag = 'This is my tag.';

This command is exactly equivalent to:

set(recorderObj, 'Tag', 'This is my tag.');

See Also audiorecorder | get

1-6260

set (COM)

Purpose Set object or interface property to specified value

Syntax h.set('pname',value)
h.set('pname1',value1,'pname2',value2,...)
set(h,...)

Description h.set('pname',value) sets the property specified in the string pname
to the given value.

h.set('pname1',value1,'pname2',value2,...) sets each property
specified in the pname strings to the given value.

set(h,...) is an alternate syntax for the same operation.

For information on how MATLAB converts workspace matrices to COM
data types, see “Handling COM Data in MATLAB Software”.

Tips COM functions are available on Microsoft Windows systems only.

Examples Create an mwsamp control and use set to change the Label and Radius
properties:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);

h.set('Label', 'Click to fire event', 'Radius', 40);
h.invoke('Redraw');

Here is another way to do the same thing, only without set and invoke:

h.Label = 'Click to fire event';
h.Radius = 40;
h.Redraw;

See Also get (COM) | inspect | isprop | addproperty | deleteproperty

1-6261

set (hgsetget)

Purpose Assign property values to handle objects derived from hgsetget class

Syntax set(H,'PropertyName',value,...)
set(H,pn,pv)
set(H,S)
S = set(h)

Description set(H,'PropertyName',value,...) sets the named property to the
specified value for the objects in the handle array H.

set(H,pn,pv) sets the named properties specified in the cell array of
strings pn to the corresponding values in the cell array pv for all objects
specified in H. The cell array pn must be 1-by-n (where n is the number
of property names), but the cell array pv can be m-by-n where m is equal
to length(H). set updates each object with the associated set of values
for the list of property names contained in.

set(H,S) sets the properties identified by each field name of struct
S with the values contained in S. S is a struct whose field names are
object property names.

S = set(h) returns the user-settable properties of scalar h. S is a
struct whose field names are the object’s property names and whose
values are empty cell arrays.

Override the hgsetget class setdisp method to change how MATLAB
displays this information.

See Also handle | hgsetget | set | get (hgsetget)

How To • “Implementing a Set/Get Interface for Properties”

1-6262

VideoReader.set

Purpose Set property values for video reader object

Syntax set(obj,Name,Value)
set(obj,cellOfNames,cellOfValues)
set(obj,structOfProperties)
settableProperties = set(obj)

Description set(obj,Name,Value) sets the named property to the specified value
for the object obj.

set(obj,cellOfNames,cellOfValues) sets the properties listed in
the cell array cellOfNames to the corresponding values in the cell
array cellOfValues. Each cell array must contain the same number
of elements.

set(obj,structOfProperties) sets the properties identified by each
field of the structure array structOfProperties to the values of the
associated fields.

settableProperties = set(obj) returns the names of the
properties that you can set in a structure array. The field names of
settableProperties are the property names.

Tips The set function allows combinations of property name/value pairs, cell
array pairs, and structure arrays in the same function call.

Examples View Settable Properties

View the list of properties that you can set for a video reader object.

xyloObj = VideoReader('xylophone.mp4');
set(xyloObj)

General Settings:
Tag
UserData

1-6263

VideoReader.set

Set Object Properties

Set the Tag and UserData properties of a video reader object using a
structure array.

newValues.Tag = 'My Tag';
newValues.UserData = {'My User Data', pi, [1 2 3 4]};

xyloObj = VideoReader('xylophone.mp4');
set(xyloObj, newValues)

View the values all properties.

get(xyloObj)

General Settings:
Duration = 4.7000
Name = xylophone.mp4
Path = matlabroot\toolbox\matlab\audiovideo
Tag = My Tag
Type = VideoReader
UserData = {'My User Data' [3.1416] [1 2 3 4]}

Video Settings:
BitsPerPixel = 24
FrameRate = 30
Height = 240
NumberOfFrames = 141
VideoFormat = RGB24
Width = 320

Alternatives To set the value of a single property, you can use dot notation. Reference
each property as though it is a field of a structure array. For example,
set the Tag property for a reader object called xyloObj (as created in
the Examples):

xyloObj.Tag = 'This is my tag.';

1-6264

VideoReader.set

This command is exactly equivalent to:

set(xyloObj, 'Tag', 'This is my tag.');

See Also VideoReader | get

1-6265

set (RandStream)

Purpose Set random number stream property

Class RandStream

Syntax set(stream,'PropertyName',Value)
set(stream,'Property1',Value1,'Property2',Value2,...)
set(stream,A)
A = set(stream,'Property')
set(stream,'Property')
A = set(stream)
set(stream)

Description set(stream,'PropertyName',Value) sets the property
'PropertyName' of the random stream stream to the value Value.

set(stream,'Property1',Value1,'Property2',Value2,...) sets
multiple random stream property values with a single statement.

set(stream,A) where A is a structure whose field names are property
names of the random stream stream sets the properties of stream
named by each field with the values contained in those fields.

A = set(stream,'Property') or set(stream,'Property') displays
possible values for the specified property of stream.

A = set(stream) or set(stream) displays or returns all writable
properties of stream and their possible values.

See Also RandStream | get (RandStream) | rand | randn | randi

1-6266

set (serial)

Purpose Configure or display serial port object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Description set(obj) displays all configurable properties values for the serial port
object, obj. If a property has a finite list of possible string values, then
these values are also displayed.

props = set(obj) returns all configurable properties and their
possible values for obj to props. props is a structure whose field names
are the property names of obj, and whose values are cell arrays of
possible property values. If the property does not have a finite set of
possible values, then the cell array is empty.

set(obj,'PropertyName') displays the valid values for PropertyName
if it possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values
or an empty cell array if PropertyName does not have a finite list of
possible values.

set(obj,'PropertyName',PropertyValue,...) configures multiple
property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of
strings PN to the corresponding values in the cell array PV. PN must be a
vector. PV can be m-by-n where m is equal to the number of serial port
objects in obj and n is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for
obj. S is a structure whose field names are serial port object properties,
and whose field values are the values of the corresponding properties.

1-6267

set (serial)

Tips Refer to Configuring Property Values for a list of serial port object
properties that you can configure with set.

You can use any combination of property name/property value pairs,
structures, and cell arrays in one call to set. Additionally, you can
specify a property name without regard to case, and you can make use
of property name completion. For example, if s is a serial port object,
then the following commands are all valid.

set(s,'BaudRate')
set(s,'baudrate')
set(s,'BAUD')

Examples This example illustrates some of the ways you can use set to configure
or return property values for the serial port object s, on a Windows
platform.

s = serial('COM1');
set(s,'BaudRate',9600,'Parity','even')
set(s,{'StopBits','RecordName'},{2,'sydney.txt'})
set(s,'Parity')
[{none} | odd | even | mark | space]

See Also get

1-6268

set (tscollection)

Purpose Set properties of tscollection object

Syntax set(tsc,'Property',Value)
set(tsc,'Property1',Value1,'Property2',Value2,...)
set(tsc,'Property')

Description set(tsc,'Property',Value) sets the property 'Property' of the
tscollection tsc to the value Value. The following syntax is
equivalent:

tsc.Property = Value

set(tsc,'Property1',Value1,'Property2',Value2,...) sets
multiple property values for tsc with a single statement.

set(tsc,'Property') displays values for the specified property in the
time-series collection tsc.

set(tsc) displays all properties and values of the tscollection object
tsc.

See Also get (tscollection)

1-6269

setabstime (tscollection)

Purpose Set times of tscollection object as date strings

Syntax tsc = setabstime(tsc,Times)
tsc = setabstime(tsc,Times,format)

Description tsc = setabstime(tsc,Times) sets the times in tsc using the date
strings Times. Times must be either a cell array of strings, or a char
array containing valid date or time values in the same date format.

tsc = setabstime(tsc,Times,format) specifies the date-string
format used in Times explicitly.

Examples 1 Create a tscollection object.

tsc = tscollection(timeseries(rand(3,1)))

2 Set the absolute time vector.

tsc = setabstime(tsc,{'12-DEC-2005 12:34:56',...
'12-DEC-2005 13:34:56','12-DEC-2005 14:34:56'})

See Also datestr | tscollection | getabstime (tscollection)

1-6270

setappdata

Purpose Specify application-defined data

Syntax setappdata(h,name,val)

Description setappdata(h,name,val) stores values of val in a GUI. The first
argument, h, is a handle to a component in the GUI. The second
argument, name, is a string that serves as a name for the data. The
values of h and name uniquely identify the location of the data so that
you can retrieve the values of val elsewhere in your code using the
getappdata function.

Note h can be a handle to any GUI component except an ActiveX
component.

See Also getappdata | isappdata | rmappdata

Concepts • “Share Data Among Callbacks”

1-6271

setdiff

Purpose Set difference of two arrays

Syntax C = setdiff(A,B)
C = setdiff(A,B,'rows')
[C,ia] = setdiff(A,B)
[C,ia] = setdiff(A,B,'rows')

[C,ia] = setdiff(___ ,setOrder)
[C,ia] = setdiff(A,B,'legacy')
[C,ia] = setdiff(A,B,'rows','legacy')

Description C = setdiff(A,B) returns the data in A that is not in B.

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then setdiff returns the
values in A that are not in B. The values of C are in sorted order.

• If A and B are tables, then setdiff returns the rows from A that
are not in B, with repetitions removed. The rows of table C are in
sorted order.

C = setdiff(A,B,'rows') treats each row of A and each row of B as
single entities and returns the rows from A that are not in B. The rows
of C are in sorted order.

The 'rows' option does not support cell arrays.

[C,ia] = setdiff(A,B) also returns the index vector ia.

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then C = A(ia).

• If A and B are tables, then C = A(ia,:).

[C,ia] = setdiff(A,B,'rows') also returns the index vector ia, such
that C = A(ia,:).

1-6272

setdiff

[C,ia] = setdiff(___ ,setOrder) returns C in a specific order
using any of the input arguments in the previous syntaxes.
setOrder='sorted' returns the values (or rows) of C in sorted order.
setOrder='stable' returns the values (or rows) of C in the same order
as A. If no value is specified, the default is 'sorted'.

[C,ia] = setdiff(A,B,'legacy') and [C,ia] =
setdiff(A,B,'rows','legacy') preserve the behavior of
the setdiff function from R2012b and prior releases.

The 'legacy' option does not support categorical arrays or tables.

Input
Arguments

A,B - Input arrays
numeric arrays | logical arrays | character arrays | categorical arrays
| cell arrays of strings | tables

Input arrays, specified as numeric arrays, logical arrays, character
arrays, categorical arrays, cell arrays of strings, or tables.

A and B must belong to the same class with the following exceptions:

• logical, char, and all numeric classes can combine with double
arrays.

• Cell arrays of strings can combine with char arrays.

• Categorical arrays can combine with cell arrays of strings or single
strings.

If A and B are both ordinal categorical arrays, they must have the same
sets of categories, including their order. If neither A nor B are ordinal,
they need not have the same sets of categories, and the comparison is
performed using the category names. In this case, the categories of C
are the sorted union of the categories from A and B.

If you specify the 'rows' option, A and B must have the same number
of columns.

If A and B are tables, they must have the same variable names.
Conversely, the row names do not matter. Two rows that have the same
values, but different names, are considered equal.

1-6273

setdiff

Furthermore, A and B can be objects with the following class methods:

• sort (or sortrows for the 'rows' option)

• eq

• ne

The object class methods must be consistent with each other. These
objects include heterogeneous arrays derived from the same root class.

setOrder - Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of
the values (or rows) in C.

Order Flag Meaning

'sorted' The values (or rows) in C return
in sorted order. For example:
C = setdiff([4 1 3 2],[2 1],'sorted') returns
C = [3 4].

'stable' The values (or rows) in C return in the
same order as in A. For example:
C = setdiff([4 1 3 2],[2 1],'stable') returns
C = [4 3].

Output
Arguments

C - Difference of A and B
vector | matrix | table

Difference of A and B, returned as a vector, matrix, or table. If the
inputs A and B are tables, the order of the variables in the resulting
table, C, is the same as the order of the variables in A.

The following describes the shape of C when the inputs are vectors or
matrices and when the 'legacy' flag is not specified:

• If the 'rows' flag is not specified and A is a row vector, then C is a
row vector.

1-6274

setdiff

• If the 'rows' flag is not specified and A is not a row vector, then C
is a column vector.

• If the'rows' flag is specified, then C is a matrix containing the rows
of A that are not in B.

• If all the values (or rows) of A are also in B, then C is an empty matrix.

The class of C is the same as the class of A, unless:

• A is a character array and B is a cell array of strings, in which case C
is a cell array of strings.

• A is a cell array of strings or single string and B is a categorical array,
in which case C is a categorical array.

ia - Index to A
column vector

Index to A, returned as a column vector when the 'legacy' flag is not
specified. ia identifies the values (or rows) in A that are not in B. If
there is a repeated value (or row) appearing exclusively in A, then ia
contains the index to the first occurrence of the value (or row).

Examples Difference of Two Vectors

Define two vectors with values in common.

A = [3 6 2 1 5 1 1]; B = [2 4 6];

Find the values in A that are not in B.

C = setdiff(A,B)

C =

1 3 5

Difference of Two Tables

Define two tables with rows in common.

1-6275

setdiff

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))
B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

A =

Var1 Var2 Var3
---- ---- -----
1 A false
2 B true
3 C false
4 D true
5 E false

B =

Var1 Var2 Var3
---- ---- -----
1 A false
3 C false
5 E false
7 G false
9 I false

Find the rows in A that are not in B.

C = setdiff(A,B)

C =

Var1 Var2 Var3
---- ---- -----
2 B true
4 D true

Difference of Two Vectors and Indices to Different Values

Define two vectors with values in common.

1-6276

setdiff

A = [3 6 2 1 5 1 1]; B = [2 4 6];

Find the values in A that are not in B as well as the index vector ia,
such that C = A(ia).

[C,ia] = setdiff(A,B)

C =

1 3 5

ia =

4
1
5

Difference of Two Tables and Indices to Different Rows

Define a table, A, of gender, age, and height for five people.

A = table(['M';'M';'F';'M';'F'],[27;52;31;46;35],[74;68;64;61;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty' 'Bob' 'Judy'})

A =

Gender Age Height
------ --- ------

Ted M 27 74
Fred M 52 68
Betty F 31 64
Bob M 46 61
Judy F 35 64

Define a table, B, with the same variables as A.

B = table(['F';'M';'F';'F'],[64;68;62;58],[31;47;35;23],...
'VariableNames',{'Gender' 'Height' 'Age'},...

1-6277

setdiff

'RowNames',{'Meg' 'Joe' 'Beth' 'Amy'})

B =

Gender Height Age
------ ------ ---

Meg F 64 31
Joe M 68 47
Beth F 62 35
Amy F 58 23

Find the rows in A that are not in B, as well as the index vector ia, such
that C = A(ia,:).

[C,ia] = setdiff(A,B)

C =

Gender Age Height
------ --- ------

Judy F 35 64
Ted M 27 74
Bob M 46 61
Fred M 52 68

ia =

5
1
4
2

The rows of C are in sorted order first by Gender and next by Age.

Difference of Rows in Two Matrices

Define two matrices with rows in common.

1-6278

setdiff

A = [7 9 7; 0 0 0; 7 9 7; 5 5 5; 1 4 5];
B = [0 0 0; 5 5 5];

Find the rows from A that are not in B as well as the index vector ia,
such that C = A(ia,:).

[C,ia] = setdiff(A,B,'rows')

C =

1 4 5
7 9 7

ia =

5
1

Difference of Two Vectors with Specified Output Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' or 'sorted' when the order of the values in C are
important.

A = [3 6 2 1 5 1 1]; B = [2 4 6];
[C,ia] = setdiff(A,B,'stable')

C =

3 1 5

ia =

1
4
5

Alternatively, you can specify 'sorted' order.

1-6279

setdiff

[C,ia] = setdiff(A,B,'sorted')

C =

1 3 5

ia =

4
1
5

Difference of Vectors Containing NaNs

Define two vectors containing NaN.

A = [5 NaN NaN]; B = [5 NaN];

Find the set difference of A and B.

C = setdiff(A,B)

C =

NaN NaN

setdiff treats NaN values as distinct.

Cell Array of Strings with Trailing White Space

Create a cell array of strings, A.

A = {'dog','cat','fish','horse'};

Create a cell array of strings, B, where some of the strings have trailing
white space.

B = {'dog ','cat','fish ','horse'};

1-6280

setdiff

Find the strings in A that are not in B.

[C,ia] = setdiff(A,B)

C =

'dog' 'fish'

ia =

1
3

setdiff treats trailing white space in cell arrays of strings as distinct
characters.

Difference of Char and Cell Array of Strings

Create a character array, A.

A = ['cat';'dog';'fox';'pig'];
class(A)

ans =

char

Create a cell array of strings, B.

B={'dog','cat','fish','horse'};
class(B)

ans =

cell

Find the strings in A that are not in B.

C = setdiff(A,B)

1-6281

setdiff

C =

'fox'
'pig'

The result, C, is a cell array of strings.

class(C)

ans =

cell

Preserve Legacy Behavior of setdiff

Use the 'legacy' flag to preserve the behavior of setdiff from R2012b
and prior releases in your code.

Find the difference of A and B with the current behavior.

A = [3 6 2 1 5 1 1]; B = [2 4 6];
[C1,ia1] = setdiff(A,B)

C1 =

1 3 5

ia1 =

4
1
5

Find the difference of A and B, and preserve the legacy behavior.

[C2,ia2] = setdiff(A,B,'legacy')

C2 =

1-6282

setdiff

1 3 5

ia2 =

7 1 5

Tips • To find the set difference with respect to a subset of variables from
a table, you can use column subscripting. For example, you can use
setdiff(A(:,vars),B(:,vars)), where vars is a positive integer, a
vector of positive integers, a variable name, a cell array of variable
names, or a logical vector.

See Also unique | intersect | ismember | issorted | union | setxor | sort

Concepts • “Combine Categorical Arrays”

1-6283

Tiff.setDirectory

Purpose Make specified IFD current IFD

Syntax tiffobj.setDirectory(dirNum)

Description tiffobj.setDirectory(dirNum) sets the image file directory (IFD)
specified by dirNum as the current IFD. Tiff object methods operate on
the current IFD. The directory index number is one-based.

Examples Open a TIFF file and move to an IFD in the file by specifying its index
number. The TIFF file should contain multiple images.

t = Tiff('example.tif','r');
t.setDirectory(2);
t.close();

References This method corresponds to the TIFFSetDirectory function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.currentDirectory | Tiff.nextDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-6284

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

setdisp (hgsetget)

Purpose Override to change command window display

Syntax setdisp(H)

Description setdisp(H) called by set when set is called with no output arguments
and a single input argument that is a handle array. Override
this hgsetget class method in a subclass to change how property
information is displayed in the command window.

See Also hgsetget | set (hgsetget)

How To • “Implementing a Set/Get Interface for Properties”

1-6285

setenv

Purpose Set environment variable

Syntax setenv(name,value)
setenv(name)

Description setenv(name,value) sets the value of an environment variable
belonging to the underlying operating system. Inputs name and value
are both strings. If name already exists as an environment variable,
then setenv replaces its current value with the string given in value. If
name does not exist, setenv creates a new environment variable called
name and assigns value to it.

setenv(name) is equivalent to setenv(name, '') and assigns a null
value to the variable name. On the Microsoft Windows platform, this is
equivalent to undefining the variable. On most UNIX platforms, it is
possible to have an environment variable defined as empty.

The maximum number of characters in name is 215 - 2 (or 32766). If
name contains the character =, setenv throws an error. The behavior of
environment variables with = in the name is not well-defined.

On all platforms, setenv passes the name and value strings to the
operating system unchanged. Special characters such as ;, /, :, $, %,
etc. are left unexpanded and intact in the variable value.

Values assigned to variables using setenv are picked up by any process
that is spawned using the MATLAB system, unix, dos or ! functions.
You can retrieve any value set with setenv by using getenv(name).

Examples % Set and retrieve a new value for the environment variable TEMP:

setenv('TEMP', 'C:\TEMP');
getenv('TEMP')

% Append the Perl\bin folder to your system PATH variable:

setenv('PATH', [getenv('PATH') ';D:\Perl\bin']);

See Also getenv | system | unix | dos | !

1-6286

../ref/specialcharacters.html

setfield

Purpose Assign values to structure array field

Syntax s = setfield(s,'field',value)
s =
setfield(s,{sIndx1,...,sIndxM},'field',{fIndx1,...,fIndxN},value)

Description s = setfield(s,'field',value), where s is a 1-by-1 structure, sets
the contents of the specified field, equivalent to s.field = value. If s
does not contain the specified field, the setfield function creates the
field and assigns the specified value. Pass field references as strings.

s =
setfield(s,{sIndx1,...,sIndxM},'field',{fIndx1,...,fIndxN},value)
sets the contents of the specified field, equivalent to
s(sIndx1,...,sIndxM).field(fIndx1,...,fIndxN) = value. The
setfield function supports multiple sets of field and fIndx inputs. If
structure s or any of the fields is a nonscalar structure, the Indx inputs
associated with that input are required. Otherwise, the Indx inputs are
optional. If you specify a single colon operator for an index input,
enclose it in single quotation marks: ':'.

Tips • For most cases, add data to a structure array by indexing rather than
using the setfield function. For more information, see “Access Data
in a Structure Array” and “Generate Field Names from Variables”.

• Call setfield to simplify references to structure arrays with nested
fields, as shown in the Examples section.

Examples Add values to a structure that contains nested fields:

grades = [];
level = 5;
semester = 'Fall';
subject = 'Math';
student = 'John_Doe';
fieldnames = {semester subject student}
newGrades_Doe = [85, 89, 76, 93, 85, 91, 68, 84, 95, 73];

1-6287

setfield

grades = setfield(grades, {level}, ...
fieldnames{:}, {10, 21:30}, ...
newGrades_Doe);

% View the new contents.
grades(level).(semester).(subject).(student)(10, 21:30)

Using the structure defined in the previous example, remove the tenth
row of the specified field:

grades = setfield(grades, {level}, fieldnames{:}, {10,':'}, []);

See Also getfield | fieldnames | isfield | orderfields | rmfield

How To • “Generate Field Names from Variables”

• “Access Data in a Structure Array”

1-6288

setpixelposition

Purpose Set component position in pixels

Syntax setpixelposition(handle,position)
setpixelposition(handle,position,recursive)

Description setpixelposition(handle,position) sets the position of the
component specified by handle, to the specified position relative to its
parent. position is a four-element vector that specifies the location
and size of the component: [pixels from left, pixels from bottom, pixels
across, pixels high].

setpixelposition(handle,position,recursive) sets the position
as above. If Boolean recursive is true, the position is set relative to
the parent figure of handle.

Examples This example first creates a push button within a panel.

f = figure('Position',[300 300 300 200]);
p = uipanel('Position',[.2 .2 .6 .6]);
h1 = uicontrol(p,'Style','PushButton',...

'Units','normalized',...
'String','Push Button',...
'Position',[.1 .1 .5 .2]);

1-6289

setpixelposition

The example then retrieves the position of the push button and changes
its position with respect to the panel.

pos1 = getpixelposition(h1);
setpixelposition(h1,pos1 + [10 10 25 25]);

1-6290

setpixelposition

See Also getpixelposition | uicontrol | uipanel

1-6291

setpref

Purpose Set preference

Syntax setpref('group','pref',val)
setpref('group',{'pref1','pref2',...,'prefn'},{val1,val2,...,valn})

Description setpref('group','pref',val) sets the preference specified by group
and pref to the value val. Individual preference values can be any
MATLAB data type, including numeric types, strings, cell arrays,
structures, and objects. Setting a preference that does not yet exist
causes it to be created.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g., 'MathWorks_GUIDE_ApplicationPrefs'. The input
argument pref identifies an individual preference in that group, and
must be a legal variable name.

setpref('group',{'pref1','pref2',...,'prefn'},{val1,val2,...,valn})
sets each preference specified in the cell array of names to the
corresponding value.

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples Use addpref to create a preference group called mytoolbox and a
preference within it called version, and then modify the contents of
version using setpref:

addpref('mytoolbox','version','1.0')
getpref('mytoolbox','version')

ans =
1.0

setpref('mytoolbox','version',{'1.0','beta'})
getpref('mytoolbox','version')

1-6292

setpref

ans =
'1.0' 'beta'

See Also addpref | getpref | ispref | rmpref | uigetpref | uisetpref

1-6293

setstr

Purpose Set string flag

Note setstr is not recommended. Use char instead.

Description This MATLAB 4 function has been renamed char in MATLAB 5.

1-6294

Tiff.setSubDirectory

Purpose Make subIFD specified by byte offset current IFD

Syntax tiffobj.setSubDirectory(offset)

Description tiffobj.setSubDirectory(offset) sets the subimage file directory
(subIFD) specified by offset the current IFD. The offset value is given
in bytes. Use this method when you want to access subIFDs linked
through the SubIFD tag.

Examples Set Subimage File Directory

Open a TIFF file and read the value of the SubIFD tag in the current
IFD. The SubIFD tag contains byte offsets that specify the location of
subIFDs in the IFD. The TIFF file should contain subIFDs.

t = Tiff('example.tif','r');

Read the value of the SubIFD tag to get subdirectory offsets.

offsets = t.getTag('SubIFD');

Set one of the subdirectories (if more than one) as the current directory.

t.setSubDirectory(offsets(1));
t.close();

References This method corresponds to the TIFFSetSubDirectory function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.setDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-6295

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

Tiff.setTag

Purpose Set value of tag

Syntax tiffobj.setTag(tagId,tagValue)
tiffobj.setTag(tagStruct)

Description tiffobj.setTag(tagId,tagValue) sets the value of the TIFF tag
specified by tagId to the value specified by tagValue. You can specify
tagId as a character string ('ImageWidth') or using the numeric
tag identifier defined by the TIFF specification (256). To see a list of
all the tags with their numeric identifiers, view the value of the Tiff
object TagID property. Use the TagID property to specify the value of a
tag. For example, Tiff.TagID.ImageWidth is equivalent to the tag’s
numeric identifier.

tiffobj.setTag(tagStruct) sets the values of all of the tags with
name/value fields in tagStruct. The names of fields in tagstruct must
be the name of TIFF tags.

Note If you are modifying a tag rather than creating it, you must
use the Tiff.rewriteDirectory method after using the Tiff.setTag
method.

Examples Set Tag Values

Write TIFF tags and image data to a new TIFF file.

Read sample data into an array, imdata. Create a Tiff object associated
with a new file, myfile.tif, and open the file for writing.

imdata = imread('example.tif');
t = Tiff('myfile.tif','w');

Set tag values by specifying the numeric tag identifier. Use the TagID
property to obtain the tag identifier.

t.setTag(Tiff.TagID.ImageLength,size(imdata,1));

1-6296

Tiff.setTag

t.setTag(Tiff.TagID.ImageWidth,size(imdata,2));

Set tag values by specifying the tag name.

t.setTag('Photometric', Tiff.Photometric.RGB);
t.setTag('PlanarConfiguration', Tiff.PlanarConfiguration.Chunky);

Create a structure with fields named after TIFF tags and assign values
to the fields. Pass this structure to the setTag method to set the values
of these tags.

tagStruct.BitsPerSample = 8;
tagStruct.SamplesPerPixel = 3;
tagStruct.TileWidth = 128;
tagStruct.TileLength = 128;
tagStruct.Compression = Tiff.Compression.JPEG;
tagStruct.Software = 'MATLAB';
t.setTag(tagStruct);

Write the image data to the TIFF file.

t.write(imdata);
t.close();

References This method corresponds to the TIFFSetField function in the LibTIFF
C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.getTag

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-6297

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

settimeseriesnames

Purpose Change name of timeseries object in tscollection

Syntax tsc = settimeseriesnames(tsc,old,new)

Description tsc = settimeseriesnames(tsc,old,new) replaces the old name of
timeseries object with the new name in tsc.

See Also tscollection

1-6298

setxor

Purpose Set exclusive OR of two arrays

Syntax C = setxor(A,B)
C = setxor(A,B,'rows')
[C,ia,ib] = setxor(A,B)
[C,ia,ib] = setxor(A,B,'rows')

[C,ia,ib] = setxor(___ ,setOrder)

[C,ia,ib] = setxor(A,B,'legacy')

[C,ia,ib] = setxor(A,B,'rows','legacy')

Description C = setxor(A,B) returns the data of A and B that are not in their
intersection (the symmetric difference).

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then setxor returns
the values that occur in A or B, but not both. The values of C are
in sorted order.

• If A and B are tables, then setxor returns the rows that occur in
one or the other of the two tables, but not both. The rows of table C
are in sorted order.

C = setxor(A,B,'rows') treats each row of A and each row of B as
single entities and returns the rows of matrices A and B that are not in
their intersection. The rows of C are in sorted order.

The 'rows' option does not support cell arrays.

[C,ia,ib] = setxor(A,B) also returns index vectors ia and ib.

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then C is a sorted
combination of the elements A(ia) and B(ib).

1-6299

setxor

• If A and B are tables, then C is a sorted combination of the rows
of A(ia,:) and B(ib,:).

[C,ia,ib] = setxor(A,B,'rows') also returns index vectors ia and
ib, such that C is a sorted combination of the rows of A(ia,:) and
B(ib,:).

[C,ia,ib] = setxor(___ ,setOrder) returns C in a specific
order using any of the input arguments in the previous syntaxes.
setOrder='sorted' returns the values (or rows) of C in sorted order.
setOrder='stable' returns the values (or rows) of C in the same order
as A and B. If no value is specified, the default is 'sorted'.

[C,ia,ib] = setxor(A,B,'legacy') and [C,ia,ib] =
setxor(A,B,'rows','legacy') preserve the behavior of the setxor
function from R2012b and prior releases.

The 'legacy' option does not support categorical arrays or tables.

Input
Arguments

A,B - Input arrays
numeric arrays | logical arrays | character arrays | categorical arrays
| cell arrays of strings | tables

Input arrays, specified as numeric arrays, logical arrays, character
arrays, categorical arrays, cell arrays of strings, or tables.

A and B must belong to the same class with the following exceptions:

• logical, char, and all numeric classes can combine with double
arrays.

• Cell arrays of strings can combine with char arrays.

• Categorical arrays can combine with cell arrays of strings or single
strings.

If A and B are both ordinal categorical arrays, they must have the same
sets of categories, including their order. If neither A nor B are ordinal,
they need not have the same sets of categories, and the comparison is

1-6300

setxor

performed using the category names. In this case, the categories of C
are the sorted union of the categories from A and B.

If you specify the 'rows' option, A and B must have the same number
of columns.

If A and B are tables, they must have the same variable names.
Conversely, the row names do not matter. Two rows that have the same
values, but different names, are considered equal.

Furthermore, A and B can be objects with the following class methods:

• sort (or sortrows for the 'rows' option)

• eq

• ne

The object class methods must be consistent with each other. These
objects include heterogeneous arrays derived from the same root class.

setOrder - Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of
the values (or rows) in C.

Order Flag Meaning

'sorted' The values (or rows) in C return
in sorted order. For example:
C = setxor([5 1 3],[4 1 2],'sorted') returns
C = [2 3 4 5].

'stable' The values (or rows) in C return in the
same order as in A and B. For example:
C = setxor([5 1 3],[4 1 2],'stable') returns
C = [5 3 4 2].

1-6301

setxor

Output
Arguments

C - Symmetric difference array
vector | matrix | table

Symmetric difference array, returned as a vector, matrix, or table. If
the inputs A and B are tables, the order of the variables in the resulting
table, C, is the same as the order of the variables in A.

The following describes the shape of C when the inputs are vector or
matrices and when the 'legacy' flag is not specified:

• If the 'rows' flag is not specified, then C is a column vector unless
both A and B are row vectors.

• If the 'rows' flag is not specified and both A and B are row vectors,
then C is a row vector.

• If the'rows' flag is specified, then C is a matrix containing the rows
of A and B that are not in the intersection.

• If all the values (or rows) of A are also in B, then C is an empty matrix.

The class of the inputs A and B determines the class of C:

• If the class of A and B are the same, then C is the same class.

• If you combine a char or nondouble numeric class with double, then
C is the same class as the nondouble input.

• If you combine a logical class with double, then C is double.

• If you combine a cell array of strings with char, then C is a cell array
of strings.

• If you combine a categorical array with a cell array of strings or
single string, then C is a categorical array.

ia - Index to A
column vector

Index to A, returned as a column vector when the 'legacy' flag is not
specified. ia identifies the values (or rows) in A that contribute to the
symmetric difference. If there is a repeated value (or row) appearing

1-6302

setxor

exclusively in A, then ia contains the index to the first occurrence of
the value (or row).

ib - Index to B
column vector

Index to B, returned as a column vector when the 'legacy' flag is not
specified. ib identifies the values (or rows) in B that contribute to the
symmetric difference. If there is a repeated value (or row) appearing
exclusively in B, then ib contains the index to the first occurrence of
the value (or row).

Examples Symmetric Difference of Two Vectors

Define two vectors with a value in common.

A = [5 1 3 3 3]; B = [4 1 2];

Find the values of A and B that are not in their intersection.

C = setxor(A,B)

C =

2 3 4 5

Symmetric Difference of Two Tables

Define two tables with rows in common.

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))
B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

A =

Var1 Var2 Var3
---- ---- -----
1 A false
2 B true
3 C false

1-6303

setxor

4 D true
5 E false

B =

Var1 Var2 Var3
---- ---- -----
1 A false
3 C false
5 E false
7 G false
9 I false

Find the rows of A and B that are not in their intersection.

C = setxor(A,B)

C =

Var1 Var2 Var3
---- ---- -----
2 B true
4 D true
7 G false
9 I false

Symmetric Difference of Two Vectors and Indices to Different
Values

Define two vectors with a value in common.

A = [5 1 3 3 3]; B = [4 1 2];

Find the values of A and B that are not in their intersection as well as
the index vectors ia and ib.

[C,ia,ib] = setxor(A,B)

1-6304

setxor

C =

2 3 4 5

ia =

3
1

ib =

3
1

C is a sorted combination of the elements A(ia) and B(ib).

Symmetric Difference of Two Tables and Indices to Different
Rows

Define a table, A, of gender, age, and height for five people.

A = table(['M';'M';'F'],[27;52;31],[74;68;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty'})

A =

Gender Age Height
------ --- ------

Ted M 27 74
Fred M 52 68
Betty F 31 64

Define a table, B, with the same variables as A.

B = table(['F';'M'],[64;68],[31;47],...

1-6305

setxor

'VariableNames',{'Gender' 'Height' 'Age'},...
'RowNames',{'Meg' 'Joe'})

B =

Gender Height Age
------ ------ ---

Meg F 64 31
Joe M 68 47

Find the rows of A and B that are not in their intersection, as well as the
index vectors ia and ib.

[C,ia,ib] = setxor(A,B)

C =

Gender Age Height
------ --- ------

Ted M 27 74
Joe M 47 68
Fred M 52 68

ia =

1
2

ib =

2

C is a sorted combination of the elements A(ia,:) and B(ib,:).

1-6306

setxor

Symmetric Difference of Rows in Two Matrices

Define two matrices with rows in common.

A = [7 8 9; 7 7 1; 7 7 1; 1 2 3; 4 5 6];
B = [1 2 3; 4 5 6; 7 7 2];

Find the rows of A and B that are not in their intersection as well as the
index vectors ia and ib.

[C,ia,ib] = setxor(A,B,'rows')

C =

7 7 1
7 7 2
7 8 9

ia =

2
1

ib =

3

C is a sorted combination of the rows of A(ia,:) and B(ib,:).

Symmetric Difference of Two Vectors in Specified Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' if you want the values in C to have the same order
as A and B.

A = [5 1 3 3 3]; B = [4 1 2];

1-6307

setxor

[C,ia,ib] = setxor(A,B,'stable')

C =

5 3 4 2

ia =

1
3

ib =

1
3

Alternatively, you can specify 'sorted' order.

[C,ia,ib] = setxor(A,B,'sorted')

C =

2 3 4 5

ia =

3
1

ib =

3
1

1-6308

setxor

Symmetric Difference of Vectors Containing NaNs

Define two vectors containing NaN.

A = [5 NaN NaN]; B = [5 NaN NaN];

Find the symmetric difference of vectors A and B.

C = setxor(A,B)

C =

NaN NaN NaN NaN

The setxor function treats NaN values as distinct.

Cell Array of Strings with Trailing White Space

Create a cell array of strings, A.

A = {'dog','cat','fish','horse'};

Create a cell array of strings, B, where some of the strings have trailing
white space.

B = {'dog ','cat','fish ','horse'};

Find the strings that are not in the intersection of A and B.

[C,ia,ib] = setxor(A,B)

C =

'dog' 'dog ' 'fish' 'fish '

ia =

1
3

1-6309

setxor

ib =

1
3

setxor treats trailing white space in cell arrays of strings as distinct
characters.

Symmetric Difference of Vectors of Different Classes and
Shapes

Create a column vector character array.

A = ['A';'B';'C'], class(A)

A =

A
B
C

ans =

char

Create a row vector containing elements of numeric type double.

B = [66 67 68], class(B)

B =

66 67 68

ans =

1-6310

setxor

double

Find the symmetric difference of A and B.

C = setxor(A,B)

C =

A
D

The result is a column vector character array.

class(C)

ans =

char

Symmetric Difference of Char and Cell Array of Strings

Create a character array, A.

A = ['cat';'dog';'fox';'pig'];
class(A)

ans =

char

Create a cell array of strings, B.

B={'dog','cat','fish','horse'};
class(B)

ans =

cell

1-6311

setxor

Find the strings that are not in the intersection of A and B.

C = setxor(A,B)

C =

'fish'
'fox'
'horse'
'pig'

The result, C, is a cell array of strings.

class(C)

ans =

cell

Preserve Legacy Behavior of setxor

Use the 'legacy' flag to preserve the behavior of setxor from R2012b
and prior releases in your code.

Find the symmetric difference of A and B with the current behavior.

A = [5 1 3 3 3]; B = [4 1 2 2];
[C1,ia1,ib1] = setxor(A,B)

C1 =

2 3 4 5

ia1 =

3
1

1-6312

setxor

ib1 =

3
1

Find the symmetric difference and preserve the legacy behavior.

[C2,ia2,ib2] = setxor(A,B,'legacy')

C2 =

2 3 4 5

ia2 =

5 1

ib2 =

4 1

Tips • To find the symmetric difference with respect to a subset of variables
from a table, you can use column subscripting. For example, you
can use setxor(A(:,vars),B(:,vars)), where vars is a positive
integer, a vector of positive integers, a variable name, a cell array of
variable names, or a logical vector.

See Also unique | intersect | ismember | issorted | setdiff | union | sort

Concepts • “Combine Categorical Arrays”

1-6313

shading

Purpose Set color shading properties

Syntax shading flat
shading faceted
shading interp
shading(axes_handle,...)

Description The shading function controls the color shading of surface and patch
graphics objects.

shading flat each mesh line segment and face has a constant color
determined by the color value at the endpoint of the segment or the
corner of the face that has the smallest index or indices.

shading faceted flat shading with superimposed black mesh lines.
This is the default shading mode.

shading interp varies the color in each line segment and face by
interpolating the colormap index or true color value across the line
or face.

shading(axes_handle,...) applies the shading type to the objects
in the axes specified by axes_handle, instead of the current axes. Use
quoted strings when using a function form. For example:

shading(gca,'interp')

Examples Display Sphere with Different Types of Shading

Plot the sphere function and use different types of shading.

figure
subplot(2,2,1)
sphere(16)
title('Faceted Shading (Default)')

subplot(2,2,2)
sphere(16)
shading flat

1-6314

shading

title('Flat Shading')

subplot(2,2,3)
sphere(16)
shading interp
title('Interpolated Shading')

Algorithms shading sets the EdgeColor and FaceColor properties of all surface
and patch graphics objects in the current axes. shading sets the

1-6315

shading

appropriate values, depending on whether the surface or patch objects
represent meshes or solid surfaces.

See Also fill | fill3 | hidden | light | lighting | mesh | patch | pcolor
| surf | patch | surface

1-6316

shg

Purpose Show most recent graph window

Syntax shg

Description shg makes the current figure visible and raises it above all other figures
on the screen. This is identical to using the command figure(gcf).

See Also figure | gca | gcf

1-6317

shiftdim

Purpose Shift dimensions

Syntax B = shiftdim(X,n)
[B,nshifts] = shiftdim(X)

Description B = shiftdim(X,n) shifts the dimensions of X by n. When n is positive,
shiftdim shifts the dimensions to the left and wraps the n leading
dimensions to the end. When n is negative, shiftdim shifts the
dimensions to the right and pads with singletons.

[B,nshifts] = shiftdim(X) returns the array B with the same
number of elements as X but with any leading singleton dimensions
removed. A singleton dimension is any dimension for which
size(A,dim) = 1. nshifts is the number of dimensions that are
removed.

If X is a scalar, shiftdim has no effect.

Examples The shiftdim command is handy for creating functions that, like sum or
diff, work along the first nonsingleton dimension.

a = rand(1,1,3,1,2);
[b,n] = shiftdim(a); % b is 3-by-1-by-2 and n is 2.
c = shiftdim(b,-n); % c == a.
d = shiftdim(a,3); % d is 1-by-2-by-1-by-1-by-3.

See Also circshift | reshape | squeeze | permute | ipermute

1-6318

showplottool

Purpose Show or hide figure plot tool

Syntax showplottool('tool')
showplottool('on','tool')
showplottool('off','tool')
showplottool('toggle','tool')
showplottool(figure_handle,...)

Description showplottool('tool') shows the specified plot tool on the current
figure. tool can be one of the following strings:

• figurepalette

• plotbrowser

• propertyeditor

showplottool('on','tool') shows the specified plot tool on the
current figure.

showplottool('off','tool') hides the specified plot tool on the
current figure.

showplottool('toggle','tool') toggles the visibility of the specified
plot tool on the current figure.

showplottool(figure_handle,...) operates on the specified figure
instead of the current figure.

1-6319

showplottool

Note When you dock, undock, resize, or reposition a plotting tool and
then close it, it will still be configured as you left it the next time you
open it. There is no command to reset plotting tools to their original,
default locations.

Alternatives Click the larger Plotting Tools icon on the figure toolbar

to collectively enable plotting tools, and the smaller icon to
collectively disable them. Individually select the Figure Palette, Plot
Browser, and Property Editor tools from the figure’s View menu.
For details, see “Customize Graph Using Plot Tools”.

See Also figurepalette | plotbrowser | plottools | propertyeditor

1-6320

shrinkfaces

Purpose Reduce size of patch faces

Syntax shrinkfaces(p,sf)
nfv = shrinkfaces(p,sf)
nfv = shrinkfaces(fv,sf)
shrinkfaces(p)
nfv = shrinkfaces(f,v,sf)
[nf,nv] = shrinkfaces(...)

Description shrinkfaces(p,sf) shrinks the area of the faces in patch p to shrink
factor sf. A shrink factor of 0.6 shrinks each face to 60% of its original
area. If the patch contains shared vertices, the MATLAB software
creates nonshared vertices before performing the face-area reduction.

nfv = shrinkfaces(p,sf) returns the face and vertex data in the
struct nfv, but does not set the Faces and Vertices properties of patch
p.

nfv = shrinkfaces(fv,sf) uses the face and vertex data from the
struct fv.

shrinkfaces(p) and shrinkfaces(fv) (without specifying a shrink
factor) assume a shrink factor of 0.3.

nfv = shrinkfaces(f,v,sf) uses the face and vertex data from the
arrays f and v.

[nf,nv] = shrinkfaces(...) returns the face and vertex data in two
separate arrays instead of a struct.

Examples This example uses the flow data set, which represents the speed profile
of a submerged jet within an infinite tank (type help flow for more
information). Two isosurfaces provide a before and after view of the
effects of shrinking the face size.

• First reducevolume samples the flow data at every other point and
then isosurface generates the faces and vertices data.

• The patch command accepts the face/vertex struct and draws the
first (p1) isosurface.

1-6321

shrinkfaces

• Use the daspect, view, and axis commands to set up the view and
then add a title.

• The shrinkfaces command modifies the face/vertex data and passes
it directly to patch.

[x,y,z,v] = flow;
[x,y,z,v] = reducevolume(x,y,z,v,2);
fv = isosurface(x,y,z,v,-3);
p1 = patch(fv);
set(p1,'FaceColor','red','EdgeColor',[.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight
title('Original')

figure
p2 = patch(shrinkfaces(fv,.3));
set(p2,'FaceColor','red','EdgeColor',[.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight
title('After Shrinking')

1-6322

shrinkfaces

1-6323

shrinkfaces

See Also isosurface | patch | reducevolume | daspect | view | axis

1-6324

sign

Purpose Signum function

Syntax Y = sign(X)

Description Y = sign(X) returns an array Y the same size as X, where each element
of Y is:

• 1 if the corresponding element of X is greater than zero

• 0 if the corresponding element of X equals zero

• -1 if the corresponding element of X is less than zero

For nonzero complex X, sign(X) = X./abs(X).

See Also abs | conj | imag | real

1-6325

sin

Purpose Sine of argument in radians

Syntax Y = sin(X)

Description Y = sin(X) returns the sine of the elements of X. The sin function
operates element-wise on arrays. The function accepts both real and
complex inputs. For real values of X in the interval [-Inf, Inf], sin
returns real values in the interval [-1 ,1]. For complex values of X, sin
returns complex values. All angles are in radians.

Input
Arguments

X - Input angle in radians
scalar value | vector | matrix | N-D array

Input angle in radians, specified as a real-valued or complex-valued
scalar, vector, matrix or N-D array. The sin operation is element-wise
when X is non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Sine of input angle
scalar value | vector | matrix | N-D array

Sine of input angle, returned as a real-valued or complex-valued scalar,
vector, matrix or N-D array.

Examples Plot Sine Function

Plot the sine function over the domain .

x = -pi:0.01:pi;
plot(x,sin(x)), grid on

1-6326

sin

Sine of Vector of Complex Angles

Calculate the sine of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = sin(x)

y =

1-6327

sin

0.0000 - 1.1752i 0.0000 - 2.3013i -22.9791 +14.7448i

Definitions Sine Function

The sine of an angle, α, defined with reference to a right angled triangle
is

sine .
opposite side
hypotenuse

a
h

1-6328

sin

The sine of a complex angle, α, is

sine .

 e e
i

i i

2

See Also sind | asin | asind | sinh

1-6329

sind

Purpose Sine of argument in degrees

Syntax Y = sind(X)

Description Y = sind(X) returns the sine of the elements in X, which are expressed
in degrees.

Input
Arguments

X - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The sind operation is element-wise when
X is nonscalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Sine of angle
scalar value | vector | matrix | N-D array

Sine of angle, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Sine of 180 degrees compared to sine of radians

sind(180)

ans =

0

sin(pi)

ans =

1.2246e-16

1-6330

sind

Sine of vector of complex angles, specified in degrees

z = [90+i 15+2i 10+3i];
y = sind(z)

y =

1.0002 0.2590 + 0.0337i 0.1739 + 0.0516i

See Also sin | asind | asin

1-6331

single

Purpose Convert to single precision

Syntax B = single(A)

Description B = single(A) converts the matrix A to single precision, returning
that value in B. A can be any numeric object (such as a double). If
A is already single precision, single has no effect. Single-precision
quantities require less storage than double-precision quantities, but
have less precision and a smaller range.

The single class is primarily meant to be used to store single-precision
values. Hence most operations that manipulate arrays without
changing their elements are defined. Examples are reshape, size, the
relational operators, subscripted assignment, and subscripted reference.

You can define your own methods for the single class by placing the
appropriately named method in an @single folder within a folder on
your path.

Examples a = magic(4);
b = single(a);

whos
Name Size Bytes Class

a 4x4 128 double array
b 4x4 64 single array

See Also double

1-6332

sinh

Purpose Hyperbolic sine of argument in radians

Syntax Y = sinh(X)

Description The sinh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sinh(X) returns the hyperbolic sine of the elements of X.

Examples Graph of Hyperbolic Sine Function

Graph the hyperbolic sine over the domain .

x = -5:0.01:5;
plot(x,sinh(x)), grid on

1-6333

sinh

Definitions Hyperbolic Sine

The hyperbolic sine of z is

sinh() .z
e ez z

2

See Also sin | asinh | cosh

1-6334

size

Purpose Array dimensions

Syntax d = size(X)
[m,n] = size(X)
m = size(X,dim)
[d1,d2,d3,...,dn] = size(X),

Description d = size(X) returns the sizes of each dimension of array X in a vector,
d, with ndims(X) elements.

• If X is a scalar, then size(X) returns the vector [1 1]. Scalars are
regarded as a 1-by-1 arrays in MATLAB.

• If X is a table, size(X) returns a two-element row vector consisting
of the number of rows and the number of variables in the table.
Variables in the table can have multiple columns, but size only
counts the variables and rows.

[m,n] = size(X) returns the size of matrix X in separate variables
m and n.

m = size(X,dim) returns the size of the dimension of X specified by
scalar dim.

[d1,d2,d3,...,dn] = size(X), for n > 1, returns the sizes of the
dimensions of the array X in the variables d1,d2,d3,...,dn, provided the
number of output arguments n equals ndims(X). If n does not equal
ndims(X), the following exceptions hold:

n < ndims(X) di equals the size of the ith dimension of X for
0<i<n, but dn equals the product of the sizes of the
remaining dimensions of X, that is, dimensions n
through ndims(X).

n > ndims(X) size returns ones in the “extra” variables, that is,
those corresponding to ndims(X)+1 through n.

1-6335

size

Note For a Java array, size returns the length of the Java array as the
number of rows. The number of columns is always 1. For a Java array
of arrays, the result describes only the top level array.

Examples Size of Dimensions in 3-D Array

Find the size of rand(2,3,4).

d = size(rand(2,3,4))

d =

2 3 4

The size is output as a single vector.

Find the size of the second dimension of rand(2,3,4).

m = size(rand(2,3,4),2)

m =

3

The size is output as a scalar.

Assign the size of each dimension to a separate variable.

[m,n,p] = size(rand(2,3,4))

m =

2

n =

1-6336

size

3

p =

4

Size of Table

Create a table with four variables listing patient information for five
people.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

X = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

X =

Age Height Weight BloodPressure
--- ------ ------ ---------------

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

Find the size of the table.

d = size(X)

d =

5 4

1-6337

size

size counts four variables, even though the variable BloodPressure
contains two columns.

Specify Different Number of Outputs than ndims(X)

Assign the size of each dimension to a separate variable where the
number of outputs matches the number of dimensions.

X = ones(3,4,5);
[d1,d2,d3] = size(X)

d1 =

3

d2 =

4

d3 =

5

There is one output for each dimension of X.

Specify fewer output variables than ndims(X).

[d1,d2] = size(X)

d1 =

3

d2 =

20

1-6338

size

The “extra” dimensions are collapsed into a single product.

Specify more output variables than ndims(X).

[d1,d2,d3,d4,d5,d6] = size(X)

d1 =

3

d2 =

4

d3 =

5

d4 =

1

d5 =

1

d6 =

1

The “extra” variables all represent singleton dimensions.

1-6339

size

See Also exist | length | ndims | numel | whos

1-6340

containers.Map.size

Purpose Size of containers.Map object

Syntax dim = size(mapObj,1)
dimVector = size(mapObj)
[dim1,dim2,...,dimN] = size(mapObj)

Description dim = size(mapObj,1) returns a scalar numeric value that indicates
the number of key-value pairs in mapObj. If you call size with a
numeric second input argument other than 1, the size method returns
the scalar numeric value 1.

dimVector = size(mapObj) returns a two-element vector [k,1], where
k is the number of key-value pairs in mapObj.

[dim1,dim2,...,dimN] = size(mapObj) returns [k,1,...,1].

Input
Arguments

mapObj

Object of class containers.Map.

Output
Arguments

dim

Scalar numeric value that indicates the number of key-value
pairs in mapObj.

dimVector

Two-element numeric vector [k,1], where k is the number of
key-value pairs in mapObj.

[dim1,dim2,...,dimN]

Numeric scalar values. Variable dim1 equals k, where k is the
number of key-value pairs in mapObj. All other outputs equal 1.

Examples Determine the Size of a Map

Construct a map and find the number of key-value pairs:

myKeys = {'a','b','c'};
myValues = [1,2,3];

1-6341

containers.Map.size

mapObj = containers.Map(myKeys,myValues);
dim = size(mapObj,1)

This code returns a scalar numeric value:

dim =
3

If you do not specify a second input argument,

dimVector = size(mapObj)

then the size method returns a vector:

dimVector =
3 1

See Also containers.Map | isKey | keys | length | values

1-6342

matlab.io.MatFile.size

Purpose Array dimensions

Syntax allDims = size(matObj,variable)
[dim1,...,dimN] = size(matObj,variable)
selectedDim = size(matObj,variable,dim)

Description allDims = size(matObj,variable) returns the size of each dimension
of the specified variable in the file corresponding to matObj. Output
allDims is a 1-by-m vector, where m = ndims(variable).

[dim1,...,dimN] = size(matObj,variable) returns the sizes of each
dimension in separate output variables dim1,...,dimN.

selectedDim = size(matObj,variable,dim) returns the size of the
specified dimension.

Tips • Do not call size with the syntax size(matObj.variable). This
syntax loads the entire contents of the variable into memory. For very
large variables, this load operation results in Out of Memory errors.

Input
Arguments

matObj

Object created by the matfile function.

variable

String enclosed in single quotation marks that specifies the name
of a variable in the MAT-file corresponding to matObj.

dim

Nonzero positive scalar integer that specifies a dimension of the
variable.

Output
Arguments

allDims

1-by-m vector of sizes of the dimensions of the specified variable,
where m = ndims(variable).

dim1,...,dimN

1-6343

matlab.io.MatFile.size

Scalar numeric values, where dimK contains the size of the Kth
dimension of variable:

• If N < ndims(variable), then dimN, equals the product of the
sizes of dimensions N through ndims(variable).

• If N > ndims(variable), the size method returns ones
in the output variables corresponding to dimensions
ndims(variable)+1 through N.

selectedDim

Scalar numeric value that contains the size of the selected
dimension for the specified variable.

Examples Find the size of the matrix topo in topography.mat without loading
any data:

matObj = matfile('topography.mat');
[nrows,ncols] = size(matObj,'topo');

Determine the dimensions of a variable, and process one part of the
variable at a time. In this case, calculate and store the average of each
column of variable stocks in the example file stocks.mat:

filename = 'stocks.mat';
matObj = matfile(filename);
[nrows, ncols] = size(matObj,'stocks');

avgs = zeros(1,ncols);
for idx = 1:ncols

avgs(idx) = mean(matObj.stocks(:,idx));
end

Create a three-dimensional array, and call the size method with
different numbers of output arguments:

1-6344

matlab.io.MatFile.size

matObj = matfile('temp.mat','Writable',true);
matObj.X = rand(2,3,4);

d = size(matObj,'X')
d2 = size(matObj,'X',2)
[m,n] = size(matObj,'X')
[m1,m2,m3,m4] = size(matObj,'X')

This code returns

d =
2 3 4

d2 =
3

m =
2

n =
12

m1 =
2

m2 =
3

m3 =
4

m4 =
1

See Also matfile | whos

1-6345

size (serial)

Purpose Size of serial port object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Description d = size(obj) returns the two-element row vector d containing the
number of rows and columns in the serial port object, obj.

[m,n] = size(obj) returns the number of rows, m and columns, n in
separate output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by
the scalar dim. For example, size(obj,1) returns the number of rows.

See Also length

1-6346

TriRep.size

Purpose (Will be removed) Size of triangulation matrix

Note size(TriRep) will be removed in a future release. Use
size(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax size(TR)

Description size(TR) provides size information for a triangulation matrix. The
matrix is of size mtri-by-nv, where mtri is the number of simplices and
nv is the number of vertices per simplex (triangle/tetrahedron, etc).

Input
Arguments

TR Triangulation matrix

Definitions A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

See Also size | delaunayTriangulation | triangulation

1-6347

size (tscollection)

Purpose Size of tscollection object

Syntax size(tsc)

Description size(tsc) returns [n m], where n is the length of the time vector and
m is the number of tscollection members.

See Also length (tscollection) | isempty (tscollection) | tscollection

1-6348

slice

Purpose Volumetric slice plot

Syntax slice(V,sx,sy,sz)
slice(X,Y,Z,V,sx,sy,sz)
slice(V,XI,YI,ZI)
slice(X,Y,Z,V,XI,YI,ZI)
slice(...,'method')
slice(axes_handle,...)
h = slice(...)

Description slice displays orthogonal slice planes through volumetric data.

slice(V,sx,sy,sz) draws slices along the x, y, z directions in the
volume V at the points in the vectors sx, sy, and sz. V is an m-by-n-by-p
volume array containing data values at the default location X = 1:n,
Y = 1:m, Z = 1:p. Each element in the vectors sx, sy, and sz defines
a slice plane in the x-, y-, or z-axis direction.

slice(X,Y,Z,V,sx,sy,sz) draws slices of the volume V. X, Y, and Z
are three-dimensional arrays specifying the coordinates for V. X, Y,
and Z must be monotonic and orthogonally spaced (as if produced by
the function meshgrid). The color at each point is determined by 3-D
interpolation into the volume V.

slice(V,XI,YI,ZI) draws data in the volume V for the slices defined
by XI, YI, and ZI. XI, YI, and ZI are matrices that define a surface,
and the volume is evaluated at the surface points. XI, YI, and ZI must
all be the same size.

slice(X,Y,Z,V,XI,YI,ZI) draws slices through the volume V along
the surface defined by the arrays XI, YI, ZI.

slice(...,'method') specifies the interpolation method. 'method' is
'linear', 'cubic', or 'nearest'.

• linear specifies trilinear interpolation (the default).

1-6349

slice

• cubic specifies tricubic interpolation.

• nearest specifies nearest-neighbor interpolation.

slice(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes object (gca). The axes
clim property is set to span the finite values of V.

h = slice(...) returns a vector of handles to surface graphics objects.

Tips The color drawn at each point is determined by interpolation into the
volume V.

Examples Visualize the function

v xe
x y z

=
− − −()2 2 2

over the range –2 ≤ x ≤ 2, –2 ≤y ≤2, – 2 ≤ z ≤2:

[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);
v = x.*exp(-x.^2-y.^2-z.^2);
xslice = [-1.2,.8,2]; yslice = 2; zslice = [-2,0];
slice(x,y,z,v,xslice,yslice,zslice)
colormap hsv

1-6350

slice

Slicing At Arbitrary Angles

You can also create slices that are oriented in arbitrary planes. To do
this,

• Create a slice surface in the domain of the volume (surf, linspace).

• Orient this surface with respect to the axes (rotate).

• Get the XData, YData, and ZData of the surface (get).

• Use this data to draw the slice plane within the volume.

For example, these statements slice the volume in the first example
with a rotated plane. Placing these commands within a for loop
“passes” the plane through the volume along the z-axis.

for i = -2:.5:2
hsp = surf(linspace(-2,2,20),linspace(-2,2,20),...
zeros(20)+i);

1-6351

slice

rotate(hsp,[1,-1,1],30)
xd = get(hsp,'XData');
yd = get(hsp,'YData');
zd = get(hsp,'ZData');
delete(hsp)
slice(x,y,z,v,[-2,2],2,-2) % Draw some volume boundaries
hold on
slice(x,y,z,v,xd,yd,zd)
hold off
axis tight
view(-5,10)
drawnow

end

The following picture illustrates three positions of the same slice surface
as it passes through the volume.

1-6352

slice

Slicing with a Nonplanar Surface

You can slice the volume with any surface. This example probes the
volume created in the previous example by passing a spherical slice
surface through the volume.

[xsp,ysp,zsp] = sphere;
% Draw some volume boundaries
% Draw some volume boundaries
slice(x,y,z,v,[-2,2],2,-2)
for i = -3:.2:3
hsp = surface(xsp+i,ysp,zsp);
rotate(hsp,[1 0 0],90)
xd = get(hsp,'XData');
yd = get(hsp,'YData');
zd = get(hsp,'ZData');
delete(hsp)
hold on
hslicer = slice(x,y,z,v,xd,yd,zd);
axis tight
xlim([-3,3])
view(-10,35)
drawnow
delete(hslicer)
hold off

end

The following picture illustrates three positions of the spherical slice
surface as it passes through the volume.

1-6353

slice

See Also interp3 | meshgrid

How To • Exploring Volumes with Slice Planes

1-6354

smooth3

Purpose Smooth 3-D data

Syntax

Description W = smooth3(V) smooths the input data V and returns the smoothed
data in W.

W = smooth3(V,'filter') filter determines the convolution kernel
and can be the strings

• 'gaussian'

• 'box' (default)

W = smooth3(V,'filter',size) sets the size of the convolution kernel
(default is [3 3 3]). If size is scalar, then size is interpreted as [size,
size, size].

W = smooth3(V,'filter',size,sd) sets an attribute of the
convolution kernel. When filter is gaussian, sd is the standard
deviation (default is .65).

Examples This example smooths some random 3-D data and then creates an
isosurface with end caps.

rng(9,'twister')
data = rand(10,10,10);
data = smooth3(data,'box',5);
patch(isocaps(data,.5),...

'FaceColor','interp','EdgeColor','none');
p1 = patch(isosurface(data,.5),...

'FaceColor','blue','EdgeColor','none');
isonormals(data,p1)
view(3);
axis vis3d tight
camlight left;
lighting phong

1-6355

smooth3

See Also isocaps | isonormals | isosurface | patch

How To • Displaying an Isosurface

1-6356

snapnow

Purpose Force snapshot of image for inclusion in published document

Syntax snapnow

Description The snapnow command forces a snapshot of the image or plot that
the code has most recently generated for presentation in a published
document. The output appears in the published document at the end of
the cell that contains the snapnow command. When used outside the
context of publishing a file, snapnow has the same behavior as drawnow.
That is, if you run a file that contains the snapnow command, the
MATLAB software interprets it as though it were a drawnow command.

Examples This example demonstrates the difference between publishing code that
contains the snapnow command and running that code. The first image
shows the results of publishing the code and the second image shows
the results of running the code.

Suppose you have a file that contains the following code:

%% Scale magic Data and
%% Display as Image:

for i=1:3
imagesc(magic(i))
snapnow

end

When you publish the code to HTML, the published document contains
a title, a table of contents, the commented text, the code, and each of
the three images produced by the for loop. (In the published document
shown, the size of the images have been reduced.)

1-6357

snapnow

When you run the code, a single Figure window opens and MATLAB
updates the image within this window as it evaluates each iteration of
the for loop. Each successive image replaces the one that preceded it,
so that the Figure window appears as follows when the code evaluation
completes.

1-6358

snapnow

See Also drawnow

Concepts • “Image Snapshot”

1-6359

sort

Purpose Sort array elements

Syntax B = sort(A)
B = sort(A,dim)
B = sort(___ ,mode)
[B,I] = sort(___)

Description B = sort(A) sorts the elements of A in ascending order along the first
array dimension whose size does not equal 1. For strings, this is a sort
in ASCII dictionary order. The sort is case-sensitive; uppercase letters
appear in the output before lowercase.

• If A is a vector, then sort(A) sorts the vector elements.

• If A is a nonempty, nonvector matrix, then sort(A) treats the
columns of A as vectors and sorts each column.

• If A is an empty 0-by-0 matrix, then sort(A) returns an empty 0-by-0
matrix.

• If A is a multidimensional array, then sort(A) treats as vectors all
values along the first array dimension whose size does not equal 1,
and then sorts each vector.

B = sort(A,dim) sorts the elements of A along dimension dim. For
example, if A is a matrix, then sort(A,2) sorts the elements in each row.

B = sort(___ ,mode) sorts in the order specified by mode using any of
the above syntaxes. The single string, 'ascend', indicates ascending
order (default) and 'descend' indicates descending order.

[B,I] = sort(___) also returns a collection of index vectors in an
array, I, using any of the above syntaxes. I is the same size as A
and describes the rearrangement of the elements along the sorted
dimension. In general, if B is an array with N dimensions whose sizes
do not equal 1, then N-1 loops are required to use the indexing array, I.

1-6360

sort

This requirement is because I contains only location information for the
single dimension being sorted. For example,

• If you sort a numeric vector or cell array of strings, then B = A(I).

• If you sort the columns of a matrix , then the above relation holds
for each column independently. That is, each column of I is a
permutation vector of the corresponding column of A such that

for j = 1:size(A,2)
B(:,j) = A(I(:,j),j);

end

Input
Arguments

A - Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
The data type of A can be numeric, logical, char, cell, or categorical.
If A contains NaN values or undefined categorical elements, sort(A)
places them on the high end of the sort (as if they are large numbers).

If A is complex, the sort function sorts the elements by magnitude. If
magnitudes are equal, the sort function also sorts by phase angle on
the interval [−π, π].
Complex Number Support: Yes

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1. You cannot use the dim or mode inputs with a cell
array.

Consider a two-dimensional input array, A:

• sort(A,1) sorts the elements in the columns of A.

• sort(A,2) sorts the elements in the rows of A.

1-6361

sort

sort returns A if dim is greater than ndims(A).

mode - Sorting mode
'ascend' (default) | 'descend'

Sorting mode, specified as 'ascend' (default) or 'descend'. You cannot
use the dim or mode options with a cell array.

Example: sort(A,2,'descend') sorts the rows of A in descending
order.

Data Types
char

Output
Arguments

B - Sorted array
array

Sorted array, returned as an array of the same size and class as A. The
ordering of the elements in B preserves the order of any equal elements
in A.

I - Sort index
collection of index vectors

Sort index, returned as a collection of index vectors. The index vectors
are oriented along the same dimension that sort operates on. For
example, if A is a 2-by-3 matrix, [B,I] = sort(A,2) sorts the elements
in each row of A and I is a collection of 1-by-3 row index vectors
describing the rearrangement. If you don’t specify dim, then [B,I] =
sort(A) sorts the columns of A and I is a collection of 2-by-1 column
index vectors.

1-6362

sort

If A has repeated elements of equal value, the indices in I preserve
the original ordering.

Examples Sort Vector Elements

Create a row vector of random integers.

rng(0)
A = randi(10,1,10)

A =

9 10 2 10 7 1 3 6 10 10

Sort the vector elements in ascending order.

B = sort(A)

B =

1 2 3 6 7 9 10 10 10 10

The result, B, lists the integers from smallest to largest.

Alternatively, use the mode input to sort the vector in descending order.

C = sort(A,'descend')

C =

10 10 10 10 9 7 6 3 2 1

The result, C, lists the integers from largest to smallest.

Sort Matrix Columns and Rows

Create a 5-by-5 matrix of random integers.

rng(1);

1-6363

sort

A = randi(100,5,5)

A =

42 10 42 68 81
73 19 69 42 97
1 35 21 56 32

31 40 88 15 70
15 54 3 20 88

Sort the columns of A.

B = sort(A)

B =

1 10 3 15 32
15 19 21 20 70
31 35 42 42 81
42 40 69 56 88
73 54 88 68 97

The result independently orders each column in ascending (smallest to
largest) order.

Sort the rows of A in descending order using the dim and mode inputs.

B1 = sort(A,2,'descend')

B1 =

81 68 42 42 10
97 73 69 42 19
56 35 32 21 1
88 70 40 31 15
88 54 20 15 3

1-6364

sort

The result independently orders each row in descending (largest to
smallest) order.

Sort Complex Matrix Elements

Create a 4-by-2 matrix of complex numbers.

A = [1+1i 2-3i; -1-1i 4+3i; -1+1i 3+2i; 1-1i -2+3i]

A =

1.0000 + 1.0000i 2.0000 - 3.0000i
-1.0000 - 1.0000i 4.0000 + 3.0000i
-1.0000 + 1.0000i 3.0000 + 2.0000i
1.0000 - 1.0000i -2.0000 + 3.0000i

Sort the columns of A in ascending order.

B = sort(A)

B =

-1.0000 - 1.0000i 2.0000 - 3.0000i
1.0000 - 1.0000i 3.0000 + 2.0000i
1.0000 + 1.0000i -2.0000 + 3.0000i

-1.0000 + 1.0000i 4.0000 + 3.0000i

The sort function sorts complex elements first by absolute value
(magnitude), then by phase angle.

Find the absolute values of the complex elements in A.

C = abs(A)

C =

1.4142 3.6056
1.4142 5.0000
1.4142 3.6056

1-6365

sort

1.4142 3.6056

In this case, many of the elements in each column of A have equal
magnitudes, so the value of angle largely determines the sorting order.

Evaluate the phase angles of each element in A.

P = angle(A)

P =

0.7854 -0.9828
-2.3562 0.6435
2.3562 0.5880

-0.7854 2.1588

The values in P determine the sort order for the column elements in A
with equal magnitude in C.

Sort Cell Array of Strings

Create a 3-by-3 cell array of strings.

A = {'Mud' 'Advent' 'Chair'; 'Truth' 'Jester' 'Fall'; 'Create' 'Double' '

A =

'Mud' 'Advent' 'Chair'
'Truth' 'Jester' 'Fall'
'Create' 'Double' 'Hyper'

Sort the strings in the cell array in alphabetical order using sort.

[B,I] = sort(A)

B =

'Advent'
'Chair'

1-6366

sort

'Create'
'Double'
'Fall'
'Hyper'
'Jester'
'Mud'
'Truth'

I =

4
7
3
6
8
9
5
1
2

The result, B, is a 9-by-1 cell array with the strings in alphabetical order.

Use the index vector, I, to obtain B directly from A.

A(I)

ans =

'Advent'
'Chair'
'Create'
'Double'
'Fall'
'Hyper'
'Jester'
'Mud'
'Truth'

1-6367

sort

The result is the same as B because I describes the rearrangement of
strings such that A(I) = B.

Sort Multidimensional Array

Create a 2-by-2-by-3 multidimensional array of random integers.

rng(2);
A = randi(100,2,2,3)

A(:,:,1) =

44 55
3 44

A(:,:,2) =

43 21
34 62

A(:,:,3) =

30 63
27 53

Sort the columns on each page of the array.

B = sort(A)

B(:,:,1) =

3 44
44 55

B(:,:,2) =

1-6368

sort

34 21
43 62

B(:,:,3) =

27 53
30 63

The result orders the values in each column from smallest to largest.

Sort the array in the third (dim = 3) dimension.

[C,I] = sort(A,3)

C(:,:,1) =

30 21
3 44

C(:,:,2) =

43 55
27 53

C(:,:,3) =

44 63
34 62

I(:,:,1) =

3 2
1 1

1-6369

sort

I(:,:,2) =

2 1
3 3

I(:,:,3) =

1 3
2 2

The result, C, orders the corresponding elements on each page of A from
smallest to largest. For example, C(1,1,1) < C(1,1,2) < C(1,1,3).
The corresponding elements on each page of I form 1-by-1-by-3
permutation vectors describing the rearrangement of the elements in A
along the third dimension.

Verify the use of the index array with the original array, A.

for i = 1:size(A,1)
for j = 1:size(A,2)

D(i,j,:) = A(i,j,I(i,j,:));
end

end
isequal(D,C)

ans =

1

The result of logical 1 (true) confirms the validity of the index array,
I. Since the permutation vectors are 3-D, two loops are required to use
the indexing array.

1-6370

sort

Tips • The sortrows function provides additional flexibility for subsorting
over multiple columns of nonvector input arrays.

• The sort function and the relational operators use different orderings
for complex numbers. For more information, see “Relational
Operations”.

See Also issorted | max | mean | median | min | sortrows | unique

Concepts • “Shifting and Sorting Matrices”

1-6371

sortrows

Purpose Sort array rows

Syntax B = sortrows(A)
B = sortrows(A,column)
[B,index] = sortrows(___)

tblB = sortrows(tblA)
tblB = sortrows(tblA,'RowNames')
tblB = sortrows(tblA,vars)

tblB = sortrows(tblA,mode)

tblB = sortrows(tblA,'RowNames',mode)
tblB = sortrows(tblA,vars,mode)

[tblB,index] = sortrows(tblA, ___)

Description B = sortrows(A) sorts the rows of A in ascending order. For strings,
this is the familiar dictionary sort.

B = sortrows(A,column) sorts matrix A based on the columns specified
in the vector, column. This input is used to perform multiple column
sorts in succession.

[B,index] = sortrows(___) also returns an index vector using any of
the previous syntaxes. The index vector satisfies B = A(index,:).

tblB = sortrows(tblA) sorts the rows of table tblA in ascending order
by the first variable, then by the second variable, and so on.

tblB = sortrows(tblA,'RowNames') sorts by the row names.

tblB = sortrows(tblA,vars) sorts by the variables specified by vars.

1-6372

sortrows

tblB = sortrows(tblA,mode) and tblB =
sortrows(tblA,'RowNames',mode) sorts tblA in the order specified by
mode. The single string, 'ascend', indicates ascending order (default)
and 'descend' indicates descending order.

tblB = sortrows(tblA,vars,mode) uses mode to specify the sort order.
mode can be a single string or a cell array of strings containing 'ascend'
for ascending order (default) or 'descend' for descending order.

• When mode is a single string, sortrows sorts in the specified direction
for all variables in vars.

• When mode is a cell array of strings, sortrows sorts in the specified
direction for each variable in vars.

[tblB,index] = sortrows(tblA, ___) also returns an index vector,
index, such that tblB = tblA(index,:).

Input
Arguments

A - Input array
column vector | matrix

Input array, specified as a column vector or matrix of a numeric,
logical, char, cell, or categorical class.

When A is complex, sortrows sorts the elements by magnitude, and,
where magnitudes are equal, further sorts by phase angle on the
interval [−π, π].
Complex Number Support: Yes

column - Column sorting vector
vector of integers

Column sorting vector, specified as a vector of integers. Each integer
value indicates a column to sort by. The sign of the integer indicates
ascending (positive) or descending (negative) sort order.

Example: sortrows(A,[2 -3]) sorts the rows of A first in ascending
order for the second column, and then it sorts by descending order for
the third column.

1-6373

sortrows

tblA - Input table
table

Input table, specified as a table. Each variable in tblA must be a valid
input to sort or sortrows.

Data Types
table

’RowNames’ - Row sort input
string

Row sort input, specified as the string 'RowNames'. Specify the
'RowNames' option to sort a table by row names rather than by variables.
If tblA.Properties.RowNames is empty, sortrows(tblA,'RowNames')
returns tblA.

vars - Sorting variables
integer | vector of integers | variable name | cell array of variable
names | logical vector

Sorting variables, specified as an integer, a vector of integers, a variable
name, a cell array of variable names, or a logical vector. vars indicates
the table variables to sort by. You also can use the mode input to
indicate ascending or descending order for each sorting variable.

If an element of vars is a positive integer, sortrows sorts the
corresponding variable in tblA in ascending order. If an element of
vars is a negative integer, sortrows sorts the corresponding variable
in tblA in descending order. If you provide the mode input argument,
MATLAB ignores the sign of the integers.

Example: sortrows(tblA,{'Height','Weight'}) sorts the rows of
tblA in ascending order, first by the variable Height, and then it sorts
by the variable Weight.

Example: sortrows(tblA,[1 4],{'descend' 'ascend'}) sorts the
first variable of tblA in descending order, then it sorts the fourth
variable in ascending order.

1-6374

sortrows

mode - Sorting mode
single string | cell array of strings

Sorting mode, specified as a single string or cell array of strings
composed of the options 'ascend' (default), or 'descend'. If mode is a
cell array of strings, the number of required entries depends on whether
you are sorting by variables or by row names.

• If tblA is being sorted by variables, the cell array must have an entry
for each variable.

• If tblA is being sorted by row names, the cell array must have one
entry.

Data Types
char | cell

Output
Arguments

B - Sorted array
array

Sorted array, returned as an array of the same size and class as A.

tblB - Sorted table
table

Sorted table, returned as a table with the same variables as tblA.

index - Sort index
index vector

Sort index, returned as an index vector. The sort index describes the
rearrangement of elements or rows in the input.

Examples Sort Rows of Matrix

Start with an arbitrary matrix, A.

A = floor(gallery('uniformdata',[6 7],0)*100);
A(1:4,1) = 95; A(5:6,1) = 76; A(2:4,2) = 7; A(3,3) = 73

1-6375

sortrows

A =
95 45 92 41 13 1 84
95 7 73 89 20 74 52
95 7 73 5 19 44 20
95 7 40 35 60 93 67
76 61 93 81 27 46 83
76 79 91 0 19 41 1

Sort the rows of A.

B = sortrows(A)

B =
76 61 93 81 27 46 83
76 79 91 0 19 41 1
95 7 40 35 60 93 67
95 7 73 5 19 44 20
95 7 73 89 20 74 52
95 45 92 41 13 1 84

When called with only a single input argument, sortrows bases the
sort on the first column of the matrix. For any rows that have equal
elements in a particular column, (e.g., A(1:4,1) for this matrix), sorting
is based on the column immediately to the right, (A(1:4,2) in this case).

When called with two input arguments, sortrows bases the sort
entirely on the column specified in the second argument.

Sort the rows of A based on the values in the second column.

C = sortrows(A,2)

C =
95 7 73 89 20 74 52
95 7 73 5 19 44 20
95 7 40 35 60 93 67
95 45 92 41 13 1 84
76 61 93 81 27 46 83
76 79 91 0 19 41 1

1-6376

sortrows

Rows that have equal elements in the specified column, (e.g., A(2:4,:),
if sorting matrix A by column 2) remain in their original order.

Specify two columns to sort by: columns 1 and 7.

D = sortrows(A,[1 7])

D =
76 79 91 0 19 41 1
76 61 93 81 27 46 83
95 7 73 5 19 44 20
95 7 73 89 20 74 52
95 7 40 35 60 93 67
95 45 92 41 13 1 84

sortrows sorts by column 1 first, and then for any rows with equal
values in column 1, sorts by column 7.

Sort the rows in descending order using the values in column 4.

[E,index] = sortrows(A, -4)

E =

95 7 73 89 20 74 52
76 61 93 81 27 46 83
95 45 92 41 13 1 84
95 7 40 35 60 93 67
95 7 73 5 19 44 20
76 79 91 0 19 41 1

index =

2
5
1

1-6377

sortrows

4
3
6

The index vector, index, describes the rearrangement of the rows, such
that E = A(index,:).

Sort Rows of Cell Array

Create a 6-by-2 cell array of strings.

A = {'Germany' 'Lukas'; 'USA' 'William'; 'USA' 'Andrew'; ...
'Germany' 'Andreas'; 'USA' 'Olivia'; 'Germany' 'Julia'}

A =

'Germany' 'Lukas'
'USA' 'William'
'USA' 'Andrew'
'Germany' 'Andreas'
'USA' 'Olivia'
'Germany' 'Julia'

The result is a list of countries and names.

Sort the rows of A.

B = sortrows(A)

B =

'Germany' 'Andreas'
'Germany' 'Julia'
'Germany' 'Lukas'
'USA' 'Andrew'
'USA' 'Olivia'
'USA' 'William'

The result is an alphabetized list sorted by both country and name.

1-6378

sortrows

Sort the names in the second column in descending order.

[C,index] = sortrows(A,[1 -2])

C =

'Germany' 'Lukas'
'Germany' 'Julia'
'Germany' 'Andreas'
'USA' 'William'
'USA' 'Olivia'
'USA' 'Andrew'

index =

1
6
4
2
5
3

The index vector, index, describes the rearrangement of the rows, such
that C = A(index,:).

Sort Rows of Table

Sort the rows of a table by the variable values in ascending order.

Create a table with four variables listing patient information for five
people.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

1-6379

sortrows

tblA = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

tblA =

Age Height Weight BloodPressure
--- ------ ------ ---------------

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

Sort the rows of the table.

tblB = sortrows(tblA)

tblB =

Age Height Weight BloodPressure
--- ------ ------ ---------------

Williams 38 64 131 125 83
Smith 38 71 176 124 93
Jones 40 67 133 117 75
Johnson 43 69 163 109 77
Brown 49 64 119 122 80

The sortrows function sorts the rows in ascending order first by the
variable Age, and then it sorts by the variable Height.

Sort Rows of Table by Row Names

Create a table with four variables listing patient information for five
people.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];

1-6380

sortrows

BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

tblA = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

tblA =

Age Height Weight BloodPressure
--- ------ ------ ---------------

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

Sort the rows of the table by the row names and return an index vector,
such that tblB = tblA(index,:).

[tblB,index] = sortrows(tblA,'RowNames')

tblB =

Age Height Weight BloodPressure
--- ------ ------ ---------------

Brown 49 64 119 122 80
Johnson 43 69 163 109 77
Jones 40 67 133 117 75
Smith 38 71 176 124 93
Williams 38 64 131 125 83

index =

5
2
4
1
3

1-6381

sortrows

The sortrows function sorts the rows in ascending order by the row
names.

Sort Rows of Table by Variables

Create a table with four variables listing patient information for five
people.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

tblA = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

tblA =

Age Height Weight BloodPressure
--- ------ ------ ---------------

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

Sort the rows of the table in ascending order by Height, and then sort
in descending order by Weight. Also, return an index vector, such that
tblB = tblA(index,:).

[tblB,index] = sortrows(tblA,{'Height','Weight'},{'ascend','descend'})

tblB =

Age Height Weight BloodPressure
--- ------ ------ ---------------

Williams 38 64 131 125 83
Brown 49 64 119 122 80
Jones 40 67 133 117 75

1-6382

sortrows

Johnson 43 69 163 109 77
Smith 38 71 176 124 93

index =

3
5
4
2
1

See Also issorted | sort

1-6383

sound

Purpose Convert matrix of signal data to sound

Syntax sound(y)
sound(y,Fs)
sound(y,Fs,nBits)

Description sound(y) sends audio signal y to the speaker at the default sample
rate of 8192 hertz.

sound(y,Fs) sends audio signal y to the speaker at sample rate Fs.

sound(y,Fs,nBits) uses nBits bits per sample for audio signal y.

Input
Arguments

y - Audio data
column vector | m-by-2 matrix

Audio data, specified as an m-by-1 column vector for single-channel
(mono) audio, or an m-by-2 matrix for stereo playback, where m is the
number of audio samples. If y is an m-by-2 matrix, then the first column
corresponds to the left channel, and the second column corresponds
to the right channel. Stereo playback is available only if your system
supports it.

Data Types
double

Fs - Sample rate
8192 (default) | positive number

Sample rate, in hertz, of audio data y, specified as a positive number
between 80 and 1000000.

Data Types
single | double

nBits - Bit depth of sample values
8 (default) | 16 | 24

1-6384

sound

Bit depth of the sample values, specified as an integer. Valid values
depend on the audio hardware installed. Most platforms support bit
depths of 8 bits or 16 bits.

Examples Play Sample Data at Default Sample Rate

Load the example file gong.mat, which contains sample data y and
rate Fs, and listen to the audio.

load gong.mat;
sound(y);

Play Sample Data at Specific Sample Rate

Play an excerpt from Handel’s “Hallelujah Chorus” at twice the recorded
sample rate.

load handel.mat;
sound(y, 2*Fs);

Play Sample Data with Specific Bit Depth

load handel.mat;
nBits = 16;
sound(y,Fs,nBits);

MATLAB plays the audio with a bit depth of 16 bits per sample, if this
is supported on your system.

Tips • The sound function supports sound devices on all Windows and most
UNIX platforms.

• Most sound cards support sample rates between 5 and 48 kilohertz.
Specifying a sample rate outside this range might produce
unexpected results.

See Also audioplayer | soundsc | audioread | audiowrite

1-6385

sound

Concepts • “Characteristics of Audio Files”
• “Play Audio”

1-6386

soundsc

Purpose Scale data and play as sound

Syntax soundsc(y)
soundsc(y,Fs)
soundsc(y,Fs,nBits)

soundsc(___ ,yRange)

Description soundsc(y) scales the values of audio signal y to fit in the range from
–1.0 to 1.0, and then sends the data to the speaker at the default sample
rate of 8192 hertz. By first scaling the data, soundsc plays the audio
as loudly as possible without clipping. The mean of the dynamic range
of the data is set to zero.

soundsc(y,Fs) sends audio signal y to the speaker at sample rate Fs.

soundsc(y,Fs,nBits) uses nBits bits per sample for audio signal y.

soundsc(___ ,yRange), where yRange is a vector of the form
[low,high], linearly scales the values in y between low and high to
the full sound range [-1.0,1.0]. Values outside [low,high] are not
clipped. You can use yRange with any of the input arguments in the
above syntaxes.

Input
Arguments

y - Audio data
column vector | m-by-2 matrix

Audio data, specified as an m-by-1 column vector for single-channel
(mono) audio, or an m-by-2 matrix for stereo playback, where m is the
number of audio samples. If y is an m-by-2 matrix, then the first column
corresponds to the left channel, and the second column corresponds
to the right channel. Stereo playback is available only if your system
supports it.

Data Types
double

1-6387

soundsc

Fs - Sample rate
8192 (default) | positive number

Sample rate, in hertz, of audio data y, specified as a positive number
between 80 and 1000000.

Data Types
single | double

nBits - Bit depth of sample values
8 (default) | 16 | 24

Bit depth of the sample values, specified as an integer. Valid values
depend on the audio hardware installed. Most platforms support bit
depths of 8 bits or 16 bits.

yRange - Range of audio data to scale
[min(y),max(y)] (default) | two-element vector

Range of audio data to scale, specified as a two-element vector of the
form [low,high], where low and high are the lower and upper limits
of the range.

Example: [-0.8,0.8]

Data Types
double

Examples Play Sample Data at Default Sample Rate

Load the example file gong.mat, which contains sample data y and
rate Fs, and listen to the audio.

load gong.mat;
soundsc(y);

Play Sample Data at Specific Sample Rate

Play an excerpt from Handel’s "Hallelujah Chorus" at twice the recorded
sample rate.

load handel.mat;

1-6388

soundsc

soundsc(y, 2*Fs);

Play Sample Data with Specific Bit Depth

load handel.mat;
nBits = 16;
soundsc(y,Fs,nBits);

MATLAB plays the scaled audio with a bit depth of 16 bits per sample.

Scale Selected Audio Data

load handel.mat;
yRange = [-0.7,0.7];
soundsc(y,yRange);

Tips • The sound function supports sound devices on all Windows and most
UNIX platforms.

• Most sound cards support sample rates between 5 and 48 kilohertz.
Specifying a sample rate outside this range might produce
unexpected results.

See Also audioplayer | sound | audioread | audiowrite

1-6389

spalloc

Purpose Allocate space for sparse matrix

Syntax S = spalloc(m,n,nzmax)

Description S = spalloc(m,n,nzmax) creates an all zero sparse matrix S of
size m-by-n with room to hold nzmax nonzeros. The matrix can then
be generated column by column without requiring repeated storage
allocation as the number of nonzeros grows.

spalloc(m,n,nzmax) is shorthand for

sparse([],[],[],m,n,nzmax)

Examples To generate efficiently a sparse matrix that has an average of at most
three nonzero elements per column

S = spalloc(n,n,3*n);
for j = 1:n

S(:,j) = [zeros(n-3,1)' round(rand(3,1))']';end

1-6390

sparse

Purpose Create sparse matrix

Syntax S = sparse(A)
S = sparse(i,j,s,m,n,nzmax)
S = sparse(i,j,s,m,n)
S = sparse(i,j,s)
S = sparse(m,n)

Description The sparse function generates matrices in the MATLAB sparse storage
organization.

S = sparse(A) converts a full matrix to sparse form by squeezing out
any zero elements. If S is already sparse, sparse(S) returns S.

S = sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate
an m-by-n sparse matrix such that S(i(k),j(k)) = s(k), with space
allocated for nzmax nonzeros. Vectors i, j, and s are all the same
length. Any elements of s that are zero are ignored, along with the
corresponding values of i and j. Any elements of s that have duplicate
values of i and j are added together.

Note If any value in i or j is larger than 2^31-1 for 32-bit platforms,
or 2^48-1 on 64-bit platforms, then the sparse matrix cannot be
constructed.

To simplify this six-argument call, you can pass scalars for the
argument s and one of the arguments i or j—in which case they are
expanded so that i, j, and s all have the same length.

S = sparse(i,j,s,m,n) uses nzmax = length(s).

S = sparse(i,j,s) uses m = max(i) and n = max(j). The maxima
are computed before any zeros in s are removed, so one of the rows of
[i j s] might be [m n 0].

S = sparse(m,n) abbreviates sparse([],[],[],m,n,0). This
generates the ultimate sparse matrix, an m-by-n all zero matrix.

1-6391

sparse

Tips All of the MATLAB built-in arithmetic, logical, and indexing operations
can be applied to sparse matrices, or to mixtures of sparse and full
matrices. Operations on sparse matrices return sparse matrices and
operations on full matrices return full matrices.

In most cases, operations on mixtures of sparse and full matrices return
full matrices. The exceptions include situations where the result of a
mixed operation is structurally sparse, for example, A.*S is at least
as sparse as S.

Examples S = sparse(1:n,1:n,1) generates a sparse representation of the n-by-n
identity matrix. The same S results from S = sparse(eye(n,n)), but
this would also temporarily generate a full n-by-n matrix with most of
its elements equal to zero.

B = sparse(10000,10000,pi) is probably not very useful, but is legal
and works; it sets up a 10000-by-10000 matrix with only one nonzero
element. Don’t try full(B); it requires 800 megabytes of storage.

This dissects and then reassembles a sparse matrix:

[i,j,s] = find(S);
[m,n] = size(S);
S = sparse(i,j,s,m,n);

So does this, if the last row and column have nonzero entries:

[i,j,s] = find(S);
S = sparse(i,j,s);

See Also diag | find | full | issparse | nnz | nonzeros | nzmax | spones |
sprandn | sprandsym | spy

1-6392

spaugment

Purpose Form least squares augmented system

Syntax S = spaugment(A,c)
S = spaugment(A)

Description S = spaugment(A,c) creates the sparse, square, symmetric indefinite
matrix S = [c*I A; A' 0]. The matrix S is related to the least squares
problem

min norm(b - A*x)

by

r = b - A*x
S * [r/c; x] = [b; 0]

The optimum value of the residual scaling factor c, involves
min(svd(A)) and norm(r), which are usually too expensive to compute.

S = spaugment(A) without a specified value of c, uses
max(max(abs(A)))/1000.

Note In previous versions of MATLAB product, the augmented matrix
was used by sparse linear equation solvers, \ and /, for nonsquare
problems. Now, MATLAB software performs a least squares solve using
the qr factorization of A instead.

See Also spparms

1-6393

spconvert

Purpose Import matrix from sparse matrix external format

Syntax S = spconvert(D)

Description spconvert is used to create sparse matrices from a simple sparse
format easily produced by non-MATLAB sparse programs. spconvert
is the second step in the process:

1 Load an ASCII data file containing [i,j,v] or [i,j,re,im] as rows
into a MATLAB variable.

2 Convert that variable into a MATLAB sparse matrix.

S = spconvert(D) converts a matrix D with rows containing [i,j,s]
or [i,j,r,s] to the corresponding sparse matrix. D must have an
nnz or nnz+1 row and three or four columns. Three elements per row
generate a real matrix and four elements per row generate a complex
matrix. A row of the form [m n 0] or [m n 0 0] anywhere in D can be
used to specify size(S). If D is already sparse, no conversion is done, so
spconvert can be used after D is loaded from either a MAT-file or an
ASCII file.

Examples Suppose the ASCII file uphill.dat contains

1 1 1.000000000000000
1 2 0.500000000000000
2 2 0.333333333333333
1 3 0.333333333333333
2 3 0.250000000000000
3 3 0.200000000000000
1 4 0.250000000000000
2 4 0.200000000000000
3 4 0.166666666666667
4 4 0.142857142857143
4 4 0.000000000000000

Then the statements

1-6394

spconvert

load uphill.dat
H = spconvert(uphill)

H =
(1,1) 1.0000
(1,2) 0.5000
(2,2) 0.3333
(1,3) 0.3333
(2,3) 0.2500
(3,3) 0.2000
(1,4) 0.2500
(2,4) 0.2000
(3,4) 0.1667
(4,4) 0.1429

recreate sparse(triu(hilb(4))), possibly with roundoff errors. In this
case, the last line of the input file is not necessary because the earlier
lines already specify that the matrix is at least 4-by-4.

1-6395

spdiags

Purpose Extract and create sparse band and diagonal matrices

Syntax B = spdiags(A)
[B,d] = spdiags(A)
B = spdiags(A,d)
A = spdiags(B,d,A)
A = spdiags(B,d,m,n)

Description The spdiags function generalizes the function diag. Four different
operations, distinguished by the number of input arguments, are
possible.

B = spdiags(A) extracts all nonzero diagonals from the m-by-n matrix
A. B is a min(m,n)-by-p matrix whose columns are the p nonzero
diagonals of A.

[B,d] = spdiags(A) returns a vector d of length p, whose integer
components specify the diagonals in A.

B = spdiags(A,d) extracts the diagonals specified by d.

A = spdiags(B,d,A) replaces the diagonals specified by d with the
columns of B. The output is sparse.

A = spdiags(B,d,m,n) creates an m-by-n sparse matrix by taking the
columns of B and placing them along the diagonals specified by d.

Note In this syntax, if a column of B is longer than the diagonal it is
replacing, and m >= n, spdiags takes elements of super-diagonals
from the lower part of the column of B, and elements of sub-diagonals
from the upper part of the column of B. However, if m < n , then
super-diagonals are from the upper part of the column of B, and
sub-diagonals from the lower part. (See “Example 5A” on page 1-6402
and “Example 5B” on page 1-6404, below).

Arguments The spdiags function deals with three matrices, in various
combinations, as both input and output.

1-6396

spdiags

A An m-by-n matrix, usually (but not necessarily) sparse, with
its nonzero or specified elements located on p diagonals.

B A min(m,n)-by-p matrix, usually (but not necessarily) full,
whose columns are the diagonals of A.

d A vector of length p whose integer components specify the
diagonals in A.

Roughly, A, B, and d are related by

for k = 1:p
B(:,k) = diag(A,d(k))

end

Some elements of B, corresponding to positions outside of A, are not
defined by these loops. They are not referenced when B is input and
are set to zero when B is output.

How the Diagonals of A are Listed in the Vector d

An m-by-n matrix A has m+n-1diagonals. These are specified in the
vector d using indices from -m+1 to n-1. For example, if A is 5-by-6, it
has 10 diagonals, which are specified in the vector d using the indices -4,
-3 , ... 4, 5. The following diagram illustrates this for a vector of all ones.

1-6397

spdiags

Examples Example 1

For the following matrix,

A=[0 5 0 10 0 0;...
0 0 6 0 11 0;...
3 0 0 7 0 12;...
1 4 0 0 8 0;...
0 2 5 0 0 9]

A =

0 5 0 10 0 0
0 0 6 0 11 0
3 0 0 7 0 12
1 4 0 0 8 0
0 2 5 0 0 9

the command

[B, d] =spdiags(A)

returns

B =

0 0 5 10
0 0 6 11
0 3 7 12
1 4 8 0
2 5 9 0

d =

-3
-2
1

1-6398

spdiags

3

The columns of the first output B contain the nonzero diagonals of A.
The second output d lists the indices of the nonzero diagonals of A, as
shown in the following diagram. See “How the Diagonals of A are Listed
in the Vector d” on page 1-6397.

Note that the longest nonzero diagonal in A is contained in column 3
of B. The other nonzero diagonals of A have extra zeros added to their
corresponding columns in B, to give all columns of B the same length.
For the nonzero diagonals below the main diagonal of A, extra zeros are
added at the tops of columns. For the nonzero diagonals above the main
diagonal of A, extra zeros are added at the bottoms of columns. This is
illustrated by the following diagram.

1-6399

spdiags

Example 2

This example generates a sparse tridiagonal representation of the
classic second difference operator on n points.

e = ones(n,1);
A = spdiags([e -2*e e], -1:1, n, n)

Turn it into Wilkinson’s test matrix (see gallery):

A = spdiags(abs(-(n-1)/2:(n-1)/2)',0,A)

Finally, recover the three diagonals:

B = spdiags(A)

Example 3

The second example is not square.

A = [11 0 13 0
0 22 0 24

1-6400

spdiags

0 0 33 0
41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74]

Here m =7, n = 4, and p = 3.

The statement [B,d] = spdiags(A) produces d = [-3 0 2]' and

B = [41 11 0
52 22 0
63 33 13
74 44 24]

Conversely, with the above B and d, the expression spdiags(B,d,7,4)
reproduces the original A.

Example 4

This example shows how spdiags creates the diagonals when the
columns of B are longer than the diagonals they are replacing.

B = repmat((1:6)',[1 7])

B =

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6

d = [-4 -2 -1 0 3 4 5];
A = spdiags(B,d,6,6);
full(A)

ans =

1-6401

spdiags

1 0 0 4 5 6
1 2 0 0 5 6
1 2 3 0 0 6
0 2 3 4 0 0
1 0 3 4 5 0
0 2 0 4 5 6

Example 5A

This example illustrates the use of the syntax A = spdiags(B,d,m,n),
under three conditions:

• m is equal to n

• m is greater than n

• m is less than n

The command used in this example is

A = full(spdiags(B, [-2 0 2], m, n))

where B is the 5-by-3 matrix shown below. The resulting matrix A
has dimensions m-by-n, and has nonzero diagonals at [-2 0 2] (a
sub-diagonal at -2, the main diagonal, and a super-diagonal at 2).

B =
1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

The first and third columns of matrix B are used to create the sub- and
super-diagonals of A respectively. In all three cases though, these two
outer columns of B are longer than the resulting diagonals of A. Because
of this, only a part of the columns is used in A.

When m == n or m > n, spdiags takes elements of the super-diagonal
in A from the lower part of the corresponding column of B, and elements

1-6402

spdiags

of the sub-diagonal in A from the upper part of the corresponding
column of B.

When m < n, spdiags does the opposite, taking elements of the
super-diagonal in A from the upper part of the corresponding column
of B, and elements of the sub-diagonal in A from the lower part of the
corresponding column of B.

Part 1 — m is equal to n.

A = full(spdiags(B, [-2 0 2], 5, 5))
Matrix B Matrix A

1 6 11 6 0 13 0 0
2 7 12 0 7 0 14 0
3 8 13 == spdiags => 1 0 8 0 15
4 9 14 0 2 0 9 0
5 10 15 0 0 3 0 10

A(3,1), A(4,2), and A(5,3) are taken from the upper part of B(:,1).

A(1,3), A(2,4), and A(3,5) are taken from the lower part of B(:,3).

Part 2 — m is greater than n.

A = full(spdiags(B, [-2 0 2], 5, 4))
Matrix B Matrix A

1 6 11 6 0 13 0
2 7 12 0 7 0 14
3 8 13 == spdiags => 1 0 8 0
4 9 14 0 2 0 9
5 10 15 0 0 3 0

Same as in Part A.

Part 3 — m is less than n.

A = full(spdiags(B, [-2 0 2], 4, 5))

1-6403

spdiags

Matrix B Matrix A

1 6 11 6 0 11 0 0
2 7 12 0 7 0 12 0
3 8 13 == spdiags => 3 0 8 0 13
4 9 14 0 4 0 9 0
5 10 15

A(3,1) and A(4,2) are taken from the lower part of B(:,1).

A(1,3), A(2,4), and A(3,5) are taken from the upper part of B(:,3).

Example 5B

Extract the diagonals from the first part of this example back into a
column format using the command

B = spdiags(A)

You can see that in each case the original columns are restored (minus
those elements that had overflowed the super- and sub-diagonals of
matrix A).

Part 1.

Matrix A Matrix B

6 0 13 0 0 1 6 0
0 7 0 14 0 2 7 0
1 0 8 0 15 == spdiags => 3 8 13
0 2 0 9 0 0 9 14
0 0 3 0 10 0 10 15

Part 2.

Matrix A Matrix B

6 0 13 0 1 6 0
0 7 0 14 2 7 0
1 0 8 0 == spdiags => 3 8 13

1-6404

spdiags

0 2 0 9 0 9 14
0 0 3 0

Part 3.

Matrix A Matrix B

6 0 11 0 0 0 6 11
0 7 0 12 0 0 7 12
3 0 8 0 13 == spdiags => 3 8 13
0 4 0 9 0 4 9 0

See Also diag | speye

1-6405

specular

Purpose Calculate specular reflectance

Syntax R = specular(Nx,Ny,Nz,S,V)

Description R = specular(Nx,Ny,Nz,S,V) returns the reflectance of a surface with
normal vector components [Nx,Ny,Nz]. S and V specify the direction
to the light source and to the viewer, respectively. You can specify
these directions as three vectors[x,y,z] or two vectors [Theta Phi
(in spherical coordinates).

The specular highlight is strongest when the normal vector is in the
direction of (S+V)/2 where S is the source direction, and V is the view
direction.

The surface spread exponent can be specified by including a sixth
argument as in specular(Nx,Ny,Nz,S,V,spread).

1-6406

speye

Purpose Sparse identity matrix

Syntax S = speye(m,n)
S = speye([m n])
S = speye(n)
S = speye

Description S = speye(m,n) and S = speye([m n]) form an m-by-n sparse matrix
with 1s on the main diagonal.

S = speye(n) abbreviates speye(n,n).

S = speye returns the sparse form of the 1-by-1 identity matrix.

Examples I = speye(1000) forms the sparse representation of the 1000-by-1000
identity matrix, which requires only about 16 kilobytes of storage.
This is the same final result as I = sparse(eye(1000,1000)), but
the latter requires eight megabytes for temporary storage for the full
representation.

See Also spalloc | spones | spdiags | sprand | sprandn

1-6407

spfun

Purpose Apply function to nonzero sparse matrix elements

Syntax f = spfun(fun,S)

Description The spfun function selectively applies a function to only the nonzero
elements of a sparse matrix S, preserving the sparsity pattern of the
original matrix (except for underflow or if fun returns zero for some
nonzero elements of S).

f = spfun(fun,S) evaluates fun(S) on the elements of S that are
nonzero. fun is a function handle.

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

Tips Functions that operate element-by-element, like those in the elfun
directory, are the most appropriate functions to use with spfun.

Examples Given the 4-by-4 sparse diagonal matrix

S = spdiags([1:4]',0,4,4)

S =
(1,1) 1
(2,2) 2
(3,3) 3
(4,4) 4

Because fun returns nonzero values for all nonzero element of S, f =
spfun(@exp,S) has the same sparsity pattern as S.

f =
(1,1) 2.7183
(2,2) 7.3891
(3,3) 20.0855
(4,4) 54.5982

whereas exp(S) has 1s where S has 0s.

1-6408

spfun

full(exp(S))

ans =
2.7183 1.0000 1.0000 1.0000
1.0000 7.3891 1.0000 1.0000
1.0000 1.0000 20.0855 1.0000
1.0000 1.0000 1.0000 54.5982

See Also function_handle

1-6409

sph2cart

Purpose Transform spherical coordinates to Cartesian

Syntax [x,y,z] = sph2cart(azimuth,elevation,r)

Description [x,y,z] = sph2cart(azimuth,elevation,r) transforms the
corresponding elements of spherical coordinate arrays to Cartesian, or
xyz, coordinates. azimuth, elevation, and r must all be the same size
(or any of them can be scalar). azimuth and elevation are angular
displacements in radians. azimuth is the counterclockwise angle in the
x-y plane measured from the positive x-axis. elevation is the elevation
angle from the x-y plane.

Algorithms The mapping from spherical coordinates to three-dimensional Cartesian
coordinates is

x = r .* cos(elevation) .* cos(azimuth)
y = r .* cos(elevation) .* sin(azimuth)
z = r .* sin(elevation)

See Also cart2pol | cart2sph | pol2cart

1-6410

sphere

Purpose Generate sphere

Syntax sphere
sphere(n)
[X,Y,Z] = sphere(n)

Description The sphere function generates the x-, y-, and z-coordinates of a unit
sphere for use with surf and mesh.

sphere generates a sphere consisting of 20-by-20 faces.

sphere(n) draws a surf plot of an n-by-n sphere in the current figure.

[X,Y,Z] = sphere(n) returns the coordinates of a sphere in three
matrices that are (n+1)-by-(n+1) in size. You draw the sphere with
surf(X,Y,Z) or mesh(X,Y,Z).

Examples Plot Sphere

Generate and plot a sphere.

figure
sphere

1-6411

sphere

Plot Multiple Spheres

Define x, y, and z as coordinates of a sphere.

[x,y,z] = sphere;

Plot a sphere centered at the origin. Plot two more spheres centered at
(3,-2,0) and (0,1,-3).

figure

1-6412

sphere

surf(x,y,z)

hold on
surf(x+3,y-2,z); % centered at (3,-2,0)
surf(x,y+1,z-3); % centered at (0,1,-3)

See Also cylinder | axis

1-6413

spinmap

Purpose Spin colormap

Syntax spinmap
spinmap(t)
spinmap(t,inc)
spinmap('inf')

Description The spinmap function shifts the colormap RGB values by some
incremental value. For example, if the increment equals 1, color 1
becomes color 2, color 2 becomes color 3, etc.

spinmap cyclically rotates the colormap for approximately five seconds
using an incremental value of 2.

spinmap(t) rotates the colormap for approximately 10*t seconds. The
amount of time specified by t depends on your hardware configuration
(e.g., if you are running MATLAB software over a network).

spinmap(t,inc) rotates the colormap for approximately 10*t seconds
and specifies an increment inc by which the colormap shifts. When inc
is 1, the rotation appears smoother than the default (i.e., 2). Increments
greater than 2 are less smooth than the default. A negative increment
(e.g., –2) rotates the colormap in a negative direction.

spinmap('inf') rotates the colormap for an infinite amount of time.
To break the loop, press Ctrl+C.

See Also colormap | colormapeditor

1-6414

spline

Purpose Cubic spline data interpolation

Syntax yy = spline(x,Y,xx)
pp = spline(x,Y)

Description yy = spline(x,Y,xx) uses a cubic spline interpolation to find yy, the
values of the underlying function Y at the values of the interpolant xx.
For the interpolation, the independent variable is assumed to be the
final dimension of Y with the breakpoints defined by x.

The sizes of xx and yy are related as follows:

• If Y is a scalar or vector, yy has the same size as xx.

• If Y is an array that is not a vector,

- If xx is a scalar or vector, size(yy) equals [d1, d2, ..., dk,
length(xx)].

- If xx is an array of size [m1,m2,...,mj], size(yy) equals
[d1,d2,...,dk,m1,m2,...,mj].

pp = spline(x,Y) returns the piecewise polynomial form of the cubic
spline interpolant for later use with ppval and the spline utility unmkpp.
x must be a vector. Y can be a scalar, a vector, or an array of any
dimension, subject to the following conditions:

• If x and Y are vectors of the same size, the not-a-knot end conditions
are used.

• If x or Y is a scalar, it is expanded to have the same length as the
other and the not-a-knot end conditions are used. (See Exceptions
(1) below).

• If Y is a vector that contains two more values than x has entries,
the first and last value in Y are used as the endslopes for the cubic
spline. (See Exceptions (2) below.)

1-6415

spline

Exceptions

1 If Y is a vector that contains two more values than x has entries,
the first and last value in Y are used as the endslopes for the cubic
spline. If Y is a vector, this means

• f(x) = Y(2:end-1)

• df(min(x)) = Y(1)

• df(max(x)) = Y(end)

2 If Y is a matrix or an N-dimensional array with size(Y,N) equal to
length(x)+2, the following hold:

• f(x(j)) matches the value Y(:,...,:,j+1) for j=1:length(x)

• Df(min(x)) matches Y(:,:,...:,1)

• Df(max(x)) matches Y(:,:,...:,end)

Note You can also perform spline interpolation using the interp1
function with the command interp1(x,y,xx,'spline'). Note that
while spline performs interpolation on rows of an input matrix,
interp1 performs interpolation on columns of an input matrix.

Examples Spline Interpolation of Sine Data

This generates a sine curve, then samples the spline over a finer mesh.

x = 0:10;
y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)

1-6416

spline

Spline Interpolation of Distribution and Specify Endpoint
Slopes

This illustrates the use of clamped or complete spline interpolation
where end slopes are prescribed. Zero slopes at the ends of an
interpolant to the values of a certain distribution are enforced.

x = -4:4;
y = [0 .15 1.12 2.36 2.36 1.46 .49 .06 0];
cs = spline(x,[0 y 0]);

1-6417

spline

xx = linspace(-4,4,101);
plot(x,y,'o',xx,ppval(cs,xx),'-');

Extrapolation Using Cubic Spline

The two vectors

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633];

1-6418

spline

represent the census years from 1900 to 1990 and the corresponding
United States population in millions of people. The expression

spline(t,p,2000)

uses the cubic spline to extrapolate and predict the population in the
year 2000. The result is

ans =

270.6060

Spline Interpolation of Angular Data

The statements

x = pi*[0:.5:2];
y = [0 1 0 -1 0 1 0;

1 0 1 0 -1 0 1];
pp = spline(x,y);
yy = ppval(pp, linspace(0,2*pi,101));
plot(yy(1,:),yy(2,:),'-b',y(1,2:5),y(2,2:5),'or'), axis equal

generate the plot of a circle, with the five data points
y(:,2),...,y(:,6) marked with o’s. Note that this y contains two
more values (i.e., two more columns) than does x, hence y(:,1) and
y(:,end) are used as endslopes.

1-6419

spline

Spline Interpolation of Sine and Cosine Data

The following code generates sine and cosine curves, then samples the
splines over a finer mesh.

x = 0:.25:1;
Y = [sin(x); cos(x)];
xx = 0:.1:1;
YY = spline(x,Y,xx);
plot(x,Y(1,:),'o',xx,YY(1,:),'-'); hold on;

1-6420

spline

plot(x,Y(2,:),'o',xx,YY(2,:),':'); hold off;

Algorithms A tridiagonal linear system (with, possibly, several right sides) is being
solved for the information needed to describe the coefficients of the
various cubic polynomials which make up the interpolating spline.
spline uses the functions ppval, mkpp, and unmkpp. These routines
form a small suite of functions for working with piecewise polynomials.
For access to more advanced features, see the interp1 reference page,

1-6421

spline

the command-line help for these functions, and the Curve Fitting
Toolbox™ spline functions.

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

See Also interp1 | ppval | mkpp | pchip | unmkpp

1-6422

spones

Purpose Replace nonzero sparse matrix elements with ones

Syntax R = spones(S)

Description R = spones(S) generates a matrix R with the same sparsity structure
as S, but with 1’s in the nonzero positions.

Examples c = sum(spones(S)) is the number of nonzeros in each column.

r = sum(spones(S'))' is the number of nonzeros in each row.

sum(c) and sum(r) are equal, and are equal to nnz(S).

See Also nnz | spalloc | spfun

1-6423

spparms

Purpose Set parameters for sparse matrix routines

Syntax spparms('key',value)
spparms
values = spparms
[keys,values] = spparms
spparms(values)
value = spparms('key')
spparms('default')
spparms('tight')

Description spparms('key',value) sets one or more of the tunable parameters
used in the sparse routines. In ordinary use, you should never need
to deal with this function.

The meanings of the key parameters are

'spumoni' Sparse Monitor flag:

0 Produces no diagnostic output, the default

1 Produces information about choice of algorithm
based on matrix structure, and about storage
allocation

2 Also produces very detailed information about the
sparse matrix algorithms

'thr_rel',
'thr_abs'

Minimum degree threshold is thr_rel*mindegree
+ thr_abs.

'exact_d' Nonzero to use exact degrees in minimum degree.
Zero to use approximate degrees.

'supernd' If positive, minimum degree amalgamates the
supernodes every supernd stages.

'rreduce' If positive, minimum degree does row reduction
every rreduce stages.

1-6424

spparms

'wh_frac' Rows with density > wh_frac are ignored in
colmmd.

'autommd' Nonzero to use minimum degree (MMD) orderings
with QR-based \ and /.

'autoamd' Nonzero to use colamd ordering with the LU-based
\ and /, and to use amd with Cholesky-based \ and /.

'piv_tol' Pivot tolerance used by the LU-based \ and /.

'bandden' Band density used by \ and / for banded
matrices. Band density is defined as
(# nonzeros in the band)/(# nonzeros in a full band).
If bandden = 1.0, never use band solver. If bandden
= 0.0, always use band solver. Default is 0.5.

'umfpack' Nonzero to use UMFPACK instead of the v4
LU-based solver in \ and /.

'sym_tol' Symmetric pivot tolerance. See lu for more
information about the role of the symmetric pivot
tolerance.

spparms, by itself, prints a description of the current settings.

values = spparms returns a vector whose components give the current
settings.

[keys,values] = spparms returns that vector, and also returns a
character matrix whose rows are the keywords for the parameters.

spparms(values), with no output argument, sets all the parameters to
the values specified by the argument vector.

value = spparms('key') returns the current setting of one parameter.

spparms('default') sets all the parameters to their default settings.

spparms('tight') sets the minimum degree ordering parameters to
their tight settings, which can lead to orderings with less fill-in, but
which make the ordering functions themselves use more execution time.

The key parameters for default and tight settings are

1-6425

spparms

Keyword Default Tight

values(1) 'spumoni' 0.0

values(2) 'thr_rel' 1.1 1.0

values(3) 'thr_abs' 1.0 0.0

values(4) 'exact_d' 0.0 1.0

values(5) 'supernd' 3.0 1.0

values(6) 'rreduce' 3.0 1.0

values(7) 'wh_frac' 0.5 0.5

values(8) 'autommd' 1.0

values(9) 'autoamd' 1.0

values(10) 'piv_tol' 0.1

values(11) 'bandden' 0.5

values(12) 'umfpack' 1.0

values(13) 'sym_tol' 0.001

See Also chol | lu | qr | colamd | symamd

1-6426

sprand

Purpose Sparse uniformly distributed random matrix

Syntax R = sprand(S)
R = sprand(m,n,density)
R = sprand(m,n,density,rc)

Description R = sprand(S) has the same sparsity structure as S, but uniformly
distributed random entries.

R = sprand(m,n,density) is a random, m-by-n, sparse matrix with
approximately density*m*n uniformly distributed nonzero entries (0
<= density <= 1).

R = sprand(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices
of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc
as its first lr singular values, all others are zero. In this case, R is
generated by random plane rotations applied to a diagonal matrix
with the given singular values. It has a great deal of topological and
algebraic structure.

Tips • sprand uses the same random number generator as rand, randi, and
randn. You control this generator with rng.

See Also sprandn | sprandsym

1-6427

sprandn

Purpose Sparse normally distributed random matrix

Syntax R = sprandn(S)
R = sprandn(m,n,density)
R = sprandn(m,n,density,rc)

Description R = sprandn(S) has the same sparsity structure as S, but normally
distributed random entries with mean 0 and variance 1.

R = sprandn(m,n,density) is a random, m-by-n, sparse matrix with
approximately density*m*n normally distributed nonzero entries ((0
<= density <= 1).

R = sprandn(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices
of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc
as its first lr singular values, all others are zero. In this case, R is
generated by random plane rotations applied to a diagonal matrix
with the given singular values. It has a great deal of topological and
algebraic structure.

Tips • sprandn uses the same random number generator as rand, randi,
and randn. You control this generator with rng.

See Also sprand | sprandsym

1-6428

sprandsym

Purpose Sparse symmetric random matrix

Syntax R = sprandsym(S)
R = sprandsym(n,density)
R = sprandsym(n,density,rc)
R = sprandsym(n,density,rc,kind)
R = sprandsym(S,[],rc,3)

Description R = sprandsym(S) returns a symmetric random matrix whose lower
triangle and diagonal have the same structure as S. Its elements are
normally distributed, with mean 0 and variance 1.

R = sprandsym(n,density) returns a symmetric random, n-by-n,
sparse matrix with approximately density*n*n nonzeros; each entry is
the sum of one or more normally distributed random samples, and (0
<= density <= 1).

R = sprandsym(n,density,rc) returns a matrix with a reciprocal
condition number equal to rc. The distribution of entries is nonuniform;
it is roughly symmetric about 0; all are in [−1,1].

If rc is a vector of length n, then R has eigenvalues rc. Thus, if rc is a
positive (nonnegative) vector then R is a positive (nonnegative) definite
matrix. In either case, R is generated by random Jacobi rotations
applied to a diagonal matrix with the given eigenvalues or condition
number. It has a great deal of topological and algebraic structure.

R = sprandsym(n,density,rc,kind) is positive definite.

• If kind = 1, R is generated by random Jacobi rotation of a positive
definite diagonal matrix. R has the desired condition number exactly.

• If kind = 2, R is a shifted sum of outer products. R has the desired
condition number only approximately, but has less structure.

R = sprandsym(S,[],rc,3) has the same structure as the matrix S
and approximate condition number 1/rc.

Tips sprandsym uses the same random number generator as rand, randi,
and randn. You control this generator with rng.

1-6429

sprandsym

See Also sprand | sprandn

1-6430

sprank

Purpose Structural rank

Syntax r = sprank(A)

Description r = sprank(A) is the structural rank of the sparse matrix A. For all
values of A,

sprank(A) >= rank(full(A))

In exact arithmetic, sprank(A) == rank(full(sprandn(A))) with
a probability of one.

Examples A = [1 0 2 0
2 0 4 0];

A = sparse(A);

sprank(A)

ans =
2

rank(full(A))

ans =
1

See Also dmperm

1-6431

sprintf

Purpose Format data into string

Syntax str = sprintf(formatSpec,A1,...,An)
[str,errmsg] = sprintf(formatSpec,A1,...,An)

Description str = sprintf(formatSpec,A1,...,An) formats the data in arrays
A1,...,An according to formatSpec in column order, and returns the
results to string str.

[str,errmsg] = sprintf(formatSpec,A1,...,An) returns an error
message string when the operation is unsuccessful. Otherwise, errmsg
is empty.

Input
Arguments

formatSpec - Format of the output fields
string

Format of the output fields, specified as a string.

The string can include a percent sign followed by a conversion
character. The following table lists the available conversion characters
and subtypes.

Value Type Conversion Details

Integer, signed %d or %i Base 10

%u Base 10

%o Base 8 (octal)

%x Base 16 (hexadecimal),
lowercase letters a–f

Integer, unsigned

%X Same as %x, uppercase letters
A–F

1-6432

sprintf

Value Type Conversion Details

%f Fixed-point notation

%e Exponential notation, such as
3.141593e+00

%E Same as %e, but uppercase,
such as 3.141593E+00

%g The more compact of %e or %f,
with no trailing zeros

%G The more compact of %E or %f,
with no trailing zeros

%bx or %bX
%bo
%bu

Double-precision hexadecimal,
octal, or decimal value
Example: %bx prints pi as
400921fb54442d18

Floating-point
number

%tx or %tX
%to
%tu

Single-precision hexadecimal,
octal, or decimal value
Example: %tx prints pi as
40490fdb

%c Single characterCharacters

%s String of characters

The string can include optional operators, which appear in the following
order (includes spaces for clarity):

���������	�
����

������������������������������

�����
 ��������������!����

"��#$�

Optional operators include:

1-6433

sprintf

• Identifier

Order for processing inputs. Use the syntax n$, where n represents
the position of the value in the input list.

For example, '%3$s %2$s %1$s %2$s' prints inputs 'A', 'B', 'C'
as follows: C B A B.

• Flags

' ' Left-justify. Example: %-5.2f

'+' Print sign character (+) for positive values. Example:
%+5.2f

' ' Pad to field width with spaces before the value.
Example: % 5.2f

'0' Pad to field width with zeros. Example: %05.2f

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.

- For %f, %e, or %E, print decimal point even when
precision is 0.

- For %g or %G, do not remove trailing zeros or decimal
point.

Example: %#5.0f

• Field width

Minimum number of characters to print. Can be a number, or an
asterisk (*) to refer to an argument in the input list. For example, the
input list ('%12d', intmax) is equivalent to ('%*d', 12, intmax).

• Precision

1-6434

sprintf

For %f, %e, or %E: Number of digits to the right of the decimal
point.
Example: '%6.4f' prints pi as '3.1416'

For %g or %G Number of significant digits.
Example: '%6.4g' prints pi as ' 3.142'

Can be a number, or an asterisk (*) to refer to an argument in the
input list. For example, the input list ('%6.4f', pi) is equivalent
to ('%*.*f', 6, 4, pi).

The string can also include combinations of the following:

• Literal text to print. To print a single quotation mark, include ''
in formatSpec.

• Control characters, including:

%% Percent character

\\ Backslash

\a Alarm

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xN Character whose ASCII code is the hexadecimal number,
N

\N Character whose ASCII code is the octal number, N

The following limitations apply to conversions:

1-6435

sprintf

• Numeric conversions print only the real component of complex
numbers.

• If you specify a conversion that does not fit the data, such as a string
conversion for a numeric value, MATLAB overrides the specified
conversion, and uses %e.

• If you apply a string conversion (%s) to integer values, MATLAB
converts values that correspond to valid character codes to characters.
For example, '%s' converts [65 66 67] to ABC.

A1,...,An - Numeric or character arrays
scalar | vector | matrix | multidimensional array

Numeric or character arrays, specified as a scalar, vector, matrix, or
multidimensional array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char

Output
Arguments

str - Formatted text
string

Formatted text, returned as a string.

errmsg - Error message
string

Error message, returned as a string, when the operation is unsuccessful.
Otherwise, errmsg is empty.

Tips • The sprintf function is similar to fprintf, but fprintf prints to a
file or to the Command Window.

• Format specifiers for the reading functions sscanf and fscanf differ
from the formats for the writing functions sprintf and fprintf. The
reading functions do not support a precision field. The width field
specifies a minimum for writing but a maximum for reading.

1-6436

sprintf

Examples Floating-Point Formats

Format a floating-point number using %e, %f, and %g specifiers.

A = 1/eps;
str_e = sprintf('%0.5e',A)
str_f = sprintf('%0.5f',A)
str_g = sprintf('%0.5g',A)

str_e =
4.50360e+15

str_f =
4503599627370496.00000

str_g =
4.5036e+15

Literal Text and Array Inputs

Combine literal text with array values to create a string.

formatSpec = 'The array is %dx%d.';
A1 = 2;
A2 = 3;
str = sprintf(formatSpec,A1,A2)

str =
The array is 2x3.

Integer Format with Floating-Point Inputs

Explicitly convert double-precision values to integers.

str = sprintf('%d',round(pi))

str =
3

1-6437

sprintf

Field Width

Specify the minimum width of the printed value.

str = sprintf('%025d',[123456])

str =
0000000000000000000123456

The 0 flag in the %025d format specifier requests leading zeros in the
output.

Position Identifier (n$)

Reorder the input values using the n$ position identifier.

A1 = 'X';
A2 = 'Y';
A3 = 'Z';
formatSpec = ' %3$s %2$s %1$s';
str = sprintf(formatSpec,A1,A2,A3)

str =
Z Y X

Cell Array Inputs

Create a string from values in a cell array.

C = { 1, 2, 3 ;
'AA','BB','CC'};

str = sprintf(' %d %s',C{:})

str =
1 AA 2 BB 3 CC

The syntax C{:} creates a comma-separated list of arrays that contain
the contents of each cell from C in column order. For example, C{1}==1
and C{2}=='AA'.

1-6438

sprintf

References
[1] Kernighan, B. W., and D. M. Ritchie, The C Programming Language,
Second Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI,
1430 Broadway, New York, NY 10018.

See Also char | fprintf | int2str | num2str | sscanf | fscanf

Concepts • “Formatting Strings”

1-6439

spy

Purpose Visualize sparsity pattern

Syntax spy(S)
spy(S,markersize)
spy(S,'LineSpec')
spy(S,'LineSpec',markersize)

Description spy(S) plots the sparsity pattern of any matrix S.

spy(S,markersize), where markersize is an integer, plots the sparsity
pattern using markers of the specified point size.

spy(S,'LineSpec'), where LineSpec is a string, uses the specified
plot marker type and color.

spy(S,'LineSpec',markersize) uses the specified type, color, and
size for the plot markers.

S is usually a sparse matrix, but full matrices are acceptable, in which
case the locations of the nonzero elements are plotted.

Note spy replaces format +, which takes much more space to display
essentially the same information.

Examples Plot Sparsity Pattern

This example plots the 60-by-60 sparse adjacency matrix of the
connectivity graph of the Buckminster Fuller geodesic dome. This
matrix also represents the soccer ball and the carbon-60 molecule.

B = bucky;
spy(B)

1-6440

spy

See Also find | gplot | LineSpec | symamd | symrcm

1-6441

sqrt

Purpose Square root

Syntax B = sqrt(X)

Description B = sqrt(X) returns the square root of each element of the array X.
For the elements of X that are negative or complex, sqrt(X) produces
complex results.

Tips See sqrtm for the matrix square root.

Examples sqrt((-2:2)')
ans =

0 + 1.4142i
0 + 1.0000i
0

1.0000
1.4142

See Also nthroot | sqrtm | realsqrt

1-6442

sqrtm

Purpose Matrix square root

Syntax X = sqrtm(A)
[X, resnorm] = sqrtm(A)
[X, alpha, condest] = sqrtm(A)

Description X = sqrtm(A) is the principal square root of the matrix A, i.e. X*X = A.

X is the unique square root for which every eigenvalue has nonnegative
real part. If A has any eigenvalues with negative real parts then a
complex result is produced. If A is singular then A may not have a
square root. A warning is printed if exact singularity is detected.

[X, resnorm] = sqrtm(A) does not print any warning, and returns the
residual, norm(A-X^2,'fro')/norm(A,'fro').

[X, alpha, condest] = sqrtm(A) returns a stability factor alpha
and an estimate condest of the matrix square root condition number
of X. The residual norm(A-X^2,'fro')/norm(A,'fro') is bounded
approximately by n*alpha*eps and the Frobenius norm relative
error in X is bounded approximately by n*alpha*condest*eps, where
n = max(size(A)).

Tips If A is real, symmetric and positive definite, or complex, Hermitian and
positive definite, then so is the computed matrix square root.

Some matrices, like A = [0 1; 0 0], do not have any square roots, real
or complex, and sqrtm cannot be expected to produce one.

Examples Example 1

A matrix representation of the fourth difference operator is

A =
5 -4 1 0 0

-4 6 -4 1 0
1 -4 6 -4 1
0 1 -4 6 -4
0 0 1 -4 5

1-6443

sqrtm

This matrix is symmetric and positive definite. Its unique positive
definite square root, Y = sqrtm(A), is a representation of the second
difference operator.

Y =
2 -1 -0 -0 -0

-1 2 -1 0 -0
0 -1 2 -1 0

-0 0 -1 2 -1
-0 -0 -0 -1 2

Example 2

The matrix

A =
7 10

15 22

has four square roots. Two of them are

Y1 =
1.5667 1.7408
2.6112 4.1779

and

Y2 =
1 2
3 4

The other two are -Y1 and -Y2. All four can be obtained from the
eigenvalues and vectors of A.

[V,D] = eig(A);
D =

0.1386 0
0 28.8614

1-6444

sqrtm

The four square roots of the diagonal matrix D result from the four
choices of sign in

S =
–0.3723 0

0 –5.3723

All four Ys are of the form

Y = V*S/V

The sqrtm function chooses the two plus signs and produces Y1, even
though Y2 is more natural because its entries are integers.

See Also expm | funm | logm

1-6445

squeeze

Purpose Remove singleton dimensions

Syntax B = squeeze(A)

Description B = squeeze(A) returns an array B with the same elements as A, but
with all singleton dimensions removed. A singleton dimension is any
dimension for which size(A,dim) = 1. Two-dimensional arrays are
unaffected by squeeze; if A is a row or column vector or a scalar (1-by-1)
value, then B = A.

Examples Consider the 2-by-1-by-3 array Y = rand(2,1,3). This array has a
singleton column dimension — that is, there’s only one column per page.

Y =

Y(:,:,1) = Y(:,:,2) =
0.5194 0.0346
0.8310 0.0535

Y(:,:,3) =
0.5297
0.6711

The command Z = squeeze(Y) yields a 2-by-3 matrix:

Z =
0.5194 0.0346 0.5297
0.8310 0.0535 0.6711

Consider the 1-by-1-by-5 array mat=repmat(1,[1,1,5]). This array
has only one scalar value per page.

mat =

mat(:,:,1) = mat(:,:,2) =

1 1

1-6446

squeeze

mat(:,:,3) = mat(:,:,4) =

1 1

mat(:,:,5) =

1

The command squeeze(mat) yields a 5-by-1 matrix:

squeeze(mat)

ans =

1
1
1
1
1

size(squeeze(mat))

ans =

5 1

See Also reshape | shiftdim

1-6447

ss2tf

Purpose Convert state-space filter parameters to transfer function form

Syntax [b,a] = ss2tf(A,B,C,D,iu)

Description ss2tf converts a state-space representation of a given system to an
equivalent transfer function representation.

[b,a] = ss2tf(A,B,C,D,iu) returns the transfer function

H s
B s
A s

C sI A B D()
()
()

() 1

of the system

x Ax Bu
y Cx Du

from the iu-th input. Vector a contains the coefficients of the
denominator in descending powers of s. The numerator coefficients are
returned in array b with as many rows as there are outputs y. ss2tf
also works with systems in discrete time, in which case it returns the
z-transform representation.

The ss2tf function is part of the standard MATLAB language.

1-6448

sscanf

Purpose Read formatted data from string

Syntax A = sscanf(str, format)
A = sscanf(str, format, sizeA)
[A, count] = sscanf(...)
[A, count, errmsg] = sscanf(...)
[A, count, errmsg, nextindex] = sscanf(...)

Description A = sscanf(str, format) reads data from string str, converts it
according to the format, and returns the results in array A. The sscanf
function reapplies the format until either reaching the end of str or
failing to match the format. If sscanf cannot match the format to the
data, it reads only the portion that matches into A and stops processing.
If str is a character array with more than one row, sscanf reads the
characters in column order.

A = sscanf(str, format, sizeA) reads sizeA elements into A, where
sizeA can be an integer or can have the form [m,n].

[A, count] = sscanf(...) returns the number of elements that
sscanf successfully reads.

[A, count, errmsg] = sscanf(...) returns an error message string
when the operation is unsuccessful. Otherwise, errmsg is an empty
string.

[A, count, errmsg, nextindex] = sscanf(...) returns one more
than the number of characters scanned in str.

Tips • Format specifiers for the reading functions sscanf and fscanf differ
from the formats for the writing functions sprintf and fprintf. The
reading functions do not support a precision field. The width field
specifies a minimum for writing but a maximum for reading.

Input
Arguments

format

String enclosed in single quotation marks that describes each type of
element (field). Includes one or more of the following specifiers.

1-6449

sscanf

Field Type Specifier Details

%d Base 10

%i Base determined from the values.
Defaults to base 10. If initial digits
are 0x or 0X, it is base 16. If initial
digit is 0, it is base 8.

Integer, signed

%ld or %li 64-bit values, base 10, 8, or 16

%u Base 10

%o Base 8 (octal)

%x Base 16 (hexadecimal)

Integer, unsigned

%lu, %lo,
%lx

64-bit values, base 10, 8, or 16

%f

%e

Floating-point
number

%g

Floating-point fields can contain
any of the following (not case
sensitive): Inf, -Inf, NaN, or -NaN.

%s Read series of characters, until find
white space.

%c Read any single character,
including white space.
(To read multiple characters,
specify field length.)

Character string

%[...] Read only characters in
the brackets, until the first
nonmatching character or white
space.

Optionally:

• To skip fields, insert an asterisk (*) after the percent sign (%). For
example, to skip integers, specify %*d.

1-6450

sscanf

• To specify the maximum width of a field, insert a number. For
example, %10c reads exactly 10 characters at a time, including white
space.

• To skip a specific set of characters, insert the literal characters in the
format. For example, to read only the floating-point number from
'pi=3.14159', specify a format of 'pi=%f'.

sizeA

Dimensions of the output array A. Specify in one of the following forms:

inf Read to the end of the input string. (default)

n Read at most n elements.

[m,n] Read at most m*n elements in column order. n can be
inf, but m cannot.

When the format includes %s, A can contain more than n columns. n
refers to elements, not characters.

str

Character string.

Output
Arguments

A

An array. If the format includes:

• Only numeric specifiers, A is numeric. If format includes only 64-bit
signed integer specifiers, A is of class int64. Similarly, if format
includes only 64-bit unsigned integer specifiers, A is of class uint64.
Otherwise, A is of class double. If sizeA is inf or n, then A is a
column vector. If the input contains fewer than sizeA elements,
MATLAB pads A with zeros.

• Only character or string specifiers (%c or %s), A is a character array.
If sizeA is inf or n, A is a row vector. If the input contains fewer than
sizeA characters, MATLAB pads A with char(0).

1-6451

sscanf

• A combination of numeric and character specifiers, A is numeric,
of class double. MATLAB converts each character to its numeric
equivalent. This conversion occurs even when the format explicitly
skips all numeric values (for example, a format of '%*d %s').

If MATLAB cannot match the input to the format, and the format
contains both numeric and character specifiers, A can be numeric or
character. The class of A depends on the values MATLAB reads before
processing stops.

count

Number of elements sscanf reads into A.

errmsg

An error message string when sscanf cannot open the specified file.
Otherwise, an empty string.

nextindex

sscanf counts the number of characters sscanf reads from str, and
then adds one.

Examples Example 1

Read multiple floating-point values from a string:

s = '2.7183 3.1416';
A = sscanf(s,'%f')
A =

2.7183
3.1416

Example 2

Read an octal integer from a string, identified by the '0' prefix, using
%i to preserve the sign:

sscanf('-010','%i')
ans =

1-6452

sscanf

-8

Example 3

Read numeric values from a two-dimensional character array. By
default, sscanf reads characters in column order. To preserve the
original order of the values, read one row at a time.

mixed = ['abc 45 6 ghi'; 'def 7 89 jkl'];

[nrows, ncols] = size(mixed);
for k = 1:nrows

nums(k,:) = sscanf(mixed(k,:), '%*s %d %d %*s', [1, inf]);
end;

% type the variable name to see the result
nums =

45 6
7 89

Example 4

sscanf finds one match for %s

[str count] = sscanf('ThisIsOneString', '%s')
str =

ThisIsOneString
count =

1

sscanf finds four matches for %s. Because it does not match space
characters, there are no spaces in the output string:

[str count] = sscanf('These Are Four Strings', '%s')
str =

TheseAreFourStrings
count =

4

1-6453

sscanf

sscanf finds five word matches for %s and four space character matches
for %c. Because the %c specifier does match a space character, the
output string does include spaces:

[str count] = sscanf('Five strings and four spaces', '%s%c')
str =

Five strings and four spaces
count =

9

sscanf finds three word matches for %s and two numeric matches for
%d. Because the format specifier has a mixed %d and %s format, sscanf
converts all nonnumeric characters to numeric:

[str count] = sscanf('5 strings and 4 spaces', '%d%s%s%d%s');
str'

Columns 1 through 9
5 115 116 114 105 110 103 115 97

Columns 10 through 18
110 100 4 115 112 97 99 101 115

count
count =

5

Example 5

[str, count] = sscanf('one two three', '%c')
str =

one two three
count =

13

[str, count] = sscanf('one two three', '%13c')
str =

one two three
count =

1

1-6454

sscanf

[str, count] = sscanf('one two three', '%s')
str =

onetwothree
count =

3

[str, count] = sscanf('one two three', '%1s')
str =

onetwothree
count =

11

Example 6

tempString = '78 F 72 F 64 F 66 F 49 F';

degrees = char(176);
tempNumeric = sscanf(tempString, ['%d' degrees 'F'])'
tempNumeric =

78 72 64 66 49

See Also fscanf | sprintf | textscan

1-6455

stack

Purpose Stack data from multiple variables into single variable

Syntax T = stack(W,vars)
T = stack(W,vars,Name,Value)
[T,iw] = stack(___)

Description T = stack(W,vars) converts the wide table, W, into an equivalent
table, T, that is in tall format. stack stacks up multiple variables from
W, specified by vars, into a single variable in T. In general, T contains
fewer variables, but more rows, than W.

The output table, T, contains a new categorical variable to indicate
which variable in W the stacked data in each row came from. stack
replicates data from the variables in W that are not stacked.

T = stack(W,vars,Name,Value) converts the table, W, to tall format
with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify variable names for the new and stacked
variables in W.

[T,iw] = stack(___) also returns an index vector, iw, indicating
the correspondence between rows in T and rows in W. You can use any
of the previous input arguments.

Input
Arguments

W - Wide table
table

Wide table, specified as a table.

vars - Variables in W to stack
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables in W to stack, specified as a positive integer, vector of positive
integers, variable name, cell array of variable names, or logical vector.

1-6456

stack

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NewDataVariableName','StackedData' names the new
data variable StackedData.

’ConstantVariables’ - Variables other than vars to include in the
output
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables other than vars to include in the output, specified as the
comma-separated pair consisting of 'ConstantVariables' and a
positive integer, vector of positive integers, variable name, cell array
of variable names, or logical vector. stack replicates the data from the
constant variables for each stacked entry from a row.

The default is all the variables in W not specified by vars. You can
specify the 'ConstantVariables' name-value pair argument to exclude
variables not specified by vars or 'ConstantVariables' from the
output table, T.

’NewDataVariableName’ - Name for the new data variable in T
string

Name for the new data variable in T, specified as the comma-separated
pair consisting of 'NewDataVariableName' and a string. The default is
a concatenation of the names of the variables from W that are stacked up.

’IndexVariableName’ - Name for the new indicator variable in T
string

Name for the new indicator variable in T, specified as the
comma-separated pair consisting of 'IndexVariableName' and a string.
The default is a name based on NewDataVariableName.

1-6457

stack

Output
Arguments

T - Tall table
table

Tall table, returned as a table. T contains a stacked data variable, a
categorical indicator variable, and any constant variables.

You can store additional metadata such as descriptions, variable units,
variable names, and row names in the table. For more information, see
Table Properties.

stack assigns the variable units and variable description
property values from the first variable listed in vars
to the corresponding T.Properties.VariableUnits and
T.Properties.VariableDescrisciptions values for the new data
variable.

iw - Index to W
column vector

Index to W, returned as a column vector. The index vector, iw, identifies
the row in the input table, W, containing the corresponding data. stack
creates the jth row in the output table, T, using W(iw(j),vars).

Examples Stack Three Variables into One

Create a table containing test scores from three separate tests.

Test1 = [93;57;87;89];
Test2 = [89;77;92;86];
Test3 = [95;62;89;91];

W = table(Test1,Test2,Test3)

W =

Test1 Test2 Test3
_____ _____ _____

93 89 95

1-6458

stack

57 77 62
87 92 89
89 86 91

The table contains four rows and three variables.

Stack the test scores into a single variable.

T = stack(W,1:3)

T =

Test1_Test2_Test3_Indicator Test1_Test2_Test3
___________________________ _________________

Test1 93
Test2 89
Test3 95
Test1 57
Test2 77
Test3 62
Test1 87
Test2 92
Test3 89
Test1 89
Test2 86
Test3 91

T contains twelve rows and two variables.

The categorical variable, Test1_Test2_Test3_Indicator, identifies
which test corresponds to the score in the stacked data variable,
Test1_Test2_Test3.

Stack Variables and Specify Variable Names

Create a table indicating the amount of snowfall at three locations from
five separate storms.

1-6459

stack

Storm = [1;2;3;4;5];
Date = {'12/25/11';'1/2/12';'1/23/12';'2/7/12';'2/15/12'};
Natick = [20;5;13;0;17];
Boston = [18;9;21;5;12];
Worcester = [26;10;16;3;15];

W = table(Storm,Date,Natick,Boston,Worcester)

W =

Storm Date Natick Boston Worcester
_____ __________ ______ ______ _________

1 '12/25/11' 20 18 26
2 '1/2/12' 5 9 10
3 '1/23/12' 13 21 16
4 '2/7/12' 0 5 3
5 '2/15/12' 17 12 15

The variables Storm and Date contain data that is constant at each
location.

Stack the variables Natick, Boston, and Worcester into a single
variable. Name the variable containing the stacked data, Snowfall,
and name the new indicator variable, Town.

T = stack(W,{'Natick','Boston','Worcester'},...
'NewDataVariableName','Snowfall',...
'IndexVariableName','Town')

T =

Storm Date Town Snowfall
_____ __________ _________ ________

1 '12/25/11' Natick 20
1 '12/25/11' Boston 18
1 '12/25/11' Worcester 26

1-6460

stack

2 '1/2/12' Natick 5
2 '1/2/12' Boston 9
2 '1/2/12' Worcester 10
3 '1/23/12' Natick 13
3 '1/23/12' Boston 21
3 '1/23/12' Worcester 16
4 '2/7/12' Natick 0
4 '2/7/12' Boston 5
4 '2/7/12' Worcester 3
5 '2/15/12' Natick 17
5 '2/15/12' Boston 12
5 '2/15/12' Worcester 15

T contains three rows for each storm, and stack repeats the data in the
constant variables, Storm and Date, accordingly.

The categorical variable, Town, identifies which variable in W contains
the corresponding Snowfall data.

Stack Variables and Output an Index Vector

Create a table containing estimated influenza rates along the east coast
of the United States. Create a different variable for the Northeast,
Mid Atlantic, and South Atlantic. Data Source: Google Flu Trends
(http://www.google.org/flutrends).

Month = {'October';'November';'December';...
'January';'February';'March'};

Year = [2005*ones(3,1); 2006*ones(3,1)];
NE = [1.1902; 1.3610; 1.5003; 1.7772; 2.1350; 2.2345];
MidAtl = [1.1865; 1.4120; 1.6043; 1.8830; 2.1227; 1.9920];
SAtl = [1.2730; 1.5820; 1.8625; 1.9540; 2.4803; 2.0203];

fluW = table(Month,Year,NE,MidAtl,SAtl)

fluW =

Month Year NE MidAtl SAtl

1-6461

stack

__________ ____ ______ ______ ______

'October' 2005 1.1902 1.1865 1.273
'November' 2005 1.361 1.412 1.582
'December' 2005 1.5003 1.6043 1.8625
'January' 2006 1.7772 1.883 1.954
'February' 2006 2.135 2.1227 2.4803
'March' 2006 2.2345 1.992 2.0203

The variables Month and Year contain data that is constant across the
row.

Stack the variables NE, MidAtl, and SAtl into a single variable called
FluRate. Name the new indicator variable Region and output an index
vector, ifluW, to indicate the correspondence between rows in the input
wide table, fluW, and the output tall table, fluT.

[fluT,ifluW] = stack(fluW,3:5,...
'NewDataVariableName','FluRate',...
'IndexVariableName','Region')

fluT =

Month Year Region FluRate
__________ ____ ______ _______

'October' 2005 NE 1.1902
'October' 2005 MidAtl 1.1865
'October' 2005 SAtl 1.273
'November' 2005 NE 1.361
'November' 2005 MidAtl 1.412
'November' 2005 SAtl 1.582
'December' 2005 NE 1.5003
'December' 2005 MidAtl 1.6043
'December' 2005 SAtl 1.8625
'January' 2006 NE 1.7772
'January' 2006 MidAtl 1.883
'January' 2006 SAtl 1.954

1-6462

stack

'February' 2006 NE 2.135
'February' 2006 MidAtl 2.1227
'February' 2006 SAtl 2.4803
'March' 2006 NE 2.2345
'March' 2006 MidAtl 1.992
'March' 2006 SAtl 2.0203

ifluW =

1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6

ifluW(5) is 2. The fifth row in the output table, fluT, contains data
from the second row in the input table fluW.

Tips • You can specify more than one group of data variables in W, and
each group becomes a stacked data variable in T. Use a cell array to
contain multiple values for vars, and a cell array of strings to contain
multiple values for the 'NewDataVariableName' name-value pair
argument. All groups must contain the same number of variables.

1-6463

stack

See Also unstack | join

1-6464

stairs

Purpose Stairstep graph

Syntax stairs(Y)
stairs(X,Y)
stairs(___ ,LineSpec)
stairs(___ ,Name,Value)

stairs(axes_handle, ___)

h = stairs(___)

[xb,yb] = stairs(___)

Description stairs(Y) draws a stairstep graph of the elements in Y.

• If Y is a vector, then the x-axis scale ranges from 1 to length(Y).

• If Y is a matrix, then stairs draws one line per matrix column and
the x-axis scale ranges from 1 to the number of rows in Y.

stairs(X,Y) plots the elements in Y at the locations specified in X.
The inputs X and Y must be vectors or matrices of the same size.
Additionally, X can be a row or column vector and Y must be a matrix
with length(X) rows.

stairs(___ ,LineSpec) specifies a line style, marker symbol, and
color. Use this option with any of the input argument combinations
in the previous syntaxes.

stairs(___ ,Name,Value) specifies stairseries properties using one or
more Name,Value pair arguments.

stairs(axes_handle, ___) plots into the axes specified by
axes_handle instead of into the current axes (gca). The option,
axes_handle, can precede any of the input argument combinations
in the previous syntaxes.

1-6465

stairs

h = stairs(___) returns a vector of stairseries object handles in
h. When multiple stairseries are present, you can make changes to
properties of a specific stairseries by specifying a particular handle.

[xb,yb] = stairs(___) does not create a plot, but returns matrices
xb and yb of the same size, such that plot(xb,yb) plots the stairstep
graph.

Input
Arguments

Y - Elements to plot
vector or matrix

Elements to plot, specified as a vector or matrix. When Y is a vector,
stairs creates one stairseries. When Y is a matrix, stairs draws
one line per matrix column and creates a separate stairseries for each
column.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

X - Locations to plot elements in Y
vector or matrix

Locations to plot elements in Y, specified as a vector or matrix. When
Y is a vector, X must be a vector of the same size. When Y is a matrix,
X must be a matrix of the same size, or a vector whose length equals
the number of rows in Y.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

LineSpec - Line style, marker symbol, and color
string

Line style, marker symbol, and color, specified as a string. For more
information on line style, marker symbol, and color options see
LineSpec.

1-6466

stairs

Example: ':*r'

Data Types
char

axes_handle - Axes handle
handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Marker','s','MarkerFaceColor','red' plots the
stairstep graph with red square markers.

For more information on stairseries properties see stairseries.

’LineStyle’ - Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as the comma-separated pair consisting of
'LineStyle' and a line style specifier. This table lists supported line
styles.

Specifier Line Style

’- ’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

1-6467

stairs

Specifier Line Style

’-. ’ Dash-dot line

’none’ No line

Example: 'LineStyle','-.'

’LineWidth’ - Line width
0.5 (default) | scalar

Line width, specified as the comma-separated pair consisting of
'LineWidth' and a scalar in points.

Example: 'LineWidth',0.75

’Color’ - Color
[0 0 1] (blue) (default) | three-element RGB vector | string

Color, specified as the comma-separated pair consisting of 'Color' and
a three-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a three-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

This table lists the predefined colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

1-6468

stairs

Example: 'Color',[0 1 0]

Example: 'Color','green'

Example: 'Color','g'

’Marker’ - Marker symbol
'none' (default) | string

Marker symbol, specified as the comma-separated pair consisting of
'Marker' and a marker specifier. This table lists supported marker
symbols.

Specifier Marker Symbol

’o’ Circle

’+’ Plus sign

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star
(pentagram)

’hexagram’ or ’h’ Six-pointed star (hexagram)

’none’ No marker

Example: 'Marker','+'

1-6469

stairs

Example: 'Marker','diamond'

’MarkerEdgeColor’ - Marker edge color
'auto' (default) | 'none' | three-element RGB vector | string

Marker edge color, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and a color value. The color value can be one of the
supported strings or an RGB vector, listed in the following tables.

Specifier Result

’auto’ Uses same color as line color

’none’ Specifies no color, which makes
unfilled markers invisible

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerEdgeColor',[1 .8 .1]

’MarkerFaceColor’ - Marker face color
'none' (default) | 'auto' | three-element RGB vector | string

1-6470

stairs

Marker face color, specified as the comma-separated pair consisting
of 'MarkerFaceColor' and a color value. MarkerFaceColor sets the
fill color for markers that are closed shapes (circle, square, diamond,
pentagram, hexagram, and the four triangles). The color value can be
one of the supported strings or an RGB vector, listed in the following
tables.

Specifier Result

’auto’ Uses same color as marker edge
color

’none’ Makes the interior of the marker
transparent, allowing the
background to show through
(default)

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerFaceColor',[0 .8 1]

’MarkerSize’ - Marker size

1-6471

stairs

6 (default) | scalar

Marker size, specified as the comma-separated pair consisting of
'MarkerSize' and a scalar in points.

Example: 'MarkerSize',7

Output
Arguments

h - Stairseries object handle
scalar or column vector

Stairseries object handle, specified as a scalar or column vector. This
is a unique identifier, which you can use to query and modify the
properties of a specific stairseries.

xb - x values for use with plot
vector or matrix

x values for use with plot, specified as a vector or matrix. xb contains
the appropriate values such that plot(xb,yb) creates the stairstep
graph.

yb - y values for use with plot
vector or matrix

y values for use with plot, specified as a vector or matrix. yb contains
the appropriate values such that plot(xb,yb) creates the stairstep
graph.

Examples Plot Single Data Series

Create a stairstep plot of sine evaluated at 40 equally spaced values
between 0 and .

X = linspace(0,4*pi,40);
Y = sin(X);

figure
stairs(Y)

1-6472

stairs

The length of Y automatically determines and generates the x-axis scale.

Plot Multiple Data Series

Create a stairstep plot of two cosine functions evaluated at 50 equally
spaced values between 0 and .

X = linspace(0,4*pi,50)';
Y = [0.5*cos(X), 2*cos(X)];

figure

1-6473

stairs

stairs(Y)

The number of rows in Y automatically determines and generates the
x-axis scale.

Plot Single Data Series at Specified x-Values

Create a stairstep plot of a sine wave evaluated at equally spaced values
between 0 and . Specify the set of x-values for the plot.

X = linspace(0,4*pi,40);

1-6474

stairs

Y = sin(X);

figure
stairs(X,Y)

The entries in Y are plotted against the corresponding entries in X.

Plot Multiple Data Series at Specified x-Values

Create a stairstep plot of two cosine waves evaluated at equally spaced
values between 0 and . Specify the set of x-values for the plot.

1-6475

stairs

X = linspace(0,4*pi,50)';
Y = [0.5*cos(X), 2*cos(X)];

figure
stairs(X,Y)

The first vector input, X, determines the x-axis positions for both data
series.

1-6476

stairs

Plot Multiple Data Series at Unique Sets of x-Values

Create a stairstep plot of two sine waves evaluated at different values.
Specify a unique set of x-values for plotting each data series.

x1 = linspace(0,2*pi)';
x2 = linspace(0,pi)';
X = [x1,x2];
Y = [sin(5*x1),exp(x2).*sin(5*x2)];

figure
stairs(X,Y)

1-6477

stairs

Each column of X is plotted against the corresponding column of Y.

Specify Line Style, Marker Symbol and Color

Create a stairstep plot and set the line style to a dot-dashed line, the
marker symbol to circles, and the color to red.

X = linspace(0,4*pi,20);
Y = sin(X);

figure

1-6478

stairs

stairs(Y, '-.or')

Specify Additional Style Options

Create a stairstep plot and set the line width to 2, the marker symbols
to diamonds, and the marker face color to cyan using Name,Value pair
arguments.

X = linspace(0,4*pi,20);
Y = sin(X);

1-6479

stairs

figure
stairs(Y,'LineWidth',2,'Marker','d','MarkerFaceColor','c')

Specify Axes for Stairstep Plots

Create a figure with two subplots and return the two axes handles,
s(1) and s(2). Create a stairstep plot in each subplot by referring
to the axes handles.

1-6480

stairs

figure
s(1) = subplot(2,1,1);
s(2) = subplot(2,1,2);

X = linspace(0,2*pi);
Y1 = 5*sin(X);
Y2 = sin(5*X);
stairs(s(1),X,Y1)
stairs(s(2),X,Y2)

1-6481

stairs

Set Marker Properties Using Stairseries Handle

Create a stairstep plot of two data series and return the two stairseries
handles in array h.

X = linspace(0,1,30)';
Y = [cos(10*X), exp(X).*sin(10*X)];

figure
h = stairs(X,Y);

1-6482

stairs

Set the markers of the first series to small circles and the second series
to magenta filled circles by referring to the handles.

set(h(1),'Marker','o','MarkerSize',4)
set(h(2),'Marker','o','MarkerFaceColor','m')

1-6483

stairs

Create a Stairstep Plot using plot Function

Evaluate two cosine functions at 50 equally spaced values between 0
and and create a stairstep plot using plot.

X = linspace(0,4*pi,50)';
Y = [0.5*cos(X), 2*cos(X)];
[xb,yb] = stairs(X,Y);

stairs returns two matrices of the same size, xb and yb, but no plot.

1-6484

stairs

Use plot to create the stairstep plot with xb and yb.

figure
plot(xb,yb)

See Also bar | hist | stem | LineSpec | Stairseries |

1-6485

Stairseries Properties

Purpose Define stairseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default property values for stairseries
objects.

See Plot Objects for information on stairseries objects.

Stairseries
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of stairseries objects in legends. Specifies
whether this stairseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the stairseries
object is displayed in a figure legend.

IconDisplayStyle
Value

Purpose

on Include the stairseries object in a legend as
one entry, but not its children objects

off Do not include the stairseries or its children
in a legend (default)

children Include only the children of the stairseries
as separate entries in the legend

1-6486

Stairseries Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the

1-6487

Stairseries Properties

running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press
a mouse button while the pointer is over this object, but not
over another graphics object. See the HitTestArea property for
information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

1-6488

Stairseries Properties

The expression executes in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
array of graphics object handles

Children of the stairseries object. An array containing the handles
of all line objects parented to the stairseries object (whether
visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color. The
default value is [0 0 0] (black).

See the ColorSpec reference page for more information on
specifying color. See “Adding Arrows and Lines to Graphs”.

1-6489

Stairseries Properties

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

1-6490

Stairseries Properties

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the stairseries object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

1-6491

Stairseries Properties

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting

1-6492

Stairseries Properties

to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,

1-6493

Stairseries Properties

figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the line objects that compose the stairstep graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

1-6494

Stairseries Properties

Select the object by clicking lines or area of extent. Select plot
objects by:

• Clicking lines (default).

• Clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the lines to select the
object. When HitTestArea is on, you can select this object by
clicking anywhere within the extent of the plot (that is, anywhere
within a rectangle that encloses the stairstep graph).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

1-6495

Stairseries Properties

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of stairseries object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

1-6496

Stairseries Properties

Specifier Line Style

’-.’ Dash-dot line

'none' No line

Use LineStyle none when you want to place a marker at each
point but do not want the points connected with a line (see the
Marker property).

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Marker
character (see table)

Marker symbol. Specifies marks that display at data points. You
can set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

1-6497

Stairseries Properties

Specifier Marker Type

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto— Uses same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Fill color for closed-shape markers. The fill color for markers that
are closed shapes (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Sets the fill color to the axes Color property. If the axes
Color property is none, sets the fill color to the figure Color.

1-6498

Stairseries Properties

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

1-6499

Stairseries Properties

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, use findobj to
find the object’s handle. The following statement changes the
FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For stairseries objects, Type is
’hggroup’. The following statement finds all the hggroup objects
in the current axes object.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

1-6500

Stairseries Properties

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
array

X-axis location of stairs. The stairs function uses XData to label
the x-axis. XData can be either a matrix equal in size to YData or
a vector equal in length to the number of rows in YData. That is,
length(XData) == size(YData,1).

If you do not specify XData (which the input argument X), the
stairs function uses the indices of YData to create the stairstep
graph. See the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the X input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

1-6501

Stairseries Properties

If you set XDataMode to auto after specifying XData, MATLAB
resets the x-axis ticks to 1:size(YData,1) or to the column
indices of the ZData, overwriting any previous values for XData.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

set(h,'XDataSource','xdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar | vector | matrix

Stairs plot data. YData contains the data plotted in the stairstep
graph. Each value in YData is represented by a marker in the
stairstep graph. If YData is a matrix, the stairs function creates
a line for each column in the matrix.

The input argument Y in the stairs function calling syntax
assigns values to YData.

1-6502

Stairseries Properties

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

set(h,'YDataSource','Ydatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

1-6503

standardizeMissing

Purpose Insert missing value indicators into table

Syntax B = standardizeMissing(A,id)
B = standardizeMissing(A,id,'DataVariables',vars)

Description B = standardizeMissing(A,id) replaces all instances of the values
specified in id occurring within table A with the standard missing value
indicators. B is a table.

The standard missing value indicators depend on the data type:

• NaN for double and single floating-point arrays

• <undefined> for categorical arrays

• empty string, {''}, for cell arrays of strings

• blank string, [' '], for character arrays
standardizeMissing checks double and single variables in A against
numeric values from id and checks string and categorical variables in
A against strings from id. The function standardizeMissing ignores
integer data types because they cannot contain NaN.

B = standardizeMissing(A,id,'DataVariables',vars) replaces
values only in variables specified by vars.

Input
Arguments

A - Input table
table

Input table, specified as a table.

id - Nonstandard missing value indicators
numeric vector | string | cell array containing numeric values and
strings

Nonstandard missing value indicators, specified as a numeric vector,
string, or cell array containing numeric values and strings.

vars - Subset of variables to consider

1-6504

standardizeMissing

positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Subset of variables to consider, specified as a positive integer, vector
of positive integers, variable name, cell array of variable names, or
logical vector.

Output
Arguments

B - Output table
table

Output table, returned as a table. The table can store metadata such as
descriptions, variable units, variable names, and row names. For more
information, see Table Properties.

Examples Replace All Instances of Specified Values

Create a table containing Inf and 'N/A' to represent missing values.

dblVar = [NaN;3;Inf;7;9];
cellstrVar = {'one';'three';'';'NA';'nine'};
charVar = ['A';'C';'E';' ';'I'];
categoryVar = categorical({'red';'yellow';'blue';'violet';''});

A = table(dblVar,cellstrVar,charVar,categoryVar)

A =

dblVar cellstrVar charVar categoryVar
______ __________ _______ ___________

NaN 'one' A red
3 'three' C yellow

Inf '' E blue
7 'NA' violet
9 'nine' I <undefined>

Replace all instances of Inf with NaN and replace all instances of 'NA'
with the empty string, ''.

1-6505

standardizeMissing

B = standardizeMissing(A,{Inf,'NA'})

B =

dblVar cellstrVar charVar categoryVar
______ __________ _______ ___________

NaN 'one' A red
3 'three' C yellow

NaN '' E blue
7 '' violet
9 'nine' I <undefined>

Replace Only Values in Specified Variables

Replace instances of Inf, and 'N/A', occurring in specified variables of
a table, with the standard missing value indicators.

Create a table containing Inf and 'N/A' to represent missing values.

a = {'alpha';'bravo';'charlie';'';'N/A'};
x = [1;NaN;3;Inf;5];
y = [57;732;93;1398;Inf];

A = table(a,x,y)

A =

a x y
_________ ___ ____

'alpha' 1 57
'bravo' NaN 732
'charlie' 3 93
'' Inf 1398
'N/A' 5 Inf

For the variables a and x, replace instances of Inf with NaN and 'N/A'
with the empty string, ''.

1-6506

standardizeMissing

B = standardizeMissing(A,{Inf,'N/A'},'DataVariables',{'a','x'})

B =

a x y
_________ ___ ____

'alpha' 1 57
'bravo' NaN 732
'charlie' 3 93
'' NaN 1398
'' 5 Inf

Inf in the variable y remains unchanged because y is not included in
the 'DataVariables' name-value pair argument.

Algorithms standardizeMissing treats leading and trailing white space differently
for cell arrays of strings, character arrays, and categorical arrays.

• For cell arrays of strings, standardizeMissing does not ignore white
space. All strings must match exactly a string specified in id.

• For character arrays, standardizeMissing ignores trailing white
space.

• For categorical arrays, standardizeMissing ignores leading and
trailing white space.

See Also ismissing | table

1-6507

startup

Purpose Startup file for user-defined options

Syntax startup

Description startup executes commands of your choosing when the MATLAB
program starts.

Create a startup.m file in your MATLAB “Startup Folder” on page
1-6508 and put in the file any commands you want executed at MATLAB
startup. For example, your startup.m file might include physical
constants, defaults for Handle Graphics properties, engineering
conversion factors, or anything else you want predefined in your
workspace.

Algorithms The MATLAB program executes the matlabrc.m file when it starts.
matlabrc.m invokes startup.m, if it exists on the MATLAB search path.

You can extend this process to create additional startup files, if needed.

MathWorks does not recommend modifying the matlabrc.m file, except
perhaps by system administrators in network configurations.

Definitions Startup Folder

The current folder in the MATLAB application when it starts. See
“MATLAB Startup Folder”.

See Also finish | matlabrc | matlabroot | path | quit | userpath

Concepts • “Specifying Startup Options in MATLAB Startup File”
• Preferences

1-6508

std

Purpose Standard deviation

Syntax s = std(X)
s = std(X,flag)
s = std(X,flag,dim)

Definitions There are two common textbook definitions for the standard deviation
s of a data vector X.

1
1

1

2
1

2

1

1
2

2

1

s
n

x x

s
n

x x

i
i

n

i
i

n

()

()

1
2

,

where

x
n

xi
i

n

1

1

and n is the number of elements in the sample. The two forms of the
equation differ only in n – 1 versus n in the divisor.

Description s = std(X), where X is a vector, returns the standard deviation using
(1) above. The result s is the square root of an unbiased estimator of the
variance of the population from which X is drawn, as long as X consists
of independent, identically distributed samples.

If X is a matrix, std(X) returns a row vector containing the standard
deviation of the elements of each column of X. If X is a multidimensional
array, std(X) is the standard deviation of the elements along the first
nonsingleton dimension of X.

1-6509

std

s = std(X,flag) for flag = 0, is the same as std(X). For flag = 1,
std(X,1) returns the standard deviation using (2) above, producing the
second moment of the set of values about their mean.

s = std(X,flag,dim) computes the standard deviations along the
dimension of X specified by scalar dim. Set flag to 0 to normalize Y by
n-1; set flag to 1 to normalize by n.

The input array, X, must be of type double or single for all syntaxes.

Examples For matrix X

X =
1 5 9

7 15 22
s = std(X,0,1)
s =

4.2426 7.0711 9.1924
s = std(X,0,2)
s =

4.000
7.5056

See Also corrcoef | cov | mean | median | var

1-6510

stem

Purpose Plot discrete sequence data

Syntax stem(Y)
stem(X,Y)
stem(___ ,'fill')
stem(___ ,LineSpec)
stem(___ ,Name,Value)

stem(axes_handle, ___)

h = stem(___)

Description stem(Y) plots the data sequence, Y, as stems that extend from a
baseline along the x-axis. The data values are indicated by circles
terminating each stem.

• If Y is a vector, then the x-axis scale ranges from 1 to length(Y).

• If Y is a matrix, then stem plots all elements in a row against the same
x value, and the x-axis scale ranges from 1 to the number of rows in Y.

stem(X,Y) plots the data sequence, Y, at values specified by X. The X
and Y inputs must be vectors or matrices of the same size. Additionally,
X can be a row or column vector and Y must be a matrix with length(X)
rows.

• If X and Y are both vectors, then stem plots entries in Y against
corresponding entries in X.

• If X is a vector and Y is a matrix, then stem plots each column of Y
against the set of values specified by X, such that all elements in a
row of Y are plotted against the same value.

• If X and Y are both matrices, then stem plots columns of Y against
corresponding columns of X.

stem(___ ,'fill') fills the circles. Use this option with any of the
input argument combinations in the previous syntaxes.

1-6511

stem

stem(___ ,LineSpec) specifies the line style, marker symbol, and color.

stem(___ ,Name,Value) specifies stemseries properties using one or
more Name,Value pair arguments.

stem(axes_handle, ___) plots into the axes specified by axes_handle
instead of into the current axes (gca). The option, axes_handle, can
precede any of the input argument combinations in the previous
syntaxes.

h = stem(___) returns a vector of stemseries object handles in h.
When multiple stemseries objects are present, you can make changes to
properties of a specific stemseries by specifying a particular handle.

Input
Arguments

Y - Data sequence to display
vector or matrix

Data sequence to display, specified as a vector or matrix. When Y is a
vector, stem creates one stemseries. When Y is a matrix, stem creates a
separate stemseries for each column.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

X - Locations to plot data values in Y
vector or matrix

Locations to plot data values in Y, specified as a vector or matrix. When
Y is a vector, X must be a vector of the same size. When Y is a matrix,
X must be a matrix of the same size, or a vector whose length equals
the number of rows in Y.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

1-6512

stem

LineSpec - Line style, marker symbol, and color
string

Line style, marker symbol, and color, specified as a string. For more
information on line style, marker symbol, and color options see
LineSpec.

Example: ':*r'

Data Types
char

axes_handle - Axes handle
handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'LineStyle',':','MarkerFaceColor','red' plots the
stem as a dotted line and colors the marker face red.

For more information on these properties see stemseries.

’LineStyle’ - Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as the comma-separated pair consisting of
'LineStyle' and a line style specifier. This table lists supported line
styles.

1-6513

stem

Specifier Line Style

’- ’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-. ’ Dash-dot line

’none’ No line

Example: 'LineStyle','-.'

’LineWidth’ - Line width
0.5 (default) | scalar

Line width, specified as the comma-separated pair consisting of
'LineWidth' and a scalar. The scalar sets the width size in points of
the stem and marker edge.

Example: 'LineWidth',0.75

’Color’ - Color
[0 0 1] (blue) (default) | three-element RGB vector | string

Color, specified as the comma-separated pair consisting of 'Color' and
a three-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a three-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

This table lists the predefined colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

1-6514

stem

RGB Vector Short Name Long Name

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'Color',[0 1 0]

Example: 'Color','green'

Example: 'Color','g'

’Marker’ - Marker symbol
'o' (default) | string

Marker symbol, specified as the comma-separated pair consisting of
'Marker' and a marker specifier. This table lists supported marker
symbols.

Specifier Marker Symbol

’o’ Circle

’+’ Plus sign

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

1-6515

stem

Specifier Marker Symbol

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star
(pentagram)

’hexagram’ or ’h’ Six-pointed star (hexagram)

’none’ No marker

Example: 'Marker','+'

Example: 'Marker','diamond'

’MarkerEdgeColor’ - Marker edge color
'auto' (default) | 'none' | three-element RGB vector | string

Marker edge color, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and a color value. The color value can be one of the
supported strings or an RGB vector, listed in the following tables.

Specifier Result

’auto’ Uses same color as line color

’none’ Specifies no color, which makes
unfilled markers invisible

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

1-6516

stem

RGB Vector Short Name Long Name

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerEdgeColor',[1 .8 .1]

’MarkerFaceColor’ - Marker face color
'none' (default) | 'auto' | three-element RGB vector | string

Marker face color, specified as the comma-separated pair consisting
of 'MarkerFaceColor' and a color value. MarkerFaceColor sets the
fill color for markers that are closed shapes (circle, square, diamond,
pentagram, hexagram, and the four triangles). The color value can be
one of the supported strings or an RGB vector, listed in the following
tables.

Specifier Result

’auto’ Uses same color as marker edge
color

’none’ Makes the interior of the marker
transparent, allowing the
background to show through
(default)

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

1-6517

stem

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerFaceColor',[0 .8 1]

’MarkerSize’ - Marker size
6 (default) | scalar

Marker size, specified as the comma-separated pair consisting of
'MarkerSize' and a scalar in points.

Example: 'MarkerSize',3.75

Output
Arguments

h - Stemseries object handle
scalar or column vector

Stemseries object handle, returned as a scalar or column vector. This
is a unique identifier, which you can use to query and modify the
properties of a specific stemseries.

Examples Plot Single Data Series

Create a stem plot of 50 data values between and .

figure
Y = linspace(-2*pi,2*pi,50);
stem(Y)

1-6518

stem

Data values are plotted as stems extending from the baseline and
terminating at the data value. The length of Y automatically determines
the position of each stem on the x-axis.

Plot Multiple Data Series

Plot two data series using a two-column matrix.

figure
X = linspace(0,2*pi,50)';
Y = [cos(X), 0.5*sin(X)];

1-6519

stem

stem(Y)

Each column of Y is plotted as a separate series, and entries in the same
row of Y are plotted against the same x value. The number of rows in Y
automatically generates the position of each stem on the x-axis.

Plot Single Data Series at Specified x values

Plot 50 data values of cosine evaluated between 0 and and specify
the set of x values for the stem plot.

1-6520

stem

figure
X = linspace(0,2*pi,50)';
Y = cos(X);
stem(X,Y)

The first vector input determines the position of each stem on the x-axis.

Plot Multiple Data Series at Specified x values

Plot 50 data values of sine and cosine evaluated between 0 and and
specify the set of x values for the stem plot.

1-6521

stem

figure
X = linspace(0,2*pi,50)';
Y = [cos(X), 0.5*sin(X)];
stem(X,Y)

The vector input determines the x-axis positions for both data series.

Plot Multiple Data Series at Unique Sets of x values

Plot 50 data values of sine and cosine evaluated at different sets of x
values. Specify the corresponding sets of x values for each series.

1-6522

stem

figure
x1 = linspace(0,2*pi,50)';
x2 = linspace(pi,3*pi,50)';
X = [x1, x2];
Y = [cos(x1), 0.5*sin(x2)];
stem(X,Y)

Each column of X is plotted against the corresponding column of Y.

1-6523

stem

Fill in Plot Markers

Create a stem plot and fill in the circles that terminate each stem.

figure
X = linspace(0,10,20)';
Y = (exp(0.25*X));
stem(X,Y,'fill')

1-6524

stem

Specify Stem and Marker Options

Create a stem plot and set the line style to a dotted line, the marker
symbols to diamonds, and the color to red using the LineSpec option.

figure
X = linspace(0,2*pi,50)';
Y = (exp(X).*sin(X));
stem(X,Y,':diamondr')

1-6525

stem

To color the inside of the diamonds, use the 'fill' option.

Specify Additional Stem and Marker Options

Create a stem plot and set the line style to a dot-dashed line, the
marker face color to red, and the marker edge color to green using
Name,Value pair arguments.

figure
X = linspace(0,2*pi,25)';
Y = (cos(2*X));
stem(X,Y,'LineStyle','-.',...

'MarkerFaceColor','red',...
'MarkerEdgeColor','green')

1-6526

stem

The stem remains the default color.

Specify Axes for Stem Plot

Create a figure with two subplots and return the handles to each axes,
s(1) and s(2). Create a stem plot in the lower subplot by referring
to its axes handle, s(2).

figure
s(1) = subplot(2,1,1);

1-6527

stem

s(2) = subplot(2,1,2);

X = 0:25;
Y = [exp(0.1*X); -exp(.05*X)]';
stem(s(2),X,Y)

Return Stemseries Handle

Create a stem plot of multiple data series and return the handle to
each stemseries.

1-6528

stem

figure
X = 0:25;
Y = [cos(X); exp(0.05*X)]';
h = stem(X,Y);

The stem function creates two stemseries objects, one for each column
of data. The output argument, h, contains both stemseries handles.

Change the markers of the first series to blue circles and the second
series to green squares using the handles.

1-6529

stem

set(h(1),'MarkerFaceColor','blue')
set(h(2),'MarkerFaceColor','green','Marker','square')

Adjust Baseline Properties

Create a stem plot and change properties of the baseline.

figure
X = linspace(0,2*pi,50)';
Y = (exp(0.3*X).*sin(3*X));

1-6530

stem

h = stem(X,Y);

Get the baseline handle, hbase. Adjust the style of the baseline by
setting its LineStyle property.

hbase = get(h,'Baseline');
set(hbase,'LineStyle','--')

1-6531

stem

Make the baseline invisible by setting its Visible property to 'off' .

set(hbase,'Visible','off')

1-6532

stem

Change the Baseline Level

Create a stem plot and change the baseline level to 2.

figure
X = linspace(0,2*pi,50)';
Y = (exp(0.3*X).*sin(3*X));
h = stem(X,Y);
set(h,'BaseValue',2);

1-6533

stem

See Also bar | plot | stairs | LineSpec | Stemseries |

Related
Examples

• “Combine Stem Plot and Line Plot”

1-6534

stem3

Purpose Plot 3-D discrete sequence data

Syntax stem3(Z)
stem3(X,Y,Z)
stem3(___ ,'fill')
stem3(___ ,LineSpec)
stem3(___ ,Name,Value)

stem3(axes_handle, ___)

h = stem3(___)

Description stem3(Z) plots entries in Z as stems extending from the xy-plane and
terminating with circles at the entry values. The stem locations in the
xy-plane are automatically generated.

stem3(X,Y,Z) plots entries in Z as stems extending from the xy-plane
where X and Y specify the stem locations in the xy-plane. The inputs X,
Y, and Z must be vectors or matrices of the same size.

stem3(___ ,'fill') fills the circles. Use this option with any of the
input argument combinations in the previous syntaxes.

stem3(___ ,LineSpec) specifies the line style, marker symbol, and
color.

stem3(___ ,Name,Value) specifies stemseries properties using one or
more Name,Value pair arguments.

stem3(axes_handle, ___) plots into the axes specified by axes_handle
instead of into the current axes (gca). The option, axes_handle, can
precede any of the input argument combinations in the previous
syntaxes.

1-6535

stem3

h = stem3(___) returns the stemseries handle h.

Input
Arguments

Z - Data sequence to display
vector or matrix

Data sequence to display, specified as a vector or matrix. stem3
plots each element in Z as a stem extending from the xy-plane and
terminating at the data value.

• If Z is a row vector, stem3 plots all elements against the same y value
at equally spaced x values.

• If Z is a column vector, stem3 plots all elements against the same x
value at equally spaced y values.

• If Z is a matrix, stem3 plots each row of Z against the same y value
at equally spaced x values.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

X - Locations to plot values of Z
vector or matrix

Locations to plot values ofZ, specified as a vector or a matrix. Inputs X,
Y and Z must be vectors or matrices of the same size.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

Y - Locations to plot values of Z
vector or matrix

Locations to plot values of Z, specified as a vector or a matrix. Inputs X,
Y and Z must be vectors or matrices of the same size.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical

1-6536

stem3

LineSpec - Line style, marker symbol, and color
string

Line style, marker symbol, and color, specified as a string. For more
information on line style, marker symbol, and color options see
LineSpec.

Example: ':*r'

Data Types
char

axes_handle - Axes handle
handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'LineStyle',':','MarkerFaceColor','red' plots the
stem as a dotted line and sets the marker face color to red.

For more information on these properties see stemseries.

’LineStyle’ - Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as the comma-separated pair consisting of
'LineStyle' and a line style specifier. This table lists supported line
styles.

1-6537

stem3

Specifier Line Style

’- ’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-. ’ Dash-dot line

’none’ No line

Example: 'LineStyle','-.'

’LineWidth’ - Line width
0.5 (default) | scalar

Line width, specified as the comma-separated pair consisting of
'LineWidth' and a scalar. The scalar sets the width size in points of
the stem and marker edge.

Example: 'LineWidth',0.75

’Color’ - Color
[0 0 1] (blue) (default) | three-element RGB vector | string

Color, specified as the comma-separated pair consisting of 'Color' and
a three-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a three-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

This table lists the predefined colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

1-6538

stem3

RGB Vector Short Name Long Name

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'Color',[0 1 0]

Example: 'Color','green'

Example: 'Color','g'

’Marker’ - Marker symbol
'o' (default) | string

Marker symbol, specified as the comma-separated pair consisting of
'Marker' and a marker specifier. This table lists supported marker
symbols.

Specifier Marker Symbol

’o’ Circle

’+’ Plus sign

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

1-6539

stem3

Specifier Marker Symbol

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star
(pentagram)

’hexagram’ or ’h’ Six-pointed star (hexagram)

’none’ No marker

Example: 'Marker','+'

Example: 'Marker','diamond'

’MarkerEdgeColor’ - Marker edge color
'auto' (default) | 'none' | three-element RGB vector | string

Marker edge color, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and a color value. The color value can be one of the
supported strings or an RGB vector, listed in the following tables.

Specifier Result

’auto’ Uses same color as line color

’none’ Specifies no color, which makes
unfilled markers invisible

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

1-6540

stem3

RGB Vector Short Name Long Name

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerEdgeColor',[1 .8 .1]

’MarkerFaceColor’ - Marker face color
'none' (default) | 'auto' | three-element RGB vector | string

Marker face color, specified as the comma-separated pair consisting
of 'MarkerFaceColor' and a color value. MarkerFaceColor sets the
fill color for markers that are closed shapes (circle, square, diamond,
pentagram, hexagram, and the four triangles). The color value can be
one of the supported strings or an RGB vector, listed in the following
tables.

Specifier Result

’auto’ Uses same color as marker edge
color

’none’ Makes the interior of the marker
transparent, allowing the
background to show through
(default)

For an RGB vector, use a three-element row vector whose elements
specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0 1]. This table lists the
predefined string colors and their RGB equivalents.

1-6541

stem3

RGB Vector Short Name Long Name

[1 1 0] ’y’ ’yellow’

[1 0 1] ’m’ ’magenta’

[0 1 1] ’c’ ’cyan’

[1 0 0] ’r’ ’red’

[0 1 0] ’g’ ’green’

[0 0 1] ’b’ ’blue’

[1 1 1] ’w’ ’white’

[0 0 0] ’k’ ’black’

Example: 'MarkerFaceColor',[0 .8 1]

’MarkerSize’ - Marker size
6 (default) | scalar

Marker size, specified as the comma-separated pair consisting of
'MarkerSize' and a scalar in points.

Example: 'Markersize',12

Output
Arguments

h - Stemseries object handle
scalar

Stemseries object handle, specified as a scalar. This is a unique
identifier, which you can use to query and modify the properties of the
stemseries.

Examples Row Vector Input

Create a 3-D stem plot of cosine values between and with
a row vector input.

figure
X = linspace(-pi/2,pi/2,40);
Z = cos(X);

1-6542

stem3

stem3(Z)

stem3 plots elements of Z against the same y value at equally space x
values.

Column Vector Input

Create a 3-D stem plot of cosine values between and with a
column vector input.

figure

1-6543

stem3

X = linspace(-pi/2,pi/2,40)';
Z = cos(X);
stem3(Z)

stem3 plots elements of Z against the same x value at equally space y
values.

1-6544

stem3

Matrix Input

Create a 3-D stem plot of sine and cosine values between and
with a matrix input.

figure
X = linspace(-pi/2,pi/2,40);
Z = [sin(X); cos(X)];
stem3(Z)

1-6545

stem3

stem3 plots each row of Z against the same y value at equally space x
values.

Specify Stem Locations with Vector Inputs

Create a 3-D stem plot and specify the stem locations along a curve. Use
view to adjust the angle of the axes in the figure.

figure
X = linspace(-5,5,60);
Y = cos(X);
Z = X.^2;
stem3(X,Y,Z)
view(-8,30)

1-6546

stem3

X and Y determine the stem locations. Z determines the marker heights.

Specify Stem Locations with Matrix Inputs

Create a 3-D stem plot with matrix data and specify the stem locations
in the xy-plane.

figure
[X,Y] = meshgrid(0:.1:1);
Z = exp(X+Y);
stem3(X,Y,Z)

1-6547

stem3

X and Y determine the stem locations. Z determines the marker heights.

Fill in the Markers

Create a 3-D stem plot of cosine values between and . Use 'fill'
to fill in the markers.

figure
X = linspace(-pi,pi,40);
Z = cos(X);

1-6548

stem3

stem3(Z,'fill')

Line Style, Marker Symbol, and Color Options

Create a 3-D stem plot of cosine values between and . Use a
dashed line style for the stem, set the marker symbols to stars, and
set the color to magenta.

figure
X = linspace(-pi,pi,40);

1-6549

stem3

Z = cos(X);
stem3(Z,'--*m')

To specify only two of the three LineSpec options, omit the third option
from the string. For example, '*m' sets the marker symbol and the
color and uses the default line style.

1-6550

stem3

Line Style, Marker Symbol, and Color Options

Create a 3-D stem plot and specify the stem locations along a circle.
Set the stem to a dotted line style, the marker symbols to stars, and
the color to magenta.

figure
theta = linspace(0,2*pi);
X = cos(theta);
Y = sin(theta);
Z = theta;
stem3(X,Y,Z,':*m')

1-6551

stem3

X and Y determine the stem locations. Z determines the marker heights.

Additional Style Options

Create a 3-D stem plot of cosine values between and . Set the
marker symbols to squares with green faces and magenta edges.

figure
X = linspace(-pi,pi,40);
Z = cos(X);
stem3(Z,'Marker','s',...

1-6552

stem3

'MarkerEdgeColor','m',...
'MarkerFaceColor','g')

Axes Handles

Specify the axes for a 3-D stem plot.

Define vectors X, Y and Z.

X = linspace(-2,2,50);

1-6553

stem3

Y = X.^3;
Z = exp(X);

Create a figure with two subplots and return the handles to each axes,
s(1) and s(2). Plot a 3-D stem plot in the lower subplot by referring to
its axes handle, s(2). For comparison, plot a 2-D stem plot in the upper
subplot by referring to its axes handle, s(1).

figure
s(1) = subplot(2,1,1);
s(2) = subplot(2,1,2);

stem(s(1),X,Z)
stem3(s(2),X,Y,Z)

1-6554

stem3

Stemseries Handle

Create a 3-D stem plot and use the stemseries handle to adjust
properties of the plot.

Get the handle for the stemseries.

figure
X = linspace(0,2);
Y = X.^3;

1-6555

stem3

Z = exp(X).*cos(Y);
h = stem3(X,Y,Z,'fill');

Set the color to magenta and the marker face color to yellow. Use view
to adjust the angle of the axes in the figure.

set(h,'Color','m','MarkerFaceColor','y');
view(-10,35)

1-6556

stem3

See Also bar | plot | stairs | stem | Stemseries Properties |

Related
Examples

• “Combine Stem Plot and Line Plot”

1-6557

Stemseries Properties

Purpose Define stemseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for stemseries objects.

See Plot Objects for information on stemseries objects.

Stemseries
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Control the display of stemseries objects in legends. Specifies
whether this stemseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the stemseries
object is displayed in a figure legend.

IconDisplayStyle
Value

Purpose

on Include the stemseries object in a legend as
one entry, but not its children objects

off Do not include the stemseries or its children
in a legend (default)

children Include only the children of the stemseries
as separate entries in the legend

1-6558

Stemseries Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Control Legend Content” for more information and examples.

BaseLine
handle

Handle of the baseline object. Handle of the line object used as the
baseline. Set the properties of this line using its handle.

The following example makes the stem plot baseline a dashed,
red line:

% Create stem plot
stem_handle = stem(randn(10,1));
% Obtain handle of baseline from stemseries object
baseline_handle = get(stem_handle,'BaseLine');
% Set line properties
set(baseline_handle,'LineStyle','--','Color','red')

BaseValue
y-axis value

Y-axis value where baseline is drawn. Specify the value along the
y-axis at which the MATLAB software draws the baseline.

BeingDeleted
on | {off} (read-only)

1-6559

Stemseries Properties

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

1-6560

Stemseries Properties

Button press callback function. Executes whenever you press
a mouse button while the pointer is over this object, but not
over another graphics object. See the HitTestArea property for
information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
array of graphics object handles

Children of the stemseries object. An array containing the handles
of all line objects parented to the stemseries object (whether
visible or not).

If a child object’s HandleVisibility property is callback or off,
its handle does not show up in this object’s Children property.
If you want the handle in the Children property, set the root
ShowHiddenHandles property to on. For example:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

1-6561

Stemseries Properties

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs appear
outside the axes plot box. This occurs if you create a plot object,
set hold to on, freeze axis scaling (axis manual), and then create
a larger plot object.

Color
ColorSpec

Color of stem lines. A three-element RGB vector or one of the
MATLAB predefined names, specifying the line color. See the
ColorSpec reference page for more information on specifying
color.

For example, the following statement creates a stem plot with
red lines.

h = stem(randn(10,1),'Color','r');

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

1-6562

Stemseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the stemseries object in the legend. The default
is an empty string.

1-6563

Stemseries Properties

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

1-6564

Stemseries Properties

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

1-6565

Stemseries Properties

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

Handle Validity

1-6566

Stemseries Properties

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the line objects that compose the stem plot. If HitTest is off,
clicking this object selects the object below it (which is usually
the axes containing it).

HitTestArea
on | {off}

Select the object by clicking stem lines or area of extent. Select
plot objects by:

• Clicking stem lines (default).

• Clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click the stem lines to select
the object. When HitTestArea is on, you can select this object by
clicking anywhere within the extent of the plot (that is, anywhere
within a rectangle that encloses all the stem lines).

Interruptible
off | {on}

1-6567

Stemseries Properties

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

1-6568

Stemseries Properties

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of stemseries object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

Use LineStyle none when you want to place a marker at each
point but do not want the points connected with a line (see the
Marker property).

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

1-6569

Stemseries Properties

Marker
character (see table)

Marker symbol. Specifies marks that display at data points. You
can set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

1-6570

Stemseries Properties

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto— Uses same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Fill color for closed-shape markers. The fill color for markers that
are closed shapes (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — User-defined color.

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Sets the fill color to the axes Color property. If the axes
Color property is none, sets the fill color to the figure Color.

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

1-6571

Stemseries Properties

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Object highlighted when selected.

• on — MATLAB indicates the selected state by drawing four
edge handles and four corner handles.

• off—MATLAB does not draw the handles except when in plot
edit mode and objects are selected manually.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create a stemseries object and set the Tag property:

Y = linspace(-2*pi,2*pi,10);
t = stem(Y,'Tag','stem1')

1-6572

Stemseries Properties

To access the stemseries object, use findobj to find the object’s
handle. The following statement changes the MarkerFaceColor
property of the object whose Tag is stem1.

set(findobj('Tag','stem1'),'MarkerFaceColor','red')

Type
string (read-only)

Type of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For stemseries objects, Type is
’hggroup’. The following statement finds all hggroup objects in
the current axes object.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

Visible
{on} | off

Visibility of object and its children.

1-6573

Stemseries Properties

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
array

X-axis location of stems. The stem function draws an individual
stem at each x-axis location in the XData array. XData can
be either a matrix equal in size to YData or a vector equal in
length to the number of rows in YData. That is, length(XData)
== size(YData,1). XData does not need to be monotonically
increasing.

If you do not specify XData (which is the input argument X), the
stem function uses the indices of YData to create the stem plot.
See the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the X input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after specifying XData, MATLAB
resets the x-axis ticks to 1:size(YData,1) or to the column
indices of the ZData, overwriting any previous values for XData.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

1-6574

Stemseries Properties

set(h,'XDataSource','xdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar | vector | matrix

Stem plot data. YData contains the data plotted as stems. Each
value in YData is represented by a marker in the stem plot. If
YData is a matrix, MATLAB creates a series of stems for each
column in the matrix.

The input argument Y in the stem function calling syntax assigns
values to YData.

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

set(h,'YDataSource','Ydatavariablename')

1-6575

Stemseries Properties

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector

Z-coordinates. A data defining the stems for 3-D stem graphs.
XData and YData (if specified) must be the same size.

ZDataSource
MATLAB variable, as a string

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData. The default value is an empty array.

set(h,'ZDataSource','zdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
ZDataSource does not change the object’s ZData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

1-6576

Stemseries Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

1-6577

stopasync

Purpose Stop asynchronous read and write operations

Syntax stopasync(obj)

Description stopasync(obj) stops any asynchronous read or write operation that is
in progress for the serial port object, obj.

Tips You can write data asynchronously using the fprintf or fwrite
function. You can read data asynchronously using the readasync
function, or by configuring the ReadAsyncMode property to
continuous. In-progress asynchronous operations are indicated by the
TransferStatus property.

If obj is an array of serial port objects and one of the objects cannot be
stopped, the remaining objects in the array are stopped and a warning
is returned. After an object stops:

• Its TransferStatus property is configured to idle.

• Its ReadAsyncMode property is configured to manual.

• The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the
MATLAB workspace using any of the synchronous read functions. If
you execute the readasync function, or configure the ReadAsyncMode
property to continuous, then the new data is appended to the existing
data in the input buffer.

See Also fprintf | fwrite | readasync | ReadAsyncMode | TransferStatus

1-6578

str2double

Purpose Convert string to double-precision value

Syntax X = str2double('str')
X = str2double(C)

Description X = str2double('str') converts the string str, which should be an
ASCII character representation of a real or complex scalar value, to
the MATLAB double-precision representation. The string can contain
digits, a comma (thousands separator), a decimal point, a leading + or -
sign, an e preceding a power of 10 scale factor, and an i for a complex
unit.

If str does not represent a valid scalar value, str2double returns NaN.

X = str2double(C) converts the strings in the cell array of strings C to
double precision. The matrix X returned will be the same size as C.

Examples Here are some valid str2double conversions.

str2double('123.45e7')
str2double('123 + 45i')
str2double('3.14159')
str2double('2.7i - 3.14')
str2double({'2.71' '3.1415'})
str2double('1,200.34')

See Also char | hex2num | num2str | str2num | cast

1-6579

str2func

Purpose Construct function handle from function name string

Syntax str2func('str')

Description str2func('str') constructs a function handle fhandle for the function
named in the string 'str'. The contents of str can be the name of a
file that defines a MATLAB function, or the name of an anonymous
function.

You can create a function handle fh using any of the following four
methods:

• Create a handle to a named function:

fh = @functionName;
fh = str2func('functionName');

• Create a handle to an anonymous function:

fh = @(x)functionDef(x);
fh = str2func('@(x)functionDef(x)');

You can create an array of function handles from strings by creating
the handles individually with str2func, and then storing these handles
in a cell array.

Tips Nested functions are not accessible to str2func. To construct a
function handle for a nested function, you must use the function handle
constructor, @.

Any variables and their values originally stored in a function handle
when it was created are lost if you convert the function handle to a
string and back again using the func2str and str2func functions.

Examples Example 1

To convert the string, 'sin', into a handle for that function, type

fh = str2func('sin')

1-6580

str2func

fh =
@sin

Example 2

If you pass a function name string in a variable, the function that
receives the variable can convert the function name to a function handle
using str2func. The example below passes the variable, funcname,
to function makeHandle, which then creates a function handle. Here
is the function:

function fh = makeHandle(funcname)
fh = str2func(funcname);

This is the code that calls makeHandle to construct the function handle:

makeHandle('sin')
ans =

@sin

Example 3

To call str2func on a cell array of strings, use the cellfun function.
This returns a cell array of function handles:

fh_array = cellfun(@str2func, {'sin' 'cos' 'tan'}, ...
'UniformOutput', false);

fh_array{2}(5)
ans =

0.2837

Example 4

In the following example, the myminbnd function expects to receive
either a function handle or string in the first argument. If you pass a
string, myminbnd constructs a function handle from it using str2func,
and then uses that handle in a call to fminbnd:

function myminbnd(fhandle, lower, upper)
if ischar(fhandle)

1-6581

str2func

disp 'converting function string to function handle ...'
fhandle = str2func(fhandle);

end
fminbnd(fhandle, lower, upper)

Whether you call myminbnd with a function handle or function name
string, the function can handle the argument appropriately:

myminbnd('humps', 0.3, 1)
converting function string to function handle ...
ans =

0.6370

Example 5

The dirByType function shown here creates an anonymous function
called dirCheck. What the anonymous function does depends upon the
value of the dirType argument passed in to the primary function. The
example demonstrates one possible use of str2func with anonymous
functions:

function dirByType(dirType)
switch(dirType)

case 'class', leadchar = '@';
case 'package', leadchar = '+';
otherwise disp('ERROR: Unrecognized type'), return;

end

dirfile = @(fs)isdir(fs.name);
dirCheckStr = ['@(fs)strcmp(fs.name(1,1),''', leadchar, ''')'];
dirCheckFun = str2func(dirCheckStr);
s = dir; filecount = length(s);

for k=1:filecount
fstruct = s(k);
if dirfile(fstruct) && dirCheckFun(fstruct)

fprintf('%s folder: %s\n', dirType, fstruct.name)
end

end

1-6582

str2func

Generate a list of class and package folders:

dirByType('class')
class folder: @Point
class folder: @asset
class folder: @bond

dirByType('package')
package folder: +containers
package folder: +event
package folder: +mypkg

See Also function_handle | func2str | functions

1-6583

str2mat

Purpose Form blank-padded character matrix from strings

Note str2mat is not recommended. Use char instead.

Syntax S = str2mat(T1, T2, T3, ...)

Description S = str2mat(T1, T2, T3, ...) forms the matrix S containing the
text strings T1, T2, T3, ... as rows. The function automatically
pads each string with blanks in order to form a valid matrix. Each text
parameter, Ti, can itself be a string matrix. This allows the creation of
arbitrarily large string matrices. Empty strings are significant.

Tips str2mat differs from strvcat in that empty strings produce blank rows
in the output. In strvcat, empty strings are ignored.

Examples x = str2mat('36842', '39751', '38453', '90307');

whos x
Name Size Bytes Class

x 4x5 40 char array

x(2,3)

ans =

7

See Also char

1-6584

str2num

Purpose Convert string to number

Syntax x = str2num('str')
[x, status] = str2num('str')

Description
Note str2num uses the eval function to convert the input argument.
Side effects can occur if the string contains calls to functions. Using
str2double can avoid some of these side effects.

x = str2num('str') converts the string str, which is an ASCII
character representation of a numeric value, to numeric representation.
str2num also converts string matrices to numeric matrices. If the input
string does not represent a valid number or matrix, str2num(str)
returns the empty matrix in x.

The input string can contain one or more numbers separated by spaces,
commas, or semicolons, such as ’5’, ’10,11,12’, or ’5,10;15,20’. In
addition to numerical values and delimiters, the input string can also
include a decimal point, leading + or - signs, the letter e or d preceding
a power of 10 scale factor, or the letter i or j indicating a complex or
imaginary number.

The following table shows several examples of valid inputs to str2num:

String Input Numeric
Output

Output Class

'500' 500 1-by-1 scalar double

’500 250 125 67’ 500, 250, 125,
67

1-by-4 row vector of double

’500; 250; 125;
62.5’

500.0000
250.0000
125.0000
62.5000

4-by-1 column vector of
double

1-6585

str2num

String Input Numeric
Output

Output Class

’1 23 6 21; 53:56’ 1 23 6 21
53 54 55 56

2-by-5 matrix of double

’12e-3 5.9e-3’ 0.0120 0.0059 vector of double

’uint16(500)’ 500 16–bit unsigned integer

Note str2num does not operate on cell arrays. To convert a cell array
of strings to a numeric value, use str2double.

If the input string does not represent a valid number or matrix,
str2num(str) returns the empty matrix in x.

[x, status] = str2num('str') returns the status of the conversion
in logical status, where status equals logical 1 (true) if the conversion
succeeds, and logical 0 (false) otherwise.

Space characters can be significant. For instance, str2num('1+2i')
and str2num('1 + 2i') produce x = 1+2i, while str2num('1 +2i')
produces x = [1 2i]. You can avoid these problems by using the
str2double function.

Examples Input a character string that contains a single number. The output is
a scalar double:

A = str2num('500')
A =

500

class(A)
ans =

double

Repeat this operation, but this time using an unsigned 16–bit integer:

1-6586

str2num

A = str2num('uint16(500)')
A =

500

class(A)
ans =

uint16

Try three different ways of specifying a row vector. Each returns the
same answer:

str2num('2 4 6 8') % Separate with spaces.
ans =

2 4 6 8

str2num('2,4,6,8') % Separate with commas.
ans =

2 4 6 8

str2num('[2 4 6 8]') % Enclose in brackets.
ans =

2 4 6 8

Note that the first two of these commands do not need the MATLAB
square bracket operator to create a matrix. The str2num function
inserts the brackets for you if they are needed.

Use a column vector this time:

str2num('2; 4; 6; 8')
ans =

2
4
6
8

And now a 2-by-2 matrix:

1-6587

str2num

str2num('2 4; 6 8')
ans =

2 4
6 8

See Also num2str | str2double | hex2num | sscanf | sparse | char | cast
| special characters

1-6588

strcat

Purpose Concatenate strings horizontally

Syntax combinedStr = strcat(s1,s2,...,sN)

Description combinedStr = strcat(s1,s2,...,sN) horizontally concatenates
strings in arrays. Inputs can be combinations of single strings, strings
in scalar cells, character arrays with the same number of rows, and
same-sized cell arrays of strings.

• If any input is a cell array, combinedStr is a cell array of strings.
Otherwise, combinedStr is a character array.

• For character array inputs, strcat removes trailing ASCII
white-space characters: space, tab, vertical tab, newline, carriage
return, and form-feed. For cell array inputs, strcat does not remove
trailing white space.

Examples Concatenate Two Strings

str = strcat('Good', 'morning')

str =

Goodmorning

Concatenate Two Cell Arrays

a = {'abcde', 'fghi'};
b = {'jkl', 'mn'};

ab = strcat(a, b)

ab =

'abcdejkl' 'fghimn'

1-6589

strcat

Concatenate Two Cell Arrays with Scalar Cell

a = {'abcde', 'fghi'};
b = {'jkl', 'mn'};
c = {'Q'};

abc = strcat(a, b, c)

abc =

'abcdejklQ' 'fghimnQ'

Input
Arguments

s1,s2,...,sN - Strings to horizontally concatenate
string | cell array of strings | character arrays

Strings to horizontally concatenate, specified as strings, cell arrays of
strings, or character arrays with the same number of strings. When
combining nonscalar cell arrays and multirow character arrays, cell
arrays must be column vectors with the same number of rows as the
character arrays.

Data Types
char | cell

Tips • strcat strips trailing blank spaces. Adding a blank space at the
end of the first string does not result in a blank space between the
strings once concatenated.

str1 = strcat('Good ', 'morning')

str1 =

Goodmorning

Instead, add a blank space before the second string.

str2 = strcat('Good', ' morning')

str2 =

1-6590

strcat

Good morning

• Strings can be horizontally concatenated using horizontal array
concatenation. Horizontal array concatenation does not strip off
trailing blank spaces from a string.

a = 'Good ';
b = 'Morning';

using_strcat = strcat(a, b)
using_arraycat = [a b] % Equivalent to horzcat(a, b)

using_strcat =

GoodMorning

using_arraycat =

Good Morning

See Also cat | vertcat | horzcat | cellstr | strjoin | special character

1-6591

strcmp

Purpose Compare strings with case sensitivity

Syntax TF = strcmp(s1,s2)

Description TF = strcmp(s1,s2) compares two strings for equality. The strings
are considered to be equal if the size and content of each are the same.
The function returns a scalar logical 1 for equality, or a scalar logical 0
for inequality. The comparison is case sensitive.

Inputs can be two strings, two same-sized cell arrays of strings, or a
combination of a string and a cell array.

• If s1,s2 are strings, TF is a logical scalar.

• If at least one input is a cell array of strings, TF is a logical array
the same size as the cell array.

Input
Arguments

s1,s2 - Strings or cell array of strings to compare
string | cell array of strings

Strings or cell array of strings to compare for equality, specified as two
strings or a string and a cell array of strings or two equal-sized cell
arrays of strings. The order of the inputs does not effect the comparison
results.

Data Types
char | cell

Examples Compare Two Strings

Use strcmp to compare two different strings.

strcmp('Yes' ,'No')

ans =

0

1-6592

strcmp

strcmp returns logical 0 (false) because the two strings are not equal.
Use strcmp to compare two equal strings.

strcmp('Yes' ,'Yes')

ans =

1

The function strcmp returns logical 1 (true) because the two strings
are equal.

Compare String and Cell Array of Strings

Use strcmp to compare a string, 'upon', to each element of a cell array
of strings.

a = 'upon';
b = {'Once' 'upon';

'a' 'time'};
strcmp(a, b)

ans =

0 1
0 0

There is only one occurrence of string a in array b, and that occurs at
element b{1, 2}.

Compare Two Cell Arrays of Strings

Use strcmp to compare each element in a cell array of strings to the
corresponding element in a second cell array of strings.

c = {'Time' 'flies' 'when';
'you''re' 'having' 'fun.'};

d = {'Time' 'drags' 'when';
'you''re' 'anxiously' 'waiting.'};

1-6593

strcmp

strcmp(c, d)

ans =

1 0 1
1 0 0

There are three instances of equal strings between c and d. These are
'Time' at indices {1, 1}, 'when' at indices{1, 3}, and 'you''re' at
indices {2, 1}.

Tips • The strcmp function is intended for comparison of character data.
When you use it to compare numeric data, strcmp returns logical 0.

• For case insensitive string comparison, use strcmpi instead of
strcmp.

• Any leading or trailing blanks are explicitly included in the
comparison.

• The value returned by strcmp is not the same as the C language
convention.

• strcmp supports international character sets.

See Also regexp | regexpi | strcmpi | strfind | strncmp | strncmpi

1-6594

strcmpi

Purpose Compare strings (case insensitive)

Syntax TF = strcmpi(string,string)
TF = strcmpi(string,cellstr)
TF = strcmpi(cellstr,cellstr)

Description TF = strcmpi(string,string) compares two strings for equality,
ignoring any differences in letter case. The strings are considered to be
equal if the size and content of each are the same. The function returns
a scalar logical 1 for equality, or scalar logical 0 for inequality.

TF = strcmpi(string,cellstr) compares a string with each element
of a cell array of strings, ignoring letter case. The function returns
a logical array the same size as the cellstr input in which logical 1
represents equality. The order of the input arguments is not important.

TF = strcmpi(cellstr,cellstr) compares each element of one cell
array of strings with the same element of the other, ignoring letter case.
The function returns a logical array the same size as the input arrays.

Tips • The strcmpi function is intended for comparison of character data.
When used to compare numeric data, it returns logical 0.

• Use strcmp for case-sensitive string comparisons.

• Any leading and trailing blanks in either of the strings are explicitly
included in the comparison.

• The value returned by strcmpi is not the same as the C language
convention.

• strcmpi supports international character sets.

Input
Arguments

string

A single character string or n-by-1 array of strings.

cellstr

A cell array of strings.

1-6595

strcmpi

Output
Arguments

TF

When both inputs are character arrays, TF is a scalar logical value. This
value is logical 1 (true) if the size and content of both arrays are equal,
and logical 0 (false) if they are not.

When either or both inputs are a cell array of strings, TF is an array of
logical ones and zeros. This array is the same size as the input cell
array(s), and contains logical 1 (true) for those elements of the input
arrays that are a match, and logical 0 (false) for those elements that
are not.

Examples Perform a simple case-insensitive comparison of two strings:

strcmpi('Yes', 'No')
ans =

0
strcmpi('Yes', 'yes')
ans =

1

Create two cell arrays of strings and call strcmpi to compare them:

A = {'Handle Graphics', 'Statistics'; ...
' Toolboxes', 'MathWorks'};

B = {'Handle Graphics', 'Signal Processing'; ...
'Toolboxes', 'MATHWORKS'};

match = strcmpi(A, B)
match =

1 0
0 1

The result of comparing the two cell arrays is:

• match{1,1} is 1 because “Handle Graphics” in A{1,1} matches the
same text in B{1,1}.

1-6596

strcmpi

• match{1,2} is 0 because “Statistics” in A{1,2} does not match
“Signal Processing” in B{1,2}.

• match{2,1} is 0 because “ Toolboxes”, in A{2,1} contains leading
space characters that are not in B{2,1}.

• match{2,2} is 1 because even though “MathWorks” in A{2,2} uses
different letter case than “MATHWORKS” in B{2,2}, strcmpi
performs the comparison without sensitivity to letter case.

See Also strncmpi | strcmp | strncmp | strfind | regexpi | regexp

1-6597

stream2

Purpose Compute 2-D streamline data

Syntax XY = stream2(x,y,u,v,startx,starty)
XY = stream2(u,v,startx,starty)
XY = stream2(...,options)

Description XY = stream2(x,y,u,v,startx,starty) computes streamlines from
vector data u and v.

The arrays x and y, which define the coordinates for u and v, must be
monotonic, but do not need to be uniformly spaced. x and y must have
the same number of elements, as if produced by meshgrid.

startx and starty define the starting positions of the streamlines. The
section "Specifying Starting Points for Stream Plots" provides more
information on defining starting points.

The returned value XY contains a cell array of vertex arrays.

XY = stream2(u,v,startx,starty) assumes the arrays x and y are
defined as [x,y] = meshgrid(1:n,1:m) where [m,n] = size(u).

XY = stream2(...,options) specifies the options used when creating
the streamlines. Define options as a one- or two-element vector
containing the step size or the step size and the maximum number
of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify a value, MATLAB software uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 10000

Use the streamline command to plot the data returned by stream2.

1-6598

stream2

Examples This example draws 2-D streamlines from data representing air
currents over regions of North America.

load wind

[sx,sy] = meshgrid(80,20:10:50);

streamline(stream2(x(:,:,5),y(:,:,5),u(:,:,5),v(:,:,5),sx,sy));

See Also coneplot | stream3 | streamline

How To • Specifying Starting Points for Stream Plots

1-6599

stream3

Purpose Compute 3-D streamline data

Syntax XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz)
XYZ = stream3(U,V,W,startx,starty,startz)
XYZ = stream3(...,options)

Description XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz) computes
streamlines from vector data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must
be monotonic, but do not need to be uniformly spaced. X, Y, and Z must
have the same number of elements, as if produced by meshgrid.

startx, starty, and startz define the starting positions of the
streamlines. The section "Specifying Starting Points for Stream Plots"
provides more information on defining starting points.

The returned value XYZ contains a cell array of vertex arrays.

XYZ = stream3(U,V,W,startx,starty,startz) assumes the arrays
X, Y, and Z are defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P) where
[M,N,P] = size(U).

XYZ = stream3(...,options) specifies the options used when
creating the streamlines. Define options as a one- or two-element
vector containing the step size or the step size and the maximum
number of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB software uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 10000

Use the streamline command to plot the data returned by stream3.

1-6600

stream3

Examples This example draws 3-D streamlines from data representing air
currents over regions of North America.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
streamline(stream3(x,y,z,u,v,w,sx,sy,sz))
view(3)

See Also coneplot | stream2 | streamline

How To • Specifying Starting Points for Stream Plots

1-6601

streamline

Purpose Plot streamlines from 2-D or 3-D vector data

Syntax streamline(X,Y,Z,U,V,W,startx,starty,startz)
streamline(U,V,W,startx,starty,startz)
streamline(XYZ)
streamline(X,Y,U,V,startx,starty)
streamline(U,V,startx,starty)
streamline(XY)
streamline(...,options)
streamline(axes_handle,...)
h = streamline(...)

Description streamline(X,Y,Z,U,V,W,startx,starty,startz) draws streamlines
from 3-D vector data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must
be monotonic, but do not need to be uniformly spaced. X, Y, and Z must
have the same number of elements, as if produced by meshgrid.

startx, starty, startz define the starting positions of the streamlines.
The section Specifying Starting Points for Stream Plots provides more
information on defining starting points.

streamline(U,V,W,startx,starty,startz) assumes the arrays X,
Y, and Z are defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P), where
[M,N,P] = size(U).

streamline(XYZ) assumes XYZ is a precomputed cell array of vertex
arrays (as produced by stream3).

streamline(X,Y,U,V,startx,starty) draws streamlines from 2-D
vector data U, V.

The arrays X and Y, which define the coordinates for U and V, must be
monotonic, but do not need to be uniformly spaced. X and Y must have
the same number of elements, as if produced by meshgrid.

1-6602

streamline

startx and starty define the starting positions of the streamlines.
The output argument h contains a vector of line handles, one handle
for each streamline.

streamline(U,V,startx,starty) assumes the arrays X and Y are
defined as [X,Y] = meshgrid(1:N,1:M), where [M,N] = size(U).

streamline(XY) assumes XY is a precomputed cell array of vertex
arrays (as produced by stream2).

streamline(...,options) specifies the options used when creating the
streamlines. Define options as a one- or two-element vector containing
the step size or the step size and the maximum number of vertices in a
streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 1000

streamline(axes_handle,...) plots into the axes object with the
handle axes_handle instead of the into current axes object (gca).

h = streamline(...) returns a vector of line handles, one handle
for each streamline.

Examples Draw Streamlines

Define arrays x, y, u, and v.

[x,y] = meshgrid(0:0.1:1,0:0.1:1);
u = x;
v = -y;

1-6603

streamline

Create a quiver plot of the data. Plot streamlines that start at different
points along the line .

figure
quiver(x,y,u,v)

startx = 0.1:0.1:1;
starty = ones(size(startx));
streamline(x,y,u,v,startx,starty);

1-6604

streamline

See Also coneplot | stream2 | stream3 | streamparticles | meshgrid

How To • Specifying Starting Points for Stream Plots

• Stream Line Plots of Vector Data

1-6605

streamparticles

Purpose Plot stream particles

Syntax streamparticles(vertices)
streamparticles(vertices,n)
streamparticles(...,'PropertyName',PropertyValue,...)
streamparticles(line_handle,...)
h = streamparticles(...)

Description streamparticles(vertices) draws stream particles of a vector field.
Stream particles are usually represented by markers and can show the
position and velocity of a streamline. vertices is a cell array of 2-D or
3-D vertices (as if produced by stream2 or stream3).

streamparticles(vertices,n) uses n to determine how many stream
particles to draw. The ParticleAlignment property controls how n
is interpreted.

• If ParticleAlignment is set to off (the default) and n is greater
than 1, approximately n particles are drawn evenly spaced over the
streamline vertices.

If n is less than or equal to 1, n is interpreted as a fraction of the
original stream vertices; for example, if n is 0.2, approximately 20%
of the vertices are used.

n determines the upper bound for the number of particles drawn.
The actual number of particles can deviate from n by as much as a
factor of 2.

• If ParticleAlignment is on, n determines the number of particles on
the streamline having the most vertices and sets the spacing on the
other streamlines to this value. The default value is n = 1.

streamparticles(...,'PropertyName',PropertyValue,...)
controls the stream particles using named properties and specified
values. Any unspecified properties have default values. MATLAB
ignores the case of property names.

Stream Particle Properties

Animate— Stream particle motion [nonnegative integer]

1-6606

streamparticles

The number of times to animate the stream particles. The default is 0,
which does not animate. Inf animates until you enter Ctrl+C.

FrameRate— Animation frames per second [nonnegative integer]

This property specifies the number of frames per second for the
animation. Inf, the default, draws the animation as fast as possible.
Note that the speed of the animation might be limited by the speed of
the computer. In such cases, the value of FrameRate cannot necessarily
be achieved.

ParticleAlignment— Align particles with streamlines [on | {off}]

Set this property to on to draw particles at the beginning of each
streamline. This property controls how streamparticles interprets
the argument n (number of stream particles).

Stream particles are line objects. In addition to stream particle
properties, you can specify any line object property, such as Marker
and EraseMode. streamparticles sets the following line properties
when called.

Line Property Value Set by streamparticles

EraseMode xor

LineStyle none

Marker o

MarkerEdgeColor none

MarkerFaceColor red

You can override any of these properties by specifying a property
name and value as arguments to streamparticles. For example, this
statement uses RGB values to set the MarkerFaceColor to medium
gray:

streamparticles(vertices,'MarkerFaceColor',[.5 .5 .5])

1-6607

streamparticles

streamparticles(line_handle,...) uses the line object identified by
line_handle to draw the stream particles.

h = streamparticles(...) returns a vector of handles to the line
objects it creates.

Examples This example combines streamlines with stream particle animation.
The interpstreamspeed function determines the vertices along the
streamlines where stream particles are drawn during the animation,
thereby controlling the speed of the animation. Setting the figure
Renderer property to opengl provides faster rendering.

load wind

figure('Renderer','opengl')

[sx,sy,sz] = meshgrid(80,20:1:55,5);

verts = stream3(x,y,z,u,v,w,sx,sy,sz);

sl = streamline(verts);

iverts = interpstreamspeed(x,y,z,u,v,w,verts,.025);

axis tight manual; view(30,30); daspect([1 1 .125])

camproj perspective; camva(8)

box on

streamparticles(iverts,35,'animate',10,'ParticleAlignment','on')

The following picture is a static view of the animation.

1-6608

streamparticles

This example uses the streamlines in the z = 5 plane to animate the
flow along these lines with streamparticles.

load wind
daspect([1,1,1]); view(2)
[verts,averts] = streamslice(x,y,z,u,v,w,[],[],[5]);
sl = streamline([verts averts]);
axis tight manual off;
set(sl,'Visible','off')
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.05);
set(gca,'Position',[0 0 1 1],'ZLim',[4.9 5.1])
set(gcf,'Color','black')
streamparticles(iverts, 200, ...

'Animate',100,'FrameRate',40, ...
'MarkerSize',10,'MarkerFaceColor','yellow')

See Also interpstreamspeed | stream3 | streamline | stream2

How To • Creating Stream Particle Animations

• Specifying Starting Points for Stream Plots

1-6609

streamribbon

Purpose 3-D stream ribbon plot from vector volume data

Syntax streamribbon(X,Y,Z,U,V,W,startx,starty,startz)
streamribbon(U,V,W,startx,starty,startz)
streamribbon(vertices,X,Y,Z,cav,speed)
streamribbon(vertices,cav,speed)
streamribbon(vertices,twistangle)
streamribbon(...,width)
streamribbon(axes_handle,...)
h = streamribbon(...)

Description streamribbon(X,Y,Z,U,V,W,startx,starty,startz) draws stream
ribbons from vector volume data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must
be monotonic, but do not need to be uniformly spaced. X, Y, and Z must
have the same number of elements, as if produced by meshgrid.

startx, starty, and startz define the starting positions of the stream
ribbons at the center of the ribbons. The section Specifying Starting
Points for Stream Plots provides more information on defining starting
points.

The twist of the ribbons is proportional to the curl of the vector field.
The width of the ribbons is calculated automatically.

streamribbon(U,V,W,startx,starty,startz) assumes X, Y, and Z
are determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamribbon(vertices,X,Y,Z,cav,speed) assumes precomputed
streamline vertices, curl angular velocity, and flow speed. vertices is a

1-6610

streamribbon

cell array of streamline vertices (as produced by stream3). X, Y, Z, cav,
and speed are 3-D arrays.

streamribbon(vertices,cav,speed) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(cav).

streamribbon(vertices,twistangle) uses the cell array of vectors
twistangle for the twist of the ribbons (in radians). The size of each
corresponding element of vertices and twistangle must be equal.

streamribbon(...,width) sets the width of the ribbons to width.

streamribbon(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

h = streamribbon(...) returns a vector of handles (one per start
point) to surface objects.

Examples This example uses stream ribbons to indicate the flow in the wind
data set. Inputs include the coordinates, vector field components, and
starting location for the stream ribbons.

figure
load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
% Define viewing and lighting
axis tight
shading interp;
view(3);
camlight; lighting gouraud

1-6611

streamribbon

This example uses precalculated vertex data (stream3), curl average

velocity (curl), and speed . Using precalculated data
enables you to use values other than those calculated from the single
data source. In this case, the speed is reduced by a factor of 10 compared
to the previous example.

figure

1-6612

streamribbon

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
cav = curl(x,y,z,u,v,w);
spd = sqrt(u.^2 + v.^2 + w.^2).*.1;
streamribbon(verts,x,y,z,cav,spd);
% Define viewing and lighting
axis tight
shading interp
view(3)
camlight; lighting gouraud

1-6613

streamribbon

This example specifies a twist angle for the stream ribbon.

figure
t = 0:.15:15;
verts = {[cos(t)' sin(t)' (t/3)']};
twistangle = {cos(t)'};
streamribbon(verts,twistangle);
% Define viewing and lighting

1-6614

streamribbon

axis tight
shading interp;
view(3);
camlight; lighting gouraud

This example combines cone plots (coneplot) and stream ribbon plots
in one graph.

1-6615

streamribbon

figure
% Define 3-D arrays x, y, z, u, v, w
xmin = -7; xmax = 7;
ymin = -7; ymax = 7;
zmin = -7; zmax = 7;
x = linspace(xmin,xmax,30);
y = linspace(ymin,ymax,20);
z = linspace(zmin,zmax,20);
[x y z] = meshgrid(x,y,z);
u = y; v = -x; w = 0*x+1;
[cx cy cz] = meshgrid(linspace(xmin,xmax,30),...

linspace(ymin,ymax,30),[-3 4]);
h = coneplot(x,y,z,u,v,w,cx,cy,cz,'quiver');
set(h,'Color','k');

% Plot two sets of streamribbons
[sx sy sz] = meshgrid([-1 0 1],[-1 0 1],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
[sx sy sz] = meshgrid([1:6],[0],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);

% Define viewing and lighting
shading interp
view(-30,10) ; axis off tight
camproj perspective; camva(66); camlookat;
camdolly(0,0,.5,'fixtarget')
camlight

1-6616

streamribbon

See Also curl | streamtube | streamline | stream3 | meshgrid | coneplot

How To • “Volume Visualization”

• Displaying Curl with Stream Ribbons

• Specifying Starting Points for Stream Plots

1-6617

streamslice

Purpose Plot streamlines in slice planes

Syntax streamslice(X,Y,Z,U,V,W,startx,starty,startz)
streamslice(U,V,W,startx,starty,startz)
streamslice(X,Y,U,V)
streamslice(U,V)
streamslice(...,density)
streamslice(...,'arrowsmode')
streamslice(...,'method')
streamslice(axes_handle,...)
h = streamslice(...)
[vertices arrowvertices] = streamslice(...)

Description streamslice(X,Y,Z,U,V,W,startx,starty,startz) draws
well-spaced streamlines (with direction arrows) from vector data U, V,
W in axis aligned x-, y-, z-planes at the points in the vectors startx,
starty, startz. The section Specifying Starting Points for Stream
Plots provides more information on defining starting points.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must
be monotonic, but do not need to be uniformly spaced. X, Y, and Z must
have the same number of elements, as if produced by meshgrid. U, V, W
must be m-by-n-by-p volume arrays.

Do not assume that the flow is parallel to the slice plane. For example,
in a stream slice at a constant z, the z component of the vector field W is
ignored when you are calculating the streamlines for that plane.

Stream slices are useful for determining where to start streamlines,
stream tubes, and stream ribbons.

streamslice(U,V,W,startx,starty,startz) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

1-6618

streamslice

where [m,n,p] = size(U).

streamslice(X,Y,U,V) draws well-spaced streamlines (with direction
arrows) from vector volume data U, V.

The arrays X and Y, which define the coordinates for U and V, must be
monotonic, but do not need to be uniformly spaced. X and Y must have
the same number of elements, as if produced by meshgrid.

streamslice(U,V) assumes X, Y, and Z are determined by the
expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamslice(...,density) modifies the automatic spacing of the
streamlines. density must be greater than 0. The default value is 1;
higher values produce more streamlines on each plane. For example, 2
produces approximately twice as many streamlines, while 0.5 produces
approximately half as many.

streamslice(...,'arrowsmode') determines if direction arrows are
present or not. arrowmode can be

• arrows— Draw direction arrows on the streamlines (default).

• noarrows — Do not draw direction arrows.

streamslice(...,'method') specifies the interpolation method to use.
method can be

• linear — Linear interpolation (default)

• cubic — Cubic interpolation

• nearest — Nearest-neighbor interpolation

See interp3 for more information on interpolation methods.

streamslice(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

1-6619

streamslice

h = streamslice(...) returns a vector of handles to the line objects
created.

[vertices arrowvertices] = streamslice(...) returns two cell
arrays of vertices for drawing the streamlines and the arrows. You
can pass these values to any of the streamline drawing functions
(streamline, streamribbon, streamtube).

Examples Plot Streamlines in Slice Plane

Load the wind data set. Draw a stream slice at z = 5.

load wind

figure
streamslice(x,y,z,u,v,w,[],[],[5])
axis tight

1-6620

streamslice

See Also contourslice | slice | streamline | volumebounds | meshgrid |
interp3 | interp2 | streamribbon | streamtube

How To • Specifying Starting Points for Stream Plots

1-6621

streamtube

Purpose Create 3-D stream tube plot

Syntax streamtube(X,Y,Z,U,V,W,startx,starty,startz)
streamtube(U,V,W,startx,starty,startz)
streamtube(vertices,X,Y,Z,divergence)
streamtube(vertices,divergence)
streamtube(vertices,width)
streamtube(vertices)
streamtube(...,[scale n])
streamtube(axes_handle,...)
h = streamtube(...z)

Description streamtube(X,Y,Z,U,V,W,startx,starty,startz) draws stream
tubes from vector volume data U, V, W.

The arrays X, Y, and Z, which define the coordinates for U, V, and W, must
be monotonic, but do not need to be uniformly spaced. X, Y, and Z must
have the same number of elements, as if produced by meshgrid.

startx, starty, and startz define the starting positions of the
streamlines at the center of the tubes. The section Specifying Starting
Points for Stream Plots provides more information on defining starting
points.

The width of the tubes is proportional to the normalized divergence of
the vector field.

streamtube(U,V,W,startx,starty,startz) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamtube(vertices,X,Y,Z,divergence) assumes precomputed
streamline vertices and divergence. vertices is a cell array of

1-6622

streamtube

streamline vertices (as produced by stream3). X, Y, Z, and divergence
are 3-D arrays.

streamtube(vertices,divergence) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(divergence).

streamtube(vertices,width) specifies the width of the tubes in the
cell array of vectors, width. The size of each corresponding element
of vertices and width must be equal. width can also be a scalar,
specifying a single value for the width of all stream tubes.

streamtube(vertices) selects the width automatically.

streamtube(...,[scale n]) scales the width of the tubes by scale.
The default is scale = 1. When the stream tubes are created, using
start points or divergence, specifying scale = 0 suppresses automatic
scaling. n is the number of points along the circumference of the tube.
The default is n = 20.

streamtube(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

h = streamtube(...z) returns a vector of handles (one per start point)
to surface objects used to draw the stream tubes.

Examples This example uses stream tubes to indicate the flow in the wind data
set. Inputs include the coordinates, vector field components, and
starting location for the stream tubes.

figure
load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
streamtube(x,y,z,u,v,w,sx,sy,sz);
% Define viewing and lighting
view(3)
axis tight

1-6623

streamtube

shading interp;
camlight; lighting gouraud

This example uses precalculated vertex data (stream3) and divergence
(divergence).

figure
load wind

1-6624

streamtube

[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
div = divergence(x,y,z,u,v,w);
streamtube(verts,x,y,z,-div);
% Define viewing and lighting
view(3)
axis tight
shading interp
camlight; lighting gouraud

1-6625

streamtube

See Also divergence | streamribbon | streamline | stream3 | meshgrid
| stream3

How To • Displaying Divergence with Stream Tubes

• Specifying Starting Points for Stream Plots

1-6626

strfind

Purpose Find one string within another

Syntax k = strfind(str, pattern)

Description k = strfind(str, pattern) searches str for occurrences of pattern.
The output, k, indicates the starting index of each occurrence of
pattern in str. If pattern is not found strfind returns an empty
array, []. The strfind function executes a case sensitive search.

• If str is a string, strfind returns a vector of type double.

• If str is a cell array, strfind returns a cell array of vectors of type
double.

Input
Arguments

str - Data to be searched
string | cell array of strings

Data to be searched, specified as a string or cell array of strings.

Data Types
char | cell

pattern - Search pattern
string

Search pattern, specified as a string.

Data Types
char

Output
Arguments

k - Indices of occurrences of pattern
array

Indices of occurrences of pattern, returned as an array. If pattern is
not found, then k is an empty array, [].

• If str is a string, k is an array of doubles indicating the index of
each occurrence of pattern.

1-6627

strfind

• If str is a cell array of strings, k is a cell array with each element
being an array of type double corresponding to the indices of each
occurrence of pattern in the corresponding element of str.

Examples Find String Pattern

Define string S as follows:

S = 'Find the starting indices of the pattern string';

Find the pattern in in string S.

k = strfind(S, 'in')

k =

2 15 19 45

There are four instances of the substring, in, found in S.

Find the pattern In in string S.

k = strfind(S, 'In')

k =

[]

Since strfind is case sensitive, the string, In, is not found in S, k
is an empty array.

Find the blank spaces in string S.

k = strfind(S, ' ')

k =

5 9 18 26 29 33 41

1-6628

strfind

There are seven occurrences of blank spaces in the string S.

Find String in Cell Array of Strings

Define the cell array of strings, cstr, as follows:

cstr = {'How much wood would a woodchuck chuck';
'if a woodchuck could chuck wood?'};

Find the pattern, wood, in cell array cstr.

idx = strfind(cstr, 'wood')

idx =

[1x2 double]
[1x2 double]

Examine the output cell array to find the instances of wood.

idx{:,:}

ans =

10 23

ans =

6 28

The pattern, wood, occurs at indices 10 and 23 in the first string and at
indices 6 and 28 in the second string.

Tips • The strfind function does not find a pattern of empty strings, '',
within str.

1-6629

strfind

See Also strtok | strcmp | strncmp | strcmpi | strncmpi | regexp | regexpi
| regexprep | strrep | strsplit

1-6630

strings

Purpose String handling

Syntax S = 'Any Characters'
S = [S1 S2 ...]
C = {S1 S2 ...}
S = strcat(S1, S2, ...)
S = char(S1, S2, ...)
S = char(X)
X = double(S)

Description S = 'Any Characters' creates a character array, or string. The string
is actually a vector that contains the numeric codes for the characters
(codes 0 to 127 are ASCII). The length of S is the number of characters.
A quotation within the string is indicated by two quotation marks.

S = [S1 S2 ...] concatenates character arrays S1, S2, etc. into a new
character array, S.

C = {S1 S2 ...} creates a cell array of strings. Separate each row of
the cell array with a semicolon (;).

S = strcat(S1, S2, ...) horizontally concatenates S1, S2, etc.,
which can be character arrays or cell arrays of strings. If the inputs
are character arrays, strcat removes trailing white space. For more
information, see the strcat reference page.

S = char(S1, S2, ...) vertically concatenates character arrays S1,
S2, etc., padding each input string as needed so that each row contains
the same number of characters.

S = char(X) converts an array that contains positive integers
representing numeric codes into a MATLAB character array.

X = double(S) converts the string to its equivalent integer numeric
codes.

Tips • To convert between character arrays and cell arrays of strings, use
char and cellstr. Most string functions support both types.

1-6631

strings

• To determine whether S is a character array or cell array, call
ischar(S) or iscellstr(S).

Examples Create a simple string that includes a single quote.

msg = 'You''re right!'

msg =
You're right!

Create the string name using two methods of concatenation.

name = ['Thomas' ' R. ' 'Lee']
name = strcat('Thomas',' R.',' Lee')

Create a character array of strings.

C = char('Hello','Goodbye','Yes','No')

C =
Hello
Goodbye
Yes
No

Create a cell array of strings.

S = {'Hello' 'Goodbye'; 'Yes' 'No'}

S =
'Hello' 'Goodbye'
'Yes' 'No'

See Also char | isstrprop | cellstr | ischar | isletter | isspace |
iscellstr | sprintf | sscanf | text | input

Concepts • “Cell Arrays of Strings”

1-6632

strjoin

Purpose Join strings in cell array into single string

Syntax str = strjoin(C)
str = strjoin(C,delimiter)

Description str = strjoin(C) constructs the string, str, by linking each string in
the cell array, C, with a single space.

str = strjoin(C,delimiter) constructs the string, str, by linking
each string of C with the elements in delimiter.

Input
Arguments

C - Input text
1-by-n cell array of strings

Input text, specified as a 1-by-n cell array of strings. Each element in
the cell array must contain a single string in a single row.

Example: {'The','rain','in','Spain'}

Data Types
cell

delimiter - Delimiting characters
string | 1-by-n cell array of strings

Delimiting characters, specified as a single string or a 1-by-n cell array
of strings.

• If delimiter is a single string, then strjoin forms str by inserting
delimiter between each element of C. The delimiter input can
include any of these escape sequences:

\\ Backslash

\0 Null

\a Alarm

\b Backspace

1-6633

strjoin

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

• If delimiter is a cell array of strings, then it must contain one
fewer element than C. Each element in the cell array must contain
a single string in a single row. strjoin forms str by interleaving
the elements of delimiter and C. All characters in delimiter are
inserted as literal text, and escape sequences are not supported.

Example: ', '

Example: {',',' '}

Data Types
char | cell

Examples Join List of Words with Whitespace

Join individual strings in a cell array of strings, C, with a single space.

C = {'one','two','three'};
str = strjoin(C)

str =

one two three

Join Cell Array of Strings

C = {'Newton','Gauss','Euclid','Lagrange'};
str = strjoin(C,', ')

str =

Newton, Gauss, Euclid, Lagrange

1-6634

strjoin

Join Strings with Multiple Different Delimiters

Specify multiple different delimiters in a cell array of strings. The
delimiter cell array must have one fewer element than C.

C = {'one','two','three'};
str = strjoin(C,{' + ',' = '})

str =

one + two = three

See Also strsplit | strcat | cellstr | regexp

1-6635

strjust

Purpose Justify character array

Syntax T = strjust(S)
T = strjust(S, 'right')
T = strjust(S, 'left')
T = strjust(S, 'center')

Description T = strjust(S) or T = strjust(S, 'right') returns a right-justified
version of the character array S.

T = strjust(S, 'left') returns a left-justified version of S.

T = strjust(S, 'center') returns a center-justified version of S.

See Also deblank | strtrim

1-6636

strmatch

Purpose Find possible matches for string

Note strmatch is not recommended. Use strncmp or validatestring,
depending on your requirements, instead. strncmp returns the numeric
index of all array elements that begin with the specified string, whereas
validatestring returns a single string that represents the best match
to the specified string. See Example 2, below.

To find an exact match for a string, use strcmp.

Syntax x = strmatch(str, strarray)
x = strmatch(str, strarray, 'exact')

Description x = strmatch(str, strarray) looks through the rows of the character
array or cell array of strings strarray to find strings that begin with
the text contained in str, and returns the matching row indices. If
strmatch does not find str in strarray, x is an empty matrix ([]).
Any trailing space characters in str or strarray are ignored when
matching. strmatch is fastest when strarray is a character array.

x = strmatch(str, strarray, 'exact') compares str with each
row of strarray, looking for an exact match of the entire strings.
Any trailing space characters in str or strarray are ignored when
matching.

Examples Example 1

The statement

x = strmatch('max', char('max', 'minimax', 'maximum'))

returns x = [1; 3] since rows 1 and 3 begin with 'max'. The statement

x = strmatch('max', char('max', 'minimax', 'maximum'),'exact')

returns x = 1, since only row 1 matches 'max' exactly.

1-6637

strmatch

Example 2

This example shows how to replace use of the strmatch function with
validatestring or strncmp.

To start with, use strmatch to return the index of those elements for
which there is a match:

list = {'max', 'minimax', 'maximum', 'max'}
x = strmatch('max',list)
x =

1
3
4

validatestring returns the string representing the best match. If
multiple or no matches exist, this statement would return an error:

list = {'max', 'minimax', 'maximum', 'max'};
x = validatestring('max', list)
x =

max

strncmp returns a logical array indicating which strings match the
specified string:

list = {'max', 'minimax', 'maximum', 'max'};
x = strncmp('max', list, 3)
x =

1 0 1 1

If you prefer that MATLAB return the numeric indices of list, use
find as follows:

list = {'max', 'minimax', 'maximum', 'max'}
x = find(strncmp(list, 'max', 3))

1-6638

strmatch

If your input to strmatch is a character matrix, then first convert
the matrix to a cell array using cellstr. Then, pass the output from
cellstr to strncmp or validatestring

See Also strcmp | strcmpi | strncmp | strncmpi | strfind | regexp | regexpi
| regexprep

1-6639

strncmp

Purpose Compare first n characters of strings (case sensitive)

Syntax TF = strncmp(string,string,n)
TF = strncmp(string,cellstr,n)
TF = strncmp(cellstr,cellstr,n)

Description TF = strncmp(string,string,n) compares the first n characters of
two strings for equality. The function returns a scalar logical 1 for
equality, or scalar logical 0 for inequality.

TF = strncmp(string,cellstr,n) compares the first n characters
of a string with the first n characters of each element of a cell array
of strings. The function returns a logical array the same size as the
cellstr input in which logical 1 represents equality. The order of the
first two input arguments is not important.

TF = strncmp(cellstr,cellstr,n) compares each element of one cell
array of strings with the same element of the other. strncmp attempts
to match only the first n characters of these strings. The function
returns a logical array the same size as either input array.

Tips • The strncmp function is intended for comparison of character data.
When used to compare numeric data, it returns logical 0.

• Use strncmpi for case-insensitive string comparisons.

• Any leading and trailing blanks in either of the strings are explicitly
included in the comparison.

• The value returned by strncmp is not the same as the C language
convention.

• strncmp supports international character sets.

Input
Arguments

string

Single character string or n-by-1 array of strings.

cellstr

1-6640

strncmp

Cell array of strings.

n

Maximum number of characters to compare. Must be a scalar,
integer-valued double.

Output
Arguments

TF

When both inputs are character arrays, TF is a scalar logical value. This
value is logical 1 (true) if the size and content of both arrays are equal,
and logical 0 (false) if they are not.

When either or both inputs are a cell array of strings, TF is an array of
logical ones and zeros. This array is the same size as the input cell
array(s), and contains logical 1 (true) for those elements of the input
arrays that are a match, and logical 0 (false) for those elements that
are not.

Examples Before trying the strncmp function, use strcmp to perform a simple
comparison of the two input strings. Because only the first 13 characters
are the same, strcmp returns logical 0:

strcmp('Kansas City, KS', 'Kansas City, MO')
ans =

0

Do the comparison again, but this time using strncmp and specifying
the number of characters to compare:

chars2compare = length('Kansas City, KS') - 2
ans =

13
strncmp('Kansas City, KS', 'Kansas City, MO', chars2compare)
ans =

1

1-6641

strncmp

From a list of 10 MATLAB functions, find those that apply to using a
camera:

function_list = {'calendar' 'case' 'camdolly' 'circshift' ...

'caxis' 'camtarget' 'cast' 'camorbit' ...

'callib' 'cart2sph'};

strncmp(function_list, 'cam', 3)

ans =

0 0 1 0 0 1 0 1 0 0

function_list{strncmp(function_list, 'cam', 3)}

ans =

camdolly

ans =

camtarget

ans =

camorbit

Create two 5-by-10 string arrays str1 and str2 that are equal, except
for the element at row 4, column 3. Using linear indexing, this is
element 14:

str1 = ['AAAAAAAAAA'; 'BBBBBBBBBB'; 'CCCCCCCCCC'; ...
'DDDDDDDDDD'; 'EEEEEEEEEE']

str1 =
AAAAAAAAAA
BBBBBBBBBB
CCCCCCCCCC
DDDDDDDDDD
EEEEEEEEEE

str2 = str1;
str2(4,3) = '-'
str2 =

AAAAAAAAAA

1-6642

strncmp

BBBBBBBBBB
CCCCCCCCCC
DD-DDDDDDD
EEEEEEEEEE

Because MATLAB compares the arrays in linear order (that is, column
by column rather than row by row), strncmp finds only the first 13
elements to be the same:

str1 A B C D E A B C D E A B C D E
str2 A B C D E A B C D E A B C - E

|
element 14

strncmp(str1, str2, 13)
ans =

1

strncmp(str1, str2, 14)
ans =

0

See Also strcmp | strncmpi | strcmpi | strfind | regexp | regexpi

1-6643

strncmpi

Purpose Compare first n characters of strings (case insensitive)

Syntax TF = strncmpi(string,string,n)
TF = strncmpi(string,cellstr,n)
TF = strncmpi(cellstr,cellstr,n)

Description TF = strncmpi(string,string,n) compares the first n characters of
two strings for equality, ignoring any differences in letter case. The
function returns a scalar logical 1 for equality, or scalar logical 0 for
inequality.

TF = strncmpi(string,cellstr,n) compares the first n characters
of a string with the first n characters of each element of a cell array of
strings, ignoring letter case. The function returns a logical array the
same size as the cellstr input in which logical 1 represents equality.
The order of the input arguments is not important.

TF = strncmpi(cellstr,cellstr,n) compares each element of one
cell array of strings with the same element of the other, ignoring letter
case. strncmpi attempts to match only the first n characters of these
strings. The function returns a logical array the same size as either
input array.

Tips • The strncmpi function is intended for comparison of character data.
When used to compare numeric data, it returns logical 0.

• Use strncmp for case-sensitive string comparisons.

• Any leading and trailing blanks in either of the strings are explicitly
included in the comparison.

• The value returned by strncmpi is not the same as the C language
convention.

• strncmpi supports international character sets.

Input
Arguments

string

A single character string or n-by-1 array of strings.

1-6644

strncmpi

cellstr

A cell array of strings.

n

Maximum number of characters to compare. Must be a scalar,
integer-valued double.

Output
Arguments

TF

When both inputs are character arrays, TF is a scalar logical value. This
value is logical 1 (true) if the size and content of both arrays are equal,
and logical 0 (false) if they are not.

When either or both inputs are a cell array of strings, TF is an array of
logical ones and zeros. This array is the same size as the input cell
array(s), and contains logical 1 (true) for those elements of the input
arrays that are a match, and logical 0 (false) for those elements that
are not.

Examples From a list of 10 MATLAB functions, find those that apply to using a
camera. Do the comparison without sensitivity to letter case:

function_list = {'calendar' 'case' 'camdolly' 'circshift' ...

'caxis' 'Camtarget' 'cast' 'camorbit' ...

'callib' 'cart2sph'};

strncmpi(function_list, 'CAM', 3)

ans =

0 0 1 0 0 1 0 1 0 0

function_list{strncmpi(function_list, 'CAM', 3)}

ans =

camdolly

ans =

Camtarget

ans =

camorbit

1-6645

strncmpi

See Also strcmpi | strncmp | strcmp | strfind | regexpi | regexp

1-6646

strread

Purpose Read formatted data from string

Note strread is not recommended. Use textscan instead.

Syntax A = strread('str')
[A, B, ...] = strread('str')
[A, B, ...] = strread('str', 'format')
[A, B, ...] = strread('str', 'format', N)
[A, B, ...] = strread('str', 'format', N, param, value, ...)

Description A = strread('str') reads numeric data from input string str into a
1-by-N vector A, where N equals the number of whitespace-separated
numbers in str. Use this form only with strings containing numeric
data. See “Example 1” on page 1-6651 below.

[A, B, ...] = strread('str') reads numeric data from the string
input str into scalar output variables A, B, and so on. The number
of output variables must equal the number of whitespace-separated
numbers in str. Use this form only with strings containing numeric
data. See “Example 2” on page 1-6652 below.

[A, B, ...] = strread('str', 'format') reads data from str
into variables A, B, and so on using the specified format. The number
of output variables A, B, etc. must be equal to the number of format
specifiers (e.g., %s or %d) in the format argument. You can read all of
the data in str to a single output variable as long as you use only one
format specifier in the command. See “Example 4” on page 1-6652 and
“Example 5” on page 1-6653 below.

The table Formats for strread on page 1-6648 lists the valid format
specifiers. More information on using formats is available under
“Formats” on page 1-6651 in the “Tips” on page 1-6650 section below.

[A, B, ...] = strread('str', 'format', N) reads data from str
reusing the format string N times, where N is an integer greater than
zero. If N is -1, strread reads the entire string. When str contains

1-6647

strread

only numeric data, you can set format to the empty string (''). See
“Example 3” on page 1-6652 below.

[A, B, ...] = strread('str', 'format', N, param, value,
...) customizes strread using param/value pairs, as listed in the table
Parameters and Values for strread on page 1-6649 below. When str
contains only numeric data, you can set format to the empty string ('').
The N argument is optional and may be omitted entirely. See “Example
7” on page 1-6654 below.

Formats for strread

Format Action Output

Literals

(ordinary
characters)

Ignore the matching characters.
For example, in a string that
has Dept followed by a number
(for department number), to
skip the Dept and read only
the number, use 'Dept' in the
format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating-point value. Double array

%s Read a white-space separated
string.

Cell array of strings

%q Read a double quoted string,
ignoring the quotes.

Cell array of strings

%c Read characters, including
white space.

Character array

%[...] Read the longest string
containing characters specified
in the brackets.

Cell array of strings

1-6648

strread

Formats for strread (Continued)

Format Action Output

%[^...] Read the longest nonempty
string containing characters
that are not specified in the
brackets.

Cell array of strings

%*... Ignore the characters following
*. See “Example 8” on page
1-6654 below.

No output

%w... Read field width specified by w.
The %f format supports %w.pf,
where w is the field width and p
is the precision.

Parameters and Values for strread

param value Action

Any from the list below:whitespace

\b
\n
\r
\t
\\
%%
''

Backspace
New line
Carriage return
Horizontal tab
Backslash
Percent sign
Single quotation
mark

Treats vector of
characters, *, as
white space. Default
is \b\r\n\t.

delimiter Delimiter character Specifies delimiter
character. Default
is one or more
whitespace
characters.

expchars Exponent characters Default is eEdD.

1-6649

strread

Parameters and Values for strread (Continued)

param value Action

bufsize Positive integer Specifies the
maximum string
length, in bytes.
Default is 4095.

commentstyle matlab Ignores characters
after %.

commentstyle shell Ignores characters
after #.

commentstyle c Ignores characters
between /* and */.

commentstyle c++ Ignores characters
after //.

emptyvalue Value to return for empty
numeric fields in delimited
files

Default is NaN.

Tips If you terminate the input string with a newline character (\n), strread
returns arrays of equal size by padding arrays of lesser size with the
emptyvalue character:

[A,B,C] = strread(sprintf('5,7,1,9\n'),'%d%d%d', ...
'delimiter', ',', 'emptyvalue',NaN)

A =
5
9

B =
7

NaN
C =

1
NaN

1-6650

strread

If you remove the \n from the input string of this example, array A
continues to be a 2-by-1 array, but B and C are now 1-by-1.

Delimiters

If your data uses a character other than a space as a delimiter, you
must use the strread parameter 'delimiter' to specify the delimiter.
For example, if the string str used a semicolon as a delimiter, you
would use this command:

[names, types, x, y, answer] = strread(str,'%s %s %f ...
%d %s','delimiter',';')

Formats

The format string determines the number and types of return
arguments. The number of return arguments must match the number
of conversion specifiers in the format string.

The strread function continues reading str until the entire string is
read. If there are fewer format specifiers than there are entities in str,
strread reapplies the format specifiers, starting over at the beginning.
See “Example 5” on page 1-6653 below.

The format string supports a subset of the conversion specifiers and
conventions of the C language fscanf routine. White-space characters
in the format string are ignored.

Preserving White-Space

If you want to preserve leading and trailing spaces in a string, use the
whitespace parameter as shown here:

str = ' An example of preserving spaces ';

strread(str, '%s', 'whitespace', '')
ans =

' An example of preserving spaces '

Examples Example 1

Read numeric data into a 1-by-5 vector:

1-6651

strread

a = strread('0.41 8.24 3.57 6.24 9.27')
a =

0.4100 8.2400 3.5700 6.2400 9.2700

Example 2

Read numeric data into separate scalar variables:

[a b c d e] = strread('0.41 8.24 3.57 6.24 9.27')
a =

0.4100
b =

8.2400
c =

3.5700
d =

6.2400
e =

9.2700

Example 3

Read the only first three numbers in the string, also formatting as
floating point:

a = strread('0.41 8.24 3.57 6.24 9.27', '%4.2f', 3)

a =
0.4100
8.2400
3.5700

Example 4

Truncate the data to one decimal digit by specifying format %3.1f.
The second specifier, %*1d, tells strread not to read in the remaining
decimal digit:

a = strread('0.41 8.24 3.57 6.24 9.27', '%3.1f %*1d')

a =

1-6652

strread

0.4000
8.2000
3.5000
6.2000
9.2000

Example 5

Read six numbers into two variables, reusing the format specifiers:

[a b] = strread('0.41 8.24 3.57 6.24 9.27 3.29', '%f %f')

a =
0.4100
3.5700
9.2700

b =
8.2400
6.2400
3.2900

Example 6

Read string and numeric data to two output variables. Ignore commas
in the input string:

str = 'Section 4, Page 7, Line 26';

[name value] = strread(str, '%s %d,')
name =

'Section'
'Page'
'Line'

value =
4
7

26

1-6653

strread

Example 7

Read the string used in the last example, but this time delimiting with
commas instead of spaces:

str = 'Section 4, Page 7, Line 26';

[a b c] = strread(str, '%s %s %s', 'delimiter', ',')
a =

'Section 4'
b =

'Page 7'
c =

'Line 26'

Example 8

Read selected portions of the input string:

str = '<table border=5 width="100%" cellspacing=0>';

[border width space] = strread(str, ...
'%*s%*s %c %*s "%4s" %*s %c', 'delimiter', '= ')

border =
5

width =
'100%'

space =
0

Example 9

Read the string into two vectors, restricting the Answer values to T and
F. Also note that two delimiters (comma and space) are used here:

str = 'Answer_1: T, Answer_2: F, Answer_3: F';

[a b] = strread(str, '%s %[TF]', 'delimiter', ', ')
a =

'Answer_1:'

1-6654

strread

'Answer_2:'
'Answer_3:'

b =
'T'
'F'
'F'

See Also textscan | sscanf

1-6655

strrep

Purpose Find and replace substring

Syntax modifiedStr = strrep(origStr, oldSubstr, newSubstr)

Description modifiedStr = strrep(origStr, oldSubstr, newSubstr) replaces
all occurrences of the string oldSubstr within string origStr with
the string newSubstr.

Tips • strrep accepts input combinations of single strings, strings in scalar
cells, and same-sized cell arrays of strings. If any inputs are cell
arrays, strrep returns a cell array.

• The strrep function does not find empty strings for replacement.
That is, when origStr and oldSubstr both contain the empty string
(''), strrep does not replace '' with the contents of newSubstr.

• Before replacing strings, strrep finds all instances of oldSubstr
in origStr, like the strfind function. For overlapping patterns,
strrep performs multiple replacements. See the final example in the
Examples section.

Examples Replace text in a character array:

claim = 'This is a good example.';
new_claim = strrep(claim, 'good', 'great')

MATLAB returns:

new_claim =
This is a great example.

Replace text in a cell array:

c_files = {'c:\cookies.m'; ...
'c:\candy.m'; ...
'c:\calories.m'};

d_files = strrep(c_files, 'c:', 'd:')

1-6656

strrep

MATLAB returns:

d_files =
'd:\cookies.m'
'd:\candy.m'
'd:\calories.m'

Replace text in a cell array with values in a second cell array:

missing_info = {'Start: __'; ...
'End: __'};

dates = {'01/01/2001'; ...
'12/12/2002'};

complete = strrep(missing_info, '__', dates)

MATLAB returns:

complete =
'Start: 01/01/2001'
'End: 12/12/2002'

Compare the use of strrep and regexprep to replace a string with
a repeated pattern:

repeats = 'abc 2 def 22 ghi 222 jkl 2222';
indices = strfind(repeats, '22')

using_strrep = strrep(repeats, '22', '*')
using_regexprep = regexprep(repeats, '22', '*')

MATLAB returns:

indices =
11 18 19 26 27 28

1-6657

strrep

using_strrep =
abc 2 def * ghi ** jkl ***

using_regexprep =
abc 2 def * ghi *2 jkl **

See Also strfind | regexprep

1-6658

strsplit

Purpose Split string at specified delimiter

Syntax C = strsplit(str)
C = strsplit(str,delimiter)
C = strsplit(str,delimiter,Name,Value)

[C,matches] = strsplit(___)

Description C = strsplit(str) splits the string, str, at whitespace into the cell
array of strings, C. A whitespace character is equivalent to any sequence
in the set {' ','\f','\n','\r','\t','\v'}.

C = strsplit(str,delimiter) splits str at the delimiters specified
by delimiter.

C = strsplit(str,delimiter,Name,Value) specifies additional
delimiter options using one or more name-value pair arguments.

[C,matches] = strsplit(___) additionally returns a cell array of
strings, matches, using any of the input arguments in the previous
syntaxes. matches contains all occurrences of delimiters upon which
strsplit splits str.

Input
Arguments

str - Input text
string

Input text, specified as a string.

Data Types
char

delimiter - Delimiting characters
string | 1-by-n cell array of strings

1-6659

strsplit

Delimiting characters, specified as a single string or a 1-by-n cell array
of strings. Strings specified in delimiter do not appear in the string
fragments of the output C.

Specify multiple delimiters in a cell array of strings. Each element
of the cell array must contain a single string in a single row. The
strsplit function splits str on the elements of delimiter in the
order in which they appear in the cell array.

delimiter can include the following escape sequences:

\\ Backslash

\0 Null

\a Alarm

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

Example: ','

Example: {'-',','}

Data Types
char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-6660

strsplit

Example: 'DelimiterType','RegularExpression' instructs
strsplit to treat delimiter as a regular expression.

’CollapseDelimiters’ - Multiple delimiter handling
1 (true) (default) | 0 (false)

Multiple delimiter handling, specified as the comma-separated pair
consisting of 'CollapseDelimiters' and either true or false. If true,
then consecutive delimiters in str are treated as one. If false, then
consecutive delimiters are treated as separate delimiters, resulting in
empty string '' elements between matched delimiters.

Example: 'CollapseDelimiters',true

’DelimiterType’ - Delimiter type
'Simple' (default) | 'RegularExpression'

Delimiter type, specified as the comma-separated pair consisting of
'DelimiterType' and one of the following strings.

'Simple' Except for escape sequences,
strsplit treats delimiter as a
literal string.

'RegularExpression' strsplit treats delimiter as a
regular expression.

In both cases, delimiter can include escape sequences.

Output
Arguments

C - Parts of original string
cell array of strings

Parts of the original string, returned as a cell array of strings. C always
contains one more element than matches contains. Consequently, if
the original string, str, ends with a delimiter, then the last cell in C
contains an empty string.

matches - Identified delimiters
cell array of strings

1-6661

strsplit

Identified delimiters, returned as a cell array of strings. matches
always contains one fewer element than output C contains.

Examples Split String on Whitespace

str = 'The rain in Spain.';
C = strsplit(str)

C =

'The' 'rain' 'in' 'Spain.'

C is a cell array containing 4 strings.

Split String of Values on Specific Delimiter

Split a string of comma-separated values.

data = '1.21, 1.985, 1.955, 2.015, 1.885';
C = strsplit(data,', ')

C =

'1.21' '1.985' '1.955' '2.015' '1.885'

Split a string of values, data, which contains the units m/s with an
arbitrary number of white-space on either side of the text. The regular
expression, \s*, matches any white-space character appearing zero
or more times.

data = '1.21m/s1.985m/s 1.955 m/s2.015 m/s 1.885m/s';

[C,matches] = strsplit(data,'\s*m/s\s*',...

'DelimiterType','RegularExpression')

C =

'1.21' '1.985' '1.955' '2.015' '1.885' ''

1-6662

strsplit

matches =

'm/s' 'm/s ' ' m/s' ' m/s ' 'm/s'

In this case, the last string in C is empty. This empty string is the string
that follows the last matched delimiter.

Split Path String on File Separator

myPath = 'C:\work\matlab';
C = strsplit(myPath,'\')

C =

'C:' 'work' 'matlab'

Split Text String with Multiple Delimiters

Split a string on ' ' and 'ain', treating multiple delimiters as one.
Specify multiple delimiters in a cell array of strings.

str = 'The rain in Spain stays mainly in the plain.';
[C,matches] = strsplit(str,{' ','ain'},'CollapseDelimiters',true)

C =

'The' 'r' 'in' 'Sp' 'stays' 'm' 'ly' 'in'

matches =

' ' 'ain ' ' ' 'ain ' ' ' 'ain' ' ' ' ' '

Split the same string on whitespace and on 'ain', using regular
expressions and treating multiple delimiters separately.

[C,matches] = strsplit(str,{'\s','ain'},'CollapseDelimiters',...
false, 'DelimiterType','RegularExpression')

C =

1-6663

strsplit

'The' 'r' '' 'in' 'Sp' '' 'stays' 'm' 'ly'

matches =

' ' 'ain' ' ' ' ' 'ain' ' ' ' ' 'ain' ' '

In this case, strsplit treats the two delimiters separately, so
empty strings appear in output C between the consecutively matched
delimiters.

Split Text with Multiple, Overlapping Delimiters

Split text on the strings ', ' and ', and '.

str = 'bacon, lettuce, and tomato';
[C,matches] = strsplit(str,{', ',', and '})

C =

'bacon' 'lettuce' 'and tomato'

matches =

', ' ', '

Because the command lists ', ' first and ', and ' contains ', ', the
strsplit function splits str on the first delimiter and never proceeds
to the second delimiter.

If you reverse the order of delimiters, ', and ' takes priority.

str = 'bacon, lettuce, and tomato';
[C,matches] = strsplit(str,{', and ',', '})

C =

1-6664

strsplit

'bacon' 'lettuce' 'tomato'

matches =

', ' ', and '

See Also strjoin | strfind | regexp

Concepts • “Regular Expressions”

1-6665

strtok

Purpose Selected parts of string

Syntax token = strtok(str)
token = strtok(str, delimiter)
[token, remain] = strtok(str, ...)

Description token = strtok(str) parses input string str from left to right,
returning part or all of that string in token. Using the white-space
character as a delimiter, the token output begins at the start of str,
skipping any delimiters that might appear at the start, and includes
all characters up to either the next delimiter or the end of the string.
White-space characters include space (ASCII 32), tab (ASCII 9), and
carriage return (ASCII 13).

The str argument can be a string of characters enclosed in single
quotation marks, a cell array of strings each enclosed in single quotation
marks, or a variable representing either of the two. If str is a cell
array of N strings, then token is a cell array of N tokens, with token{1}
derived from str{1}, token{2} from str{2}, and so on.

token = strtok(str, delimiter) is the same as the above syntax
except that you specify the delimiting character(s) yourself using the
delimiter character vector input. White-space characters are not
considered to be delimiters when using this syntax unless you include
them in the delimiter argument. If the delimiter input specifies
more than one character, MATLAB treats each character as a separate
delimiter; it does not treat the multiple characters as a delimiting
string. The number and order of characters in the delimiter argument
is unimportant. Do not use escape sequences as delimiters. For
example, use char(9) rather than '\t' for tab.

[token, remain] = strtok(str, ...) returns in remain that part
of str, if any, that follows token. The delimiter is included in remain.
If no delimiters are found in the body of the input string, then the
entire string (excluding any leading delimiting characters) is returned
in token, and remain is an empty string (''). If str is a cell array of
strings, token is a cell array of tokens and remain is a cell array of
string remainders.

1-6666

strtok

Examples Example 1

This example uses the default white-space delimiter. Note that space
characters at the start of the string are not included in the token
output, but the space character that follows token is included in remain:

s = ' This is a simple example.';
[token, remain] = strtok(s)

token =
This
remain =
is a simple example.

Example 2

Take a string of HTML code and break it down into segments delimited
by the < and > characters. Write a while loop to parse the string and
print each segment:

s = sprintf('%s%s%s%s', ...
'<ul class=continued><li class=continued>', ...
'<pre>token = strtok', ...
'(''str'', delimiter)', ...
'token = strtok(''str'')');

remain = s;

while true
[str, remain] = strtok(remain, '<>');
if isempty(str), break; end
disp(sprintf('%s', str))

end

Here is the output:

ul class=continued
li class=continued
pre

1-6667

strtok

a name="13474"
/a
token = strtok('str', delimiter)
a name="13475"
/a
token = strtok('str')

Example 3

Using strtok on a cell array of strings returns a cell array of strings in
token and a character array in remain:

s = {'all in good time'; ...
'my dog has fleas'; ...
'leave no stone unturned'};

remain = s;

for k = 1:4
[token, remain] = strtok(remain);
token

end

Here is the output:

token =
'all'
'my'
'leave'

token =
'in'
'dog'
'no'

token =
'good'
'has'
'stone'

token =

1-6668

strtok

'time'
'fleas'
'unturned'

See Also strfind | strncmp | strcmp | textscan | strsplit

1-6669

strtrim

Purpose Remove leading and trailing white space from string

Syntax S = strtrim(str)
C = strtrim(cstr)

Description S = strtrim(str) returns a copy of string str with all leading and
trailing white-space characters removed. A white-space character is one
for which the isspace function returns logical 1 (true).

C = strtrim(cstr) returns a copy of the cell array of strings cstr
with all leading and trailing white-space characters removed from each
string in the cell array.

Examples Remove the leading white-space characters (spaces and tabs) from str:

str = sprintf(' \t Remove leading white-space')
str =

Remove leading white-space

str = strtrim(str)
str =
Remove leading white-space

Remove leading and trailing white-space from the cell array of strings:

cstr = {' Trim leading white-space';
'Trim trailing white-space '};

cstr = strtrim(cstr)
cstr =

'Trim leading white-space'
'Trim trailing white-space'

See Also isspace | cellstr | deblank | strjust

1-6670

struct

Purpose Create structure array

Syntax s = struct
s = struct(field,value)
s = struct(field1,value1,...,fieldN,valueN)
s = struct([])

s = struct(obj)

Description s = struct creates a scalar (1-by-1) structure with no fields.

s = struct(field,value) creates a structure array with the specified
field and values.

• If value is not a cell array, then s is a scalar structure, where
s.(field) = value.

• If value is a cell array, then s is a structure array with the same
dimensions as value. Each element of s contains the corresponding
element of value. For example, s = struct('f',{'a','b'})
returns s(1).f = 'a' and s(2).f = 'b'.

• If value is an empty cell array {}, then s is an empty (0-by-0)
structure.

s = struct(field1,value1,...,fieldN,valueN) creates a structure
array with multiple fields. Any nonscalar cell arrays in the set
value1,...,valueN must have the same dimensions.

• If none of the value inputs is a cell array, or all are scalar cell arrays,
then s is a scalar structure.

• If any of the value inputs are nonscalar cell arrays, then s has the
same dimensions as the nonscalar cell arrays. For any value that is
a scalar cell array or an array of any other data type, struct inserts
the contents of value in the relevant field for all elements of s.

• If any value input is an empty cell array, {}, then output s is an
empty (0-by-0) structure.

1-6671

struct

s = struct([]) creates an empty (0-by-0) structure with no fields.

s = struct(obj) creates a structure with field names and values that
correspond to properties of obj. MATLAB does not convert obj, but
rather creates s as a new structure. This structure does not retain the
class information, so private, protected, and hidden properties become
public fields in s. The struct function issues a warning when you use
this syntax.

Input
Arguments

field - Field name
string

Field name, specified as a string. Valid field names begin with a letter,
and can contain letters, digits, and underscores. The maximum length
of a field name is the value that the namelengthmax function returns.

value - Values within structure field
cell array | scalar | vector | multidimensional array

Values within structure field, specified as a cell array or as a scalar,
vector, or multidimensional array of any other data type.

If none of the value inputs is a cell array, or all of the value inputs are
scalar cell arrays, then output s is a scalar structure. Otherwise, value
inputs that are nonscalar cell arrays must have the same dimensions,
and output s also has those dimensions. For any value that is a scalar
cell array or an array of any other data type, struct inserts the contents
of value in the relevant field for all elements of s.

If any value input is an empty cell array, {}, then output s is an empty
structure array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char | struct | cell
| function_handle
Complex Number Support: Yes

obj - Object

1-6672

struct

any nonfundamental class

Object of any class, except the fundamental data types such as double
or char.

Examples Structure with One Field

Create a nonscalar structure with one field, f.

field = 'f';
value = {'some text';

[10, 20, 30];
magic(5)};

s = struct(field,value)

s =
3x1 struct array with fields:

f

View the contents each element.

s.f

ans =
some text

ans =
10 20 30

ans =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

When you access a field of a nonscalar structure, such as s.f, MATLAB
returns a comma-separated list. In this case, s.f is equivalent to
s(1).f, s(2).f, s(3).f.

1-6673

struct

Structure with Multiple Fields

Create a nonscalar structure with several fields.

field1 = 'f1'; value1 = zeros(1,10);
field2 = 'f2'; value2 = {'a', 'b'};
field3 = 'f3'; value3 = {pi, pi.^2};
field4 = 'f4'; value4 = {'fourth'};

s = struct(field1,value1,field2,value2,field3,value3,field4,value4)

s =
1x2 struct array with fields:

f1
f2
f3
f4

The cell arrays for value2 and value3 are 1-by-2, so s is also 1-by-2.
Because value1 is a numeric array and not a cell array, both s(1).f1
and s(2).f1 have the same contents. Similarly, because the cell array
for value4 has a single element, s(1).f4 and s(2).f4 have the same
contents.

s(1)

ans =
f1: [0 0 0 0 0 0 0 0 0 0]
f2: 'a'
f3: 3.1416
f4: 'fourth'

s(2)

ans =
f1: [0 0 0 0 0 0 0 0 0 0]
f2: 'b'
f3: 9.8696
f4: 'fourth'

1-6674

struct

Fields that Contain Cell Arrays

Create a structure with a field that contains a cell array.

field = 'mycell';
value = {{'a','b','c'}};
s = struct(field,value)

s =
mycell: {'a' 'b' 'c'}

Empty Structure Array

Create an empty structure with several fields.

s = struct('a',{},'b',{},'c',{})

s =
0x0 struct array with fields:

a
b
c

Assign a value to a field in an empty structure.

s(1).a = 'a'

s =

a: 'a'
b: []
c: []

Nested Structure Array

Create a nested structure: a contains field b, which in turn contains
fields c and d.

a.b = struct('c',{},'d',{})

a =

1-6675

struct

b: [0x0 struct]

View the names of the fields of nested structure a.b.

fieldnames(a.b)

ans =
'c'
'd'

See Also isfield | table | isstruct | fieldnames | orderfields | rmfield
| substruct | cell2struct | struct2cell

Related
Examples

• “Create a Structure Array”
• “Access Data in a Structure Array”
• “Generate Field Names from Variables”

1-6676

struct2cell

Purpose Convert structure to cell array

Syntax c = struct2cell(s)

Description c = struct2cell(s) converts the m-by-n structure s (with p fields) into
a p-by-m-by-n cell array c.

If structure s is multidimensional, cell array c has size [p size(s)].

Tips • Use fieldnames to obtain structure field names in the same order as
struct2cell returns structure values.

Examples The commands

clear s, s.category = 'tree';
s.height = 37.4; s.name = 'birch';

create the structure

s =
category: 'tree'

height: 37.4000
name: 'birch'

Converting the structure to a cell array,

c = struct2cell(s)

c =
'tree'
[37.4000]
'birch'

See Also cell2struct | struct2table | table2cell | cell | iscell | struct
| isstruct | fieldnames

How To • dynamic field names

1-6677

struct2table

Purpose Convert structure array to table

Syntax T = struct2table(S)
T = struct2table(S,Name,Value)

Description T = struct2table(S) converts the structure array, S, to a table, T.
Each field of S becomes a variable in T.

T = struct2table(S,Name,Value) creates a table from a structure
array, S, with additional options specified by one or more Name,Value
pair arguments.

For example, you can specify row names to include in the table.

Input
Arguments

S - Structure array
structure array

Structure array, specified as a scalar structure array.

• If S is a scalar structure with n fields, all of which have m rows, then T
is an m-by-n table.

• If S is a nonscalar m-by-1 structure array with n fields, then T is an
m-by-n table.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: RowNames',{'row1','row2','row3'} uses the row names,
row1, row2, and row3 for the table, T.

’RowNames’ - Row names for T
{} (default) | cell array of nonempty, distinct strings

1-6678

struct2table

Row names for T, specified as the comma-separated pair consisting of
'RowNames' and a cell array of nonempty, distinct strings.

’AsArray’ - Indicator for how to treat scalar structure
false (default) | true | 0 | 1

Indicator for how to treat scalar structure, specified as the
comma-separated pair consisting of 'AsArray' and either false, true,
0, or 1.

true struct2table converts S to a table with one row
and n variables. The variables can be different sizes.

false struct2table converts a scalar structure array
with n fields into an m-by-n table. Each field must
have m rows. This is the default behavior

Output
Arguments

T - Output table
table

Output table, returned as a table. The table can store metadata such as
descriptions, variable units, variable names, and row names. For more
information, see Table Properties.

Examples Convert Scalar Structure to Table

Convert a scalar structure to a table using the default options.

Create a structure array, S.

S.Name = {'CLARK';'BROWN';'MARTIN'};
S.Gender = {'M';'F';'M'};
S.SystolicBP = [124;122;130];
S.DiastolicBP = [93;80;92];

S

S =

1-6679

struct2table

Name: {3x1 cell}
Gender: {3x1 cell}

SystolicBP: [3x1 double]
DiastolicBP: [3x1 double]

The scalar structure, S, has four fields, each with three rows.

Convert the structure array to a table.

T = struct2table(S)

T =

Name Gender SystolicBP DiastolicBP
________ ______ __________ ___________

'CLARK' 'M' 124 93
'BROWN' 'F' 122 80
'MARTIN' 'M' 130 92

The structure field names in S become the variable names in the output
table. The size of T is 3-by-4.

Change Name from a variable to row names by modifying the table
property, T.Properties.RowNames, and then deleting the variable Name.

T.Properties.RowNames = T.Name;
T.Name = [];

T

T =

Gender SystolicBP DiastolicBP
______ __________ ___________

CLARK 'M' 124 93

1-6680

struct2table

BROWN 'F' 122 80
MARTIN 'M' 130 92

Convert Nonscalar Structure Array to Table

Create a nonscalar structure array, S.

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;

S

S =

3x1 struct array with fields:

Name
Gender
SystolicBP
DiastolicBP

S is a 3-by-1 structure array with four fields.

Convert the structure array to a table.

T = struct2table(S)

1-6681

struct2table

T =

Name Gender SystolicBP DiastolicBP
________ ______ __________ ___________

'CLARK' 'M' 124 93
'BROWN' 'F' 122 80
'MARTIN' 'M' 130 92

The structure field names in S become the variable names in the output
table. The size of T is 3-by-4.

Treat Scalar Stucture As Array

Use 'AsArray',true to create a table from a scalar structure whose
fields have different numbers of rows.

Create a scalar structure, S, with fields name, billing, and test.

S.name = 'John Doe';
S.billing = 127.00;
S.test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];
S

S =

name: 'John Doe'
billing: 127

test: [3x3 double]

The fields have a different number of rows. Therefore, you cannot use
struct2table(S), which uses 'AsArray',false by default.

Treat the scalar structure as an array and convert it to a table.

T = struct2table(S,'AsArray',true)

T =

1-6682

struct2table

name billing test
__________ _______ ____________

'John Doe' 127 [3x3 double]

T contains one row.

See Also table2struct | cell2table | array2table | table

Related
Examples

• “Access Data in a Table”

1-6683

structfun

Purpose Apply function to each field of scalar structure

Syntax [A1,...,An] = structfun(func,S)
[A1,...,An] = structfun(func,S,Name,Value)

Description [A1,...,An] = structfun(func,S) applies the function specified by
function handle func to each field of scalar structure S. Output arrays
A1,...,An, where n is the number of outputs from function func,
contain the outputs from the function calls.

[A1,...,An] = structfun(func,S,Name,Value) calls function
func with additional options specified by one or more Name,Value
pair arguments. Possible values for Name are 'UniformOutput' or
'ErrorHandler'.

Input
Arguments

func

Handle to a function that accepts a single input argument and returns n
output arguments.

If function func corresponds to more than one function file (that is, if
func represents a set of overloaded functions), MATLAB determines
which function to call based on the class of the input arguments.

S

Scalar structure.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’UniformOutput’

Logical value, as follows:

1-6684

structfun

true (1) Indicates that for all inputs, each output from function
func is a cell array or a scalar value that is always of the
same type and size. The structfun function combines
the outputs in arrays A1,...,An, where n is the number
of function outputs. Each output array is of the same type
as the individual function outputs.

false
(0)

Requests that the structfun function combine the
outputs into scalar structures A1,...,An, with the same
fields as input structure S. The outputs of function func
can be of any size or type.

Default: true

’ErrorHandler’

Handle to a function that catches any errors that occur when MATLAB
attempts to execute function func. Define this function so that it
rethrows the error or returns valid outputs for function func.

MATLAB calls the specified error-handling function with two input
arguments:

• A structure with these fields:

identifier Error identifier.

message Error message text.

index Linear index corresponding to the element of the
input cell array at the time of the error.

• The set of input arguments to function func at the time of the error.

Output
Arguments

A1,...,An

Arrays that collect the n outputs from function func.

If UniformOutput is true (the default):

1-6685

structfun

• The individual outputs from function func must be scalar values
(numeric, logical, character, or structure) or cell arrays.

• The class of a particular output argument must be the same for each
input. The class of the corresponding output array is the same as the
class of the individual outputs from function func.

• Each array A is a column vector whose length equals the number of
fields in S. The structfun function applies function func to the fields
of S in the same order as that returned by the fieldnames function.

If UniformOutput is false, each array A is a scalar structure with the
same fields as input S.

Examples Create a scalar structure, and count the number of characters in each
field.

s.f1 = 'Sunday';
s.f2 = 'Monday';
s.f3 = 'Tuesday';
s.f4 = 'Wednesday';
s.f5 = 'Thursday';
s.f6 = 'Friday';
s.f7 = 'Saturday';

lengths = structfun(@numel, s)

Shorten the text in each field of s, created in the previous example.
Because the output is nonscalar, set UniformOutput to false.

shortNames = structfun(@(x) (x(1:3)), s, 'UniformOutput', false)

The syntax @(x) creates an anonymous function.

Define and call a custom error handling function.

function result = errorfun(errorinfo, field)

1-6686

structfun

warning(errorinfo.identifier, errorinfo.message);
result = NaN;

end

mystruct.f1 = 'text';
myresult = structfun(@(x) x^2, mystruct, 'ErrorHandler', @errorfun)

See Also cellfun | arrayfun | function_handle | cell2mat | spfun

Tutorials • “Anonymous Functions”

1-6687

strvcat

Purpose Concatenate strings vertically

Note strvcat is not recommended. Use char instead. Unlike strvcat,
the char function does not ignore empty strings.

Syntax S = strvcat(t1, t2, t3, ...)
S = strvcat(c)

Description S = strvcat(t1, t2, t3, ...) forms the character array S
containing the text strings (or string matrices) t1,t2,t3,... as rows.
Spaces are appended to each string as necessary to form a valid matrix.
Empty arguments are ignored.

S = strvcat(c) when c is a cell array of strings, passes each element
of c as an input to strvcat. Empty strings in the input are ignored.

Tips If each text parameter, ti, is itself a character array, strvcat appends
them vertically to create arbitrarily large string matrices.

Examples The command strvcat('Hello','Yes') is the same as ['Hello';'Yes
'], except that strvcat performs the padding automatically.

t1 = 'first'; t2 = 'string'; t3 = 'matrix'; t4 = 'second';

S1 = strvcat(t1, t2, t3) S2 = strvcat(t4, t2, t3)

S1 = S2 =

first second
string string
matrix matrix

S3 = strvcat(S1, S2)

S3 =

1-6688

strvcat

first
string
matrix
second
string
matrix

See Also strcat | cat | vertcat | horzcat | int2str | mat2str | num2str
| strings | special character

1-6689

sub2ind

Purpose Convert subscripts to linear indices

Syntax linearInd = sub2ind(matrixSize, rowSub, colSub)
linearInd = sub2ind(arraySize, dim1Sub,
dim2Sub, dim3Sub, ...)

Description linearInd = sub2ind(matrixSize, rowSub, colSub) returns the
linear index equivalents to the row and column subscripts rowSub and
colSub for a matrix of size matrixSize. The matrixSize input is a
2-element vector that specifies the number of rows and columns in the
matrix as [nRows, nCols]. The rowSub and colSub inputs are positive,
whole number scalars or vectors that specify one or more row-column
subscript pairs for the matrix. Example 3 demonstrates the use of
vectors for the rowSub and colSub inputs.

linearInd = sub2ind(arraySize, dim1Sub, dim2Sub, dim3Sub,
...) returns the linear index equivalents to the specified subscripts
for each dimension of an N-dimensional array of size arraySize. The
arraySize input is an n-element vector that specifies the number
of dimensions in the array. The dimNSub inputs are positive, whole
number scalars or vectors that specify one or more row-column
subscripts for the matrix.

All subscript inputs can be single, double, or any integer type. The
linearInd output is always of class double.

If needed, sub2ind assumes that unspecified trailing subscripts are
1. See Example 2, below.

Examples Example 1

This example converts the subscripts (2, 1, 2) for three-dimensional
array A to a single linear index. Start by creating a 3-by-4-by-2 array A:

rng(0,'twister'); % Initialize random number generator.
A = rand(3, 4, 2)

A(:,:,1) =
0.8147 0.9134 0.2785 0.9649

1-6690

sub2ind

0.9058 0.6324 0.5469 0.1576
0.1270 0.0975 0.9575 0.9706

A(:,:,2) =
0.9572 0.1419 0.7922 0.0357
0.4854 0.4218 0.9595 0.8491
0.8003 0.9157 0.6557 0.9340

Find the linear index corresponding to (2, 1, 2):

linearInd = sub2ind(size(A), 2, 1, 2)
linearInd =

14

Make sure that these agree:

A(2, 1, 2) A(14)
ans = and =

0.4854 0.4854

Example 2

Using the 3-dimensional array A defined in the previous example,
specify only 2 of the 3 subscript arguments in the call to sub2ind. The
third subscript argument defaults to 1.

The command

linearInd = sub2ind(size(A), 2, 4)
ans =

11

is the same as

linearInd = sub2ind(size(A), 2, 4, 1)
ans =

11

1-6691

sub2ind

Example 3

Using the same 3-dimensional input array A as in Example 1,
accomplish the work of five separate sub2ind commands with just one.

Replace the following commands:

sub2ind(size(A), 3, 3, 2);
sub2ind(size(A), 2, 4, 1);
sub2ind(size(A), 3, 1, 2);
sub2ind(size(A), 1, 3, 2);
sub2ind(size(A), 2, 4, 1);

with a single command:

sub2ind(size(A), [3 2 3 1 2], [3 4 1 3 4], [2 1 2 2 1])
ans =

21 11 15 19 11

Verify that these linear indices access the same array elements as their
subscripted counterparts:

[A(3,3,2), A(2,4,1), A(3,1,2), A(1,3,2), A(2,4,1)]
ans =

0.6557 0.1576 0.8003 0.7922 0.1576

A([21, 11, 15, 19, 11])
ans =

0.6557 0.1576 0.8003 0.7922 0.1576

See Also ind2sub | find | size

1-6692

subplot

Purpose Create axes in tiled positions

Syntax subplot(m,n,p)
subplot(m,n,p,'replace')
subplot(m,n,p,'align')
subplot('Position',positionVector)
subplot(___ ,Name,Value)

h = subplot(___)

subplot(h)

Description subplot(m,n,p) divides the current figure into an m-by-n grid and
creates an axes in the grid position specified by p. MATLAB numbers
its grids by row, such that the first grid is the first column of the first
row, the second grid is the second column of the first row, and so on.

subplot(m,n,p,'replace') deletes any existing axes in grid location
p and creates a new axes.

subplot(m,n,p,'align') creates a new axes so that the plot boxes are
aligned. This is the default behavior.

subplot('Position',positionVector) creates a new axes at the
position specified by positionVector. The positionVector is a
four-element vector of the form [left,bottom,width,height], such
that the entries are normalized values between 0.0 to 1.0. If the position
vector specifies an axes that overlaps any previous axes, then the new
axes replaces the existing ones.

subplot(___ ,Name,Value) specifies properties for the axes using any
of the input argument combinations in the previous syntaxes and one or
more Name,Value pair arguments.

1-6693

subplot

h = subplot(___) returns the handle to the axes created by the
subplot function.

subplot(h) makes the axes with handle h the current axes for
subsequent plotting commands.

Input
Arguments

m - Number of grid rows
1 (default) | positive integer

Number of grid rows, specified as a positive integer.

Data Types
single | double

n - Number of grid columns
1 (default) | positive integer

Number of grid columns, specified as a positive integer.

Data Types
single | double

p - Grid position for new axes
positive integer | vector

Grid position for the new axes, specified as a positive integer or a vector
of positive integers.

• If p is a positive integer, then subplot creates a new axes in grid
location p.

• If p is a vector of positive integers, then subplot creates a new
axes that spans the grid locations listed in p. For example,
subplot(2,3,[2,5]) creates one axes spanning positions 2 and 5.
Use subplot(2,3,[2,6]) to create one axes spanning positions 2,
3, 5, and 6.

Data Types
single | double

1-6694

subplot

positionVector - Normalized position for new axes
four-element vector of values between 0.0 and 1.0

Normalized position for the new axes, specified as a
four-element vector of values between 0.0 and 1.0 with the form
[left,bottom,width,height]. The values are normalized with respect
to the interior of the figure. The first two elements specify the position
of the bottom-left corner of the axes in relation to the bottom-left corner
of the figure. The last two elements specify the width and height of
the new axes. Use this syntax to position an axes that does not align
with grid positions.

Example: [0.1, 0.1, 0.35, 0.35]

Data Types
single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can set any axes properties for a subplot. Some plotting functions
override existing axes property settings. Execute plotting functions
before specifying axes properties to avoid overriding them. For a list of
axes properties see Axes Properties.

Example: 'XGrid','on'

Output
Arguments

h - Handle to axes object
scalar

Handle to axes object, returned as a scalar. This is a unique identifier,
which you can use to query and modify the properties of a specific
axes object.

1-6695

subplot

Examples Upper and Lower Subplots

Create a figure with two stacked subplots. Plot a sine wave in each axes.

x = linspace(0,10);
y1 = sin(x);
y2 = sin(5*x);

figure
subplot(2,1,1);
plot(x,y1)

subplot(2,1,2);
plot(x,y2)

1-6696

subplot

Quadrant of Subplots

Create a figure divided into four subplots.

Define the data.

x = linspace(0,10);
y1 = sin(x);
y2 = sin(2*x);
y3 = sin(4*x);

1-6697

subplot

y4 = sin(8*x);

Plot the four sine waves and title each subplot.

figure
subplot(2,2,1);
plot(x,y1);
title('Subplot 1: sin(x)')

subplot(2,2,2);
plot(x,y2);
title('Subplot 2: sin(2x)')

subplot(2,2,3)
plot(x,y3);
title('Subplot 3: sin(4x)')

subplot(2,2,4)
plot(x,y4);
title('Subplot 4: sin(8x)')

1-6698

subplot

Subplots with Different Sizes

Create a figure containing subplots with different sizes.

Define a vector of sine values and a vector of polynomial values.

x = linspace(-3.8,3.8);
y_cos = cos(x);
y_poly = 1 - x.^2./2 + x.^4./24;

1-6699

subplot

Plot the sine wave in the first subplot and the polynomial in the second
subplot. Create a third subplot that spans the lower half of the figure
and plot both vectors together. Add titles to each subplot.

figure
subplot(2,2,1);
plot(x,y_cos);
title('Subplot 1: Cosine')

subplot(2,2,2);
plot(x,y_poly,'g');
title('Subplot 2: Polynomial')

subplot(2,2,[3,4]);
plot(x,y_cos,'b',x,y_poly,'g');
title('Subplot 3 and 4: Both')

1-6700

subplot

Replacing Subplots

Replace an existing subplot with an empty axes.

Initialize the random number generator. Use a loop to create a figure
with four stem plots of random data.

rng(0,'twister');
figure
for k = 1:4

1-6701

subplot

data = rand(1,10);
subplot(2, 2, k)
stem(data);

end

Replace the second subplot with an empty axes.

subplot(2,2,2,'replace')

1-6702

subplot

Subplots at Specified Positions

Create a figure with two subplots that are not aligned.

Define y as data from the magic function.

y = magic(4);

Plot y in one subplot. Create a bar graph of y in a second subplot.
Specify a custom position for each subplot.

1-6703

subplot

figure
positionVector1 = [0.1, 0.2, 0.3, 0.3];
subplot('Position',positionVector1)
plot(y)

positionVector2 = [0.5, 0.1, 0.4, 0.7];
subplot('Position',positionVector2)
bar(y)

1-6704

subplot

Return Subplot Axes Handle

Create a figure with two subplots and return the subplot axes handles,
h1 and h2.

figure
h1 = subplot(2,1,1);
h2 = subplot(2,1,2);

1-6705

subplot

Store the data from the peaks function in matrix Z. Plot the first 20
rows of Z in the upper subplot by referring to its handle, h1. Plot the
entire data set in the lower subplot.

Z = peaks;
plot(h1,Z(1:20,:))
plot(h2,Z);

1-6706

subplot

Change the tick marks for the lower subplot using axes properties.
Execute plotting functions before specifying axes properties to avoid
overriding existing axes property settings.

set(h2,'XTick',[0,10,25,40,50])

Make Axes the Current Axes

Make a subplot the current axes using its axes handle.

1-6707

subplot

Create a figure with multiple subplots. Store the subplot axes handles
in vector h.

figure;
for k = 1:4

h(k) = subplot(2,2,k);
end

Make the second subplot the current axes. Plot a sine wave and change
the axis limits.

1-6708

subplot

x = linspace(1,50);
y = sin(x);

subplot(h(2));
plot(x,y,'Color',[0.1, 0.5, 0.1]);
title('Second Subplot')
axis([0,50,-1,1])

1-6709

subplot

Tips • If the axes already exists, then the command subplot(m,n,p) makes
the subplot in position p the current axes.

• subplot(111) is an exception and not identical in behavior
to subplot(1,1,1). For reasons of backwards compatibility,
subplot(111) is a special case of subplot that does not immediately
create an axes, but sets up the figure so that the next graphics
command executes clf reset. The next graphics command deletes
all the figure children and creates a new axes in the default position.
subplot(111) does not return a handle and an error occurs if code
specifies a return argument.

• If a new subplot axes overlaps an existing axes, then MATLAB
deletes the existing axes. To overlay a new axes on top of
existing subplots, use the axes command. For example,
subplot('Position',[.35 .35 .3 .3]) deletes any underlying
subplots, but axes('Position',[.35 .35 .3 .3]) positions a new
axes in the middle of the figure without deleting any underlying axes.

• When using a script to create subplots, MATLAB does not finalize
the Position property value until either a drawnow command is
issued or MATLAB returns to await a user command. The Position
property value for a subplot is subject to change until the script
either refreshes the plot or exits.

See Also axes | cla | clf | figure | gca

1-6710

subsasgn

Purpose Subscripted assignment

Syntax A = subsasgn(A, S, B)

Description A = subsasgn(A, S, B) is called by MATLAB for the syntax A(i) =
B, A{i} = B, or A.i = B when A is an object.

MATLAB uses the built-in subsasgn function to interpret indexed
assignment statements. Modify the indexed assignment behavior of
classes by overloading subsasgn in the class.

If A is a fundamental class (see “Fundamental MATLAB Classes”),
then an indexed reference to A calls the built-in subsasgn function.
It does not call a subsasgn method that you have overloaded for that
class. Therefore, if A is an array of class double, and there is an
@double/subsasgn method on your MATLAB path, the statement A(I)
= B calls the MATLAB built-in subsasgn function.

Tips Within a class’s own methods, MATLAB calls the built-in subsasgn, not
the class defined subsasgn. This behavior enables to use the default
subsasgn behavior when defining specialized indexing for your class.
See “subsref and subsasgn Within Class Methods — Built-In Called”
for more information.

Input
Arguments

A

Object

S

struct array with two fields, type and subs.

• type is a string containing '()', '{}', or '.', where '()' specifies
integer subscripts, '{}' specifies cell array subscripts, and '.'
specifies subscripted structure fields.

• subs is a cell array or string containing the actual subscripts.

B

1-6711

subsasgn

Assignment value (right-hand side)

Output
Arguments

A

Result of evaluating assignment.

Examples See how MATLAB calls subsasgn for the expression:

A(1:2,:) = B;

The syntax A(1:2,:) = B calls A = subsasgn(A,S,B) where S is a
1-by-1 structure with S.type = '()' and S.subs = {1:2,':'}. The
string ':' indicates a colon used as a subscript.

See how MATLAB calls subsasgn for the expression:

A{1:2} = B;

The syntax A{1:2} = B calls A = subsasgn(A,S,B) where S.type =
'{}' and S.subs = {[1 2]}.

See how MATLAB calls subsasgn for the expression:

A.field = B;

The syntax A.field = B calls A = subsasgn(A,S,B) where S.type =
'.' and S.subs = 'field'.

See how MATLAB calls subsasgn for the expression:

A(1,2).name(3:5)=B;

Simple calls combine in a straightforward way for more complicated
indexing expressions. In such cases, length(S) is the number
of subscripting levels. For instance, A(1,2).name(3:5)=B calls
A=subsasgn(A,S,B) where S is a 3-by-1 structure array with the
following values:

1-6712

subsasgn

S(1).type = '()' S(2).type = '.' S(3).type = '()'

S(1).subs = {1,2} S(2).subs = 'name' S(3).subs = {[3 4
5]}

Algorithms In the assignment A(J,K,...) = B(M,N,...), subscripts J, K, M, N,
and so on, can be scalar, vector, or arrays, when all the following are
true:

• The number of subscripts specified for B, excluding trailing subscripts
equal to 1, does not exceed the value returned by ndims(B).

• The number of nonscalar subscripts specified for A equals the number
of nonscalar subscripts specified for B. For example, A(5,1:4,1,2) =
B(5:8) is valid because both sides of the equation use one nonscalar
subscript.

• The order and length of all nonscalar subscripts specified for A
matches the order and length of nonscalar subscripts specified for
B. For example, A(1:4, 3, 3:9) = B(5:8, 1:7) is valid because
both sides of the equation (ignoring the one scalar subscript 3) use a
4-element subscript followed by a 7-element subscript.

See numel for information concerning the use of numel with regards
to the overloaded subsasgn function.

See Also subsref | substruct

Tutorials • “Indexed Reference and Assignment”

1-6713

subsindex

Purpose Subscript indexing with object

Syntax ind = subsindex(A)

Description ind = subsindex(A) called by MATLAB for the expression X(A)
when A is an object, unless such an expression results in a call to an
overloaded subsref or subsasgn method for X. subsindex must return
the value of the object as a zero-based integer index. (ind must contain
integer values in the range 0 to prod(size(X))-1.) Call subsindex
directly from an overloaded subsref or subsasgn method.

MATLAB invokes subsindex separately on all the subscripts in an
expression, such as X(A,B).

See Also subsasgn | subsasgn

Tutorials • “Using Objects as Indices”

1-6714

subspace

Purpose Angle between two subspaces

Syntax theta = subspace(A,B)

Description theta = subspace(A,B) finds the angle between two subspaces
specified by the columns of A and B. If A and B are column vectors of unit
length, this is the same as acos(abs(A'*B)).

Tips If the angle between the two subspaces is small, the two spaces are
nearly linearly dependent. In a physical experiment described by some
observations A, and a second realization of the experiment described by
B, subspace(A,B) gives a measure of the amount of new information
afforded by the second experiment not associated with statistical errors
of fluctuations.

Examples Consider two subspaces of a Hadamard matrix, whose columns are
orthogonal.

H = hadamard(8);
A = H(:,2:4);
B = H(:,5:8);

Note that matrices A and B are different sizes — A has three columns
and B four. It is not necessary that two subspaces be the same size in
order to find the angle between them. Geometrically, this is the angle
between two hyperplanes embedded in a higher dimensional space.

theta = subspace(A,B)
theta =

1.5708

That A and B are orthogonal is shown by the fact that theta is equal to
π/2.

theta - pi/2
ans =

0

1-6715

subsref

Purpose Redefine subscripted reference for objects

Syntax B = subsref(A,S)

Description B = subsref(A,S) is called by MATLAB for the syntax A(i), A{i}, or
A.i when A is an object. S is a struct array with two fields, type and
subs.

The type field is string containing '()', '{}', or '.', where '()'
specifies integer subscripts, '{}' specifies cell array subscripts, and '.'
specifies subscripted structure fields. The subs field is a cell array or a
string containing the actual subscripts.

B is the result of the indexed expression.

MATLAB uses the built-in subsref function to interpret indexed
references to objects. To modify the indexed reference behavior of
objects, overload subsref in the class.

If A is a fundamental class (see “Fundamental MATLAB Classes”),
then an indexed reference to A calls the built-in subsref function.
It does not call a subsref method that you have overloaded for that
class. Therefore, if A is an array of class double, and there is an
@double/subsref method on your MATLAB path, the statement A(I)
calls the MATLAB built-in subsref function.

Tips Within a class’s own methods, MATLAB calls the built-in subsref, not
the class defined subsref. This behavior enables to use the default
subsref behavior when defining specialized indexing for your class.
See “subsref and subsasgn Within Class Methods — Built-In Called”
for more information.

Examples See how MATLAB calls subsref for the expression:

A(1:2,:)

The syntax A(1:2,:) calls B = subsref(A,S) where S is a 1-by-1
structure with S.type='()' and S.subs={1:2,':'}. The string ':'
indicates a colon used as a subscript.

1-6716

subsref

See how MATLAB calls subsref for the expression:

A{1:2}

The syntax A{1:2} calls B = subsref(A,S) where S.type='{}' and
S.subs={[1 2]}.

See how MATLAB calls subsref for the expression:

A.field

The syntax A.field calls B = subsref(A,S) where S.type='.' and
S.subs='field'.

See how MATLAB calls subsref for the expression:

A(1,2).name(3:5)

Simple calls combine in a straightforward way for more complicated
indexing expressions. In such cases, length(S) is the number of
subscript levels. For instance, A(1,2).name(3:5) calls subsref(A,S)
where S is a 3-by-1 structure array with the following values:

S(1).type='()' S(2).type='.' S(3).type='()'

S(1).subs={1,2} S(2).subs='name' S(3).subs={[3 4
5]}

See Also numel | subsasgn | substruct

Tutorials • “Indexed Reference and Assignment”

1-6717

substruct

Purpose Create structure argument for subsasgn or subsref

Syntax S = substruct(type1, subs1, type2, subs2, ...)

Description S = substruct(type1, subs1, type2, subs2, ...) creates a
structure with the fields required by an overloaded subsref or
subsasgn method. Each type string must be one of '.', '()', or '{}'.
The corresponding subs argument must be either a field name (for the
'.' type) or a cell array containing the index vectors (for the '()' or
'{}' types).

Output
Arguments

S

struct with these fields:

• type: one of '.', '()', or '{}'

• subs: subscript values (field name or cell array of index vectors)

Examples Call subsref with arguments equivalent to the syntax:

B = A(3,5).field;

where A is an object of a class that implements a subsref method

Use substruct to form the input struct, S:

S = substruct('()',{3,5},'.','field');

Call the class method:

B = subsref(A,S);

The struct created by substruct in this example contains:

S(1)

ans =

1-6718

substruct

type: '()'
subs: {[3] [5]}

S(2)

ans =

type: '.'
subs: 'field'

See Also subsasgn | subsref

Tutorials • “Indexed Reference and Assignment”

1-6719

subvolume

Purpose Extract subset of volume data set

Syntax [Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits)
[Nx,Ny,Nz,Nv] = subvolume(V,limits)
Nv = subvolume(...)

Description [Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits) extracts a subset of
the volume data set V using the specified axis-aligned limits. limits =
[xmin,xmax,ymin, ymax,zmin,zmax] (Any NaNs in the limits indicate
that the volume should not be cropped along that axis.)

The arrays X, Y, and Z define the coordinates for the volume V. The
subvolume is returned in NV and the coordinates of the subvolume are
given in NX, NY, and NZ.

[Nx,Ny,Nz,Nv] = subvolume(V,limits) assumes the arrays X, Y,
and Z are defined as

[X,Y,Z] = meshgrid(1:N,1:M,1:P)

where [M,N,P] = size(V).

Nv = subvolume(...) returns only the subvolume.

Examples This example uses a data set that is a collection of MRI slices of a
human skull. The data is processed in a variety of ways:

• The 4-D array is squeezed (squeeze) into three dimensions and then
a subset of the data is extracted (subvolume).

• The outline of the skull is an isosurface generated as a patch (p1)
whose vertex normals are recalculated to improve the appearance
when lighting is applied (patch, isosurface, isonormals).

• A second patch (p2) with interpolated face color draws the end caps
(FaceColor, isocaps).

• The view of the object is set (view, axis, daspect).

• A 100-element grayscale colormap provides coloring for the end caps
(colormap).

1-6720

subvolume

• Adding lights to the right and left of the camera illuminates the
object (camlight, lighting).

load mri
D = squeeze(D);
[x,y,z,D] = subvolume(D,[60,80,nan,80,nan,nan]);
p1 = patch(isosurface(x,y,z,D, 5),...

'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1);
p2 = patch(isocaps(x,y,z,D, 5),...

'FaceColor','interp','EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight right; camlight left; lighting gouraud

1-6721

subvolume

See Also isocaps | isonormals | isosurface | reducepatch | reducevolume
| smooth3

1-6722

sum

Purpose Sum of array elements

Syntax S = sum(A)
S = sum(A,dim)
S = sum(___ ,type)

Description S = sum(A) returns the sum of the elements of A along the first array
dimension whose size does not equal 1:

• If A is a vector, then sum(A) returns the sum of the elements.

• If A is a nonempty, nonvector matrix, then sum(A) treats the columns
of A as vectors and returns a row vector whose elements are the sums
of each column.

• If A is an empty 0-by-0 matrix, then sum(A) returns 0, a 1-by-1 matrix.

• If A is a multidimensional array, then sum(A) treats the values along
the first array dimension whose size does not equal 1 as vectors and
returns an array of row vectors. The size of this dimension becomes 1
while the sizes of all other dimensions remain the same.

S = sum(A,dim) sums the elements of A along dimension dim. The dim
input is a positive integer scalar.

S = sum(___ ,type) accumulates in and returns an array in the class
specified by type, using any of the input arguments in the previous
syntaxes. type can be 'double' or 'native'.

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char

1-6723

sum

Complex Number Support: Yes

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider a two-dimensional input array, A:

• sum(A,1) works on successive elements in the columns of A and
returns a row vector of the sums of each column.

• sum(A,2) works on successive elements in the rows of A and returns
a column vector of the sums of each row.

sum returns A if dim is greater than ndims(A).

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

type - Output class
'double' | 'native'

Output class, specified as 'double' or 'native', defines the data type
that the operation is performed in and returned in.

• If type is 'double', then sum computes and returns a double-precision
array, regardless of the input data type. For example, if A is single,

1-6724

sum

then sum accumulates in and returns in double. This is the default
behavior for integer data types when type is not specified.

• If type is 'native', sum accumulates natively and returns an array
with the same data type as the input array A. For example, if A has
data type int8, then sum(A,'native') accumulates in and returns
in int8. This is the default behavior for single and double data
types when type is not specified.

Data Types
char

Output
Arguments

S - Sum array
scalar | vector | matrix | multidimensional array

Sum array, returned as a scalar, vector, matrix, or multidimensional
array. The dimension of A acted on by sum has size 1 in S.

The class of S is as follows:

• If the type argument is not used and the input is not single, then
the output is double.

• If the type argument is not used and the input is single, then the
output is single.

• If the type argument specifies 'double', then the output is double
regardless of the input data type.

• If the type argument specifies 'native', then the output is the same
data type as the input.

Examples Sum of Vector Elements

Create a vector and compute the sum of the elements.

A = 1:10;
S = sum(A)

S =

1-6725

sum

55

Sum of Elements in Each Column

Create a 3-by-3 matrix.

A = [1 3 2; 4 2 5; 6 1 4]

A =

1 3 2
4 2 5
6 1 4

Compute the sum of the elements in each column.

S = sum(A)

S =

11 6 11

Sum of Elements in Each Row

Create a 3-by-3 matrix.

A = [1 3 2; 4 2 5; 6 1 4]

A =

1 3 2
4 2 5
6 1 4

Compute the sum of the elements in each row.

S = sum(A,2)

S =

1-6726

sum

6
11
11

Sum of Elements in Each Plane

Create a 4-by-2-by-3 multidimensional array of ones.

A = ones(4,2,3)

A(:,:,1) =

1 1
1 1
1 1
1 1

A(:,:,2) =

1 1
1 1
1 1
1 1

A(:,:,3) =

1 1
1 1
1 1
1 1

Compute the sum along the third (dim = 3) dimension.

S = sum(A,3)

S =

1-6727

sum

3 3
3 3
3 3
3 3

The length of the first dimension matches size(A,1), the length of
the second dimension matches size(A,2), and the length of the third
dimension is 1.

Integer Overflow Due to Output Data Type

Create a vector of signed 8-bit integers and compute the sum of the
elements.

A = int8(1:20);
S = sum(A)

S =

210

The output has data type double because of default behavior.

class(S)

ans =

double

To keep the same data type in the output as in the input, specify type
as 'native'.

S = sum(A,'native')

S =

127

1-6728

sum

This disagrees with the double-precision value of 210 because the
output has data type int8 and is saturated.

class(S)

ans =

int8

See Also cumsum | diff | isfloat | prod

1-6729

summary

Purpose Print summary of table or categorical array

Syntax summary(T)

summary(A)
summary(A,dim)

Description summary(T) prints a summary of the table, T. The table summary
displays the table description from T.Properties.Description
followed by a summary of the table variables.

summary(A) prints a summary of the categorical array, A.

• If A is a vector, then sumamry(A) displays the category names along
with the number of elements in each category (the category counts).
Furthermore, the summary contains the number of elements that
are undefined.

• If A is a matrix, then summary treats the columns of A as vectors and
displays the category counts for each column of A.

• If A is a multidimensional array, then summary acts along the first
array dimension whose size does not equal 1.

summary(A,dim) prints the category counts of the categorical array, A,
along dimension dim.

For example, you can display the counts of each row in a categorical
array using counts(A,2).

Input
Arguments

T - Input table
table

Input table, specified as a table.

A - Categorical array
vector | matrix | multidimensional array

1-6730

summary

Categorical array, specified as a vector, matrix, or multidimensional
array.

dim - Dimension of A to operate along
positive integer scalar

Dimension of A to operate to along, specified as a positive integer scalar.
If no value is specified, the default is the first array dimension whose
size does not equal 1.

Consider a two-dimensional categorical array, A:

If dim = 1, then summary(A,1) displays the category counts for each
column of A.

If dim = 2, then sumary(A,2) returns the category counts of each row
of A.

1-6731

summary

If dim is greater than ndims(A), thensummary(A) returns an array the
same size as A for each category. summary returns 1 for elements in the
corresponding category and 0 otherwise.

Examples Summary of Table

Create a table.

load patients
BloodPressure = [Systolic Diastolic];
T = table(Gender,Age,Smoker,BloodPressure,'RowNames',LastName);

Add descriptions and units to table T.

T.Properties.Description = 'Simulated patient data';
T.Properties.VariableUnits = {'' 'Yrs' '' 'mm Hg'};
T.Properties.VariableDescriptions{4} = 'Systolic/Diastolic';

Print a summary of table T.

format compact

summary(T)

Description: Simulated patient data
Variables:

Gender: 100x1 cell string
Age: 100x1 double

Units: Yrs
Values:

min 25
median 39
max 50

Smoker: 100x1 logical
Values:

true 34
false 66

BloodPressure: 100x2 double

1-6732

summary

Units: mm Hg
Description: Systolic/Diastolic
Values:

BloodPressure_1 BloodPressure_2
_______________ _______________

min 109 68
median 122 81.5
max 138 99

summary displays the minimum, median, and maximum values for each
column of the variable BloodPressure.

Summary of Categorical Vector

Create a 1-by-5 categorical vector.

A = categorical({'plane' 'car' 'train' 'car' 'plane'})

A =

plane car train car plane

A has three categories, car, plane, and train.

Print a summary of A.

summary(A)

car plane train
2 2 1

car appears in two elements of A, plane appears in two elements, and
train appears in one element.

Since A is a row vector, summary lists the occurrences of each category
horizontally.

Summary of Each Column in Categorical Array

Create a 3-by-2 categorical array, A, from a numeric array.

1-6733

summary

X = [1 3; 2 1; 3 1; 4 2];
valueset = 1:3;
catnames = {'red' 'green' 'blue'};

A = categorical(X,valueset,catnames)

A =

red blue
green red
blue red
<undefined> green

A has three categories, red, green, and blue. The value, 4, was not
included in the valueset input to the categorical function. Therefore,
the corresponding element, A(4,1), does not have a corresponding
category and is undefined.

Print a summary of A.

summary(A)

red 1 2
green 1 1
blue 1 1
<undefined> 1 0

red appears in one element in the first column of A and two in the
second column.

green appears in one element in the first column of A and none in the
second column.

blue appears in one element in the first column of A and one in the
second column.

A contains only one undefined element. It occurs in the first column.

1-6734

summary

Category Counts of Each Row in Categorical Array

Create a 3-by-2 categorical array, A, from a numeric array.

A = categorical([1 3; 2 1; 3 1],1:3,{'red' 'green' 'blue'})

A =

red blue
green red
blue red

A has three categories, red, green, and blue.

Print a summary of A along the second dimension.

summary(A,2)

red green blue
1 0 1
1 1 0
1 0 1

red appears in one element in the first row of A, one in the second row,
and one in the third row.

green appears in only one element. It occurs in the second row of A.

blue appears in one element in the first row of A and one in the third
column.

Definitions Table Summary

The table summary displays the table description from
T.Properties.Description followed by information on the variables
of T.

The summary contains the following information on the variables:

1-6735

summary

• Name: Size and Data Type — variable name from
T.Properties.VariableNames, the size of the variable, and the data
type of the variable.

• Units — variable’s units from T.Properties.VariableUnits.

• Description — variable’s description from
T.Properties.VariableDescriptions.

• Values — only included for numeric variables, logical variables, or
categorical variables.

- numeric variables — minimum, median, and maximum values.

- logical variables — number of values that are true and the
number of values that are false.

- categorical variables — number of elements from each category.

See Also table | categorical | countcats | categories

1-6736

superclasses

Purpose Superclass names

Syntax superclasses('ClassName')
superclasses(obj)
s = superclasses(...)

Description superclasses('ClassName') displays the names of all visible
superclasses of the MATLAB class with the name ClassName. Visible
classes have a Hidden attribute value of false (the default).

superclasses(obj) obj is an instance of a MATLAB class. obj can be
either a scalar object or an array of objects.

s = superclasses(...) returns the superclass names in a cell array
of strings.

Examples Get the name of the hgsetget class superclass:

superclasses('hgsetget')

Superclasses for class hgsetget:

handle

See Also properties | methods | events | classdef

Tutorials • “Hierarchies of Classes — Concepts”

1-6737

superiorto

Purpose Establish superior class relationship

Syntax superiorto('class1', 'class2', ...)

Description superiorto('class1', 'class2', ...) establishes that the class
invoking this function in its constructor has higher precedence than
the classes in the argument list.

The superiorto function establishes a precedence that determines
which object method MATLAB calls. Use this function only from a
constructor that calls the class function to create an object. For classes
defined with classdef statements, see “Class Precedence”.

Examples Show function dispatching:

a is an object of class class_a, b is an object of class class_b, and c
is an object of class class_c. The constructor method for class_c
contains the statement superiorto('class_a'). Then, either of the
following two statements:

e = fun(a,c);
e = fun(c,a);

invokes class_c/fun.

If you call a function with two objects having an unspecified relationship,
MATLAB considers the two objects to have equal precedence. In this
case, MATLAB calls the left-most object method. So fun(b,c) calls
class_b/fun, while fun(c,b) calls class_c/fun.

See Also inferiorto

1-6738

support

Purpose Open MathWorks Technical Support Web page

Note support will be removed in a future release.

Syntax support

Description support opens the MathWorks Technical Support Web page,
http://www.mathworks.com/support, in a Web browser.

This Web page contains resources including

• A search engine, including an option for solutions to common
problems

• Information about installation and licensing

• A patch archive for bug fixes you can download

• Other useful resources

See Also doc | web

1-6739

http://www.mathworks.com/support

surf

Purpose 3-D shaded surface plot

Syntax surf(Z)
surf(Z,C)
surf(X,Y,Z)
surf(X,Y,Z,C)
surf(...,'PropertyName',PropertyValue)
surf(axes_handles,...)
h = surf(...)

Description surf(Z) creates a three-dimensional shaded surface from the z
components in matrix Z, using x = 1:n and y = 1:m, where [m,n] =
size(Z). The height, Z, is a single-valued function defined over a
geometrically rectangular grid. Z specifies the color data, as well as
surface height, so color is proportional to surface height.

surf(Z,C) plots the height of Z, a single-valued function defined over a
geometrically rectangular grid, and uses matrix C, assumed to be the
same size as Z, to color the surface. See Coloring Mesh and Surface
Plots for information on defining C.

surf(X,Y,Z) uses Z for the color data and surface height. X and Y are
vectors or matrices defining the x and y components of a surface. If X
and Y are vectors, length(X) = n and length(Y) = m, where [m,n] =
size(Z). In this case, the vertices of the surface faces are (X(j), Y(i),
Z(i,j)) triples. To create X and Y matrices for arbitrary domains, use the
meshgrid function.

surf(X,Y,Z,C) uses C to define color. MATLAB performs a linear
transformation on this data to obtain colors from the current colormap.

surf(...,'PropertyName',PropertyValue) specifies surface
Surfaceplot along with the data.

1-6740

surf

surf(axes_handles,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = surf(...) returns a handle to a Surfaceplot graphics object.

Tips surf does not accept complex inputs.

Algorithms Consider a parametric surface parameterized by two independent
variables, i and j, which vary continuously over a rectangle; for
example, 1 ≤ i ≤ m and 1 ≤ j ≤ n. The three functions x(i,j), y(i,j),
and z(i,j) specify the surface. When i and j are integer values,
they define a rectangular grid with integer grid points. The functions
x(i,j), y(i,j), and z(i,j) become three m-by-n matrices, X, Y, and Z.
Surface color is a fourth function, c(i,j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected to
its four nearest neighbors.

i-1,j
|

i,j-1 - i,j - i,j+1
|

i+1,j

This underlying rectangular grid induces four-sided patches on the
surface. To express this another way, [X(:) Y(:) Z(:)] returns a
list of triples specifying points in 3-D space. Each interior point is
connected to the four neighbors inherited from the matrix indexing.
Points on the edge of the surface have three neighbors. The four points
at the corners of the grid have only two neighbors. This defines a mesh
of quadrilaterals or a quad-mesh.

You can specify surface color in two different ways: at the vertices or at
the centers of each patch. In this general setting, the surface need not
be a single-valued function of x and y. Moreover, the four-sided surface
patches need not be planar. For example, you can have surfaces defined
in polar, cylindrical, and spherical coordinate systems.

1-6741

surf

The shading function sets the shading. If the shading is interp, C must
be the same size as X, Y, and Z; it specifies the colors at the vertices.
The color within a surface patch is a bilinear function of the local
coordinates. If the shading is faceted (the default) or flat, C(i,j)
specifies the constant color in the surface patch:

(i,j) - (i,j+1)
| C(i,j) |

(i+1,j) - (i+1,j+1)

In this case, C can be the same size as X, Y, and Z and its last row and
column are ignored. Alternatively, its row and column dimensions can
be one less than those of X, Y, and Z.

The surf function specifies the viewpoint using view(3).

The range of X, Y, and Z or the current setting of XLimMode, YLimMode,
and ZLimMode axes properties determines the axis labels. You can also
set these properties using axis function.

The range of C or the current setting of the CLim and CLimMode axes
properties determines the color scaling. You can also set the properties
using caxis function. The scaled color values are indices into the
current colormap.

Examples Surface Plot of Peaks Function

Use the peaks function to define X, Y, and Z as 25-by-25 matrices. Then,
create a surface plot.

[X,Y,Z] = peaks(25);

figure
surf(X,Y,Z);

1-6742

surf

surf creates the surface plot from corresponding values in X, Y, and Z. If
you do not define the color data C, then surf uses Z to determine the
color, so color is proportional to surface height.

Sphere With Two Colors

Create a sphere and color it using the pattern from a Hadamard matrix,
which is a matrix that contains the values 1 and -1. Change the colors
used in the plot by setting the colormap to an array of two RGB triplet
values.

1-6743

surf

k = 5;
n = 2^k-1;
[x,y,z] = sphere(n);
c = hadamard(2^k);

figure
surf(x,y,z,c);
colormap([1 1 0; 0 1 1])
axis equal

1-6744

surf

See Also surfc | axis | colormap | griddata | imagesc | mesh | meshgrid
| pcolor | shading | trisurf | scatteredInterpolant | view |
Surfaceplot Properties

How To • “Representing Data as a Surface”

• “Surface Plots of Nonuniformly Sampled Data”

• Coloring Mesh and Surface Plots

1-6745

surfc

Purpose Contour plot under a 3-D shaded surface plot

Syntax surfc(Z)
surfc(Z,C)
surfc(X,Y,Z)
surfc(X,Y,Z,C)
surfc(...,'PropertyName',PropertyValue)
surfc(axes_handles,...)
h = surfc(...)

Description surfc(Z) creates a contour plot under the three-dimensional shaded
surface from the z components in matrix Z, using x = 1:n and y = 1:m,
where [m,n] = size(Z). The height, Z, is a single-valued function
defined over a geometrically rectangular grid. Z specifies the color data,
as well as surface height, so color is proportional to surface height.

surfc(Z,C) plots the height of Z, a single-valued function defined over
a geometrically rectangular grid, and uses matrix C, assumed to be the
same size as Z, to color the surface.

surfc(X,Y,Z) uses Z for the color data and surface height. X and Y
are vectors or matrices defining the x and y components of a surface.
If X and Y are vectors, length(X) = n and length(Y) = m, where [m,n]
= size(Z). In this case, the vertices of the surface faces are (X(j), Y(i),
Z(i,j)) triples. To create X and Y matrices for arbitrary domains, use the
meshgrid function.

surfc(X,Y,Z,C) uses C to define color. MATLAB performs a linear
transformation on this data to obtain colors from the current colormap.

surfc(...,'PropertyName',PropertyValue) specifies surface
Surfaceplot along with the data.

surfc(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

1-6746

surfc

h = surfc(...) returns a handle to a Surfaceplot graphics object.

Tips surfc does not accept complex inputs.

Algorithms Consider a parametric surface parameterized by two independent
variables, i and j, which vary continuously over a rectangle; for
example, 1 ≤ i ≤ m and 1 ≤ j ≤ n. The three functions x(i,j), y(i,j),
and z(i,j) specify the surface. When i and j are integer values,
they define a rectangular grid with integer grid points. The functions
x(i,j), y(i,j), and z(i,j) become three m-by-n matrices, X, Y, and Z.
Surface color is a fourth function, c(i,j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected to
its four nearest neighbors.

i-1,j
|

i,j-1 - i,j - i,j+1
|

i+1,j

This underlying rectangular grid induces four-sided patches on the
surface. To express this another way, [X(:) Y(:) Z(:)] returns a
list of triples specifying points in 3-D space. Each interior point is
connected to the four neighbors inherited from the matrix indexing.
Points on the edge of the surface have three neighbors. The four points
at the corners of the grid have only two neighbors. This defines a mesh
of quadrilaterals or a quad-mesh.

You can specify surface color in two different ways: at the vertices or at
the centers of each patch. In this general setting, the surface need not
be a single-valued function of x and y. Moreover, the four-sided surface
patches need not be planar. For example, you can have surfaces defined
in polar, cylindrical, and spherical coordinate systems.

The shading function sets the shading. If the shading is interp, C must
be the same size as X, Y, and Z; it specifies the colors at the vertices.
The color within a surface patch is a bilinear function of the local

1-6747

surfc

coordinates. If the shading is faceted (the default) or flat, C(i,j)
specifies the constant color in the surface patch:

(i,j) - (i,j+1)
| C(i,j) |

(i+1,j) - (i+1,j+1)

In this case, C can be the same size as X, Y, and Z and its last row and
column are ignored. Alternatively, its row and column dimensions can
be one less than those of X, Y, and Z.

The surfc function specifies the viewpoint using view(3).

The range of X, Y, and Z or the current setting of the axes XLimMode,
YLimMode, and ZLimMode properties (also set by the axis function)
determines the axis labels.

The range of C or the current setting of the axes CLim and CLimMode
properties (also set by the caxis function) determines the color scaling.
The scaled color values are used as indices into the current colormap.

Examples Display Contour Plot Under Surface Plot

Display a contour plot under a surface plot of the peaks function.

[X,Y,Z] = peaks(30);
figure
surfc(X,Y,Z)

1-6748

surfc

See Also surf | axis | caxis | colormap | contour | delaunay | imagesc |
mesh | meshgrid | pcolor | shading | trisurf | view | Surfaceplot
Properties

How To • Representing a Matrix as a Surface

• Coloring Mesh and Surface Plots

1-6749

surf2patch

Purpose Convert surface data to patch data

Syntax fvc = surf2patch(Z)
fvc = surf2patch(Z,C)
fvc = surf2patch(X,Y,Z)
fvc = surf2patch(X,Y,Z,C)
fvc = surf2patch(...,'triangles')
[f,v,c] = surf2patch(...)

Description fvc = surf2patch(h)

converts the geometry and color data from the surface object identified
by the handle h into patch format and returns the face, vertex, and
color data in the struct fvc. You can pass this struct directly to the
patch command.

fvc = surf2patch(Z) calculates the patch data from the surface’s
ZData matrix Z.

fvc = surf2patch(Z,C) calculates the patch data from the surface’s
ZData and CData matrices Z and C.

fvc = surf2patch(X,Y,Z) calculates the patch data from the surface’s
XData, YData, and ZData matrices X, Y, and Z.

fvc = surf2patch(X,Y,Z,C) calculates the patch data from the
surface’s XData, YData, ZData, and CData matrices X, Y, Z, and C.

fvc = surf2patch(...,'triangles') creates triangular faces
instead of the quadrilaterals that compose surfaces.

[f,v,c] = surf2patch(...) returns the face, vertex, and color data
in the three arrays f, v, and c instead of a struct.

Examples The first example uses the sphere command to generate the XData,
YData, and ZData of a surface, which is then converted to a patch. Note
that the ZData (z) is passed to surf2patch as both the third and fourth
arguments — the third argument is the ZData and the fourth argument
is taken as the CData. This is because the patch command does not

1-6750

surf2patch

automatically use the z-coordinate data for the color data, as does the
surface command.

Also, because patch is a low-level command, you must set the view to
3-D and shading to faceted to produce the same results produced by
the surf command.

[x y z] = sphere;
patch(surf2patch(x,y,z,z));
shading faceted; view(3)

In the second example surf2patch calculates face, vertex, and color
data from a surface whose handle has been passed as an argument.

s = surf(peaks);
pause
patch(surf2patch(s));
delete(s)
shading faceted; view(3)

See Also patch | reducepatch | shrinkfaces | surface | surf

1-6751

surface

Purpose Create surface object

Syntax surface(Z)
surface(Z,C)
surface(X,Y,Z)
surface(X,Y,Z,C)
surface(x,y,Z)
surface(...'PropertyName',PropertyValue,...)
h = surface(...)

Properties For a list of properties, see Surface Properties.

Description surface is the low-level function for creating surface graphics objects.
Surfaces are plots of matrix data created using the row and column
indices of each element as the x- and y-coordinates and the value of
each element as the z-coordinate.

surface(Z) plots the surface specified by the matrix Z. Here, Z is a
single-valued function, defined over a geometrically rectangular grid.

surface(Z,C) plots the surface specified by Z and colors it according
to the data in C (see "Examples").

surface(X,Y,Z) uses C = Z, so color is proportional to surface height
above the x-y plane.

surface(X,Y,Z,C) plots the parametric surface specified by X, Y, and
Z, with color specified by C.

surface(x,y,Z), surface(x,y,Z,C) replaces the first two matrix
arguments with vectors and must have length(x) = n and length(y)
= m where [m,n] = size(Z). In this case, the vertices of the surface
facets are the triples (x(j),y(i),Z(i,j)). Note that x corresponds to
the columns of Z and y corresponds to the rows of Z. For a complete
discussion of parametric surfaces, see the surf function.

surface(...'PropertyName',PropertyValue,...) follows the X, Y,
Z, and C arguments with property name/property value pairs to specify

1-6752

surface

additional surface properties. For a description of the properties, see
Surface Properties.

h = surface(...) returns a handle to the created surface object.

Tips surface does not respect the settings of the figure and axes NextPlot
properties. It simply adds the surface object to the current axes.

If you do not specify separate color data (C), MATLAB uses the matrix
(Z) to determine the coloring of the surface. In this case, color is
proportional to values of Z. You can specify a separate matrix to color
the surface independently of the data defining the area of the surface.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see set and get for examples of how
to specify these data types).

surface provides convenience forms that allow you to omit the property
name for the XData, YData, ZData, and CData properties. For example,

surface('XData',X,'YData',Y,'ZData',Z,'CData',C)

is equivalent to

surface(X,Y,Z,C)

When you specify only a single matrix input argument,

surface(Z)

MATLAB assigns the data properties as if you specified

surface('XData',[1:size(Z,2)],...
'YData',[1:size(Z,1)],...
'ZData',Z,...
'CData',Z)

The axis, caxis, colormap, hold, shading, and view commands set
graphics properties that affect surfaces. You can also set and query

1-6753

surface

surface property values after creating them using the set and get
commands.

Examples Create Surface Plot

Plot the function on the domain and
. Use meshgrid to define X and Y. Then, define Z and create

a surface plot. Change the view of the plot using view.

[X,Y] = meshgrid(-2:0.2:2,-2:0.2:2);
Z = X.*exp(-X.^2 - Y.^2);
figure
surface(X,Y,Z);
view(3)

1-6754

surface

surface creates the plot from corresponding values in X, Y, and Z. If you
do not define the color data C, then surface uses Z to determine the
color, so color is proportional to surface height.

Display Image Along Surface Plot

Use the peaks function to define XD, YD, and ZD as 25-by-25 matrices.

[XD,YD,ZD] = peaks(25);

1-6755

surface

Load the clown data set to get the image data X and its associated
colormap, map. Flip X using the flipud function and define the flipped
image as the color data for the surface, C.

load clown
C = flipud(X);

Create a surface plot and display the image along the surface. Since the
surface data ZD and the color data C have different dimensions, you
must set the surface FaceColor to 'texturemap'.

figure
surface(XD,YD,ZD,C,...

'FaceColor','texturemap',...
'EdgeColor','none',...
'CDataMapping','direct')

colormap(map);
view(-35,45);

1-6756

surface

The clown data is typically viewed with the image function, which uses
'ij' axis numbering. This example reverses the image data in the
vertical direction using flipud.

Setting
Default
Properties

You can set default surface properties on the axes, figure, and root
object levels:

set(0,'DefaultSurfaceProperty',PropertyValue...)
set(gcf,'DefaultSurfaceProperty',PropertyValue...)
set(gca,'DefaultSurfaceProperty',PropertyValue...)

1-6757

surface

where Property is the name of the surface property whose default value
you want to set and PropertyValue is the value you are specifying. Use
set and get to access the surface properties.

Tutorials For examples, see Representing a Matrix as a Surface.

See Also ColorSpec | patch | pcolor | surf | Surface Properties

1-6758

Surface Properties

Purpose Surface properties

Creating
Surface
Objects

Use surface to create surface objects.

Modifying
Properties

You can set and query graphics object properties in two ways:

• Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See “Core Graphics Objects” for general information about this type
of object.

Surface
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

AlphaData
m-by-n matrix of double or uint8

Transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData
can be of class double or uint8.

MATLAB software determines the transparency in one of the
following ways:

• Using the elements of AlphaData as transparency values
(AlphaDataMapping set to none)

• Using the elements of AlphaData as indices into the current
alphamap (AlphaDataMapping set to direct)

1-6759

Surface Properties

• Scaling the elements of AlphaData to range between the
minimum and maximum values of the axes ALim property
(AlphaDataMapping set to scaled, the default)

AlphaDataMapping
none | direct | {scaled}

Transparency mapping method. Determines how MATLAB
interprets indexed alpha data.

• none — The transparency values of AlphaData are between 0
and 1 or are clamped to this range (the default).

• scaled — Transform the AlphaData to span the portion of
the alphamap indicated by the axes ALim property, linearly
mapping data values to alpha values.

• direct — Use the AlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer
values ranging from 1 to length(alphamap). MATLAB maps
values less than 1 to the first alpha value in the alphamap,
and values greater than length(alphamap) to the last alpha
value in the alphamap. Values with a decimal portion are fixed
to the nearest lower integer. If AlphaData is an array of uint8
integers, then the indexing begins at 0 (that is, MATLAB maps
a value of 0 to the first alpha value in the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. Sets the strength of the ambient light,
which is a nondirectional light source that illuminates the entire
scene. You must have at least one visible light object in the axes
for the ambient light to be visible. The axes AmbientLightColor
property sets the color of the ambient light, which is therefore the
same on all objects in the axes.

1-6760

../ref/axes_props.html#ALim
../ref/axes_props.html#ALim

Surface Properties

You can also set the strength of the diffuse and specular
contribution of light objects. See the surface DiffuseStrength
and SpecularStrength properties.

Annotation
hg.Annotation object (read-only)

Handle of Annotation object. The Annotation property enables
you to specify whether this surface object is represented in a
figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the surface
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this surface object in a legend
(default)

off Do not include this surface object in a legend

children Same as on because surface objects do not
have children

Setting the IconDisplayStyle property

Set the IconDisplayStyle of a graphics object with handle hobj
to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

1-6761

Surface Properties

Using the IconDisplayStyle property

See “Control Legend Content” for more information and examples.

BackFaceLighting
unlit | lit | {reverselit}

Face lighting control. Determines how faces are lit when their
vertex normals point away from the camera.

• unlit — Face not lit.

• lit — Face lit in normal way.

• reverselit — Face lit as if the vertex pointed towards the
camera.

Use this property to discriminate between the internal and
external surfaces of an object. See “Back Face Lighting” for an
example.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

1-6762

Surface Properties

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press a
mouse button while the pointer is over the surface object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of object associated with the button down event and an event
structure, which is empty for this property).
The following example shows how to access the callback object’s
handle as well as the handle of the figure that contains the object
from the callback function.

function button_down(src,evnt)
% src - the object that is the source of the event

1-6763

Surface Properties

% evnt - empty for this property
sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a surface object and the button_down
function is on your MATLAB path. The following statement
assigns the button_down function to the ButtonDownFcn property:

set(h,'ButtonDownFcn',@button_down)

For information on the syntax of callback functions, see Function
Handle Callbacks.

CData
matrix (of type double)

Vertex colors. Values that specify the color at every point in ZData.

Mapping CData to a Colormap

You can specify color as indexed values or true color. Indexed color
data specifies a single value for each vertex. These values are
either scaled to map linearly into the current colormap (see caxis)
or interpreted directly as indices into the colormap, depending on
the setting of the CDataMapping property.

1-6764

Surface Properties

CData as True Color

True color defines an RGB value for each vertex. If the coordinate
data (XData, for example) are contained in m-by-n matrices, then
CData must be an m-by-n-by-3 array. The first page contains the
red components, the second the green components, and the third
the blue components of the colors.

Texturemapping the Surface FaceColor

If you set the FaceColor property to texturemap, CData does not
need to be the same size as ZData, but must be of type double
or uint8. In this case, MATLAB maps CData to conform to the
surface defined by ZData.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. Determines how MATLAB
interprets indexed color data used to color the surface. (If you use
true color specification for CData, this property has no effect.)

• scaled— Transform the color data to span the portion of the
colormap indicated by the axes CLim property, linearly mapping
data values to colors. See the caxis reference page for more
information on this mapping.

• direct — Use the color data as indices directly into the
colormap. The color data should then be integer values ranging
from 1 to length(colormap). MATLAB maps values less than
1 to the first color in the colormap, and values greater than
length(colormap) to the last color in the colormap. Values
with a decimal portion are fixed to the nearest lower integer.

Children
matrix of handles

Always the empty matrix; surface objects have no children.

1-6765

Surface Properties

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the surface that is outside the axes
rectangle.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Executes when
MATLAB creates a surface object. You must define this property
as a default value for surfaces or set the CreateFcn property
during object creation.

For example, the following statement creates a surface (assuming
x, y, z, and c are defined), and executes the function referenced by
the function handle @myCreateFcn.

surface(x,y,z,c,'CreateFcn',@myCreateFcn)

MATLAB executes this routine after setting all surface properties.
Setting this property on an existing surface object has no effect.

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

1-6766

Surface Properties

Delete surface callback function. Executes when you delete the
surface object (for example, when you issue a delete command or
clear the axes cla or figure clf).

For example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property).

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. Sets the intensity of the diffuse
component of the light falling on the surface. Diffuse light comes
from light objects in the axes. Default value is 0.6.

1-6767

Surface Properties

You can also set the intensity of the ambient and specular
components of the light on the object. See the AmbientStrength
and SpecularStrength properties.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the surface object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the surface edges.

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

1-6768

Surface Properties

• flat— The alpha data (AlphaData) value for the first vertex of
the face determines the transparency of the edges.

• interp— Linear interpolation of the alpha data (AlphaData)
values at each vertex determines the transparency of the edge.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp EdgeAlpha.

EdgeColor
{ColorSpec} | none | flat | interp

Color of the surface edge. Determines how MATLAB colors the
edges of the individual faces that make up the surface.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for edges.
The default value is [0 0 0] (black). See ColorSpec for more
information on specifying color.

• none — Edges not drawn.

• flat— The CData value of the first vertex for a face determines
the color of each edge.

• interp— Linear interpolation of the CData values at the face
vertices determines the edge color.

1-6769

../ref/surface_props.html#AlphaData
../ref/surface_props.html#ZData

Surface Properties

EdgeLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. Selects the algorithm
used to calculate the effect of light objects on surface edges.

• none— Lights do not affect the edges of this object.

• flat — The effect of light objects is uniform across each edge
of the surface.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. Controls the technique MATLAB uses to draw and
erase surface objects. Alternative erase modes are useful for
creating animated sequences, where control of the way individual
objects are redrawn is necessary to improve performance and
obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase the surface when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

1-6770

Surface Properties

• xor— Draw and erase the surface by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the surface does not damage the color of the objects behind
it. However, surface color depends on the color of the screen
behind it and is correctly colored only when over the axes
background Color, or the figure background Color if the axes
Color is none.

• background — Erase the surface by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased object, but surface objects are always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting
to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

FaceAlpha
{scalar = 1} | flat | interp | texturemap

Transparency of the surface faces.

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the faces of the object.
1 (the default) means fully opaque and 0 means completely
transparent (invisible).

1-6771

Surface Properties

• flat — The values of the alpha data (AlphaData) determine
the transparency for each face. The alpha data at the first
vertex determine the transparency of the entire face.

• interp— Bilinear interpolation of the alpha data (AlphaData)
at each vertex determines the transparency of each face.

• texturemap— Use transparency for the texture map.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp FaceAlpha.

FaceColor
ColorSpec | none | {flat} | interp | texturemap

Color of the surface face.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See the ColorSpec reference page for more information on
specifying color.

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat — The values of CData determine the color for each face
of the surface. The color data at the first vertex determine the
color of the entire face.

• interp — Bilinear interpolation of the values at each vertex
(the CData) determines the coloring of each face.

• texturemap— Texture map the CData to the surface. MATLAB
transforms the color data so that it conforms to the surface.
(See the texture mapping example.)

FaceLighting
none | {flat} | gouraud | phong

Algorithm used for lighting calculations. Selects the algorithm
used to calculate the effect of light objects on the surface.

1-6772

../ref/surface_props.html#AlphaData
../ref/surface_props.html#ZData

Surface Properties

• none— Lights do not affect the faces of this object.

• flat— The effect of light objects is uniform across the faces of
the surface. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. This property
is useful for preventing command-line users from accidentally
drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching

1-6773

Surface Properties

the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. Determines if the surface can become
the current object (as returned by the gco command and the
figure CurrentObject property) as a result of a mouse click on
the surface. If HitTest is off, clicking on the surface selects the
object below it (which might be the axes containing it).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is

1-6774

Surface Properties

the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.

1-6775

Surface Properties

For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Line style of surface edges.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

LineWidth
size in points

Edge line width. The width of the lines in points used to draw
surface edges. The default width is 0.5 points. 1 point = 1/72 inch.

Marker
character (see table)

Marker symbol. Specifies symbols that are displayed at vertices.
You can set values for the Marker property independently from
the LineStyle property. For a list of supported marker symbols,
see the following table.

1-6776

Surface Properties

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
none | {auto} | flat | ColorSpec

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto— Uses same color as the EdgeColor property.

• flat — Uses the CData value of the vertex to determine the
color of the marker edge.

1-6777

Surface Properties

• ColorSpec — Defines color to use.

MarkerFaceColor
{none} | auto | flat | ColorSpec

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Uses the axes Color for the marker face color.

• flat — Uses the CData value of the vertex to determine the
color of the face.

• ColorSpec — Defines a single color to use for all markers on
the surface.

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

MeshStyle
{both} | row | column

Row and column lines. Specifies whether to draw all edge lines or
just row or column edge lines.

• both— Draws edges for both rows and columns.

• row — Draws row edges only.

• column — Draws column edges only.

1-6778

../ref/axes_props.html#Color

Surface Properties

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors.

• auto — MATLAB calculates vertex normals based on the
coordinate data

• manual — If you specify your own vertex normals, MATLAB
sets this property to manual and does not generate its own data.

See also the VertexNormals property.

Parent
handle of axes, hggroup, or hgtransform

Parent of surface object. Contains the handle of the surface object’s
parent. The parent of a surface object is the axes, hggroup, or
hgtransform object that contains it.

Selected
on | {off}

Is object selected? When this property is on, MATLAB
displays a dashed bounding box around the surface if the
SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to
select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing a dashed bounding box around the surface. When
SelectionHighlight is off, MATLAB does not draw the box.

SpecularColorReflectance
scalar in the range 0 to 1

1-6779

Surface Properties

Color of specularly-reflected light. When this property is 0, the
color of the specularly-reflected light depends on both the color of
the object from which it reflects and the color of the light source.
When set to 1, the color of the specularly-reflected light depends
only on the color or the light source (that is, the light object Color
property). The proportions vary linearly for values in between.

SpecularExponent
scalar >= 1

Harshness of specular reflection. Controls the size of the specular
spot. Most materials have exponents in the range of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. Sets the intensity of the specular
component of the light falling on the surface. Specular light comes
from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the surface object. See the
AmbientStrength and DiffuseStrength properties. Also see the
material function.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

Type
string (read-only)

Class of the graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given

1-6780

Surface Properties

type within a plotting hierarchy. For surface objects, Type is
always ’surface’.

UIContextMenu
handle of uicontextmenu object

Associate a context menu with the surface. Assign this property
the handle of a uicontextmenu object created in the same figure
as the surface. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the surface.

UserData
matrix

User-specified data. Data you want to associate with the surface
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

VertexNormals
vector | matrix

Surface normal vectors. The vertex normals for the surface.
MATLAB generates this data to perform lighting calculations.
You can supply your own vertex normal data, even if it does
not match the coordinate data. This can be useful to produce
interesting lighting effects.

Visible
{on} | off

Surface object visibility. By default, all surfaces are visible. When
set to off, the surface is not visible, but still exists, and you can
query and set its properties.

XData
vector | matrix

1-6781

Surface Properties

X-coordinates. The x-position of the surface points. If you specify
a row vector, surface replicates the row internally until it has the
same number of columns as ZData.

YData
vector | matrix

Y-coordinates. The y-position of the surface points. If you specify
a row vector, surface replicates the row internally until it has the
same number of rows as ZData.

ZData
matrix

Z-coordinates. The z-position of the surface data points. See the
Description section for more information.

See Also surface

1-6782

Surfaceplot Properties

Purpose Define surfaceplot properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

Note that you cannot define default properties for surfaceplot objects.

See Plot Objects for information on surfaceplot objects.

Surfaceplot
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

AlphaData
m-by-n matrix of double or uint8

Transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData
can be of class double or uint8.

MATLAB software determines the transparency in one of the
following ways:

• Using the elements of AlphaData as transparency values
(AlphaDataMapping set to none)

• Using the elements of AlphaData as indices into the current
alphamap (AlphaDataMapping set to direct)

• Scaling the elements of AlphaData to range between the
minimum and maximum values of the axes ALim property
(AlphaDataMapping set to scaled, the default)

AlphaDataMapping
none | direct | {scaled}

1-6783

../ref/axes_props.html#ALim

Surfaceplot Properties

Transparency mapping method. Determines how MATLAB
interprets indexed alpha data. Values for this property are:

• none — The transparency values of AlphaData are between 0
and 1 or are clamped to this range.

• scaled — Transform the AlphaData to span the portion of
the alphamap indicated by the axes ALim property, linearly
mapping data values to alpha values (the default).

• direct — Use the AlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer
values ranging from 1 to length(alphamap). MATLAB maps
values less than 1 to the first alpha value in the alphamap, and
values greater than length(alphamap) to the last alpha value
in the alphamap. Values with a decimal portion are fixed to
the nearest, lower integer. If AlphaData is an array of uint8
integers, then the indexing begins at 0 (that is, MATLAB maps
a value of 0 to the first alpha value in the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. Sets the strength of the ambient light,
which is a nondirectional light source that illuminates the entire
scene. You must have at least one visible light object in the axes
for the ambient light to be visible. The axes AmbientLightColor
property sets the color of the ambient light, which is therefore the
same on all objects in the axes.

You can also set the strength of the diffuse and specular
contribution of light objects. See the surfaceplot
DiffuseStrength and SpecularStrength properties.

Annotation
hg.Annotation object (read-only)

1-6784

Surfaceplot Properties

Handle of Annotation object. The Annotation property enables
you to specify whether this surfaceplot object is represented in a
figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the surfaceplot
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this surfaceplot object in a legend
(default)

off Do not include this surfaceplot object in a
legend

children Same as on because surfaceplot objects do
not have children

Setting the IconDisplayStyle property

Set the IconDisplayStyle of a graphics object with handle hobj
to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Control Legend Content” for more information and examples.

1-6785

Surfaceplot Properties

BackFaceLighting
unlit | lit | {reverselit}

Face lighting control. Determines how faces are lit when their
vertex normals point away from the camera.

• unlit — Face not lit.

• lit — Face lit in normal way.

• reverselit — Face lit as if the vertex pointed towards the
camera.

Use this property to discriminate between the internal and
external surfaces of an object. See “Back Face Lighting” for an
example.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

1-6786

Surfaceplot Properties

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string | function handle

Button press callback function. Executes whenever you press a
mouse button while the pointer is over this object, but not over
another graphics object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be:

• A string that is a valid MATLAB expression

• The name of a MATLAB file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

For information on the syntax of callback functions, see Function
Handle Callbacks.

1-6787

Surfaceplot Properties

CData
matrix

Vertex colors. A matrix containing values that specify the color
at every point in ZData. If you set the FaceColor property to
texturemap, CData does not need to be the same size as ZData.
In this case, MATLAB maps CData to conform to the surfaceplot
defined by ZData.

You can specify color as indexed values or true color. Indexed
color data specifies a single value for each vertex. These values
are either scaled to map linearly into the current colormap (see
caxis) or interpreted directly as indices into the colormap,
depending on the setting of the CDataMapping property. Note
that any non-texture data passed as an input argument must
be of type double.

True color defines an RGB value for each vertex. If the coordinate
data (XData, for example) are contained in m-by-n matrices, then
CData must be an m-by-n-by-3 array. The first page contains the
red components, the second the green components, and the third
the blue components of the colors.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. Determines how MATLAB
interprets indexed color data used to color the surfaceplot. (If you
use true color specification for CData, this property has no effect.)

• scaled— Transform the color data to span the portion of the
colormap indicated by the axes CLim property, linearly mapping
data values to colors. See the caxis reference page for more
information on this mapping.

• direct — Use the color data as indices directly into the
colormap. The color data should then be integer values ranging
from 1 to length(colormap). MATLAB maps values less than

1-6788

Surfaceplot Properties

1 to the first color in the colormap, and values greater than
length(colormap) to the last color in the colormap. Values
with a decimal portion are fixed to the nearest lower integer.

CDataMode
{auto} | manual

Use automatic or user-specified color data values. If you specify
CData, MATLAB sets this property to manual and uses the CData
values to color the surfaceplot.

If you set CDataMode to auto after having specified CData,
MATLAB resets the color data of the surfaceplot to that defined
by ZData, overwriting any previous values for CData.

CDataSource
string (MATLAB variable)

Link CData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
CData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change CData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata. See the refreshdata reference
page for more information.

1-6789

Surfaceplot Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Children
matrix of handles

Always the empty matrix; surfaceplot objects have no children.

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the surfaceplot that is outside the axes
rectangle.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Defines a
callback that executes when MATLAB creates an object. The
default is an empty array.

You must specify the callback during the creation of the object.
For example:

graphicfcn(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function and graphicfcn is the plotting function which
creates this object.

1-6790

Surfaceplot Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback executed during object deletion. Executes when this
object is deleted (for example, this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values. The default is an empty array.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

See the BeingDeleted property for related information.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. Sets the intensity of the diffuse
component of the light falling on the surface. Diffuse light comes
from light objects in the axes. Default value is 0.6.

1-6791

Surfaceplot Properties

You can also set the intensity of the ambient and specular
components of the light on the object. See the AmbientStrength
and SpecularStrength properties.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the surfaceplot object in the legend. The default
is an empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the patch and surface edges.

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

1-6792

Surfaceplot Properties

• flat— The alpha data (AlphaData) value for the first vertex of
the face determines the transparency of the edges.

• interp— Linear interpolation of the alpha data (AlphaData)
values at each vertex determines the transparency of the edge.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp EdgeAlpha.

Note that you must specify AlphaData as a matrix equal in size to ZData
to use flat or interp EdgeAlpha.

EdgeColor
{ColorSpec} | none | flat | interp

Color of the surfaceplot edge. This property determines how
MATLAB colors the edges of the individual faces that make up
the surface:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for edges.
The default EdgeColor is black. See ColorSpec for more
information on specifying color.

• none — Edges are not drawn.

• flat— The CData value of the first vertex for a face determines
the color of each edge.

1-6793

../ref/surface_props.html#AlphaData
../ref/surface_props.html#ZData

Surfaceplot Properties

• interp— Linear interpolation of the CData values at the face
vertices determines the edge color.

EdgeLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. Selects the algorithm
used to calculate the effect of light objects on surfaceplot edges.

• none— Lights do not affect the edges of this object.

• flat — The effect of light objects is uniform across each edge
of the surfaceplot.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

1-6794

Surfaceplot Properties

Erase mode. Controls the technique MATLAB uses to draw and
erase objects. Use alternative erase modes for creating animated
sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to correctly render all
objects. This mode produces the most accurate picture, but is
the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none— Do not erase the object when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath it. However,
the object’s color depends on the color of whatever is beneath
it on the display.

• background — Erase the object by redrawing it in the axes
background Color, or the figure background Color if the axes
Color property is none. This damages objects that are behind
the erased object, but properly colors the erased object.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting

1-6795

Surfaceplot Properties

to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

FaceAlpha
{scalar = 1} | flat | interp | texturemap

Transparency of the surfaceplot faces. This property can be any of
the following:

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the faces of the object.
1 (the default) means fully opaque and 0 means completely
transparent (invisible).

• flat — The values of the alpha data (AlphaData) determine
the transparency for each face. The alpha data at the first
vertex determine the transparency of the entire face.

• interp— Bilinear interpolation of the alpha data (AlphaData)
at each vertex determines the transparency of each face.

• texturemap— Use transparency for the texture map.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp FaceAlpha.

FaceColor
ColorSpec | none | {flat} | interp

Color of the surfaceplot face. This property can be any of the
following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See ColorSpec for more information on specifying color.

1-6796

../ref/surface_props.html#AlphaData
../ref/surface_props.html#ZData

Surfaceplot Properties

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat — The values of CData determine the color for each face
of the surface. The color data at the first vertex determine the
color of the entire face.

• interp — Bilinear interpolation of the values at each vertex
(the CData) determines the coloring of each face.

• texturemap— Texture map the CData to the surface. MATLAB
transforms the color data so that it conforms to the surface.
(See the texture mapping example for surface.)

FaceLighting
none | {flat} | gouraud | phong

Algorithm used for lighting calculations. This property selects
the algorithm used to calculate the effect of light objects on the
surface. Choices are

• none— Lights do not affect the faces of this object.

• flat— The effect of light objects is uniform across the faces of
the surface. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility

1-6797

Surfaceplot Properties

is useful for preventing command-line users from accidentally
accessing objects that you need to protect for some reason.

• on — Handles are always visible.

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties. See also findall.

1-6798

Surfaceplot Properties

Handle Validity

Hidden handles are still valid. If you know an object’s handle,
you can set and get its properties and pass it to any function
that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. Determines whether this object can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the surface. If HitTest is off, clicking this object selects the
object below it (which is usually the axes containing it).

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

1-6799

Surfaceplot Properties

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

1-6800

Surfaceplot Properties

Line style of surfaceplot object.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

Use LineStyle none when you want to place a marker at each
point but do not want the points connected with a line (see the
Marker property).

LineWidth
size in points

Width of linear objects and edges of filled areas. Specify in points.
1 point = 1/72 inch. The default is 0.5 points.

Marker
character (see table)

Marker symbol. Specifies marks that display at data points. You
can set values for the Marker property independently from the
LineStyle property. For a list of supported marker symbols, see
the following table.

Marker Specifiers Table

Specifier Marker Type

’+’ Plus sign

’o’ Circle

1-6801

Surfaceplot Properties

Specifier Marker Type

’*’ Asterisk

’.’ Point

’x’ Cross

’square’ or ’s’ Square

’diamond’ or ’d’ Diamond

’^’ Upward-pointing triangle

’v’ Downward-pointing triangle

’>’ Right-pointing triangle

’<’ Left-pointing triangle

’pentagram’ or ’p’ Five-pointed star (pentagram)

’hexagram’ or ’h''’ Six-pointed star (hexagram)

’none’ No marker (default)

MarkerEdgeColor
none | {auto} | flat | ColorSpec

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• none — Specifies no color, which makes nonfilled markers
invisible.

• auto— Uses same color as the EdgeColor property.

• flat — Uses the CData value of the vertex to determine the
color of the marker edge.

• ColorSpec — Defines color to use.

MarkerFaceColor
{none} | auto | flat | ColorSpec

1-6802

Surfaceplot Properties

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• none—Makes the interior of the marker transparent, allowing
the background to show through.

• auto— Uses the axes Color for the marker face color.

• flat — Uses the CData value of the vertex to determine the
color of the face.

• ColorSpec — Defines a single color to use for all markers on
the surfaceplot.

MarkerSize
scalar

Marker size. Size of the marker in points. The default value is 6.

Note MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

MeshStyle
{both} | row | column

Row and column lines. Specifies whether to draw all edge lines or
just row or column edge lines.

• both— Draws edges for both rows and columns.

• row — Draws row edges only.

• column — Draws column edges only.

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors.

1-6803

../ref/axes_props.html#Color

Surfaceplot Properties

• auto — MATLAB calculates vertex normals based on the
coordinate data

• manual — If you specify your own vertex normals, MATLAB
sets this property to manual and does not generate its own data.

See also the VertexNormals property.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of object. Handle of the object’s parent. The parent is
normally the axes, hggroup, or hgtransform object that contains
the object.

Selected
on | {off}

Object selection state. When you set this property to on, MATLAB
displays selection handles at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Selected objects highlighted.

• on — MATLAB indicates the selected state by drawing a
dashed bounding box around the surface.

• off— MATLAB does not draw the bounding box except when
in plot edit mode and objects are selected manually.

SpecularColorReflectance
scalar in the range 0 to 1

1-6804

Surfaceplot Properties

Color of specularly-reflected light. When this property is 0, the
color of the specularly-reflected light depends on both the color of
the object from which it reflects and the color of the light source.
When set to 1, the color of the specularly-reflected light depends
only on the color or the light source (that is, the light object Color
property). The proportions vary linearly for values in between.

SpecularExponent
scalar >= 1

Harshness of specular reflection. Controls the size of the specular
spot. Most materials have exponents in the range of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. Sets the intensity of the specular
component of the light falling on the surfaceplot. Specular light
comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the surfaceplot object. See the
AmbientStrength and DiffuseStrength properties. Also see the
material function.

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

For example, create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

1-6805

Surfaceplot Properties

When you want to access objects of a given type, use findobj to
find the object’s handle. The following statement changes the
FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Class of the graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given
type within a plotting hierarchy. For surfaceplot objects, Type is
always the string 'surface'.

UIContextMenu
handle of uicontextmenu object

Associate context menu with object. Handle of a uicontextmenu
object created in the object’s parent figure. Use the uicontextmenu
function to create the context menu. MATLAB displays the
context menu whenever you right-click over the object. The
default value is an empty array.

UserData
array

User-specified data. Data you want to associate with this object
(including cell arrays and structures). The default value is an
empty array. MATLAB does not use this data, but you can access
it using the set and get commands.

VertexNormals
vector | matrix

Surfaceplot normal vectors. Contains the vertex normals for the
surfaceplot. MATLAB generates this data to perform lighting
calculations. You can supply your own vertex normal data, even
if it does not match the coordinate data. This can be useful to
produce interesting lighting effects.

1-6806

Surfaceplot Properties

Visible
{on} | off

Visibility of object and its children.

• on— Object and all children of the object are visible unless the
child object’s Visible property is off.

• off— Object not displayed. However, the object still exists and
you can set and query its properties.

XData
vector | matrix

X-coordinates. The x-position of the surfaceplot data points. If you
specify a row vector, MATLAB replicates the row internally until
it has the same number of columns as ZData.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the X input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after specifying XData, MATLAB
resets the x-axis ticks to 1:size(YData,1) or to the column
indices of the ZData, overwriting any previous values for XData.

XDataSource
MATLAB variable, as a string

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData. The default value is an empty array.

set(h,'XDataSource','xdatavariablename')

1-6807

Surfaceplot Properties

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
XDataSource does not change the object’s XData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector | matrix

Y-coordinates. The y-position of the surfaceplot data points. If you
specify a row vector, MATLAB replicates the row internally until
it has the same number of rows as ZData.

YDataMode
{auto} | manual

Use automatic or user-specified y-axis values. If you specify XData,
MATLAB sets this property to manual.

If you set YDataMode to auto after having specified YData,
MATLAB resets the y-axis ticks and y-tick labels to the row
indices of the ZData, overwriting any previous values for YData.

YDataSource
MATLAB variable, as a string

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData. The default value is an empty array.

1-6808

Surfaceplot Properties

set(h,'YDataSource','Ydatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
YDataSource does not change the object’s YData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable
be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
matrix

Z-coordinates. The z-position of the surfaceplot data points. See
the Description section for more information.

ZDataSource
MATLAB variable, as a string

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData. The default value is an empty array.

set(h,'ZDataSource','zdatavariablename')

MATLAB requires a call to refreshdata when you set this
property. Changing workspace variables used as an object’s
ZDataSource does not change the object’s ZData values, but you
can use refreshdata to force an update of the object’s data.
refreshdata also lets you specify that the data source variable

1-6809

Surfaceplot Properties

be evaluated in the workspace of a function from which you call
refreshdata.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

1-6810

surfl

Purpose Surface plot with colormap-based lighting

Syntax surfl(Z)
surfl(...,'light')
surfl(...,s)
surfl(X,Y,Z,s,k)
h = surfl(...)

Description The surfl function displays a shaded surface based on a combination of
ambient, diffuse, and specular lighting models.

surfl(Z) and surfl(X,Y,Z) create three-dimensional shaded surfaces
using the default direction for the light source and the default lighting
coefficients for the shading model. X, Y, and Z are vectors or matrices
that define the x, y, and z components of a surface.

surfl(...,'light') produces a colored, lighted surface using a
MATLAB light object. This produces results different from the default
lighting method, surfl(...,'cdata'), which changes the color data
for the surface to be the reflectance of the surface.

surfl(...,s) specifies the direction of the light source. s is a two- or
three-element vector that specifies the direction from a surface to a
light source. s = [sx sy sz] or s = [azimuth elevation]. The default s
is 45° counterclockwise from the current view direction.

surfl(X,Y,Z,s,k) specifies the reflectance constant. k is a
four-element vector defining the relative contributions of ambient light,
diffuse reflection, specular reflection, and the specular shine coefficient.
k = [ka kd ks shine] and defaults to [.55,.6,.4,10].

h = surfl(...) returns a handle to a surface graphics object. If you
specify the 'light' option, h contains the handle to the surface and
the light objects.

1-6811

surfl

Tips surfl does not accept complex inputs.

For smoother color transitions, use colormaps that have linear intensity
variations (e.g., gray, copper, bone, pink).

The ordering of points in the X, Y, and Z matrices defines the inside and
outside of parametric surfaces. If you want the opposite side of the
surface to reflect the light source, use surfl(X',Y',Z'). Because of the
way surface normal vectors are computed, surfl requires matrices that
are at least 3-by-3.

Examples Create Surface Plot With Colormap-Based Lighting

Create a surface plot of the peaks function using colormap-based
lighting. Set the shading to interp to interpolate the colors across
lines and faces.

[x,y] = meshgrid(-3:1/8:3);
z = peaks(x,y);
surfl(x,y,z);
shading interp

1-6812

surfl

See Also colormap | shading | light

1-6813

surfnorm

Purpose Compute and display 3-D surface normals

Syntax surfnorm(Z)
surfnorm(X,Y,Z)
surfnorm(axes_handle, ___)
surfnorm(___ ,Name,Value)
[Nx,Ny,Nz] = surfnorm(___)

Description surfnorm(Z) plots a surface of the matrix Z with surf and displays its
surface normals as radiating vectors.

surfnorm(X,Y,Z) plots a surface and its surface normals from the
vectors or matrices X, Y, and matrix Z. X, Y, and Z must be the same size.

surfnorm(axes_handle, ___) plots into axes_handle instead of gca
and it can include any of the input arguments in previous syntaxes.

surfnorm(___ ,Name,Value) can be used to set the value of the
specified Surface Properties.

[Nx,Ny,Nz] = surfnorm(___) returns the components of the 3-D
surface normals for the surface without plotting the surface or surface
normals.

Tips • surfnorm does not accept complex inputs.

• Reverse the direction of the normals by calling surfnorm with
transposed arguments:

surfnorm(X',Y',Z')

• The surface normals represent conditions at vertices and are not
normalized. Normals for surface elements that face away from the
viewer do not display.

• surfl uses surfnorm to compute surface normals when calculating
the reflectance of a surface.

1-6814

surfnorm

Input
Arguments

Z

2–D array of real numbers representing a surface

X

2–D array of real numbers that defines the x component of the surface
grid

Y

2–D array of real numbers that defines the y component of the surface
grid

axes_handle

Handle to the target axes in which to plot the surface

If you do not specify axes_handle, MATLAB uses current axes.

Name,Value

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (’ ’). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Property names and values of the surface object

See Surface Properties for description of property names and values.

Output
Arguments

[Nx,Ny,Nz]

x, y, and z components of the three-dimensional surface normals for
the surface

Definitions Surface Normal

An imaginary line perpendicular to a flat surface or perpendicular to
the tangent plane at a point on a non-flat surface

1-6815

surfnorm

Examples Display 3-D Surface Normals for Cone Plot

Compute and plot the normal vectors for a truncated cone. Set the axis
limits using the axis function.

[x,y,z] = cylinder(1:10);
figure
surfnorm(x,y,z)
axis([-12 12 -12 12 -0.1 1])

1-6816

surfnorm

Use Computed Surface Normals for Lighting

Compute the normal vectors of an expression representing a surface.

[nx, ny, nz] = surfnorm(peaks);

Assign these normals to the VertexNormals property which MATLAB®
uses to calculate the surface lighting. Set the lighting algorithm to
gouraud and add a light using camlight.

b = reshape([nx ny nz], 49,49,3);
figure
surf(ones(49),'VertexNormals',b,'EdgeColor','none');
lighting gouraud
camlight

1-6817

surfnorm

Algorithms After performing a bicubic fit of the data in the x, y, and z directions,
diagonal vectors are computed and crossed to form the normal at each
vertex.

See Also surf | quiver3 | surface | isonormals | surfl

1-6818

svd

Purpose Singular value decomposition

Syntax s = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X,0)
[U,S,V] = svd(X,'econ')

Description The svd command computes the matrix singular value decomposition.

s = svd(X) returns a vector of singular values.

[U,S,V] = svd(X) produces a diagonal matrix S of the same dimension
as X, with nonnegative diagonal elements in decreasing order, and
unitary matrices U and V so that X = U*S*V'.

[U,S,V] = svd(X,0) produces the “economy size” decomposition. If X
is m-by-n with m > n, then svd computes only the first n columns of U
and S is n-by-n.

[U,S,V] = svd(X,'econ') also produces the “economy size”
decomposition. If X is m-by-n with m >= n, it is equivalent to svd(X,0).
For m < n, only the first m columns of V are computed and S is m-by-m.

Examples For the matrix

X =
1 2
3 4
5 6
7 8

the statement

[U,S,V] = svd(X)

produces

U =
-0.1525 -0.8226 -0.3945 -0.3800

1-6819

svd

-0.3499 -0.4214 0.2428 0.8007
-0.5474 -0.0201 0.6979 -0.4614
-0.7448 0.3812 -0.5462 0.0407

S =
14.2691 0

0 0.6268
0 0
0 0

V =
-0.6414 0.7672
-0.7672 -0.6414

The economy size decomposition generated by

[U,S,V] = svd(X,0)

produces

U =
-0.1525 -0.8226
-0.3499 -0.4214
-0.5474 -0.0201
-0.7448 0.3812

S =
14.2691 0

0 0.6268
V =

-0.6414 0.7672
-0.7672 -0.6414

Diagnostics If the limit of 75 QR step iterations is exhausted while seeking a
singular value, this message appears:

Solution will not converge.

1-6820

svds

Purpose Find singular values and vectors

Syntax s = svds(A)
s = svds(A,k)
s = svds(A,k,sigma)
s = svds(A,k,'L')
s = svds(A,k,sigma,options)
[U,S,V] = svds(A,...)
[U,S,V,flag] = svds(A,...)

Description s = svds(A) computes the six largest singular values and associated
singular vectors of matrix A. If A is m-by-n, svds(A) manipulates
eigenvalues and vectors returned by eigs(B), where B = [sparse(m,m)
A; A' sparse(n,n)], to find a few singular values and vectors of A.
The positive eigenvalues of the symmetric matrix B are the same as the
singular values of A.

s = svds(A,k) computes the k largest singular values and associated
singular vectors of matrix A.

s = svds(A,k,sigma) computes the k singular values closest to the
scalar shift sigma. For example, s = svds(A,k,0) computes the k
smallest singular values and associated singular vectors.

s = svds(A,k,'L') computes the k largest singular values (the
default).

s = svds(A,k,sigma,options) sets some parameters (see eigs):

Option Structure Fields and Descriptions

Field name Parameter Default

options.tol Convergence tolerance:
norm(AV-US,1)<=tol*norm(A,1)

1e-10

options.maxit Maximum number of iterations 300

options.disp Number of values displayed each
iteration

0

1-6821

svds

svds checks the accuracy of the computed singular vectors. If the
vectors are not accurate enough, then svds returns fewer singular
values than requested. To obtain the requested number of singular
values, try decreasing the error tolerance in the options structure.

[U,S,V] = svds(A,...) returns three output arguments, and if A is
m-by-n:

• U is m-by-k with orthonormal columns

• S is k-by-k diagonal

• V is n-by-k with orthonormal columns

• U*S*V' is the closest rank k approximation to A

[U,S,V,flag] = svds(A,...) returns a convergence flag. If eigs
converged, then norm(A*V-U*S,1) <= tol*norm(A,1) and flag is 0. If
eigs did not converge, then flag is 1.

Note svds is best used to find a few singular values of a large, sparse
matrix. To find all the singular values of such a matrix, svd(full(A))
will usually perform better than svds(A,min(size(A))).

Algorithms svds(A,k) uses eigs to find the k largest magnitude eigenvalues and
corresponding eigenvectors of B = [0 A; A' 0].

svds(A,k,0) uses eigs to find the 2k smallest magnitude eigenvalues
and corresponding eigenvectors of B = [0 A; A' 0], and then selects
the k positive eigenvalues and their eigenvectors.

Examples Singular Values of Sparse Matrix

west0479 is a real 479-by-479 sparse matrix. svd calculates all 479
singular values. svds picks out only the largest and smallest singular
values.

load west0479
s = svd(full(west0479));

1-6822

svds

sl = svds(west0479,4);
ss = svds(west0479,6,0);

Warning: NORMEST did not converge for 100 iterations with tolerance 1e

These plots show some of the singular values of west0479 as computed
by svd and svds.

subplot(2,1,1)
plot(s(1:4),'ks'), hold on
plot(sl,'k+'), hold off
title('4 largest singular values of west0479')
legend('svd(A)','svds(A,4)')
set(gca,'XLim',[0.5 4.5])

subplot(2,1,2)
plot(s(end-5:end),'ks'), hold on
plot(ss,'k+'), hold off
title('6 smallest singular values of west0479')
legend('svd(A)','svds(A,6,0)')
set(gca,'XLim',[0.5 6.5])

1-6823

svds

The largest singular value of west0479 can be computed a few different
ways:

svds(west0479,1)
max(svd(full(west0479)))
norm(full(west0479))

ans =

1-6824

svds

3.1895e+05

ans =

3.1895e+05

ans =

3.1895e+05

Or, to estimate the largest singular value:

normest(west0479)

Warning: NORMEST did not converge for 100 iterations with tolerance 1e

ans =

3.1854e+05

See Also svd | eigs

1-6825

swapbytes

Purpose Swap byte ordering

Syntax Y = swapbytes(X)

Description Y = swapbytes(X) reverses the byte ordering of each element in array
X, converting little-endian values to big-endian (and vice versa). The
input array must contain all full, noncomplex, numeric elements.

Examples Example 1

Reverse the byte order for a scalar 32-bit value, changing hexadecimal
12345678 to 78563412:

A = uint32(hex2dec('12345678'));

B = dec2hex(swapbytes(A))
B =

78563412

Example 2

Reverse the byte order for each element of a 1-by-4 matrix:

X = uint16([0 1 128 65535])
X =

0 1 128 65535

Y = swapbytes(X);
Y =

0 256 32768 65535

Examining the output in hexadecimal notation shows the byte
swapping:

format hex

X, Y
X =

0000 0001 0080 ffff

1-6826

swapbytes

Y =
0000 0100 8000 ffff

Example 3

Create a three-dimensional array A of 16-bit integers and then swap
the bytes of each element:

format hex

A = uint16(magic(3) * 150);
A(:,:,2) = A * 40;

A
A(:,:,1) =

04b0 0096 0384
01c2 02ee 041a
0258 0546 012c

A(:,:,2) =
bb80 1770 8ca0
4650 7530 a410
5dc0 d2f0 2ee0

swapbytes(A)
ans(:,:,1) =

b004 9600 8403
c201 ee02 1a04
5802 4605 2c01

ans(:,:,2) =
80bb 7017 a08c
5046 3075 10a4
c05d f0d2 e02e

See Also typecast

1-6827

switch, case, otherwise

Purpose Switch among several cases based on expression

Syntax switch switch_expression
case case_expression

statements
case case_expression

statements
...

otherwise
statements

end

Description A switch block conditionally executes one set of statements from
several choices. Each choice is a case.

An evaluated switch_expression is a scalar or string. An evaluated
case_expression is a scalar, a string, or a cell array of scalars or
strings. The switch block tests each case until one of the cases is true.
A case is true when:

• For numbers, eq(case_expression,switch_expression).

• For strings, strcmp(case_expression,switch_expression).

• For objects that support the eq function,
eq(case_expression,switch_expression).

• For a cell array case_expression, at least one of the elements of
the cell array matches switch_expression, as defined above for
numbers, strings, and objects.

When a case is true, MATLAB executes the corresponding statements,
and then exits the switch block.

otherwise is optional, and executes only when no case is true.

Tips • Unlike the C language switch statement, the MATLAB switch does
not fall through. If the first case statement is true, the other case

1-6828

switch, case, otherwise

statements do not execute. Do not use a break statement within a
switch block.

• A case_expression cannot include relational operators such as < or
> to compare against the switch_expression. To test for inequality,
use if-elseif statements.

• Because MATLAB executes only one case of any switch statement,
variables defined within one case are not available for other cases.
For example, if your current workspace does not contain a variable x,
only cases that define x can use it:

switch choice
case 1

x = -pi:0.01:pi;
case 2

% does not know anything about x
end

Examples Conditionally display different text depending on a value entered at
the command line:

mynumber = input('Enter a number:');

switch mynumber
case -1

disp('negative one');
case 0

disp('zero');
case 1

disp('positive one');
otherwise

disp('other value');
end

Decide which plot to create based on the value of the string plottype:

1-6829

switch, case, otherwise

x = [12, 64, 24];
plottype = 'pie3';

switch plottype
case 'bar'

bar(x)
title('Bar Graph')

case {'pie','pie3'}
pie3(x)
title('Pie Chart')
legend('First','Second','Third')

otherwise
warning('Unexpected plot type. No plot created.');

end

In MATLAB switch blocks, only the first matching case executes:

result = 52;

switch(result)
case 52

disp('result is 52')
case {52, 78}

disp('result is 52 or 78')
end

This code returns

result is 52

See Also end | for | while | if

1-6830

sylvester

Purpose Solve Sylvester equation AX + XB = C for X

Syntax X = sylvester(A,B,C)

Description X = sylvester(A,B,C) returns the solution, X, to the Sylvester
equation.

Input A is an m-by-m matrix, input B is an n-by-n matrix, and both C
and X are m-by-n matrices.

Input
Arguments

A,B,C - Input matrices
matrices

Input matrices, specified as matrices. Input A is an m-by-m square
matrix, input B is an n-by-n square matrix, and input C is an m-by-n
rectangular matrix. The function returns an error if any input matrix is
sparse.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

X - Solution
matrix

Solution, returned as a matrix of the same size as C. The function
returns an error if the eigenvalues of A and -B are not distinct (in this
case, the solution, X, is singular or not unique).

Examples Solve Sylvester Equation with 3-by-3 Output

Create the coefficient matrices A and B.

A = [1 -1 1; 1 1 -1; 1 1 1];
B = magic(3);

Define C as the 3-by-3 identity matrix.

C = eye(3);

1-6831

sylvester

Use the sylvester function to solve the Sylvester equation for these
values of A, B, and C.

X = sylvester(A,B,C)

X =

0.1223 -0.0725 0.0131
-0.0806 -0.0161 0.1587
-0.0164 0.1784 -0.1072

The result is a 3-by-3 matrix.

Solve Sylvester Equation with 4-by-2 Output

Create a 4-by-4 coefficient matrix, A, and 2-by-2 coefficient matrix, B.

A = [1 0 2 3; 4 1 0 2; 0 5 5 6; 1 7 9 0];
B = [0 -1; 1 0];

Define C as a 4-by-2 matrix to match the corresponding sizes of A and B.

C = [1 0; 2 0; 0 3; 1 1]

C =

1 0
2 0
0 3
1 1

Use the sylvester function to solve the Sylvester equation for these
values of A, B, and C.

X = sylvester(A,B,C)

X =

0.4732 -0.3664
-0.4006 0.3531

1-6832

sylvester

0.3305 -0.1142
0.0774 0.3560

The result is a 4-by-2 matrix.

Definitions Sylvester Equation

The Sylvester equation is

AX XB C .

The equation has a unique solution when the eigenvalues of A and -B are
distinct. In terms of the Kronecker tensor product, , the equation is

I A B I X CT

 (:) (:),

where I is the identity matrix, and X(:) and C(:) denote the matrices
X and C as single column vectors.

See Also ctranspose | kron | eig | mtimes | mldivide

1-6833

symamd

Purpose Symmetric approximate minimum degree permutation

Syntax p = symamd(S)
p = symamd(S,knobs)
[p,stats] = symamd(...)

Description p = symamd(S) for a symmetric positive definite matrix S, returns
the permutation vector p such that S(p,p) tends to have a sparser
Cholesky factor than S. To find the ordering for S, symamd constructs a
matrix M such that spones(M'*M) = spones (S), and then computes p
= colamd(M). The symamd function may also work well for symmetric
indefinite matrices.

S must be square; only the strictly lower triangular part is referenced.

p = symamd(S,knobs) where knobs is a scalar. If S is n-by-n, rows and
columns with more than knobs*n entries are removed prior to ordering,
and ordered last in the output permutation p. If the knobs parameter is
not present, then knobs = spparms('wh_frac').

[p,stats] = symamd(...) produces the optional vector stats that
provides data about the ordering and the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by symamd

stats(2) Number of dense or empty columns ignored by symamd

stats(3) Number of garbage collections performed on the
internal data structure used by symamd (roughly of
size 8.4*nnz(tril(S,-1)) + 9n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or contains
duplicate entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the
column index given by stats(5), or 0 if no such row
index exists

stats(7) Number of duplicate and out-of-order row indices

1-6834

symamd

Although, MATLAB built-in functions generate valid sparse matrices, a
user may construct an invalid sparse matrix using the MATLAB C or
Fortran APIs and pass it to symamd. For this reason, symamd verifies
that S is valid:

• If a row index appears two or more times in the same column, symamd
ignores the duplicate entries, continues processing, and provides
information about the duplicate entries in stats(4:7).

• If row indices in a column are out of order, symamd sorts each column
of its internal copy of the matrix S (but does not repair the input
matrix S), continues processing, and provides information about the
out-of-order entries in stats(4:7).

• If S is invalid in any other way, symamd cannot continue. It prints an
error message, and returns no output arguments (p or stats).

The ordering is followed by a symmetric elimination tree post-ordering.

Examples Compare Reverse Cuthill-McKee and Minimum Degree

Here is a comparison of reverse Cuthill-McKee and minimum degree on
the Bucky ball example mentioned in the symrcm reference page.

B = bucky+4*speye(60);
r = symrcm(B);
p = symamd(B);
R = B(r,r);
S = B(p,p);
subplot(2,2,1), spy(R,4), title('B(r,r)')
subplot(2,2,2), spy(S,4), title('B(s,s)')
subplot(2,2,3), spy(chol(R),4), title('chol(B(r,r))')
subplot(2,2,4), spy(chol(S),4), title('chol(B(s,s))')

1-6835

symamd

Even though this is a very small problem, the behavior of both orderings
is typical. RCM produces a matrix with a narrow bandwidth which
fills in almost completely during the Cholesky factorization. Minimum
degree produces a structure with large blocks of contiguous zeros which
do not fill in during the factorization. Consequently, the minimum
degree ordering requires less time and storage for the factorization.

References The authors of the code for symamd are Stefan I. Larimore and
Timothy A. Davis (davis@cise.ufl.edu), University of Florida.

1-6836

symamd

The algorithm was developed in collaboration with John Gilbert,
Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

See Also colamd | colperm | spparms | symrcm | amd

1-6837

http://www.cise.ufl.edu/research/sparse/

symbfact

Purpose Symbolic factorization analysis

Syntax count = symbfact(A)
count = symbfact(A,'sym')
count = symbfact(A,'col')
count = symbfact(A,'row')
count = symbfact(A,'lo')
[count,h,parent,post,R] = symbfact(...)
[count,h,parent,post,L] = symbfact(A,type,'lower')

Description count = symbfact(A) returns the vector of row counts of R=chol(A).
symbfact should be much faster than chol(A).

count = symbfact(A,'sym') is the same as count = symbfact(A).

count = symbfact(A,'col') returns row counts of R=chol(A'*A)
(without forming it explicitly).

count = symbfact(A,'row') returns row counts of R=chol(A*A').

count = symbfact(A,'lo') is the same as count = symbfact(A)
and uses tril(A).

[count,h,parent,post,R] = symbfact(...) has several optional
return values.

The flop count for a subsequent Cholesky factorization is sum(count.^2)

Return
Value

Description

h Height of the elimination tree

parent The elimination tree itself

post Postordering of the elimination tree

R 0-1 matrix having the structure of chol(A) for the
symmetric case, chol(A'*A) for the 'col' case, or
chol(A*A') for the 'row' case.

1-6838

symbfact

symbfact(A) and symbfact(A,'sym') use the upper triangular part of
A (triu(A)) and assume the lower triangular part is the transpose of
the upper triangular part. symbfact(A,'lo') uses tril(A) instead.

[count,h,parent,post,L] = symbfact(A,type,'lower') where
type is one of 'sym','col', 'row', or'lo' returns a lower triangular
symbolic factor L=R'. This form is quicker and requires less memory.

See Also chol | etree | treelayout

1-6839

symmlq

Purpose Symmetric LQ method

Syntax x = symmlq(A,b)
symmlq(A,b,tol)
symmlq(A,b,tol,maxit)
symmlq(A,b,tol,maxit,M)
symmlq(A,b,tol,maxit,M1,M2)
symmlq(A,b,tol,maxit,M1,M2,x0)
[x,flag] = symmlq(A,b,...)
[x,flag,relres] = symmlq(A,b,...)
[x,flag,relres,iter] = symmlq(A,b,...)
[x,flag,relres,iter,resvec] = symmlq(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...)

Description x = symmlq(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be symmetric but need
not be positive definite. It should also be large and sparse. The column
vector b must have length n. You can specify A as a function handle,
afun, such that afun(x) returns A*x.

“Parameterizing Functions” explains how to provide additional
parameters to the function afun, as well as the preconditioner function
mfun described below, if necessary.

If symmlq converges, a message to that effect is displayed. If symmlq
fails to converge after the maximum number of iterations or halts
for any reason, a warning message is printed displaying the relative
residual norm(b-A*x)/norm(b) and the iteration number at which the
method stopped or failed.

symmlq(A,b,tol) specifies the tolerance of the method. If tol is [],
then symmlq uses the default, 1e-6.

symmlq(A,b,tol,maxit) specifies the maximum number of iterations.
If maxit is [], then symmlq uses the default, min(n,20).

symmlq(A,b,tol,maxit,M) and symmlq(A,b,tol,maxit,M1,M2) use
the symmetric positive definite preconditioner M or M = M1*M2 and
effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*y =

1-6840

symmlq

inv(sqrt(M))*b for y and then return x = in(sqrt(M))*y. If M is []
then symmlq applies no preconditioner. M can be a function handle mfun
such that mfun(x) returns M\x.

symmlq(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is
[], then symmlq uses the default, an all-zero vector.

[x,flag] = symmlq(A,b,...) also returns a convergence flag.

Flag Convergence

0 symmlq converged to the desired tolerance tol within
maxit iterations.

1 symmlq iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 symmlq stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during symmlq
became too small or too large to continue computing.

5 Preconditioner M was not symmetric positive definite.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = symmlq(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = symmlq(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = symmlq(A,b,...) also returns a
vector of estimates of the symmlq residual norms at each iteration,
including norm(b-A*x0).

[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...) also
returns a vector of estimates of the conjugate gradients residual norms
at each iteration.

1-6841

symmlq

Examples Example 1

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50; M1 = spdiags(4*on,0,n,n);

x = symmlq(A,b,tol,maxit,M1);
symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in the
function run_symmlq that:

• Calls symmlq with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in
run_symmlq are available to afun.

The following shows the code for run_symmlq:

function x1 = run_symmlq
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = symmlq(@afun,b,tol,maxit,M1);

function y = afun(x)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);

1-6842

symmlq

y(1:n-1) = y(1:n-1) - 2 * x(2:n);
end

end

When you enter

x1=run_symmlq;

MATLAB software displays the message

symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Example 3

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1,-1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, symmlq can handle the indefinite matrix A.

x = symmlq(A,b,1e-6,40);
symmlq converged at iteration 39 to a solution with relative
residual 1.3e-007

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, "Solution of Sparse Indefinite
Systems of Linear Equations." SIAM J. Numer. Anal., Vol.12, 1975,
pp. 617-629.

1-6843

symmlq

See Also bicg | bicgstab | cgs | function_handle | gmres | lsqr | minres |
pcg | qmr | mldivide

1-6844

symrcm

Purpose Sparse reverse Cuthill-McKee ordering

Syntax r = symrcm(S)

Description r = symrcm(S) returns the symmetric reverse Cuthill-McKee ordering
of S. This is a permutation r such that S(r,r) tends to have its nonzero
elements closer to the diagonal. This is a good preordering for LU
or Cholesky factorization of matrices that come from long, skinny
problems. The ordering works for both symmetric and nonsymmetric S.

For a real, symmetric sparse matrix, S, the eigenvalues of S(r,r) are
the same as those of S, but eig(S(r,r)) probably takes less time to
compute than eig(S).

Algorithms The algorithm first finds a pseudoperipheral vertex of the graph of the
matrix. It then generates a level structure by breadth-first search and
orders the vertices by decreasing distance from the pseudoperipheral
vertex. The implementation is based closely on the SPARSPAK
implementation described by George and Liu.

Examples Reverse Cuthill-McKee Ordering

The statement

B = bucky;

uses a function in the demos toolbox to generate the adjacency graph
of a truncated icosahedron. This is better known as a soccer ball,
a Buckminster Fuller geodesic dome (hence the name bucky), or,
more recently, as a 60-atom carbon molecule. There are 60 vertices.
The vertices have been ordered by numbering half of them from one
hemisphere, pentagon by pentagon; then reflecting into the other
hemisphere and gluing the two halves together.

With this numbering, the matrix does not have a particularly narrow
bandwidth, as the first spy plot shows:

figure();

1-6845

symrcm

subplot(1,2,1),spy(B),title('B')

The reverse Cuthill-McKee ordering is obtained with:

p = symrcm(B);
R = B(p,p);

The spy plot shows a much narrower bandwidth.

subplot(1,2,2),spy(R),title('B(p,p)')

1-6846

symrcm

This example is continued in the reference page for symamd.

The bandwidth can also be computed with:

[i,j] = find(B);
bw = max(i-j) + 1;

The bandwidths of B and R are 35 and 12, respectively.

1-6847

symrcm

References [1] George, Alan and Joseph Liu, Computer Solution of Large Sparse
Positive Definite Systems, Prentice-Hall, 1981.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse
Matrices in MATLAB: Design and Implementation,” SIAM Journal on
Matrix Analysis, 1992. A slightly expanded version is also available as
a technical report from the Xerox Palo Alto Research Center.

See Also colamd | colperm | symamd

1-6848

symvar

Purpose Determine symbolic variables in expression

Syntax symvar 'expr'
s = symvar('expr')

Description symvar 'expr' searches the expression, expr, for identifiers other
than i, j, pi, inf, nan, eps, and common functions. symvar displays
those variables that it finds or, if no such variable exists, displays an
empty cell array, {}.

s = symvar('expr') returns the variables in a cell array of strings, s.
If no such variable exists, s is an empty cell array.

Examples symvar finds variables beta1 and x, but skips pi and the cos function.

symvar 'cos(pi*x - beta1)'

ans =

'beta1'
'x'

See Also strfind

1-6849

syntax

Purpose Two ways to call MATLAB functions

Description You can call MATLAB functions using either command syntax or
function syntax, as described below.

Command Syntax

A function call in this syntax consists of the function name followed by
one or more arguments separated by spaces:

functionname arg1 arg2 ... argn

Command syntax does not allow you to obtain any values that might be
returned by the function. Attempting to assign output from the function
to a variable using command syntax generates an error. Use function
syntax instead.

Examples of command syntax:

save mydata.mat x y z
import java.awt.Button java.lang.String

Arguments are treated as string literals. See the examples below, under
“Argument Passing” on page 1-6851.

Function Syntax

A function call in this syntax consists of the function name followed
by one or more arguments separated by commas and enclosed in
parentheses:

functionname(arg1, arg2, ..., argn)

You can assign the output of the function to one or more output
values. When assigning to more than one output variable, separate the
variables by commas or spaces and enclose them in square brackets ([]):

[out1,out2,...,outn] = functionname(arg1, arg2, ..., argn)

Examples of function syntax:

1-6850

syntax

copyfile('srcfile', '..\mytests', 'writable')
[x1,x2,x3,x4] = deal(A{:})

Arguments are passed to the function by value. See the examples below,
under “Argument Passing” on page 1-6851.

Argument Passing

When calling a function using command syntax, MATLAB passes the
arguments as string literals. When using function syntax, arguments
are passed by value.

In the following example, assign a value to A and then call disp on
the variable to display the value passed. Calling disp with command
syntax passes the variable name, 'A':

A = pi;
disp A

A

while function syntax passes the value assigned to A:

A = pi;
disp(A)

3.1416

The next example passes two strings to strcmp for comparison. Calling
the function with command syntax compares the variable names,
'str1' and 'str2':

str1 = 'one'; str2 = 'one';
strcmp str1 str2
ans =

0 (unequal)

while function syntax compares the values assigned to the variables,
'one' and 'one':

str1 = 'one'; str2 = 'one';
strcmp(str1, str2)

1-6851

syntax

ans =
1 (equal)

Passing Strings

When using the function syntax to pass a string literal to a function,
you must enclose the string in single quotes, ('string'). For example,
to create a new folder called myapptests, use

mkdir('myapptests')

On the other hand, variables that contain strings do not need to be
enclosed in quotes:

folder = 'myapptests';
mkdir(folder)

See Also mlint

How To • “Check Code for Errors and Warnings”

1-6852

system

Purpose Execute operating system command and return output

Syntax status = system(command)
[status,cmdout] = system(command)
[status,cmdout] = system(command,'-echo')

Description status = system(command) calls the operating system to execute the
specified command. The operation waits for the command to finish
execution before returning the exit status of the command to the status
variable.

[status,cmdout] = system(command) additionally returns the output
of the command to cmdout. This syntax is most useful for commands
that do not require user input, such as dir.

[status,cmdout] = system(command,'-echo') additionally displays
(echoes) the command output in the MATLAB Command Window. This
syntax is most useful for commands that require user input and that
run correctly in the MATLAB Command Window.

Input
Arguments

command - Operating system command
string

Operating system command, specified as a string. The command
executes in a system shell, which might not be the shell from which you
launched MATLAB.

Example: 'dir'

Example: 'ls'

Output
Arguments

status - Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When
the command is successful, status is 0. Otherwise, status is a nonzero
integer.

1-6853

system

• If command includes the ampersand character (&), then status is the
exit status upon command launch.

• If command does not include the ampersand character (&), then status
is the exit status upon command completion.

cmdout - Output of operating system command
string

Output of the operating system command, returned as a string.

Examples Display Windows Operating System Command Status and
Output

On a Windows system, display the current folder using the cd command.

command = 'cd';
[status,cmdout] = system(command)

status =
0

cmdout =
C:\matlab\myfiles

A status of zero indicates that the command completed successfully.
MATLAB returns a string containing the current folder in cmdout.

Save UNIX Command Exit Status and Output

List all users who are currently logged in, and save the command exit
status and output. Then, view the status.

command = 'who';
[status,cmdout] = system(command);
status

status =

0

1-6854

system

A status of zero indicates that the command completed successfully.
MATLAB returns a string containing the list of users in cmdout.

Limitations • DOS does not support UNC path names. Therefore, if the current
folder uses a UNC path name, then running system with a DOS
command that relies on the current folder fails. To work around this
limitation, change the folder to a mapped drive before calling system.

Algorithms On UNIX, MATLAB uses a shell program to execute the given
command. It determines which shell program to use by checking
environment variables on your system. MATLAB first checks the
MATLAB_SHELL variable, and if either empty or not defined, then checks
SHELL. If SHELL is also empty or not defined, MATLAB uses /bin/sh.

Tips • To execute the operating system command in the background, include
the trailing character, &, in the command argument (for example,
'notepad &' on a Windows platform, or 'emacs &' on UNIX). The
exit status is immediately returned to the status variable. This
syntax is useful for console programs that require interactive user
command input while they run, and that do not run correctly in the
MATLAB Command Window.

Note If command includes the trailing & character, cmdout is empty.

• On a UNIX system, the system function redirects stdin to the
invoked command, command, by default. This redirection also
forwards MATLAB script commands and the keyboard type-ahead
buffer to the invoked command while the system function executes.
This can lead to corrupted output when system does not complete
execution immediately. To disable stdin and type-ahead redirection,
include the formatted string < /dev/null in the call to the invoked
command.

See Also computer | dos | perl | unix | ! (exclamation point)

1-6855

system

Concepts • “Run External Commands, Scripts, and Programs”

1-6856

table

Purpose Create table from workspace variables

Syntax T = table(var1,...,varN)
T = table(var1,...,varN,Name,Value)
T = table

Description T = table(var1,...,varN) creates a table from the input variables,
var1,...,varN . Variables can be of different sizes and data types,
but all variables must have the same number of rows.

If the inputs are workspace variables, table uses the workspace
variable names as variable names for the table. Otherwise, table
uses strings of the form 'Var1',...,'VarN' where N is the number
of variables.

For more information on creating and using the table data type, see
“Tables”.

T = table(var1,...,varN,Name,Value) includes additional options
specified by one or more Name,Value pair arguments.

For example, you can specify row names or variable names to include
in the table.

T = table creates an empty 0-by-0 table.

Input
Arguments

var1,...,varN - Input variables
arrays with the same number of rows

Input variables, specified as arrays with the same number of rows. The
input variables can be of different sizes and different data types.

Common input variables are numeric arrays, logical arrays, character
arrays, structure arrays, or cell arrays. Furthermore, input variables
can be objects that are arrays that support indexing of the form
var(index1,...indexN), where index1 is a numeric or logical vector
that corresponds to rows of the variable var. In addition, the array must
implement a vertcat method and a size method with a dim argument.

1-6857

table

Example: table([1:4]',ones(4,3,2),eye(4,2)) creates a table
from variables with 4 rows, but different sizes.

Example: table([1:3]',{'one';'two';'three'},['A';'B';'C'])
creates a table from variables with 3 rows, but different data types.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'RowNames',{'row1','row2','row3'} names the rows
row1, row2, and row3.

’RowNames’ - Row names
{} (default) | cell array of nonempty, distinct strings

Row names, specified as the comma-separated pair consisting of
'RowNames' and a cell array of nonempty, distinct strings. The number
of strings must equal the number of rows in the table.

’VariableNames’ - Variable names
cell array of nonempty, distinct strings

Variable names, specified as the comma-separated pair consisting of
'VariableNames' and a cell array of nonempty, distinct strings. The
number of strings must equal the number of variables.

If the input variables, var1,...,varN, are valid MATLAB identifiers,
table uses the workspace variable names. Otherwise, table uses a
cell array of N strings of the form {'Var1',...,'VarN'}, where N is
the number of variables. You can determine valid MATLAB variable
names using the function isvarname.

1-6858

table

Output
Arguments

T - Output table
table

Output table, returned as a table. The table can store metadata such as
descriptions, variable units, variable names, and row names. For more
information, see Table Properties.

Examples Create Table from Workspace Variables

Define workspace variables with the same number of rows.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

Create a table, T, as a container for the workspace variables.

T = table(Age,Height,Weight,BloodPressure,...
'RowNames',LastName)

T =

Age Height Weight BloodPressure
___ ______ ______ _______________

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

table names the variables with the workspace variable names.

Create Table and Specify Variable Names

Create a table from arrays with different data types.

1-6859

table

T = table(['M';'F';'M'],[45;32;34],...
{'NY';'CA';'MA'},logical([1;0;0]),...
'VariableNames',{'Gender' 'Age' 'State' 'Vote'})

T =

Gender Age State Vote
______ ___ _____ _____

M 45 'NY' true
F 32 'CA' false
M 34 'MA' false

Each variable in T contains 3 rows.

Gender is a character array, Age is a double-precision array, State
is a cell array of strings, and Vote is a logical array. You can use the
function summary to print the data type and other information about
the variables in the table.

See Also readtable | cell2table | array2table | struct2table | isvarname
| summary

Related
Examples

• “Create a Table”
• “Modify Units, Descriptions and Table Variable Names”
• “Access Data in a Table”

1-6860

table2array

Purpose Convert table to homogenous array

Syntax A = table2array(T)

Description A = table2array(T) converts the table, T, to a homogeneous array, A.

Input
Arguments

T - Input table
table

Input table, specified as a table. All variables in T must have sizes
and data types that are compatible for horizontal concatenation.
Specifically, the size of all variable dimensions greater than 2 must
match.

• If T is an m-byn table with variables that each have one column, then
each variable becomes one column in A, and A is an m-by-n array.

• If T contains variables that consist of more than one column, those
variables become multiple columns in A, and the size of A is greater
than the size of T.

• If T contains variables with more than two dimensions, the number
of dimensions of A is the same as the number of variable dimensions.

Examples Convert Table of Numeric Data to Array

Create a table, T, consisting of numeric data.

T = table([1;2;3],[2 8; 4 10; 6 12],[3 12 21; 6 15 24; 9 18 27],...
'VariableNames',{'One' 'Two' 'Three'})

T =

One Two Three
___ _____________ _________________________

1 2 8 3 12 21
2 4 10 6 15 24
3 6 12 9 18 27

1-6861

table2array

Convert table, T, to an array.

A = table2array(T)

A =

1 2 8 3 12 21
2 4 10 6 15 24
3 6 12 9 18 27

A contains two columns from variable Two and three columns from
variable Three.

Convert Numeric Subset of Table to Array

Define the numeric subset of a table to convert to an array.

Create a table with nonnumeric data in the first variable.

T = table(['M';'M';'F';'F';'F'],[38;43;38;40;49],...
[71;69;64;67;64],[176;163;131;133;119],...
'VariableNames',{'Gender' 'Age' 'Height' 'Weight'})

T =

Gender Age Height Weight
______ ___ ______ ______

M 38 71 176
M 43 69 163
F 38 64 131
F 40 67 133
F 49 64 119

Convert T(:,2:4) to an array.

A = table2array(T(:,2:4))

A =

1-6862

table2array

38 71 176
43 69 163
38 64 131
40 67 133
49 64 119

A does not include data from the variable Gender.

Convert Table with Three-Dimensional Variables to Array

Create a table, T, with two rows and three variables where each variable
has three dimensions.

T = table(ones(2,1,3),2*ones(2,2,3),3*ones(2,3,3),...
'VariableNames',{'One' 'Two' 'Three'})

T =

One Two Three
______________ ______________ ______________

[1x1x3 double] [1x2x3 double] [1x3x3 double]
[1x1x3 double] [1x2x3 double] [1x3x3 double]

The size of the table is 2-by-3.

Convert table T to an array.

A = table2array(T)

A(:,:,1) =

1 2 2 3 3 3
1 2 2 3 3 3

A(:,:,2) =

1 2 2 3 3 3

1-6863

table2array

1 2 2 3 3 3

A(:,:,3) =

1 2 2 3 3 3
1 2 2 3 3 3

The size of A is 2-by-6-by-3.

Algorithms If T contains variables with different data types that are compatible for
horizontal concatenation, table2array creates a homogeneous array,
A, of the dominant data type. For example, if T contains double and
single numeric data, table2array(T) returns an array with data type
single.

Tips • table2array horizontally concatenates the variables in T to create A.
If the variables in T are cell arrays, table2array does not concatenate
their contents, and A is a cell array, equivalent to table2cell(T).
To create an array containing the contents of variables that are all
cell arrays, use cell2mat(table2cell(T)).

• table2array(T) is equivalent to T{:,:}.

See Also array2table | table2cell | table2struct | table

Concepts • “Concatenating Objects of Different Classes”

1-6864

table2cell

Purpose Convert table to cell array

Syntax C = table2cell(T)

Description C = table2cell(T) converts the table, T, to a cell array, C. Each
variable in T becomes a column of cells in C.

Input
Arguments

T - Input table
table

Input table, specified as a table.

If T is an m-byn table, then C is an m-by-n cell array.

Examples Convert Table to Cell Array

Create a table, T, with five rows and three variables.

T = table(['M';'M';'F';'F';'F'],[38;43;38;40;49],...
[124 93;109 77; 125 83; 117 75; 122 80],...
'VariableNames',{'Gender' 'Age' 'BloodPressure'},...
'RowNames',{'Smith' 'Johnson' 'Williams' 'Jones' 'Brown'})

T =

Gender Age BloodPressure
______ ___ _______________

Smith M 38 124 93
Johnson M 43 109 77
Williams F 38 125 83
Jones F 40 117 75
Brown F 49 122 80

Convert T to a cell array.

C = table2cell(T)

1-6865

table2cell

C =

'M' [38] [1x2 double]
'M' [43] [1x2 double]
'F' [38] [1x2 double]
'F' [40] [1x2 double]
'F' [49] [1x2 double]

C is a 5-by-3 cell array.

Vertically concatenate the table property,
T.Properties.VariableNames, with C to include column headings
for the cell array.

[T.Properties.VariableNames;C]

ans =

'Gender' 'Age' 'BloodPressure'
'M' [38] [1x2 double]
'M' [43] [1x2 double]
'F' [38] [1x2 double]
'F' [40] [1x2 double]
'F' [49] [1x2 double]

T.Properties.VariableNames is a cell array of strings.

See Also cell2table | table2array | table2struct | table

1-6866

table2struct

Purpose Convert table to structure array

Syntax S = table2struct(T)
S = table2struct(T,'ToScalar',true)

Description S = table2struct(T) converts the table, T, to a structure array, S.
Each variable of T becomes a field in S. If T is an m-by-n table, then S is a
m-by-1 structure array with n fields.

S = table2struct(T,'ToScalar',true) converts the table, T, to a
scalar structure S. Each variable of T becomes a field in S. If T is a m-by-n
table, then S has n fields, each of which has m rows.

Input
Arguments

T - Input table
table

Input table, specified as a table.

Examples Convert Table to Structure Array

Create a table, T, with five rows and three variables.

T = table(['M';'M';'F';'F';'F'],[38;43;38;40;49],...
[124 93;109 77; 125 83; 117 75; 122 80],...
'VariableNames',{'Gender' 'Age' 'BloodPressure'})

T =

Gender Age BloodPressure
______ ___ _______________

M 38 124 93
M 43 109 77
F 38 125 83
F 40 117 75
F 49 122 80

1-6867

table2struct

Convert T to a structure array.

S = table2struct(T)

S =

5x1 struct array with fields:

Gender
Age
BloodPressure

The structure is 5-by-1, corresponding to the five rows of the table, T.
The three fields of S correspond to the three variables from T.

Display the field data for the first element of S.

S(1)

ans =

Gender: 'M'
Age: 38

BloodPressure: [124 93]

The information corresponds to the first row of the table.

Convert Table to Scalar Structure

Create a table, T, with five rows and three variables.

T = table(['M';'M';'F';'F';'F'],[38;43;38;40;49],...
[124 93;109 77; 125 83; 117 75; 122 80],...
'VariableNames',{'Gender' 'Age' 'BloodPressure'})

T =

Gender Age BloodPressure
______ ___ _______________

1-6868

table2struct

M 38 124 93
M 43 109 77
F 38 125 83
F 40 117 75
F 49 122 80

Convert T to a scalar structure.

S = table2struct(T,'ToScalar',true)

S =

Gender: [5x1 char]
Age: [5x1 double]

BloodPressure: [5x2 double]

The data in the fields of the scalar structure are 5-by-1, corresponding
to the five rows in the table T.

Display the data for the field BloodPressure.

S.BloodPressure

ans =

124 93
109 77
125 83
117 75
122 80

The structure field BloodPressure contains all of the data that was in
the variable of the same name from table T.

Convert Table with Row Names to Structure

Create a table, T, that includes row names.

1-6869

table2struct

T = table(['M';'M';'F';'F';'F'],[38;43;38;40;49],...
[124 93;109 77; 125 83; 117 75; 122 80],...
'VariableNames',{'Gender' 'Age' 'BloodPressure'},...
'RowNames',{'Smith' 'Johnson' 'Williams' 'Jones' 'Brown'})

T =

Gender Age BloodPressure
______ ___ _______________

Smith M 38 124 93
Johnson M 43 109 77
Williams F 38 125 83
Jones F 40 117 75
Brown F 49 122 80

Convert T to a scalar structure.

S = table2struct(T,'ToScalar',true)

S =

Gender: [5x1 char]
Age: [5x1 double]

BloodPressure: [5x2 double]

Add a field for the row names from the table.

S.RowNames = T.Properties.RowNames

S =

Gender: [5x1 char]
Age: [5x1 double]

BloodPressure: [5x2 double]
RowNames: {5x1 cell}

1-6870

table2struct

If S is a nonscalar structure, use [S.RowNames] =
T.Properties.RowNames{:} to include a field with the row
names from the table.

See Also struct2table | table2cell | table2array | table

1-6871

Table Properties

Purpose Access and modify table metadata properties

Access
and
Modify
Properties

A table, T, has properties that store metadata such as its variable
names, row names, descriptions, and variable units. T.Properties
returns a summary of all of the table properties.

You can access a property using T.Properties.PropName, where T
is the name of the table and PropName is one of the table properties.
For example, to access the VariableDescriptions property of a table
named Patients, use Patients.Properties.VariableDescriptions.

You can modify a property value using T.Properties.PropName
= P where T is the name of the table, PropName is one of the table
properties, and P is the desired property value. For example, to
modify the VariableUnits property of a table named Patients, use
Patients.Properties.VariableUnits = P where P is a cell array of
strings containing the specified information.

In contrast, you can access and modify variables within a table using
T.Variable or T.Variable = V, where T is the name of the table,
Variable is the name of the variable you want to access or modify, and
V is the variable value you want.

Properties VariableNames - Variable names
cell array of nonempty, distinct strings

Variable names, specified as a cell array of nonempty, distinct strings.
The number of strings must equal the number of variables. MATLAB
removes any leading or trailing white space from the strings.

If valid MATLAB identifiers are not available for use as variable
names, MATLAB uses a cell array of N strings of the form {'Var1' ...
'VarN'} where N is the number of variables. You can determine valid
MATLAB variable names using the function isvarname.

The variable names are visible when viewing the table and when using
the summary function. Furthermore, you can use the variable names
within parentheses, within curly braces, or with dot indexing to access
table data.

1-6872

Table Properties

Example

%% Create a table
T = table(['M';'M';'F';'F';'F'],[38;43;38;40;49],...

[71;69;64;67;64],[176;163;131;133;119])

T =

Var1 Var2 Var3 Var4
____ ____ ____ ____

M 38 71 176
M 43 69 163
F 38 64 131
F 40 67 133
F 49 64 119

%% Modify variable names
T.Properties.VariableNames = {'Gender' 'Age' 'Height' 'Weight'}

T =

Gender Age Height Weight
______ ___ ______ ______

M 38 71 176
M 43 69 163
F 38 64 131
F 40 67 133
F 49 64 119

%% Create a subtable
%
% Use variable names within parentheses to create a subtable.
% Include al the rows, but only the variables Age and Gender.
T(:,{'Age','Gender'})

ans =

1-6873

Table Properties

Age Gender
___ ______

38 M
43 M
38 F
40 F
49 F

%% Extract data from the table
%
% Use variable names within curly braces to extract the
% numeric data from the variables Height and Weight.
T{:,{'Height','Weight'}}

ans =

71 176
69 163
64 131
67 133
64 119

% Use variable names with dot indexing to extract
% all the data from the variable Gender.
T.Gender

ans =

M
M
F
F
F

RowNames - Row names

1-6874

Table Properties

{} (default) | cell array of nonempty, distinct strings

Row names, specified as a cell array of nonempty, distinct strings. This
property can be empty, but if not empty, the number of strings must
equal the number of rows in the table. MATLAB removes any leading
or trailing white space from the strings. The default property value is
an empty cell array.

The row names are visible when you view the table. Furthermore, you
can use the row names within parentheses or curly braces to access
the table data.

Example

% Create a table
load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);

% Add row names
T.Properties.RowNames = LastName;

% Remove row names
T.Properties.RowNames = {};

DimensionNames - Dimension names
{'Row' `Variable'} (default) | two-element cell array of strings

Dimension names, specified as a two-element cell array of strings.

Example

% Create a table
load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic,...

'RowNames',LastName);

% Add dimension names
T.Properties.DimensionNames = {'Patient' 'Data'};

Description - Table description

1-6875

Table Properties

'' (default) | string

Table description, specified as a string. This string is visible when
using the summary function.

Example

% Create a table
load patients
T = table(Gender,Age,Height,Weight);

% Add a table description
T.Properties.Description = 'Simulated patient data';

%View the summary
format compact
summary(T)

Description: Simulated patient data
Variables:

Gender: 100x1 char
Age: 100x1 double

Values:
min 25
median 39
max 50

Height: 100x1 double
Values:

min 60
median 67
max 72

Weight: 100x1 double
Values:

min 111
median 142.5
max 202

VariableDescriptions - Variable descriptions

1-6876

Table Properties

{} (default) | cell array of strings

Variable descriptions, specified as a cell array of strings. This property
can be an empty cell array, which is the default. If the cell array is
not empty, the number of strings must equal the number of variables.
You can specify an individual empty string within the cell array for a
variable that does not have a description.

The variable descriptions are visible when using the summary function.

Example

% Create a table
load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);

% Add variable descriptions
T.Properties.VariableDescriptions = {'' '' '' '' ...

'Has the patient ever been a smoker' ...
'Systolic Pressure' 'Diastolic Pressure'};

% View the summary
format compact
summary(T)

Variables:
Gender: 100x1 char
Age: 100x1 double

Values:
min 25
median 39
max 50

Height: 100x1 double
Values:

min 60
median 67
max 72

Weight: 100x1 double
Values:

1-6877

Table Properties

min 111
median 142.5
max 202

Smoker: 100x1 logical
Description: Has the patient ever been a smoker
Values:

true 34
false 66

Systolic: 100x1 double
Description: Systolic Pressure
Values:

min 109
median 122
max 138

Diastolic: 100x1 double
Description: Diastolic Pressure
Values:

min 68
median 81.5
max 99

% Remove all the variable descriptions
T.Properties.VariableDescriptions = {};

VariableUnits - Variable units
{} (default) | cell array of strings

Variable units, specified as a cell array of strings. This property can be
an empty cell array, which is the default. If the cell array is not empty,
the number of strings must equal the number of variables. You can
specify an individual empty string within the cell array for a variable
that does not have units.

The variable units are visible when using the summary function.

Example

% Create a table
load patients

1-6878

Table Properties

T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);

% Add variable units
T.Properties.VariableUnits = {'' 'Yrs' 'In' 'Lbs' '' 'mm Hg' 'mm Hg'};

% View the summary
format compact
summary(T)

Variables:
Gender: 100x1 char
Age: 100x1 double

Units: Yrs
Values:

min 25
median 39
max 50

Height: 100x1 double
Units: In
Values:

min 60
median 67
max 72

Weight: 100x1 double
Units: Lbs
Values:

min 111
median 142.5
max 202

Smoker: 100x1 logical
Values:

true 34
false 66

Systolic: 100x1 double
Units: mm Hg
Values:

min 109

1-6879

Table Properties

median 122
max 138

Diastolic: 100x1 double
Units: mm Hg
Values:

min 68
median 81.5
max 99

% Remove all the variable units
T.Properties.VariableUnits = {};

UserData - Additional table information
{} (default) | variable containing information in any data type

Additional table information, specified as a variable containing
information in any data type.

Example

% Create a table
load patients
T = table(Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);

% Add an anonymous function to the table metadata
formula = @(x) x.^2;
T.Properties.UserData = formula;

See Also table | summary | isvarname

Concepts • “Access Data in a Table”

1-6880

tan

Purpose Tangent of argument in radians

Syntax Y = tan(X)

Description Y = tan(X) returns the tangent of each element of X. The tan function
operates element-wise on arrays. The function accepts both real and
complex inputs. For real values of X in the interval [-Inf, Inf], tan
returns real values in the interval [-Inf ,Inf]. For complex values of X,
tan returns complex values. All angles are in radians.

Input
Arguments

X - Input angle in radians
scalar value | vector | matrix | N-D array

Input angle, specified as a real-valued or complex-valued scalar, vector,
matrix or N-D array. The tan operation is element-wise when X is
non-scalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Tangent of input angle
scalar value | vector | matrix | N-D array

Tangent of input angle, returned as a real-valued or complex-valued
scalar, vector, matrix or N-D array.

Examples Plot Tangent Function

Plot the tangent function over the domain .

x = (-pi/2)+0.01:0.01:(pi/2)-0.01;
plot(x,tan(x)), grid on

1-6881

tan

Tangent of Vector of Complex Angles

Calculate the tangent of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = tan(x)

y =

1-6882

tan

0.0000 - 0.7616i -0.0000 + 0.9172i -0.0006 + 1.0003i

Definitions Tangent Function

The tangent of an angle, α, defined with reference to a right angled
triangle is

tangent
opposite side
adjacent side

() .
a
b

.

1-6883

tan

The tangent of a complex angle, α, is

tangent

e e

i e e

i i

i i
.

.

See Also tand | tanh | atan | atan2 | atand | atan2d

1-6884

tand

Purpose Tangent of argument in degrees

Syntax Y = tand(X)

Description Y = tand(X) returns the tangent of the elements of X, which are
expressed in degrees.

Input
Arguments

X - Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, specified as a real-valued or complex-valued scalar,
vector, matrix, or N-D array. The tand operation is element-wise when
X is nonscalar.

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

Y - Tangent of angle
scalar value | vector | matrix | N-D array

Tangent of angle, returned as a real-valued or complex-valued scalar,
vector, matrix, or N-D array of the same size as X.

Examples Tangent of 90 degrees compared to tangent of /2 radians

tand(90)

ans =

Inf

tan(pi/2)

ans =

1.6331e+16

tand(90) is infinite, whereas tan(pi/2) is large but finite.

1-6885

tand

Tangent of vector of complex angles, specified in degrees

z = [180+i 15+2i 10+3i];
y = tand(z)

y =

0 + 0.0175i 0.2676 + 0.0374i 0.1758 + 0.0539i

See Also atand | tan | atan

1-6886

tanh

Purpose Hyperbolic tangent

Syntax Y = tanh(X)

Description The tanh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = tanh(X) returns the hyperbolic tangent of each element of X.

Examples Graph Hyperbolic Tangent Function

Graph the hyperbolic tangent function over the domain .

x = -5:0.01:5;
plot(x,tanh(x)), grid on

1-6887

tanh

Definitions Hyperbolic Tangent

The hyperbolic tangent of z is

tanh
sinh
cosh

.z
z

z

See Also atan | atan2 | tan | atanh | sinh | cosh

1-6888

tar

Purpose Compress files into tar file

Syntax tar(tarfilename,files)
tar(tarfilename,files,rootfolder)
entrynames = tar(...)

Description tar(tarfilename,files) creates a tar file named tarfilename from
the list of files and folders specified in files. Folders recursively
include all of their content. If files includes relative paths, the tar file
also contains relative paths. The tar file does not include absolute paths.

tar(tarfilename,files,rootfolder) specifies the path for files
relative to rootfolder rather than the current folder. Relative paths
in the tar file reflect the relative paths in files, and do not include
path information from rootfolder.

entrynames = tar(...) returns a string cell array of the names of
the files contained in tarfilename. If files includes relative paths,
entrynames also contains relative paths.

Tips tar cannot compress folders larger than 2 GB.

Input
Arguments

tarfilename

String specifying the name of the tar file. If tarfilename has no
extension, MATLAB appends the .tar extension. The tarfilename
extension can end in .tgz or .gz. In this case, tarfilename is gzipped.

files

String or cell array of strings containing the list of files or folders
included in tarfilename.

Individual files that are on the MATLAB path can be specified as partial
path names. Otherwise an individual file can be specified relative to the
current folder or with an absolute path.

Folders must be specified relative to the current folder or with absolute
paths. On UNIX systems, folders can also start with ~/ or ~username/,

1-6889

tar

which expands to the current user’s home folder or the specified user’s
home folder, respectively. The wildcard character * can be used when
specifying files or folders, except when relying on the MATLAB path to
resolve a file name or partial path name.

rootfolder

String specifying the path for files.

Examples Tar all files in the current folder to the file backup.tgz.

tar('backup.tgz','.');

See Also gzip | gunzip | untar | unzip | zip

1-6890

tempdir

Purpose Name of system’s temporary folder

Syntax tmp_folder = tempdir

Description tmp_folder = tempdir returns the name of the system’s temporary
folder, if one exists. This function does not create a new folder.

See Also delete | recycle | tempname

How To • “Create Temporary Files”

1-6891

tempname

Purpose Unique name for temporary file

Syntax tmpName = tempname

Description tmpName = tempname returns a string, tmpName, suitable for use as a
temporary file path in your system’s temporary folder.

Examples Create Temporary File Name with Extension

Create a temporary file name that has the extension, .dat, by
concatenating two strings.

tmpName = [tempname,'.dat'];

Write Data to Temporary File

Create a temporary file name.

filename = tempname;

Create a new file with the temporary file name, and write data to the
file.

fileID = fopen(filename,'w');
fwrite(fileID,magic(5));
fclose(fileID);

Limitations • In most cases, tempname generates a universally unique identifier
(UUID). However, if you run MATLAB without JVM software, then
tempname generates a random string using the CPU counter and
time, and this string is not guaranteed to be unique. For more
information about the MATLAB startup option that does not load
JVM software, see “Commonly Used Startup Options”.

See Also tempdir

Concepts • “Create Temporary Files”

1-6892

tetramesh

Purpose Tetrahedron mesh plot

Syntax tetramesh(T,X,c)
tetramesh(T,X)
tetramesh(TR)
h = tetramesh(...)
tetramesh(...,'param','value','param','value'...)

Description tetramesh(T,X,c) displays the tetrahedrons defined in the m-by-4
matrix T as mesh. T is usually the output of a Delaunay triangulation
of a 3-D set of points. A row of T contains indices into X of the vertices
of a tetrahedron. X is an n-by-3 matrix, representing n points in 3
dimension. The tetrahedron colors are defined by the vector C, which
is used as indices into the current colormap.

tetramesh(T,X) uses C = 1:m as the color for the m tetrahedra. Each
tetrahedron has a different color (modulo the number of colors available
in the current colormap).

tetramesh(TR) displays the tetrahedra in a triangulation
representation.

h = tetramesh(...) returns a vector of tetrahedron handles. Each
element of h is a handle to the set of patches forming one tetrahedron.
You can use these handles to view a particular tetrahedron by turning
the patch 'Visible' property 'on' or 'off'.

tetramesh(...,'param','value','param','value'...) allows
additional patch property name/property value pairs to be used when
displaying the tetrahedrons. For example, the default transparency
parameter is set to 0.9. You can overwrite this value by using the
property name/property value pair ('FaceAlpha',value) where value
is a number between 0 and 1. See Patch Properties for information
about the available properties.

Examples Plot Tetrahedrons of 3-D Delaunay Triangulation

Generate a 3-D Delaunay triangulation, then use tetramesh to
visualize the tetrahedrons.

1-6893

tetramesh

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % a cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];

[x,y,z] are corners of a cube plus the center.

DT = delaunayTriangulation(x,y,z);
tetramesh(DT);
camorbit(20,0)

1-6894

tetramesh

See Also trimesh | trisurf | patch | delaunayn | triangulation |
delaunayTriangulation | freeBoundary(triangulation)

1-6895

matlab.unittest.Test

Superclasses TestSuite

Purpose Specification of a single test method

Description The matlab.unittest.Test class holds the information needed for the
TestRunner object to be able to run a single Test method of a TestCase
class. A scalar Test instance is the fundamental element contained in
TestSuite arrays. A simple array of Test instances is a commonly used
form of a TestSuite array.

Properties Name

Name of the Test element.

Parameterization

Row vector of parameters required for the Test. The
Parameterization property contains all the parameterized data
needed by the TestRunner.

SharedTestFixtures

Row vector of fixtures required for the Test. The
SharedTestFixtures property contains all the fixtures specified
by the SharedTestFixtures class-level attribute of the TestCase
class.

Examples Show Class of a TestSuite Array

Create a suite of Test objects of all test methods in the BankAccountTest
class.

import matlab.unittest.TestSuite;

suite = TestSuite.fromClass(?BankAccountTest);

whos suite

Name Size Bytes Class Attributes

1-6896

matlab.unittest.Test

suite 1x5 1636 matlab.unittest.Test

Each test is a matlab.unittest.Test object.

Display test method names.

{suite.Name}'

ans =

'BankAccountTest/testConstructor'
'BankAccountTest/testConstructorNotEnoughInputs'
'BankAccountTest/testDesposit'
'BankAccountTest/testWithdraw'
'BankAccountTest/testNotifyInsufficientFunds'

See Also matlab.unittest.TestSuite | matlab.unittest.TestRunner |
matlab.unittest.TestCase | matlab.unittest.fixtures

1-6897

matlab.unittest.TestCase

Purpose Superclass of all matlab.unittest test classes

Description The TestCase class is the means by which a test is written in the
matlab.unittest framework. It provides the means to write and
identify test content, as well as test fixture setup and teardown
routines. Creating such a test requires deriving from TestCase to
produce a TestCase subclass. Then, subclasses can leverage the
metadata attributes to specify tests and test fixtures.

Construction The TestCase constructor is used to create TestCase instances intended
for interactive, command line use. When tests are run in the framework,
TestCase instances are constructed by the matlab.unittest.TestRunner.

Methods
addTeardown Dynamically add teardown

routine

applyFixture Use fixture with TestCase

forInteractiveUse Create TestCase for interactive
use

getSharedTestFixtures Provide access to shared test
fixtures

run Run TestCase test

Inherited Methods

The TestCase class inherits methods from the following classes:

matlab.unittest.qualifications.AssertableQualification to validate
preconditions of a test

matlab.unittest.qualifications.AssumableQualification to filter test content

1-6898

matlab.unittest.TestCase

matlab.unittest.qualifications.FatalAssertableQualification to abort test
execution

matlab.unittest.qualifications.VerifiableQualification to produce
soft-failure conditions

Attributes Class Attributes

TestCase objects support the following class level attributes. Specify
class-level attributes in the classdef block before the class name.

SharedTestFixtures Class block to contain shared
test fixtures. You must
define SharedTestFixtures
as a cell array of
matlab.unittest.fixtures.Fixture
instances.

Method Attributes

Classes that derive from TestCase can define methods blocks which
contain matlab.unittest framework-specific attributes to specify test
content.

Test Method block to contain test
methods.

TestMethodSetup Method block to contain setup
code.

TestMethodTeardown Method block to contain teardown
code.

TestClassSetup Method block to contain class
level setup code.

1-6899

matlab.unittest.TestCase

TestClassTeardown Method block to contain class
level teardown code.

ParameterCombination Method block to contain
parameterized testing code.
This attribute accepts the
following values:
• 'exhaustive' (default): Test
methods are invoked for all
combinations of parameters.

• 'sequential': Test methods
are invoked with corresponding
values from each parameter.
Each parameter must contain
the same number of values.

• 'pairwise': Test methods
are invoked for every pair of
parameter values at least once.

Property Attributes

Classes that derive from TestCase can define properties blocks which
contain matlab.unittest framework-specific attributes to specify test
content.

ClassSetupParameter Property block to define
parameterized testing
properties for methods in
the TestClassSetup block

MethodSetupParameter Property block to define
parameterized testing properties

1-6900

matlab.unittest.TestCase

for methods in theMethodSetup
block

TestParameter Property block to define
parameterized testing properties
for methods in the Test block

Events
AssertionFailed Triggered upon failing assertion.

A QualificationEventData
object is passed to listener
callback functions.

AssertionPassed Triggered upon passing assertion.
A QualificationEventData
object is passed to listener
callback functions.

AssumptionFailed Triggered upon failing
assumption. A
QualificationEventData object
is passed to listener callback
functions.

AssumptionPassed Triggered upon passing
assumption. A
QualificationEventData object
is passed to listener callback
functions.

FatalAssertionFailed Triggered upon failing
fatal assertion. A
QualificationEventData object
is passed to listener callback
functions.

1-6901

matlab.unittest.TestCase

FatalAssertionPassed Triggered upon passing
fatal assertion. A
QualificationEventData object
is passed to listener callback
functions.

VerificationFailed Triggered upon failing
verification. A
QualificationEventData object
is passed to listener callback
functions.

VerificationPassed Triggered upon passing
verification. A
QualificationEventData object
is passed to listener callback
functions.

ExceptionThrown Triggered by the TestRunner
when an exception is thrown.
An ExceptionEventData object
is passed to listener callback
functions.

Examples Create Test Case Class

Create a test case class, FigurePropertiesTest, with TestMethodSetup
and TestMethodTeardown methods.

classdef FigurePropertiesTest < matlab.unittest.TestCase

properties
TestFigure

end

methods(TestMethodSetup)
function createFigure(testCase)

testCase.TestFigure = figure;

1-6902

matlab.unittest.TestCase

end
end

methods(TestMethodTeardown)
function closeFigure(testCase)

close(testCase.TestFigure);
end

end

methods(Test)

function defaultCurrentPoint(testCase)

cp = get(testCase.TestFigure, 'CurrentPoint');
testCase.verifyEqual(cp, [0 0], ...

'Default current point is incorrect')
end

function defaultCurrentObject(testCase)
import matlab.unittest.constraints.IsEmpty;

co = get(testCase.TestFigure, 'CurrentObject');
testCase.verifyThat(co, IsEmpty, ...

'Default current object should be empty');
end

end

end

See Also TestRunner | matlab.unittest.constraints |
matlab.unittest.qualifications | addlistener |
matlab.unittest.qualifications.QualificationEventData |
matlab.unittest.qualifications.ExceptionEventData

Related
Examples

• “Create Basic Parameterized Test”
• “Create Advanced Parameterized Test”

1-6903

matlab.unittest.TestCase

Concepts • “Method Attributes”
• “Class Attributes”

1-6904

matlab.unittest.TestCase.addTeardown

Purpose Dynamically add teardown routine

Syntax addTeardown(testCase,tearDownFcn)
addTeardown(testCase,tearDownFcn,arg1,...,argN)

Description addTeardown(testCase,tearDownFcn) adds the tearDownFcn
function handle that defines fixture teardown code to the testCase
instance. The teardown code is executed in the reverse order to which it
is added. This is known as LIFO (or Last-In-First-Out).

addTeardown(testCase,tearDownFcn,arg1,...,argN)

Input
Arguments

testCase

matlab.unittest.TestCase instance

tearDownFcn

Function, specified as a function handle, that defines the fixture
teardown code

arg1,...,argN

Input arguments, 1 through N (if any), required by tearDownFcn,
specified by any type. The argument type is specified by the
function argument list.

Examples Call addTeardown in a TestMethodSetup Method

classdef SomeTest < matlab.unittest.TestCase

methods(TestMethodSetup)
function createFixture(testCase)

p = path;
testCase.addTeardown(@path, p);
addpath(fullfile(pwd,'testHelpers'));

end
end

end

1-6905

matlab.unittest.TestCase.applyFixture

Purpose Use fixture with TestCase

Syntax applyFixture(testCase,fixture)

Description applyFixture(testCase,fixture) prepares the specified fixture for
use with the TestCase. This method enables the use of a fixture within
the scope of a single Test method or TestCase class. The life cycle of
the fixture is tied to the TestCase. When the TestCase goes out of
scope, the test framework tears down the fixture.

Call applyFixture within a Test method or TestMethodSetup method
to use a fixture for the current test method alone. Use applyFixture
within a TestClassSetup method to set up a fixture for the entire class.

Input
Arguments

testCase

matlab.unittest.TestCase instance

fixture

matlab.unittest.fixtures.Fixture instance

Examples Apply Fixtures to TestCase Class

Create a temporary folder and make it the current working folder.

classdef applyFixtureTest < matlab.unittest.TestCase
methods(TestMethodSetup)

function addHelpers(testCase)
import matlab.unittest.fixtures.TemporaryFolderFixture;
import matlab.unittest.fixtures.CurrentFolderFixture;

% Create a temporary folder and make it the current working
% folder.
tempFolder = testCase.applyFixture(TemporaryFolderFixture);
testCase.applyFixture(CurrentFolderFixture(tempFolder.Folder)

end
end

end

1-6906

matlab.unittest.TestCase.applyFixture

Each test method can write files to the current working folder, which is
the temporary folder. After each test method runs, the test framework
restores the working folder to its previous state and deletes the
temporary folder.

See Also matlab.unittest.fixtures

1-6907

matlab.unittest.TestCase.forInteractiveUse

Purpose Create TestCase for interactive use

Syntax tc = matlab.unittest.TestCase.forInteractiveUse

Description tc = matlab.unittest.TestCase.forInteractiveUse creates a
TestCase instance for interactive use. The TestCase is configured for
experimentation at the command prompt. It reacts to qualification
tests by printing messages to the screen for both passing and failing
conditions.

Examples Verify Values Using Interactive TestCase

Create a TestCase for interactive use.

import matlab.unittest.TestCase;
testCase = TestCase.forInteractiveUse;

Produce a passing verification.

testCase.verifyTrue(true, 'true should be true');

Interactive verification passed.

Produce a failing verification.

testCase.verifyTrue(false);

Interactive verification failed.

Framework Diagnostic:

verifyTrue failed.
--> The value must evaluate to "true".

Actual Value:
0

1-6908

matlab.unittest.TestCase.forInteractiveUse

See Also matlab.unittest.TestCase | matlab.unittest.qualifications

1-6909

matlab.unittest.TestCase.getSharedTestFixtures

Purpose Provide access to shared test fixtures

Syntax fixtures = getSharedTestFixtures(testCase)
fixtures = getSharedTestFixtures(testCase,fixtureClassName)

Description fixtures = getSharedTestFixtures(testCase) provides
access to the array of all shared test fixtures for testCase.
getSharedTestFixtures returns an array of fixture objects, fixtures.
Specify shared fixtures are using the SharedTestFixtures attribute for
the testCase class.

fixtures = getSharedTestFixtures(testCase,fixtureClassName)
returns only the shared fixtures that have the class name
fixtureClassName.

Input
Arguments

testCase

matlab.unittest.TestCase instance

fixtureClassName

Name of test fixture class, specified as a string

Examples Obtain Array of All Shared Fixtures

Create the following class, myTest, on your MATLAB path. Two shared
fixtures are used within the test method. This example assumes that
the subfolder helperFiles exists in your working folder. Create the
subfolder helperFiles in your working folder if it does not exist.

classdef (SharedTestFixtures={...
matlab.unittest.fixtures.PathFixture('helperFiles'),...

matlab.unittest.fixtures.TemporaryFolderFixture}) ...
myTest < matlab.unittest.TestCase

methods(Test)
function accessFixtures(testCase)

myFixtures = testCase.getSharedTestFixtures
end

end

1-6910

matlab.unittest.TestCase.getSharedTestFixtures

end

At the command prompt, run the test.

run(myTest);

Setting up PathFixture.
Description: Adds 'H:\Documents\doc_examples\helperFiles' to the path.

Setting up TemporaryFolderFixture.
Description: Creates a temporary folder.

Running myTest

myFixtures =

1x2 heterogeneous Fixture (PathFixture, TemporaryFolderFixture) arra

.
Done myTest

Tearing down TemporaryFolderFixture.
Description: Deletes the temporary folder and all its contents.

Tearing down PathFixture.
Description: Restores the path to its previous state.

Access Shared Fixtures of Particular Class

Create the class, mySecondTest, on your MATLAB path.

classdef (SharedTestFixtures={...
matlab.unittest.fixtures.TemporaryFolderFixture})...

1-6911

matlab.unittest.TestCase.getSharedTestFixtures

mySecondTest < matlab.unittest.TestCase
methods(Test)

function accessTemporaryFolderFixture(testCase)
tempFolderFixture = testCase.getSharedTestFixtures...

('matlab.unittest.fixtures.TemporaryFolderFixture');
temporaryFolder = tempFolderFixture.Folder

end
end

end

At the command prompt, run the test. The name of the temporary
folder varies.

run(mySecondTest);

Setting up TemporaryFolderFixture.
Description: Creates a temporary folder.

Running mySecondTest

temporaryFolder =

C:\Temp\tpb92c9c67_02fa_4714_bfb0_b2127df0f31d

.
Done mySecondTest

Tearing down TemporaryFolderFixture.
Description: Deletes the temporary folder and all its contents.

See Also matlab.unittest.TestCase | matlab.unittest.fixtures

Concepts • Class Attributes

1-6912

matlab.unittest.TestCase.run

Purpose Run TestCase test

Syntax result = run(testCase)
result = run(testCase,testMethod)

Description result = run(testCase) uses testCase as a prototype to run a
TestSuite array created from all test methods in the class defining
testCase. This suite is run using a TestRunner object configured for
text output.

result = run(testCase,testMethod) uses testCase as a prototype
to run a TestSuite array created from testMethod. This test is run
using a TestRunner object configured for text output.

This is a convenience method to allow interactive experimentation of
TestCase classes in MATLAB, yet running the tests contained in them
using a supported TestRunner object.

Input
Arguments

testCase

matlab.unittest.TestCase instance

testMethod

Name of desired test method, specified as one of the following:

• string

• meta.method instance

The method must correspond to a valid Test method of the
testCase instance.

Output
Arguments

result

A matlab.unittest.TestResult object containing the result of the
test run.

1-6913

matlab.unittest.TestCase.run

Examples Run Test Directly from Test Case

Add the FigurePropertiesTest.m test case file to a folder on your
MATLAB path.

classdef FigurePropertiesTest < matlab.unittest.TestCase

properties
TestFigure

end

methods(TestMethodSetup)
function createFigure(testCase)

%comment
testCase.TestFigure = figure;

end
end

methods(TestMethodTeardown)
function closeFigure(testCase)

close(testCase.TestFigure);
end

end

methods(Test)

function defaultCurrentPoint(testCase)

cp = get(testCase.TestFigure, 'CurrentPoint');
testCase.verifyEqual(cp, [0 0], ...

'Default current point is incorrect')
end

function defaultCurrentObject(testCase)
import matlab.unittest.constraints.IsEmpty;

co = get(testCase.TestFigure, 'CurrentObject');

1-6914

matlab.unittest.TestCase.run

testCase.verifyThat(co, IsEmpty, ...
'Default current object should be empty');

end

end

end

Create a testcase object.

tc = FigurePropertiesTest;

Run the tests.

tc.run;

Running FigurePropertiesTest
..
Done FigurePropertiesTest

All tests passed.

See Also matlab.unittest.TestSuite.run |
matlab.unittest.TestRunner.run

1-6915

matlab.unittest.TestResult

Purpose Result of running test suite

Description The matlab.unittest.TestResult class holds the information describing
the result of running a test suite using the matlab.unittest framework.
The results include information describing whether the test passed,
failed, or ran to completion, as well as the duration of each test.

Construction TestResult arrays are created and returned by the test runner, and are
of the same size as the suite which was run.

Properties Duration

Time elapsed running test.

The Duration property indicates the amount of time taken to run
a particular test, including the time taken setting up and tearing
down any test fixtures.

Fixture setup time is accounted for in the duration of the first
test suite array element that uses the fixture. Fixture teardown
time is accounted for in the duration of the last test suite array
element that uses the fixture.

The total run time for a suite of tests exceeds the sum of the
durations for all the elements of the suite because the Duration
property does not include all the overhead of the TestRunner
object, nor any of the time consumed by test runner plugins.

Failed

Logical value showing if test failed.

A TRUE Failed property indicates some form of test failure.
When Failed is FALSE, then no failing conditions were
encountered. A failing result can occur with a failure condition
either in a test or in setting up and tearing down test fixtures.
Failures can occur due to the following:

• Verification failures

1-6916

matlab.unittest.TestResult

• Assertion failures

• Uncaught MExceptions

Fatal assertions are also failing conditions, but in the event
of a fatal assertion failure, the entire framework aborts and a
TestResult object is never produced.

Incomplete

Logical value showing if test did not run to completion.

A TRUE Incomplete property indicates a test did not run
to completion. When it is FALSE, then no conditions were
encountered that prevented the test from completing. In other
words, when FALSE there were no stack disruptions out of the
running test content. An incomplete result can occur with a stack
disruption in either a test or when setting up and tearing down
test fixtures. Incomplete tests can occur due to the following:

• Assertion failures

• Tests filtered through assumption

• Uncaught MExceptions

Fatal assertions are also conditions that prevent the completion
of tests, but in the event of a fatal assertion failure the entire
framework aborts and a TestResult object is never produced.

Name

The name of the TestSuite object for the result.

The Name property is a string that holds the name of the test
corresponding to this result.

Passed

Logical value showing if the test passed.

1-6917

matlab.unittest.TestResult

When the Passed property is TRUE, then the test completed as
expected without any failure. When it is FALSE, then the test did
not run to completion and/or encountered a failure condition.

Examples Use TestResult Object to Identify and Rerun Failed Tests

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

Result display method provides a summary of the results

suite = TestSuite.fromClass(?SomeTestClass)
results = run(suite)

results =

matlab.unittest.TestResult

Test Suite Summary:
12 Passed, 4 Failed, 0 Not Run To Completion.
5.5091 seconds testing time.

Rerun only the failed tests.

failedTests = suite([results.Failed]);
failedResults = run(failedTests)

failedResults =

matlab.unittest.TestResult

Test Suite Summary:
0 Passed, 4 Failed, 0 Not Run To Completion.
1.2894 seconds testing time.

Make the fix and rerun results.

1-6918

matlab.unittest.TestResult

newResults = run(failedTests)

newResults =

matlab.unittest.TestResult

Test Suite Summary:
4 Passed, 0 Failed, 0 Not Run To Completion.
1.1607 seconds testing time.

See Also TestRunner | TestSuite

Concepts • Property Attributes

1-6919

matlab.unittest.TestRunner

Purpose Class for running tests in matlab.unittest framework

Description The matlab.unittest.TestRunner class is the fundamental API used
to run a suite of tests in the matlab.unittest framework. It runs and
operates on TestSuite arrays. Use this class to customize running tests.

The TestRunner class is a sealed class; you cannot derive classes from
the TestRunner class.

Construction To create a simple, silent TestRunner object, call the static
withNoPlugins method.

runner = matlab.unittest.TestRunner.withNoPlugins

To create a TestRunner object to run tests from the MATLAB Command
Window , call the static withTextOutput method.

runner = matlab.unittest.TestRunner.withTextOutput

To create a customized TestRunner object, call the addPlugin method.

runner = TestRunner.withNoPlugins;
runner.addPlugin(SomePlugin())

Methods addPlugin Add plugin to TestRunner object

run Run all tests in TestSuite array

withNoPlugins Create simplest runner possible

withTextOutput Create TestRunner object for
command window output

Examples Create TestRunner Object Configured for Text Output

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;

1-6920

matlab.unittest.TestRunner

import matlab.unittest.TestSuite;

Create a TestSuite array.

suite = TestSuite.fromClass(?mypackage.MyTestClass);

Create the TestRunner object and run the suite.

runner = TestRunner.withTextOutput;
result = run(runner,suite);

See Also TestSuite | TestResult

1-6921

matlab.unittest.TestRunner.addPlugin

Purpose Add plugin to TestRunner object

Syntax addPlugin(runner,plugin)

Description addPlugin(runner,plugin) adds plugin to runner.

Input
Arguments

runner

matlab.unittest.TestRunner object.

plugin

Mechanism provided to customize the manner in which a
TestSuite array is run, specified as a TestRunnerPlugin object.

Examples Run Test with Custom Plugin

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a TestSuite array.

suite = TestSuite.fromClass(?mypackage.MyTestClass);

Create a TestRunner object.

runner = TestRunner.withNoPlugins;

Add a custom plugin.

import matlab.unittest.plugins.DiagnosticsValidationPlugin;
runner.addPlugin(DiagnosticsValidationPlugin);

Run the test.

result = run(runner,suite);

1-6922

matlab.unittest.TestRunner.run

Purpose Run all tests in TestSuite array

Syntax result = run(runner,suite)

Description result = run(runner,suite) runs the TestSuite array defined by
suite using the TestRunner object provided in runner, and returns
the result in result.

This method runs all of the appropriate methods of the TestCase class to
set up fixtures and run test content. It handles errors and qualification
failures and records the information in result.

Input
Arguments

runner

matlab.unittest.TestRunner object.

suite

Set of tests, specified as a matlab.unittest.TestSuite array.

Output
Arguments

result

A matlab.unittest.TestResult object containing the result of the
test run. result is the same size as suite and each element is
the result of the corresponding element in suite.

Examples Run All Tests in a Package

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a test suite, and a test runner that displays text.

suite = TestSuite.fromClass(?mypackage.MyTestClass);
runner = TestRunner.withTextOutput;

Run the test suite.

1-6923

matlab.unittest.TestRunner.run

result = runner.run(suite)

See Also matlab.unittest.TestSuite.run | matlab.unittest.TestCase.run

1-6924

matlab.unittest.TestRunner.withNoPlugins

Purpose Create simplest runner possible

Syntax runner = matlab.unittest.TestRunner.withNoPlugins

Description runner = matlab.unittest.TestRunner.withNoPlugins creates a
TestRunner that is guaranteed to have no plugins installed and returns
it in runner. It is the method one can use to create the simplest runner
possible without violating the guarantees a test writer has when
writing TestCase classes. This runner is a silent runner, meaning that
regardless of passing or failing tests, this runner produces no command
window output, although the results returned after running a test
suite are accurate.

This method can also be used when it is desirable to have complete
control over which plugins are installed and in what order. It is the
only method guaranteed to produce the minimal TestRunner with no
plugins, so one can create it and add additional plugins as desired.

Output
Arguments

runner

matlab.unittest.TestRunner object.

Attributes Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Create a Silent TestRunner Object with no Plugins

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a TestSuite array.

suite = TestSuite.fromClass(?mypackage.MyTestClass);

1-6925

matlab.unittest.TestRunner.withNoPlugins

Create a TestRunner object.

runner = TestRunner.withNoPlugins;

% Run the suite silently
result = run(runner,suite)

Control Plugins

Using the TestRunner object created in the previous example, control
which plugins are installed and in what order they are installed.

Add matlab.unittest class to the current import list.

import matlab.unittest.plugins;

Add specific plugins.

runner.addPlugin(DiagnosticsValidationPlugin);
runner.addPlugin(TestSuiteProgressPlugin);

Rerun the tests.

result = run(runner,suite)

1-6926

matlab.unittest.TestRunner.withTextOutput

Purpose Create TestRunner object for command window output

Syntax runner = matlab.unittest.TestRunner.withTextOutput

Description runner = matlab.unittest.TestRunner.withTextOutput creates
a TestRunner object that is configured for running tests from the
MATLAB Command Window and returns it in runner. The output
produced includes test progress as well as diagnostics in the event of
test failures.

Output
Arguments

runner

matlab.unittest.TestRunner object.

Attributes Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Display Test Results in Command Window

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a TestSuite array.

suite = TestSuite.fromClass(?mypackage.MyTestClass);

Create a TestRunner object that produced output to the Command
Window.

runner = TestRunner.withTextOutput;

% Run the suite

1-6927

matlab.unittest.TestRunner.withTextOutput

result = run(runner,suite)

See Also run

1-6928

matlab.unittest.TestSuite

Purpose Class for grouping tests to run

Description The matlab.unittest.TestSuite class is the fundamental interface
used to group and run a set of tests in the unit test framework. The
matlab.unittest.TestRunner object can only run arrays of TestSuite
objects.

Construction TestSuite arrays are created using static methods of the TestSuite class.
These methods may return subclasses of the TestSuite class depending
on the method call and context.

Methods fromClass Create suite from TestCase class

fromFile Create TestSuite array from test
file

fromFolder Create TestSuite array from all
tests in folder

fromMethod Create TestSuite array from
single test method

fromName Create Test object from name of
test element

fromPackage Create TestSuite array from all
tests in package

run Run TestSuite array using
TestRunner object configured for
text output

selectIf Select test suite elements that
satisfy conditions

Examples Create Test Suite of Every Type of Test Set

Add the matlab.unittest.TestSuite class to the current import list.

1-6929

matlab.unittest.TestSuite

import matlab.unittest.TestSuite;

Create test suites using a each method.

fileSuite = TestSuite.fromFile('SomeTestFile.m');
folderSuite = TestSuite.fromFolder(pwd);
packageSuite = TestSuite.fromPackage('mypackage.subpackage');
classSuite = TestSuite.fromClass(?mypackage.MyTestClass);
methodSuite = TestSuite.fromMethod(?SomeTestClass,'testMethod');

Concatenate the suites.

largeSuite = [fileSuite, folderSuite, packageSuite, classSuite, methodSui

Run the full suite.

result = run(largeSuite)

See Also TestRunner | TestResult | Test

1-6930

matlab.unittest.TestSuite.fromClass

Purpose Create suite from TestCase class

Syntax suite = matlab.unittest.TestSuite.fromClass(testClass)
suite = matlab.unittest.TestSuite.fromClass(testClass,s)
suite = matlab.unittest.TestSuite.fromClass(___ ,Name,Value)

Description suite = matlab.unittest.TestSuite.fromClass(testClass)
creates a TestSuite array from all of the Test methods contained in
testClass and returns that array in suite.

suite = matlab.unittest.TestSuite.fromClass(testClass,s)
creates a TestSuite array from all of the Test methods contained in
testClass that satisfy the conditions specified by the selector, s.

suite = matlab.unittest.TestSuite.fromClass(___ ,Name,Value)
creates a TestSuite array with additional options specified by one or
more Name,Value pair arguments. You can use this syntax with any of
the input arguments of the previous syntaxes.

Tips • testClass must be on the MATLAB path when using this method
to create suite, as well as when suite is run.

Input
Arguments

testClass

Class containing test methods, specified as a meta.class
instance. Use the ? operator to create a meta.class instance.
testClass must derive from matlab.unittest.TestCase.

s

Selector, specified as an instance of a class from the
matlab.unittest.selector package.

Name-Value Pair Arguments

’Name’

1-6931

matlab.unittest.TestSuite.fromClass

String indicating the name of the suite element. To include a test
element in the suite, the Name property of the test element must
match the specified name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to
match to exactly one character.

’ParameterProperty’

String indicating the name of a property that defines a parameter
used by the test suite element. Use the wildcard character, *,
to match any number of characters. Use the question mark
character, ?, to match to exactly one character.

’ParameterName’

String indicating the name of a parameter used by the test suite
element. Use the wildcard character, *, to match any number
of characters. Use the question mark character, ?, to match to
exactly one character.

’BaseFolder’

String indicating the name of the folder that contains the file
defining the test class or function. For a test element to be
included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?,
to match to exactly one character. For test classes defined in
packages, the base folder is the parent of the top-level package
folder.

Output
Arguments

suite

Set of tests, specified as a matlab.unittest.Test array.

Attributes Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

1-6932

matlab.unittest.TestSuite.fromClass

Examples Run Tests in a Package Class

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

suite = TestSuite.fromClass(?mypackage.MyTestClass);
result = run(suite)

Run Tests in a Class Without a Package

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

suite = TestSuite.fromClass(?MyTestClass);
result = run(suite)

Create Suite of Test Elements Using Selector

In your working folder, create the following testZeros.m test file. This
class contains four test methods.

classdef testZeros < matlab.unittest.TestCase
properties (TestParameter)

type = {'single','double','uint16'};
outSize = struct('s2d',[3 3], 's3d',[2 5 4]);

end

methods (Test)
function testClass(testCase, type, outSize)

testCase.verifyClass(zeros(outSize,type), type);
end

function testSize(testCase, outSize)
testCase.verifySize(zeros(outSize), outSize);

end

function testDefaultClass(testCase)

1-6933

matlab.unittest.TestSuite.fromClass

testCase.verifyClass(zeros, 'double');
end
function testDefaultSize(testCase)

testCase.verifySize(zeros, [1 1]);
end

function testDefaultValue(testCase)
testCase.verifyEqual(zeros,0);

end
end

end

The test class contains two parameterized test methods, testClass
and testSize.

At the command prompt, create a test suite from the test elements
that tests the 'double' data type.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromClass(?testZeros, ...
HasParameter('Property','type','Name','double'));

{suite.Name}'

ans =

'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'

Create Suite of Test Elements Using Name-Value Arguments

Create the testZeros.m class from the previous example.

At the command prompt, create a test suite from the test elements
that tests the 'double' data type.

import matlab.unittest.TestSuite;

1-6934

matlab.unittest.TestSuite.fromClass

suite = TestSuite.fromClass(?testZeros, ...
'ParameterProperty','type', 'ParameterName','double');

{suite.Name}'

ans =

'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'

See Also TestRunner | fromMethod | fromPackage |
matlab.unittest.selectors

1-6935

matlab.unittest.TestSuite.fromFile

Purpose Create TestSuite array from test file

Syntax suite = matlab.unittest.TestSuite.fromFile(file)
suite = matlab.unittest.TestSuite.fromFile(file,s)
suite = matlab.unittest.TestSuite.fromFile(___ ,Name,Value)

Description suite = matlab.unittest.TestSuite.fromFile(file) creates a
TestSuite array from all of the Test methods in file.

When the test suite is run, MATLAB changes the current folder to the
folder that defines the test content, and adds it to the path for the
duration of the test run.

suite = matlab.unittest.TestSuite.fromFile(file,s) creates a
TestSuite array from all of the Test methods in file that satisfy the
conditions specified by the selector, s.

suite = matlab.unittest.TestSuite.fromFile(___ ,Name,Value)
creates a TestSuite array with additional options specified by one or
more Name,Value pair arguments. You can use this syntax with any of
the input arguments of the previous syntaxes.

Input
Arguments

file

Class file derived from matlab.unittest.TestCase containing test
methods, specified as a string.

s

Selector, specified as an instance of a class from the
matlab.unittest.selector package.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

1-6936

matlab.unittest.TestSuite.fromFile

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Name’

String indicating the name of the suite element. To include a test
element in the suite, the Name property of the test element must
match the specified name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to
match to exactly one character.

’ParameterProperty’

String indicating the name of a property that defines a parameter
used by the test suite element. Use the wildcard character, *,
to match any number of characters. Use the question mark
character, ?, to match to exactly one character.

’ParameterName’

String indicating the name of a parameter used by the test suite
element. Use the wildcard character, *, to match any number
of characters. Use the question mark character, ?, to match to
exactly one character.

’BaseFolder’

String indicating the name of the folder that contains the file
defining the test class or function. For a test element to be
included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?,
to match to exactly one character. For test classes defined in
packages, the base folder is the parent of the top-level package
folder.

Output
Arguments

suite

Set of tests, specified as a matlab.unittest.Test array.

1-6937

matlab.unittest.TestSuite.fromFile

Attributes Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Run Tests in Class File

Function for unit testing:

function res = add5(x)
%ADD5 Increment input by 5.
if ~isa(x,'numeric')

error('add5:InputMustBeNumeric','Input must be numeric.');
end
res = x + 5;
end

TestCase class containing test methods:

classdef Add5Test < matlab.unittest.TestCase
methods (Test)

function testDoubleOut(testCase)
actOutput = add5(1);
testCase.verifyClass(actOutput,'double');

end
function testNonNumericInput(testCase)

testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric');
end

end
end

Create a test suite from the Add5Test class file.

suite = matlab.unittest.TestSuite.fromFile('Add5Test.m');

result = run(suite);

1-6938

matlab.unittest.TestSuite.fromFile

Running Add5Test
..
Done Add5Test

Create Suite of Test Elements Using Selector

In your working folder, create testZeros.m. This class contains four
test methods.

classdef testZeros < matlab.unittest.TestCase
properties (TestParameter)

type = {'single','double','uint16'};
outSize = struct('s2d',[3 3], 's3d',[2 5 4]);

end

methods (Test)
function testClass(testCase, type, outSize)

testCase.verifyClass(zeros(outSize,type), type);
end

function testSize(testCase, outSize)
testCase.verifySize(zeros(outSize), outSize);

end

function testDefaultClass(testCase)
testCase.verifyClass(zeros, 'double');

end
function testDefaultSize(testCase)

testCase.verifySize(zeros, [1 1]);
end

function testDefaultValue(testCase)
testCase.verifyEqual(zeros,0);

end
end

end

1-6939

matlab.unittest.TestSuite.fromFile

The test class contains two parameterized test methods, testClass
and testSize.

At the command prompt, create a test suite from all parameterized test
methods in testZeros.m using the HasParameter selector.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromFile('testZeros.m', HasParameter)

suite =

1x8 Test array with properties:

Name
Parameterization
SharedTestFixtures

Create a test suite from only the test elements from the testSize
method using the HasName selector with the StartsWithSubstring
constraint.

import matlab.unittest.selectors.HasName;
import matlab.unittest.constraints.StartsWithSubstring;

suite = TestSuite.fromFile('testZeros.m',...
HasName(StartsWithSubstring('testZeros/testSize')));

{suite.Name}'

ans =

'testZeros/testSize(outSize=s2d)'
'testZeros/testSize(outSize=s3d)'

The test suite contains the two parameterized tests from the testSize
method.

1-6940

matlab.unittest.TestSuite.fromFile

Create Suite of Test Elements Using Name-Value Arguments

Create the testZeros.m class from the previous example.

At the command prompt, create a test suite from all test methods in
testZeros.m that have a name starting with 'testZeros/testSize'.
This test suite contains parameterized tests from the testSize method.

import matlab.unittest.TestSuite;

suite = TestSuite.fromFile('testZeros.m', 'Name', 'testZeros/testSize*
{suite.Name}'

ans =

'testZeros/testSize(outSize=s2d)'
'testZeros/testSize(outSize=s3d)'

To ensure that a test suite is comprised of test elements associated with
one particular test method, use the fromMethod method of TestSuite.

At the command prompt, create a test suite from all test methods in
testZeros.m that have a name ending in 'Size'.

import matlab.unittest.TestSuite;

suite = TestSuite.fromFile('testZeros.m', 'Name', '*Size');
{suite.Name}'

ans =

'testZeros/testDefaultSize'

Note that elements from the testSize method are not included in the
test suite. The name of these elements contains information about the
parameterization, and therefore it does not end with 'Size'.

Create a test suite of all tests that use the parameter name 'double'.

1-6941

matlab.unittest.TestSuite.fromFile

suite = TestSuite.fromFile('testZeros.m', 'ParameterName', 'double');
{suite.Name}'

ans =

'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'

To construct the same test suite using selectors,
use suite = TestSuite.fromFile('testZeros.m',
HasParameter('Name','double')).

See Also TestRunner | fromFolder | matlab.unittest.selectors

1-6942

matlab.unittest.TestSuite.fromFolder

Purpose Create TestSuite array from all tests in folder

Syntax suite = matlab.unittest.TestSuite.fromFolder(folder)
suite = matlab.unittest.TestSuite.fromFolder(folder,s)
suite =
matlab.unittest.TestSuite.fromFolder(___ ,Name,Value)

Description suite = matlab.unittest.TestSuite.fromFolder(folder) creates a
TestSuite array from all of the Test methods of all concrete TestCase
classes contained in folder and returns that array in suite. If tests
are function-based, a Test file is included in the TestSuite array if it
follows the naming convention of starting or ending in the word ‘test’,
which is case-insensitive. Class-based tests do not need to follow this
naming convention. The method is not recursive, returning only those
tests directly in the specified folder.

When the test suite is run, MATLAB changes the current folder to the
folder that defines the test content, and adds it to the path for the
duration of the test run.

suite = matlab.unittest.TestSuite.fromFolder(folder,s)
creates a TestSuite array from all of the Test methods contained in
folder that satisfy the conditions specified by the selector, s.

suite =
matlab.unittest.TestSuite.fromFolder(___ ,Name,Value) creates
a TestSuite array with additional options specified by one or more
Name,Value pair arguments. You can use this syntax with any of the
input arguments of the previous syntaxes.

Input
Arguments

folder

Folder containing test methods, specified as a string. folder can
be either an absolute or relative path to the desired folder.

s

1-6943

matlab.unittest.TestSuite.fromFolder

Selector, specified as an instance of a class from the
matlab.unittest.selector package.

Name-Value Pair Arguments

’IncludingSubfolders’

Include test methods from any folder subfolders, excluding
package, class, and private folders. This property is false by
default. You can specify it as true during construction.

’Name’

String indicating the name of the suite element. To include a test
element in the suite, the Name property of the test element must
match the specified name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to
match to exactly one character.

’ParameterProperty’

String indicating the name of a property that defines a parameter
used by the test suite element. Use the wildcard character, *,
to match any number of characters. Use the question mark
character, ?, to match to exactly one character.

’ParameterName’

String indicating the name of a parameter used by the test suite
element. Use the wildcard character, *, to match any number
of characters. Use the question mark character, ?, to match to
exactly one character.

’BaseFolder’

String indicating the name of the folder that contains the file
defining the test class or function. For a test element to be
included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?,
to match to exactly one character. For test classes defined in

1-6944

matlab.unittest.TestSuite.fromFolder

packages, the base folder is the parent of the top-level package
folder.

Output
Arguments

suite

Set of tests, specified as a matlab.unittest.Test array.

Attributes Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Run Tests in Current Folder

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

suite = TestSuite.fromFolder(pwd);
result = run(suite);

Run Tests in Subfolders

suite = TestSuite.fromFolder(pwd, 'IncludingSubfolders', true);
result = run(suite);

Create Suite of Test Elements Using Selector

In your working folder, create a new folder, myTests. In that folder,
create the following testZeros.m test file. This class contains four
test methods.

classdef testZeros < matlab.unittest.TestCase
properties (TestParameter)

type = {'single','double','uint16'};
outSize = struct('s2d',[3 3], 's3d',[2 5 4]);

end

1-6945

matlab.unittest.TestSuite.fromFolder

methods (Test)
function testClass(testCase, type, outSize)

testCase.verifyClass(zeros(outSize,type), type);
end

function testSize(testCase, outSize)
testCase.verifySize(zeros(outSize), outSize);

end

function testDefaultClass(testCase)
testCase.verifyClass(zeros, 'double');

end
function testDefaultSize(testCase)

testCase.verifySize(zeros, [1 1]);
end

function testDefaultValue(testCase)
testCase.verifyEqual(zeros,0);

end
end

end

The test class contains two parameterized test methods, testClass
and testSize.

At the command prompt, create a test suite from all parameterized
tests that use the parameter name 'double'.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromFolder('myTests', HasParameter('Name','double'));
{suite.Name}'

ans =

'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'

1-6946

matlab.unittest.TestSuite.fromFolder

Create Suite of Test Elements Using Name-Value Arguments

Create the myTests folder and testZeros.m class from the previous
example.

Create a test suite of all tests that use the parameter name 'double'.

import matlab.unittest.TestSuite;

suite = TestSuite.fromFolder('myTests', 'ParameterName', 'double');
{suite.Name}'

ans =

'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'

See Also TestRunner | fromFile | matlab.unittest.selectors

1-6947

matlab.unittest.TestSuite.fromMethod

Purpose Create TestSuite array from single test method

Syntax suite =
matlab.unittest.TestSuite.fromMethod(testClass,testMethod)
suite =
matlab.unittest.TestSuite.fromMethod(testClass,testMethod,s)
suite =
matlab.unittest.TestSuite.fromMethod(___ ,Name,Value)

Description suite =
matlab.unittest.TestSuite.fromMethod(testClass,testMethod)
creates a TestSuite array from the test class described by testClass
and the test method described by testMethod and returns it in suite.

suite =
matlab.unittest.TestSuite.fromMethod(testClass,testMethod,s)
creates a TestSuite array from all of the Test methods contained in
testMethod that satisfy the conditions specified by the selector, s.

suite =
matlab.unittest.TestSuite.fromMethod(___ ,Name,Value) creates
a TestSuite array with additional options specified by one or more
Name,Value pair arguments. You can use this syntax with any of the
input arguments of the previous syntaxes.

Tips • testClass must be on the MATLAB path when using this method
to create suite, as well as when suite is run.

Input
Arguments

testClass

Class describing the test methods, specified as a meta.class
instance which must derive from matlab.unittest.TestCase.

testMethod

1-6948

matlab.unittest.TestSuite.fromMethod

Test method, specified by either the meta.method instance or
the name as a string. The method must be defined with a Test
method attribute.

s

Selector, specified as an instance of a class from the
matlab.unittest.selector package.

Name-Value Pair Arguments

’Name’

String indicating the name of the suite element. To include a test
element in the suite, the Name property of the test element must
match the specified name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to
match to exactly one character.

’ParameterProperty’

String indicating the name of a property that defines a parameter
used by the test suite element. Use the wildcard character, *,
to match any number of characters. Use the question mark
character, ?, to match to exactly one character.

’ParameterName’

String indicating the name of a parameter used by the test suite
element. Use the wildcard character, *, to match any number
of characters. Use the question mark character, ?, to match to
exactly one character.

’BaseFolder’

String indicating the name of the folder that contains the file
defining the test class or function. For a test element to be
included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?,
to match to exactly one character. For test classes defined in

1-6949

matlab.unittest.TestSuite.fromMethod

packages, the base folder is the parent of the top-level package
folder.

Output
Arguments

suite

Set of tests, specified as a matlab.unittest.Test array.

Attributes Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Run a Single Test Method

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

cls = ?mypackage.MyTestClass;

% Create the suite using the method name
suite = TestSuite.fromMethod(cls, 'testMethod');
result = run(suite)

% Create the suite using the meta.method instance
metaMethod = findobj(cls.MethodList, 'Name', 'testMethod');
suite = TestSuite.fromMethod(cls, metaMethod);
result = run(suite)

Create Suite of Test Elements Using Selector

In your working folder, create the following testZeros.m test file. This
class contains four test methods.

classdef testZeros < matlab.unittest.TestCase
properties (TestParameter)

1-6950

matlab.unittest.TestSuite.fromMethod

type = {'single','double','uint16'};
outSize = struct('s2d',[3 3], 's3d',[2 5 4]);

end

methods (Test)
function testClass(testCase, type, outSize)

testCase.verifyClass(zeros(outSize,type), type);
end

function testSize(testCase, outSize)
testCase.verifySize(zeros(outSize), outSize);

end

function testDefaultClass(testCase)
testCase.verifyClass(zeros, 'double');

end
function testDefaultSize(testCase)

testCase.verifySize(zeros, [1 1]);
end

function testDefaultValue(testCase)
testCase.verifyEqual(zeros,0);

end
end

end

The test class contains two parameterized test methods, testClass
and testSize.

At the command prompt, create a test suite from all parameterized tests
from the testClass method that use the parameter name 'double'.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromMethod(?testZeros,'testClass', ...
HasParameter('Name','single'));

1-6951

matlab.unittest.TestSuite.fromMethod

{suite.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=single,outSize=s3d)'

Create Suite of Test Elements Using Name-Value Arguments

Create the testZeros.m class from the previous example.

At the command prompt, create a test suite from all parameterized tests
from the testClass method that use the parameter name 'double'.

import matlab.unittest.TestSuite;

suite = TestSuite.fromMethod(?testZeros,'testClass', ...
'ParameterName','single');

{suite.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=single,outSize=s3d)'

See Also TestRunner | fromClass | fromPackage |
matlab.unittest.selectors

1-6952

matlab.unittest.TestSuite.fromName

Purpose Create Test object from name of test element

Syntax testObj = matlab.unittest.TestSuite.fromName(name)

Description testObj = matlab.unittest.TestSuite.fromName(name) creates a
scalar Test object, testObj, from the name of the test element, name.

Input
Arguments

name

Name of the matlab.unittest.Test element, specified as a string.
name contains the name of the TestCase class or function and the
test method or local function, as well as information about test
parameterization. The name argument corresponds to the Name
property of the Test object.

The test class or function described by name must be on the
MATLAB path when you are creating and running the TestSuite.

Attributes Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Create and Run Test from Test Suite Element

Create a function to test, add5, in a file on your MATLAB path.

function res = add5(x)
%ADD5 Increment input by 5.
if ~isa(x,'numeric')

error('add5:InputMustBeNumeric','Input must be numeric.');
end
res = x + 5;
end

1-6953

matlab.unittest.TestSuite.fromName

Create a file, Add5Test.m, on your MATLAB path that contains the
following TestCase class.

classdef Add5Test < matlab.unittest.TestCase
properties (TestParameter)

Type = {'double','single','int8','int32'};
end

methods (Test)
function testNonNumericInput(testCase)

testCase.verifyError(@()add5('0'),'add5:InputMustBeNumeric');
end
function testResultType(testCase, Type)

actOutput = add5(cast(1,Type));
testCase.verifyClass(actOutput, Type);

end

end
end

At the command prompt, create a test object for the
testNonNumericInput method in the Add5Test class.

import matlab.unittest.TestSuite;
testObj = TestSuite.fromName('Add5Test/testNonNumericInput');

Run the test

result = run(testObj);

Running Add5Test
.
Done Add5Test

Create a parameterized test for the testResultType method in the
Add5Test class, and run the test.

1-6954

matlab.unittest.TestSuite.fromName

testObj = TestSuite.fromName('Add5Test/testResultType(Type=single)');
result = run(testObj);

Running Add5Test
.
Done Add5Test

See Also TestRunner

1-6955

matlab.unittest.TestSuite.fromPackage

Purpose Create TestSuite array from all tests in package

Syntax suite = matlab.unittest.TestSuite.fromPackage(package)
suite = matlab.unittest.TestSuite.fromPackage(package,s)
suite =
matlab.unittest.TestSuite.fromPackage(___ ,Name,Value)

Description suite = matlab.unittest.TestSuite.fromPackage(package)
creates a TestSuite array from all of the Test methods of all concrete
TestCase classes contained in package and returns that array in
suite. The method is not recursive, returning only those tests directly
in the package specified.

suite = matlab.unittest.TestSuite.fromPackage(package,s)
creates a TestSuite array from all of the Test methods contained in
package that satisfy the conditions specified by the selector, s.

suite =
matlab.unittest.TestSuite.fromPackage(___ ,Name,Value) creates
a TestSuite array with additional options specified by one or more
Name,Value pair arguments. You can use this syntax with any of the
input arguments of the previous syntaxes.

Tips • The root folder(s) where package is defined must be on the MATLAB
path when creating suite using this method as well as when suite
is run.

Input
Arguments

package

The name of the desired package to find tests, specified as a string.

s

Selector, specified as an instance of a class from the
matlab.unittest.selector package.

1-6956

matlab.unittest.TestSuite.fromPackage

Name-Value Pair Arguments

’IncludingSubpackages’

Indicator for whether to include subpackages in the TestSuite
array. This property is false by default. You can specify it as
true during construction.

’Name’

String indicating the name of the suite element. To include a test
element in the suite, the Name property of the test element must
match the specified name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to
match to exactly one character.

’ParameterProperty’

String indicating the name of a property that defines a parameter
used by the test suite element. Use the wildcard character, *,
to match any number of characters. Use the question mark
character, ?, to match to exactly one character.

’ParameterName’

String indicating the name of a parameter used by the test suite
element. Use the wildcard character, *, to match any number
of characters. Use the question mark character, ?, to match to
exactly one character.

’BaseFolder’

String indicating the name of the folder that contains the file
defining the test class or function. For a test element to be
included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?,
to match to exactly one character. For test classes defined in
packages, the base folder is the parent of the top-level package
folder.

1-6957

matlab.unittest.TestSuite.fromPackage

Output
Arguments

suite

Set of tests, specified as a matlab.unittest.Test array.

Attributes Static true

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Run All Tests in a Package

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

suite = TestSuite.fromPackage('mypackage.subpackage');
result = run(suite)

Run tests in mypackage including all subpackages.

suite = TestSuite.fromPackage('mypackage','IncludingSubpackages',true);
result = run(suite)

Create Suite of Test Elements Using Selector

In your working folder, create a new package by creating a new folder,
+myPackage. In that folder, create the following testZeros.m test file.
This class contains four test methods.

classdef testZeros < matlab.unittest.TestCase
properties (TestParameter)

type = {'single','double','uint16'};
outSize = struct('s2d',[3 3], 's3d',[2 5 4]);

end

methods (Test)
function testClass(testCase, type, outSize)

testCase.verifyClass(zeros(outSize,type), type);

1-6958

matlab.unittest.TestSuite.fromPackage

end

function testSize(testCase, outSize)
testCase.verifySize(zeros(outSize), outSize);

end

function testDefaultClass(testCase)
testCase.verifyClass(zeros, 'double');

end
function testDefaultSize(testCase)

testCase.verifySize(zeros, [1 1]);
end

function testDefaultValue(testCase)
testCase.verifyEqual(zeros,0);

end
end

end

The test class contains two parameterized test methods, testClass
and testSize.

At the command prompt, create a test suite from all parameterized
tests that use the parameter property 'outSize'.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasParameter;

suite = TestSuite.fromPackage('myPackage', ...
HasParameter('Property','outSize'));

{suite.Name}'

ans =

'myPackage.testZeros/testClass(type=single,outSize=s2d)'
'myPackage.testZeros/testClass(type=single,outSize=s3d)'
'myPackage.testZeros/testClass(type=double,outSize=s2d)'

1-6959

matlab.unittest.TestSuite.fromPackage

'myPackage.testZeros/testClass(type=double,outSize=s3d)'
'myPackage.testZeros/testClass(type=uint16,outSize=s2d)'
'myPackage.testZeros/testClass(type=uint16,outSize=s3d)'
'myPackage.testZeros/testSize(outSize=s2d)'
'myPackage.testZeros/testSize(outSize=s3d)'

Create Suite of Test Elements Using Name-Value Arguments

Create the +myPackage folder and testZeros.m class from the previous
example.

At the command prompt, create a test suite from all parameterized
tests that use the parameter property 'outSize'.

import matlab.unittest.TestSuite;

suite = TestSuite.fromPackage('myPackage', ...
'ParameterProperty', 'outSize');

{suite.Name}'

ans =

'myPackage.testZeros/testClass(type=single,outSize=s2d)'
'myPackage.testZeros/testClass(type=single,outSize=s3d)'
'myPackage.testZeros/testClass(type=double,outSize=s2d)'
'myPackage.testZeros/testClass(type=double,outSize=s3d)'
'myPackage.testZeros/testClass(type=uint16,outSize=s2d)'
'myPackage.testZeros/testClass(type=uint16,outSize=s3d)'
'myPackage.testZeros/testSize(outSize=s2d)'
'myPackage.testZeros/testSize(outSize=s3d)'

See Also TestRunner | fromMethod | fromClass | matlab.unittest.selectors

1-6960

matlab.unittest.TestSuite.run

Purpose Run TestSuite array using TestRunner object configured for text
output

Syntax result = run(suite)

Description result = run(suite) runs the TestSuite object defined by suite
using a TestRunner object configured for text output.

Tips • This is a convenience method which is equivalent to using a
TestRunner object created from the TestRunner.withTextOutput
method to run suite.

Input
Arguments

suite

Set of tests, specified as a matlab.unittest.TestSuite array.

Output
Arguments

result

A matlab.unittest.TestResult object containing the result of the
test run. result is the same size as suite and each element is
the result of the corresponding element in suite.

Examples Compare TestSuite.run with TestRunner.run

Add matlab.unittest classes to the current import list.

import matlab.unittest.TestRunner;
import matlab.unittest.TestSuite;

Create a test suite and a test runner.

suite = TestSuite.fromClass(?mypackage.MyTestClass);
runner = TestRunner.withTextOutput;

The following test results are equivalent.

result = runner.run(suite)
result = run(suite)

1-6961

matlab.unittest.TestSuite.run

See Also matlab.unittest.TestRunner.run | matlab.unittest.TestCase.run

1-6962

matlab.unittest.TestSuite.selectIf

Purpose Select test suite elements that satisfy conditions

Syntax newsuite = selectIf(suite,s)
newsuite = selectIf(suite,Name,Value)

Description newsuite = selectIf(suite,s) selects from suite the test elements
that satisfy the conditions specified by the selector, s, and returns them
in the TestSuite array, newsuite.

newsuite = selectIf(suite,Name,Value) creates a TestSuite array
with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

suite

Set of tests, specified as a matlab.unittest.TestSuite array.

s

Selector, specified as an instance of a class from the
matlab.unittest.selector package.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Name’

String indicating the name of the suite element. To include a test
element in the suite, the Name property of the test element must
match the specified name. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?, to
match to exactly one character.

’ParameterProperty’

1-6963

matlab.unittest.TestSuite.selectIf

String indicating the name of a property that defines a parameter
used by the test suite element. Use the wildcard character, *,
to match any number of characters. Use the question mark
character, ?, to match to exactly one character.

’ParameterName’

String indicating the name of a parameter used by the test suite
element. Use the wildcard character, *, to match any number
of characters. Use the question mark character, ?, to match to
exactly one character.

’BaseFolder’

String indicating the name of the folder that contains the file
defining the test class or function. For a test element to be
included in the suite, the test element must be contained in the
specified base folder. Use the wildcard character, *, to match
any number of characters. Use the question mark character, ?,
to match to exactly one character. For test classes defined in
packages, the base folder is the parent of the top-level package
folder.

Examples Select Test Elements Using Selector

In your working folder, create the file ExampleTest.m containing the
following test class.

classdef (SharedTestFixtures={...
matlab.unittest.fixtures.PathFixture(fullfile(...
matlabroot, 'help', 'techdoc', 'matlab_oop', 'examples'))})...
ExampleTest < matlab.unittest.TestCase

methods(Test)
function testPathAdd(testCase)

% test code
end
function testOne(testCase)

% test code
end

1-6964

matlab.unittest.TestSuite.selectIf

function testTwo(testCase)
% test code

end
end

end

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestSuite;
import matlab.unittest.selectors.HasSharedTestFixture;
import matlab.unittest.selectors.HasName;
import matlab.unittest.fixtures.PathFixture;
import matlab.unittest.constraints.EndsWithSubstring;
import matlab.unittest.constraints.ContainsSubstring;

suite = TestSuite.fromClass(?ExampleTest)

suite =

1x3 Test array with properties:

Name
Parameterization
SharedTestFixtures

The test suite contains three test elements.

Create a filtered test suite of tests comprising tests with names that
contain the case-insensitive substring 'pAtH'.

newSuite = selectIf(suite,HasName(ContainsSubstring('pAtH','IgnoringCa

newSuite =

Test with properties:

Name: 'ExampleTest/testPathAdd'
Parameterization: []

1-6965

matlab.unittest.TestSuite.selectIf

SharedTestFixtures: [1x1 matlab.unittest.fixtures.PathFixture]

Only the testPathAdd test is part of the suite.

Alternatively, create the same suite using a name-value pair.

newSuite = selectIf(suite,'Name','*Path*');

However, unlike the ContainsSubstring constraint, the name-value pair
does not have an option to ignore case.

Create a filtered suite of tests comprising tests that use a shared path
fixture and do not have names ending with 'One'.

newSuite = suite.selectIf(~HasName(EndsWithSubstring('One')) ...
& HasSharedTestFixture(PathFixture(fullfile(matlabroot, 'help',...
'techdoc', 'matlab_oop', 'examples'))));

{newSuite.Name}

ans =

'ExampleTest/testPathAdd' 'ExampleTest/testTwo'

The test suite contains two tests. All of the tests use the specified path
fixture, but the test named 'testOne' is excluded from the suite.

Select Test Elements Using Parameterization

In your working folder, create testZeros.m. This class contains four
test methods.

classdef testZeros < matlab.unittest.TestCase
properties (TestParameter)

type = {'single','double','uint16'};
outSize = struct('s2d',[3 3], 's3d',[2 5 4]);

end

methods (Test)
function testClass(testCase, type, outSize)

1-6966

matlab.unittest.TestSuite.selectIf

testCase.verifyClass(zeros(outSize,type), type);
end

function testSize(testCase, outSize)
testCase.verifySize(zeros(outSize), outSize);

end

function testDefaultClass(testCase)
testCase.verifyClass(zeros, 'double');

end
function testDefaultSize(testCase)

testCase.verifySize(zeros, [1 1]);
end

function testDefaultValue(testCase)
testCase.verifyEqual(zeros,0);

end
end

end

The test class contains two parameterized test methods, testClass
and testSize.

At the command prompt, create a test suite from the file.

s = matlab.unittest.TestSuite.fromFile('testZeros.m');
{s.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=single,outSize=s3d)'
'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'
'testZeros/testClass(type=uint16,outSize=s2d)'
'testZeros/testClass(type=uint16,outSize=s3d)'
'testZeros/testSize(outSize=s2d)'
'testZeros/testSize(outSize=s3d)'

1-6967

matlab.unittest.TestSuite.selectIf

'testZeros/testDefaultClass'
'testZeros/testDefaultSize'
'testZeros/testDefaultValue'

The suite contains 11 test elements. Six from the parameterized
testClass method, two from the parameterized testSize method,
and one from each of the testDefaultClass, testDefaultSize, and
testDefaultValue methods.

Select all of the test elements from parameterized test methods.

import matlab.unittest.selectors.HasParameter;

s1 = s.selectIf(HasParameter);
{s1.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=single,outSize=s3d)'
'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'
'testZeros/testClass(type=uint16,outSize=s2d)'
'testZeros/testClass(type=uint16,outSize=s3d)'
'testZeros/testSize(outSize=s2d)'
'testZeros/testSize(outSize=s3d)'

The suite contains the eight test elements from the two parameterized
test methods.

Select all of the test elements from non-parameterized test methods.

s2 = s.selectIf(~HasParameter);
{s2.Name}'

ans =

'testZeros/testDefaultClass'

1-6968

matlab.unittest.TestSuite.selectIf

'testZeros/testDefaultSize'
'testZeros/testDefaultValue'

Select all test elements that are parameterized and have a property
named 'type' with a parameter name 'double'.

s3 = s.selectIf('ParameterProperty','type', 'ParameterName','double');
{s3.Name}'

ans =

'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'

The resulting suite contains two elements. The testClass method is
the only method in testZeros that uses the 'type' property, and
selecting only 'double' from the parameters results in two test
elements — one for each value of 'outSize'.

Select all test elements that are parameterized and have a parameters
defined by a property starting with 't'.

s4 = s.selectIf('ParameterProperty','t*');
{s4.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=single,outSize=s3d)'
'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s3d)'
'testZeros/testClass(type=uint16,outSize=s2d)'
'testZeros/testClass(type=uint16,outSize=s3d)'

The resulting suite contains the six parameterized test elements from
the testClass method. The testSize method is parameterized, but
the elements from the method are not included in the suite because the
method does not use a property that starts with 't'.

1-6969

matlab.unittest.TestSuite.selectIf

Select all test elements that are parameterized and test the zeros
function with a 2-D array. A parameter value representing a 2-D array
will have a length of 1 (e.g. zeros(3)) or 2 (e.g. zeros(2,3)).

import matlab.unittest.constraints.HasLength;

s5 = s.selectIf(HasParameter('Property','outSize',...
'Value', HasLength(1)|HasLength(2)));

{s5.Name}'

ans =

'testZeros/testClass(type=single,outSize=s2d)'
'testZeros/testClass(type=double,outSize=s2d)'
'testZeros/testClass(type=uint16,outSize=s2d)'
'testZeros/testSize(outSize=s2d)'

Select only the test element that tests that the output is a double data
type and the has the correct size for a 2-D array.

s6 = s.selectIf(HasParameter('Property','type','Name','double')...
& HasParameter('Property','outSize','Name','s2d'))

s6 =

Test with properties:

Name: 'testZeros/testClass(type=double,outSize=s2d)'
Parameterization: [1x2 matlab.unittest.parameters.TestParameter]

SharedTestFixtures: []

See Also matlab.unittest.constraints | matlab.unittest.selectors

1-6970

texlabel

Purpose Format text into TeX string

Syntax TeXString = texlabel(f)
TeXString = texlabel(f,'literal')

Description TeXString = texlabel(f) converts the MATLAB expression f into
the TeX equivalent for use in text strings. texlabel converts Greek
variable names (for example, lambda, delta, and so on) into a string
that is displayed as Greek letters. The TeXString output is useful as an
argument to annotation functions such as title, xlabel, and text.

If TeXString is too long to fit into a figure window, then the center of
the expression is replaced with a tilde ellipsis (~~~).

TeXString = texlabel(f,'literal') interprets Greek variable
names literally.

Input
Arguments

f - Input MATLAB expression
string

Input MATLAB expression, specified as a string.

Example: 'theta (degrees)'

Data Types
char

Examples Insert TeX String in Figure

Create a figure and a TeX string for use in a text graphics object.

figure
plot((1:10).^2)
TeXString = texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)');

1-6971

texlabel

Add a text object containing the TeX string to the figure.

text(3,90,TeXString)

1-6972

texlabel

If you include the 'literal' argument, texlabel interprets Greek
variable names literally. Add a text object containing the literal string.

text(4,60,texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)','literal'))

1-6973

texlabel

See Also text | title | xlabel | ylabel | zlabel | String

1-6974

text

Purpose Create text object in current axes

Syntax text(x,y,'string')
text(x,y,z,'string')
text(x,y,z,'string','PropertyName',PropertyValue....)
text('PropertyName',PropertyValue....)
h = text(...)

Properties For a list of properties, see Text Properties.

Description text is the low-level function for creating text graphics objects. Use
text to place character strings at specified locations.

text(x,y,'string') adds the string in quotes to the location specified
by the point (x,y) x and y must be numbers of class double.

text(x,y,z,'string') adds the string in 3-D coordinates. x, y and z
must be numbers of class double.

text(x,y,z,'string','PropertyName',PropertyValue....) adds
the string in quotes to the location defined by the coordinates and uses
the values for the specified text properties. For a description of the
properties, see Text Properties.

text('PropertyName',PropertyValue....) omits the coordinates
entirely and specifies all properties using property name/property value
pairs.

h = text(...) returns a column vector of handles to text objects,
one handle per object. All forms of the text function optionally return
this output argument.

See the String property for a list of symbols, including Greek letters.

Tips Position Text Within the Axes

The default text units are the units used to plot data in the graph.
Specify the text location coordinates (the x, y, and z arguments) in
the data units of the current graph (see “Examples” on page 1-6977.
You can use other units to position the text by setting the text Units

1-6975

text

property to normalized or one of the nonrelative units (pixels, inches,
centimeters, points, or characters).

Note that the Axes Units property controls the positioning of the Axes
within the figure and is not related to the axes data units used for
graphing.

The Extent, VerticalAlignment, and HorizontalAlignment
properties control the positioning of the character string with regard
to the text location point.

If the coordinates are vectors, text writes the string at all locations
defined by the list of points. If the character string is an array the same
length as x, y, and z, text writes the corresponding row of the string
array at each point specified.

Multiline Text

When specifying strings for multiple text objects, the string can be:

• A cell array of strings

• A padded string matrix

Each element of the specified string array creates a different text object.

When specifying the string for a single text object, cell arrays of strings
and padded string matrices result in a text object with a multiline
string, while vertical slash characters are not interpreted as separators
and result in a single line string containing vertical slashes.

Behavior of the Text Function

text is a low-level function that accepts property name/property value
pairs as input arguments. However, the convenience form:

text(x,y,z,'string')

is equivalent to:

text('Position',[x,y,z],'String','string')

1-6976

text

You can specify other properties only as property name/property value
pairs. For a description of each property, see Text Properties. You
can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for
examples of how to specify these data types).

text does not respect the setting of the figure or axes NextPlot
property. This allows you to add text objects to an existing axes without
setting hold to on.

Examples Label Point on Graph

Annotate the point with the string .

x = 0:pi/20:2*pi;
y = sin(x);

figure % new figure window
plot(x,y);
text(pi,0,' \leftarrow sin(\pi)')

1-6977

text

Display Equation with Greek Symbols

Use embedded TeX sequences to display an equation in an empty axes.

axes
text(0.5,0.5,'\ite^{i\omega\tau} = cos(\omega\tau) + i sin(\omega\tau)')

1-6978

text

Setting
Default
Properties

You can set default text properties on the axes, figure, and root object
levels:

set(0,'DefaulttextProperty',PropertyValue...)
set(gcf,'DefaulttextProperty',PropertyValue...)
set(gca,'DefaulttextProperty',PropertyValue...)

Where Property is the name of the text property and PropertyValue is
the value you are specifying. Use set and get to access text properties.

1-6979

text

See Also annotation | gtext | int2str | num2str | strings | title | xlabel
| ylabel | zlabel | Text Properties

1-6980

Text Properties

Purpose Text properties

Creating
Text
Objects

Use text to create text objects.

Modifying
Properties

You can set and query graphics object properties using the property
editor or the set and get commands.

• Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See Core Objects for general information about this type of object.

Text
Property
Descriptions

This section provides a description of properties. Curly braces { }
enclose default values.

Annotation
hg.Annotation object (read-only)

Handle of Annotation object. The Annotation property enables
you to specify whether this text object is represented in a figure
legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the text object
is displayed in a figure legend:

1-6981

Text Properties

IconDisplayStyle
Value

Purpose

on Represent this text object in a legend
(default)

off Do not include this text object in a legend

children Same as on because text objects do not have
children

Setting the IconDisplayStyle property

Set the IconDisplayStyle of a graphics object with handle hobj
to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Control Legend Content” for more information and examples.

BackgroundColor
ColorSpec | {none}

Color of text extent rectangle. Defines a color for the rectangle that
encloses the text Extent plus the text Margin. For example, the
following code creates a text object that labels a plot and sets the
background color to light green.

text(3*pi/4,sin(3*pi/4),...
['sin(3*pi/4) = ',num2str(sin(3*pi/4))],...
'HorizontalAlignment','center',...
'BackgroundColor',[.7 .9 .7]);

1-6982

Text Properties

For additional features, see the following properties:

• EdgeColor— Color of the rectangle’s edge (none by default).

• LineStyle — Style of the rectangle’s edge line (first set
EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set
EdgeColor)

• Margin— Increase the size of the rectangle by adding a margin
to the existing text extent rectangle. This margin is added to
the text extent rectangle to define the text background area
that is enclosed by the EdgeColor rectangle. Note that the text
extent does not change when you change the margin; only the
rectangle displayed when you set the EdgeColor property and
the area defined by the BackgroundColor change.

See also Drawing Text in a Box in the MATLAB Graphics
documentation for an example using background color with
contour labels.

1-6983

Text Properties

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

1-6984

Text Properties

ButtonDownFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Button press callback function. Executes whenever you press a
mouse button while the pointer is over the text object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of object associated with the button down event and an event
structure, which is empty for this property).
The following example shows how to access the callback object’s
handle as well as the handle of the figure that contains the object
from the callback function.

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

1-6985

../ref/figure_props.html#SelectionType

Text Properties

Suppose h is the handle of a text object and the button_down
function is on your MATLAB path. The following statement
assigns the button_down function to the ButtonDownFcn property:

set(h,'ButtonDownFcn',@button_down)

For information on the syntax of callback functions, see Function
Handle Callbacks.

Children
matrix (read-only)

The empty matrix; text objects have no children.

Clipping
on | {off}

Clipping mode. When Clipping is on, MATLAB does not display
any portion of the text that is outside the axes.

Color
ColorSpec

Text color. A three-element RGB vector or one of the predefined
names, specifying the text color. The default value is [0 0 0]
(black). See the ColorSpec reference page for more information
on specifying color.

CreateFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Callback function executed during object creation. Executes when
MATLAB creates a text object. You must define this property as a
default value for text or in a call to the text function that creates
a new text object. For example, the statement:

set(0,'DefaultTextCreateFcn',@text_create)

1-6986

Text Properties

defines a default value on the root level that sets the figure
Pointer property to crosshairs whenever you create a text object.
The callback function must be on your MATLAB path when you
execute the above statement.

function text_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
set(gcbf,'Pointer','crosshair')

end

MATLAB executes this function after setting all text properties.
Setting this property on an existing text object has no effect. The
function must define at least two input arguments (handle of
object created and an event structure, which is empty for this
property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DeleteFcn
function handle | cell array containing function handle and
additional arguments | string (not recommended)

Delete text callback function. Executes when you delete the text
object (for example, when you issue a delete command or clear
the axes cla or figure clf).

For example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event

1-6987

../ref/figure_props.html#Pointer

Text Properties

% evnt - empty for this property
obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property).

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

DisplayName
string

String used by legend. The legend function uses the DisplayName
property to label the text object in the legend. The default is an
empty string.

• If you specify string arguments with the legend function,
MATLAB set DisplayName to the corresponding string and
uses that string for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, MATLAB
set DisplayName to the edited string.

1-6988

Text Properties

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add a legend programmatically that uses the DisplayName
string, call legend with the toggle or show option.

See “Control Legend Content” for more information and examples.

EdgeColor
ColorSpec | {none}

Color of edge drawn around text extent rectangle plus margin.
Specifies the color of a box drawn around the text Extent plus
the text Margin. For example, the following code draws a red
rectangle around text that labels a plot.

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red');

For additional features, see the following properties:

1-6989

Text Properties

• BackgroundColor— Color of the rectangle’s interior (none by
default)

• LineStyle — Style of the rectangle’s edge line (first set
EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set
EdgeColor)

• Margin— Increases the size of the rectangle by adding a margin
to the area defined by the text extent rectangle. This margin is
added to the text extent rectangle to define the text background
area that is enclosed by the EdgeColor rectangle. Note that the
text extent does not change when you change the margin; only
the rectangle displayed when you set the EdgeColor property
and the area defined by the BackgroundColor change.

Editing
on | {off}

Enable or disable editing mode. When this property is off (the
default), you cannot edit the text string interactively (i.e., you
must change the String property to change the text). When you
set this property to on, MATLAB enables editing and places an
insert cursor wherever the mouse is within the text. To apply the
new text string, do any one of the following:

• Press the Esc key.

• Click anywhere away from the text string.

• Reset the Editing property to off.

MATLAB updates the String property to contain the new text
and resets the Editing property to off. You must reset the
Editing property to on to resume editing.

EraseMode
{normal} | none | xor | background

1-6990

Text Properties

Erase mode. Controls the technique MATLAB uses to draw and
erase text objects. Alternative erase modes are useful for creating
animated sequences where controlling the way individual objects
are redrawn is necessary to improve performance and obtain the
desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase the text when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor— Draw and erase the text by performing an exclusive OR
(XOR) with each pixel index of the screen beneath it. When
the text is erased, it does not damage the objects beneath it.
However, when text is drawn in xor mode, its color depends
on the color of the screen beneath it. It is correctly colored
only when it is over axes background Color, or the figure
background Color if the axes Color is none.

• background — Erase the text by drawing it in the axes
background Color, or the figure background Color if the axes
Color is none. This damages objects that are behind the erased
text, but text is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB mathematically combines layers
of colors (for example, performing an XOR on a pixel color with
that of the pixel behind it) and ignore three-dimensional sorting

1-6991

Text Properties

to obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the getframe command or other screen capture
applications to create an image of a figure containing nonnormal
mode objects.

Extent
position rectangle (read-only)

Position and size of text. A four-element vector that defines the
size and position of the text string:

[left,bottom,width,height]

If the Units property is data (the default), left and bottom are
the x- and y-coordinates of the lower left corner of the text Extent.

For all other values of Units, left and bottom are the distance
from the lower left corner of the axes Position rectangle to the
lower left corner of the text Extent. width and height are the
dimensions of the Extent rectangle. All measurements are in
units specified by the Units property.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
name (such as Courier) | FixedWidth

Font family. Specifies the name of the font to use for the text
object. To display and print properly, this must be a font that your
system supports. The default font is Helvetica.

1-6992

Text Properties

Specifying a Fixed-Width Font

If you want text to use a fixed-width font that looks good in any
locale, you should set FontName to the string FixedWidth:

set(text_handle,'FontName','FixedWidth')

This eliminates the need to hard-code the name of a fixed-width
font, which might not display text properly on systems that do not
use ASCII character encoding (such as in Japan where multibyte
character sets are used). A properly written MATLAB application
that needs to use a fixed-width font should set FontName to
FixedWidth (note that this string is case sensitive) and rely
on FixedWidthFontName to be set correctly in the end user’s
environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes
an immediate update of the display to use the new font.

Bitmapped fonts (e.g., Courier) cannot be rotated on the display.
Therefore, when you specify a bitmapped font with the FontName
property, this text might not be rotated correctly, for example,
when used as the y-axis label. To avoid problems with bitmapped
fonts, use TrueType fonts. For example, you might have a
TrueType font named Courier New that you can use instead of
Courier. See your system documentation for information on which
fonts are installed on your system.

FontSize
size in FontUnits

1-6993

Text Properties

Font size. Specifies the font size to use for text in units determined
by the FontUnits property. The default is 10 points. 1 point
= 1/72 inch.

FontWeight
{normal} | bold | light | demi

Weight of text characters. MATLAB uses this property to select a
font from those available on your particular system. Generally,
setting this property to bold or demi causes MATLAB to use
a bold font.

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property.

• normalized— Interpret FontSize as a fraction of the height of
the parent axes. When you resize the axes, MATLAB modifies
the screen FontSize accordingly.

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

Note that if you are setting both the FontSize and the FontUnits
in one function call, you must set the FontUnits property first so
that MATLAB can correctly interpret the specified FontSize.

HandleVisibility
{on} | callback | off

Control access to object’s handle. Determines when an object’s
handle is visible in its parent’s list of children. HandleVisibility
is useful for preventing command-line users from accidentally
drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

• on — Handles are always visible.

1-6994

Text Properties

• callback— Handles are visible from within callback routines
or functions invoked by callback routines, but not from within
functions invoked from the command line. This provides
a means to protect GUIs from command-line users, while
allowing callback routines to have access to object handles.

• off— Handles are invisible at all times. Use this option when
a callback invokes a function that could damage the GUI (such
as evaluating a user-typed string). This option temporarily
hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off,

• The object’s handle does not appear in its parent’s Children
property.

• Figures do not appear in the root’s CurrentFigure property.

• Objects do not appear in the root’s CallbackObject property or
in the figure’s CurrentObject property.

• Axes do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

1-6995

Text Properties

Selectable by mouse click. Determines if the text can become the
current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the text.
If HitTest is off, clicking the text selects the object below it
(which is usually the axes containing it).

For example, suppose you define the button down function of an
image (see the ButtonDownFcn property) to display text at the
location you click with the mouse.

First define the callback routine.

function bd_function
pt = get(gca,'CurrentPoint');
text(pt(1,1),pt(1,2),pt(1,3),...
'{\fontsize{20}\oplus} The spot to label',...
'HitTest','off')

Now display an image, setting its ButtonDownFcn property to the
callback routine.

load earth
image(X,'ButtonDownFcn','bd_function'); colormap(map)

When you click the image, MATLAB displays the text string
at that location. With HitTest set to off, existing text cannot
intercept any subsequent button down events that occur over the
text. This enables the image’s button down function to execute.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. Specifies the horizontal justification
of the text string. It determines where MATLAB places the string
with regard to the point specified by the Position property. The
following picture illustrates the alignment options.

1-6996

Text Properties

See the Extent property for related information.

See “Text Alignment” for more information and examples.

Interpreter
latex | {tex} | none

Interpret TeXinstructions. Controls whether MATLAB interprets
certain characters in the String property as TeX instructions
(default) or displays all characters literally.

• latex — Supports a basic subset of the LaTeX markup
language.

• tex — Supports a subset of plain TeX markup language. See
the String property for a list of supported TeX instructions.

• none — Displays literal characters.

LaTeX Interpreter

To enable the LaTeX interpreter for text objects, set the Interpreter
property to latex. For example, the following statement displays an
equation in a figure at the point [.5 .5], and enlarges the font to 16
points.

text('Interpreter','latex',...
'String','$$\int_0^x\!\int_y dF(u,v)$$',...
'Position',[.5 .5],...
'FontSize',16)

1-6997

Text Properties

Note The maximum size of the string that you can use with the LaTeX
interpreter is 1200 characters. For multiline strings, reduce this
amount by about 10 characters per line.

Information About Using TeX

The following references may be useful to people who are not familiar
with TeX.

• Donald E. Knuth, The TEXbook, Addison Wesley, 1986.

• The TeX Users Group home page: http://www.tug.org

Interruptible
off | {on}

1-6998

http://www.tug.org

Text Properties

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For Graphics objects, the Interruptible property affects only the
callbacks for theButtonDownFcn property. A running callback is
the currently executing callback. The interrupting callback is the
callback that tries to interrupt the running callback. MATLAB
handles both the callbacks based on the Interruptible property
of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting Interruptible property to on (default), allows a callback
from other graphics objects to interrupt callback functions
originating from this object.

1-6999

Text Properties

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

LineStyle
{-} | -- | : | -. | none

Edge line type. Specifies the line style used to draw the edges
of the text Extent.

Line Style Specifiers Table

Specifier Line Style

’-’ Solid line (default)

’--’ Dashed line

’:’ Dotted line

’-.’ Dash-dot line

'none' No line

For example, the following code draws a red rectangle with a
dotted line style around text that labels a plot.

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red',...
'LineWidth',2,...
'LineStyle',':');

1-7000

Text Properties

For additional features, see the following properties:

• BackgroundColor— Color of the rectangle’s interior (none by
default)

• EdgeColor— Color of the rectangle’s edge (none by default)

• LineWidth — Width of the rectangle’s edge line (first set
EdgeColor)

• Margin — Increases the size of the rectangle by adding a
margin to the existing text extent rectangle. This margin is
added to the text extent rectangle to define the text background
area that is enclosed by the EdgeColor rectangle. Note that the
text extent does not change when you change the margin; only
the rectangle displayed when you set the EdgeColor property
and the area defined by the BackgroundColor change.

LineWidth
scalar (points)

1-7001

Text Properties

Width of line used to draw text extent rectangle. When you set the
text EdgeColor property to a color (the default is none), MATLAB
displays a rectangle around the text Extent. Use the LineWidth
property to specify the width of the rectangle edge. For example,
the following code draws a red rectangle around text that labels a
plot and specifies a line width of 3 points:

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red',...
'LineWidth',3);

For additional features, see the following properties:

• BackgroundColor— Color of the rectangle’s interior (none by
default)

• EdgeColor— Color of the rectangle’s edge (none by default)

• LineStyle — Style of the rectangle’s edge line (first set
EdgeColor)

1-7002

Text Properties

• Margin — Increases the size of the rectangle by adding a
margin to the existing text extent rectangle. This margin is
added to the text extent rectangle to define the text background
area that is enclosed by the EdgeColor rectangle. Note that the
text extent does not change when you change the margin; only
the rectangle displayed when you set the EdgeColor property
and the area defined by the BackgroundColor change.

Margin
scalar (pixels)

Distance between the text extent and the rectangle edge. When
you specify a color for the BackgroundColor or EdgeColor text
properties, MATLAB draws a rectangle around the area defined
by the text Extent plus the value specified by the Margin. For
example, the following code displays a light green rectangle with
a 10-pixel margin.

text(5*pi/4,sin(5*pi/4),...
['sin(5*pi/4) = ',num2str(sin(5*pi/4))],...
'HorizontalAlignment','center',...
'BackgroundColor',[.7 .9 .7],...
'Margin',10);

1-7003

Text Properties

For additional features, see the following properties:

• BackgroundColor— Color of the rectangle’s interior (none by
default)

• EdgeColor— Color of the rectangle’s edge (none by default)

• LineStyle — Style of the rectangle’s edge line (first set
EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set
EdgeColor)

See how margin affects text extent properties

This example enables you to change the values of the Margin
property and observe the effects on the BackgroundColor area
and the EdgeColor rectangle.

Click to view in editor — This link opens the MATLAB editor with
the following example.

Click to run example — Use your scroll wheel to vary the Margin.

1-7004

Text Properties

Parent
handle of axes, hggroup, or hgtransform

Parent of text object. Handle of the text object’s parent. The
parent of a text object is the axes, hggroup, or hgtransform object
that contains it.

Position
[x,y,[z]]

Location of text. A two- or three-element vector, [x y [z]],
that specifies the location of the text in three dimensions. If you
omit the z value, it defaults to 0. All measurements are in units
specified by the Units property. Initial value is [0 0 0].

Rotation
scalar (default = 0)

Text orientation. Determines the orientation of the text string.
Specify values of rotation in degrees (positive angles cause
counterclockwise rotation).

Selected
on | {off}

Is object selected? When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also set
to on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles.

1-7005

Text Properties

String
string

Text string. Specify this property as a quoted string for single-line
strings, or as a cell array of strings, or a padded string matrix for
multiline strings. MATLAB displays this string at the specified
location. Vertical slash characters are not interpreted as line
breaks in text strings, and are drawn as part of the text string.
See Mathematical Symbols, Greek Letters, and TeX Characters
for an example.

Note The words default, factory, and remove are reserved
words that will not appear in a figure when quoted as a normal
string. In order to display any of these words individually, type
'\reserved_word' instead of 'reserved_word'.

When the text Interpreter property is tex (the default), you can
use a subset of TeX commands embedded in the string to produce
special characters such as Greek letters and mathematical
symbols. This table lists these characters and the character
sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\angle ∠ \phi Φ \leq ≤

\ast * \chi χ \infty ∞

\beta β \psi ψ \clubsuit ♣

\gamma γ \omega ω \diamondsuit ♦

\delta δ \Gamma Γ \heartsuit ♥

\epsilon ε \Delta Δ \spadesuit ♠

1-7006

Text Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\zeta ζ \Theta Θ \leftrightarrow ↔

\eta η \Lambda Λ \leftarrow ←

\theta Θ \Xi Ξ \Leftarrow ⇐

\vartheta \Pi Π \uparrow ↑

\iota ι \Sigma Σ \rightarrow →

\kappa κ \Upsilon \Rightarrow

\lambda λ \Phi Φ \downarrow ↓

\mu µ \Psi Ψ \circ º

\nu ν \Omega Ω \pm ±

\xi ξ \forall ∀ \geq ≥

\pi π \exists ∃ \propto ∝

\rho ρ \ni ∋ \partial ∂

\sigma σ \cong \bullet •
\varsigma ς \approx ≈ \div ÷

\tau τ \Re ℜ \neq ≠

\equiv ≡ \oplus ⊕ \aleph

\Im ℑ \cup ∪ \wp ℘

\otimes ⊗ \subseteq ⊆ \oslash ∅

\cap ∩ \in \supseteq ⊇

\supset ⊃ \lceil ⌈ \subset ⊂

\int ∫ \cdot · \o ο

1-7007

Text Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\rfloor ⌋ \neg ¬ \nabla ∇

\lfloor ⌊ \times x \ldots ...

\perp ⊥ \surd √ \prime ´

\wedge ∧ \varpi ϖ \0 ∅

\rceil ⌉ \rangle \mid |

\vee ∨ \copyright ©

\langle

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers:

• \bf — Bold font

• \it — Italic font

• \sl — Oblique font (rarely available)

• \rm — Normal font

• \fontname{fontname} — Specify the name of the font family
to use.

• \fontsize{fontsize}— Specify the font size in FontUnits.

• \color(colorSpec)— Specify color for succeeding characters

Stream modifiers remain in effect until the end of the string or
only within the context defined by braces { }.

1-7008

Text Properties

Specifying Text Color in TeX Strings

Use the \color modifier to change the color of characters following it
from the previous color (which is black by default). Syntax is:

• \color{colorname} — Use for the eight basic named colors (red,
green, yellow, magenta, blue, black, white), and plus the four
Simulink colors (gray, darkGreen, orange, and lightBlue).

Note that short names (one-letter abbreviations) for colors are not
supported by the \color modifier.

• \color[rgb]{r g b} — Use to specify an RGB triplet with values
between 0 and 1 as a cell array

For example:

text(.1,.5,['\fontsize{16}black '...
'{\color{magenta}magenta '...
'\color[rgb]{0 .5 .5}teal '...
'\color{red}red} black again'])

1-7009

Text Properties

Specifying Subscript and Superscript Characters

The subscript character “_” and the superscript character “^” modify
the character or substring defined in braces immediately following.

To print the special characters used to define the TeX strings when
Interpreter is tex, prefix them with the backslash “\” character: \\,
\{, \} _, \^.

See the “Examples” on page 1-6977 in the text reference page for more
information.

When Interpreter is none, no characters in the String are interpreted,
and all are displayed when the text is drawn.

When Interpreter is latex, MATLAB provides a complete LaTeX
interpreter for text objects. See the Interpreter property for more
information.

1-7010

Text Properties

Tag
string

User-specified object label. Provides a means to identify graphics
objects with a user-specified label. The default is an empty string.

Use the Tag property and the findobj function to manipulate
specific objects within a plotting hierarchy.

Type
string (read-only)

Class of graphics object. String that identifies the class of the
graphics object. Use this property to find all objects of a given type
within a plotting hierarchy. For text objects, Type is always ’text’.

UIContextMenu
handle of uicontextmenu object

Associate a context menu with the text. The handle of a
uicontextmenu object created in the same figure as the text. Use
the uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the text.

Units
pixels | normalized | inches |
| characters | centimeters | points | {data}

Units of measurement. Specifies the units MATLAB uses to
interpret the Extent and Position properties. All units are
measured from the lower left corner of the axes plot box.

• normalized— Units map the lower left corner of the rectangle
defined by the axes to (0,0) and the upper right corner to
(1.0,1.0).

• pixels, inches, centimeters, and points— Absolute units. 1
point = 1/72 inch.

1-7011

Text Properties

• characters — Based on the size of characters in the default
system font. The width of one characters unit is the width
of the letter x, and the height of one characters unit is the
distance between the baselines of two lines of text.

• data — Data units of the parent axes as determined by the
data graphed (not the axes Units property, which controls the
positioning of the axes within the figure window).

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Data you want to associate with the text
object. The default value is an empty array. MATLAB does not use
this data, but you can access it using the set and get commands.

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. Specifies the vertical justification of
the text string. It determines where MATLAB places the string
vertically with regard to the points specified by the Position
property.

• top — Place the top of the string’ s Extent rectangle at the
specified y-position.

• cap — Place the string so that the top of a capital letter is at
the specified y-position.

• middle — Place the middle of the string at the specified
y-position.

• baseline— Place font baseline at the specified y-position.

1-7012

Text Properties

• bottom— Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

See “Text Alignment” for more information and examples.

Visible
{on} | off

Text visibility. By default, all text is visible. When set to off,
the text is not visible, but still exists, and you can query and set
its properties.

See Also text

1-7013

textread

Purpose Read data from text file; write to multiple outputs

Note textread is not recommended. Use textscan instead.

Syntax [A,B,C,...] = textread(filename,format)
[A,B,C,...] = textread(filename,format,N)
[...] = textread(...,param,value,...)

Description [A,B,C,...] = textread(filename,format) reads data from the
file filename into the variables A,B,C, and so on, using the specified
format, until the entire file is read. The filename and format inputs
are strings, each enclosed in single quotes. textread is useful for
reading text files with a known format. textread handles both fixed
and free format files.

Note When reading large text files, reading from a specific point in a
file, or reading file data into a cell array rather than multiple outputs,
you might prefer to use the textscan function.

textread matches and converts groups of characters from the input.
Each input field is defined as a string of non-white-space characters
that extends to the next white-space or delimiter character, or to the
maximum field width. Repeated delimiter characters are significant,
while repeated white-space characters are treated as one.

The format string determines the number and types of return
arguments. The number of return arguments is the number of items
in the format string. The format string supports a subset of the
conversion specifiers and conventions of the C language fscanf routine.
Values for the format string are listed in the table below. White-space
characters in the format string are ignored.

1-7014

textread

format Action Output

Literals

(ordinary
characters)

Ignore the matching characters. For example, in a file
that has Dept followed by a number (for department
number), to skip the Dept and read only the number,
use 'Dept' in the format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating-point value. Double array

%s Read a white-space or delimiter-separated string. Cell array of
strings

%q Read a double quoted string, ignoring the quotes. Cell array of
strings

%c Read characters, including white space. Character array

%[...] Read the longest string containing characters
specified in the brackets.

Cell array of
strings

%[^...] Read the longest nonempty string containing
characters that are not specified in the brackets.

Cell array of
strings

%*...
instead of %

Ignore the matching characters specified by *. No output

%w...
instead of %

Read field width specified by w. The %f format
supports %w.pf, where w is the field width and p is
the precision.

[A,B,C,...] = textread(filename,format,N) reads the data,
reusing the format string N times, where N is an integer greater than
zero. If N is smaller than zero, textread reads the entire file.

[...] = textread(...,param,value,...) customizes textread
using param/value pairs, as listed in the table below.

1-7015

textread

param value Action

bufsize Positive integer Specifies the maximum string length, in
bytes. Default is 4095.

commentstyle matlab Ignores characters after %.

commentstyle shell Ignores characters after #.

commentstyle c Ignores characters between /* and */.

commentstyle c++ Ignores characters after //.

delimiter One or more characters Act as delimiters between elements.
Default is none.

emptyvalue Scalar double Value given to empty cells when reading
delimited files. Default is 0.

endofline Single character or '\r\n' Character that denotes the end of a line.

Default is determined from file

expchars Exponent characters Default is eEdD.

headerlines Positive integer Ignores the specified number of lines at
the beginning of the file.

Any from the list below:whitespace

' '
\b
\n
\r
\t

Space
Backspace
Newline
Carriage return
Horizontal tab

Treats vector of characters as white
space. Default is ' \b\t'.

Note When textread reads a consecutive series of whitespace values,
it treats them as one white space. When it reads a consecutive series of
delimiter values, it treats each as a separate delimiter.

1-7016

textread

Tips If you want to preserve leading and trailing spaces in a string, use the
whitespace parameter as shown here:

textread('myfile.txt', '%s', 'whitespace', '')
ans =

' An example of preserving spaces '

Examples Example 1 — Read All Fields in Free Format File Using %

The first line of mydata.dat is

Sally Level1 12.34 45 Yes

Read the first line of the file as a free format file using the % format.

[names, types, x, y, answer] = textread('mydata.dat', ...
'%s %s %f %d %s', 1)

returns

names =
'Sally'

types =
'Level1'

x =
12.34000000000000

y =
45

answer =
'Yes'

Example 2 — Read as Fixed Format File, Ignoring the
Floating Point Value

The first line of mydata.dat is

Sally Level1 12.34 45 Yes

Read the first line of the file as a fixed format file, ignoring the
floating-point value.

1-7017

textread

[names, types, y, answer] = textread('mydata.dat', ...
'%9c %6s %*f %2d %3s', 1)

returns

names =
Sally
types =

'Level1'
y =

45
answer =

'Yes'

%*f in the format string causes textread to ignore the floating point
value, in this case, 12.34.

Example 3 — Read Using Literal to Ignore Matching
Characters

The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file, ignoring the characters Type in the second
field.

[names, typenum, x, y, answer] = textread('mydata.dat', ...
'%s Type%d %f %d %s', 1)

returns

names =
'Sally'

typenum =
1

x =
12.34000000000000

y =
45

1-7018

textread

answer =
'Yes'

Type%d in the format string causes the characters Type in the second
field to be ignored, while the rest of the second field is read as a signed
integer, in this case, 1.

Example 4 — Specify Value to Fill Empty Cells

For files with empty cells, use the emptyvalue parameter. Suppose
the file data.csv contains:

1,2,3,4,,6
7,8,9,,11,12

Read the file using NaN to fill any empty cells:

data = textread('data.csv', '', 'delimiter', ',', ...
'emptyvalue', NaN);

Example 5 — Read File into a Cell Array of Strings

Read the file fft.m into cell array of strings.

file = textread('fft.m', '%s', 'delimiter', '\n', ...
'whitespace', '');

See Also textscan | dlmread | fscanf

1-7019

textscan

Purpose Read formatted data from text file or string

Syntax C = textscan(fileID,formatSpec)
C = textscan(fileID,formatSpec,N)

C = textscan(str,formatSpec)
C = textscan(str,formatSpec,N)

C = textscan(___ ,Name,Value)

[C,position] = textscan(___)

Description C = textscan(fileID,formatSpec) reads data from an open text file
into cell array, C. The text file is indicated by the file identifier, fileID.
Use fopen to open the file and obtain the fileID value. When you
finish reading from a file, close the file by calling fclose(fileID).

textscan attempts to match the data in the file to formatSpec, which
is a string of conversion specifiers.

C = textscan(fileID,formatSpec,N) reads file data, using the
formatSpec N times, where N is a positive integer. To read additional
data from the file after N cycles, call textscan again using the original
fileID. If you resume a text scan of a file by calling textscan with the
same file identifier (fileID), then textscan automatically resumes
reading at the point where it terminated the last read.

C = textscan(str,formatSpec) reads data from a string, str into
cell array C. For strings, repeated calls to textscan restart the scan
from the beginning each time. To restart a scan from the last position,
request a position output.

textscan attempts to match the data in the string, str, to formatSpec,
which is a string of conversion specifiers.

1-7020

textscan

C = textscan(str,formatSpec,N) reads string data, using the
formatSpec N times, where N is a positive integer.

C = textscan(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments, in addition to any of the input arguments
in the previous syntaxes.

[C,position] = textscan(___) returns the file or string position at
the end of the scan as the second output argument, using any of the
input arguments in the previous syntaxes. For a file, this is the value
that ftell(fileID) would return after calling textscan. For a string,
position indicates how many characters textscan read.

Input
Arguments

fileID - File identifier
numeric scalar

File identifier of an open text file, specified as a number. Before reading
a file with textscan, you must use fopen to open the file and obtain
the fileID.

Data Types
double

formatSpec - Format of the data fields
string

Format of the data fields, specified as a string of one or more conversion
specifiers. When textscan reads a file or string, it attempts to match
the data to the formatSpec string. If textscan fails to match a data
field, it stops reading and returns all fields read before the failure.

The number of conversion specifiers determines the number of cells
in output array, C.

Numeric Fields

This table lists available conversion specifiers for numeric inputs.

1-7021

textscan

Numeric Input
Type

Conversion
Specifier

Output Class

%d int32

%d8 int8

%d16 int16

%d32 int32

Integer, signed

%d64 int64

%u uint32

%u8 uint8

%u16 uint16

%u32 uint32

Integer, unsigned

%u64 uint64

%f double

%f32 single

%f64 double

Floating-point
number

%n double

Character Fields

This table lists available conversion specifiers for character inputs.

Character
Strings

Conversion
Specifier

Details

%s String

%q String, where double quotation marks
indicate text to keep together

Characters

%c Any single character, including a
delimiter

1-7022

textscan

Character
Strings

Conversion
Specifier

Details

%[...] Read only the characters inside the
brackets up to the first nonmatching
character. To include] in the set,
specify it first: %[]...].

Example: %[mus] reads 'summer ' as
'summ'.

Pattern-matching
strings

%[^...] Exclude characters inside the
brackets, reading until the first
matching character. To exclude],
specify it first: %[^]...].

Example: %[^xrg] reads 'summer '
as 'summe'.

Optional Operators

Conversion specifiers in formatSpec can include optional operators,
which appear in the following order (includes spaces for clarity):

Optional operators include:

• Fields and Characters to Ignore

1-7023

textscan

textscan reads all characters in your file in sequence, unless you tell
it to ignore a particular field or a portion of a field.

Use the following operators to skip or read portions of fields.

Operator Action Taken

%* Skip the field. textscan does not create an output
cell for any field that it skips.

Example: '%s %*s %s %s %*s %*s %s' (spaces are
optional) converts the string
'Blackbird singing in the dead of night' to
four output cells with the strings
'Blackbird' 'in' 'the' 'night'

%*n Ignore n characters of the field, where n is an integer
less than or equal to the number of characters in
the field.

Example: %*4s ignores 4 characters, so '%*4s %s'
reads 'summer' as 'er'.

• Field Width

textscan reads the number of characters or digits specified by the
field width or precision, or up to the first delimiter, whichever comes
first. A decimal point is counted as a digit. Specify the field width by
inserting a number after the percent character (%) in the conversion
specifier.

Example: %5f reads '123.456' as 123.4.

Note When the field width operator is used with single characters
(%c), textscan also reads delimiter characters.
Example: %7c reads 7 characters, including white-space, so'Day and
night' reads as 'Day and'.

1-7024

textscan

• Precision

For floating-point numbers (%n, %f, %f32, %f64), you can specify the
number of decimal digits to read.

Example: %7.2f reads '123.456' as 123.45.

• Literal Text to Ignore

textscan ignores specified text appended to the formatSpec string.

Example: Level%u8 reads 'Level1' as 1.

Example: %u8Step reads '2Step' as 2.

N - Number of times to apply formatSpec
integer

Number of times to apply formatSpec, specified as an integer.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

str - Input string
string

Input string to read.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Names are not case sensitive.

Example: C =
textscan(fileID,formatSpec,'HeaderLines',3,'Delimiter',',')
skips the first three lines of the data, and then reads the remaining
data, treating commas as a delimiter.

1-7025

textscan

’CollectOutput’ - Logical indicator determining data concatenation
false (default) | true

Logical indicator determining data concatenation, specified as the
comma-separated pair consisting of 'CollectOutput' and either true
or false. If true, then textscan concatenates consecutive output cells
of the same fundamental MATLAB class into a single array.

’CommentStyle’ - Symbols designating text to ignore
string | cell array of strings

Symbols designating text to ignore, specified as the comma-separated
pair consisting of 'CommentStyle' and a string or cell array of strings.

For example, specify a string such as '%' to ignore characters following
the string on the same line. Specify a cell array of two strings, such as
{'/*', '*/'}, to ignore characters between the strings.

textscan checks for comments only at the start of each field, not within
a field.

Example: 'CommentStyle',{'/*', '*/'}

’Delimiter’ - Field delimiter characters
{'','\b','\t'} (default) | string | cell array of strings

Field delimiter characters, specified as the comma-separated pair
consisting of 'Delimiter' and a string or a cell array of strings. Specify
multiple delimiters in a cell array of strings.

Example: 'delimiter',{';','*'}

textscan interprets repeated delimiter characters as separate
delimiters, and returns an empty value to the output cell.

Within each row of data, the default field delimiter is white space.
White space can be any combination of space (' '), backspace ('\b'),
or tab ('\t') characters. If you do not specify a delimiter, textscan
interprets repeated white-space characters as a single delimiter.

When you specify one of the following escape sequences as a delimiter,
textscan converts that sequence to the corresponding control character:

1-7026

textscan

\b Backspace

\n Newline

\r Carriage return

\t Tab

\\ Backslash (\)

’EmptyValue’ - Returned value for empty numeric fields
NaN (default) | scalar

Returned value for empty numeric fields in delimited text files, specified
as the comma-separated pair consisting of 'EmptyValue' and a scalar.

’EndOfLine’ - End-of-line characters
string

End-of-line characters, specified as the comma-separated pair consisting
of 'EndOfLine' and a string. The default end-of-line sequence depends
on the format of your file and can include a newline character ('\n'), a
carriage return ('\r'), or a combination of the two ('\r\n').

If there are missing values and an end-of-line sequence at the end of
the last line in a file, then textscan returns empty values for those
fields. This ensures that individual cells in output cell array, C, are
the same size.

’ExpChars’ - Exponent characters
'eEdD' (default) | string

Exponent characters, specified as the comma-separated pair consisting
of 'ExpChars' and a string. The default exponent characters are e,
E, d, and D.

’HeaderLines’ - Number of header lines
0 (default) | positive integer

1-7027

textscan

Number of header lines, specified as the comma-separated pair
consisting of 'HeaderLines' and a positive integer. textscan skips the
header lines, including the remainder of the current line.

’MultipleDelimsAsOne’ - Multiple delimiter handling
0 (false) (default) | 1 (true)

Multiple delimiter handling, specified as the comma-separated pair
consisting of 'MultipleDelimsAsOne' and either true or false. If
true, textscan treats consecutive delimiters as a single delimiter.
Repeated delimiters separated by white-space are also treated as a
single delimiter. You must also specify the Delimiter option.

Example: 'MultipleDelimsAsOne',1

’ReturnOnError’ - Behavior when textscan fails to read or
convert
1 (true) (default) | 0 (false)

Behavior when textscan fails to read or convert, specified as the
comma-separated pair consisting of 'ReturnOnError' and either true
or false. If true, textscan terminates without an error and returns
all fields read. If false, textscan terminates with an error and does
not return an output cell array.

’TreatAsEmpty’ - Strings to treat as empty value
string | cell array of strings

Strings to treat as empty values, specified as the comma-separated
pair consisting of 'TreatAsEmpty' and a single string or cell array of
strings. This option only applies to numeric fields.

’Whitespace’ - White-space characters
' \b\t' (default) | string

White-space characters, specified as the comma-separated pair
consisting of 'Whitespace' and a string of one or more characters.
textscan adds a space character, char(32), to any specified

1-7028

textscan

Whitespace, unless Whitespace is empty ('') and formatSpec includes
any string conversion specifier.

When you specify one of the following escape sequences as any
white-space character, textscan converts that sequence to the
corresponding control character:

\b Backspace

\n Newline

\r Carriage return

\t Tab

\\ Backslash (\)

Output
Arguments

C - File or string data
cell array

File or string data, returned as a cell array.

For each numeric conversion specifier in formatSpec, the textscan
function returns a K-by-1 MATLAB numeric vector to the output cell
array, C, where K is the number of times that textscan finds a field
matching the specifier.

For each string conversion specifier in formatSpec, the textscan
function returns a K-by-1 cell vector of strings, where K is the number
of times that textscan finds a field matching the specifier. For each
character conversion that includes a field width operator, textscan
returns a K-by-M character array, where M is the field width.

position - File or string position
integer

File or string position at the end of the scan, returned as an integer of
class double. For a file, ftell(fileID) would return the same value
after calling textscan. For a string, position indicates how many
characters textscan read.

1-7029

textscan

Examples Read a String

Read a string of floating-point numbers.

str = '0.41 8.24 3.57 6.24 9.27';

C = textscan(str,'%f');

The formatSpec string '%f' tells textscan to match each field in str
to a double-precision floating-point number.

Display the contents of cell array C.

celldisp(C)

C{1} =

0.4100
8.2400
3.5700
6.2400
9.2700

Read the same string, truncating each value to one decimal digit.

C = textscan(str,'%3.1f %*1d');

The specifier %3.1f indicates a field width of 3 digits and a precision of
1. textscan reads a total of 3 digits, including the decimal point and
the 1 digit after the decimal point. The specifier, %*1d, tells textscan to
skip the remaining digit.

Display the contents of cell array C.

celldisp(C)

C{1} =

0.4000

1-7030

textscan

8.2000
3.5000
6.2000
9.2000

Read Different Types of Data

Using a text editor, create a file scan1.dat that contains data in the
following form:

09/12/2005 Level1 12.34 45 1.23e10 inf Nan Yes 5.1+3i
10/12/2005 Level2 23.54 60 9e19 -inf 0.001 No 2.2-.5i
11/12/2005 Level3 34.90 12 2e5 10 100 No 3.1+.1i

Open the file, and read each column with the appropriate conversion
specifier.

fileID = fopen('scan1.dat');
C = textscan(fileID,'%s %s %f32 %d8 %u %f %f %s %f');
fclose(fileID);
celldisp(C)

C{1}{1} =

09/12/2005

C{1}{2} =

10/12/2005

C{1}{3} =

11/12/2005

C{2}{1} =

1-7031

textscan

Level1

C{2}{2} =

Level2

C{2}{3} =

Level3

C{3} =

12.3400
23.5400
34.9000

C{4} =

45
60
12

C{5} =

4294967295
4294967295

200000

1-7032

textscan

C{6} =

Inf
-Inf

10

C{7} =

NaN
0.0010

100.0000

C{8}{1} =

Yes

C{8}{2} =

No

C{8}{3} =

No

C{9} =

5.1000 + 3.0000i
2.2000 - 0.5000i
3.1000 + 0.1000i

1-7033

textscan

textscan returns a 1-by-9 cell array C.

View the MATLAB data type of each of the cells in C.

C

C =

Columns 1 through 5

{3x1 cell} {3x1 cell} [3x1 single] [3x1 int8] [3x1 uint32

Columns 6 through 9

[3x1 double] [3x1 double] {3x1 cell} [3x1 double]

For example, C{1} and C{2} are cell arrays. C{5} is of data type uint32,
so the first two elements of C{5} are the maximum values for a 32-bit
unsigned integer, or intmax('uint32').

Remove a Literal String

Remove the text 'Level' from each field in the second column of the
data from the previous example.

Match the literal string in the formatSpec input.

fileID = fopen('scan1.dat');
C = textscan(fileID,'%s Level%d %f32 %d8 %u %f %f %s %f');
fclose(fileID);
C{2}

ans =

1
2
3

View the MATLAB data type of the second cell in C.

1-7034

textscan

class(C{2})

ans =

int32

The second cell of the 1-by-9 cell array, C, is now of data type int32.

Skip the Remainder of a Line

Read the first column of the file in the previous example into a cell
array, skipping the rest of the line.

fileID = fopen('scan1.dat');
dates = textscan(fileID,'%s %*[^\n]');
fclose(fileID);
dates{1}

ans =

'09/12/2005'
'10/12/2005'
'11/12/2005'

textscan returns a 1-by-1 cell array dates.

Specify Delimiter and Empty Value Conversion

Using a text editor, create a comma-delimited file, data.csv, that
contains

1, 2, 3, 4, , 6
7, 8, 9, , 11, 12

Read the file, converting empty cells to -Inf.

fileID = fopen('data.csv');
C = textscan(fileID,'%f %f %f %f %u8 %f',...
'delimiter',',','EmptyValue',-Inf);
fclose(fileID);

1-7035

textscan

column4 = C{4}, column5 = C{5}

column4 =

4
-Inf

column5 =

0
11

textscan returns a 1-by-6 cell array, C. The textscan function converts
the empty value in C{4} to -Inf, where C{4} is associated with a
floating-point format. Because MATLAB represents unsigned integer
-Inf as 0, textscan converts the empty value in C{5} to 0, and not -Inf.

Read Custom Empty Value Strings and Comments

Using a text editor, create a comma-delimited file, data2.csv, that
contains the lines

abc, 2, NA, 3, 4
// Comment Here
def, na, 5, 6, 7

Designate the input that textscan should treat as comments or empty
values.

fileID = fopen('data2.csv');
C = textscan(fileID,'%s %n %n %n %n','delimiter',',',...
'treatAsEmpty',{'NA','na'},'commentStyle','//');
fclose(fileID);
celldisp(C)

C{1}{1} =
abc

1-7036

textscan

C{1}{2} =
def

C{2} =
2

NaN

C{3} =
NaN

5

C{4} =
3
6

C{5} =
4
7

Treat Repeated Delimiters as One

Using a text editor, create a file, data3.csv, that contains

1,2,3,,4
5,6,7,,8

To treat the repeated commas as a single delimiter, use the
MultipleDelimsAsOne parameter, and set the value to 1 (true).

fileID = fopen('data3.csv');
C = textscan(fileID,'%f %f %f %f','delimiter',',',...
'MultipleDelimsAsOne',1);
fclose(fileID);
celldisp(C)

C{1} =
1
5

1-7037

textscan

C{2} =
2
6

C{3} =
3
7

C{4} =
4
8

Collect Numeric Data

Using a text editor, create a file, grades.txt, that contains:

Student_ID | Test1 | Test2 | Test3
1 91.5 89.2 77.3
2 88.0 67.8 91.0
3 76.3 78.1 92.5
4 96.4 81.2 84.6

Read the column headers using the format '%s' four times.

fileID = fopen('grades.txt');

formatSpec = '%s';
N = 4;
C_text = textscan(fileID,formatSpec,N,'delimiter','|');

Read the numeric data in the file.

C_data0 = textscan(fileID,'%d %f %f %f')

C_data0 =
[4x1 int32] [4x1 double] [4x1 double] [4x1 double]

1-7038

textscan

The default value for CollectOutput is 0 (false), so textscan returns
each column of the numeric data in a separate array.

Set CollectOutput to 1 (true) to collect the consecutive columns of
the same class into a single array.

frewind(fileID);

C_text = textscan(fileID,'%s',N,'delimiter','|');

C_data1 = textscan(fileID,'%d %f %f %f','CollectOutput',1)

C_data1 =
[4x1 int32] [4x3 double]

The test scores, which are all double, are collected into a single 4-by-3
array.

Close the file, grades.txt.

fclose(fileID);

Read Nondefault Control Characters

Use sprintf to convert nondefault escape sequences in your data.

Create a string that includes a form feed character, \f. Then, to read the
string using textscan, call sprintf to explicitly convert the form feed.

lyric = sprintf('Blackbird\fsinging\fin\fthe\fdead\fof\fnight');
C = textscan(lyric,'%s','delimiter',sprintf('\f'));
C{1}

ans =

'Blackbird'
'singing'
'in'
'the'

1-7039

textscan

'dead'
'of'
'night'

textscan returns a 1-by-1 cell array, C.

Resume a Text Scan of a String

Resume a scan of a string from a position other than the beginning.

If you resume a text scan of a string, textscan reads from the beginning
of the string each time. To resume a scan from any other position in
the string, use the two-output argument syntax in your initial call to
textscan.

For example, create a string called lyric. Read the first word of the
string, and then resume the scan.

lyric = 'Blackbird singing in the dead of night';
[firstword,pos] = textscan(lyric,'%9c',1);
lastpart = textscan(lyric(pos+1:end),'%s');

Algorithms textscan converts numeric fields to the specified output type according
to MATLAB rules regarding overflow, truncation, and the use of NaN,
Inf, and -Inf. For example, MATLAB represents an integer NaN as
zero. If textscan finds an empty field associated with an integer format
specifier (such as %d or %u), it returns the empty value as zero and not
NaN.

textscan does not include leading white-space characters in the
processing of any data fields. When processing numeric data, textscan
also ignores trailing white space.

textscan imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type (such as %d or %f). Valid forms for a complex number are:

±<real>±<imag>i|j Example: 5.7-3.1i

±<imag>i|j Example: -7j

1-7040

textscan

Do not include embedded white space in a complex number. textscan
interprets embedded white space as a field delimiter.

See Also dlmread | fread | fscanf | load | uiimport | xlsread | fopen |
readtable

Related
Examples

• “Import Data from a Nonrectangular Text File”
• “Import Large Text File Data in Blocks”
• “Access Data in a Cell Array”

Concepts • “Ways to Import Text Files”

1-7041

textwrap

Purpose Wrapped string matrix for given uicontrol

Syntax outstring = textwrap(h,instring)
outstring = textwrap(h,instring,columns)
[outstring,position] = textwrap(...)

Description outstring = textwrap(h,instring) returns a wrapped string cell
array, outstring, that fits inside the uicontrol with handle h. instring
is a cell array, with each cell containing a single line of text. outstring
is the wrapped string matrix in cell array format. Each cell of the input
string is considered a paragraph.

outstring = textwrap(h,instring,columns) returns an outstring
with each line wrapped at columns characters. Spaces are included in
the character count.

[outstring,position] = textwrap(...) returns the recommended
position of the uicontrol in the units of the uicontrol. position considers
the extent of the multiline text in the x and y directions.

textwrap maintains the original line breaks in the input cell array and
adds new ones. It can calculate uicontrol positions with any type of
Units, including normalized units.

Tips When programming a GUI, do not call copyobj or textwrap (which
calls copyobj) inside a CreateFcn. The act of copying the uicontrol
object fires the CreateFcn repeatedly, which raises a series of error
messages after exceeding the root object’s RecursionLimit property.

Examples Place two text-wrapped strings in text uicontrols. The left one has a
Position calculated by textwrap in Units of pixels; the right one’s
Position is calculated manually in Units of characters:

figure('Position',[560 528 350 250]);
% Make a text uicontrol to wrap in Units of Pixels
% Create it in Units of Pixels, 100 wide, 10 high
pos = [10 100 100 10];
ht = uicontrol('Style','Text','Position',pos);

1-7042

../ref/rootobject_props.html#RecursionLimit

textwrap

string = {'This is a string for the left text uicontrol.',...
'to be wrapped in Units of Pixels,',...
'with a position determined by TEXTWRAP.'};

% Wrap string, also returning a new position for ht
[outstring,newpos] = textwrap(ht,string) %#ok<NOPRT>

outstring =
'This is a string for'
'the left text'
'uicontrol.'
'to be wrapped in'
'Units of Pixels,'
'with a position'
'determined by'
'TEXTWRAP.'

newpos =
10 100 91 124

set(ht,'String',outstring,'Position',newpos)

% Make another text uicontrol to wrap to a column width of 15
colwidth = 15;
% Create it in Units of Pixels, 100 wide, 10 high
pos1 = [150 100 100 10];
ht1 = uicontrol('Style','Text','Position',pos1);
string1 = {'This is a string for the right text uicontrol.',...

'to be wrapped in Units of Characters,',...
'into lines 15 columns wide.'};

outstring1 = textwrap(ht1,string1,colwidth);
% Reset Units of ht1 to Characters to use the result
set(ht1,'Units','characters')
newpos1 = get(ht1,'Position')

newpos1 =
29.8000 7.6154 20.0000 0.7692

1-7043

textwrap

% Set new Position in Characters to be specified colwidth
% with height the length of the outstring1 cell array + 1.
newpos1(3) = colwidth;
newpos1(4) = length(outstring1)+1

newpos1 =
29.8000 7.6154 15.0000 10.0000

set(ht1,'String',outstring1,'Position',newpos1)

See Also align | uicontrol

1-7044

tfqmr

Purpose Transpose-free quasi-minimal residual method

Syntax x = tfqmr(A,b)
x = tfqmr(afun,b)
x = tfqmr(a,b,tol)
x = tfqmr(a,b,tol,maxit)
x = tfqmr(a,b,tol,maxit,m)
x = tfqmr(a,b,tol,maxit,m1,m2,x0)
[x,flag] = tfqmr(A,B,...)
[x,flag,relres] = tfqmr(A,b,...)
[x,flag,relres,y]y(A,b,...)
[x,flag,relres,iter,resvec] = tfqmr(A,b,...)

Description x = tfqmr(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be square and the right-hand
side column vector b must have length n.

x = tfqmr(afun,b) accepts a function handle, afun, instead of the
matrix A. The function, afun(x), accepts a vector input x and returns
the matrix-vector product A*x. In all of the following syntaxes, you can
replace A by afun. “Parameterizing Functions” explains how to provide
additional parameters to the function afun.

x = tfqmr(a,b,tol) specifies the tolerance of the method. If tol is []
then tfqmr uses the default, 1e-6.

x = tfqmr(a,b,tol,maxit) specifies the maximum number of
iterations. If maxit is [] then tfqmr uses the default, min(N,20).

x = tfqmr(a,b,tol,maxit,m) and x =
tfqmr(a,b,tol,maxit,m1,m2) use preconditioners m or m=m1*m2 and
effectively solve the system A*inv(M)*x = B for x. If M is [] then a
preconditioner is not applied. M may be a function handle mfun such
that mfun(x) returns m\x.

x = tfqmr(a,b,tol,maxit,m1,m2,x0) specifies the initial guess. If x0
is [] then tfqmr uses the default, an all zero vector.

[x,flag] = tfqmr(A,B,...) also returns a convergence flag:

1-7045

tfqmr

Flag Convergence

0 tfqmr converged to the desired tolerance tol within
maxit iterations.

1 tfqmr iterated maxit times but did not converge.

2 Preconditioner m was ill-conditioned.

3 tfqmr stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during tfqmr
became too small or too large to continue computing.

[x,flag,relres] = tfqmr(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,y]y(A,b,...) also returns the iteration number at
which x was computed: 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = tfqmr(A,b,...) also returns a
vector of the residual norms at each iteration, including norm(b-A*x0).

Examples Using tfqmr with Matrix or Function Handle Input

This example shows how to use tfqmr with a matrix input and with a
function input.

n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x = tfqmr(A,b,tol,maxit,M1,M2,[]);

You can also use a matrix-vector product function as input:

function y = afun(x,n)

1-7046

tfqmr

y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);
x1 = tfqmr(@(x)afun(x,n),b,tol,maxit,M1,M2);

If applyOp is a function suitable for use with qmr, it may be used with
tfqmr by wrapping it in an anonymous function:

x1 = tfqmr(@(x)applyOp(x,'notransp'),b,tol,maxit,M1,M2);

Using tfqmr with a Preconditioner

This example demonstrates the use of a preconditioner.

Load A = west0479, a real 479-by-479 nonsymmetric sparse matrix.

load west0479;
A = west0479;

Define b so that the true solution is a vector of all ones.

b = full(sum(A,2));

Set the tolerance and maximum number of iterations.

tol = 1e-12; maxit = 20;

Use tfqmr to find a solution at the requested tolerance and number
of iterations.

[x0,fl0,rr0,it0,rv0] = tfqmr(A,b,tol,maxit);

fl0 is 1 because tfqmr does not converge to the requested tolerance
1e-12 within the requested 20 iterations. The seventeenth iterate is the
best approximate solution and is the one returned as indicated by it0 =
17. MATLAB® stores the residual history in rv0.

Plot the behavior of tfqmr.

semilogy(0:maxit,rv0(1:maxit+1)/norm(b),'-o');

1-7047

tfqmr

xlabel('Iteration number');
ylabel('Relative residual');

Note that like bicgstab, tfqmr keeps track of half iterations. The plot
shows that the solution does not converge. You can use a preconditioner
to improve the outcome.

Create the preconditioner with ilu, since the matrix A is nonsymmetric.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-5));

1-7048

tfqmr

Error using ilu
There is a pivot equal to zero. Consider decreasing
the drop tolerance or consider using the 'udiag' option.

MATLAB cannot construct the incomplete LU as it would result in a
singular factor, which is useless as a preconditioner.

You can try again with a reduced drop tolerance, as indicated by the
error message.

[L,U] = ilu(A,struct('type','ilutp','droptol',1e-6));
[x1,fl1,rr1,it1,rv1] = tfqmr(A,b,tol,maxit,L,U);

fl1 is 0 because tfqmr drives the relative residual to 4.1410e-014 (the
value of rr1). The relative residual is less than the prescribed tolerance
of 1e-12 at the sixth iteration (the value of it1) when preconditioned
by the incomplete LU factorization with a drop tolerance of 1e-6. The
output rv1(1) is norm(b), and the output rv1(7) is norm(b-A*x2).

You can follow the progress of tfqmr by plotting the relative residuals
at each iteration starting from the initial estimate (iterate number 0).

semilogy(0:0.5:it1,rv1/norm(b),'-o');
xlabel('Iteration number');
ylabel('Relative residual');

1-7049

tfqmr

See Also bicg | bicgstab | bicgstabl | cgs | function_handle | gmres |
lsqr | ilu | minres | pcg | qmr | symmlq | mldivide

1-7050

throw (MException)

Purpose Issue exception and terminate function

Syntax throw(exception)

Description throw(exception) issues an exception based on the information
contained in exception. The exception terminates the currently
running function and returns control to its caller. The exception
argument is scalar object of the MException class that contains
information on the cause of the error and where it occurred. The throw
function passes exception back to the caller of the currently running
function. and eventually back to the Command Window when the
program terminates. The exception is made available to any calling
function by means of the try, catch function, and to the Command
Window by means of the MException.last function.

Unlike throwAsCaller and rethrow, the throw function also sets the
stack field of the exception to the location from which throw was called.

Tips There are four ways to throw an exception in MATLAB (see the list
below). Use the first of these when testing the outcome of some action
for failure and reporting the failure to MATLAB. Use one of the
remaining three techniques to throw an existing exception.

1 Test the result of some action taken by your program. If the result is
found to be incorrect or unexpected, compose an appropriate message
and message identifier, and pass these to MATLAB using the error
function.

2 Reissue the original exception by throwing the initial exception
unmodified. Use the MException rethrow method to do this.

3 Collect additional information on the cause of the error, store it in a
new or modified exception, and issue a new exception based on that
record. Use the MException addCause and throw methods to do this.

1-7051

throw (MException)

4 Make it appear that the error originated in the caller of the currently
running function. Use the MException throwAsCaller method to
do this.

Examples Example 1

This example tests the output of function evaluate_plots and throws
an exception if it is not acceptable:

[minval, maxval] = evaluate_plots(p24, p28, p41);
if minval < lower_bound || maxval > upper_bound

exception = MException('VerifyOutput:OutOfBounds', ...
'Results are outside the allowable limits');

throw(exception);
end

Example 2

This example attempts to open a file in a folder that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the file still cannot be found, the
program issues an exception with the first error appended to the second
using addCause:

function data = read_it(filename);
try

% Attempt to open and read from a file.
fid = fopen(filename, 'r');
data = fread(fid);

catch exception1
% If the error was caused by an invalid file ID, try
% reading from another location.
if strcmp(exception1.identifier, 'MATLAB:FileIO:InvalidFid')

msg = sprintf(...
'\nCannot open file %s. Try another location? ', ...
filename);

reply = input(msg, 's')
if reply(1) == 'y'

newFolder = input('Enter folder name: ', 's');

1-7052

throw (MException)

else
throw(exception1);

end
oldpath = addpath(newFolder);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch exception2
exception3 = addCause(exception2, exception1)
path(oldpath);
throw(exception3);

end
path(oldpath);

end
end
fclose(fid);

try
d = read_it('anytextfile.txt');

catch exception
end

exception
exception =
MException object with properties:

identifier: 'MATLAB:FileIO:InvalidFid'
message: 'Invalid file identifier. Use fopen

to generate a valid file identifier.'
stack: [1x1 struct]
cause: {[1x1 MException]}

Cannot open file anytextfile.txt. Try another location?y
Enter folder name: xxxxxxx
Warning: Name is nonexistent or not a directory: xxxxxxx.
> In path at 110

In addpath at 89

1-7053

throw (MException)

See Also throwAsCaller(MException) | last(MException) |
getReport(MException) | addCause(MException) |
rethrow(MException) | assert | error | MException | try, catch

1-7054

throwAsCaller (MException)

Purpose Throw exception as if from calling function

Syntax throwAsCaller(exception)

Description throwAsCaller(exception) throws an exception from the currently
running function based on the exception input, a scalar object of the
MException class. The MATLAB software exits the currently running
function and returns control to either the keyboard or an enclosing
catch block in a calling function. Unlike the throw function, MATLAB
omits the current stack frame from the stack field of the MException,
thus making the exception look as if it is being thrown by the caller
of the function.

In some cases, it is not relevant to show the person running your
program the true location that generated an exception, but is better to
point to the calling function where the problem really lies. You might
also find throwAsCaller useful when you want to simplify the error
display, or when you have code that you do not want made public.

Tips There are four ways to throw an exception in MATLAB (see the list
below). Use the first of these when testing the outcome of some action
for failure and reporting the failure to MATLAB. Use one of the
remaining three techniques to throw an existing exception.

1 Test the result of some action taken by your program. If the result is
found to be incorrect or unexpected, compose an appropriate message
and message identifier, and pass these to MATLAB using the error
function.

2 Reissue the original exception by throwing the initial exception
unmodified. Use the MException rethrow method to do this.

3 Collect additional information on the cause of the error, store it in a
new or modified exception, and issue a new exception based on that
record. Use the MException addCause and throw methods to do this.

1-7055

throwAsCaller (MException)

4 Make it appear that the error originated in the caller of the currently
running function. Use the MException throwAsCaller method to
do this.

Examples The function klein_bottle, in this example, generates a Klein Bottle
figure by revolving the figure-eight curve defined by XYKLEIN. It
defines a few variables and calls the function draw_klein, which
executes three functions in a try, catch block. If there is an error, the
catch block issues an exception using either throw or throwAsCaller:

function klein_bottle(pq)
ab = [0 2*pi];
rtr = [2 0.5 1];
box = [-3 3 -3 3 -2 2];
vue = [55 60];
draw_klein(ab, rtr, pq, box, vue)

function draw_klein(ab, rtr, pq, box, vue)
clf
try

tube('xyklein',ab, rtr, pq, box, vue);
shading interp
colormap(pink);

catch exception
throw(exception)

% throwAsCaller(exception)
end

Call the klein_bottle function, passing a vector, and the function
completes normally by drawing the figure.

klein_bottle([40 40])

Call the function again, this time passing a scalar value. Because the
catch block issues the exception using throw, MATLAB displays error
messages for line 16 of function draw_klein, and for line 6 of function
klein_bottle:

1-7056

throwAsCaller (MException)

klein_bottle(40)
Error using klein_bottle>draw_klein (line 16)
Attempted to access pq(2); index out of bounds because numel(pq)=1.

Error in klein_bottle (line 6)
draw_klein(ab, rtr, pq, box, vue)

Run the function again, this time changing the klein_bottle.m file so
that the catch block uses throwAsCaller instead of throw. This time,
MATLAB only displays the error at line 6 of the main program:

klein_bottle(40)
Error using klein_bottle (line 6)
Attempted to access pq(2); index out of bounds because numel(pq)=1.

See Also last(MException) | getReport(MException) |
addCause(MException) | rethrow(MException) | throw(MException)
| assert | error | MException | try, catch

1-7057

tic

Purpose Start stopwatch timer

Syntax tic
timerVal = tic

Description tic starts a stopwatch timer to measure performance. The function
records the internal time at execution of the tic command. Display the
elapsed time with the toc function.

timerVal = tic returns the value of the internal timer at the execution
of the tic command, so that you can record time for simultaneous
time spans.

Tips • Consecutive tic commands overwrite the internally recorded
starting time.

• The clear function does not reset the starting time recorded by a
tic command.

• The following actions result in unexpected output:

- Using tic and toc to time timeit

- Using tic and toc within a function timed by timeit

Output
Arguments

timerVal

Value of the internal timer at the execution of the tic command. This
value is used as an input argument for a subsequent call to toc. You
should not rely on the meaning of this value.

Examples Measure time to generate two random matrices and compute
element-by-element multiplication of their transposes.

tic
A = rand(12000, 4400);
B = rand(12000, 4400);
toc
C = A'.*B';

1-7058

tic

toc

Measure how the time required to solve a linear system varies with
the order of a matrix:

t = zeros(1,100);
for n = 1:100

A = rand(n,n);
b = rand(n,1);
tic;
x = A\b;
t(n) = toc;

end
plot(t)

Measure multiple time spans simultaneously using two pairs of tic/toc
calls. To do this, measure the minimum and average time to compute
a summation of Bessel functions:

REPS = 1000; minTime = Inf; nsum = 10;
tic; % TIC, pair 1

for i=1:REPS
tStart = tic; % TIC, pair 2
total = 0;
for j=1:nsum

total = total + besselj(j,REPS);
end

tElapsed = toc(tStart); % TOC, pair 2
minTime = min(tElapsed, minTime);

end
averageTime = toc/REPS; % TOC, pair 1

See Also clock | cputime | etime | profile | timeit | toc

1-7059

timeit

Purpose Measure time required to run function

Syntax t = timeit(f)
t = timeit(f,numOutputs)

Description t = timeit(f) measures the typical time (in seconds) required to run
the function specified by the function handle f.

t = timeit(f,numOutputs) calls f with the desired number of outputs,
numOutputs. By default, timeit calls the function f with one output (or
no outputs, if the function does not return any outputs).

Input
Arguments

f - function to be measured
function handle

Function to be measured, specified as a function handle. f is either a
handle to a function that takes no input, or a handle to an anonymous
function with an empty argument list.

numOutputs - Number of desired outputs from f
integer

Number of desired outputs from f, specified as an integer. If the
function specified by f has a variable number of outputs, numOutputs
specifies which syntax timeit uses to call the function. For example,
the svd function returns a single output, s, or three outputs, [U,S,V].
Set numOutputs to 1 to time the s = svd(X) syntax, or set it to 3 to
time the [U,S,V] = svd(X) syntax.

Algorithms timeit calls the specified function multiple times, and computes the
median of the measurements.

Examples Determine Time to Obtain Current Date

Use timeit to time a function call to date. This example uses a handle
to a function that accepts no input.

1-7060

timeit

f = @date;
t = timeit(f)

t =

1.3481e-04

Determine Time to Compute Matrix Summation

Time the combination of several mathematical matrix operations:
matrix transposition, element-by-element multiplication, and
summation of columns.

A = rand(12000, 400);
B = rand(400, 12000);
f = @() sum(A.' .* B, 1);
timeit(f)

ans =

0.0427

Compare Time to Run svd with Multiple Outputs

Determine how long it takes to run svd with one output argument,
s=svd(X).

X = [1 2; 3 4; 5 6; 7 8];
f = @() svd(X);
t1 = timeit(f)

t1 =

1.5427e-05

Compare the results to svd with three output arguments,
[U,S,V]=svd(X).

t2 = timeit(f,3)

1-7061

timeit

t2 =

2.6695e-05

Compare Time to Execute Custom Preallocation to Calling
zeros

Create a short function to allocate a matrix using nested loops.
Preallocating an array using a nested loop is inefficient, but is shown
here for illustrative purposes.

function mArr = preAllocFcn(x,y)
for m = 1:x

for n = 1:y
mArr(m,n) = 0;

end
end
end

Compare the time to allocate zeros to a matrix using nested loops and
using the zeros function.

x = 1000;
y = 500;
g = @() preAllocFcn(x,y);
h = @() zeros(x,y);
diffRunTime = timeit(g)-timeit(h)

diffRunTime =

0.2004

Tips • The following actions result in unexpected output:

- Using timeit between tic and toc

- Using timeit to time a function that includes calls to tic and toc

- Using timeit recursively

1-7062

timeit

See Also function_handle | tic | toc | cputime

Concepts • Anonymous Functions
• Analyzing Your Program’s Performance
MATLAB Performance Measurement White Paper on MATLAB Central
File Exchange

1-7063

http://www.mathworks.com/matlabcentral/fileexchange/18510-matlab-performance-measurement
http://www.mathworks.com/matlabcentral/fileexchange/18510-matlab-performance-measurement

toc

Purpose Read elapsed time from stopwatch

Syntax toc
elapsedTime = toc
toc(timerVal)
elapsedTime = toc(timerVal)

Description toc reads the elapsed time from the stopwatch timer started by the tic
function. The function reads the internal time at the execution of the
toc command, and displays the elapsed time since the most recent call
to the tic function that had no output, in seconds.

elapsedTime = toc returns the elapsed time in a variable.

toc(timerVal) displays the time elapsed since the tic command
corresponding to timerVal.

elapsedTime = toc(timerVal) returns the elapsed time since the tic
command corresponding to timerVal.

Tips • Consecutive calls to the toc function with no input return the
elapsed since the most recent tic. Therefore, you can take multiple
measurements from a single point in time.

Consecutive calls to the toc function with the same timerVal input
return the elapsed time since the tic function call that corresponds
to that input.

• The following actions result in unexpected output:

- Using tic and toc to time timeit

- Using tic and toc within a function timed by timeit

Input
Arguments

timerVal

Value of the internal timer saved from a previous call to the tic
command.

1-7064

toc

Output
Arguments

elapsedTime

Scalar double representing the time elapsed between tic and toc
commands, in seconds.

Examples Measure time to generate two random matrices and compute
element-by-element multiplication of their transposes.

tic
A = rand(12000, 4400);
B = rand(12000, 4400);
toc
C = A'.*B';
toc

Measure how the time required to solve a linear system varies with
the order of a matrix:

t = zeros(1,100);
for n = 1:100

A = rand(n,n);
b = rand(n,1);
tic;
x = A\b;
t(n) = toc;

end
plot(t)

Measure multiple time spans simultaneously using two pairs of tic/toc
calls. To do this, measure the minimum and average time to compute
a summation of Bessel functions:

REPS = 1000; minTime = Inf; nsum = 10;
tic; % TIC, pair 1

1-7065

toc

for i=1:REPS
tStart = tic; % TIC, pair 2
total = 0;
for j=1:nsum

total = total + besselj(j,REPS);
end

tElapsed = toc(tStart); % TOC, pair 2
minTime = min(tElapsed, minTime);

end
averageTime = toc/REPS; % TOC, pair 1

See Also clock | cputime | etime | profile | tic | timeit

1-7066

Tiff

Purpose MATLAB Gateway to LibTIFF library routines

Description The Tiff class represents a connection to a Tagged Image File Format
(TIFF) file and provides access to many of the capabilities of the
LibTIFF library. Use the methods of the Tiff object to call routines
in the LibTIFF library. While you can use the imread and imwrite
functions to read and write TIFF files, the Tiff class offers capabilities
that these functions don’t provide, such as reading subimages, writing
tiles and strips of image data, and modifying individual TIFF tags.

In most cases, the syntax of the Tiff method is similar to the syntax
of the corresponding LibTIFF library function. To get the most out of
the Tiff object, you must be familiar with the LibTIFF API, as well as
the TIFF specification and technical notes. View this documentation
at LibTIFF - TIFF Library and Utilities.

MATLAB supports LibTIFF version 4.0.0.

For copyright information, see the libtiffcopyright.txt file.

Construction obj = Tiff(filename,mode) creates a Tiff object associated with the
TIFF file filename. mode specifies the type of access to the file.

A TIFF file is made up of one or more image file directories (IFDs).
An IFD contains image data and associated metadata. IFDs can also
contain subIFDs which also contain image data and metadata. When
you open a TIFF file for reading, the Tiff object makes the first IFD in
the file the current IFD. Tiff methods operate on the current IFD.
You can use Tiff object methods to navigate among the IFDs and the
subIFDs in a TIFF file.

When you open a TIFF file for writing or appending, the Tiff object
automatically creates a IFD in the file for writing subsequent data.
This IFD has all the default values specified in TIFF Revision 6.0.

When creating a new TIFF file, before writing any image to the file,
you must create certain required fields (tags) in the file. These tags
include ImageWidth, ImageHeight, BitsPerSample, SamplesPerPixel,
Compression, PlanarConfiguration, and Photometric. If the image
data has a stripped layout, the IFD contains the RowsPerStrip tag. If

1-7067

http://www.remotesensing.org/libtiff/

Tiff

the image data has a tiled layout, the IFD contains the TileWidth and
TileHeight tags. Use the setTagmethod to define values for these tags.

Input Arguments

filename

Text string specifying name of file.

mode

One of the following text strings specifying the type of access to
the TIFF file.

Supported Values

Parameter Description

'r' Open file for reading (default)

'w' Open file for writing; discard existing contents

'w8' Open file for writing a BigTIFF file; discard
existing contents

'a' Open or create file for writing; append data to
end of file.

'r+' Open (do not create) file for reading and writing

Properties Compression

Specify scheme used to compress image data

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

1-7068

Tiff

Supported Values

None

CCITTRLE (Read-only)

CCITTFax3

CCITTFax4

LZW

JPEG

CCITTRLEW (Read-only)

PackBits

SGILog

SGILog24

Deflate

AdobeDeflate (Same as deflate)

Example: Set the Compression tag to the value JPEG. Note how
you use the property to specify the value.

tiffobj.setTag('Compression', Tiff.Compression.JPEG);

ExtraSamples

Describe extra components

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

This field is required if there are extra channels in addition to
the usual colormetric channels.

1-7069

Tiff

Supported Values

Value of ExtraSamples Description

Unspecified Unspecified data

AssociatedAlpha Associated alpha
(pre-multiplied)

UnassociatedAlpha Unassociated alpha data

Example: Set the ExtraSamples tag to the value
AssociatedAlpha. Note how you use the property to specify the
value.

tiffobj.setTag('ExtraSamples', Tiff.ExtraSamples.AssociatedAlpha);

See Also “Specify Tiff object properties and describe alpha
channel” on page 1-7081

Group3Options

Options for Group 3 Fax Compression

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

This property is also referred to as Fax3 and T4Options. This
value is a bit mask controlled by the first three bits.

Supported Values

Supported values include the following.

1-7070

Tiff

Encoding2D Bit 0 is 1. This specifies two-dimensional coding.
If more than one strip is specified, each strip
must begin with a one-dimensionally coded line.
That is, RowsPerStrip should be a multiple
of Parameter K, as documented in the CCITT
specification.

Uncompressed Bit 1 is 1. This specifies an uncompressed mode
when encoding.

FillBits Bit 2 is 1. Fill bits are added as necessary before
EOL codes such that EOL always ends on a byte
boundary. This ensures an EOL-sequence of
1 byte preceded by a zero nibble, for example,
xxxx-0000 0000-0001.

Example:

mask = bitor(Tiff.Group3Options.Encoding2D,Tiff.Group3Options.Unc
tiffobj.setTag('Group3Options',mask);

InkSet

Specify set of inks used in separated image

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

In this context, separated refers to photometric interpretation,
not the planar configuration.

1-7071

Tiff

Supported Values

CMYK Order of components: cyan, magenta, yellow,
black. Usually, a value of 0 represents 0% ink
coverage and a value of 255 represents 100%
ink coverage for that component, but consult
the TIFF specification for DotRange. When you
specify CMYK, do not set the InkNames tag.

MultiInk Any ordering other than CMYK. Consult the
TIFF specification for InkNames field for a
description of the inks used.

Example:

tiffobj.setTag('InkSet', Tiff.InkSet.CMYK);

JPEGColorMode

Specify control of YCbCr/RGB conversion

Use these values only when the photometric interpretation is
YCbCr.

This property should not be used for the purpose of reading YCbCr
imagery as RGB. In this case, use the RGBA interface provided by
the readRGBAImage, readRGBAStrip, and readRGBATile methods.

Supported Values

Raw (default) Keep input as separate Y, Cb, and Cr matrices.

RGB Convert RGB input to YCbCr.

Example:

tiffobj.setTag('JPEGColorMode',Tiff/JPEGColorMode.RGB);

See also “Create YCbCr/JPEG image from RGB data” on page
1-7081

1-7072

Tiff

Orientation

Specify visual orientation of the image data.

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

The first row represents the top of the image, and the first column
represents the left side. Support for this tag is for informational
purposes only, and it does not affect how MATLAB reads or writes
the image data.

Supported Values

TopLeft

TopRight

BottomRight

BottomLeft

LeftTop

RightTop

RightBottom

LeftBottom

Example:

tiffobj.setTag('Orientation', Tiff.Orientation.TopRight);

Photometric

Specify color space of image data

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

1-7073

Tiff

Supported Values

MinIsWhite

MinIsBlack

RGB

Palette

Mask

Separated (CMYK)

YCbCr

CIELab

ICCLab

ITULab

LogL

LogLUV

CFA

LinearRaw

Example:

tiffobj.setTag('Photometric', Tiff.Photometric.RGB);

PlanarConfiguration

Specifies how image data components are stored on disk

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

1-7074

Tiff

Supported Values

Chunky Store component values for each pixel
contiguously. For example, in the case of RGB
data, the first three pixels would be stored in
the file as RGBRGBRGB etc. Almost all TIFF
images have contiguous planar configurations.

Separate Store component values for each pixel
separately. For example, in the case of RGB
data, the red component would be stored
separately in the file from the green and blue
components.

Example:

tiffobj.setTag('PlanarConfiguration', Tiff.PlanarConfiguration.Ch

ResolutionUnit

Specify unit of measure used to interpret the XResolution and
YResolution tags.

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

Supported Values

None (default)

Inch

Centimeter

Example: Set ResolutionUnit tag to the value Inch. Then,
setting XResolution tag to 300 means pixels per inch.

tiffObj.setTag('ResolutionUnit', Tiff.ResolutionUnit.Inch);
tiffObj.setTag('XResolution', 300);

1-7075

Tiff

tiffObj.setTag('YResolution', 300);

SampleFormat

Specify how to interpret each pixel sample

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the
tag, using the setTag method. For more clarification, see the
examples.

Supported Values

UInt (default)

Int

IEEEFP

Void, ComplexInt, and ComplexIEEEFP are not supported.

Example:

tiffobj.setTag('SampleFormat', Tiff.SampleFormat.IEEEFP);

SGILogDataFmt

Specify control of client data for SGILog codec

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

These enumerated values should only be used when the
photometric interpretation value is LogL or LogLUV. The
BitsPerSample, SamplesPerPixel, and SampleFormat tags
should not be set if the image type is LogL or LogLuv. The choice
of SGILogDataFmt will set these tags automatically. The Float
and Bits8 settings imply a SamplesPerPixel value of 3 for
LogLUV images, but only 1 for LogL images.

1-7076

Tiff

Supported Values

Float Single precision samples

Bits8 uint8 samples (read only)

This tag can be set only once per instance of a LogL/LogLuv Tiff
image object instance.

Example:

tiffobj = Tiff('example.tif','r');
tiffobj.setDirectory(3); % image three is a LogLuv image
tiffobj.setTag('SGILogDataFmt', Tiff.SGILogDataFmt.Float);
imdata = tiffobj.read();

SubFileType

Specify type of image

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

SubFileType is a bitmask that indicates the type of the image.

Supported Values

Default Default value for single image file or first image.

ReducedImage The current image is a thumbnail or
reduced-resolution image that typically would
be found in a sub-IFD.

Page The image is a single image of a multi-image (or
multipage) file.

Mask The image is a transparency mask for another
image in the file. The photometric interpretation
value must be Photometric.Mask.

Example:

1-7077

Tiff

tiffobj.setTag('SubFileType', Tiff.SubFileType.Mask);

TagID

List of recognized TIFF tag names with their ID numbers

This property identifies all the supported TIFF tags with their
ID numbers. Use this property to specify a tag when using the
setTag method. For example, Tiff.TagID.ImageWidth returns
the ID of the ImageWidth tag. To get a list of the names of
supported tags, use the getTagNames method.

Example:

tiffobj.setTag(Tiff.TagID.ImageWidth, 300);

Thresholding

Specifies technique used to convert from gray to black and white
pixels.

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

Supported Values

BiLevel (default)

HalfTone

ErrorDiffuse

Example:

tiffobj.setTag('Thresholding', Tiff.Thresholding.HalfTone);

YCbCrPositioning

Specify relative positioning of chrominance samples

1-7078

Tiff

This property defines all the supported values for this tag. You
use this property to specify the value you want to assign to the tag,
using the setTag method. For more clarification, see the example.

This property identifies all supported values for the
YCbCrPositioning tag.

Supported Values

Centered Specify for compatibility with industry
standards such as PostScript Level 2

Cosited Specify for compatibility with most digital video
standards such as CCIR Recommendation
601-1.

Example:

tiffobj.setTag('YCbCrPositioning', Tiff.YCbCrPositioning.Centered

Methods close Close Tiff object

computeStrip Index number of strip containing
specified coordinate

computeTile Index number of tile containing
specified coordinates

currentDirectory Index of current IFD

getTag Value of specified tag

getTagNames List of recognized TIFF tags

getVersion LibTIFF library version

isTiled Determine if tiled image

lastDirectory Determine if current IFD is last
in file

nextDirectory Make next IFD current IFD

1-7079

Tiff

numberOfStrips Total number of strips in image

numberOfTiles Total number of tiles in image

read Read entire image

readEncodedStrip Read data from specified strip

readEncodedTile Read data from specified tile

readRGBAImage Read image using RGBA interface

readRGBAStrip Read strip data using RGBA
interface

readRGBATile Read tile data using RGBA
interface

rewriteDirectory Write modified metadata to
existing IFD

setDirectory Make specified IFD current IFD

setSubDirectory Make subIFD specified by byte
offset current IFD

setTag Set value of tag

write Write entire image

writeDirectory Create new IFD and make it
current IFD

writeEncodedStrip Write data to specified strip

writeEncodedTile Write data to specified tile

Examples Create New TIFF File Using Tiff object

Create a new file called myfile.tif. To run this example, your
directory must be writable.

t = Tiff('myfile.tif', 'w');

Close the Tiff object.

1-7080

Tiff

t.close();

Specify Tiff object properties and describe alpha channel

Create an array of data, data, that contains colormetric channels and
an alpha channel.

rgb = imread('example.tif');
numrows = size(rgb,1);
numcols = size(rgb,2);
alpha = 255*ones([numrows numcols], 'uint8');
data = cat(3,rgb,alpha);

Create a Tiff object, t, and set the object properties. Set the value of
the ExtraSamples tag because the data contains the alpha channel in
addition to the colormetric channels.

t = Tiff('myfile.tif','w');
t.setTag('Photometric',Tiff.Photometric.RGB);
t.setTag('Compression',Tiff.Compression.None);
t.setTag('BitsPerSample',8);
t.setTag('SamplesPerPixel',4);
t.setTag('SampleFormat',Tiff.SampleFormat.UInt);
t.setTag('ExtraSamples',Tiff.ExtraSamples.Unspecified);
t.setTag('ImageLength',numrows);
t.setTag('ImageWidth',numcols);
t.setTag('TileLength',32);
t.setTag('TileWidth',32);
t.setTag('PlanarConfiguration',Tiff.PlanarConfiguration.Chunky);

Write the data to the Tiff object.

t.write(data);
t.close();

Create YCbCr/JPEG image from RGB data

Get RGB data.

1-7081

Tiff

rgb = imread('example.tif');

Create a Tiff object, t, and set the object properties. Specify RGB input
data using the JPEGColorMode property.

t = Tiff('myfile.tif','w');
t.setTag('Photometric',Tiff.Photometric.YCbCr);
t.setTag('Compression',Tiff.Compression.JPEG);
t.setTag('YCbCrSubSampling',[2 2]);
t.setTag('BitsPerSample',8);
t.setTag('SamplesPerPixel',3);
t.setTag('SampleFormat',Tiff.SampleFormat.UInt);
t.setTag('ImageLength',size(rgb,1));
t.setTag('ImageWidth',size(rgb,2));
t.setTag('TileLength',32);
t.setTag('TileWidth',32);
t.setTag('PlanarConfiguration',Tiff.PlanarConfiguration.Chunky);
t.setTag('JPEGColorMode',Tiff.JPEGColorMode.RGB);
t.setTag('JPEGQuality',75);

Write the data to the Tiff object.

t.write(rgb);
t.close();

See Also imread | imwrite | imfinfo

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-7082

timer

Purpose Create object to schedule execution of MATLAB commands

Description Use a timer object to schedule the execution of MATLAB commands
one or multiple times. If you schedule the timer to execute multiple
times, you can define the time between executions and how to handle
queuing conflicts.

The timer object uses callback functions to execute commands.
Callback functions execute code during some event. For the timer
object, you can specify the callback function as a function handle or as
a string. If the callback function is a string, MATLAB evaluates it as
executable code. The timer object supports callback functions when
a timer starts (StartFcn), executes (TimerFcn), stops (StopFcn), or
encounters an error (ErrorFcn).

Note The timer object is subject to the limitations of your hardware,
operating system, and software. Avoid using timer objects for real-time
applications.

Construction t = timer creates an empty timer object to schedule execution of
MATLAB commands. An error occurs if the timer starts and TimerFcn
is not defined.

t = timer(Name,Value) creates a timer object with additional options
that you specify using one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-7083

timer

The argument name, Name, corresponds to a timer property name. In
the constructor, the property values are specified using Name,Value
pair arguments.

BusyMode

String that indicates action taken when a timer has to execute
TimerFcn before the completion of previous execution of the
TimerFcn. When Running='on', BusyMode is read only. This table
summarizes the busy modes.

BusyMode
Values

Behavior
if Queue
Empty

Behavior if
Queue Not
Empty

Notes

'drop' Adds task to
queue

Drops task Possible
skipping of
TimerFcn
calls'error' Adds task to

queue
Completes
task; throws
error specified
by ErrorFcn;
stops timer

Stops
timer after
completing
task in
execution
queue

'queue' Adds task to
queue

Waits for
queue to clear,
and then
enters task
in queue

Adjusts
Period
property to
manage tasks
in execution
queue

See “Handling Timer Queuing Conflicts” for more information.

Default: 'drop'

ErrorFcn

1-7084

timer

String, function handle, or cell array defining the function that
the timer executes when an error occurs. If there is an error, this
function executes, and then calls StopFcn.

ExecutionMode

String that defines how the timer object schedules timer events.
When Running='on', ExecutionMode is read only. This table
summarizes the execution modes.

Execution
Mode Time Period Start Point

'singleShot' In this mode, the timer callback function is only
executed once. Therefore, the Period property
has no effect. This is the default execution mode.

'fixedRate' Starts immediately after the timer callback
function is added to the MATLAB execution
queue

'fixedDelay' Starts when the timer function callback restarts
execution after a time lag due to delays in the
MATLAB execution queue

'fixedSpacing'Starts when the timer callback function finishes
executing.

• 'singleShot' is the single execution mode for the timer class,
and is the default value.

1-7085

timer

• 'fixedDelay', 'fixedRate', and 'fixedSpacing' are the
three supported multiexecution modes. These modes define the
starting point of the Period property. The Period property
specifies the amount of time between executions, which remains
the same. Only the point at which execution begins is different.

Default: 'singleShot'

Name

String representing the timer name.

Default: 'timer-i', where i is a number indicating the ith
timer object created this session. To reset i to 1, execute the
clear classes command.

1-7086

timer

ObjectVisibility

String with possible values of 'on' or 'off', that provides a way
for you to discourage end-user access to the timer objects your
application creates. The timerfind function does not return an
object whose ObjectVisibility property is set to 'off'. Objects
that are not visible are still valid. To retrieve a list of all the
timer objects in memory, including the invisible ones, use the
timerfindall function.

Default: 'on'

Period

Number greater than 0.001 that specifies the delay, in seconds,
between executions of TimerFcn. For the timer to use Period,
you must set ExecutionMode and TasksToExecute to schedule
multiple timer object callback events.

Default: 1.0

StartDelay

Number greater than or equal to 0 that specifies the delay, in
seconds, between the start of the timer and the first execution
of the function specified in TimerFcn. When Running = 'on',
StartDelay is read only.

Default: 0

StartFcn

String, function handle, or cell array defining the function that
executes when the timer starts.

StopFcn

String, function handle, or cell array defining the function that
executes when the timer stops. The timer stops when

1-7087

timer

• You call the timer stop method.

• The timer finishes executing TimerFcn. In other words,
the value of TasksExecuted reaches the limit set by
TasksToExecute.

• An error occurs. The ErrorFcn callback is called first, followed
by the StopFcn callback.

You can use StopFcn to define clean up actions, such as deleting
the timer object from memory.

Tag

String that represents a label for the object.

TasksToExecute

Number greater than 0, indicating the number of times the
timer object is to execute the TimerFcn callback. Use the
TasksToExecute property to set the number of executions. To
use TasksToExecute, you must set ExecutionMode to schedule
multiple timer callback events.

Default: Inf

TimerFcn

String, function handle, or cell array defining the timer callback
function. You must define this property before you can start the
timer.

UserData

Generic field for data that you want to add to the object.

Properties AveragePeriod

Average time in seconds between TimerFcn executions since
the timer started. Value is NaN until timer executes two timer
callbacks.

1-7088

timer

InstantPeriod

The time in seconds between the last two executions of TimerFcn.
Value is NaN until timer executes two timer callbacks.

Running

String defined as 'off' or 'on', indicating whether the timer is
currently executing callback functions.

TasksExecuted

The number of times the timer called TimerFcn since the timer
started.

Type

String that identifies the object type.

Methods
delete Remove timer object frommemory

get Query property values for timer
object

isvalid Determine timer object validity

set Set property values for timer
object

start Start timer object

startat Schedule timer to fire at specified
time

stop Stop timer object

timerfind Find timer object

timerfindall Find timer object, regardless of
visibility

wait Block command prompt until
timer stops running

1-7089

timer

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Display Message Using Timer

Display a message using an anonymous function as a callback function.
It is important to note that the first two arguments the callback function
passes are a handle to the timer object and an event structure. Even
if the function doesn’t use these arguments, the function definition
requires them.

Wait 3 seconds, and then display the message ‘3 seconds have elapsed’.

t = timer;
t.StartDelay = 3;
t.TimerFcn = @(myTimerObj, thisEvent)disp('3 seconds have elapsed');
start(t)

3 seconds have elapsed

Suppose the function does not require the timer or event object. Use the
tilde (~) operator to ignore the inputs.

t.TimerFcn = @(~,~) disp('3 seconds have elapsed');
start(t)

3 seconds have elapsed

Delete the timer object.

delete(t)

Execute Callback Function Multiple Times

Display the event and date/time output when the timer starts, fires,
and stops. The timer callback function will be executed 3 times with 2
seconds between calls. The first two arguments the callback function
passes are a handle to the timer object and an event structure. The
event structure contains two fields: Type is a string that identifies the

1-7090

timer

type of event that caused the callback, and Data is a structure that
contains a date time vector of when the event occurred.

t = timer;
t.StartFcn = @(~,thisEvent)disp([thisEvent.Type ' executed '...

datestr(thisEvent.Data.time,'dd-mmm-yyyy HH:MM:SS.FFF')]);
t.TimerFcn = @(~,thisEvent)disp([thisEvent.Type ' executed '...

datestr(thisEvent.Data.time,'dd-mmm-yyyy HH:MM:SS.FFF')]);
t.StopFcn = @(~,thisEvent)disp([thisEvent.Type ' executed '...

datestr(thisEvent.Data.time,'dd-mmm-yyyy HH:MM:SS.FFF')]);
t.Period = 2;
t.TasksToExecute = 3;
t.ExecutionMode = 'fixedRate';
start(t)

StartFcn executed 14-Mar-2013 09:08:50.865
TimerFcn executed 14-Mar-2013 09:08:50.865
TimerFcn executed 14-Mar-2013 09:08:52.865
TimerFcn executed 14-Mar-2013 09:08:54.866
StopFcn executed 14-Mar-2013 09:08:54.869

Delete the timer object.

delete(t)

Define Custom Callback Functions

Create a timer object to remind yourself to take 30-second ergonomic
breaks every 10 minutes over the course of 8 hours.

Create a function in a file named createErgoTimer.m that returns a
timer object. Have this file include three local functions to handle timer
start, execute, and stop tasks.

function t = createErgoTimer()
secondsBreak = 30;
secondsBreakInterval = 600;

1-7091

timer

secondsPerHour = 60^2;
secondsWorkTime = 8*secondsPerHour;

t = timer;
t.UserData = secondsBreak;
t.StartFcn = @ergoTimerStart;
t.TimerFcn = @takeBreak;
t.StopFcn = @ergoTimerCleanup;
t.Period = secondsBreakInterval+secondsBreak;
t.StartDelay = t.Period-secondsBreak;
t.TasksToExecute = ceil(secondsWorkTime/t.Period);
t.ExecutionMode = 'fixedSpacing';
end

Using StartDelay allows the timer to start without directing you to
take a break immediately. Set the execution mode to 'fixedSpacing'
so that 10 minutes and 30 seconds (t.Period) elapses after the
completion of a TimerFcn execution. This allows you to stretch for 30
seconds before the start of the next 10 minute interval.

In the createErgoTimer.m file, add a local function to handle the tasks
associated with starting the timer. By default, the timer object passes
itself and event data to the callback function. The function disregards
the event data.

function ergoTimerStart(mTimer,~)
secondsPerMinute = 60;
secondsPerHour = 60*secondsPerMinute;
str1 = 'Starting Ergonomic Break Timer. ';
str2 = sprintf('For the next %d hours you will be notified',...

round(mTimer.TasksToExecute*(mTimer.Period + ...
mTimer.UserData)/secondsPerHour));

str3 = sprintf(' to take a %d second break every %d minutes.',...
mTimer.UserData, (mTimer.Period - ...
mTimer.UserData)/secondsPerMinute);

disp([str1 str2 str3]);
end

1-7092

timer

Add a local function to handle the tasks associated with executing the
timer. The TimerFcn callback should tell you to take a 30 second break.

function takeBreak(mTimer,~)
disp('Take a 30 second break.')
end

Add a local function to handle the tasks associated with stopping the
timer.

function ergoTimerCleanup(mTimer,~)
disp('Stopping Ergonomic Break Timer.');
delete(mTimer)
end

Deleting the timer object removes it from memory.

From the command line, call the createErgoTimer function to create
and start a timer.

t = createErgoTimer;
start(t)

Starting Ergonomic Break Timer. For the next 8 hours you will be noti

Every 10 minutes, you will be reminded to take a 30 second break.

Take a break.

You can leave the timer running for 8 hours or stop it manually. Recall
that you included the task of deleting the timer from memory in the
StopFcn callback.

stop(t)

Stopping Ergonomic Break Timer.

1-7093

timer

Tips • To force the execution of the callback functions in the event queue,
include a call to the drawnow function in your code. The drawnow
function flushes the event queue.

See Also function_handle

Concepts • Timer Callback Functions
• “Handling Timer Queuing Conflicts”
• “Ignore Function Outputs”
• Property Attributes

1-7094

timer.delete

Purpose Remove timer object from memory

Syntax delete(t)

Description delete(t) removes the timer object, t, from memory. If t is an array of
timer objects, delete removes all the objects from memory.

When you delete a timer object, it becomes invalid and you cannot
reuse it. If multiple references to a timer object exist in the workspace,
deleting the timer object invalidates the remaining references. To
remove invalid timer objects references from the workspace, use the
clear command.

Tips • Use the isvalid method to determine if a timer object exists in
memory, but is not cleared from the workspace.

• Use the timerfind and timerfindall methods to return timer
objects currently existing in memory. This approach is useful if the
reference to the timer object is cleared from the workspace (using the
clear command), but not deleted from memory.

Input
Arguments

t

Object of class timer.

Examples Delete a Timer

Create and start a timer that generates a 10-by-10 array of random
numbers.

t = timer('TimerFcn','rand(10);');
start(t)

Delete the timer from memory.

delete(t)

Call the whos function to see if a reference still exists in the workspace.

1-7095

timer.delete

whos

Name Size Bytes Class Attributes

ans 10x10 800 double
t 1x1 104 timer

Try to restart the timer.

start(t)

Error using timer/start (line 27)
Invalid timer object. This object has been deleted and should be removed

The timer cannot be restarted.

Clear the timer object reference from the workspace.

clear t

Delete Multiple Timers Using timerfind

Use delete with the timerfind method to remove all visible timers
from memory. This is an alternative to deleting individual timers by
variable name.

Create and start three timers that compute the sine, cosine and tangent
of pi/4.

t1 = timer('TimerFcn','sin(pi/4);');
t2 = timer('TimerFcn','cos(pi/4);');
t3 = timer('TimerFcn','tan(pi/4);');

Delete the timers from memory using timerfind. This removes all
visible timer objects from memory.

delete(timerfind);

See Also timer | isvalid | timerfind | timerfindall

1-7096

timer.get

Purpose Query property values for timer object

Syntax get(t)
V = get(t)
V = get(t,propName)

Description get(t) queries property values for timer object, t, and displays all
property names and current values. t must be a scalar timer object.

V = get(t) queries property values for timer object, t and returns a
structure, V, where each field name is the name of a property of t and
each field contains the value of that property. If t is an M-by-1 vector of
timer objects, V is an M-by-1 array of structures.

V = get(t,propName) returns the value, V, of the timer object property
specified in propName. If propNames is a vector cell array of N property
names, and t is a vector of M timer objects, v is an M-by-N cell array
of property values.

Input
Arguments

t

Object of class timer.

propName

String enclosed in single quotation marks that specifies a timer
property.

Examples Display All Properties of Timer

t = timer;
get(t)

AveragePeriod: NaN
BusyMode: 'drop'
ErrorFcn: ''

ExecutionMode: 'singleShot'

1-7097

timer.get

InstantPeriod: NaN
Name: 'timer-1'

ObjectVisibility: 'on'
Period: 1

Running: 'off'
StartDelay: 0

StartFcn: ''
StopFcn: ''

Tag: ''
TasksExecuted: 0

TasksToExecute: Inf
TimerFcn: ''

Type: 'timer'
UserData: []

Delete the timer from memory.

delete(t)

Obtain Properties for Array of Timers

Create three timers.

t1 = timer;
t2 = timer;
t3 = timer;

Get properties of an array of timers.

V = get([t1,t2,t3])

V =

3x1 struct array with fields:

AveragePeriod
BusyMode
ErrorFcn
ExecutionMode

1-7098

timer.get

InstantPeriod
Name
ObjectVisibility
Period
Running
StartDelay
StartFcn
StopFcn
Tag
TasksExecuted
TasksToExecute
TimerFcn
Type
UserData

Delete the timers from memory.

delete([t1,t2,t3])

Obtain Single Property for Timer

Create a timer and determine if it is running.

t = timer;
get(t,'Running')

ans =

off

Delete the timer from memory.

delete(t)

Obtain Specified Properties for Array of Timers

Create three timers.

t1 = timer;
t2 = timer;

1-7099

timer.get

t3 = timer;

Obtain name, period, and running property values from the array of
timers.

V = get([t1,t2,t3],{'Name','Running','Period'})

V =

'timer-1' 'off' [1]
'timer-2' 'off' [1]
'timer-3' 'off' [1]

Alternatives You can also use dot notation can also be used to query timer object
properties. For example, t.Running returns the same value as
get(t,'Running').

See Also timer | set

1-7100

timer.isvalid

Purpose Determine timer object validity

Syntax validCheck = isvalid(t)

Description validCheck = isvalid(t) determines timer object validity and
returns a logical array, validCheck, that contains a 0 where the
elements of t are invalid timer objects and a 1 where the elements of
t are valid timer objects.

An invalid timer object is an object that is deleted from memory using
delete and cannot be reused. Use the clear command to remove an
invalid timer object from the workspace.

Tips • To return timer objects existing in memory, use the timerfind and
timerfindall methods. This practice is useful if the reference to the
timer object is cleared from the workspace (using the clear function),
but the object has not been deleted from memory.

Input
Arguments

t

Object or array of objects of class timer

Examples Check Timer Object Validity

Create a timer object. While this timer object is valid, it cannot start
because a TimerFcn is not defined.

t = timer;
out = isvalid(t)

out =

1

Delete the timer object, making it invalid.

delete(t)
out1 = isvalid(t)

1-7101

timer.isvalid

out1 =

0

See Also timer | delete | timerfind | timerfindall

1-7102

timer.set

Purpose Set property values for timer object

Syntax set(t)
propStruct = set(t)

set(t,Name)
propCell = set(t,Name)
set(t,Name,Value)
set(t,S)
set(t,PN,PV)

Description set(t) displays the property names and their possible values for all
configurable properties of timer object t.

propStruct = set(t) returns the values in a struct.

set(t,Name) displays the possible values for the specified property,
Name, of timer object, t.

propCell = set(t,Name) returns the values in a cell.

set(t,Name,Value) sets the properties specified by one or more
Name,Value pair arguments. t can be a single timer object or a vector
of timer objects, in which case set configures the property values for
all timer objects, t.

set(t,S) configures the properties of t, with the values specified in S,
where S is a structure whose field names are object property names.

set(t,PN,PV) configures the properties specified in the cell array of
strings, PN, to the corresponding values in the cell array PV, for the
timer object t.

1-7103

timer.set

Input
Arguments

t

Object of class timer.

S

Structure whose field names are timer property names.

PN,PV

Cell array of strings, PN, and corresponding cell array of values,
PV. The cell array of PN must be a 1-by-N or N-by-1 array. If t is
an array of timer objects, PV can be an M-by-N cell array, where
M is equal to the length of t and N is equal to the length of PN.
In this case, each timer object is updated with a different set of
values for the list of property names contained in PN.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’BusyMode’

String that indicates action taken when a timer has to execute
TimerFcn before the completion of previous execution of the
TimerFcn. When Running='on', BusyMode is read only. This table
summarizes the busy modes.

1-7104

timer.set

BusyMode
Values

Behavior
if Queue
Empty

Behavior if
Queue Not
Empty

Notes

'drop' Adds task to
queue

Drops task Possible
skipping of
TimerFcn
calls'error' Adds task to

queue
Completes
task; throws
error specified
by ErrorFcn;
stops timer

Stops
timer after
completing
task in
execution
queue

'queue' Adds task to
queue

Waits for
queue to clear,
and then
enters task
in queue

Adjusts
Period
property to
manage tasks
in execution
queue

See “Handling Timer Queuing Conflicts” for more information.

Default: 'drop'

’ErrorFcn’

String, function handle, or cell array defining the function that
the timer executes when an error occurs. If there is an error, this
function executes, and then calls StopFcn.

’ExecutionMode’

String that defines how the timer object schedules timer events.
When Running='on', ExecutionMode is read only. This table
summarizes the execution modes.

1-7105

timer.set

Execution
Mode Time Period Start Point

'singleShot' In this mode, the timer callback function is only
executed once. Therefore, the Period property
has no effect. This is the default execution mode.

'fixedRate' Starts immediately after the timer callback
function is added to the MATLAB execution
queue

'fixedDelay' Starts when the timer function callback restarts
execution after a time lag due to delays in the
MATLAB execution queue

'fixedSpacing'Starts when the timer callback function finishes
executing.

• 'singleShot' is the single execution mode for the timer class,
and is the default value.

• 'fixedDelay', 'fixedRate', and 'fixedSpacing' are the
three supported multiexecution modes. These modes define the
starting point of the Period property. The Period property
specifies the amount of time between executions, which remains
the same. Only the point at which execution begins is different.

1-7106

timer.set

Default: 'singleShot'

’Name’

String representing the timer name.

Default: 'timer-i', where i is a number indicating the ith
timer object created this session. To reset i to 1, execute the
clear classes command.

’ObjectVisibility’

String with possible values of 'on' or 'off', that provides a way
for you to discourage end-user access to the timer objects your
application creates. The timerfind function does not return an
object whose ObjectVisibility property is set to 'off'. Objects
that are not visible are still valid. To retrieve a list of all the

1-7107

timer.set

timer objects in memory, including the invisible ones, use the
timerfindall function.

Default: 'on'

’Period’

Number greater than 0.001 that specifies the delay, in seconds,
between executions of TimerFcn. For the timer to use Period,
you must set ExecutionMode and TasksToExecute to schedule
multiple timer object callback events.

Default: 1.0

’StartDelay’

Number greater than or equal to 0 that specifies the delay, in
seconds, between the start of the timer and the first execution
of the function specified in TimerFcn. When Running = 'on',
StartDelay is read only.

Default: 0

’StartFcn’

String, function handle, or cell array defining the function that
executes when the timer starts.

’StopFcn’

String, function handle, or cell array defining the function that
executes when the timer stops. The timer stops when

• You call the timer stop method.

• The timer finishes executing TimerFcn. In other words,
the value of TasksExecuted reaches the limit set by
TasksToExecute.

1-7108

timer.set

• An error occurs. The ErrorFcn callback is called first, followed
by the StopFcn callback.

You can use StopFcn to define clean up actions, such as deleting
the timer object from memory.

’Tag’

String that represents a label for the object.

’TasksToExecute’

Number greater than 0, indicating the number of times the
timer object is to execute the TimerFcn callback. Use the
TasksToExecute property to set the number of executions. To
use TasksToExecute, you must set ExecutionMode to schedule
multiple timer callback events.

Default: Inf

’TimerFcn’

String, function handle, or cell array defining the timer callback
function. You must define this property before you can start the
timer.

’UserData’

Generic field for data that you want to add to the object.

Output
Arguments

propStruct

Configurable properties of t, returned as a structure. The field
names of propStruct are the property names of t, and the
associated values of propStruct are cell arrays of the possible
property values. If the property in t does not have a finite set of
possible values, the property value in propStruct is an empty
cell array.

propCell

1-7109

timer.set

Possible values of a given property name, returned as cell array of
strings. If the property does not have a finite set of possible string
values, set returns an empty cell array.

Examples Display Configurable Timer Object Properties

Instantiate a timer object and call the set method.

t = timer;
set(t)

BusyMode: [{drop} | queue | error]
ErrorFcn: string -or- function handle -or- cell array
ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate
Name
ObjectVisibility: [{on} | off]
Period
StartDelay
StartFcn: string -or- function handle -or- cell array
StopFcn: string -or- function handle -or- cell array
Tag
TasksToExecute
TimerFcn: string -or- function handle -or- cell array
UserData

Some of the timer properties, such as Running, are not displayed
because they are read only.

Use the set method to output a structure.

out = set(t)

out =

BusyMode: {3x1 cell}
ErrorFcn: {}

ExecutionMode: {4x1 cell}
Name: {}

1-7110

timer.set

ObjectVisibility: {2x1 cell}
Period: {}

StartDelay: {}
StartFcn: {}
StopFcn: {}

Tag: {}
TasksToExecute: {}

TimerFcn: {}
UserData: {}

Delete the timer object from memory.

delete(t)

Display Possible Property Values

Instantiate a timer object and display possible values for the BusyMode
property.

t = timer;
set(t,'BusyMode')

[{drop} | queue | error]

The output shows the three possible values for BusyMode. The default
value, drop, is indicated by curly braces.

Display the possible values for ErrorFcn.

set(t,'ErrorFcn')

string -or- function handle -or- cell array

A description of the possible values is displayed since ErrorFcn does
not have a set list of possible values.

Output the possible property values.

out1 = set(t,'BusyMode')
out2 = set(t,'ErrorFcn')

1-7111

timer.set

out1 =

'drop'
'queue'
'error'

out2 =

{}

While set(t,'ErrorFcn') displays a description of the possible values,
out2 = set(t,'ErrorFcn') returns an empty cell.

Delete the timer from memory.

delete(t)

Set Timer Object Property

Instantiate a timer object and make the object invisible. Display the
objects’s visibility and delete the object.

t = timer;
set(t,'ObjectVisibility','off');
get(t,'ObjectVisibility')
delete(t)

ans =

off

Set Timer Object Properties Using Structure

Construct a structure to modify several timer object properties.

s.BusyMode = 'queue';
s.ExecutionMode = 'fixedDelay';
s.ObjectVisibility = 'off'

1-7112

timer.set

s =

BusyMode: 'queue'
ExecutionMode: 'fixedDelay'

ObjectVisibility: 'off'

Create a timer, display the properties in s, modify the timer, display
the new values of the properties, and delete the timer.

t = timer;
get(t,{'BusyMode','ExecutionMode','ObjectVisibility'})
set(t,s);
get(t,{'BusyMode','ExecutionMode','ObjectVisibility'})
delete(t)

ans =

'drop' 'singleShot' 'on'

ans =

'queue' 'fixedDelay' 'off'

Set Timer Objects Using Cell Arrays

Create a cell array of properties to modify, and a cell array of the values
of the corresponding properties. Instantiate a timer, and display the
initial values of the properties in the property name cell array, nameArr.

nameArr = {'BusyMode','ExecutionMode','Period'};
valArr = {'queue','fixedDelay',3};
t = timer;
get(t,nameArr)

ans =

'drop' 'singleShot' [1]

1-7113

timer.set

Modify the timer object and display the new property values. Delete
the timer.

set(t,nameArr,valArr)
get(t,nameArr)
delete(t)

ans =

'queue' 'fixedDelay' [3]

Instantiate an array of three timers. Create a new property name
cell array to modify the BusyMode, ExecutionMode, and UserData
properties. Display the initial values of the properties for each timer.

tArr = [timer timer timer];
nameArr = {'BusyMode','ExecutionMode','UserData'};
get(tArr,nameArr)

ans =

'drop' 'singleShot' []
'drop' 'singleShot' []
'drop' 'singleShot' []

Assign each property a different value in each timer. Create a cell
array containing the new values. Each row indicates the values for the
properties in the corresponding timer.

valArr = {'queue','fixedDelay',3;...
'error','fixedSpacing',42;...
'drop','fixedRate','hello'};

Modify the timer object properties and display the updated values.

set(tArr,nameArr,valArr)
get(tArr,nameArr)

ans =

1-7114

timer.set

'queue' 'fixedDelay' [3]
'error' 'fixedSpacing' [42]
'drop' 'fixedRate' 'hello'

Delete the timers from memory.

delete(tArr)

Alternatives You can also use dot notation to set timer object properties. For
example, t.ObjectVisibility = 'off' sets the property to the same
value as set(t,'ObjectVisibility','off').

See Also timer | get

1-7115

timer.start

Purpose Start timer object

Syntax start(t)

Description start(t) starts the timer object, t. If t is an array of timer objects,
start starts all the timers.

The startmethod sets the Running property of the timer object to 'on',
executes the StartFcn callback, and initiates TimerFcn callback .

Input
Arguments

t

Object of class timer.

Examples Start Timer

Create and start a timer that displays the message ’timer started.’ as
the StartFcn callback and generates a random number as the TimerFcn
callback. Delete the timer.

t = timer('StartFcn',@(~,~)disp('timer started.'),'TimerFcn',@(~,~)disp(r
start(t)
delete(t)

timer started.
0.9706

Your output from rand will vary.

Start Several Timers

Create and start three timers that displays a message for the StartFcn
callbacks and compute the sine, cosine, and tangent of pi/4 as the
TimerFcn callbacks. Delete the timers.

t1 = timer('StartFcn',@(~,~)disp('t1 started.'),'TimerFcn',@(~,~)sin(pi/4
t2 = timer('StartFcn',@(~,~)disp('t2 started.'),'TimerFcn',@(~,~)cos(pi/4
t3 = timer('StartFcn',@(~,~)disp('t3 started.'),'TimerFcn',@(~,~)tan(pi/4
start([t1 t2 t3]);

1-7116

timer.start

delete([t1 t2 t3]);

t1 started.
t2 started.
t3 started.

See Also timer | delete | stop | startat

1-7117

timer.startat

Purpose Schedule timer to fire at specified time

Syntax startat(t,firingTime)
startat(t,Y,M,D)
startat(t,Y,M,D,H,MI,S)

Description startat(t,firingTime) schedules timer, t, to fire at specified time,
firingTime. A timer fires by executing the callback function, timerFcn.
firingTime must be within 25 days of the current time.

• If t is an array of timer objects and firingTime is a scalar, startat
sets all the timers to fire at the specified time.

• If t is an array of timer objects and firingTime is an array of the
same size as t, startat sets each timer to fire at the corresponding
time.

startat(t,Y,M,D) starts the timer and schedules execution of
TimerFcn at the year (Y), month (M), and day (D) specified.

startat(t,Y,M,D,H,MI,S) also specifies the hour (H), minute (MI), and
second (S) specified.

Algorithms • The startat method specifies when the timer object executes the
TimerFcn callback, not when the timer starts running. The timer
starts running with the call to the startat method.

• Based on the specified time, startat computes and sets the required
StartDelay property of the timer object, t. Additionally, it sets
the Running property of the timer object to 'on', and executes the
StartFcn callback.

• startat modifies the timer object’s startDelay property. As
such, startat overrides specified values of the timer’s startDelay
property.

1-7118

timer.startat

Input
Arguments

t

Object of class timer.

firingTime

Time at which the timer object is to fire, specified as a serial
date number, date string, or a date vector. firingTime can be a
single date or an array of dates with the same number of rows as
timer objects in t.

• A serial date number indicates the number of days that have
elapsed since 1-Jan-0000 (starting at 1). See datenum for
additional information about serial date numbers.

• To specify date strings, use the following date formats defined
by the datestr function: 0, 1, 2, 6, 13, 14, 15, 16, or 23. These
numeric identifiers correspond to formats defined by the
formatOut property of the datestr function. Date strings with
two-character years are interpreted to be within the 100 years
centered on the current year.

• Date vectors are specified as an m-by-6 or m-by-3 matrix
containing m full or partial date vectors, respectively. A full
date vector has six elements indicating year, month, day, hour,
minute, and second, in that order. A partial date vector has
three elements indicating year, month, and day, in that order.

Y,M,D

Time at which the timer object is to fire, specified as numbers
indicating the year (Y), month (M), and day (D). Month values less
than 1 are set to 1; other arguments can wrap and have negative
values.

Y,M,D,H,MI,S

Time at which the timer object is to fire, specified as numbers
indicating the year (Y), month (M), day (D), hour (H), minute (MI),
and second (S) specified. Month values less than 1 are set to 1;
other arguments can wrap and have negative values.

1-7119

timer.startat

Examples Start Timer in 2 Seconds

Create a timer that displays messages at start time and firing time.

t = timer('TimerFcn', @(~,~)disp('Fired.'), ...
'StartFcn', @(~,~)disp('Started.'));

Set the timer to fire 2 seconds from the present time using a serial date.
A serial date is specified in days.

two = 2/(60^2*24); % two seconds in serial time
fTime = now + two
startat(t,fTime);

fTime =

7.3527e+05

Started.
Fired.

Wait for the timer to fire, and then delete the timer.

delete(t)

Start Timer Using Year, Month, Day

Create a timer that displays messages at start time and firing time.

t = timer('TimerFcn', @(~,~)disp('Fired.'), ...
'StartFcn', @(~,~)disp('Started.'));

Schedule the timer to start 2 days from present at 00:00:00

[Y, M, D, H, MI, S] = datevec(now+2);
startat(t,Y,M,D)

Started.

Manually stop and delete the timer.

1-7120

timer.startat

stop(t)
delete(t)

See Also timer | delete | start | stop

Concepts • “Carryover in Date Vectors and Strings”

1-7121

timer.stop

Purpose Stop timer object

Syntax stop(t)

Description stop(t) stops the timer object, t. If t is an array of timer objects, the
stop method stops each timer.

The stop method sets the Running property of the timer object to 'off'
and executes the StopFcn callback .

Tips • Use the stop method to stop a timer manually. The timer
automatically stops when the TimerFcn callback executes the number
of times specified by the ExecutionMode and TasksToExecute
properties or when an error occurs while executing a TimerFcn
callback.

Input
Arguments

t

Object of class timer.

Examples Stop Timer

Create a timer object that generates 100 random numbers and executes
one million times. Define a StopFcn callback that displays the message
’Timer has stopped.’ Start the timer and verify the timer is running

t = timer('TimerFcn','rand(100,1);',...
'ExecutionMode','fixedSpacing','TasksToExecute',1e6,...
'StopFcn','disp(''Timer has stopped.'')');

start(t)
t.Running

ans =

on

Manually stop the timer and verify it is no longer running. Delete the
timer.

1-7122

timer.stop

stop(t)
t.Running
delete(t)

Timer has stopped.

ans =

off

See Also timer | delete | start | startat

1-7123

timer.timerfind

Purpose Find timer object

Syntax out = timerfind
out = timerfind(Name,Value)
out = timerfind(t,Name,Value)
out = timerfind(S)

Description out = timerfind finds the “visible timer objects” on page 1-7130and
returns an array, out.

out = timerfind(Name,Value) finds “visible timer objects” on page
1-7130 with property values matching those passed as Name,Value
pair arguments and returns an array, out.

out = timerfind(t,Name,Value) matches Name,Value pair
arguments to the timer objects listed in t, where t can be an array of
timer objects, and returns an array, out.

out = timerfind(S) matches property values defined in the structure,
S, and returns an array, out. The field names of S are timer object
property names and the field values are the corresponding property
values.

Tips • timerfind only finds “visible timer objects” on page 1-7130.
Visible timer objects are those that are in memory and have the
ObjectVisibility property set to 'on'. To find objects that are
hidden, but still valid, use timerfindall.

Input
Arguments

t

Array of objects of class timer

S

Structure with field names corresponding to timer object property
names. Field values are the corresponding property values.

1-7124

timer.timerfind

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’BusyMode’

String that indicates action taken when a timer has to execute
TimerFcn before the completion of previous execution of the
TimerFcn. When Running='on', BusyMode is read only. This table
summarizes the busy modes.

BusyMode
Values

Behavior
if Queue
Empty

Behavior if
Queue Not
Empty

Notes

'drop' Adds task to
queue

Drops task Possible
skipping of
TimerFcn
calls'error' Adds task to

queue
Completes
task; throws
error specified
by ErrorFcn;
stops timer

Stops
timer after
completing
task in
execution
queue

'queue' Adds task to
queue

Waits for
queue to clear,
and then
enters task
in queue

Adjusts
Period
property to
manage tasks
in execution
queue

See “Handling Timer Queuing Conflicts” for more information.

Default: 'drop'

1-7125

timer.timerfind

’ErrorFcn’

String, function handle, or cell array defining the function that
the timer executes when an error occurs. If there is an error, this
function executes, and then calls StopFcn.

’ExecutionMode’

String that defines how the timer object schedules timer events.
When Running='on', ExecutionMode is read only. This table
summarizes the execution modes.

Execution
Mode Time Period Start Point

'singleShot' In this mode, the timer callback function is only
executed once. Therefore, the Period property
has no effect. This is the default execution mode.

'fixedRate' Starts immediately after the timer callback
function is added to the MATLAB execution
queue

'fixedDelay' Starts when the timer function callback restarts
execution after a time lag due to delays in the
MATLAB execution queue

'fixedSpacing'Starts when the timer callback function finishes
executing.

• 'singleShot' is the single execution mode for the timer class,
and is the default value.

1-7126

timer.timerfind

• 'fixedDelay', 'fixedRate', and 'fixedSpacing' are the
three supported multiexecution modes. These modes define the
starting point of the Period property. The Period property
specifies the amount of time between executions, which remains
the same. Only the point at which execution begins is different.

Default: 'singleShot'

1-7127

timer.timerfind

’Name’

String representing the timer name.

Default: 'timer-i', where i is a number indicating the ith
timer object created this session. To reset i to 1, execute the
clear classes command.

’ObjectVisibility’

String with possible values of 'on' or 'off', that provides a way
for you to discourage end-user access to the timer objects your
application creates. The timerfind function does not return an
object whose ObjectVisibility property is set to 'off'. Objects
that are not visible are still valid. To retrieve a list of all the
timer objects in memory, including the invisible ones, use the
timerfindall function.

Default: 'on'

’Period’

Number greater than 0.001 that specifies the delay, in seconds,
between executions of TimerFcn. For the timer to use Period,
you must set ExecutionMode and TasksToExecute to schedule
multiple timer object callback events.

Default: 1.0

’StartDelay’

Number greater than or equal to 0 that specifies the delay, in
seconds, between the start of the timer and the first execution
of the function specified in TimerFcn. When Running = 'on',
StartDelay is read only.

Default: 0

’StartFcn’

1-7128

timer.timerfind

String, function handle, or cell array defining the function that
executes when the timer starts.

’StopFcn’

String, function handle, or cell array defining the function that
executes when the timer stops. The timer stops when

• You call the timer stop method.

• The timer finishes executing TimerFcn. In other words,
the value of TasksExecuted reaches the limit set by
TasksToExecute.

• An error occurs. The ErrorFcn callback is called first, followed
by the StopFcn callback.

You can use StopFcn to define clean up actions, such as deleting
the timer object from memory.

’Tag’

String that represents a label for the object.

’TasksToExecute’

Number greater than 0, indicating the number of times the
timer object is to execute the TimerFcn callback. Use the
TasksToExecute property to set the number of executions. To
use TasksToExecute, you must set ExecutionMode to schedule
multiple timer callback events.

Default: Inf

’TimerFcn’

String, function handle, or cell array defining the timer callback
function. You must define this property before you can start the
timer.

’UserData’

1-7129

timer.timerfind

Generic field for data that you want to add to the object.

Read Only Name-Value Pair Arguments

AveragePeriod

Average time in seconds between TimerFcn executions since
the timer started. Value is NaN until timer executes two timer
callbacks.

InstantPeriod

The time in seconds between the last two executions of TimerFcn.
Value is NaN until timer executes two timer callbacks.

Running

String defined as 'off' or 'on', indicating whether the timer is
currently executing callback functions.

TasksExecuted

The number of times the timer called TimerFcn since the timer
started.

Type

String that identifies the object type.

Definitions visible timer objects

Visible timer objects are timer objects that are in memory and have the
ObjectVisibility property set to ’on’.

Examples Find Timer Objects Existing in Memory

Create several individual timers and an array of timers.

t1 = timer('Tag', 'broadcastProgress','UserData','Monday');
t2 = timer('Tag', 'displayProgress','UserData','Monday');
timerArr = [timer('Tag', 'broadcastProgress','UserData','Tuesday');

timer('Tag', 'displayProgress','UserData','Tuesday');
timer('Tag', 'displayProgress','UserData','Wednesday');];

1-7130

timer.timerfind

Find all the timers in memory.

out1 = timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-2
3 singleShot 1 '' timer-3
4 singleShot 1 '' timer-4
5 singleShot 1 '' timer-5

Find only those timers in memory that have the string value,
'displayProgress', as the Tag property.

out2 = timerfind('Tag','displayProgress')

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-2
2 singleShot 1 '' timer-4
3 singleShot 1 '' timer-5

Limit the search for timers with the string value, 'displayProgress',
as the Tag property to timer objects in timerArr.

out3 = timerfind(timerArr,'Tag','displayProgress')

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-4
2 singleShot 1 '' timer-5

Define a struct containing the Tag and UserData properties of interest.

1-7131

timer.timerfind

searchStruct = struct('Tag','broadcastProgress','UserData','Monday')

searchStruct =

Tag: 'broadcastProgress'
UserData: 'Monday'

Use the struct as the search criteria to find timer objects in memory.

out4 = timerfind(searchStruct)

Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: ''
ErrorFcn: ''
StartFcn: ''
StopFcn: ''

Delete the timer objects.

delete(t1); delete(t2); delete(timerArr)

Delete Timer by Name

Simulate having existing timers in memory by creating an array of
timers. Create a new timer with a custom name. List all visible timers.

existingTimers = [timer timer timer];

myTimerName = 'myTimer';
anotherTimer = timer('Name',myTimerName);

1-7132

timer.timerfind

timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-2
3 singleShot 1 '' timer-3
4 singleShot 1 '' myTimer

Delete the specified timer and list all visible timers.

delete(timerfind('Name',myTimerName));
timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-2
3 singleShot 1 '' timer-3

Delete all visible timers from memory.

delete(timerfind)

Find Valid Timer Objects Cleared from Workspace

Use timerfind to find ‘lost’ timer object references. References are lost
when you clear the timer object from the workspace, but do not delete
it from memory.

Create two timer objects. Since the callback function does not require
the timer or event object, you can use the tilde (~) operator to ignore
the inputs in the function handle.

t1 = timer('TimerFcn',@(~,~)disp('Timer 1 Fired!'));
t2 = timer('TimerFcn',@(~,~)disp('Timer 2 Fired!'));
whos

1-7133

timer.timerfind

Name Size Bytes Class Attributes

t1 1x1 104 timer
t2 1x1 104 timer

Clear one of the timer objects from the workspace. To actually remove
the timer from memory, you need to both clear it and delete it.

clear t1
whos

Name Size Bytes Class Attributes

t2 1x1 104 timer

Try to delete the timer, t1.

delete(t1)

Undefined function or variable 't1'.

The timer, t1, can not be removed from memory using delete because
its reference has been cleared.

Find valid timer objects in memory.

out = timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 1x1 function_handle arraytimer-1
2 singleShot 1 1x1 function_handle arraytimer-2

Since two timers were found, determine which timer does not exist in
the workspace.

out ~= t2

1-7134

timer.timerfind

ans =

1 0

The first timer object in out is not equal to t2. This was previously t1.
It is reassigned to t1. Since it is still valid, the timer can be started.

t1 = out(1);
start(t1);

Timer 1 Fired!

Delete timer objects. timerfind provides a way of accessing timer
objects in memory. It does not copy the objects; therefore you do not
need to delete out from memory. To verify, use timerfind.

delete(t1); delete(t2);
timerfind

ans =

[]

Delete All Timer Objects in Memory

Create four timer objects.

t1 = timer('TimerFcn',@(~,~)disp('Timer 1 Fired!'));
t2 = timer('TimerFcn',@(~,~)disp('Timer 2 Fired!'));
t3 = timer('TimerFcn',@(~,~)disp('Timer 3 Fired!'));
t4 = timer('TimerFcn',@(~,~)disp('Timer 4 Fired!'));

Clear two timers from the workspace.

clear t2 t3

Pass timerfind to delete to remove all timer objects from memory,
whether or not they exist in the workspace.

1-7135

timer.timerfind

delete(timerfind)
timerfind

ans =

[]

See Also timer | delete | timerfindall

1-7136

timer.timerfindall

Purpose Find timer object, regardless of visibility

Syntax out = timerfindall
out = timerfindall(Name,Value)
out = timerfindall(t,Name,Value)
out = timerfindall(S)

Description out = timerfindall finds timer objects existing in memory, regardless
of visibility and returns an array, out. Use the ObjectVisibility
property to set the object’s visibility.

out = timerfindall(Name,Value) finds timer objects existing in
memory, regardless of visibility whose property values match those
passed as Name,Value pair arguments and returns an array, out.

out = timerfindall(t,Name,Value) matches Name,Value pair
arguments to the timer objects listed in t, where t can be an array of
timer objects, and returns an array, out.

out = timerfindall(S) matches property values defined in the
structure, S and returns an array, out. The field names of S are timer
object property names and the field values are the corresponding
property values.

Tips • timerfindall finds timer objects in memory, regardless of the value
of the ObjectVisibility property. To limit the search to objects
with ObjectVisibility set to 'on', use timerfind. .

Input
Arguments

t

Array of objects of class timer.

S

Structure with field names corresponding to timer object property
names. Field values are the corresponding property values.

1-7137

timer.timerfindall

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’BusyMode’

String that indicates action taken when a timer has to execute
TimerFcn before the completion of previous execution of the
TimerFcn. When Running='on', BusyMode is read only. This table
summarizes the busy modes.

BusyMode
Values

Behavior
if Queue
Empty

Behavior if
Queue Not
Empty

Notes

'drop' Adds task to
queue

Drops task Possible
skipping of
TimerFcn
calls'error' Adds task to

queue
Completes
task; throws
error specified
by ErrorFcn;
stops timer

Stops
timer after
completing
task in
execution
queue

'queue' Adds task to
queue

Waits for
queue to clear,
and then
enters task
in queue

Adjusts
Period
property to
manage tasks
in execution
queue

See “Handling Timer Queuing Conflicts” for more information.

Default: 'drop'

1-7138

timer.timerfindall

’ErrorFcn’

String, function handle, or cell array defining the function that
the timer executes when an error occurs. If there is an error, this
function executes, and then calls StopFcn.

’ExecutionMode’

String that defines how the timer object schedules timer events.
When Running='on', ExecutionMode is read only. This table
summarizes the execution modes.

Execution
Mode Time Period Start Point

'singleShot' In this mode, the timer callback function is only
executed once. Therefore, the Period property
has no effect. This is the default execution mode.

'fixedRate' Starts immediately after the timer callback
function is added to the MATLAB execution
queue

'fixedDelay' Starts when the timer function callback restarts
execution after a time lag due to delays in the
MATLAB execution queue

'fixedSpacing'Starts when the timer callback function finishes
executing.

• 'singleShot' is the single execution mode for the timer class,
and is the default value.

1-7139

timer.timerfindall

• 'fixedDelay', 'fixedRate', and 'fixedSpacing' are the
three supported multiexecution modes. These modes define the
starting point of the Period property. The Period property
specifies the amount of time between executions, which remains
the same. Only the point at which execution begins is different.

Default: 'singleShot'

1-7140

timer.timerfindall

’Name’

String representing the timer name.

Default: 'timer-i', where i is a number indicating the ith
timer object created this session. To reset i to 1, execute the
clear classes command.

’ObjectVisibility’

String with possible values of 'on' or 'off', that provides a way
for you to discourage end-user access to the timer objects your
application creates. The timerfind function does not return an
object whose ObjectVisibility property is set to 'off'. Objects
that are not visible are still valid. To retrieve a list of all the
timer objects in memory, including the invisible ones, use the
timerfindall function.

Default: 'on'

’Period’

Number greater than 0.001 that specifies the delay, in seconds,
between executions of TimerFcn. For the timer to use Period,
you must set ExecutionMode and TasksToExecute to schedule
multiple timer object callback events.

Default: 1.0

’StartDelay’

Number greater than or equal to 0 that specifies the delay, in
seconds, between the start of the timer and the first execution
of the function specified in TimerFcn. When Running = 'on',
StartDelay is read only.

Default: 0

’StartFcn’

1-7141

timer.timerfindall

String, function handle, or cell array defining the function that
executes when the timer starts.

’StopFcn’

String, function handle, or cell array defining the function that
executes when the timer stops. The timer stops when

• You call the timer stop method.

• The timer finishes executing TimerFcn. In other words,
the value of TasksExecuted reaches the limit set by
TasksToExecute.

• An error occurs. The ErrorFcn callback is called first, followed
by the StopFcn callback.

You can use StopFcn to define clean up actions, such as deleting
the timer object from memory.

’Tag’

String that represents a label for the object.

’TasksToExecute’

Number greater than 0, indicating the number of times the
timer object is to execute the TimerFcn callback. Use the
TasksToExecute property to set the number of executions. To
use TasksToExecute, you must set ExecutionMode to schedule
multiple timer callback events.

Default: Inf

’TimerFcn’

String, function handle, or cell array defining the timer callback
function. You must define this property before you can start the
timer.

’UserData’

1-7142

timer.timerfindall

Generic field for data that you want to add to the object.

Read Only Name-Value Pair Arguments

AveragePeriod

Average time in seconds between TimerFcn executions since
the timer started. Value is NaN until timer executes two timer
callbacks.

InstantPeriod

The time in seconds between the last two executions of TimerFcn.
Value is NaN until timer executes two timer callbacks.

Running

String defined as 'off' or 'on', indicating whether the timer is
currently executing callback functions.

TasksExecuted

The number of times the timer called TimerFcn since the timer
started.

Type

String that identifies the object type.

Examples Find and Delete All Timers From Memory

Create four timer objects.

t1 = timer('TimerFcn',@(~,~)disp('Timer 1 Fired!'));
t2 = timer('TimerFcn',@(~,~)disp('Timer 2 Fired!'));
t3 = timer('TimerFcn',@(~,~)disp('Timer 3 Fired!'));
t4 = timer('TimerFcn',@(~,~)disp('Timer 4 Fired!'));

Set timers t2 and t4 to be invisible.

t2.ObjectVisibility = 'off';
t4.ObjectVisibility = 'off';

1-7143

timer.timerfindall

Clear timers t1 and t2 from the workspace.

clear t1 t2
whos

Name Size Bytes Class Attributes

t3 1x1 104 timer
t4 1x1 104 timer

Find all visible timers in memory.

timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 1x1 function_handle arraytimer-1
2 singleShot 1 1x1 function_handle arraytimer-3

timerfind finds only timers t1 and t2, since they are visible. Timer
t2 is still valid and in memory even though it was cleared from the
workspace

Find all timers in memory.

timerfindall

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 1x1 function_handle arraytimer-1
2 singleShot 1 1x1 function_handle arraytimer-2
3 singleShot 1 1x1 function_handle arraytimer-3
4 singleShot 1 1x1 function_handle arraytimer-4

timerfindall finds all four valid timers in memory even though t2 and
t4 are invisible and t1 and t2 were cleared from the workspace.

1-7144

timer.timerfindall

Delete all timers from memory.

delete(timerfindall)

Find Timer Objects Existing in Memory

Create several individual timers and an array of timers.

t1 = timer('Tag', 'broadcastProgress','UserData','Monday');
t2 = timer('Tag', 'displayProgress','UserData','Monday');
timerArr = [timer('Tag', 'broadcastProgress','UserData','Tuesday');

timer('Tag', 'displayProgress','UserData','Tuesday');
timer('Tag', 'displayProgress','UserData','Wednesday');];

Make timer t1 and timerArr(2) invisible.

t1.ObjectVisibility = 'off';
timerArr(2).ObjectVisibility = 'off';

Find all the timers in memory using timerfind.

out1 = timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-2
2 singleShot 1 '' timer-3
3 singleShot 1 '' timer-5

timerfind does not find the hidden timers.

Find all the timers in memory using timerfindall.

out2 = timerfindall

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1

1-7145

timer.timerfindall

2 singleShot 1 '' timer-2
3 singleShot 1 '' timer-3
4 singleShot 1 '' timer-4
5 singleShot 1 '' timer-5

timerfindall finds all timers, even the invisible ones.

Find only those timers in memory that have the string value,
'displayProgress', as the Tag property.

out3 = timerfindall('Tag','displayProgress')

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-2
2 singleShot 1 '' timer-4
3 singleShot 1 '' timer-5

Limit the search for timers that have the string value,
'displayProgress', as the Tag property to timer objects in timerArr.

out4 = timerfindall(timerArr,'Tag','displayProgress')

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-4
2 singleShot 1 '' timer-5

Define a struct containing the Tag and UserData properties of interest.

searchStruct = struct('Tag','broadcastProgress','UserData','Monday')

searchStruct =

Tag: 'broadcastProgress'
UserData: 'Monday'

1-7146

timer.timerfindall

Use the struct as the search criteria to find timer objects in memory.

out5 = timerfindall(searchStruct)

Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: ''
ErrorFcn: ''
StartFcn: ''
StopFcn: ''

Delete the timer objects.

delete(timerfindall)

Find Invisible Timers

Create four timer objects.

t1 = timer('TimerFcn',@(~,~)disp('Timer 1 Fired!'));
t2 = timer('TimerFcn',@(~,~)disp('Timer 2 Fired!'));
t3 = timer('TimerFcn',@(~,~)disp('Timer 3 Fired!'));
t4 = timer('TimerFcn',@(~,~)disp('Timer 4 Fired!'));

Set timers t2 and t4 to be invisible, and clear timers t1 and t2 from
the workspace.

t2.ObjectVisibility = 'off';
t4.ObjectVisibility = 'off';
clear t1 t2;
whos

1-7147

timer.timerfindall

Name Size Bytes Class Attributes

t3 1x1 104 timer
t4 1x1 104 timer

Find all valid invisible timers.

out = timerfindall('ObjectVisibility','off')

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 1x1 function_handle arraytimer-2
2 singleShot 1 1x1 function_handle arraytimer-4

Both valid invisible timers were found by timerfindall, regardless of
whether they were in the workspace.

See Also timer | delete | timerfind

1-7148

timer.wait

Purpose Block command prompt until timer stops running

Syntax wait(t)

Description wait(t) blocks the command prompt until timer, t, stops running. If t
is an array of timer objects, wait blocks the MATLAB command line
until each timer in t has stopped running.

To block the command line, the timer object must first start via start
or startat before calling the wait method. If the timer is not running,
wait returns immediately.

Input
Arguments

t

Array of timer objects

Examples Block Command Prompt While Timer Runs

Create a timer that waits 10 seconds, and then displays a message.
Start the timer and wait for it to finish.

T = timer('TimerFcn',@(~,~)disp('Fired.'),'StartDelay',10);
start(T);

Fired.

Notice that after the timer starts, the MATLAB prompt returns.

Start the timer and use the wait method to block anyone from entering
commands at the MATLAB command line. You must start the timer
before calling the wait command.

start(T);
wait(T);

Fired.

Notice that after the timer starts, the MATLAB prompt disappears
until the timer stops.

1-7149

timer.wait

Delete the timer.

delete(T)

See Also timer | start

1-7150

times, .*

Purpose Element-wise multiplication

Syntax C = A.*B
C = times(A,B)

Description C = A.*B multiplies arrays A and B element by element and returns
the result in C.

C = times(A,B) is an alternate way to execute A.*B, but is rarely used.
It enables operator overloading for classes.

Input
Arguments

A - Left array
scalar | vector | matrix | multidimensional array

Left array, specified as a scalar, vector, matrix, or multidimensional
array. Inputs A and B must be the same size unless one is a scalar. A
scalar value expands into an array of the same size as the other input.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

B - Right array
scalar | vector | matrix | multidimensional array

Right array, specified as a scalar, vector, matrix, or multidimensional
array. Inputs A and B must be the same size unless one is a scalar. A
scalar value expands into an array of the same size as the other input.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Multiply Two Vectors

Create two vectors, A and B, and multiply them element by element.

1-7151

times, .*

A = [1 0 3];
B = [2 3 7];
C = A.*B

C =

2 0 21

Multiply Two Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by
element.

A = [1 0 3; 5 3 8; 2 4 6];
B = [2 3 7; 9 1 5; 8 8 3];
C = A.*B

C =

2 0 21
45 3 40
16 32 18

See Also mtimes

1-7152

title

Purpose Add title to current axes

Syntax title(str)
title(str,Name,Value)

title(axes_handle, ___)

h = title(___)

Description title(str) adds the title consisting of a string, str, at the top and
in the center of the current axes. Each axes graphics object has one
predefined title.

title(str,Name,Value) additionally specifies the title properties
using one or more Name,Value pair arguments.

title(axes_handle, ___) adds the title to the axes specified by
axes_handle. This syntax allows you to specify the axes to which
to add a title. axes_handle can precede any of the input argument
combinations in the previous syntaxes.

h = title(___) returns the handle to the text object used as the title.
The handle is useful when making future modifications to the title.

Input
Arguments

str - Text to display as title
string

Text to display as a title, specified as a string. You also can specify the
name of a function that returns a string.

Example: 'myTitle'

Example: date

1-7153

title

Note The words default, factory, and remove are reserved words
that will not appear in a title when quoted as a normal string. To
display any of these words individually, type '\reserved_word' instead
of 'reserved_word'.

axes_handle - Axes handle
handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Color','red','FontSize',14 adds a title with red,
14-point font.

In addition to the following, you can specify other text object properties
using Name,Value pair arguments. See Text Properties.

’Color’ - Text color
[0 0 0] (black) (default) | 3-element RGB vector | string

Text color, specified as the comma-separated pair consisting of 'Color'
and a 3-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

The following table lists the predefined colors and their RGB
equivalents.

1-7154

title

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

Example: 'Color',[0 1 0]

Example: 'Color','green'

’FontAngle’ - Character slant
'normal' (default) | 'italic' | 'oblique'

Character slant, specified as the comma-separated pair consisting
of 'FontAngle' and one of these values: 'normal', 'italic', or
'oblique'. MATLAB uses the FontAngle property to select a font
from those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

Example: 'FontAngle','italic'

’FontName’ - Font name
'Helvetica' (default) | string | 'FixedWidth'

Font name, specified as the comma-separated pair consisting of
'FontName' and a string. The string specifies the name of the font to
use for the text object. To display and print properly, this must be a
font that your system supports.

To use a fixed-width font that looks good in any locale, use the
case-sensitive string 'FixedWidth'. This eliminates the need to

1-7155

title

hard-code the name of a fixed-width font, which might not display text
properly on systems that do not use ASCII character encoding.

Example: 'FontName','Courier'

’FontSize’ - Font size
10 points (default) | scalar

Font size, specified as the comma-separated pair consisting of
'FontSize' and a scalar in units determined by the FontUnits
property. The default value for FontUnits is points.

Example: 'FontSize',12.5

’FontUnits’ - Font size units
'points' (default) | 'normalized' | 'inches' | 'centimeters' |
'pixels'

Font size units, specified as the comma-separated pair consisting of
'FontUnits' and one of the following strings:

• 'points'

• 'normalized'

• 'inches'

• 'centimeters'

• 'pixels'

When the value of FontUnits is 'normalized', MATLAB interprets
the value of FontSize as a fraction of the height of the parent axes.
When you resize the axes, MATLAB modifies the screen FontSize
accordingly. points, inches, centimeters, and pixels are absolute
units. 1 point = 1/72 inch

1-7156

title

Note When setting both the FontSize and the FontUnits, you must set
the FontUnits property first so that MATLAB can correctly interpret
the specified FontSize. For example, to set the font size to 0.3 inches,
call 'FontUnits','inches','FontSize',0.3 in the argument list.

’FontWeight’ - Weight of text characters
'normal' (default) | 'bold' | 'light' | 'demi'

Weight of text characters, specified as the comma-separated pair
consisting of 'FontWeight' and one of the following strings:

• 'normal'

• 'bold'

• 'light'

• 'demi'

MATLAB uses the FontWeight property to select a font from those
available on your particular system. Generally, setting this property to
'bold' or 'demi' causes MATLAB to use a bold font.

Example: 'FontWeight','bold'

’Interpreter’ - Character interpretation
'tex' (default) | 'latex' | 'none'

Character interpretation, specified as the comma-separated pair
consisting of 'Interpreter' and one of the following strings.

1-7157

title

Interpreter value Result

'tex' Supports a subset of plain TeX
markup language. See the String
property for a list of supported
TeX instructions.

'latex' Supports a basic subset of the
LaTeX markup language.

'none' Interprets all characters as literal
characters.

Example: 'Interpreter','latex'

Output
Arguments

h - Handle to text object
scalar

Handle to the text object, returned as a scalar. This is a unique
identifier, which you can use to query and modify the properties of the
title.

Examples Add Title to Current Figure

Create a figure and display a title in the current axes.

figure
plot((1:10).^2)
title('My Title')

1-7158

title

You also can call title with a function that returns a string. For
example, the date function returns a string containing today’s date.

title(date)

1-7159

title

MATLAB® sets the output of date as the axes title.

Include Variable’s Value in Title

Include the value of variable c in a title.

figure
plot((1:10).^2)
f = 70;
c = (f-32)/1.8;
title(['Temperature is ',num2str(c),' C'])

1-7160

title

Create Multicolored Title Using TeX Markup

In a TeX string, use the color modifier \color to change the color of
characters following it from the previous color.

figure
plot((1:10).^2)
title(['\fontsize{16}black {\color{magenta}magenta '...
'\color[rgb]{0 .5 .5}teal \color{red}red} black again'])

1-7161

title

Create Colored Title Using Name,Value Pair Argument

Use the Name,Value pair 'Color','m' to set the color of the title to
magenta.

figure
plot((1:10).^2)
title('Case number # 3','Color', 'm')

1-7162

title

Include Greek Symbols in Title

Use a TeX string to include Greek symbols in a title.

t = (0:0.01:0.2);
y = exp(-25*t);
figure
plot(t,y)
title('y = \ite^{\lambda t}','Color','b')

1-7163

title

The 'Interpreter' property must be 'tex' (the default).

Include Superscript or Subscript Character in Title

figure
plot((1:10).^2)
title('\alpha^2 and X_1')

1-7164

title

The superscript character, "^", and the subscript character, "_", modify
the character or substring defined in braces immediately following.

Create Multiline Title

Create a multiline title using a multiline cell array.

figure
plot((1:10).^2)
title({'First line';'Second line'})

1-7165

title

Display Text As Typed

Set the Interpreter property as 'none' so that the string X_1 is
displayed in the figure as typed, without making 1 a subscript of X.

figure
plot((1:10).^2)
title('X_1','Interpreter','none')

1-7166

title

MATLAB® displays the string X_1 in the title of the figure.

Add Title to Specific Axes

Create two subplots and return the handles to the axes objects, s(1)
and s(2).

figure
s(1) = subplot(2,1,1);
plot((1:10).^2)

1-7167

title

s(2) = subplot(2,1,2);
plot((1:10).^3)

Add a title to each subplot by referring to its axes handle, s(1), or s(2).

title(s(1),'Top Plot')
title(s(2),'Bottom Plot')

1-7168

title

Add Title and Return Text Handle

Add a title to a plot and return the handle to the text object used as
the title.

figure
plot((1:10).^2)
h = title('My Title');

1-7169

title

MATLAB® returns the handle in the output variable, h.

Set the color of the title to red, using the handle.

set(h,'Color','red')

1-7170

title

See Also gtext | int2str | num2str | text | xlabel | ylabel | zlabel | gca

Concepts • Adding Titles to Graphs
Text Properties

1-7171

todatenum

Purpose Convert CDF epoch object to MATLAB datenum

Syntax n = todatenum(obj)

Description n = todatenum(obj) converts the CDF epoch object ep_obj into a
MATLAB serial date number. Note that a CDF epoch is the number of
milliseconds since 01-Jan-0000 whereas a MATLAB datenum is the
number of days since 00-Jan-0000.

Examples Construct a CDF epoch object from a date string, and then convert the
object back into a MATLAB date string:

dstr = datestr(today)
dstr =

08-Oct-2003

obj = cdfepoch(dstr)
obj =

cdfepoch object:
08-Oct-2003 00:00:00

dstr2 = datestr(todatenum(obj))
dstr2 =

08-Oct-2003

See Also cdfepoch | cdfinfo | cdfread | datenum

1-7172

toeplitz

Purpose Toeplitz matrix

Syntax T = toeplitz(c,r)
T = toeplitz(r)

Description A Toeplitz matrix is defined by one row and one column. A symmetric
Toeplitz matrix is defined by just one row. toeplitz generates Toeplitz
matrices given just the row or row and column description.

T = toeplitz(c,r) returns a nonsymmetric Toeplitz matrix T having
c as its first column and r as its first row. If the first elements of c and
r are different, a message is printed and the column element is used.

For a real vector r, T = toeplitz(r) returns the symmetric Toeplitz
matrix formed from vector r, where r defines the first row of the matrix.
For a complex vector r with a real first element, T = toeplitz(r)
returns the Hermitian Toeplitz matrix formed from r, where r defines
the first row of the matrix and r' defines the first column. When the
first element of r is not real, the resulting matrix is Hermitian off the

main diagonal, i.e., T (Tij ji= conj) for i j≠ .

Examples A Toeplitz matrix with diagonal disagreement is

c = [1 2 3 4 5];
r = [1.5 2.5 3.5 4.5 5.5];
toeplitz(c,r)
Column wins diagonal conflict:
ans =

1.000 2.500 3.500 4.500 5.500
2.000 1.000 2.500 3.500 4.500
3.000 2.000 1.000 2.500 3.500
4.000 3.000 2.000 1.000 2.500
5.000 4.000 3.000 2.000 1.000

See Also hankel | kron

1-7173

toolboxdir

Purpose Root folder for specified toolbox

Syntax toolboxdir('tbxFolderName')
s = toolboxdir('tbxFolderName')
s = toolboxdir tbxFolderName

Description toolboxdir('tbxFolderName') returns a string that is the absolute
path to the specified toolbox, tbxFolderName, where tbxFolderName is
the folder name for the toolbox.

s = toolboxdir('tbxFolderName') returns the absolute path to the
specified toolbox to the output argument, s.

s = toolboxdir tbxFolderName is the command form of the syntax.

Tips toolboxdir is particularly useful for MATLAB Compiler software. The
base folder of all toolboxes installed with MATLAB software is:

matlabroot/toolbox/tbxFolderName

However, in deployed mode, the base folders of the toolboxes are
different. toolboxdir returns the correct root folder, whether running
from MATLAB or from an application deployed with the MATLAB
Compiler software.

To determine the folder name for a given toolbox, run the following
code, substituting the name of a product function for toolbxfcn:

n = 'toolbxfcn';
pat = '(?<=^.+[\\/]toolbox[\\/])[^\\/]+';
regexp(which(n), pat, 'match', 'once')

For example, to determine the product name for Control System Toolbox
set n to the name of a function unique to Control System Toolbox, such
as dss:

n = 'dss'
pat = '(?<=^.+[\\/]toolbox[\\/])[^\\/]+'
regexp(which(n), pat, 'match', 'once')

1-7174

toolboxdir

control

Examples Obtain the path for the Control System Toolbox software:

s = toolboxdir('control')

MATLAB returns:

s = C:\Program Files\MATLAB\R2012a\toolbox\control

See Also fullfile | matlabroot | path

1-7175

trace

Purpose Sum of diagonal elements

Syntax b = trace(A)

Description b = trace(A) is the sum of the diagonal elements of the matrix A.

Algorithms t = sum(diag(A));

See Also det | eig

1-7176

transpose

Purpose Transpose

Syntax b = a.'
b = transpose(a)

Description b = a.' computes the non-conjugate transpose of matrix a and returns
the result in b.

b = transpose(a) is called for the syntax a.' when a is an object.

See Also ctranspose | permute

1-7177

trapz

Purpose Trapezoidal numerical integration

Syntax Q = trapz(Y)
Q = trapz(X,Y)
Q = trapz(___ ,dim)

Description Q = trapz(Y) returns the approximate integral of Y via the trapezoidal
method with unit spacing. The size of Y determines the dimension to
integrate along:

• If Y is a vector, then trapz(Y) is the approximate integral of Y.

• If Y is a matrix, then trapz(Y) integrates over each column and
returns a row vector of integration values.

• If Y is a multidimensional array, then trapz(Y) integrates over
the first dimension whose size does not equal 1. The size of this
dimension becomes 1, and the sizes of other dimensions remain
unchanged.

Q = trapz(X,Y) integrates Y with spacing increment X. By default,
trapz operates on the first dimension of Y whose size does not equal 1.
length(X) must be equal to the size of this dimension . If X is a scalar,
then trapz(X,Y) is equivalent to X*trapz(Y).

Q = trapz(___ ,dim) integrates along the dimension dim using any of
the previous syntaxes. You must specify Y, and optionally can specify
X. The length of X, if specified, must be the same as size(Y,dim). For
example, if Y is a matrix, then trapz(X,Y,2) integrates each row of Y.

Input
Arguments

Y - Numeric data
vector | matrix | multidimensional array

Numeric data, specified as a vector, matrix, or multidimensional array.
By default, trapz integrates along the first dimension of Y whose size
does not equal 1.

1-7178

trapz

Data Types
single | double
Complex Number Support: Yes

X - Point spacing
1 (default) | uniform scalar spacing | vector of nonuniform spacings

Point spacing, specified as 1 (default), a uniform scalar spacing, or a
vector of nonuniform spacings. If X is a vector, then length(X) must be
the same as the size of the integration dimension in Y.

Data Types
single | double
Complex Number Support: Yes

dim - Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no
value is specified, the default is the first array dimension whose size
does not equal 1.

Consider a two-dimensional input array, Y:

• trapz(Y,1) works on successive elements in the columns of Y and
returns a row vector of integration values.

• trapz(Y,2) works on successive elements in the rows of Y and
returns a column vector of integration values.

1-7179

trapz

If dim is greater than ndims(Y), then trapz returns an array of zeros of
the same size as Y.

Examples Integrate Vector of Data with Unit Spacing

Create a numeric vector of data.

Y = [1 4 9 16 25];

Y contains five evenly spaced points from the function f x x 2 .

Use trapz to integrate the data points with unit spacing.

Q = trapz(Y)

Q =

42

This approximate integration yields a value of 42. In this case, the

exact answer is a little less, 41
1
3

. The trapz function overestimates
the value of the integral because f(x) is concave up.

Integrate Vector of Data with Nonunit Spacing

Create a domain vector, X.

X = 0:pi/100:pi;

Calculate the sine of X and store the result in Y.

1-7180

trapz

Y = sin(X);

Integrate the function values contained in Y using trapz.

Q = trapz(X,Y)

Q =

1.9998

When the spacing between points is constant, but not equal to 1, you
can multiply by the spacing value, in this case pi/100*trapz(Y). The
answer is the same if you pass the value directly to the function with
trapz(X,Y).

Integrate Matrix with Nonuniform Spacing

Create a vector of time values, X. Also create a matrix, Y, containing
values evaluated at the irregular intervals in X.

X = [1 2.5 7 10]';
Y = [5.2 4.8 4.9 5.1; 7.7 7.0 6.5 6.8; 9.6 10.5 10.5 9.0; 13.2 14.5 13

Y =

5.2000 4.8000 4.9000 5.1000
7.7000 7.0000 6.5000 6.8000
9.6000 10.5000 10.5000 9.0000

13.2000 14.5000 13.8000 15.2000

The columns of Y represent velocity data, taken at the times contained
in X, for several different trials.

Use trapz to integrate each column independently and find the total
distance traveled in each trial. Since the function values are not
evaluated at constant intervals, specify X to indicate the spacing
between the data points.

Q = trapz(X,Y)

1-7181

trapz

Q =

82.8000 85.7250 83.2500 80.7750

The result is a row vector of integration values, one for each column in
Y. By default, trapz integrates along the first dimension of Y whose
size does not equal 1.

Alternatively, you can integrate the rows of a matrix by specifying dim
= 2.

In this case, use trapz on Y', which contains the velocity data in the
rows.

dim = 2;
Q1 = trapz(X,Y',dim)

Q1 =

82.8000
85.7250
83.2500
80.7750

The result is a column vector of integration values, one for each row
in Y'.

Multiple Numerical Integrations

Created a grid of domain values.

x = -3:.1:3;
y = -5:.1:5;
[X,Y] = meshgrid(x,y);

Calculate the function f x y x y, 2 2 over the grid.

F = X.^2 + Y.^2;

1-7182

trapz

trapz integrates numeric data rather than functional expressions, so
in general the expression does not need to be known to use trapz on a
matrix of data.

Use trapz to approximate the double integral

I x y dx dy

 2 2

3

3

5

5

.

To perform double or triple integrations on an array of numeric data,
nest function calls to trapz.

I = trapz(y,trapz(x,F,2))

I =

680.2000

trapz performs the integration over x first, producing a column vector.
Then, the integration over y reduces the column vector to a single
scalar. trapz slightly overestimates the exact answer of 680 because
f(x,y) is concave up.

Definitions Trapezoidal Method

trapz performs numerical integration via the trapezoidal method. This
method approximates the integration over an interval by breaking the
area down into trapezoids with more easily computable areas.

For an integration with N+1 evenly spaced points, the approximation is

f x dx
b a

N
f x f x

b a
N

f x f x

a

b

n n
n

N

2

2
2

1
1

1 2 ... 22 1f x f xN N ,

1-7183

trapz

where the spacing between each point is equal to the scalar value
b a

N

.

If the spacing between the points is not constant, then the formula
generalizes to

f x dx x x f x f xn n
n

N

a

b

n n

1
2 1

1
1 ,

where x xn n 1 is the spacing between each consecutive pair of
points.

Tips • trapz reduces the size of the dimension it operates on to 1, and
returns only the final integration value. cumtrapz also returns the
intermediate integration values, preserving the size of the dimension
it operates on.

See Also cumsum | cumtrapz | integral | integral2 | integral3

Concepts • “Integration of Numeric Data”

1-7184

treelayout

Purpose Lay out tree or forest

Syntax [x,y] = treelayout(parent,post)
[x,y,h,s] = treelayout(parent,post)

Description [x,y] = treelayout(parent,post) lays out a tree or a forest. parent
is the vector of parent pointers, with 0 for a root. post is an optional
postorder permutation on the tree nodes. If you omit post, treelayout
computes it. x and y are vectors of coordinates in the unit square at
which to lay out the nodes of the tree to make a nice picture.

[x,y,h,s] = treelayout(parent,post) also returns the height of the
tree h and the number of vertices s in the top-level separator.

See Also etree | treeplot | etreeplot | symbfact

1-7185

treeplot

Purpose Plot picture of tree

Syntax treeplot(p)
treeplot(p,nodeSpec,edgeSpec)

Description treeplot(p) plots a picture of a tree given a vector of parent pointers,
with p(i) = 0 for a root.

treeplot(p,nodeSpec,edgeSpec) allows optional parameters
nodeSpec and edgeSpec to set the node or edge color, marker, and
linestyle. Use '' to omit one or both.

Examples To plot a tree with 12 nodes, call treeplot with a 12-element input
vector. The index of each element in the vector is shown adjacent to each
node in the figure below. (These indices are shown only for the point of
illustrating the example; they are not part of the treeplot output.)

To generate this plot, set the value of each element in the nodes vector
to the index of its parent, (setting the parent of the root node to zero).

1-7186

treeplot

The node marked 1 in the figure is represented by nodes(1) in the
input vector, and because this is the root node which has a parent of
zero, you set its value to zero:

nodes(1) = 0; % Root node

nodes(2) and nodes(8) are children of nodes(1), so set these elements
of the input vector to 1:

nodes(2) = 1; nodes(8) = 1;

nodes(5:7) are children of nodes(4), so set these elements to 4:

nodes(5) = 4; nodes(6) = 4; nodes(7) = 4;

Continue in this manner until each element of the vector identifies its
parent. For the plot shown above, the nodes vector now looks like this:

nodes = [0 1 2 2 4 4 4 1 8 8 10 10];

Now call treeplot to generate the plot:

treeplot(nodes)

See Also etree | etreeplot | treelayout

1-7187

tril

Purpose Lower triangular part of matrix

Syntax L = tril(X)
L = tril(X,k)

Description L = tril(X) returns the lower triangular part of X.

L = tril(X,k) returns the elements on and below the kth diagonal of
X. k = 0 is the main diagonal, k > 0 is above the main diagonal, and k
< 0 is below the main diagonal.

Examples tril(ones(4,4),-1)

ans =

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

See Also diag | triu

1-7188

trimesh

Purpose Triangular mesh plot

Syntax trimesh(Tri,X,Y,Z,C)
trimesh(Tri,X,Y,Z)
trimesh(Tri,X,Y)
trimesh(TR)
trimesh(...'PropertyName',PropertyValue...)
h = trimesh(...)

Description trimesh(Tri,X,Y,Z,C) displays triangles defined in the m-by-3 face
matrix Tri as a mesh. Each row of Tri defines a single triangular face
by indexing into the vectors or matrices that contain the X, Y, and Z
vertices. The edge color is defined by the vector C.

trimesh(Tri,X,Y,Z) uses C = Z so color is proportional to surface
height.

trimesh(Tri,X,Y) displays the triangles in a 2-D plot.

trimesh(TR) displays the triangles in a triangulation representation.

trimesh(...'PropertyName',PropertyValue...) specifies
additional patch property names and values for the patch graphics
object created by the function.

h = trimesh(...) returns a handle to the displayed triangles.

Examples Create Triangular Mesh Plot

Create vertex vectors and a face matrix, and then create a triangular
mesh plot.

[x,y]=meshgrid(1:15,1:15);
tri = delaunay(x,y);
z = peaks(15);
trimesh(tri,x,y,z)

1-7189

trimesh

If the surface is already a triangulation representation, then you can
pass the triangulation to trimesh:

tr = triangulation(tri,x(:),y(:),z(:));
trimesh(tr)

1-7190

trimesh

See Also patch | trisurf | delaunay | delaunayTriangulation |
triangulation

1-7191

triplequad

Purpose Numerically evaluate triple integral

triplequad will be removed in a future release. Use integral3 instead.

Syntax q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax)
q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol)
q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol,method)

Description q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax) evaluates
the triple integral fun(x,y,z) over the three dimensional rectangular
region xmin <= x <= xmax, ymin <= y <= ymax, zmin <= z <= zmax.
The first input, fun, is a function handle. fun(x,y,z) must accept
a vector x and scalars y and z, and return a vector of values of the
integrand.

“Parameterizing Functions” explains how to provide additional
parameters to the function fun, if necessary.

q = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol) uses a
tolerance tol instead of the default, which is 1.0e-6.

q =
triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol,method)
uses the quadrature function specified as method, instead of the
default quad. Valid values for method are @quadl or the function
handle of a user-defined quadrature method that has the same
calling sequence as quad and quadl.

Examples Pass function handle @integrnd to triplequad:P

Q = triplequad(@integrnd,0,pi,0,1,-1,1);

where the file integrnd.m is

function f = integrnd(x,y,z)
f = y*sin(x)+z*cos(x);

Pass anonymous function handle F to triplequad:

1-7192

triplequad

F = @(x,y,z)y*sin(x)+z*cos(x);
Q = triplequad(F,0,pi,0,1,-1,1);

This example integrates y*sin(x)+z*cos(x) over the region
0 <= x <= pi, 0 <= y <= 1, -1 <= z <= 1. Note that the integrand
can be evaluated with a vector x and scalars y and z.

See Also dblquad | quad2d | quad | quadgk | quadl | function_handle |
integral | integral2 | integral3

How To • “Anonymous Functions”

1-7193

triplot

Purpose 2-D triangular plot

Syntax triplot(TRI,x,y)
triplot(TRI,x,y,color)
triplot(TR)
h = triplot(...)
triplot(...,'param','value','param','value'...)

Description triplot(TRI,x,y) displays the triangles defined in the m-by-3 matrix
TRI. A row of TRI contains indices into the vectors x and y that define a
single triangle. The default line color is blue.

triplot(TRI,x,y,color) uses the string color as the line color. color
can also be a line specification. See ColorSpec for a list of valid color
strings. See LineSpec for information about line specifications.

triplot(TR) displays the triangles in a triangulation representation.

h = triplot(...) returns a vector of handles to the displayed
triangles.

triplot(...,'param','value','param','value'...) allows
additional line property name/property value pairs to be used when
creating the plot. See Line Properties for information about the
available properties.

Examples Plot Delaunay Triangulation

Plot a Delaunay triangulation for 10 randomly generated points.

P = gallery('uniformdata',10,2,2);
DT = delaunayTriangulation(P);
triplot(DT)

1-7194

triplot

See Also delaunayTriangulation | triangulation | delaunay | trimesh
| trisurf

1-7195

TriRep

Purpose (Will be removed) Triangulation representation

Note TriRep will be removed in a future release. Use triangulation
instead.

Description TriRep provides topological and geometric queries for triangulations in
2-D and 3-D space. For example, for triangular meshes you can query
triangles attached to a vertex, triangles that share an edge, neighbor
information, circumcenters, or other features. You can create a TriRep
directly using existing triangulation data. Alternatively, you can create
a Delaunay triangulation, via DelaunayTri, which provides access to
the TriRep functionality.

Construction TriRep (Will be removed) Triangulation
representation

Methods baryToCart (Will be removed) Convert point
coordinates from barycentric to
Cartesian

cartToBary (Will be removed) Convert point
coordinates from cartesian to
barycentric

circumcenters (Will be removed) Circumcenters
of specified simplices

edgeAttachments (Will be removed) Simplices
attached to specified edges

edges (Will be removed) Triangulation
edges

1-7196

TriRep

faceNormals (Will be removed) Unit normals
to specified triangles

featureEdges (Will be removed) Sharp edges of
surface triangulation

freeBoundary (Will be removed) Facets
referenced by only one simplex

incenters (Will be removed) Incenters of
specified simplices

isEdge (Will be removed) Test if vertices
are joined by edge

neighbors (Will be removed) Simplex
neighbor information

size (Will be removed) Size of
triangulation matrix

vertexAttachments (Will be removed) Return
simplices attached to specified
vertices

Properties X Coordinates of the points in the triangulation

Triangulation Triangulation data structure

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

Indexing TriRep objects support indexing into the triangulation using
parentheses (). The syntax is the same as for arrays.

Examples Load a 2-D triangulation and use the TriRep constructor to build an
array of the free boundary edges:

1-7197

TriRep

load trimesh2d

This loads triangulation tri and vertex coordinates x, y:

trep = TriRep(tri, x,y);
fe = freeBoundary(trep)';
triplot(trep);

You can add the free edges fe to the plot:

hold on;
plot(x(fe), y(fe), 'r','LineWidth',2);
hold off;

1-7198

TriRep

axis([-50 350 -50 350]);
axis equal;

See Also delaunayTriangulation | triangulation | scatteredInterpolant

1-7199

TriRep

Purpose (Will be removed) Triangulation representation

Note TriRep will be removed in a future release. Use triangulation
instead.

Syntax TR = TriRep(TRI, X, Y)
TR = TriRep(TRI, X, Y, Z)
TR = TriRep(TRI, X)

Description TR = TriRep(TRI, X, Y) creates a 2-D triangulation representation
from the triangulation matrix TRI and the vertex coordinates (X, Y).
TRI is an m-by-3 matrix that defines the triangulation in face-vertex
format, where m is the number of triangles. Each row of TRI is a triangle
defined by indices into the column vector of vertex coordinates (X, Y).

TR = TriRep(TRI, X, Y, Z) creates a 3-D triangulation
representation from the triangulation matrix TRI and the vertex
coordinates (X, Y, Z). TRI is an m-by-3 or m-by-4 matrix that defines
the triangulation in simplex-vertex format, where where m is the
number of simplices; triangles or tetrahedra in this case. Each row of
TRI is a simplex defined by indices into the column vector of vertex
coordinates (X, Y, Z).

TR = TriRep(TRI, X) creates a triangulation representation from the
triangulation matrix TRI and the vertex coordinates X. TRI is an m-by-n
matrix that defines the triangulation in simplex-vertex format, where m
is the number of simplices and n is the number of vertices per simplex.
Each row of TRI is a simplex defined by indices into the array of vertex
coordinates X. X is an mpts-by-ndim matrix where mpts is the number of
points and ndim is the dimension of the space where the points reside,
where 2 ≤ ndim ≤ 3.

Examples Load a 3-D tetrahedral triangulation compute the free boundary. First,
load triangulation tet and vertex coordinates X.

load tetmesh

1-7200

TriRep

Create the triangulation representation and compute the free boundary.

trep = TriRep(tet, X);
[tri, Xb] = freeBoundary(trep);

See Also scatteredInterpolant | delaunayTriangulation

1-7201

TriScatteredInterp

Purpose (Will be removed) Interpolate scattered data

Note TriScatteredInterp will be removed in a future release. Use
scatteredInterpolant instead.

Description TriScatteredInterp is used to perform interpolation on a scattered
dataset that resides in 2-D or 3-D space. A scattered data set defined
by locations X and corresponding values V can be interpolated using a
Delaunay triangulation of X. This produces a surface of the form V =
F(X). The surface can be evaluated at any query location QX, using QV
= F(QX), where QX lies within the convex hull of X. The interpolant F
always goes through the data points specified by the sample.

Definitions The Delaunay triangulation of a set of points is a triangulation such
that the unique circle circumscribed about each triangle contains no
other points in the set. The convex hull of a set of points is the smallest
convex set containing all points of the original set. These definitions
extend naturally to higher dimensions.

Construction TriScatteredInterp (Will be removed) Interpolate
scattered data

Properties X Defines locations of scattered data points in
2-D or 3-D space.

V Defines value associated with each data point.

1-7202

TriScatteredInterp

Defines method used to interpolate the data .

natural Natural neighbor
interpolation

linear Linear interpolation
(default)

Method

nearest Nearest neighbor
interpolation

Copy
Semantics

Value. To learn how this affects your use of the class, see Comparing
Handle and Value Classes in the MATLAB Object-Oriented
Programming documentation.

Examples Create a data set:

x = rand(100,1)*4-2;
y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

Construct the interpolant:

F = TriScatteredInterp(x,y,z);

Evaluate the interpolant at the locations (qx, qy). The corresponding
value at these locations is qz:

ti = -2:.25:2;
[qx,qy] = meshgrid(ti,ti);
qz = F(qx,qy);
mesh(qx,qy,qz);
hold on;
plot3(x,y,z,'o');

1-7203

TriScatteredInterp

See Also delaunayTriangulation | interp1 | interp2 | interp3 | meshgrid

1-7204

TriScatteredInterp

Purpose (Will be removed) Interpolate scattered data

Note TriScatteredInterp will be removed in a future release. Use
scatteredInterpolant instead.

Syntax F = TriScatteredInterp()
F = TriScatteredInterp(X, V)
F = TriScatteredInterp(X, Y, V)
F = TriScatteredInterp(X, Y, Z, V)
F = TriScatteredInterp(DT, V)
F = TriScatteredInterp(..., method)

Description F = TriScatteredInterp() creates an empty scattered data
interpolant. This can subsequently be initialized with sample data
points and values (Xdata, Vdata) via F.X = Xdata and F.V = Vdata.

F = TriScatteredInterp(X, V) creates an interpolant that fits a
surface of the form V = F(X) to the scattered data in (X, V). X is a
matrix of size mpts-by-ndim, where mpts is the number of points and
ndim is the dimension of the space where the points reside (ndim is 2
or 3). The column vector V defines the values at X, where the length of
V equals mpts.

F = TriScatteredInterp(X, Y, V) and F = TriScatteredInterp(X,
Y, Z, V) allow the data point locations to be specified in alternative
column vector format when working in 2-D and 3-D.

F = TriScatteredInterp(DT, V) uses the specified DelaunayTri
object DT as a basis for computing the interpolant. DT is a Delaunay
triangulation of the scattered data locations, DT.X. The matrix DT.X is
of size mpts-by-ndim, where mpts is the number of points and ndim is
the dimension of the space where the points reside, 2 <= ndim <= 3. V
is a column vector that defines the values at DT.X, where the length of
V equals mpts.

F = TriScatteredInterp(..., method) allows selection of the
technique method used to interpolate the data.

1-7205

TriScatteredInterp

Input
Arguments

X Matrix of size mpts-by-ndim, where mpts is the
number of points and ndim is the dimension
of the space where the points reside. Input
may also be specified as column vectors (X, Y)
or (X, Y, Z)

V Column vector that defines the values at X,
where the length of V equals mpts.

DT Delaunay triangulation of the scattered data
locations
natural Natural neighbor

interpolation
linear Linear interpolation

(default)

method

nearest Nearest-neighbor
interpolation

Output
Arguments

F Creates an interpolant that fits a surface of
the form V = F(X) to the scattered data.

Evaluation To evaluate the interpolant, express the statement in Monge’s form
Vq = F(Xq), Vq = F(Xq,Yq), or Vq = F(Xq,Yq,Zq) where Vq is the
value of the interpolant at the query location and Xq, Yq, and Zq are the
vectors of point locations.

Definitions The Delaunay triangulation of a set of points is a triangulation such
that the unique circle circumscribed about each triangle contains no
other points in the set.

Examples Create a data set:

x = rand(100,1)*4-2;
y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

1-7206

TriScatteredInterp

Construct the interpolant:

F = TriScatteredInterp(x,y,z);

Evaluate the interpolant at the locations (qx, qy). The corresponding
value at these locations is qz .

ti = -2:.25:2;
[qx,qy] = meshgrid(ti,ti);
qz = F(qx,qy);
mesh(qx,qy,qz);
hold on;
plot3(x,y,z,'o');

See Also delaunayTriangulation | interp1 | interp2 | interp3 | meshgrid

1-7207

trisurf

Purpose Triangular surface plot

Syntax trisurf(Tri,X,Y,Z,C)
trisurf(Tri,X,Y,Z)
trisurf(TR)
trisurf(...'PropertyName',PropertyValue...)
h = trisurf(...)

Description trisurf(Tri,X,Y,Z,C) displays triangles defined in the m-by-3 face
matrix Tri as a surface. Each row of Tri defines a single triangular
face by indexing into the vectors or matrices that contain the X, Y, and Z
vertices. The color is defined by the vector C.

trisurf(Tri,X,Y,Z) uses C=Z so color is proportional to surface height.

trisurf(TR) displays the triangles in a triangulation representation. It
uses C = TR.Points(:,3) to make sure the surface color is proportional
to height.

trisurf(...'PropertyName',PropertyValue...) specifies
additional patch property names and values for the patch graphics
object created by the function.

h = trisurf(...) returns a patch handle.

Examples Create Triangular Surface Plot

Create vertex vectors and a face matrix, then create a triangular
surface plot.

[x,y] = meshgrid(1:15,1:15);
tri = delaunay(x,y);
z = peaks(15);
trisurf(tri,x,y,z)

1-7208

trisurf

If the surface is in the form of a triangulation representation, you can
pass it to trisurf alone:

tr = triangulation(tri,x(:),y(:),z(:));
trisurf(tr)

1-7209

trisurf

See Also patch | surf | tetramesh | trimesh | triplot | delaunay |
triangulation | delaunayTriangulation

1-7210

triu

Purpose Upper triangular part of matrix

Syntax U = triu(X)
U = triu(X,k)

Description U = triu(X) returns the upper triangular part of X.

U = triu(X,k) returns the element on and above the kth diagonal of X.
k = 0 is the main diagonal, k > 0 is above the main diagonal, and k
< 0 is below the main diagonal.

Examples triu(ones(4,4),-1)

ans =

1 1 1 1
1 1 1 1
0 1 1 1
0 0 1 1

See Also diag | tril

1-7211

true

Purpose Logical 1 (true)

Syntax true
T = true(n)
T = true(sz)
T = true(sz1,...,szN)
T = true(___ ,'like',p)

Description true is shorthand for logical(1).

T = true(n) is an n-by-n matrix of logical ones.

T = true(sz) is an array of logical ones where the size vector, sz,
defines size(T). For example, true([2 3]) returns a 2-by-3 array
of logical ones.

T = true(sz1,...,szN) is a sz1-by-...-by-szN array of logical ones
where sz1,...,szN indicates the size of each dimension. For example,
true(2,3) returns a 2-by-3 array of logical ones.

T = true(___ ,'like',p) returns an array of logical ones of the same
sparsity as the logical variable p using any of the previous size syntaxes.

Input
Arguments

n - Size of square matrix
integer

Size of square matrix, specified as an integer. n sets the output array
size to n-by-n. For example, true(3) returns a 3-by-3 array of logical
ones.

• If n is 0, then T is an empty matrix.

• If n is negative, then it is treated as 0.

Data Types
int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

1-7212

true

sz - Size vector
row vector of integers

Size vector, specified as a row vector of integers. For example, true([2
3]) returns a 2-by-3 array of logical ones.

• If the size of any dimension is 0, then T is an empty array.

• If the size of any dimension is negative, then it is treated as 0.

• If any trailing dimensions greater than 2 have a size of 1, then the
output, T, does not include those dimensions.

Data Types
int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

sz1,...,szN - Size inputs
comma-separated list of integers

Size inputs, specified by a comma-separated list of integers. For
example, true(2,3) returns a 2-by-3 array of logical ones.

• If the size of any dimension is 0, then T is an empty array.

• If the size of any dimension is negative, then it is treated as 0.

• If any trailing dimensions greater than 2 have a size of 1, then the
output, T, does not include those dimensions.

Data Types
int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

p - Prototype
logical variable

Prototype, specified as a logical variable.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

1-7213

true

Output
Arguments

T - Output of logical ones
scalar | vector | matrix | N-D array

Output of logical ones, returned as a scalar, vector, matrix, or N-D array.

Data Types
logical

Examples Generate Square Matrix of Logical Ones

Use true to generate a 3-by-3 square matrix of logical ones.

A = true(3)
class(A)

A =
1 1 1
1 1 1
1 1 1

ans =
logical

The result is of class logical.

Generate Array of Logical Ones with Arbitrary Dimensions

Use true to generate a 3-by-2-by-2 matrix of logical ones.

true(3,2,2)

ans(:,:,1) =
1 1
1 1
1 1

ans(:,:,2) =
1 1
1 1
1 1

1-7214

true

Alternatively, you can use a size vector to specify the size of the matrix.

true([3,2,2])

ans(:,:,1) =
1 1
1 1
1 1

ans(:,:,2) =
1 1
1 1
1 1

Note that specifying multiple vector inputs returns an error.

Execute Logic Statement

true along with false can be used to execute logic statements.

Test the logical statement ~ ~ ~A and B A or B for A = logical
true and B = logical false.

~(true & false) == (~true) | (~false)

ans =
1

The result is logical 1 (true), since the logical statements on both sides
of the equation are equivalent. This logical statement is an instance
of De Morgan’s Law.

Generate Logical Array of Selected Sparsity

Generate a logical array of the same sparsity as the selected array.

A = logical(sparse(5,3));
whos A
T = true(4,'like',A);
whos T

1-7215

true

Name Size Bytes Class Attributes
A 5x3 41 logical sparse

Name Size Bytes Class Attributes
T 4x4 184 logical sparse

The output array T has the same sparse attribute and data-type as
the specified array A.

Tips • true(n) is much faster and more memory efficient than
logical(true(n)).

See Also false | logical

Concepts • “Class Support for Array-Creation Functions”

1-7216

try, catch

Purpose Execute statements and catch resulting errors

Syntax try
statements

catch exception
statements

end

Description try and catch blocks allow you to override the default error behavior for
a set of program statements. If any statement in a try block generates
an error, program control goes immediately to the catch block, which
contains your error handling statements.

exception is an optional MException object input to the catch block
that allows you to identify the error.

Both try and catch blocks can contain nested try/catch statements.

Examples Provide more information about a dimension mismatch error:

A = rand(3);
B = ones(5);

try
C = [A; B];

catch err

% Give more information for mismatch.
if (strcmp(err.identifier,'MATLAB:catenate:dimensionMismatch'))

msg = ['Dimension mismatch occurred: First argument has ', ...
num2str(size(A,2)), ' columns while second has ', ...
num2str(size(B,2)), ' columns.'];

error('MATLAB:myCode:dimensions', msg);

% Display any other errors as usual.
else

rethrow(err);

1-7217

try, catch

end

end % end try/catch

Catch an error when reading an image file, and try adjusting the file
extension to resolve the error (.jpg and .jpeg are similar, as are .tif
and .tiff):

function imageData = readImage(filename)
try

imageData = imread(filename);
catch exception

% Is the error because MATLAB could not find the file?
if ~exist(filename, 'file')

% Check for common typos in the extension.
[~, ~, extension] = fileparts(filename);
switch extension

case '.jpg'
altFilename = strrep(filename, '.jpg', '.jpeg');

case '.jpeg'
altFilename = strrep(filename, '.jpeg', '.jpg');

case '.tif'
altFilename = strrep(filename, '.tif', '.tiff');

case '.tiff'
altFilename = strrep(filename, '.tiff', '.tif');

otherwise
rethrow(exception);

end

% Try again, with modifed filename.
try

imageData = imread(altFilename);
catch exception2

% Rethrow original error.

1-7218

try, catch

rethrow(exception)
end

else
rethrow(exception)

end

end

See Also error | assert | MException

1-7219

tscollection

Purpose Create tscollection object

Syntax tsc = tscollection(TimeSeries)
tsc = tscollection(Time)
tsc = tscollection(...,'Parameter',Value,...)

Description tsc = tscollection(TimeSeries) creates a tscollection object
tsc with one or more timeseries objects already in the MATLAB
workspace. The argument TimeSeries can be a

• Single timeseries object

• Cell array of timeseries objects

tsc = tscollection(Time) creates an empty tscollection object
with the time vector Time. When time values are date strings, you must
specify Time as a cell array of date strings.

tsc = tscollection(...,'Parameter',Value,...) creates a
tscollection object with optional parameter-value pairs you enter
after specifying either a time vector or a timeseries object. You can
specify the following parameter:

• Name— String that specifies the name of this tscollection object

Tips Definition: Time Series Collection

A time series collection object is a MATLAB variable that groups several
time series with a common time vector. The time series that you include
in the collection are called members of this collection.

Properties of Time Series Collection Objects

This table lists the properties of the tscollection object. You can
specify the Time, TimeSeries, and Name properties as input arguments
in the constructor.

1-7220

tscollection

Property Description

Name tscollection name as a string. This can differ from the
tscollection name in the MATLAB workspace.

Time When TimeInfo.StartDate is empty, values are
measured relative to 0 . When TimeInfo.StartDate is
defined, values represent date strings measured relative
to the StartDate.

The length of Time must be the same as the first or the
last dimension of Data for each collection .

TimeInfo Contains fields for contextual information about Time:

• Units— Time units with any of the following values:
'weeks', 'days', 'hours', 'minutes', 'seconds',
'milliseconds', 'microseconds', 'nanoseconds'

• Start — Start time

• End — End time (read only)

• Increment — Interval between subsequent time
values. NaN when times are not uniformly sampled.

• Length— Length of the time vector (read only)

• Format — String defining the date string display
format. See datestr.

• StartDate— Date string defining the reference date.
See setabstime (tscollection).

• UserData— Any additional user-defined information

Examples The following example shows how to create a tscollection object.

1 Import the sample data.

load count.dat

1-7221

tscollection

2 Create three timeseries objects to store each set of data:

count1 = timeseries(count(:,1),1:24,'name', 'ts1');
count2 = timeseries(count(:,2),1:24,'name', 'ts2');
count3 = timeseries(count(:,3),1:24,'name', 'ts3');

3 Create a tscollection object named tsc and add to it two out of
three time series already in the MATLAB workspace, by using the
following syntax:

tsc = tscollection({count1 count2},'name','tsc')

See Also addts | datestr | setabstime (tscollection) | timeseries

1-7222

tsdata.event

Purpose Construct event object for timeseries object

Syntax e = tsdata.event(Name,Time)
e = tsdata.event(Name,Time,'Datenum')

Description e = tsdata.event(Name,Time) creates an event object with the
specified Name that occurs at the time Time. Time can either be a real
value or a date string.

e = tsdata.event(Name,Time,'Datenum') uses 'Datenum' to
indicate that the Time value is a serial date number generated by the
datenum function. The Time value is converted to a date string after
the event is created.

Tips You add events by using the addevent method.

Fields of the tsdata.event object include the following:

• EventData — MATLAB array that stores any user-defined
information about the event

• Name — String that specifies the name of the event

• Time— Time value when this event occurs, specified as a real number

• Units — Time units

• StartDate—A reference date, specified in MATLAB datestr format.
StartDate is empty when you have a numerical (non-date-string)
time vector.

1-7223

tsearchn

Purpose N-D closest simplex search

Syntax t = tsearchn(X,TRI,XI)
[t,P] = tsearchn(X,TRI,XI)

Description t = tsearchn(X,TRI,XI) returns the indices t of the enclosing simplex
of the Delaunay triangulation TRI for each point in XI. X is an m-by-n
matrix, representing m points in N-dimensional space. XI is a p-by-n
matrix, representing p points in N-dimensional space. tsearchn returns
NaN for all points outside the convex hull of X. tsearchn requires a
triangulation TRI of the points X obtained from delaunayn.

[t,P] = tsearchn(X,TRI,XI) also returns the barycentric coordinate
P of XI in the simplex TRI. P is a p-by-n+1 matrix. Each row of P is the
barycentric coordinate of the corresponding point in XI. It is useful
for interpolation.

See Also delaunayTriangulation

1-7224

tstool

Purpose Open Time Series Tools GUI

Compatibility tstool will be removed in a future release.

• To create a time series object, use timeseries.

• To create a time series collection with one or more timeseries
objects, use tscollection.

• To open a time series object or collection in the Variables editor, use
openvar.

• To plot a time series object, use plot.

tstool(sldata) and tstool(ModelDataLogs,'replace') have been
removed. To view logged signal data, use the Simulink Simulation Data
Inspector instead.

Syntax tstool
tstool(ts)
tstool(tsc)

Description tstool starts the Time Series Tools GUI without loading any data.

tstool(ts) starts the Time Series Tools GUI and loads the time-series
object ts from the MATLAB workspace.

tstool(tsc) starts the Time Series Tools GUI and loads the
time-series collection object tsc from the MATLAB workspace.

See Also timeseries | tscollection

How To • “View Logged Signal Data with the Simulation Data Inspector”

1-7225

type

Purpose Display contents of file

Syntax type('filename')
type filename

Description type('filename') displays the contents of the specified file in the
MATLAB Command Window. Use the full path for filename, or use
a MATLAB relative partial path.

If you do not specify a file extension and there is no filename file
without an extension, the type function adds the .m extension by
default. The type function checks the folders specified in the MATLAB
search path, which makes it convenient for listing the contents of files
on the screen. Use type with more on to see the listing one screen at
a time.

type filename is the command form of the syntax.

Examples type('foo.bar') lists the contents of the file foo.bar.

type foo lists the contents of the file foo. If foo does not exist, type
foo lists the contents of the file foo.m.

See Also cd | dbtype | delete | dir | more | path | what | who

1-7226

typecast

Purpose Convert data types without changing underlying data

Syntax Y = typecast(X, type)

Description Y = typecast(X, type) converts a numeric value in X to the data
type specified by type. Input X must be a full, noncomplex, numeric
scalar or vector. The type input is a string set to one of the following:
'uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64',
'int64', 'single', or 'double'.

typecast is different from the MATLAB cast function in that it does
not alter the input data. typecast always returns the same number of
bytes in the output Y as were in the input X. For example, casting the
16-bit integer 1000 to uint8 with typecast returns the full 16 bits in
two 8-bit segments (3 and 232) thus keeping its original value (3*256
+ 232 = 1000). The cast function, on the other hand, truncates the
input value to 255.

The output of typecast can be formatted differently depending on what
system you use it on. Some computer systems store data starting with
its most significant byte (an ordering called big-endian), while others
start with the least significant byte (called little-endian).

Note MATLAB issues an error if X contains fewer values than are
needed to make an output value.

Examples Example 1

This example converts between data types of the same size:

typecast(uint8(255), 'int8')
ans =

-1

typecast(int16(-1), 'uint16')
ans =

1-7227

typecast

65535

Example 2

Set X to a 1-by-3 vector of 32-bit integers, then cast it to an 8-bit integer
type:

X = uint32([1 255 256])
X =

1 255 256

Running this on a little-endian system produces the following results.
Each 32-bit value is divided up into four 8-bit segments:

Y = typecast(X, 'uint8')
Y =

1 0 0 0 255 0 0 0 0 1 0 0

The third element of X, 256, exceeds the 8 bits that it is being converted
to in Y(9) and thus overflows to Y(10):

Y(9:12)
ans =

0 1 0 0

Note that length(Y) is equal to 4.*length(X). Also note the difference
between the output of typecast versus that of cast:

Z = cast(X, 'uint8')
Z =

1 255 255

Example 3

This example casts a smaller data type (uint8) into a larger one
(uint16). Displaying the numbers in hexadecimal format makes it
easier to see just how the data is being rearranged:

format hex
X = uint8([44 55 66 77])
X =

1-7228

typecast

2c 37 42 4d

The first typecast is done on a big-endian system. The four 8-bit
segments of the input data are combined to produce two 16-bit segments:

Y = typecast(X, 'uint16')
Y =

2c37 424d

The second is done on a little-endian system. Note the difference in
byte ordering:

Y = typecast(X, 'uint16')
Y =

372c 4d42

You can format the little-endian output into big-endian (and vice versa)
using the swapbytes function:

Y = swapbytes(typecast(X, 'uint16'))
Y =

2c37 424d

Example 4

This example attempts to make a 32-bit value from a vector of three
8-bit values. MATLAB issues an error because there are an insufficient
number of bytes in the input:

format hex
typecast(uint8([120 86 52]), 'uint32')

Error using typecast
Too few input values to make output type.

Repeat the example, but with a vector of four 8-bit values, and it returns
the expected answer:

typecast(uint8([120 86 52 18]), 'uint32')
ans =

1-7229

typecast

12345678

See Also cast | class | swapbytes

1-7230

uibuttongroup

Purpose Create container object to exclusively manage radio buttons and toggle
buttons

Syntax uibuttongroup('PropertyName1',Value1,'PropertyName2',Value2,...)
handle = uibuttongroup(...)

Description A uibuttongroup groups components and manages exclusive selection
behavior for radio buttons and toggle buttons that it contains. It
can also contain other user interface controls, axes, uipanels, and
uibuttongroups. It cannot contain ActiveX controls.

uibuttongroup('PropertyName1',Value1,'PropertyName2',Value2,...)
creates a visible container component in the current figure window.
This component manages exclusive selection behavior for uicontrols of
style radiobutton and togglebutton.

handle = uibuttongroup(...) creates a uibuttongroup object and
returns a handle to it in handle.

A uibuttongroup object can have axes, uicontrol, uipanel, and
uibuttongroup objects as children. However, only uicontrols of style
radiobutton and togglebutton are managed by the component.

When programming a button group, you do not code callbacks for the
individual buttons; instead, use its SelectionChangeFcn callback to
manage responses to selections. The following example illustrates how
you use uibuttongroup event data to do this.

For the children of a uibuttongroup object, the Position property is
interpreted relative to the button group. If you move the button group,
the children automatically move with it and maintain their positions
in the button group.

If you have a button group that contains a set of radio buttons and
toggle buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle
buttons in the button group’s SelectionChangeFcn callback function,
not in the individual toggle button Callback functions. See the

1-7231

uibuttongroup

SelectionChangeFcn property and the example on this reference
page for more information.

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the
handle of the selected radio button or toggle button from the button
group’s SelectedObject property.

Use the Parent property to specify the parent as a figure, uipanel, or
uibuttongroup. If you do not specify a parent, uibuttongroup adds the
button group to the current figure. If no figure exists, one is created.

See the Uibuttongroup Properties reference page for more information.

After creating a uibuttongroup, you can set and query its property
values using set and get. Run get(handle) to see a list of properties
and their current values. Run set(handle) to see a list of object
properties you can set and their legal values.

Tips If you set the Visible property of a uibuttongroup object to 'off',
any child objects it contains (buttons, button groups, etc.) become
invisible along with the uibuttongroup panel itself. However, doing
this does not affect the settings of the Visible property of any of its
child objects, even though all of them remain invisible until the button
group’s visibility is set to 'on'. uipanel components also behave in
this manner.

Do not use the CreateFcn of a button group to create the buttons
it contains. You can toggle buttons created in the button group
CreateFcn on and off, but clicking them does not trigger the button
group SelectionChangeCallback and the buttons do not display the
expected mutually-exclusive behavior.

Examples This example creates a uibuttongroup with three radio buttons. It
manages the radio buttons with the SelectionChangeFcn callback,
selcbk.

When you select a new radio button, selcbk displays the uibuttongroup
handle on one line, the EventName, OldValue, and NewValue fields

1-7232

uibuttongroup

of the event data structure on a second line, and the value of the
SelectedObject property on a third line.

% Create the button group.

h = uibuttongroup('visible','off','Position',[0 0 .2 1]);

% Create three radio buttons in the button group.

u0 = uicontrol('Style','radiobutton','String','Option 1',...

'pos',[10 350 100 30],'parent',h,'HandleVisibility','off');

u1 = uicontrol('Style','radiobutton','String','Option 2',...

'pos',[10 250 100 30],'parent',h,'HandleVisibility','off');

u2 = uicontrol('Style','radiobutton','String','Option 3',...

'pos',[10 150 100 30],'parent',h,'HandleVisibility','off');

% Initialize some button group properties.

set(h,'SelectionChangeFcn',@selcbk);

set(h,'SelectedObject',[]); % No selection

set(h,'Visible','on');

For the SelectionChangeFcn callback, selcbk, the source and event
data structure arguments are available only if selcbk is called using a
function handle. See SelectionChangeFcn for more information.

function selcbk(source,eventdata)
disp(source);
disp([eventdata.EventName,' ',...

get(eventdata.OldValue,'String'),' ', ...
get(eventdata.NewValue,'String')]);

disp(get(get(source,'SelectedObject'),'String'));

1-7233

uibuttongroup

If you click Option 2 with no option selected, the SelectionChangeFcn
callback, selcbk, displays:

3.0011

SelectionChanged Option 2
Option 2

If you then click Option 1, the SelectionChangeFcn callback, selcbk,
displays:

3.0011

SelectionChanged Option 2 Option 1
Option 1

1-7234

uibuttongroup

See Also uicontrol | uipanel

1-7235

Uibuttongroup Properties

Purpose Describe button group properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from the GUIDE Layout Editor View menu, or use the
inspect function at the command line.

• The set and get functions enable you to set and query the values of
properties.

Uibuttongroup takes its default property values from uipanel. To
set a uibuttongroup default property value, set the default for the
corresponding uipanel property. Note that you can set no default values
for the uibuttongroup SelectedObject and SelectionChangeFcn
properties.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uibuttongroup
Properties

This section describes all properties useful to uibuttongroup objects
and lists valid values. Curly braces { } enclose default values.

Property Name Description

BackgroundColor Color of the button group background

BeingDeleted This object is being deleted

BorderType Type of border around the button group

BorderWidth Width of the button group border in pixels

BusyAction Interruption of other callback routines

ButtonDownFcn Button-press callback routine

Children All children of the button group

1-7236

Uibuttongroup Properties

Property Name Description

Clipping Clipping of child axes, panels, and button
groups to the button group. Does not affect
child user interface controls (uicontrol)

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

FontAngle Title font angle

FontName Title font name

FontSize Title font size

FontUnits Title font units

FontWeight Title font weight

ForegroundColor Title font color and color of 2-D border line

HandleVisibility Handle accessibility from command line and
GUIs

HighlightColor 3-D frame highlight color

Interruptible Callback routine interruption mode

Parent uibuttongroup object’s parent

Position Button group position relative to parent figure,
panel, or button group

ResizeFcn User-specified resize routine

SelectedObject Currently selected uicontrol of style
radiobutton or togglebutton

SelectionChangeFcn Callback routine executed when the selected
radio button or toggle button changes

ShadowColor 3-D frame shadow color

Tag User-specified object identifier

1-7237

Uibuttongroup Properties

Property Name Description

Title Title string

TitlePosition Location of title string in relation to the button
group

Type Object class

UIContextMenu Associate context menu with the button group

Units Units used to interpret the position vector

UserData User-specified data

Visible Button group visibility

Note Controls the visibility of a uibuttongroup
and of its child axes, uibuttongroups. uipanels,
and child uicontrols. Setting it does not change
their Visible property.

BackgroundColor
ColorSpec

Color of the uibuttongroup background. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
background color. See the ColorSpec reference page for more
information on specifying color.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

1-7238

Uibuttongroup Properties

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BorderType
none | {etchedin} | etchedout |
beveledin | beveledout | line

Border of the uibuttongroup area. Used to define the button group
area graphically. Etched and beveled borders provide a 3-D look.
Use the HighlightColor and ShadowColor properties to specify
the border color of etched and beveled borders. A line border is
2-D. Use the ForegroundColor property to specify its color.

BorderWidth
integer

Width of the button group border. The width of the button group
borders in pixels. The default border width is 1 pixel. 3-D borders
wider than 3 may not appear correctly at the corners.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

1-7239

Uibuttongroup Properties

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string or function handle

Button-press callback routine. A callback routine that executes
when you press a mouse button while the pointer is in a 5-pixel
wide border around the uibuttongroup. This is useful for
implementing actions to interactively modify object properties,
such as size and position, when they are clicked on (using the
selectmoveresize function, for example).

If you define this routine as a string, the string can be a valid
MATLAB expression or the name of a code file. The expression
executes in the MATLAB workspace.

Children
vector of handles

Children of the uibuttongroup. A vector containing the handles
of all children of the uibuttongroup. Although a uibuttongroup
manages only uicontrols of style radiobutton and togglebutton,
its children can be axes, uipanels, uibuttongroups, and other
uicontrols. You can use this property to reorder the children.

Clipping
{on} | off

Clipping mode. By default, MATLAB clips a uibuttongroup’s
child axes, uipanels, and uibuttongroups to the uibuttongroup
rectangle. If you set Clipping to off, the axis, uipanel, or
uibuttongroup display outside the button group rectangle. This

1-7240

Uibuttongroup Properties

property does not affect child uicontrols which, by default, can
display outside the button group rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uibuttongroup object.
MATLAB sets all property values for the uibuttongroup before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the uibuttongroup being created.

Setting this property on an existing uibuttongroup object has no
effect.

To define a default CreateFcn callback for all new uibuttongroups
you must define the same default for all uipanels. This default
applies unless you override it by specifying a different CreateFcn
callback when you call uibuttongroup. For example, the code

set(0,'DefaultUipanelCreateFcn','set(gcbo,...
''FontName'',''arial'',''FontSize'',12)')

creates a default CreateFcn callback that runs whenever you
create a new panel or button group. It sets the default font name
and font size of the uipanel or uibuttongroup title.

To override this default and create a button group whose
FontName and FontSize properties are set to different values, call
uibuttongroup with code similar to

hpt = uibuttongroup(...,'CreateFcn','set(gcbo,...
''FontName'',''times'',''FontSize'',14)')

1-7241

Uibuttongroup Properties

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uibuttongroup call. In the example
above, if instead of redefining the CreateFcn property for this
uibuttongroup, you had explicitly set FontSize to 14, the default
CreateFcn callback would have set FontSize back to the system
dependent default.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uibuttongroup object
(e.g., when you issue a delete command or clear the figure
containing the uibuttongroup). MATLAB executes the routine
before destroying the object’s properties so these values are
available to the callback routine. The handle of the object whose
DeleteFcn is being executed is accessible only through the root
CallbackObject property, which you can query using gcbo.

FontAngle
{normal} | italic | oblique

Character slant used in the Title. MATLAB uses this property
to select a font from those available on your particular system.

1-7242

../ref/rootobject_props.html#RecursionLimit

Uibuttongroup Properties

Setting this property to italic or oblique selects a slanted
version of the font, when it is available on your system.

FontName
string

Font family used in the Title. The name of the font in which
to display the Title. To display and print properly, this must
be a font that your system supports. The default font is system
dependent. To eliminate the need to hard code the name of a
fixed-width font, which may not display text properly on systems
that do not use ASCII character encoding (such as in Japan), set
FontName to the string FixedWidth. This string value is case
insensitive.

set(uicontrol_handle,'FontName','FixedWidth')

This then uses the value of the root FixedWidthFontName
property, which can be set to the appropriate value for a locale
from startup.m in the end user’s environment. Setting the root
FixedWidthFontName property causes an immediate update of
the display to use the new font.

FontSize
integer

Title font size. A number specifying the size of the font in which
to display the Title, in units determined by the FontUnits
property. The default size is system dependent.

FontUnits
inches | centimeters | normalized |
{points} |pixels

Title font size units. Normalized units interpret FontSize as
a fraction of the height of the uibuttongroup. When you resize
the uibuttongroup, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

1-7243

Uibuttongroup Properties

FontWeight
light | {normal} | demi | bold

Weight of characters in the title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to bold causes MATLAB to use a bold version
of the font, when it is available on your system.

ForegroundColor
ColorSpec

Color used for title font and 2-D border line. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
font or line color. See the ColorSpec reference page for more
information on specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

1-7244

Uibuttongroup Properties

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

Note Uicontrols of style radiobutton and togglebutton
that are managed by a uibuttongroup should not be accessed
outside the button group. Set the HandleVisibility of such
radio buttons and toggle buttons to off or callback to prevent
inadvertent access.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HighlightColor
ColorSpec

3-D frame highlight color. A three-element RGB vector or one
of the MATLAB predefined names, specifying the highlight
color. See the ColorSpec reference page for more information
on specifying color.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For user interface objects, the Interruptible property affects the
callbacks for these properties only:

1-7245

Uibuttongroup Properties

• ButtonDownFcn

• KeyPressFcn

• KeyReleaseFcn

• WindowButtonDownFcn

• WindowButtonMotionFcn

• WindowButtonUpFcn

• WindowKeyPressFcn

• WindowKeyReleaseFcn

• WindowScrollWheelFcn
A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. MATLAB handles both callbacks based on the
Interruptible property of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

The BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

1-7246

Uibuttongroup Properties

Setting the Interruptible property to on (default), allows a
callback from other user interface objects to interrupt callback
functions originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

Note If the interrupting callback is a DeleteFcnor CreateFcn
callback, or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. An object’s ButtonDownFcn or Callback
routine is processed according to the rules described previously
in this section.

Parent
handle

Uibuttongroup parent. The handle of the uibuttongroup’s parent
figure, uipanel, or uibuttongroup. You can move a uibuttongroup
object to another figure, uipanel, or uibuttongroup by setting this
property to the handle of the new parent.

Position
position rectangle

1-7247

Uibuttongroup Properties

Size and location of uibuttongroup relative to parent. The
rectangle defined by this property specifies the size and location
of the button group within the parent figure window, uipanel, or
uibuttongroup. Specify Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of
the parent object to the lower-left corner of the uibuttongroup
object. width and height are the dimensions of the uibuttongroup
rectangle, including the title. All measurements are in units
specified by the Units property.

ResizeFcn
string or function handle

Resize callback routine. MATLAB executes this callback routine
whenever a user resizes the uibuttongroup and the figure Resize
property is set to on, or in GUIDE, the Resize behavior option
is set to Other. You can query the uibuttongroup Position
property to determine its new size and position. During execution
of the callback routine, the handle to the figure being resized is
accessible only through the root CallbackObject property, which
you can query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not
directly supported by the MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object
at a constant height in pixels and attached to the top of the
figure, but always matches the width of the figure. The following
ResizeFcn accomplishes this; it keeps the uicontrol whose Tag is
'StatusBar' 20 pixels high, as wide as the figure, and attached to
the top of the figure. Note the use of the Tag property to retrieve
the uicontrol handle, and the gcbo function to retrieve the figure
handle. Also note the defensive programming regarding figure
Units, which the callback requires to be in pixels in order to work

1-7248

Uibuttongroup Properties

correctly, but which the callback also restores to their previous
value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn
callback; however, the ResizeFcn is not called again as a result.

Note that the print command can cause the ResizeFcn to be
called if the PaperPositionMode property is set to manual and
you have defined a resize function. If you do not want your resize
function called by print, set the PaperPositionMode to auto.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Selected
on | off (read only)

Is object selected? This property indicates whether the button
group is selected. When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also on.
You can, for example, define the ButtonDownFcn function to set
this property, allowing users to select the object with the mouse.

SelectedObject
scalar handle

Currently selected radio button or toggle button uicontrol in the
managed group of components. Use this property to determine
the currently selected component or to initialize selection of one of

1-7249

Uibuttongroup Properties

the radio buttons or toggle buttons. By default, SelectedObject
is set to the first uicontrol radio button or toggle button that
is added. Set it to [] if you want no selection. Note that
SelectionChangeFcn does not execute when this property is set
by the user.

SelectionChangeFcn
string or function handle

Callback routine executed when the selected radio button or toggle
button changes. If this routine is called as a function handle,
uibuttongroup passes it two arguments. The first argument,
source, is the handle of the uibuttongroup. The second argument,
eventdata, is an event data structure that contains the fields
shown in the following table.

Event Data
Structure Field Description

EventName 'SelectionChanged'

OldValue Handle of the object selected before this
event. [] if none was selected.

NewValue Handle of the currently selected object.

If you have a button group that contains a set of radio buttons
and/or toggle buttons and you want an immediate action to
occur when a radio button or toggle button is selected, you must
include the code to control the radio and toggle buttons in the
button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions.

If you want another component such as a push button to base its
action on the selection, then that component’s Callback callback
can get the handle of the selected radio button or toggle button
from the button group’s SelectedObject property.

1-7250

Uibuttongroup Properties

Note For GUIDE GUIs, hObject contains the handle of the
selected radio button or toggle button. See “Callbacks for Specific
Components” for more information.

SelectionHighlight
{on} | off

Object highlighted when selected. When the Selected property
is on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

ShadowColor
ColorSpec

3-D frame shadow color. ShadowColor is a three-element RGB
vector or one of the MATLAB predefined names, specifying
the shadow color. See the ColorSpec reference page for more
information on specifying color.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

1-7251

Uibuttongroup Properties

Title
string

Title string. The text displayed in the button group title. You can
position the title using the TitlePosition property.

Vertical slash (’|’) characters are not interpreted as line breaks
and instead show up in the text displayed in the uibuttongroup
title.

Setting a property value to default, remove, or factory produces
the effect described in “Defining Default Values”. To set Title to
one of these words, you must precede the word with the backslash
character. For example,

hp = uibuttongroup('Title','\default');

TitlePosition
{lefttop} | centertop | righttop |
leftbottom | centerbottom | rightbottom

Location of the title. This property determines the location of the
title string, in relation to the uibuttongroup.

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uibuttongroup objects, Type is always the string 'uipanel',
because its default properties derive from uipanels.

UIContextMenu
handle

Associate a context menu with a uibuttongroup. Assign this
property the handle of a Uicontextmenu object. MATLAB displays
the context menu whenever you right-click the uibuttongroup.
Use the uicontextmenu function to create the context menu.

1-7252

Uibuttongroup Properties

Units
inches | centimeters | {normalized} |
points | pixels | characters

Units of measurement. MATLAB uses these units to interpret
the Position property. For the button group itself, units are
measured from the lower-left corner of its parent figure window,
panel, or button group. For children of the button group, they are
measured from the lower-left corner of the button group.

• Normalized units map the lower-left corner of the button group
or figure window to (0,0) and the upper-right corner to (1.0,1.0).

• inches, centimeters, and points are absolute units (1 point
= 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the
uibuttongroup object. MATLAB does not use this data, but you
can access it using set and get.

Visible
{on} | off

Uibuttongroup visibility. By default, a uibuttongroup object is
visible. When set to 'off', the uibuttongroup is not visible, as

1-7253

Uibuttongroup Properties

are all child objects of the button group. When a button group is
hidden in this manner, you can still query and set its properties.

Note The value of a uibuttongroup’s Visible property determines
whether its child components, such as axes, buttons, uipanels,
and other uibuttongroups, are visible. However, changing the
Visible property of a button group does not change the settings of
the Visible property of its child components even though hiding
the button group causes them to be hidden.

1-7254

uicontextmenu

Purpose Create context menu

Syntax handle = uicontextmenu('PropertyName',PropertyValue,...)

Description handle = uicontextmenu('PropertyName',PropertyValue,...)
creates a context menu, which is a menu that appears when the user
right-clicks on a graphics object. See Uicontextmenu Properties for
more information.

In its initial state, a context menu has no menu items. You create menu
items within the context menu using the uimenu function. Menu items
appear in the order in which the uimenu statements appear. You then
associate a context menu with an object by specifying the handle of the
context menu as the value for its UIContextMenu property.

Examples The following statements define a context menu associated with a line
on a graph. The menu items enable you to change the line style.

% Create axes and save handle
hax = axes;
% Plot three lines
plot(rand(20,3));
% Define a context menu; it is not attached to anything
hcmenu = uicontextmenu;
% Define callbacks for context menu
% items that change linestyle
hcb1 = ['set(gco,''LineStyle'',''--'')'];
hcb2 = ['set(gco,''LineStyle'','':'')'];
hcb3 = ['set(gco,''LineStyle'',''-'')'];
% Define the context menu items and install their callbacks
item1 = uimenu(hcmenu,'Label','dashed','Callback',hcb1);
item2 = uimenu(hcmenu,'Label','dotted','Callback',hcb2);
item3 = uimenu(hcmenu,'Label','solid','Callback',hcb3);
% Locate line objects
hlines = findall(hax,'Type','line');
% Attach the context menu to each line
for line = 1:length(hlines)

1-7255

uicontextmenu

set(hlines(line),'uicontextmenu',hcmenu)
end

When you right-click on any line (or, on a Macintosh computer with
a one-button mouse, press the Ctrl key and click), the context menu
appears, as shown in the following figure.

To make context menus available immediately, attach them to lines at
the time they are plotted. Therefore, when creating a GUI that uses
such context menus, place code like the preceding in the callbacks that
perform plotting for the GUI.

A best practice is to use function handles for callbacks. Only define
callbacks as strings for simple actions. For example, you can add check
marks to menu items (using the Checked uimenu property) to indicate
the current style for each line. To manage the check marks, define
the menu item callbacks as function handles. Place the code for the
functions in the GUI code file rather than placing callback strings in
the figure.

1-7256

uicontextmenu

Generally, you need to attach context menus to lines at the time
they are plotted in order to be sure that the menus are immediately
available. Therefore, code such as the above could be placed in or called
from the callbacks that perform plotting for the GUI.

Tutorials See “Context Menus” in the MATLAB Creating Graphical User
Interfaces documentation.

See Also uibuttongroup | uicontrol | uimenu | uipanel

1-7257

Uicontextmenu Properties

Purpose Describe context menu properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uicontext-
menu
Properties

This section lists all properties useful to uicontextmenu objects along
with valid values and descriptions of their use. Curly braces {} enclose
default values.

Property Purpose

BeingDeleted This object is being deleted

BusyAction Callback routine interruption

Callback Control action

Children The uimenus defined for the uicontextmenu

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

HandleVisibility Whether handle is accessible from command
line and GUIs

Interruptible Callback routine interruption mode

Parent Uicontextmenu object’s parent

1-7258

Uicontextmenu Properties

Property Purpose

Position Location of uicontextmenu when Visible is on

Tag User-specified object identifier

Type Class of graphics object

UserData User-specified data

Visible Uicontextmenu visibility

BeingDeleted

on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

1-7259

Uicontextmenu Properties

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

Callback
string

Control action. A routine that executes whenever you right-click
an object for which a context menu is defined. The routine
executes immediately before the context menu is posted. Define
this routine as a string that is a valid MATLAB expression or
the name of a code file. The expression executes in the MATLAB
workspace.

Children
matrix

The uimenu items defined for the uicontextmenu.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uicontextmenu object.
MATLAB sets all property values for the uicontextmenu before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the uicontextmenu being created.

Setting this property on an existing uicontextmenu object has no
effect.

1-7260

Uicontextmenu Properties

You can define a default CreateFcn callback for all new
uicontextmenus. This default applies unless you override it
by specifying a different CreateFcn callback when you call
uicontextmenu. For example, the code

set(0,'DefaultUicontextmenuCreateFcn','set(gcbo,...
''Visible'',''on'')')

creates a default CreateFcn callback that runs whenever you
create a new context menu. It sets the default Visible property
of a context menu.

To override this default and create a context menu whose Visible
property is set to a different value, call uicontextmenu with code
similar to

hpt = uicontextmenu(...,'CreateFcn','set(gcbo,...
''Visible'',''off'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback
runs after the property values are set, and can override property
values you have set explicitly in the uicontextmenu call. In the
example above, if instead of redefining the CreateFcn property
for this uicontextmenu, you had explicitly set Visible to off,
the default CreateFcn callback would have set Visible back to
the default, i.e., on.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

For information on the syntax of callback functions, see Function
Handle Callbacks.

1-7261

../ref/rootobject_props.html#RecursionLimit

Uicontextmenu Properties

DeleteFcn
string or function handle

Delete uicontextmenu callback routine. A callback routine that
executes when you delete the uicontextmenu object (for example,
when you issue a delete command or clear the figure containing
the uicontextmenu). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

For information on the syntax of callback functions, see Function
Handle Callbacks.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from

1-7262

Uicontextmenu Properties

command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible at
all times. This might be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For user interface objects, the Interruptible property affects the
callbacks for these properties only:

• ButtonDownFcn

• KeyPressFcn

• KeyReleaseFcn

• WindowButtonDownFcn

• WindowButtonMotionFcn

• WindowButtonUpFcn

• WindowKeyPressFcn

• WindowKeyReleaseFcn

• WindowScrollWheelFcn

1-7263

Uicontextmenu Properties

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. MATLAB handles both callbacks based on the
Interruptible property of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

The BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting the Interruptible property to on (default), allows a
callback from other user interface objects to interrupt callback
functions originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.

1-7264

Uicontextmenu Properties

For more information, see “Control Callback Execution and
Interruption”.

Note If the interrupting callback is a DeleteFcnor CreateFcn
callback, or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. An object’s ButtonDownFcn or Callback
routine is processed according to the rules described previously
in this section.

Parent
handle

Uicontextmenu’s parent. The handle of the uicontextmenu’s
parent object, which must be a figure.

Position
vector

Uicontextmenu’s position. A two-element vector that defines the
location of a context menu posted by setting the Visible property
value to on. Specify Position as

[x y]

where vector elements represent the horizontal and vertical
distances in pixels from the bottom left corner of the figure
window.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This

1-7265

Uicontextmenu Properties

is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string

Class of graphics object. For uicontextmenu objects, Type is
always the string 'uicontextmenu'.

UserData
matrix

User-specified data. Any data you want to associate with the
uicontextmenu object. MATLAB does not use this data, but you
can access it using set and get.

Visible
on | {off}

Uicontextmenu visibility. The Visible property can be used in
two ways:

• Its value indicates whether the context menu is currently
posted. While the context menu is posted, the property value is
on; when the context menu is not posted, its value is off.

• Its value can be set to on to force the posting of the context
menu. Similarly, setting the value to off forces the context
menu to be removed. When used in this way, the Position
property determines the location of the posted context menu.

See Also uicontextmenu

1-7266

uicontrol

Purpose Create user interface control object

Syntax handle = uicontrol('Name',Value,...)
handle = uicontrol(parent,'Name',Value,...)
handle = uicontrol
uicontrol(uich)

Description handle = uicontrol('Name',Value,...) creates a uicontrol and
assigns the specified properties and values to it. It assigns the default
values to any properties you do not specify. The default uicontrol style is
pushbutton. The default parent is the current figure. See the Uicontrol
Properties reference page for more information.

handle = uicontrol(parent,'Name',Value,...) creates a uicontrol
in the object specified by the handle, parent. If you also specify a
different value for the Parent property, the value of the Parent property
takes precedence. parent can be the handle of a figure, uipanel, or
uibuttongroup.

handle = uicontrol creates a push button in the current figure. The
uicontrol function assigns all properties their default values.

uicontrol(uich) gives focus to the uicontrol specified by the handle,
uich.

uicontrol creates a uicontrol graphics objects (user interface controls),
which you use to implement graphical user interfaces.

Specifying the Uicontrol Style

When selected, most uicontrol objects perform a predefined action. To
create a specific type of uicontrol, set the Style property as one of
the strings that follow. You can specify a partial string if it is unique
among all the styles. For example, instead of 'radiobutton', you can
specify 'radio'.

• 'checkbox' – A check box generates an action when you select it.
Use check boxes to provide a number of independent choices. To
activate a check box, click the mouse button on the object. The check
box updates its appearance when its state changes.

1-7267

uicontrol

• 'edit' – Editable text fields enable you to enter or modify text
values. Use editable text when you want free text as input. To enable
multiple lines of text, set Max-Min>1. Multiline edit boxes provide a
vertical scroll bar for scrolling. The arrow keys also provide a way
to scroll. Obtain the current text by getting the String property.
The String property does not update as you type in an edit box.
To execute the callback routine for an edit text control, type in the
desired text and then do one of the following:

- Click another component, the menu bar, or the background of the
GUI.

- For a single line editable text box, press Enter.

- For a multiline editable text box, press Ctl+Enter.

• 'frame'

Note MathWorks recommends you use uipanel or uibuttongroup
instead of frames.

GUIDE continues to support frames in those GUIs that contain them,
but the frame component does not appear in the GUIDE Layout
Editor component palette.

• 'listbox' – List boxes display a list of items, from which you
can select one or more items. Unlike pop-up menus, list boxes do
not expand when clicked. The Min and Max properties control the
selection mode:

- To enable multiple selection of items, set Max-Min > 1.

- To enable selection of only one item at a time, set Max-Min <= 1

The Value property stores the row indexes of currently selected list
box items, and is a vector value when you select multiple items.
After any mouse button up event that changes the Value property,
MATLAB evaluates the list box’s callback routine. To delay action

1-7268

uicontrol

when multiple items can be selected, you can associate a "Done" push
button with the list box. Use the callback for that button to evaluate
the list box Value property.

List boxes with the Enable property set to on differentiate between
single and double left clicks. MATLAB sets the figure SelectionType
property to normal or open accordingly before evaluating the list
box Callback property. For enabled list boxes, Ctrl-left click and
Shift-left click also set the figure SelectionType property to normal
or open, respectively indicating a single or double click.

• 'popupmenu' – Pop-up menus (also known as drop-down menus
or combo boxes) display a list of choices when you open them with
a button-press. When closed, a pop-up menu indicates the current
choice. Pop-up menus are useful when you want to provide a number
of mutually exclusive choices, but do not want to take up the amount
of space that a group of radio buttons requires.

• 'pushbutton' – Push buttons generate an action when activated.
Left-click a push button to activate it. The button appears to depress
until you release the mouse button. The callback activates when you
release the mouse button while still pointing within the push button.

• 'radiobutton' – Radio buttons are similar to check boxes, but are
intended to be mutually exclusive within a group of related radio
buttons. When used this way, you can only select one radio button
at any given time). To activate a radio button, click and release
the mouse button over it. The easiest way to implement mutually
exclusive behavior for a set of radio buttons is to place them within
a uibuttongroup.

• 'slider' – Sliders accept numeric input within a specific range
when you move the “thumb” button along a bar. The location of the
thumb indicates a numeric value, assigned to the Value property
when you release the mouse button. You can set the minimum,
maximum, and current values, and step sizes of a slider.

Move the thumb by doing any one of the following:

- Press the mouse button on the thumb, and drag it along the bar.

1-7269

uicontrol

- Click in the bar or on arrow buttons located at both ends of the bar.

- Click the keyboard arrow keys when the slider is in focus.

• 'text' – Static text boxes display lines of text. You typically use
static text to label other controls, provide information to the user,
or indicate values associated with a slider. Users cannot change
static text interactively. Static text controls do not activate callback
routines when clicked.

• 'togglebutton' – Toggle buttons are similar in appearance to push
buttons, but they visually indicate their state, either on (pressed
down) or off (up). Clicking a toggle button changes its state, and
switches its Value property between Min and Max.

Tips • To simulate activation on static text by a mouse click, set the text
object’s Enable property to Inactive, and set its ButtonDownFcn
callback to perform an action. For example, the following code
displays ‘Text was clicked’ in the Command Window when you
click on the Click Me! text in the running GUI. (Without the set
command, it would do nothing.)

h = uicontrol('Style','text','String','Click Me!');
set(h,'Enable','Inactive','ButtonDownFcn',...

'disp(''Text was clicked'')')

• Adding a uicontrol to a figure removes the figure toolbar when the
figure Toolbar property is 'auto' (which is the default). To prevent
this from happening, set the Toolbar property to 'figure'. You
can restore the toolbar by selecting Figure Toolbar from the View
menu regardless of this property setting.

• The uicontrol function accepts property name/property value pairs,
structures, and cell arrays as input arguments and optionally returns
the handle of the created object. You can also use the set and get
functions to set and query property values after creating the control.

• A uicontrol object is a child of a figure, uipanel, or uibuttongroup.
Therefore, the uicontrol object does not require an axes to exist when
placed in a figure window, uipanel, or uibuttongroup.

1-7270

uicontrol

• When you pause MATLAB and a uicontrol has focus, pressing a
keyboard key does not cause MATLAB to resume. Click anywhere
outside a uicontrol and then press any key. For more information,
see the pause function.

Examples Create a figure and an axes to contain a 3-D surface plot.

figure
hax = axes('Units','pixels');
surf(peaks)

Place a uicontrol object to let users change the colormap with a pop-up
menu. Supply a function handle as the object’s Callback property.

uicontrol('Style', 'popup',...
'String', 'jet|hsv|hot|cool|gray',...
'Position', [20 340 100 50],...
'Callback', @setmap);
% The popup function handle callback
% is implemented as a local function

1-7271

uicontrol

Add a different uicontrol. Create a push button that clears the current
axes when pressed. Position the button inside the axes at the lower
left. All uicontrols have default units of pixels. In this example, the
axes has units of pixels, as well.

uicontrol('Style', 'pushbutton', 'String', 'Clear',...
'Position', [20 20 50 20],...
'Callback', 'cla');

% The pushbutton string callback
% calls a MATLAB function

1-7272

uicontrol

Add a slider uicontrol to control the vertical scaling of the surface object.
Position it at the bottom right corner of the figure. Then add a text
uicontrol as a label for the slider.

uicontrol('Style', 'slider',...
'Min',1,'Max',50,'Value',41,...
'Position', [400 20 120 20],...
'Callback', {@surfzlim,hax});

% Uses cell array function handle callback

1-7273

uicontrol

% Implemented as a local function with an argument

uicontrol('Style','text',...
'Position',[400 45 120 20],...
'String','Vertical Exaggeration')

To operate the controls, you need callback functions. The callback for
the pop-up menu is a local function called setmap that contains the
following code.

1-7274

uicontrol

function setmap(hObj,event) %#ok<INUSD>
% Called when user activates popup menu
val = get(hObj,'Value');
if val ==1

colormap(jet)
elseif val == 2

colormap(hsv)
elseif val == 3

colormap(hot)
elseif val == 4

colormap(cool)
elseif val == 5

colormap(gray)
end

end

The callback for the slider is also a local function in the same file, and
contains the following code.

function surfzlim(hObj,event,ax) %#ok<INUSL>
% Called to set zlim of surface in figure axes
% when user moves the slider control
val = 51 - get(hObj,'Value');
zlim(ax,[-val val]);

end

To use the uicontrols in the example, you need to put all the functions in
a MATLAB code file. Copy the following code and paste it into a new file.
Save the file as ex_uicontrol.m on your search path, and then run it.

function ex_uicontrol
% Example code for uicontrol reference page

% Create a figure and an axes to
% contain a 3-D surface plot.
figure
hax = axes('Units','pixels');

1-7275

uicontrol

surf(peaks)
% Create a uicontrol object to let users
% change the colormap with a pop-up menu.
% Supply a function handle as the object's
% Callback:
uicontrol('Style', 'popup',...

'String', 'hsv|hot|cool|gray',...
'Position', [20 340 100 50],...
'Callback', @setmap);

% Add a different uicontrol. Create a push button
% that clears the current axes when pressed.
% Position the button insidethe axes at the lower
% left. All uicontrols have default units of pixels.
% In this example, the axes does as well.
uicontrol('Style', 'pushbutton', 'String', 'Clear',...

'Position', [20 20 50 20],...
'Callback', 'cla');

% Add a slider uicontrol to control the vertical
% scaling of the surface object. Position it
% under the Clear button.
uicontrol('Style', 'slider',...

'Min',1,'Max',50,'Value',41,...
'Position', [400 20 120 20],...
'Callback', {@surfzlim,hax});

% Slider function handle callback
% Implemented as a local function

% Add a text uicontrol to label the slider.
uicontrol('Style','text',...

'Position',[400 45 120 20],...
'String','Vertical Exaggeration')

end

function setmap(hObj,event) %#ok<INUSD>

1-7276

uicontrol

% Called when user activates popup menu
val = get(hObj,'Value');
if val ==1

colormap(jet)
elseif val == 2

colormap(hsv)
elseif val == 3

colormap(hot)
elseif val == 4

colormap(cool)
elseif val == 5

colormap(gray)
end

end

function surfzlim(hObj,event,ax) %#ok<INUSL>
% Called to set zlim of surface in figure axes
% when user moves the slider control
val = 51 - get(hObj,'Value');
zlim(ax,[-val val]);

end

See Also textwrap | uibuttongroup | uimenu | uipanel | uipushtool |
uitable | uitoggletool

How To • Examples: Programming GUI Components

1-7277

Uicontrol Properties

Purpose Describe user interface control (uicontrol) properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see “Setting Default Property
Values”. You can also set default uicontrol properties on the root and
figure levels:

set(0,'DefaultUicontrolProperty',PropertyValue...)
set(gcf,'DefaultUicontrolProperty',PropertyValue...)

where Property is the name of the uicontrol property whose default
value you want to set and PropertyValue is the value you are specifying
as the default. Use set and get to access uicontrol properties.

For information on using these uicontrols within GUIDE, the MATLAB
GUI development environment, see Programming GUI Components in
the MATLAB Creating GUIs documentation.

Uicontrol
Properties

This section lists all properties useful to uicontrol objects along with
valid values and descriptions of their use. Curly braces {} enclose
default values.

Property Purpose

BackgroundColor Object background color

BeingDeleted This object is being deleted

BusyAction Callback routine interruption

ButtonDownFcn Button-press callback routine

1-7278

Uicontrol Properties

Property Purpose

Callback Control action

CData Truecolor image displayed on the control

Children Uicontrol objects have no children

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

Enable Enable or disable the uicontrol

Extent position rectangle (read only)

FontAngle Character slant

FontName Font family

FontSize Font size

FontUnits Font size units

FontWeight Weight of text characters

ForegroundColor Color of text

HandleVisibility Whether handle is accessible from command
line and GUIs

HorizontalAlignment Alignment of label string

Interruptible Callback routine interruption mode

KeyPressFcn Key press callback routine

ListboxTop Index of top-most string displayed in list box

Max Maximum value (depends on uicontrol
object)

Min Minimum value (depends on uicontrol
object)

Parent Uicontrol object’s parent

1-7279

Uicontrol Properties

Property Purpose

Position Size and location of uicontrol object

SliderStep Slider step size

String Uicontrol object label, also list box and
pop-up menu items

Style Type of uicontrol object

Tag User-specified object identifier

TooltipString Content of object’s tooltip

Type Class of graphics object

UIContextMenu Uicontextmenu object associated with the
uicontrol

Units Units to interpret position vector

UserData User-specified data

Value Current value of uicontrol object

Visible Uicontrol visibility

BackgroundColor
ColorSpec

Object background color. The color used to fill the uicontrol
rectangle. Specify a color using a three-element RGB vector
or one of the MATLAB predefined names. The default color
is determined by system settings. See ColorSpec for more
information on specifying color.

Note Platform look and feel for a GUI element can override
change requests from MATLAB. It is possible your system will not
honor a request to change the background color.

1-7280

Uicontrol Properties

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

1-7281

Uicontrol Properties

ButtonDownFcn
string or function handle (GUIDE sets this property)

Button-press callback routine. A callback routine that can execute
when you press a mouse button while the pointer is on or near a
uicontrol. Specifically:

• If the uicontrol’s Enable property is set to on, the
ButtonDownFcn callback executes when you click the right or
left mouse button in a 5-pixel border around the uicontrol or
when you click the right mouse button on the control itself.

• If the uicontrol’s Enable property is set to inactive or off, the
ButtonDownFcn executes when you click the right or left mouse
button in the 5-pixel border or on the control itself.

This is useful for implementing actions to interactively modify
control object properties, such as size and position, when they are
clicked on (using selectmoveresize, for example).

Define this routine as a string that is a valid MATLAB expression
or the name of a code file. The expression executes in the
MATLAB workspace.

To add a ButtonDownFcn callback in GUIDE, select View
Callbacks from the Layout Editor View menu, then select
ButtonDownFcn. GUIDE sets this property to the appropriate
string and adds the callback to the code file the next time you
save the GUI. Alternatively, you can set this property to the
string %automatic. The next time you save the GUI, GUIDE sets
this property to the appropriate string and adds the callback to
the code file.

Use the Callback property to specify the callback routine that
executes when you activate the enabled uicontrol (e.g., click a
push button).

1-7282

Uicontrol Properties

Callback
string or function handle (GUIDE sets this property)

Control action. A function that executes whenever you activate
the uicontrol object (e.g., when you click on a push button or move
a slider). Define this function as a string that is a valid MATLAB
expression or the name of a code file. The expression executes in
the MATLAB workspace.

See “Callbacks for Specific Components” for examples of callback
functions for each style of component.

CData
matrix

Truecolor image displayed on control. A three-dimensional matrix
of RGB values that defines a truecolor image displayed on a
control, which must be a push button or toggle button. Each
value must be between 0.0 and 1.0. Setting CData on a radio
button or checkbox will replace the default CData on these
controls. The control will continue to work as expected, but its
state is not reflected by its appearance when clicked.

For push buttons and toggle buttons, CData overlaps the
String. In the case of radio buttons and checkboxes, CData
takes precedence over String and, depending on its size, it can
displace the text.

Setting CData to [] restores the default CData for radio buttons
and checkboxes.

Children
matrix

The empty matrix; uicontrol objects have no children.

Clipping
{on} | off

1-7283

Uicontrol Properties

This property has no effect on uicontrol objects.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uicontrol object.
MATLAB sets all property values for the uicontrol before
executing the CreateFcn callback so these values are available
to the callback. Within the function, use gcbo to get the handle
of the uicontrol being created.

Setting this property on an existing uicontrol object has no effect.

You can define a default CreateFcn callback for all new uicontrols.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uicontrol. For example, the
code

set(0,'DefaultUicontrolCreateFcn','set(gcbo,...
''BackgroundColor'',''white'')')

creates a default CreateFcn callback that runs whenever you
create a new uicontrol. It sets the default background color of
all new uicontrols.

To override this default and create a uicontrol whose
BackgroundColor is set to a different value, call uicontrol with
code similar to

hpt = uicontrol(...,'CreateFcn','set(gcbo,...
''BackgroundColor'',''blue'')')

1-7284

Uicontrol Properties

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uicontrol call. In the example
above, if instead of redefining the CreateFcn property for this
uicontrol, you had explicitly set BackgroundColor to blue, the
default CreateFcn callback would have set BackgroundColor
back to the default, i.e., white.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Delete uicontrol callback routine. A callback routine that executes
when you delete the uicontrol object (e.g., when you issue a delete
command or clear the figure containing the uicontrol). MATLAB
executes the routine before destroying the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | inactive | off

1-7285

../ref/rootobject_props.html#RecursionLimit

Uicontrol Properties

Enable or disable the uicontrol. This property controls how
uicontrols respond to mouse button clicks, including which
callback routines execute.

• on – The uicontrol is operational (the default).

• inactive – The uicontrol is not operational, but looks the same
as when Enable is on.

• off – The uicontrol is not operational and its image (set by the
Cdata property) is grayed out.

When you left-click on a uicontrol whose Enable property is on,
MATLAB performs these actions in this order:

1 Sets the figure SelectionType property.

2 Executes the uicontrol Callback routine, if any. (Static text
components do not use callbacks.)

3 Does not set the figure CurrentPoint property and does not
execute either the uicontrol ButtonDownFcn or the figure
WindowButtonDownFcn callback.

Single-clicking or double-clicking an enabled uicontrol with the
left mouse button sets the figure SelectionType property to
normal, unless the uicontrol Style is listbox. For list boxes,
double-clicking sets the figure SelectionType property to open
on the second of the two clicks, enabling the list box callback to
detect a set of multiple choices.

When you left-click on a uicontrol whose Enable property is off
or inactive, or when you right-click a uicontrol whose Enable
property has any value, MATLAB performs these actions in this
order:

1 Sets the figure SelectionType property.

2 Sets the figure CurrentPoint property.

3 Executes the figure WindowButtonDownFcn callback, if provided.

1-7286

Uicontrol Properties

4 Executes the uicontrol ButtonDownFcn callback, if provided.

Extent
position rectangle (read only)

Size of uicontrol character string. A four-element vector that
defines the size and position of the character string used to label
the uicontrol. It has the form:

[0,0,width,height]

The first two elements are always zero. width and height are
the dimensions of the rectangle. All measurements are in units
specified by the Units property.

Since the Extent property is defined in the same units as the
uicontrol itself, you can use this property to determine proper
sizing for the uicontrol with regard to its label. Do this by

• Defining the String property and selecting the font using the
relevant properties.

• Getting the value of the Extent property.

• Defining the width and height of the Position property to be
somewhat larger than the width and height of the Extent.

For multiline strings, the Extent rectangle encompasses all
the lines of text. For single line strings, the height element of
the Extent property returned always indicates the height of a
single line, and its width element always indicates the width of
the longest line, even if the string wraps when displayed on the
control. Edit boxes are considered multiline if Max - Min > 1.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Setting this property

1-7287

Uicontrol Properties

to italic or oblique selects a slanted version of the font, when
it is available on your system.

FontName
string

Font family. The name of the font in which to display the String.
To display and print properly, this must be a font that your
system supports. The default font is system dependent.

Note MATLAB GUIs do not support the Marlett and Symbol
font families.

To use a fixed-width font that looks good in any locale (and
displays properly in Japan, where multibyte character sets are
used), set FontName to the string FixedWidth (this string value
is case sensitive):

set(uicontrol_handle, 'FontName', 'FixedWidth')

This parameter value eliminates the need to hard code the name
of a fixed-width font, which may not display text properly on
systems that do not use ASCII character encoding (such as in
Japan). A properly written MATLAB application that needs to
use a fixed-width font should set FontName to FixedWidth and
rely on the root FixedWidthFontName property to be set correctly
in the end user’s environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.
Setting the root FixedWidthFontName property causes an
immediate update of the display to use the new font.

1-7288

Uicontrol Properties

Tip To determine what fonts exist on your system (which can
differ from the GUI user’s system), use the uisetfont GUI to
select a font and return its name and other characteristics in a
MATLAB structure.

FontSize
size in FontUnits

Font size. A number specifying the size of the font in which
to display the String, in units determined by the FontUnits
property. The default point size is system dependent.

FontUnits
{points} | normalized | inches |
centimeters | pixels

Font size units. This property determines the units used by the
FontSize property. Normalized units interpret FontSize as
a fraction of the height of the uicontrol. When you resize the
uicontrol, MATLAB modifies the screen FontSize accordingly.
pixels, inches, centimeters, and points are absolute units (1
point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a
font from those available on your particular system. Setting this
property to bold causes MATLAB to use a bold version of the font,
when it is available on your system.

ForegroundColor
ColorSpec

Color of text. This property determines the color of the text
defined for the String property (the uicontrol label). Specify a

1-7289

Uicontrol Properties

color using a three-element RGB vector or one of the MATLAB
predefined names. The default text color is black. See ColorSpec
for more information on specifying color.

Note If you change the ForegroundColor for a uicontrol
listbox, MATLAB uses that color for all listbox items except
selected listbox items. For selected items MATLAB uses a color
that ensures good contrast between the text of selected items and
the color that indicates a selection.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI

1-7290

Uicontrol Properties

(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

Note Radio buttons and toggle buttons that are managed by a
uibuttongroup should not be accessed outside the button group.
Set the HandleVisibility of such radio buttons and toggle
buttons to off to prevent inadvertent access.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on uicontrol
objects.

Note Use of the uicontrol HitTest property is not
recommended. This property might be removed in a future
release.

HorizontalAlignment
left | {center} | right

Horizontal alignment of label string. This property determines
the justification of the text defined for the String property (the
uicontrol label):

• left— Text is left justified with respect to the uicontrol.

• center— Text is centered with respect to the uicontrol.

1-7291

../ref/rootobject_props.html#ShowHiddenHandles

Uicontrol Properties

• right— Text is right justified with respect to the uicontrol.

The contents of edit and text uicontrols are always vertically
aligned to the top of the rectangle.

Note On Microsoft Windows systems, although this property
can be specified on all uicontrols, it affects only edit and text
uicontrols.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For user interface objects, the Interruptible property affects the
callbacks for these properties only:

• ButtonDownFcn

• KeyPressFcn

• KeyReleaseFcn

• WindowButtonDownFcn

• WindowButtonMotionFcn

• WindowButtonUpFcn

• WindowKeyPressFcn

• WindowKeyReleaseFcn

• WindowScrollWheelFcn
A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the

1-7292

Uicontrol Properties

running callback. MATLAB handles both callbacks based on the
Interruptible property of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

The BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting the Interruptible property to on (default), allows a
callback from other user interface objects to interrupt callback
functions originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

1-7293

Uicontrol Properties

Note If the interrupting callback is a DeleteFcnor CreateFcn
callback, or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. An object’s ButtonDownFcn or Callback
routine is processed according to the rules described previously
in this section.

KeyPressFcn
string or function handle

Key press callback function. A callback routine invoked by a key
press when the callback’s uicontrol object has focus. Focus is
denoted by a border or a dotted border, respectively, in UNIX
and Microsoft Windows. If no uicontrol has focus, the figure’s key
press callback function, if any, is invoked. KeyPressFcn can be
a function handle, the name of a code file, or any legal MATLAB
expression.

If the specified value is the name of a code file, the callback
routine can query the figure’s CurrentCharacter property to
determine what particular key was pressed and thereby limit the
callback execution to specific keys.

If the specified value is a function handle, the callback routine
can retrieve information about the key that was pressed from its
event data structure argument.

1-7294

../ref/figure_props.html#CurrentCharacter

Uicontrol Properties

Examples:Event Data
Structure
Field Description a = Shift Shift/a

Character Character interpretation of
the key that was pressed.

'a' '=' '' 'A'

Modifier Current modifier, such as
'control', or an empty cell
array if there is no modifier

{1x0
cell}

{1x0
cell}

{'shift'}{'shift'}

Key Name of the key that was
pressed.

'a' 'equal' 'shift' 'a'

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

ListboxTop
scalar

Index of top-most string displayed in list box. This property
applies only to the listbox style of uicontrol. It specifies which
string appears in the top-most position in a list box that is not
large enough to display all list entries. ListboxTop is an index
into the array of strings defined by the String property and must
have a value between 1 and the number of strings. Noninteger
values are fixed to the next lowest integer.

Max
scalar

Maximum value. This property specifies the largest value allowed
for the Value property. Different styles of uicontrols interpret
Max differently:

• Check boxes – Max is the setting of the Value property while
the check box is selected.

• Editable text – The Value property does not apply. If Max - Min
> 1, then editable text boxes accept multiline input. If Max - Min

1-7295

Uicontrol Properties

<= 1, then editable text boxes accept only single line input. The
absolute values of Max and Min have no effect on the number of
lines an edit box can contain; a multiline edit box can contain
any number of lines.

• List boxes – If Max - Min > 1, then list boxes allow multiple item
selection. If Max - Min <= 1, then list boxes do not allow multiple
item selection. When they do, Value can be a vector of indices.

• Radio buttons – Max is the setting of the Value property when
the radio button is selected.

• Sliders – Max is the maximum slider value and must be greater
than the Min property. The default is 1.

• Toggle buttons – Max is the value of the Value property when
the toggle button is selected. The default is 1.

• Pop-up menus, push buttons, and static text do not use the
Max property.

Min
scalar

Minimum value. This property specifies the smallest value
allowed for the Value property. Different styles of uicontrols
interpret Min differently:

• Check boxes – Min is the setting of the Value property while
the check box is not selected.

• Editable text – The Value property does not apply. If Max - Min
> 1, then editable text boxes accept multiline input. If Max - Min
<= 1, then editable text boxes accept only single line input. The
absolute values of Max and Min have no effect on the number of
lines an edit box can contain; a multiline edit box can contain
any number of lines.

• List boxes – If Max - Min > 1, then list boxes allow multiple item
selection. If Max - Min <= 1, then list boxes allow only single
item selection. When they do, Value can be a vector of indices.

1-7296

Uicontrol Properties

• Radio buttons – Min is the setting of the Value property when
the radio button is not selected.

• Sliders – Min is the minimum slider value and must be less
than Max. The default is 0.

• Toggle buttons – Min is the value of the Value property when
the toggle button is not selected. The default is 0.

• Pop-up menus, push buttons, and static text do not use the
Min property.

Parent
handle

Uicontrol parent. The handle of the uicontrol’s parent object.
You can move a uicontrol object to another figure, uipanel, or
uibuttongroup by setting this property to the handle of the new
parent.

Position
position rectangle

Size and location of uicontrol. The rectangle defined by this
property specifies the size and location of the control within
the parent figure window, uipanel, or uibuttongroup. Specify
Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of the
parent object to the lower-left corner of the uicontrol object. width
and height are the dimensions of the uicontrol rectangle. All
measurements are in units specified by the Units property.

On Microsoft Windows systems, the height of pop-up menus is
automatically determined by the size of the font. The value you
specify for the height of the Position property has no effect.

1-7297

Uicontrol Properties

The width and height values determine the orientation of sliders.
If width is greater than height, then the slider is oriented
horizontally, If height is greater than width, then the slider is
oriented vertically.

Note The height of a pop-up menu is determined by the font size.
The height you set in the position vector is ignored. The height
element of the position vector is not changed.

On Mac platforms, the height of a horizontal slider is constrained.
If the height you set in the position vector exceeds this constraint,
the displayed height of the slider is the maximum allowed. The
height element of the position vector is not changed.

Selected
on | {off}

Is object selected. When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

Note Use of the uicontrol Selected property is not
recommended. This property might be removed in a future
release.

SelectionHighlight
{on} | off

Object highlight when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

1-7298

Uicontrol Properties

Note Use of the uicontrol SelectionHighlight property is
not recommended. This property might be removed in a future
release.

SliderStep
[minor_step major_step]

Slider step size, a two-element vector of positive values that
indicates the size of the major and minor steps as a percent
change in slider value. Both steps should be greater than 1e-6,
and minor_step should be less than or equal to major_step. The
slider Value changes up or down by minor_step when you click
the arrow button, and up or down by major_step when you click
the slider trough, also called the channel.

The actual step size is a function of the specified SliderStep
and the total slider range (Max - Min). The default, [0.01 0.10],
provides a 1 percent change for clicks on the arrow button and a
10 percent change for clicks in the trough.

For example, if you create the following slider,

uicontrol('Style','slider','Min',1,'Max',7,...
'Value',2,'SliderStep',[0.1 0.6])

clicking an arrow button moves the thumb indicator toward it by
minor_step*(max-min):

0.1*(7-1)
ans =

0.6000

Clicking the trough moves the thumb indicator toward the mouse
pointer by major_step*(max-min):

0.6*(7-1)

1-7299

Uicontrol Properties

ans =
3.6000

If clicking moves the slider to a value outside the range, the
thumb indicator moves only to the Max or Min value.

As major_step increases, the slider thumb indicator grows longer.
When major_step is 1, the thumb is half as long as the trough.
When major_step is greater than 1, the thumb continues to grow,
slowly approaching the full length of the trough.

See also the Max, Min, and Value properties.

String
string

Uicontrol label, list box items, pop-up menu choices.

For check boxes, editable text, push buttons, radio buttons,
static text, and toggle buttons, the text displayed on the object.
For list boxes and pop-up menus, the set of entries or items
displayed in the object.

Note If you specify a numerical value for String, MATLAB
converts it to char but the result may not be what you expect. If
you have numerical data, you should first convert it to a string,
e.g., using num2str, before assigning it to the String property.

For uicontrol objects that display only one line of text
(check box, push button, radio button, toggle button), if the string
value is specified as a cell array of strings or padded string matrix,
only the first string of a cell array or of a padded string matrix
is displayed; the rest are ignored. Vertical slash (’|’) characters
are not interpreted as line breaks and instead show up in the
text displayed in the uicontrol.

1-7300

Uicontrol Properties

For multiple line editable text or static text controls, line
breaks occur between each row of the string matrix, and each cell
of a cell array of strings. Vertical slash (’|’) characters and \n
characters are not interpreted as line breaks, and instead show
up in the text displayed in the uicontrol. Text in edit text and
static text boxes is always vertically top-aligned. For editable
text, the String property value is set to the string entered by
the user when the control loses focus. The String property for
static text can only be set programmatically (or when authoring
a GUI in GUIDE).

To place multiple items on a list box or pop-up menu, you
can specify the items in any of the formats shown in the following
table.

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string
column matrix

['one ';'two ';'three']

String vector using
vertical slash (|) as
a line separator

['one|two|three']

If you specify a component width that is too small to accommodate
one or more of the specified strings, MATLAB truncates those
strings with an ellipsis. Use the Value property to set the index of
the initial item selected.

For check boxes, push buttons, radio buttons, toggle
buttons, and the selected item in popup menus, when the
specified text is clipped because it is too long for the uicontrol, an
ellipsis (...) is appended to the text in the active GUI to indicate
that it has been clipped.

1-7301

Uicontrol Properties

For push buttons and toggle buttons, CData overlaps the
String. In the case of radio buttons and checkboxes, CData
takes precedence over String and, depending on its size, can
displace the text.

Reserved Words There are three reserved words: default,
remove, factory (case sensitive). If you want to use one of these
reserved words in the String property, you must precede it with
a backslash ('\') character. For example,

h = uicontrol('Style','edit','String','\default');

Style
{pushbutton} | togglebutton | radiobutton | checkbox |
edit | text | slider | frame | listbox | popupmenu

Style of uicontrol object to create. The Style property specifies the
kind of uicontrol to create. See the uicontrol Description section
for information on each type.

Tag
string (GUIDE sets this property)

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uicontrol. When the

1-7302

Uicontrol Properties

user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

To create a tooltip that has more than one line of text, use sprintf
to generate a string containing newline (\n) characters and then
set the TooltipString to that value. For example:

h = uicontrol('Style','pushbutton');
s = sprintf('Button tooltip line 1\nButton tooltip line 2');
set(h,'TooltipString',s)

Type
string (read only)

Class of graphics object. For uicontrol objects, Type is always the
string 'uicontrol'.

UIContextMenu
handle

Associate a context menu with uicontrol. Assign this property
the handle of a uicontextmenu object. MATLAB displays the
context menu whenever you right-click over the uicontrol. Use the
uicontextmenu function to create the context menu.

Units
{pixels} | normalized | inches | centimeters | points |
characters (GUIDE default: normalized)

Units of measurement. MATLAB uses these units to interpret the
Extent and Position properties. All units are measured from the
lower-left corner of the parent object.

• Normalized units map the lower-left corner of the parent object
to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

1-7303

Uicontrol Properties

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the
uicontrol object. MATLAB does not use this data, but you can
access it using set and get.

Value
scalar or vector

Current value of uicontrol. The uicontrol style determines the
possible values this property can have:

• Check boxes set Value to Max when they are on (when selected)
and Min when off (not selected).

• List boxes set Value to a vector of indices corresponding to
the selected list entries, where 1 corresponds to the first item
in the list.

• Pop-up menus set Value to the index of the item selected, where
1 corresponds to the first item in the menu. The Examples
section shows how to use the Value property to determine
which item has been selected.

• Radio buttons set Value to Max when they are on (when
selected) and Min when off (not selected).

• Sliders set Value to the number indicated by the slider bar.

1-7304

Uicontrol Properties

• Toggle buttons set Value to Max when they are down (selected)
and Min when up (not selected).

• Editable text, push buttons, and static text do not set this
property.

Set the Value property either interactively with the mouse or
through a call to the set function. The display reflects changes
made to Value.

Visible
{on} | off

Uicontrol visibility. By default, all uicontrols are visible. When
set to off, the uicontrol is not visible, but still exists and you can
query and set its properties.

Note Setting Visible to off for uicontrols that are not displayed
initially in the GUI, can result in faster startup time for the GUI.

1-7305

uigetdir

Purpose Open standard dialog box for selecting directory

Syntax folder_name = uigetdir
folder_name = uigetdir(start_path)
folder_name = uigetdir(start_path,dialog_title)

Description folder_name = uigetdir displays a modal dialog box enabling you to
navigate the folder hierarchy and select a folder or type the name of a
folder. If the folder exists, uigetdir returns the selected path when you
click OK. If you type the name of a folder that does not exist, uigetdir
returns the name of the current folder. If you click Cancel, or close
the dialog box, uigetdir returns 0. On Microsoft Windows platforms,
uigetdir opens a dialog box in the base folder (the Windows desktop)
with the current folder selected.

folder_name = uigetdir(start_path)opens a dialog box with the
folder specified by start_path selected. If start_path is a valid path,
the dialog box opens in the specified folder. If start_path is an empty
string ('') or is not a valid path, the dialog box opens in the current
folder.

folder_name = uigetdir(start_path,dialog_title) opens a dialog
box with the specified title. On Windows and UNIX platforms, the
string replaces the default caption inside the dialog box for specifying
instructions to the user. The default dialog_title is Select folder to
Open.

On Windows platforms, you can click the New Folder button to add
a new folder to the folder hierarchy displayed. You can also drag and
drop existing directories into different folders.

On UNIX platforms, uigetdir opens a dialog box in the startup folder
(the one you are in when you start MATLAB), with the current directory
selected. The dialog_title string replaces the default title of the
dialog box. The dialog box looks similar to the following figure.

1-7306

uigetdir

On Mac platforms, uigetdir opens a dialog box in the startup folder
(the one you are in when you start MATLAB), with the current directory
selected. The dialog box looks similar to the following figure.

1-7307

uigetdir

Note A modal dialog box prevents you from interacting with other
MATLAB windows before responding. To block MATLAB program
execution as well, use the uiwait function. For more information about
modal dialog boxes, see WindowStyle in the MATLAB Figure Properties.

The pwd and cd functions return the name of the current folder.

Examples The following statement displays directories on the C: drive.

dname = uigetdir('C:\');

A dialog box such as the following displays (on Windows).

1-7308

uigetdir

If you double-click the Program Files folder, and the MATLAB
subfolder, and then click Select Folder, uigetdir returns C:\Program
Files\MATLABto dname:

The following statement uses matlabroot to display the MATLAB root
folder in the dialog box:

uigetdir(matlabroot,'MATLAB Root Directory')

Assuming that MATLAB is installed on drive C:\, selecting the folder
MATLAB\R2012b\notebook\pc from the dialog box, returns this string:

C:\Program Files\MATLAB\R2012b\notebook\pc

See Also uigetfile | uiputfile

1-7309

uigetfile

Purpose Open standard dialog box for retrieving files

Syntax filename = uigetfile
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec)
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec,DialogTitle)
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec,DialogTitle,

DefaultName)
[FileName,PathName,FilterIndex] = uigetfile(...,'MultiSelect',

selectmode)

Description filename = uigetfile displays a modal dialog box that lists files in
the current folder and enables you to select or enter the name of a file.
If the file name is valid and the file exists, uigetfile returns the file
name as a string when you click Open. Otherwise uigetfile displays
an appropriate error message, after which control returns to the dialog
box. You can then enter another file name or click Cancel. If you click
Cancel or close the dialog window, uigetfile returns 0.

Note Successful execution of uigetfile does not open a file; it only
returns the name of an existing file that you identify.

[FileName,PathName,FilterIndex] = uigetfile(FilterSpec)
displays only those files with extensions that match FilterSpec. On
some platforms uigetfile also displays in gray the files that do not
match FilterSpec. The uigetfile function appends 'All Files'
to the list of file types. FilterSpec can be a string or a cell array of
strings, and can include the * wildcard.

• If FilterSpec is a file name, that file name displays, selected in the
File name field. The extension of the file is the default filter.

• FilterSpec can include a path. That path can contain '.','..', \,
'/', or '~'. For example, '../*.m' lists all code files in the folder
above the current folder.

1-7310

uigetfile

• If FilterSpec is a folder name, uigetfile displays the contents of
that folder, the File name field is empty, and no filter applies. To
specify a folder name, make the last character of FilterSpec either
'\' or '/'.

• If FilterSpec is a cell array of strings, it can include two columns.
The first column contains a list of file extensions. The optional
second column contains a corresponding list of descriptions. These
descriptions replace standard descriptions in the Files of type field.
A description cannot be an empty string. The second and third
examples illustrate use of a cell array as FilterSpec.

If FilterSpec is missing or empty, uigetfile uses the default list of
file types (for example, all MATLAB files).

After you click Open and if the file name exists,uigetfile returns
the name of the file in FileName and its path in PathName. If you click
Cancel or close the dialog window, the function sets FileName and
PathName to 0.

FilterIndex is the index of the filter selected in the dialog box.
Indexing starts at 1. If you click Cancel or close the dialog window, the
function sets FilterIndex to 0.

[FileName,PathName,FilterIndex] =
uigetfile(FilterSpec,DialogTitle)displays a dialog box that has
the title DialogTitle. To use the default file types and specify a
dialog title, enter

uigetfile('',DialogTitle)

[FileName,PathName,FilterIndex] =
uigetfile(FilterSpec,DialogTitle, DefaultName)displays a dialog
box in which the file name specified by DefaultName appears in the
File name field. DefaultName can also be a path or a path/filename. In
this case, uigetfile opens the dialog box in the folder specified by the
path. You can use '.','..', \, or '/' in the DefaultName argument.
To specify a folder name, make the last character of DefaultName either
'\' or '/'. If the specified path does not exist, uigetfile opens the
dialog box in the current folder.

1-7311

uigetfile

[FileName,PathName,FilterIndex] =
uigetfile(...,'MultiSelect', selectmode)opens the dialog box in
multiselect mode. Valid values for selectmode are 'on' and 'off' (the
default, which allows single selection only). If 'MultiSelect' is 'on'
and you select more than one file in the dialog box, then FileName is
a cell array of strings. Each array element contains the name of a
selected file. File names in the cell array are sorted in the order your
platform uses. If you select multiple files, they must be in the same
folder, otherwise MATLAB displays a warning dialog box. Be aware
that Microsoft Windows libraries can span multiple folders. PathName
is a string identifying the folder containing the files.

If you include either of the wildcard characters, '*' or '?', in a file
name, uigetfile does not respond to clicking Open. The dialog box
remains open until you cancel it or remove the wildcard characters.
This restriction applies to all platforms, even to file systems that permit
these characters in file names.

For Windows platforms, the dialog box is the Windows dialog box native
to your platform. Depending on your version of Windows, dialogs you
see can differ from the figures shown in following examples.

For UNIX platforms, the dialog box is like the one shown in the
following figure.

1-7312

uigetfile

For Mac platforms, the dialog box is like the one shown in the following
figure.

1-7313

uigetfile

Note A modal dialog box prevents you from interacting with other
windows before responding. To block MATLAB program execution, use
the uiwait function. For more information about modal dialog boxes,
see WindowStyle in the MATLAB Figure Properties.

Examples The following statement displays a dialog box for retrieving a file. The
dialog box lists all MATLAB code files within a selected directory.
uigetfile returns the name and path of the selected file in FileName
and PathName. uigetfile appends All Files(*.*) to the file types
when FilterSpec is a string.

[FileName,PathName] = uigetfile('*.m','Select the MATLAB code file');

1-7314

uigetfile

The following figure shows the dialog box with the file type drop-down
list open.

To create a list of file types that appears in the file type drop-down list,
separate the file extensions with semicolons, as in the following code.
uigetfile displays a default description for each known file type, such
as "Model files" for Simulink .slx and .mdl files.

[filename, pathname] = ...

uigetfile({'*.m';'*.slx';'*.mat';'*.*'},'File Selector');

1-7315

uigetfile

If you want to create a list of file types and give them descriptions that
are different from the defaults, use a cell array, as in the following
code. This example also associates multiple file types with the 'MATLAB
Files' and 'Models' descriptions.

[filename, pathname] = uigetfile(...

{'*.m;*.fig;*.mat;*.slx;*.mdl',...

'MATLAB Files (*.m,*.fig,*.mat,*.slx,*.mdl)';

'*.m', 'Code files (*.m)'; ...

'*.fig','Figures (*.fig)'; ...

'*.mat','MAT-files (*.mat)'; ...

'*.mdl;*.slx','Models (*.slx, *.mdl)'; ...

'*.*', 'All Files (*.*)'}, ...

'Pick a file');

1-7316

uigetfile

The first column of the cell array contains the file extensions, while the
second contains your descriptions of the file types. In this example,
the first entry of column one contains several extensions, separated
by semicolons, which are all associated with the description 'MATLAB
Files (*.m,*.fig,*.mat,*.mdl)'. The code produces the dialog box
shown in the following figure.

The following code lets you select a file and then displays a message in
the Command Window that summarizes the result.

[filename, pathname] = uigetfile('*.m', 'Select a MATLAB code file');

if isequal(filename,0)

disp('User selected Cancel')

1-7317

uigetfile

else

disp(['User selected ', fullfile(pathname, filename)])

end

This code creates a list of file types and gives them descriptions that
are different from the defaults. It also enables multiple-file selection.
Select multiple files by holding down the Shift or Ctrl key and clicking
on additional file names.

[filename, pathname, filterindex] = uigetfile(...

{ '*.mat','MAT-files (*.mat)'; ...

'*.slx;*.mdl','Models (*.slx, *.mdl)'; ...

'*.*', 'All Files (*.*)'}, ...

'Pick a file', ...

'MultiSelect', 'on');

1-7318

uigetfile

As mentioned previously, uigetfile does not open the file or files
you select.

You can use the DefaultName argument to specify a start path and a
default file name for the dialog box.

uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...

'*.*','All Files' },'mytitle',...

'C:\myfiles\my_examples\gbtools\setpos1.png')

1-7319

uigetfile

Alternatives Use the dir function to return a filtered or unfiltered list of files in your
current folder or a folder you specify. dir also can return file attributes.

See Also uigetdir | uiopen | uiputfile

1-7320

uigetpref

Purpose Specify and conditionally open dialog box according to user preference

Syntax pref_value =
uigetpref(group,pref,title,question,pref_choices)
[pref_value,dlgshown] = uigetpref(...)
[...] = uigetpref(... 'Name',value)

Description pref_value =
uigetpref(group,pref,title,question,pref_choices) returns one
of the strings in pref_choices in either of two ways:

• Displays a multiple-choice dialog box that prompts you to answer a
question. The dialog box includes a check box with the label Do not
show this dialog again.

• Retrieves a previous answer from the preferences data base and
returns it without displaying a dialog. No dialog is displayed if you
previously selected the check box Do not show this dialog again.

[pref_value,dlgshown] = uigetpref(...) also returns in dlgshown
whether or not the dialog displayed.

[...] = uigetpref(... 'Name',value) specify optional
name-value pairs to control how dialogs display.

Tips • You must supply all input arguments up to and including
pref_choices.

• uigetpref creates specified groups and preferences, if they do not
currently exist. To delete a preference group you no longer need,
use rmpref.

• The string returned in pref_value is a preference name (as specified
in pref), not its button label (as specified in pref_choices).

• After you select the check box Do not show this dialog again and
close the dialog box, the dialog box does not display again for the
same preference. To reenable dialogs that are being suppressed by
preferences, use the command:

1-7321

uigetpref

uisetpref('clearall')

Executing uisetpref with this command re-enables all preference
dialogs you have defined with uigetpref, not just the most recent
one.

Input
Arguments

group

String specifying the name of the preference group that preference pref
belongs to. If the group does not already exist, uigetpref creates it.

Default: None

pref

String specifying the name of the preference that controls whether the
dialog displays. If the preference does not already exist, uigetpref
creates it.

Default: None

title

String to display in the dialog box title bar

question

String or cell array of strings specifying a descriptive paragraph for
the dialog to display. Use question to define what you are asking the
user to decide. Clearly state the alternatives and the consequences
of choosing among them. The dialog box that uigetpref generates
inserts line breaks between rows of the string array, between elements
of the cell array of strings, and between ’|’ or newline characters within
a string vector.

Default: None

pref_choices

1-7322

uigetpref

String, cell array of strings, or '|'-separated strings specifying the
labels for the dialog box push buttons. The string on the selected push
button is returned.

If the internal preference values are different from the strings displayed
on the push buttons, provide a 2-by-n cell array of strings. The first
row contains the preference strings, and the second row contains the
associated push button strings. When pref_choices is not a 2-by-n cell
array, MATLAB constructs lowercase versions of the button labels and
returns them in pref_value. If your code tests returned values, make
sure it compares them against the appropriate strings.

Default: None

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CheckboxState’

State of check box when dialog box opens:

• false or 0: Check box is not initially selected.

• true or 1: Check box is initially selected.

Default: 0

’CheckboxString’

String specifying the label for the check box.

Default: 'Do not show this dialog again'

’HelpString’

String specifying the label for Help button.

1-7323

uigetpref

Default: No Help button displays.

’HelpFcn’

String or function handle specifying the callback that executes when
you click the Help button. Also, to have a button to trigger the callback,
you must specify the HelpString option.

Default: doc('uigetpref')

’ExtraOptions’

String or cell array of strings specifying extra buttons. The additional
buttons are not mapped to any preference settings. If you click any of
these buttons, the dialog closes and uigetpref returns the string in
value.

Default: {}

’DefaultButton’

String specifying the value that uigetpref returns if you close the
dialog without clicking a button. This string does not have to correspond
to any preference or ExtraOption.

Default: The first button specified in pref_choices

Output
Arguments

pref_value

String containing the preference corresponding to the button you press.
If you cancel the dialog by clicking its close box, uigetpref returns
the label of the first button specified in pref_choices or the value
for DefaultButton, if specified. After you select the Do not show
this dialog again check box, uigetpref does not display a dialog box
when you call it with the same group and pref arguments. Instead,
it returns the last choice you made (your registered preference) in
pref_value immediately.

dlgshown

1-7324

uigetpref

Logical value that specifies the state of the check box when the dialog
box closed. The value is 1 if selected, 0 if not selected. After you select
the Do not show this dialog again check box, uigetpref does not
display a dialog box when you call it with the same group and pref
arguments. Instead, it returns 0 in dlgshown immediately.

Definitions Preferences

Preferences provide the ability to specify how applications behave and
how users interact with them. For example, you can set a preference
for which products display their documentation in the Help browser, or
which messages the Code Analyzer displays. In MathWorks software
products, preferences persist across sessions and are stored in a
preference data base, the location of which is system-dependent. Use the
Preferences option on the File menu to access all built-in preferences.

uigetpref uses the same preference data base as addpref, getpref,
ispref, rmpref, and setpref. However, uigetpref registers the
preferences it sets as a separate list, so that it and uisetpref can
manage those preferences.

To modify preferences registered with uigetpref, you can use setpref
and uisetpref to explicitly change preference values to 'ask'. If you
specify a preference that does not already exist in the preference data
base, uigetpref creates it.

Examples Create a preference dialog for the 'savefigurebeforeclosing'
preference in the 'mygraphics' group of preferences.

1-7325

uigetpref

Call uigetpref to display the dialog (or not) from a figure window
CloseRequestFcn callback. The callback code takes action via a switch
statement. The action (to delete or not to delete the figure) depends on
whether the answer returned by uigetpref was 'always' or 'never':

function save_figure_perhaps

% Closes figure conditionally, asking whether to save it first.

% User can suppress the dialog from UIGETPREF permanently by selecting

% "Do not show this dialog again".

fig = gcf;

[selectedButton dlgshown] = uigetpref(...

'mygraphics',... % Group

'savefigurebeforeclosing',... % Preference

'Closing Figure',... % Window title

{'Do you want to save your figure before closing?'

''

'You can save your figure manually by typing ''hgsave(gcf)'''},...

{'always','never';'Yes','No'},... % Values and button strings

'ExtraOptions','Cancel',... % Additional button

'DefaultButton','Cancel',... % Default choice

'HelpString','Help',... % String for Help button

'HelpFcn','doc(''closereq'');'); % Callback for Help button

switch selectedButton

case 'always' % Open a Save dialog (without testing if saved before)

[fileName,pathName,filterIndex] = uiputfile('fig', ...

'Save current figure', ...

1-7326

uigetpref

'untitled.fig');

if filterIndex == 0 % User cancelled save or named no file

delete(fig);

else % Use filename returned from UIPUTFILE

saveas(fig,[pathName fileName])

delete(fig);

end

case 'never' % Close the figure without saving it

delete(fig);

case 'cancel' % Do not close the figure

return

end

To execute the example, copy it and paste the code into a new program
file. Name the file save_figure_perhaps.m and place it on your search
path. To use the function as a CloseRequestFcn, create a figure as
follows:

figure('CloseRequestFcn','save_figure_perhaps');

Clicking the figure close box or selecting File > Close displays the
dialog box until you select Do not show this dialog again.

See Also ispref | addpref | getpref | setpref | prefdir | uisetpref |
rmpref

Tutorials • “Preferences”

• “Confirmation Dialogs Preferences”

1-7327

uiimport

Purpose Import data interactively

Syntax uiimport
uiimport(filename)
uiimport('-file')
uiimport('-pastespecial')
S = uiimport(___)

Description uiimport opens a dialog to interactively load data from a file or the
clipboard. MATLAB displays a preview of the data in the file.

uiimport(filename) opens the file specified in filename.

uiimport('-file') presents the file selection dialog first.

uiimport('-pastespecial') presents the clipboard contents first.

S = uiimport(___) stores the resulting variables as fields in the
struct S.

See Also load | importdata | clipboard

How To • “Supported File Formats for Import and Export”

1-7328

uimenu

Purpose Create menus and menu items on figure windows

Syntax handle = uimenu('PropertyName',PropertyValue,...)
handle = uimenu(parent,'PropertyName',PropertyValue,...)

Description handle = uimenu('PropertyName',PropertyValue,...) creates a
menu in the current figure’s menu bar using the values of the specified
properties and assigns the menu handle to handle.

handle = uimenu(parent,'PropertyName',PropertyValue,...)
creates a submenu of a parent menu or a menu item on a context menu
specified by parent and assigns the menu handle to handle. If parent
refers to a figure instead of another uimenu object or a uicontextmenu,
MATLAB software creates a new menu on the referenced figure’s menu
bar.

Tips MATLAB adds the new menu to the existing menu bar. If the figure
does not have a menu bar, MATLAB creates one. Each menu choice
can itself be a menu that displays its items when you select it. uimenu
accepts property name/property value pairs as well as structures and
cell arrays of properties as input arguments.

Use the uimenu Callback property to define the action taken when you
activate the created menu item.

Uimenus only appear in figures whose Window Style is normal. If a
figure containing uimenu children is changed to modal, the uimenu
children still exist and are contained in the Children list of the figure,
but are not displayed until the WindowStyle is changed to normal.

The value of the figure MenuBar property affects the content of the
figure menu bar. When MenuBar is figure, a set of built-in menus
precedes any user-created uimenus on the menu bar (MATLAB controls
the built-in menus and their handles are not available to the user).
When MenuBar is none, uimenus are the only items on the menu bar
(that is, the built-in menus do not appear).

1-7329

../ref/figure_props.html#MenuBar
../ref/figure_props.html#MenuBar
../ref/figure_props.html#WindowStyle
../ref/figure_props.html#Children
../ref/figure_props.html#MenuBar

uimenu

See the Uimenu Properties reference page for more information. You
can set and query property values after creating a menu with the set
and get functions.

Examples This example creates a menu labeledWorkspace with menu options for
creating a new figure window, saving workspace variables, and exiting
MATLAB. In addition, it defines an accelerator key for the Quit option.

f = uimenu('Label','Workspace');
uimenu(f,'Label','New Figure','Callback','figure');
uimenu(f,'Label','Save','Callback','save');
uimenu(f,'Label','Quit','Callback','exit',...

'Separator','on','Accelerator','Q');

This example creates a new figure with a menu bar that excludes the
built-in menus. It creates a Find menu with options Find & Replace,
and Variable. For the Variable option, it creates a submenu with
options of Name and Value.

f=figure('MenuBar','None');
mh = uimenu(f,'Label','Find');
frh = uimenu(mh,'Label','Find and Replace ...',...

'Callback','goto');
frh = uimenu(mh,'Label','Variable');
uimenu(frh,'Label','Name...', ...

'Callback','variable');

1-7330

uimenu

uimenu(frh,'Label','Value...', ...
'Callback','value');

This example creates a context menu, Font, on a figure with menu
options Helvetica and Monospace. When you run the code and
then right-click anywhere within the figure window, the context menu
displays.

% Create the UICONTEXTMENU
cmenu = uicontextmenu;

% Create the parent menu
fontmenu = uimenu(cmenu,'label','Font');

% Create the submenus
font1 = uimenu(fontmenu,'label','Helvetica',...

'Callback','HelvFont');
font2 = uimenu(fontmenu,'label',...

'Monospace','Callback','MonoFont');
set(gcf,'uicontextmenu',cmenu);

1-7331

uimenu

See Also Uimenu Properties | uicontrol | uicontextmenu | gcbo | set | get |
figure

1-7332

Uimenu Properties

Purpose Describe menu properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get commands enable you to set and query the values of
properties

You can set default Uimenu properties on the root, figure and menu
levels:

set(0,'DefaultUimenuPropertyName',PropertyValue...)
set(gcf,'DefaultUimenuPropertyName',PropertyValue...)
set(menu_handle,'DefaultUimenuPropertyName',PropertyValue...)

Where PropertyName is the name of the Uimenu property and
PropertyValue is the value you specify as the default for that property.

For more information about changing the default value of property see
“Setting Default Property Values”

Uimenu
Properties

This section lists all properties useful to uimenu objects along with valid
values and instructions for their use. Curly braces { } enclose default
values.

Property Name Property Description

Accelerator Keyboard equivalent

BeingDeleted This object is being deleted

BusyAction Callback routine interruption

Callback Control action

Checked Menu check indicator

Children Handles of submenus

1-7333

Uimenu Properties

Property Name Property Description

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

Enable Enable or disable the uimenu

ForegroundColor Color of text

HandleVisibility Whether handle is accessible from command
line and GUIs

Interruptible Callback routine interruption mode

Label Menu label

Parent Uimenu object’s parent

Position Relative uimenu position

Separator Separator line mode

Tag User-specified object identifier

Type Class of graphics object

UserData User-specified data

Visible Uimenu visibility

Accelerator
character

Keyboard equivalent. An alphabetic character specifying the
keyboard equivalent for the menu item. This allows users to select
a particular menu choice by pressing the specified character in
conjunction with another key, instead of selecting the menu item
with the mouse. The key sequence is platform specific:

• For Microsoft Windows systems, the sequence is
Ctrl+Accelerator. Windows reserves these keys for default

1-7334

Uimenu Properties

menu items: c, v, and x. For more information, see Keyboard
shortcuts for Windows on the Microsoft support Web site.

• For Macintosh systems, the sequence is Cmd+Accelerator.
Apple reserves these keys for default menu items: a, c, v, and
x. For more information, see Mac OS X keyboard shortcuts on
the Apple Computer support Web site.

• For UNIX systems, the sequence is Ctrl+Accelerator. These
keys are reserved for default menu items: o, p, s, and w. Many
UNIX applications also use a, c, v, and x in the same manner
as the other platforms.

Accelerated menu items do not have to be displayed for the
accelerator key to work (you can accelerate a submenu). However,
some restrictions apply:

• You can define an accelerator only for menu items that do not
have children menus.

• Accelerators work only for menu items that directly execute a
callback routine.

• The figure must be in focus when entering the accelerator key
sequence.

To remove an accelerator, set Accelerator to an empty string, ''.

For a cross-platform comparison of accelerators, see the article
Table of Keyboard Shortcuts.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

1-7335

http://support.microsoft.com/kb/126449
http://support.microsoft.com/kb/126449
http://support.apple.com/kb/HT1343
http://en.wikipedia.org/wiki/Table_of_keyboard_shortcuts

Uimenu Properties

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See theInterruptible
property for information about controlling a callback’s
interruptibility.

Callback
string or function handle

Menu action. A callback routine that executes whenever you
activate the menu or its submenu (if one exists). Activation is
platform dependent. Typically, it is clicking the menu or, if the
menu has one, its submenu. Define this routine as a string that

1-7336

Uimenu Properties

is a valid MATLAB expression or the name of a code file. The
expression executes in the MATLAB base workspace.

Caution Do not use a uimenu callback to dynamically change
menu items. Deleting, adding, and replacing menu items in a
callback can result in a blank menu on some platforms. You can
hide, show, and disable menu items in a callback to achieve the
same effect. To fully repopulate menu items, delete and create
them outside the callback.

Checked
on | {off}

Menu check indicator. Setting this property to on places a check
mark next to the corresponding menu item. Setting it to off
removes the check mark. You can use this feature to create
menus that indicate the state of a particular option. For example,
suppose you have a menu item called Show axes that toggles the
visibility of an axes between visible and invisible each time the
user selects the menu item. If you want a check to appear next to
the menu item when the axes are visible, add the following code to
the callback for the Show axes menu item:

if strcmp(get(gcbo, 'Checked'),'on')
set(gcbo, 'Checked', 'off');

else
set(gcbo, 'Checked', 'on');

end

This changes the value of the Checked property of the menu item
from on to off or vice versa each time a user selects the menu
item.

Note that there is no formal mechanism for indicating that an
unchecked menu item will become checked when selected.

1-7337

Uimenu Properties

Note This property is ignored for top level and parent menus.

Children
vector of handles

Handles of submenus. A vector containing the handles of all
children of the uimenu object. The children objects of uimenus are
other uimenus, which function as submenus. You can use this
property to reorder the menus.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uimenu object.
MATLAB sets all property values for the uimenu before executing
the CreateFcn callback so these values are available to the
callback. Within the function, use gcbo to get the handle of the
uimenu being created.

Setting this property on an existing uimenu object has no effect.

You can define a default CreateFcn callback for all new uimenus.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uimenu. For example, the code

set(0,'DefaultUimenuCreateFcn','set(gcbo,...
''Visible'',''on'')')

creates a default CreateFcn callback that runs whenever you
create a new menu. It sets the default Visible property of a
uimenu object.

To override this default and create a menu whose Visible
property is set to a different value, call uimenu with code similar to

1-7338

Uimenu Properties

hpt = uimenu(...,'CreateFcn','set(gcbo,...
''Visible'',''off'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uimenu call. In the example above, if
instead of redefining the CreateFcn property for this uimenu, you
had explicitly set Visible to off, the default CreateFcn callback
would have set Visible back to the default, i.e., on.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Delete uimenu callback routine. A callback routine that executes
when you delete the uimenu object (e.g., when you issue a delete
command or cause the figure containing the uimenu to reset).
MATLAB executes the routine before destroying the object’s
properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
is more simply queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

1-7339

../ref/rootobject_props.html#RecursionLimit

Uimenu Properties

Enable
{on} | off

Enable or disable the uimenu. This property controls whether a
menu item can be selected. When not enabled (set to off), the
menu Label appears dimmed, indicating the user cannot select it.

ForegroundColor
ColorSpec X-Windows only

Color of menu label string. This property determines color of
the text defined for the Label property. Specify a color using a
three-element RGB vector or one of the MATLAB predefined
names. The default text color is black. See ColorSpec for more
information on specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

1-7340

Uimenu Properties

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property

1-7341

Uimenu Properties

of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Label
string

Menu label. A string specifying the text label on the menu item.
You can specify a mnemonic for the label using the '&' character.
Except as noted below, the character that follows the '&' in the
string appears underlined and selects the menu item when you
type Alt+ followed by that character while the menu is visible.
The '&' character is not displayed. To display the '&' character
in a label, use two '&' characters in the string:

’O&pen selection’ yields Open selection

’Save && Go’ yields Save & Go

'Save&&Go' yields Save & Go

'Save& Go' yields Save& Go (the space is not a mnemonic)

1-7342

Uimenu Properties

Tip Avoid specifying mnemonics for applications designed to
run on Macintosh computers. Accessing menus with mnemonics
violates the principles of Apple Human Interface Guidelines.
However, you can set the Accelerator property to access
individual menu items with key sequences on a Mac.

Avoid including the reserved words, default, remove, and
factory, in menu labels unless you escape them. They are case
sensitive. To use one of these words in the Label property, escape
it by preceding it with a backslash ('\') character. For example:

'\remove' yields remove

'\default' yields default

'\factory' yields factory

Parent
handle

Uimenu’s parent. The handle of the uimenu’s parent object. The
parent of a uimenu object is the figure on whose menu bar it
displays, or the uimenu of which it is a submenu. You can move
a uimenu object to another figure by setting this property to the
handle of the new parent.

Position
scalar

Relative menu position. The value of Position indicates
placement on the menu bar or within a menu. Top-level menus
are placed from left to right on the menu bar according to
the value of their Position property, with 1 representing the
left-most position. The individual items within a given menu are
placed from top to bottom according to the value of their Position
property, with 1 representing the top-most position.

1-7343

Uimenu Properties

Separator
on | {off}

Separator line mode. Setting this property to on draws a dividing
line above the menu item.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of graphics object. For uimenu objects, Type is always the
string 'uimenu'.

UserData
matrix

User-specified data. Any matrix you want to associate with the
uimenu object. MATLAB does not use this data, but you can
access it using the set and get commands.

Visible
{on} | off

Uimenu visibility. By default, all uimenus are visible. When set
to off, the uimenu is not visible, but still exists and you can
query and set its properties.

1-7344

uint8

Purpose Convert to 8-bit unsigned integer

Syntax intArray = uint8(array)

Description intArray = uint8(array) converts the elements of an array into
unsigned 8-bit (1-byte) integers of class uint8.

Input
Arguments

array

Array of any numeric class, such as single or double. If array is
already of class uint8, the uint8 function has no effect.

Output
Arguments

intArray

Array of class uint8. Values range from 0 to 28 – 1.

The uint8 function maps any values in array that are outside the limit
to the nearest endpoint. For example,

uint8(2^8) % 2^8 = 256

returns

ans =
255

Examples Convert a double array to uint8:

mydata = uint8(magic(10));

Alternatives When preallocating integer arrays, specify the class in the call to
functions that support a class name input (such as zeros, ones or eye),
rather than calling an integer conversion function. For example,

I = uint8(zeros(100)); % Creates an intermediate array

is not as efficient as

I = zeros(100, 'uint8'); % Preferred

1-7345

uint8

See Also double | single | uint16 | uint32 | uint64 | int8 | int16 | int32 |
int64 | intmax | intmin

Tutorials • “Integers”

• “Arithmetic Operations on Integer Classes”

1-7346

uint16

Purpose Convert to 16-bit unsigned integer

Syntax intArray = uint16(array)

Description intArray = uint16(array) converts the elements of an array into
unsigned 16-bit (2-byte) integers of class uint16.

Input
Arguments

array

Array of any numeric class, such as single or double. If array is
already of class uint16, the uint16 function has no effect.

Output
Arguments

intArray

Array of class uint16. Values range from 0 to 216 – 1.

The uint16 function maps any values in array that are outside the
limit to the nearest endpoint. For example,

uint16(2^16) % 2^16 = 65536

returns

ans =
65535

Examples Convert a double array to uint16:

mydata = uint16(magic(100));

Alternatives When preallocating integer arrays, specify the class in the call to
functions that support a class name input (such as zeros, ones or eye),
rather than calling an integer conversion function. For example,

I = uint16(zeros(100)); % Creates an intermediate array

is not as efficient as

I = zeros(100, 'uint16'); % Preferred

1-7347

uint16

See Also double | single | uint8 | uint32 | uint64 | int8 | int16 | int32 |
int64 | intmax | intmin

Tutorials • “Integers”

• “Arithmetic Operations on Integer Classes”

1-7348

uint32

Purpose Convert to 32-bit unsigned integer

Syntax intArray = uint32(array)

Description intArray = uint32(array) converts the elements of an array into
unsigned 32-bit (4-byte) integers of class uint32.

Input
Arguments

array

Array of any numeric class, such as single or double. If array is
already of class uint32, the uint32 function has no effect.

Output
Arguments

intArray

Array of class uint32. Values range from 0 to 232 – 1.

The uint32 function maps any values in array that are outside the
limit to the nearest endpoint. For example,

uint32(2^32) % 2^32 = 4294967296

returns

ans =
4294967295

Examples Convert a double array to uint32:

mydata = uint32(magic(1000));

Alternatives When preallocating integer arrays, specify the class in the call to
functions that support a class name input (such as zeros, ones or eye),
rather than calling an integer conversion function. For example,

I = uint32(zeros(100)); % Creates an intermediate array

is not as efficient as

I = zeros(100, 'uint32'); % Preferred

1-7349

uint32

See Also double | single | uint8 | uint16 | uint64 | int8 | int16 | int32 |
int64 | intmax | intmin

Tutorials • “Integers”

• “Arithmetic Operations on Integer Classes”

1-7350

uint64

Purpose Convert to 64-bit unsigned integer

Syntax intArray = uint64(array)

Description intArray = uint64(array) converts the elements of an array into
unsigned 64-bit (8-byte) integers of class uint64.

Tips Double-precision floating-point numbers have only 52 bits in the
mantissa. Therefore, double values cannot represent all integers
greater than 253 correctly. Before performing arithmetic operations
on values larger than 253 in magnitude, convert the values to 64-bit
integers. For example,

x = uint64(2^53+1); % Floating-point arithmetic, loses precision

is not as accurate as the 64-bit integer arithmetic operation:

x = uint64(2^53) + 1; % Preferred

Input
Arguments

array

Array of any numeric class, such as single or double. If array is
already of class uint64, the uint64 function has no effect.

Output
Arguments

intArray

Array of class uint64. Values range from 0 to 264 – 1.

The uint64 function maps any values in array that are outside the
limit to the nearest endpoint. For example,

uint64(2^64) % 2^64 = 18446744073709551616

returns

ans =
18446744073709551615

1-7351

uint64

Examples Convert a literal value to uint64:

x = uint64(9007199254740993);

Alternatives When preallocating integer arrays, specify the class in the call to
functions that support a class name input (such as zeros, ones or eye),
rather than calling an integer conversion function. For example,

I = uint64(zeros(100)); % Creates an intermediate array

is not as efficient as

I = zeros(100, 'uint64'); % Preferred

See Also double | single | uint8 | uint16 | uint32 | int8 | int16 | int32 |
int64 | intmax | intmin

Tutorials • “Integers”

• “Arithmetic Operations on Integer Classes”

1-7352

uiopen

Purpose Interactively select file to open and load data

Syntax uiopen
uiopen(type)
uiopen(filename)
uiopen(filename, TF)

Description uiopen displays the dialog box with the file filter set to all MATLAB
files (with file extensions *.m, *.mat, *.fig, *.mdl, and *.slx).

uiopen(type) sets the file filter according to the type.

uiopen(filename) displays filename as the default value for File
name in the dialog box and lists only files having the same extension.

uiopen(filename, TF) directly opens file filename without displaying
a dialog box if TF is true, and displays the dialog box if TF is false.

Tips When you select a file and click open, uiopen does the following:

• Gets the file using uigetfile.

• Opens the file using the open command.

- Files with a file extension of .m open in the Editor.

- Variables stored in files with a file extension of .mat appear in
the caller’s workspace.

- Files with a file extension of .fig open as figure windows.

- Files with a file extension of .mdl or .slx open as models in
Simulink.

• uiopen('load') is the only the form of uiopen that you can compile
into a standalone application. You can create a file selection dialog
box that you can compile using uigetfile.

• The uiopen dialog box is modal. A modal dialog box prevents you
from interacting with other windows until you respond to the modal
one.

1-7353

uiopen

• uiopen displays the same dialog box that opens when you use the
MATLAB desktop toolstrip to open a file. (On the Home tab, in the
File section, click Open .)

Input
Arguments

type

String that specifies the kind of file to show in the dialog box (the file
filter). Acceptable values for type are the following.

Type string Files Displayed

matlab All MATLAB files (with file
extensions *.m, *.mat, *.fig,
*.mdl, and *.slx.)

load All MAT-files (*.mat)

figure All figure files (*.fig)

simulink All Simulink model files (*.mdl
and *.slx)

editor All MATLAB files except for .mat,
.fig, and .slx files.

filename

A string, including the file extension, naming a file to open. The
filename can be a wildcard character plus extension. For example,
*.txt displays a list of all files with the file extension .txt.

TF

A MATLAB expression that evaluates to true or false. If true,
filename opens directly, without displaying the dialog.

Definitions Modal Dialog

A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

1-7354

uiopen

Examples Filter to display only FIG-files by setting the Files of type field to
Figures (*.fig):

uiopen('figure')

Alternatives In MATLAB code or in a command:

• To open a file appropriately based on its file extension, use the open
function.

• To open a file in the Editor, use the edit function.

• To open a MAT-file and load its contents into the workspace, use
the load function.

• To open a FIG-file, use the openfig function.

• To open a file in an application in Microsoft Windows, use the
winopen function.

1-7355

uiopen

See Also uigetfile | uiputfile | uisave

1-7356

uipanel

Purpose Create panel container object

Syntax h =
uipanel('PropertyName1',value1,'PropertyName2',value2,...)
h =
uipanel(parent,'PropertyName1',value1,'PropertyName2',value2,

...)

Description A uipanel groups components. It can contain user interface controls
with which the end user interacts directly. It can also contain axes,
other uipanels, and uibuttongroups. It cannot contain ActiveX controls.

h =
uipanel('PropertyName1',value1,'PropertyName2',value2,...)
creates a uipanel container object in a figure, uipanel, or
uibuttongroup. Use the Parent property to specify the parent figure,
uipanel, or uibuttongroup. If you do not specify a parent, uipanel adds
the panel to the current figure. If no figure exists, MATLAB creates
one. See the Uipanel Properties reference page for more information.

h =
uipanel(parent,'PropertyName1',value1,'PropertyName2',value2,
...) creates a uipanel in the object specified by the handle, parent. If
you also specify a different value for the Parent property, the value
of the Parent property takes precedence. parent must be a
figure, uipanel, or uibuttongroup.

A uipanel object can have axes, uicontrol, uipanel, and
uibuttongroup objects as children. For the children of a uipanel, the
Position property is interpreted relative to the uipanel. If you move
the panel, the children automatically move with it and maintain their
positions relative to the panel.

After creating a uipanel object, you can set and query its property
values using set and get.

Tips If you set the Visible property of a uipanel object to 'off', any child
objects it contains (buttons, button groups, axes, etc.) become invisible

1-7357

uipanel

along with the panel itself. However, doing this does not affect the
settings of the Visible property of any of its child objects, even though
all of them remain invisible until the uipanel’s visibility is set to 'on'.

Examples Create uipanel with children

Create a uipanel, a subpanel in the first panel, and a pushbutton in
the subpanel.

Both panels use the default Units property value, normalized.
(Whereas the default Units for the uicontrol push button is pixels.)

h = figure;
hp = uipanel('Title','Main Panel','FontSize',12,...

'BackgroundColor','white',...
'Position',[.25 .1 .67 .67]);

hsp = uipanel('Parent',hp,'Title','Subpanel','FontSize',12,...
'Position',[.4 .1 .5 .5]);

hbsp = uicontrol('Parent',hsp,'String','Push here',...
'Position',[18 18 72 36]);

1-7358

uipanel

Uipanel that always matches figure window width

Create a uipanel that always matches the width of the figure, but
maintains a constant height. The ResizeFcn keeps the uipanel whose

1-7359

uipanel

Tag is StatusBar 20 pixels high, as wide as the figure, and attached to
the top of the figure.

Create a file named match_width.m on your MATLAB path containing
the code that follows. This code uses the Tag property to retrieve the
uipanel handle, and the gcbo function to retrieve the figure handle.
By default, the figure Units property is set to pixels. The code sets
the panel Units to match, but restores them to their original setting
before the function ends.

function match_width(hObject,eventdata)
u = findobj(gcbo, 'Type','uipanel','Tag','StatusBar');
fig = gcbo;
panelunits = get(u,'Units');
set(u,'Units','pixels');
% derive the new position for the panel
figpos = get(fig,'Position');
upos = [1, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
% restore units for the panel
set(u,'Units',panelunits);

end

Run this code in the Command Window to create a figure that specifies
the match_width function as the ResizeFcn callback. (If you do not set
the figure Visible property set to off initially, the uipanel does not
display until the first time you resize the window.)

f = figure('Visible','off');
u = uipanel('Units','Pixels', 'Tag','StatusBar');
set(f,'ResizeFcn', @match_width);
set(f,'Visible','on');

Resize the figure window to observe the effect of the ResizeFcn
callback.

See Also uibuttongroup | uicontrol

1-7360

Uipanel Properties

Purpose Describe panel properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from the GUIDE Layout Editor View menu, or use the
inspect function at the command line.

• The set and get functions enable you to set and query the values of
properties.

You can set default uipanel properties by typing:

set(h,'DefaultUipanelPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, or a uipanel handle.
PropertyName is the name of the uipanel property and PropertyValue
is the value you specify as the default for that property.

Note Default properties you set for uipanels also apply to
uibuttongroups.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uipanel
Properties

This section lists all properties useful to uipanel objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Name Description

BackgroundColor Color of the uipanel background

BeingDeleted This object is being deleted

BorderType Type of border around the uipanel area.

1-7361

Uipanel Properties

Property Name Description

BorderWidth Width of the panel border.

BusyAction Interruption of other callback routines

ButtonDownFcn Button-press callback routine

Children All children of the uipanel

Clipping Clipping of child axes, uipanels, and
uibuttongroups to the uipanel. Does not
affect child uicontrols.

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

FontAngle Title font angle

FontName Title font name

FontSize Title font size

FontUnits Title font units

FontWeight Title font weight

ForegroundColor Title font color

HandleVisibility Handle accessibility from command line and
GUIs

HighlightColor 3-D frame highlight color

Interruptible Callback routine interruption mode

Parent Uipanel object’s parent

Position Panel position relative to parent figure or
uipanel

ResizeFcn User-specified resize routine

ShadowColor 3-D frame shadow color

1-7362

Uipanel Properties

Property Name Description

Tag User-specified object identifier

Title Title string

TitlePosition Location of title string in relation to the panel

Type Object class

UIContextMenu Associates uicontextmenu with the uipanel

Units Units used to interpret the position vector

UserData User-specified data

Visible Uipanel visibility.

Note Controls the visibility of a uipanel and
of its child axes, uibuttongroups. uipanels,
and child uicontrols. Setting it does not
change their Visible property.

BackgroundColor
ColorSpec

Color of the uipanel background. A three-element RGB vector or
one of the MATLAB predefined names, specifying the background
color. See the ColorSpec reference page for more information
on specifying color.

BeingDeleted
on | {off} (read-only)

This object is being deleted. Mechanism to determine if objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

1-7363

Uipanel Properties

For example, an object’s delete function calls other functions that
act on a number of different objects. If a function does not need to
perform an action on an about-be-deleted object, it can check the
object’s BeingDeleted property before acting.

BorderType
none | {etchedin} | etchedout | beveledin | beveledout
| line

Border of the uipanel area. Used to define the panel area
graphically. Etched and beveled borders provide a 3-D look. Use
the HighlightColor and ShadowColor properties to specify the
border color of etched and beveled borders.

A line border is 2-D. Use the HighlightColor property to specify
its color.

BorderWidth
integer

Width of the panel border. The width of the panel borders in
pixels. The default border width is 1 pixel. 3-D borders wider
than 3 may not appear correctly at the corners.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

1-7364

Uipanel Properties

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

ButtonDownFcn
string or function handle

Button-press callback routine. A callback routine that executes
when you press a mouse button while the pointer is in a 5-pixel
wide border around the uipanel. This is useful for implementing
actions to interactively modify control object properties, such
as size and position, when they are clicked on (using the
selectmoveresize function, for example).

If you define this routine as a string, the string can be a valid
MATLAB expression or the name of a code file. The expression
executes in the MATLAB workspace.

Children
vector of handles

Children of the uipanel. A vector containing the handles of all
children of the uipanel. A uipanel object’s children are axes,
uipanels, uibuttongroups, and uicontrols. You can use this
property to reorder the children.

Clipping
{on} | off

Clipping mode. By default, MATLAB clips a uipanel’s child
axes, uipanels, and uibuttongroups to the uipanel rectangle. If
you set Clipping to off, the axis, uipanel, or uibuttongroup is
displayed outside the panel rectangle. This property does not

1-7365

Uipanel Properties

affect child uicontrols which, by default, can display outside the
panel rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uipanel object.
MATLAB sets all property values for the uipanel before executing
the CreateFcn callback so these values are available to the
callback. Within the function, use gcbo to get the handle of the
uipanel being created.

Setting this property on an existing uipanel object has no effect.

You can define a default CreateFcn callback for all new uipanels.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uipanel. For example, the code

set(0,'DefaultUipanelCreateFcn','set(gcbo,...
''FontName'',''arial'',''FontSize'',12)')

creates a default CreateFcn callback that runs whenever you
create a new panel. It sets the default font name and font size
of the uipanel title.

Note Uibuttongroup takes its default property values from
uipanel. Defining a default property for all uipanels defines the
same default property for all uibuttongroups.

To override this default and create a panel whose FontName and
FontSize properties are set to different values, call uipanel with
code similar to

hpt = uipanel(...,'CreateFcn','set(gcbo,...
''FontName'',''times'',''FontSize'',14)')

1-7366

Uipanel Properties

Note To override a default CreateFcn callback you must provide a
new callback and not just provide different values for the specified
properties. This is because the CreateFcn callback runs after the
property values are set, and can override property values you
have set explicitly in the uipushtool call. In the example above, if
instead of redefining the CreateFcn property for this uipanel, you
had explicitly set Fontsize to 14, the default CreateFcn callback
would have set FontSize back to the system dependent default.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uipanel object (e.g.,
when you issue a delete command or clear the figure containing
the uipanel). MATLAB executes the routine before destroying the
object’s properties so these values are available to the callback
routine. The handle of the object whose DeleteFcn is being
executed is accessible only through the root CallbackObject
property, which you can query using gcbo.

FontAngle
{normal} | italic | oblique

Character slant used in the Title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to italic or oblique selects a slanted
version of the font, when it is available on your system.

1-7367

../ref/rootobject_props.html#RecursionLimit

Uipanel Properties

FontName
string

Font family used in the Title. The name of the font in which
to display the Title. To display and print properly, this must
be a font that your system supports. The default font is system
dependent. To eliminate the need to hard code the name of a
fixed-width font, which may not display text properly on systems
that do not use ASCII character encoding (such as in Japan),
set FontName to the string FixedWidth (this string value is case
insensitive).

set(uicontrol_handle,'FontName','FixedWidth')

This then uses the value of the root FixedWidthFontName
property which can be set to the appropriate value for a locale
from startup.m in the end user’s environment. Setting the root
FixedWidthFontName property causes an immediate update of
the display to use the new font

FontSize
integer

Title font size. A number specifying the size of the font in which to
display the Title, in units determined by the FontUnits property.
The default size is system dependent.

FontUnits
inches | centimeters | normalized | {points} |pixels

Title font size units. Normalized units interpret FontSize as a
fraction of the height of the uipanel. When you resize the uipanel,
MATLAB modifies the screen FontSize accordingly. pixels,
inches, centimeters, and points are absolute units (1 point =
1/72 inch).

FontWeight
light | {normal} | demi | bold

1-7368

Uipanel Properties

Weight of characters in the title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to bold causes MATLAB to use a bold version
of the font, when it is available on your system.

ForegroundColor
ColorSpec

Color used for title. A three-element RGB vector or one of the
MATLAB predefined names, specifying the title color. See the
ColorSpec reference page for more information on specifying
color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI

1-7369

Uipanel Properties

(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HighlightColor
ColorSpec

3-D frame highlight color. A three-element RGB vector or one
of the MATLAB predefined names, specifying the highlight
color. See the ColorSpec reference page for more information
on specifying color.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the uipanel
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the panel. If HitTest is off, clicking the panel sets
the CurrentObject to the closest ancestor of the panel that
registers HitTest. The uipanel property HandleVisibility
must be 'on' for it to become the CurrentObject. If the uipanel
HandleVisibility is 'off' or 'callback', or if the panel and all
its ancestors have HitTest set to 'off', the figure CurrentObject
is the empty matrix.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

1-7370

Uipanel Properties

For user interface objects, the Interruptible property affects the
callbacks for these properties only:

• ButtonDownFcn

• KeyPressFcn

• KeyReleaseFcn

• WindowButtonDownFcn

• WindowButtonMotionFcn

• WindowButtonUpFcn

• WindowKeyPressFcn

• WindowKeyReleaseFcn

• WindowScrollWheelFcn
A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. MATLAB handles both callbacks based on the
Interruptible property of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

1-7371

Uipanel Properties

The BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting the Interruptible property to on (default), allows a
callback from other user interface objects to interrupt callback
functions originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

Note If the interrupting callback is a DeleteFcnor CreateFcn
callback, or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. An object’s ButtonDownFcn or Callback
routine is processed according to the rules described previously
in this section.

Parent
handle

Uipanel parent. The handle of the uipanel’s parent figure,
uipanel, or uibuttongroup. You can move a uipanel object to

1-7372

Uipanel Properties

another figure, uipanel, or uibuttongroup by setting this property
to the handle of the new parent.

Position
position rectangle

Size and location of uipanel relative to parent. The rectangle
defined by this property specifies the size and location of the
panel within the parent figure window, uipanel, or uibuttongroup.
Specify Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of the
parent object to the lower-left corner of the uipanel object. width
and height are the dimensions of the uipanel rectangle, including
the title. All measurements are in units specified by the Units
property.

ResizeFcn
function handle or string

Resize callback routine. MATLAB executes this callback routine
whenever a user manually or programmatically resizes the
uipanel, or in GUIDE, the Resize behavior option is set to other.
You can query the uipanel Position property to determine its new
size and position. During execution of the callback routine, the
handle to the uipanel being resized is accessible only through the
root CallbackObject property, which you can query using gcbo.

All axes, uipanel, uitable and uicontrol objects that have their
Units set to normalized automatically resize proportionally to
the figure. You can define individual resize functions for any
such object as needed. For example, you can use ResizeFcn
to maintain a GUI layout that is not directly supported by the
MATLAB Position-and-Units paradigm.

1-7373

Uipanel Properties

For example, consider a GUI layout that maintains an object
attached to the top of the figure at a constant height in pixels,
but always matches the width of the figure. The following
ResizeFcn accomplishes this; it keeps the uicontrol whose Tag is
'StatusBar' 20 pixels high, as wide as the figure, and attached to
the top of the figure. Note the use of the Tag property to retrieve
the uicontrol handle, and the gcbo function to retrieve the figure
handle. The code also does “defensive programming” to save and
restores figure Units. The callback requires Units in pixels in
order to work correctly, but takes care not to permanently alter
that property.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within a uipanel
ResizeFcn callback; however, the ResizeFcn is not called again
as a result.

A figure’s uipanels resize before the figure itself does. Nested
uipanels resize from inner to outer, with child ResizeFcns being
called before parent ResizeFcns.

The print command can cause the ResizeFcn to be called if
the PaperPositionMode property is set to manual and you have
defined a resize function. If you do not want your resize function
called by print, set the PaperPositionMode to auto.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

1-7374

Uipanel Properties

See Resize Behavior for information on creating resize functions
using GUIDE.

Selected
on | off (read only)

Is object selected? This property indicates whether the panel is
selected. When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You
can, for example, define the ButtonDownFcn to set this property,
allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Object highlighted when selected. When the Selected property
is on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

ShadowColor
ColorSpec

3-D frame shadow color. A three-element RGB vector or one of the
MATLAB predefined names, specifying the shadow color. See
the ColorSpec reference page for more information on specifying
color.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the

1-7375

Uipanel Properties

handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

Title
string

Title string. The text displayed in the panel title. Vertical slash
(’|’) characters are not interpreted as line breaks and instead
show up in the text displayed in the uipanel title. You can position
the title using the TitlePosition property.

Setting a property value to default, remove, or factory produces
the effect described in “Defining Default Values”. To set Title to
one of these words, you must precede the word with the backslash
character. For example,

hp = uipanel(...,'Title','\default');

TitlePosition
{lefttop} | centertop | righttop | leftbottom |
centerbottom | rightbottom

Location of the title. This property determines the location of the
title string, in relation to the uipanel.

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uipanel objects, Type is always the string 'uipanel'.

UIContextMenu
handle

Associate a context menu with a uipanel. Assign this property
the handle of a Uicontextmenu object. MATLAB displays the

1-7376

Uipanel Properties

context menu whenever you right-click the uipanel. Use the
uicontextmenu function to create the context menu.

Units
inches | centimeters | {normalized} | points | pixels
| characters

Units of measurement. MATLAB uses these units to interpret the
Position property. For the panel itself, units are measured from
the lower-left corner of the figure window. For children of the
panel, they are measured from the lower-left corner of the panel.

• Normalized units map the lower-left corner of the panel or
figure window to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the
uipanel object. MATLAB does not use this data, but you can
access it using set and get.

Visible
{on} | off

Uipanel visibility. By default, a uipanel object is visible. When
set to 'off', the uipanel is not visible, as are all child objects of

1-7377

Uipanel Properties

the panel. When a panel is hidden in this manner, you can still
query and set its properties.

Note The value of a uipanel’s Visible property determines
whether its child components, such as axes, buttons,
uibuttongroups, and other uipanels, are visible. However,
changing the Visible property of a panel does not change the
settings of the Visible property of its child components even
though hiding the panel causes them to be hidden.

1-7378

uipushtool

Purpose Create push button on toolbar

Syntax hpt = uipushtool
hpt =
uipushtool('PropertyName1',value1,'PropertyName2',value2,...)
hpt = uipushtool(ht,...)

Description hpt = uipushtool creates a push button on the uitoolbar at the top of
the current figure window, sets all its properties to default values, and
returns a handle to the tool. If no uitoolbar exists, one is created. The
uitoolbar is the parent of the uipushtool. Use the returned handle hpt
to set properties of the tool. The ClickedCallback passes the handle
as its first argument. The button has no icon, but its border highlights
when you hover over it with the mouse cursor. Add an icon by setting
CData for the tool.

hpt =
uipushtool('PropertyName1',value1,'PropertyName2',value2,...)
, creates a uipushtool and returns a handle to it. uipushtool assigns
the specified property values, and assigns default values to the
remaining properties. You can change the property values at a later
time using the set function. You can specify properties as parameter
name/value pairs, cell arrays containing parameter names and values,
or structures with fields containing parameter names and values as
input arguments. For a complete list, see Uipushtool Properties. Type
get(hpt) to see a list of uipushtool object properties and their current
values. Type set(hpt) to see a list of uipushtool object properties that
you can set and their legal property values.

hpt = uipushtool(ht,...) creates a button with ht as a parent. ht
must be a uitoolbar handle.

Uipushtools appear in figures whose Window Style is 'normal'
or 'docked'. Push tools do not appear in figures with 'modal'
WindowStyle. If you change the WindowStyle of a figure containing
a uitoolbar and its uipushtool children to 'modal', the uipushtools
continue to exist as Children of the uitoolbar. However, they do

1-7379

../ref/figure_props.html#WindowStyle

uipushtool

not display until you change the figure WindowStyle to 'normal' or
'docked'.

Unlike push buttons, uipushtools have no way to indicate that you have
double-clicked them. That is, a double click does not set the figure
SelectionType property to 'open'. Double-clicking a uipushtool simply
executes its ClickedCallback twice in succession. Also, uipushtools
cannot have context menus.

Examples Toolbar with push button

Create a uitoolbar object and place a uipushtool object on it.

h = figure('ToolBar','none');
ht = uitoolbar(h);
% Use a MATLAB icon for the tool
[X map] = imread(fullfile(...

matlabroot,'toolbox','matlab','icons','matlabicon.gif'));
% Convert indexed image and colormap to truecolor
icon = ind2rgb(X,map);
% Create a uipushtool in the toolbar
hpt = uipushtool(ht,'CData',icon,...

'TooltipString','Toolbar push button',...
'ClickedCallback',...
'disp(''Thank you for clicking a uipushtool.'')')

1-7380

uipushtool

Alternatives You can also create toolbars with push tools using GUIDE.

See Also get | set | uicontrol | uitoggletool | uitoolbar | Uipushtool
Properties

Tutorials • “Axes, Menus, and Toolbars in Programmatic GUIs”

How To • “Create Toolbars for Programmatic GUIs”

1-7381

Uipushtool Properties

Purpose Describe push tool properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uipushtool properties by typing:

set(h,'DefaultUipushtoolPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, a uitoolbar handle,
or a uipushtool handle. PropertyName is the name of the Uipushtool
property and PropertyValue is the value you specify as the default
for that property.

For more information about changing the default value of a property
see Setting Default Property Values.

Uipushtool
Properties

This section lists all properties useful to uipushtool objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

CData Truecolor image displayed on the control.

ClickedCallback Control action.

CreateFcn Callback routine executed during object creation.

DeleteFcn Delete uipushtool callback routine.

1-7382

Uipushtool Properties

Property Purpose

Enable Enable or disable the uipushtool.

HandleVisibilityControl access to object’s handle.

Interruptible Callback routine interruption mode.

Parent Handle of uipushtool’s parent.

Separator Separator line mode

Tag User-specified object label.

TooltipString Content of object’s tooltip.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uipushtool

UserData User specified data.

Visible Uipushtool visibility.

BeingDeleted
on | {off} (read only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are
in the process of being deleted. MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property). It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

1-7383

Uipushtool Properties

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

CData
3-dimensional array

Truecolor image displayed on control. An n-by-m-by-3 array of
RGB values that defines a truecolor image displayed on either
a push button or toggle button. Each value must be between
0.0 and 1.0. If your CData array is larger than 16 in the first or
second dimension, it may be clipped or cause other undesirable
effects. If the array is clipped, only the center 16-by-16 part of
the array is used.

ClickedCallback
string or function handle

Control action. A routine that executes when the uipushtool’s
Enable property is set to on, and you press a mouse button while
the pointer is on the push tool itself or in a 5-pixel wide border
around it.

1-7384

Uipushtool Properties

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uipushtool object.
MATLAB sets all property values for the uipushtool before
executing the CreateFcn callback so these values are available
to the callback. Within the function, use gcbo to get the handle
of the push tool being created.

Setting this property on an existing uipushtool object has no effect.

You can define a default CreateFcn callback for all new
uipushtools. This default applies unless you override it by
specifying a different CreateFcn callback when you call
uipushtool. For example, the code

imga(:,:,1) = rand(20);

imga(:,:,2) = rand(20);

imga(:,:,3) = rand(20);

set(0,'DefaultUipushtoolCreateFcn',...

'set(gcbo,''Cdata'',imga)')

creates a default CreateFcn callback that runs whenever you
create a new push tool. It sets the default image imga on the
push tool.

To override this default and create a push tool whose Cdata
property is set to a different image, call uipushtool with code
similar to

a = [.05:.05:0.95];

imgb(:,:,1) = repmat(a,19,1)';

imgb(:,:,2) = repmat(a,19,1);

imgb(:,:,3) = repmat(flip(a,2),19,1);

hpt = uipushtool(...,'CreateFcn',...

'set(gcbo,''CData'',imgb)',...)

1-7385

Uipushtool Properties

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback
runs after the property values are set, and can override property
values you have set explicitly in the uipushtool call. In the
example above, if instead of redefining the CreateFcn property
for this push tool, you had explicitly set CData to imgb, the default
CreateFcn callback would have set CData back to imga.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uipushtool object (e.g.,
when you call the delete function or cause the figure containing
the uipushtool to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | off

1-7386

../ref/rootobject_props.html#RecursionLimit

Uipushtool Properties

Enable or disable the uipushtool. This property controls how
uipushtools respond to mouse button clicks, including which
callback routines execute.

• on – The uipushtool is operational (the default).

• off – The uipushtool is not operational and its image (set by
the Cdata property) is grayed out.

When you left-click a uipushtool whose Enable property is on,
MATLAB performs these actions in this order:

1 Executes the push tool’s ClickedCallback routine.

2 Does not set the figure CurrentPoint property and does not
execute the figure’s WindowButtonDownFcn callback.

3 Does not set the figure SelectionType property.

When you left-click a uipushtool whose Enable property is off, or
when you right-click a uipushtool whose Enable property has any
value, no action is reported, no callback executes, and neither the
SelectionType nor CurrentPoint figure properties are modified.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

1-7387

Uipushtool Properties

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on
uipushtool objects.

Note Use of the uipushtool HitTest property is not
recommended. This property might be removed in a future
release.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

1-7388

../ref/rootobject_props.html#ShowHiddenHandles

Uipushtool Properties

For user interface objects, the Interruptible property affects the
callbacks for these properties only:

• ButtonDownFcn

• KeyPressFcn

• KeyReleaseFcn

• WindowButtonDownFcn

• WindowButtonMotionFcn

• WindowButtonUpFcn

• WindowKeyPressFcn

• WindowKeyReleaseFcn

• WindowScrollWheelFcn
A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. MATLAB handles both callbacks based on the
Interruptible property of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

1-7389

Uipushtool Properties

The BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting the Interruptible property to on (default), allows a
callback from other user interface objects to interrupt callback
functions originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

Note If the interrupting callback is a DeleteFcnor CreateFcn
callback, or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. An object’s ButtonDownFcn or Callback
routine is processed according to the rules described previously
in this section.

Parent
handle

Uipushtool parent. The handle of the uipushtool’s parent toolbar.
You can move a uipushtool object to another toolbar by setting
this property to the handle of the new parent.

1-7390

Uipushtool Properties

Separator
on | {off}

Separator line mode. Setting this property to on draws a dividing
line to the left of the uipushtool.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified toolbars) that have the
Tag value 'Copy'.

h = findobj(uitoolbarhandles,'Tag','Copy')

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uipushtool. When the
user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

To create a tooltip that has more than one line of text, use sprintf
to generate a string containing newline (\n) characters and then
set the TooltipString to that value. For example:

h = uipushtool;
s = sprintf('Pushtool tooltip line 1\nPushtool tooltip line 2');
set(h,'TooltipString',s)

1-7391

Uipushtool Properties

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uipushtool objects, Type is always the string 'uipushtool'.

UIContextMenu
handle

Associate a context menu with uicontrol. This property has no
effect on uipushtool objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uipushtool object. The object does
not use this data, but you can access it using the set and get
functions.

Visible
{on} | off

Uipushtool visibility. By default, all uipushtools are visible. When
set to off, the uipushtool is not visible, but still exists and you
can query and set its properties.

1-7392

uiputfile

Purpose Open standard dialog box for saving files

Syntax FileName = uiputfile
[FileName,PathName] = uiputfile
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec)
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec,DialogTitle)
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec,DialogTitle,

DefaultName)

Description
Note Successful execution of uiputfile does not create a file; it only
returns the name of a new or existing file that you designate.

FileName = uiputfile displays a modal dialog box for selecting or
specifying a file you want to create or save. The dialog box lists the files
and folders in the current folder. If the selected or specified file name is
valid, uiputfile returns it in FileName.

[FileName,PathName] = uiputfile also returns the path to FileName
in PathName, or if you cancel the dialog, returns 0 for both arguments.
If you do not provide any output arguments, the file name alone is
returned in ans.

[FileName,PathName,FilterIndex] =
uiputfile(FilterSpec)displays only those files with extensions that
match FilterSpec. On some platforms uiputfile also displays
in gray any files that do not match FilterSpec. The uiputfile
function appends 'All Files' to the list of file types. FilterSpec
can be a string or a cell array of strings, and can include the * and ?
wildcard characters. For example, '*.m' lists all MATLAB program
files in a folder.

FilterSpec can be a string that contains a file name. uiputfile
displays the file name selected in the File name field and uses the
file extension as the default filter. The FilterSpec string can include
a path, or consist of a path only. To specify a folder only, make the
last character in DefaultName '\' or '/'. A path can contain special

1-7393

uiputfile

path characters, such as '.', '..', '/', '\', or '~'. For example,
'../*.m' lists all program files in the folder above the current folder. If
FilterSpec is a cell array of strings, the first column contains a list of
file extensions. The optional second column contains a corresponding
list of descriptions. These descriptions replace the default descriptions
in the Save as type pop-up menu. A description cannot be an empty
string. See the “Examples” on page 1-7396 for illustration of using cell
arrays as FilterSpec. If you do not specify FilterSpec, uiputfile
uses the default list of file types (all MATLAB files). FilterIndex is the
index of the filter selected in the dialog box. Indexing starts at 1. If you
click the Cancel button, close the dialog window, or if the file does not
exist, uiputfile returns FilterIndex as 0.

[FileName,PathName,FilterIndex] =
uiputfile(FilterSpec,DialogTitle)displays a dialog box that has
the title DialogTitle. To use the default file types and to specify a
dialog title, enter uiputfile('','DialogTitle')

[FileName,PathName,FilterIndex] =
uiputfile(FilterSpec,DialogTitle, DefaultName)displays a dialog
box in which the file name specified by DefaultName appears in the
File name field. DefaultName can also be a path or a path+filename.
To specify a folder only, make the last character in DefaultName '\' or
'/'. In this case, uiputfile opens the dialog box in the folder specified
by the path. If you specify a path in DefaultName that does not exist,
uiputfile opens the dialog box in the current folder. You can use
'.','..', '\', '/', or ~ in the DefaultName argument.

When typing into the dialog box, if you include either of the wildcard
characters '*' or '?' in a file name, uiputfile does not respond to
clicking Save. The dialog box remains open until you cancel it or remove
the wildcard characters. This restriction applies to all platforms, even
to file systems that permit these characters in file names.

If you select or specify an existing file name, a warning dialog box opens
stating that the file already exists and asks if you want to replace it.

1-7394

uiputfile

Select Yes to replace the existing file or No to return to the dialog to
select another file name. Selecting Yes returns the name of the file.
Selecting No returns 0.

For Microsoft Windows platforms, the dialog box is the Windows dialog
box native to your platform, and thus can differ from what you see in
the examples that follow.

For UNIX platforms, the dialog box is like the one shown in the
following figure.

For Mac platforms, the dialog box is like the one shown in the following
figure.

1-7395

uiputfile

Note A modal dialog box prevents you from interacting with other
MATLAB windows before responding. To block MATLAB program
execution as well, use the uiwait function. For more information about
modal dialog boxes, see WindowStyle in MATLAB Figure Properties.

Examples The following statement displays a dialog box entitled 'Save file
name', setting the File name field to animinit.m and the filter to
program files (*.m). Because FilterSpec is a string, the filter also
includes All Files (*.*)

[file,path] = uiputfile('animinit.m','Save file name');

1-7396

uiputfile

The following statement displays a dialog box entitled 'Save Workspace
As' with the filter set to MAT-files.

[file,path] = uiputfile('*.mat','Save Workspace As');

1-7397

uiputfile

To display several file types in the Save as type list box, separate each
file extension with a semicolon, as in the following code. uiputfile
displays a default description for each known file type, such as "Model
files" for Simulink .mdl and .slx files.

[filename, pathname] = uiputfile(...
{'*.m';'*.slx';'*.mat';'*.*'},...
'Save as');

1-7398

uiputfile

To create a list of file types and give them descriptions that are different
from the defaults, use a cell array. This example also associates
multiple file types with the 'MATLAB Files' and 'Models' descriptions.

[filename, pathname, filterindex] = uiputfile(...
{'*.m;*.fig;*.mat;*.slx;*.mdl',...
'MATLAB Files (*.m,*.fig,*.mat,*.slx,*.mdl)';
'*.m', 'program files (*.m)';...
'*.fig','Figures (*.fig)';...
'*.mat','MAT-files (*.mat)';...
'*.slx;*.mdl','Models (*.slx,*.mdl)';...
'*.*', 'All Files (*.*)'},...
'Save as');

1-7399

uiputfile

The first column of the cell array contains the file extensions, while the
second contains the descriptions you want to provide for the file types.
The first entry of column one contains several extensions separated by
semicolons. These file types all associate with the description 'MATLAB
Files (*.m,*.fig,*.mat,*.slx,*.mdl)'. The code produces the
dialog box shown in the following figure.

The following code checks for the existence of the file and displays a
message about the result of the file selection operation.

[filename, pathname] = uiputfile('*.m',...
'Pick a MATLAB program file');

if isequal(filename,0) || isequal(pathname,0)
disp('User selected Cancel')

1-7400

uiputfile

else
disp(['User selected ',fullfile(pathname,filename)])

end

Select or enter a file name for saving a figure as an image in one of four
formats, described in a cell array.

uiputfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
'*.*','All Files' },'Save Image',...
'C:\Work\newfile.jpg')

See Also save | uigetdir | uigetfile | uisave

1-7401

uiresume

Purpose Resume execution of blocked program

Syntax uiresume(h)

Description uiresume(h) resumes the program execution that uiwait suspended.

Tips The uiwait and uiresume functions block and resume MATLAB
program execution. When creating a dialog box, you should have a
uicontrol component with a callback that calls uiresume or a callback
that destroys the dialog box. These are the only methods that resume
program execution after the uiwait function blocks execution.

When used in conjunction with a modal dialog box, uiresume can
resume the execution of the program that uiwait suspended while
presenting a dialog box.

Examples This example creates a GUI with a Continue push button. The example
calls uiwait to block MATLAB execution until uiresume is called. This
happens when the user clicks the Continue push button because the
push button’s Callback, which responds to the click, calls uiresume.

f = figure;
h = uicontrol('Position',[20 20 200 40],'String','Continue',...

'Callback','uiresume(gcbf)');
disp('This will print immediately');
uiwait(gcf);
disp('This will print after you click Continue');
close(f);

gcbf is the handle of the figure that contains the object whose callback
is executing.

“Modal Dialog Box in a GUIDE GUI” is a more complex example for
a GUIDE GUI.

See Also dialog | figure | uicontrol | uimenu | uiwait | waitfor

1-7402

uisave

Purpose Interactively save workspace variables to MAT-file

Syntax uisave
uisave(variables)
uisave(variables,filename)

Description uisave, with no arguments, prompts you for a file name, and then saves
all variables from your workspace to that file.

uisave(variables) saves one or more workspace variables listed in
variables.

uisave(variables,filename) uses the specified filename as the
default File name in the Save Workspace Variables dialog box, instead
of the default matlab.mat.

Tips • If you type a name in the File name field, such as my_vars, and
click Save, the dialog saves all workspace variables to the file
my_vars.mat. The default filename is matlab.mat.

• uisave calls uiputfile to choose a filename.

• If the filename you specify exists in that folder, uisave informs you
and gives you a chance to cancel the operation.

• The uisave dialog box is modal.

• The uisave dialog is modal. A modal dialog box prevents you from
interacting with other windows until you respond to it.

Input
Arguments

variable

String containing the name of a variable in the current workspace or
cell array of strings when specifying more than one variable.

Default: All variables in the current workspace are saved to a
MAT-file.

filename

1-7403

uisave

String naming a file to appear in the dialog File name field when the
dialog opens. You can omit a file extension, or specify the file extension
as .mat.

Default: matlab.mat

Definitions Modal Dialog

A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

Examples Create workspace variables h and g, and then display the Save
Workspace Variables dialog box in the current folder with the default
File name set to var1.

h = 365;
g = 52;
uisave({'h','g'},'var1');

1-7404

uisave

Clicking Save stores the workspace variables h and g in the file
var1.mat in the displayed folder.

Alternatives Use any of the following GUI options to save workspace variables:

• Use File > Save to save workspace variables.

• Click the Save icon in the Workspace Browser.

• Select one or more variables in the Workspace Browser, right-click,
and choose Save as from the context menu.

See Also save | uigetfile | uiputfile | uiopen

Tutorials • “Save, Load, and Delete Workspace Variables”

1-7405

uisetcolor

Purpose Open standard dialog box for setting object’s color specification
(ColorSpec)

Syntax c = uisetcolor
c = uisetcolor([r g b])
c = uisetcolor(h)
c = uisetcolor(...,'dialogTitle')

Description c = uisetcolor displays a modal color selection dialog appropriate to
the platform, and returns the color selected by the user. The dialog
box is initialized to white.

c = uisetcolor([r g b]) displays a dialog box initialized to the
specified color, and returns the color selected by the user. r, g, and b
must be values between 0 and 1.

c = uisetcolor(h) displays a dialog box initialized to the color of the
object specified by handle h, returns the color selected by the user, and
applies it to the object. h must be the handle to an object containing a
color property.

c = uisetcolor(...,'dialogTitle') displays a dialog box with the
specified title.

If the user presses Cancel from the dialog box, or if any error occurs,
the output value is set to the input RGB triple, if provided; otherwise, it
is set to 0.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

See Also ColorSpec

1-7406

uisetfont

Purpose Open standard dialog box for setting object’s font characteristics

Syntax uisetfont
uisetfont(h)
uisetfont(S)
uisetfont(...,'DialogTitle')
S = uisetfont(...)

Description uisetfont enables you to change font properties (FontName, FontUnits,
FontSize, FontWeight, and FontAngle) for a text, axes, or uicontrol
object. The function returns a structure consisting of font properties
and values. You can specify an alternate title for the dialog box.

uisetfont displays a modal dialog box and returns the selected font
properties.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

uisetfont(h) displays a modal dialog box, initializing the font
property values with the values of those properties for the object whose
handle is h. Selected font property values are applied to the current
object. If a second argument is supplied, it specifies a name for the
dialog box.

uisetfont(S) displays a modal dialog box, initializing the font
property values with the values defined for the specified structure (S). S
must define legal values for one or more of these properties: FontName,
FontUnits, FontSize, FontWeight, and FontAngle and the field names
must match the property names exactly. If other properties are defined,
they are ignored. If a second argument is supplied, it specifies a name
for the dialog box.

1-7407

uisetfont

uisetfont(...,'DialogTitle') displays a modal dialog box with the
title DialogTitle and returns the values of the font properties selected
in the dialog box.

S = uisetfont(...) returns the properties FontName, FontUnits,
FontSize, FontWeight, and FontAngle as fields in a structure. If the
user presses Cancel from the dialog box or if an error occurs, the
output value is set to 0.

Examples These statements create a text object, then display a dialog box (labeled
Update Font) that enables you to change the font characteristics:

h = text(.5,.5,'Figure Annotation');
uisetfont(h,'Update Font')

These statements create two push buttons, then set the font properties
of one based on the values set for the other:

% Create push button with string ABC
c1 = uicontrol('Style', 'pushbutton', ...

'Position', [10 10 100 20], 'String', 'ABC');
% Create push button with string XYZ
c2 = uicontrol('Style', 'pushbutton', ...

'Position', [10 50 100 20], 'String', 'XYZ');
% Display set font dialog box for c1, make selections,
& and save to d
d = uisetfont(c1);
% Apply those settings to c2
set(c2, d)

See Also axes | text | uicontrol

1-7408

uisetpref

Purpose Manage preferences used in uigetpref

Syntax uisetpref('clearall')

Description uisetpref('clearall') resets the value of all preferences registered
through uigetpref to 'ask'. This causes the dialog box to display
when you call uigetpref.

Note Use setpref to set the value of a particular preference to 'ask'.

See Also setpref | uigetpref

1-7409

uistack

Purpose Reorder visual stacking order of objects

Syntax uistack(h)
uistack(h,stackopt)
uistack(h,stackopt,step)

Description uistack(h) raises the visual stacking order of the objects specified by
the handles in h by one level (step of 1). All handles in h must have
the same parent.

uistack(h,stackopt) moves the objects specified by h in the stacking
order, where stackopt is one of the following:

• 'up' – moves h up one position in the stacking order

• 'down' – moves h down one position in the stacking order

• 'top' – moves h to the top of the current stack

• 'bottom' – moves h to the bottom of the current stack

uistack(h,stackopt,step) moves the objects specified by h up or down
the number of levels specified by step.

Note In a GUI, axes objects are always at a lower level than uicontrol
objects. You cannot stack an axes object on top of a uicontrol object.

See “Set Tab Order in a Programmatic GUI” in the MATLAB
documentation for information about changing the tab order.

Examples Create three stacked push buttons, and then use uistack to change the
stacking order. Initially, the Ready push button appears on top.

fh=figure;
pb1 = uicontrol('Parent', fh,'String','Go');
pb2 = uicontrol('Parent', fh,'String','Set');
pb3 = uicontrol('Parent', fh,'String','Ready');

1-7410

uistack

Use uistack to move the push button that is first in the stacking order
of the figure handle fh down two positions.

v = allchild(fh);
uistack(v(1),'down',2);

The Ready push button moves to the bottom of the stack.

1-7411

uitable

Purpose Create 2-D graphic table GUI component

Syntax uitable
uitable('PropertyName1', value1,'PropertyName2',value2,...)
uitable(parent,...)
handle = uitable(...)

Description uitable creates an empty uitable object in the current figure window,
using default property values. If no figure exists, a new figure window
opens.

uitable('PropertyName1', value1,'PropertyName2',value2,...)
creates a uitable object with specified property values. Properties that
you do not specify assume the default property values. See the Uitable
Properties reference page for information about the available properties.

uitable(parent,...) creates a uitable object as a child of the
specified parent handle parent. The parent can be a figure or uipanel
handle. If you also specify a different value for the Parent property, the
value of the Parent property takes precedence.

handle = uitable(...) creates a uitable object and returns its
handle.

Tips After creating a uitable object, you can set and query its property
values using the set and get functions.

If the ColumnEditable property is true for columns you edit, you can
change values in a displayed table. By default, this property is false
for all columns. If a noneditable column contains pop-up choices, only
the current choice is visible (and not the pop-up menu control).

If you attempt to create a uitable object when running MATLAB on
a UNIX system without a Java virtual machine (matlab -nojvm) or
without a display (matlab nodisplay), no table generates and you
receive an error.

The CellEditCallback executes after you edit a value and do any of
the following:

1-7412

uitable

• Type Enter.

• Click another table cell.

• Click anywhere else within the table.

• Click another control or area within the same figure window.

• Click another window, click again on the GUI containing the table
(or use Alt+Tab to switch windows), and then perform any of the
above four actions.

When the CellEditCallback callback executes, uitable updates the
underlying data matrix (the table Data property) to contain the value
that the cell now displays.

The CellSelectionCallback executes when you select a table cell or
remove one from the current selection by Ctrl+clicking it. Clicking
a cell without pressing any key selects it and deselects all currently
selected cells. You can define a range of table cells by Shift+clicking an
unselected cell after selecting one or more cells. The callback provides
event data that identifies the rows and columns of all cells in the
current selection.

You cannot select table cells programmatically. Directly clicking cells is
the only method of selection.

Examples Create a table, provide magic-square data, set column widths uniformly,
and specify the uitable ColumnWidth property as a cell array:

1 Create a table in the current figure. If no figure exists, one opens:

t = uitable;

1-7413

uitable

2 As the table has no content (its Data property is empty), it initially
displays no rows or columns. Provide data (a magic square)

set(t,'Data',magic(10))

1-7414

uitable

3 Make the entire table contents visible. Set column widths to 25
pixels uniformly. Specify the ColumnWidth property of the table as a
cell array.

set(t,'ColumnWidth',{25})

1-7415

uitable

Cell arrays that specify ColumnWidth can contain:

• One number (a width measured in pixels, as shown here) or the
string 'auto'.

• A cell array containing a list of pixel sizes having up to as many
entries as the table has columns .

If a list of column widths has n entries, where n is smaller than the
number of columns, it sets the first n column widths only. You can
substitute 'auto' for any value in the cell array to have the width of
that column calculated automatically.

1-7416

uitable

Create a figure and add a table to contain a 3-by-3 data matrix. The
code specifies the column names, row names, parent, and position of
the table:

f = figure('Position',[200 200 400 150]);
dat = rand(3);
cnames = {'X-Data','Y-Data','Z-Data'};
rnames = {'First','Second','Third'};
t = uitable('Parent',f,'Data',dat,'ColumnName',cnames,...

'RowName',rnames,'Position',[20 20 360 100]);

Create a table to contain a 3-by-4 array that contains numeric, logical,
and string data, as follows:

• First column (Rate): Numeric, with three decimals (not editable)

• Second column (Amount): Currency (not editable)

• Third column (Available): Check box (editable)

• Fourth column (Fixed/Adj): Pop-up menu with two choices: Fixed
and Adjustable (editable)

• Specify the RowName property as empty to remove row names from
the table.

f = figure('Position',[100 100 400 150]);

1-7417

uitable

dat = {6.125, 456.3457, true, 'Fixed';...
6.75, 510.2342, false, 'Adjustable';...
7, 658.2, false, 'Fixed';};

columnname = {'Rate', 'Amount', 'Available', 'Fixed/Adj'};
columnformat = {'numeric', 'bank', 'logical', {'Fixed' 'Adjustable'}};
columneditable = [false false true true];
t = uitable('Units','normalized','Position',...

[0.1 0.1 0.9 0.9], 'Data', dat,...
'ColumnName', columnname,...
'ColumnFormat', columnformat,...
'ColumnEditable', columneditable,...
'RowName',[]);

Alternatives You can add tables to GUIs you create with “Table”.

See Also figure | format | get | set | uipanel | Uitable Properties

Tutorials • “Synchronized Data Presentations in a GUIDE GUI”

• “Synchronized Data Presentations in a Programmatic GUI”

How To • “Table”

1-7418

Uitable Properties

Purpose Describe table properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from the GUIDE Layout Editor View menu, or use the
inspect function at the command line.

• The set and get functions enable you to set and query the values of
properties.

You can set default uitable properties by typing:

set(h,'DefaultUitablePropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, or a uitable handle.
PropertyName is the name of the uitable property and PropertyValue
is the value you specify as the default for that property.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uitable
Properties

This section lists all properties useful to uitable objects along with
valid values and descriptions of their use. In the property descriptions,
curly braces { } enclose default values.

Property Name Description

BackgroundColor Background color of cells.

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption

ButtonDownFcn Button-press callback routine

CellEditCallback Callback when data in a cell is changed.

1-7419

Uitable Properties

Property Name Description

CellSelectionCallbackCallback when cell is selected

Children uitable objects have no children

Clipping Does not apply to uitable objects

ColumnEditable Determines data in a column as editable

ColumnFormat Determines display and editability of
columns

ColumnName Column header label

ColumnWidth Width of each column in pixels

CreateFcn Callback routine during object creation

Data Table data

DeleteFcn Callback routine during object deletion

Enable Enable or disable the uitable

Extent Size of uitable rectangle

FontAngle Character slant of cell content

FontName Font family for cell content

FontSize Font size of cell content

FontUnits Font size units for cell content

FontWeight Weight of cell text characters

ForegroundColor Color of text in cells

HandleVisibility Control access to object’s handle

Interruptible Callback routine interruption mode

KeyPressFcn Key press callback function

Parent uitable parent

1-7420

Uitable Properties

Property Name Description

Position Size and location of uitable

RearrangeableColumns Location of the column

RowName Row header label names

RowStriping Color striping of label rows

Tag Use-specified object label

TooltipString Content of tooltip for object

Type Class of graphics object

UIContextMenu Associate context menu with uitable

Units Units of measurement

UserData User-specified data

Visible uitable visibility

BackgroundColor
1-by-3 or 2-by-3 matrix of RGB triples

Cell background color. Color used to fill the uitable cells.
Specify as an 1-by-3 or 2-by-3 matrix of RGB triples, such as [.8
.9. .8] or [1 1 .9; .9 1 1]. Each row is an RGB triplet
of real numbers between 0.0 and 1.0 that defines one color.
(Color names are not allowed.) The default is a 1-by-3 matrix of
platform-dependent colors. See ColorSpec for information about
RGB colors.

Row 2 of the matrix is used only if the RowStriping property is
on. The table background is not striped unless both RowStriping
is on and the BackgroundColor color matrix has two rows.

1-7421

./uitableproperties.html#RowStriping

Uitable Properties

BeingDeleted
on | {off} (read-only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are
in the process of being deleted. MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property) It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

1-7422

./uitableproperties.html#DeleteFcn

Uitable Properties

ButtonDownFcn
string or function handle (GUIDE sets this property)

Button-press callback routine. A callback routine that can execute
when you press a mouse button while the pointer is on or near
a uitable. Specifically:

• If the uitable Enable property is set to on, the ButtonDownFcn
callback executes when you click the right or left mouse button
in a 5-pixel border around the uitable or when you click the
right mouse button on the control itself.

• If the uitable Enable property is set to inactive or off, the
ButtonDownFcn executes when you click the right or left mouse
button in the 5-pixel border or on the control itself.

This is useful for implementing actions to interactively modify
control object properties, such as size and position, when they
are clicked on.

Define this routine as a string that is a valid MATLAB expression
or the name of a MATLAB function file. The expression executes
in the MATLAB workspace.

To add a ButtonDownFcn callback in GUIDE, select View
Callbacks from the Layout Editor View menu, then select
ButtonDownFcn. GUIDE sets this property to the appropriate
string and adds the callback to the program file the next time
you save the GUI. Alternatively, you can set this property to the
string %automatic. The next time you save the GUI, GUIDE sets
this property to the appropriate string and adds the callback to
the program file.

CellEditCallback
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback to edit user-entered data

1-7423

Uitable Properties

Callback function executed when the user modifies a table cell.
It can perform evaluations, validations, or other customizations.
If this function is called as a function handle, uitable passes
it two arguments. The first argument, source, is the handle of
the uitable. The second argument, eventdata, is an event data
structure that contains the fields shown in the following table. All
fields in the event data structure are read only.

Event
Data
Structure
Field Type Description

Indices 1-by-2
matrix

Row index and column index of the cell the
user edited.

PreviousData1-by-1
matrix
or cell
array

Previous data for the changed cell. The
default is an empty matrix, [].

EditData String User-entered string.

NewData 1-by-1
matrix
or cell
array

Value that uitable wrote to Data. It is
either the same as EditData or a converted
value, for example, 2 where EditData is '2'
and the cell is numeric.

Empty if uitable detected an error in the
user-entered data and did not write it to
Data.

Error String Error that occurred when uitable tried
to convert the EditData string into a
value appropriate for Data. For example,
uitable could not convert the EditData
string consistent with the Column Format
property, if any, or the data type for the
changed cell.

Empty if uitable wrote the value to Data.

1-7424

Uitable Properties

Event
Data
Structure
Field Type Description

If Error is not empty, the
CellEditCallback can pass the error string
to the user or can attempt to manipulate
the data. For example, the string 'pi'
would raise an error in a numeric cell but
the CellEditCallback could convert it to
its numerical equivalent and store it in
Data without passing the error to the user.

When a user edits a cell, uitable first attempts to store the
user-entered value in Data, converting the value if necessary. It
then calls the CellEditCallback and passes it the event data
structure. If there is no CellEditCallback and the user-entered
data results it an error, the contents of the cell reverts to its
previous value and no error is displayed. The CellEditCallback
is issued when the user has modified a table cell and presses
Enter or clicks anywhere outside the cell.

CellSelectionCallback
function handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback that executes when cell is selected. Callback function
that executes when the user highlights a cell by navigating to it
or clicking it. For multiple selection, this callback executes when
new cells are added to the selection. The callback includes event
data, a structure with one member

1-7425

Uitable Properties

Event
Data
Structure
Field Type Description

Indices n-by-2
matrix

Row index and column index of the cells the
user currently has selected

Once a cell selection has been made, cells within it can be removed
one at a time by Ctrl-clicking them.

Children
matrix

The empty matrix; uitable objects have no children.

Clipping
{on} | off

This property has no effect on uitable objects.

ColumnEditable
logical 1–by-n matrix | scalar logical value |{ empty matrix ([])}

Determines if column is user-editable.

Determines if the data can be edited by the end user. Each value
in the cell array corresponds to a column. False is default because
the developer needs to have control over changes users potentially
might make to data.

Specify elements of a logical matrix as true if the data in a
column is editable by the user or false if it is not. An empty
matrix indicates that no columns are editable.

Columns that contain check boxes or pop-up menus must be
editable for the user to manipulate these controls. If a column
that contains pop-up menus is not editable, the currently selected
choice appears without displaying the pop-up control. The

1-7426

Uitable Properties

Elements of the ColumnEditable matrix must be in the same
order as columns in the Data property. If you do not specify
ColumnEditable, the default is an empty matrix ([]).

ColumnFormat
cell array of strings

Cell display formatting. Determines how the data in each column
displays and is edited. Elements of the cell array must be in the
same order as table columns in the Data property. If you do not
want to specify a display format for a particular column, enter
[] as a placeholder. If no format is specified for a column, the
default display is determined by the data type of the data in the
cell. Default ColumnFormat is an empty cell array ({}). In most
cases, the default is similar to the command window.

Elements of the cell array must be one of the strings described in
the following table.

Cell Format Description

'char' Displays a left-aligned string.

To edit, the user types a string that
replaces the existing string.

'logical' Displays a check box.

To edit, the user checks or unchecks the
check box. uitable sets the corresponding
Data value to true or false accordingly.

Initially, the check box is checked if the
corresponding Data value would produce
true if passed to the logical function, and
unchecked otherwise.

1-7427

Uitable Properties

Cell Format Description

'numeric' Displays a right-aligned string equivalent
to the command window, for numeric data.
If the cell Data value is boolean, then 1
or 0 is displayed. If the cell Data value is
not numeric and not boolean, then NaN is
displayed.

To edit, the user can enter any string. This
enables a user to enter a value such as
'pi' that can be converted to its numeric
equivalent by a CellEditCallback.
The uitable function first attempts
to convert the user-entered string to a
numeric value and store it in Data. It
then calls the CellEditCallback. See
CellEditCallback for more information.

1–by-n cell array
of strings that
define a pop-up
menu, e.g., {'one'
'two' 'three'}

Displays a pop-up menu.

To edit, the user makes a selection from
the pop-up menu. uitable sets the
corresponding Data value to the selected
menu item.

The initial values for the pop-up menus in
the column are the corresponding strings
in Data. These initial values do not have to
be items in the pop-up menu. See Example
3 on the uitable reference page.

Valid string
accepted by the
format function,
e.g.,'short' or
'bank'

Displays the Data value using
the specified format. For
example, for a two-column table,
set(htable,'ColumnFormat',{'short','bank'}).

1-7428

Uitable Properties

In some cases, you may need to insert an appropriate column in
Data. If Data is a numerical or logical matrix, you must first
convert it to a cell array using the mat2cell function.

Data and ColumnFormat

When you create a table, you must specify value of Data. The
Data property dictates what type of data can exist in any given
cell. By default, the value of the Data also dictates the display
of the cell to the end user, unless you specify a different format
using the ColumnFormat property.

ColumnFormat controls the presentation of the Data to the end
user. Therefore, if you specify a ColumnFormat of char (or pick
Text from the Table Property Editor), you are asking the table
to display the Data associated with that column as a string. For
example, if the Data for a particular column is numeric, and you
specify the ColumnFormat as char, then the display of the numeric
data will be left-aligned

1-7429

Uitable Properties

If your column is editable and the user enters a number, the
number will be left-aligned. However, if the user enters a text
string, the table displays a NaN.

Another possible scenario is that the value Data is char and you
set the ColumnFormat to be a pop-up menu. Here, if the value of
the Data in the cell matches one of the pop-up menu choices you
define in ColumnFormat, then the Data is shown in the cell. If it
does not match, then the cell defaults to display the first option
from the choices you specify in ColumnFormat. Similarly, if Data

1-7430

Uitable Properties

is numeric or logical with the ColumnFormat as pop-up menu,
if the Data value in the cell does not match any of the choices
you specify in ColumnFormat, the cell defaults to display the first
option in the pop-menu choice.

This table describes how Data values correspond with your
ColumnFormat when the columns are editable.

ColumnFormat Selections

numeric char logical

numeric Values match.
MATLAB displays
numbers as is.

MATLAB converts
the text string
entered to a double.
See str2double for
more information.
If string cannot be
converted, NaN is
displayed.

Does not work:
warning is thrown.

Note If you
have defined
CellEditCallback,
this warning will
not be thrown

char MATLAB converts
the entered number
to a text string.

Values match.
MATLAB displays
the string as is.

Does not work:
warning is thrown.

Note If you
have defined
CellEditCallback,
this warning will
not be thrown

Data
Type

logical Does not work:
warning is thrown.

If text string
entered is true

Values match.
MATLAB displays

1-7431

Uitable Properties

Note If you
have defined
CellEditCallback,
this warning will
not be thrown

or false, MATLAB
converts string to
the corresponding
logical value and
displays it. For all
others, it Does not
work: warning is
thrown.

Note If you
have defined
CellEditCallback,
this warning will
not be thrown

logical value as a
check box as is.

If you get a mismatch error, you have the following options:

• Change the ColumnFormat or value of Data to match.

• Implement the CellEditCallback to handle custom data
conversion.

ColumnName
n-by-1 cell array of strings | 1–by-n cell array of strings |
{'numbered'} | empty matrix ([])

Column heading names. Each element of the cell array is the
name of a column. Multiline column names can be expressed
as a string vector separated by vertical slash (|) characters,
e.g.,'Standard|Deviation'

For sequentially numbered column headings starting with 1,
specify ColumnName as 'numbered'. This is the default.

To remove the column headings, specify ColumnName as the empty
matrix ([]).

1-7432

Uitable Properties

The number of columns in the table is the larger of ColumnName
and the number of columns in the Data property matrix or cell
array.

If you specify the ColumnName value as a 1–by-n cell array of
strings, MATLAB stores and returns the value as a n-by-1 cell
array of strings.

ColumnWidth
1–by-n cell array | 'auto'

Column widths. The width of each column in units of pixels.
Column widths are always specified in pixels; they do not obey the
Units property. Each column in the cell array corresponds to a
column in the uitable. By default, the width of the column name,
as specified in ColumnName, along with some other factors, is used
to determine the width of a column. If ColumnWidth is a cell array
and the width of a column is set to 'auto'or if auto is selected
for that column in the Property Inspector GUI for columns, the
column width defaults to a size determined by the table. The table
decides the default size using a number of factors, including the
ColumnName and the minimum column size.

To default all column widths in an existing table, use

set(uitable_handle,'ColumnWidth','auto')

To default some column widths but not others, use a cell array
containing a mixture of pixel values and 'auto'. For example,

set(uitable_handle,'ColumnWidth',{64 'auto' 40 40 'auto' 72})

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uitable object.
MATLAB sets all property values for the uitable before executing

1-7433

Uitable Properties

the CreateFcn callback so these values are available to the
callback. Within the function, use gcbo to get the handle of the
uitable being created.

Setting this property on an existing uitable object has no effect.

You can define a default CreateFcn callback for all new uitables.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uitable. For example, the code

set(0,'DefaultUitableCreateFcn','set(gcbo,...
''BackGroundColor'',''blue'')')

creates a default CreateFcn callback that runs whenever you
create a new uitable. It sets the default background color of all
new uitables.

To override this default and create a uitable whose
BackgroundColor is set to a different value, call uitable with
code similar to

hpt = uitable(...,'CreateFcn','set(gcbo,...
''BackgroundColor'',''white'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uitable call. In the example above,
if instead of redefining the CreateFcn property for this uitable,
you had explicitly set BackgroundColor to white, the default
CreateFcn callback would have set BackgroundColor back to the
default, i.e., blue.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the

1-7434

Uitable Properties

CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Data
matrix or cell array of numeric, logical, or character data

Data content of uitable. The matrix or cell array must be
2–dimensional. A cell array can mix data types.

Use get and set to modify Data. For example,

data = get(tablehandle,'Data')
data(event.indices(1),event.indices(2)) = pi();
set(tablehandle,'Data',data);

See CellEditCallback for information about the event data
structure. See ColumnFormat for information about specifying
the data display format.

The number of rows in the table is the larger of RowName and the
number of rows in Data. The number of columns in the table is
the larger of ColumnName and the number of columns in Data.

DeleteFcn
string or function handle

Delete uitable callback routine. A callback routine that executes
when you delete the uitable object (e.g., when you issue a delete
command or clear the figure containing the uitable). MATLAB
executes the routine before destroying the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

1-7435

../ref/rootobject_props.html#RecursionLimit

Uitable Properties

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | inactive | off

Enable or disable the uitable. This property determines how
uitables respond to mouse button clicks, including which callback
routines execute.

• on – The uitable is operational (the default).

• inactive – The uitable is not operational, but looks the same
as when Enable is on.

• off – The uitable is not operational and its image is grayed out.

When you left-click on a uitable whose Enable property is on,
MATLAB performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Executes the uitable’s CellSelectionCallback routine (but
only for table cells, not header cells). Row and column indices
of the cells the user selects continuously update the Indices
field in the eventdata passed to the callback.

3 Does not set the figure’s CurrentPoint property and does
not execute either the table’s ButtonDownFcn or the figure’s
WindowButtonDownFcn callback.

When you left-click on a uitable whose Enable property is off, or
when you right-click a uitable whose Enable property has any
value, MATLAB performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Sets the figure’s CurrentPoint property.

3 Executes the figure’s WindowButtonDownFcn callback.

1-7436

Uitable Properties

Extent
position rectangle (read only)

Size of uitable rectangle. A four-element vector of the form
[0,0,width,height] that contains the calculated values of the
largest extent of the table based on the current Data, RowName
and ColumnName property values. Calculation depends on column
and row widths, when they are available. The calculated extent
can be larger than the figure.

The first two elements are always zero. width and height are
the dimensions of the rectangle. All measurements are in units
specified by the Units property.

When the uitable’s Units property is set to 'Normalized', its
Extent is measured relative to the figure, regardless of whether
the table is contained in (parented to) a uipanel or not.

You can use this property to determine proper sizing for the
uitable with respect to its content. Do this by setting the width
and height of the uitable Position property to the width and
height of the Extent property. However, doing this can cause the
table to extend beyond the right or top edge of the figure and/or
its uipanel parent, if any, for tables with large extents.

FontAngle
{normal} | italic | oblique

Character slant of cell content. MATLAB uses this property to
select a font from those available on your particular system.
Setting this property to italic or oblique selects a slanted
version of the font, when it is available on your system.

FontName
string

Font family for cell content. The name of the font in which to
display cell content. To display and print properly, this must

1-7437

Uitable Properties

be a font that your system supports. The default font is system
dependent.

To use a fixed-width font that looks good in any locale (and
displays properly in Japan, where multibyte character sets are
used), set FontName to the string FixedWidth (this string value
is case sensitive):

set(uitable_handle,'FontName','FixedWidth')

This parameter value eliminates the need to hard code the name
of a fixed-width font, which may not display text properly on
systems that do not use ASCII character encoding (such as in
Japan). A properly written MATLAB application that needs to
use a fixed-width font should set FontName to FixedWidth and
rely on the root FixedWidthFontName property to be set correctly
in the end user’s environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.
Setting the root FixedWidthFontName property causes an
immediate update of the display to use the new font.

FontSize
size in FontUnits

Font size for cell contents. A number specifying the size of the
font in which to display cell contents, in units determined by the
FontUnits property. The default point size is system dependent.
If FontUnits is set to normalized, FontSize is a number between
0 and 1.

FontUnits
{points} | normalized | inches |
centimeters | pixels

1-7438

Uitable Properties

Font size units for cell contents. This property determines the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the uitable. When you
resize the uitable, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of cell text characters. MATLAB uses this property to
select a font from those available on your particular system.
Setting this property to bold causes MATLAB to use a bold
version of the font, when it is available on your system.

ForegroundColor
1-by-3 matrix of RGB triples or a color name

Color of text in cells. Determines the color of the text defined for
cell contents. Text in all cells share the current color. Specify as a
1-by-3 matrix of RGB triples, such as [0 0 .8] or as a color name.
The default is a 1-by-3 matrix of platform-dependent colors. See
ColorSpec for information about specifying RGB colors.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

1-7439

Uitable Properties

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. When HitTest is off, the
ButtonDownFcn callback does not execute.

Note Use of the uitable Hittest property is not recommended.
This property may be removed in a future release.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

1-7440

../ref/rootobject_props.html#ShowHiddenHandles

Uitable Properties

For user interface objects, the Interruptible property affects the
callbacks for these properties only:

• ButtonDownFcn

• KeyPressFcn

• KeyReleaseFcn

• WindowButtonDownFcn

• WindowButtonMotionFcn

• WindowButtonUpFcn

• WindowKeyPressFcn

• WindowKeyReleaseFcn

• WindowScrollWheelFcn
A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. MATLAB handles both callbacks based on the
Interruptible property of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

1-7441

Uitable Properties

The BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting the Interruptible property to on (default), allows a
callback from other user interface objects to interrupt callback
functions originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

Note If the interrupting callback is a DeleteFcnor CreateFcn
callback, or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. An object’s ButtonDownFcn or Callback
routine is processed according to the rules described previously
in this section.

KeyPressFcn
string or function handle

Key press callback function. A callback routine invoked by a
key press when the callback’s uitable object has focus. Focus is
denoted by a border or a dotted border, respectively, in UNIX

1-7442

Uitable Properties

and Microsoft Windows. If no uitable has focus, the figure’s key
press callback function, if any, is invoked. KeyPressFcn can be
a function handle, the name of a MATLAB function file, or any
legal MATLAB expression.

If the specified value is the name of a function code file, the
callback routine can query the figure’s CurrentCharacter
property to determine what particular key was pressed and
thereby limit the callback execution to specific keys.

If the specified value is a function handle, the callback routine
can retrieve information about the key that was pressed from its
event data structure argument.

Examples:Event Data
Structure
Field Description a = Shift Shift/a

Character Character interpretation of
the key that was pressed.

'a' '=' '' 'A'

Modifier Current modifier, such as
'control', or an empty cell
array if there is no modifier

{1x0
cell}

{1x0
cell}

{'shift'}{'shift'}

Key Name of the key that was
pressed.

'a' 'equal' 'shift' 'a'

The uitable KeyPressFcn callback executes for all keystrokes,
including arrow keys or when a user edits cell content.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Parent
handle

1-7443

../ref/figure_props.html#CurrentCharacter

Uitable Properties

Uitable parent. The handle of the uitable’s parent object. You can
move a uitable object to another figure, uipanel, or uibuttongroup
by setting this property to the handle of the new parent.

Position
position rectangle

Size and location of uitable. The rectangle defined by this
property specifies the size and location of the table within the
parent figure window, ui, or uibuttongroup. Specify Position
as a 4–element vector:

[left bottom width height]

left and bottom are the distance from the lower-left corner of
the parent object to the lower-left corner of the uitable object.
width and height are the dimensions of the uitable rectangle. All
measurements are in units specified by the Units property.

Note If you are specifying both Units and Position in the same
call to uitable, specify Units first if you want Position to be
interpreted using those units.

RearrangeableColumns
on | {off}

This object can be rearranged. The RearrangeableColumns
property provides a mechanism that you can use to reorder
the columns in the table. All columns are rearrangable
when this property is turned on. MATLAB software sets the
RearrangeableColumns property to off by default.

When this property is on, the user of a table can move any column
of data (but not the row labels) at a time left or right to reorder it
by clicking and dragging its header. Rearranging columns does

1-7444

Uitable Properties

not affect the ordering of columns in the table’s Data, only the
user’s view of it.

RowName
n-by-1 cell array of strings | 1–by-n cell array of strings |
{'numbered'} | empty matrix ([])

Row heading names. Each element of the cell array is the name of
a row. Row names are restricted to one line of text.

For sequentially numbered row headings starting with 1, specify
RowName as 'numbered'. This is the default.

To remove the row headings, specify RowName as the empty matrix
([]).

The number of rows in the table is the larger of RowName and the
number of rows in the Data property matrix or cell array.

If you specify the RowName value as a 1–by-n cell array of strings,
MATLAB stores and returns the value as a n-by-1 cell array of
strings.

RowStriping
{on} | off

Color striping of table rows. When RowStriping is on, the
background of consecutive rows of the table display in the pair of
colors that the BackgroundColor color matrix specifies. The first
color matrix row applies to odd-numbered rows, and the second
to even-numbered rows. If the BackgroundColor matrix has only
one row, it is applied to all rows (that is, no striping occurs).

When RowStriping is off, the first color specified for
BackgroundColor is applied to all rows.

Selected
on | {off}

1-7445

Uitable Properties

Is object selected. When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

Note Use of the uitable Selected property is not recommended.
This property may be removed in a future release.

SelectionHighlight
{on} | off

Object highlight when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

Note Use of the uitable SelectionHighlight property is not
recommended. This property may be removed in a future release.

Tag
string (GUIDE sets this property)

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

TooltipString
string

1-7446

Uitable Properties

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uitable. When the user
moves the mouse pointer over the table and leaves it there, the
tooltip is displayed.

To create a tooltip that has more than one line of text, use sprintf
to generate a string containing newline (\n) characters and then
set the TooltipString to that value. For example:

h = uitable;
s = sprintf('UITable tooltip line 1\nUITable tooltip line 2');
set(h,'TooltipString',s)

Type
string (read only)

Class of graphics object. For uitable objects, Type is always the
string 'uitable'.

UIContextMenu
handle

Associate a context menu with uitable. Assign this property
the handle of a uicontextmenu object. MATLAB displays the
context menu whenever you right-click over the uitable. Use the
uicontextmenu function to create the context menu.

Units
{pixels} | normalized | inches | centimeters | points |
characters (GUIDE default: normalized)

Units of measurement. MATLAB uses these units to interpret the
Extent and Position properties. All units are measured from the
lower-left corner of the parent object.

• Normalized units map the lower-left corner of the parent object
to (0,0) and the upper-right corner to (1.0,1.0).

1-7447

Uitable Properties

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the
uitable object. MATLAB does not use this data, but you can access
it using set and get.

Visible
{on} | off

Uitable visibility. By default, all uitables are visible. When set to
off, the uitable is not visible, but still exists and you can query
and set its properties.

Note Setting Visible to off for uitables that are not displayed
initially in the GUI, can result in faster startup time for the GUI.

1-7448

uitoggletool

Purpose Create toggle button on toolbar

Syntax htt = uitoggletool
htt =
uitoggletool('PropertyName1',value1,'PropertyName2',value2,

...)
htt = uitoggletool(ht,...)

Description htt = uitoggletool creates a toggle button on the uitoolbar at the top
of the current figure window, sets all its properties to default values,
and returns a handle to the tool. If no uitoolbar exists, one is created.
The uitoolbar is the parent of the uitoggletool. Use the returned handle
htt to set properties of the uitoggletool. The OnCallback, OffCallback
and ClickedCallback use the handle as their first argument. The
button has no icon, but its border highlights when you hover over it
with the mouse cursor. Add an icon by setting CData for the tool. Type
get(htt) to see a list of uitoggletool object properties and their current
values. Type set(htt) to see a list of uitoggletool object properties you
can set and legal property values.

htt =
uitoggletool('PropertyName1',value1,'PropertyName2',value2,
...) assigns the specified property values, and assigns default values
to the remaining properties. You can change the property values at a
later time using the set function. You can specify properties as
parameter name/value pairs, cell arrays containing parameter names
and values, or structures with fields containing parameter names and
values as input arguments. For a complete list, see Uitoggletool
Properties. Type get(htt) to see a list of uipushtool object properties
and their current values. Type set(htt) to see a list of uipushtool
object properties that you can set and their legal property values.

htt = uitoggletool(ht,...) creates a button with ht as a parent.
ht must be a uitoolbar handle.

Toggle tools appear in figures whose Window Style is normal or
docked. They do not appear in figures with a 'modal' WindowStyle.
If the WindowStyle property of a figure containing a tool bar and its

1-7449

../ref/figure_props.html#WindowStyle

uitoggletool

toggle tool children changes to modal, the toggle tools continue to exist
as Children of the tool bar. The toggle tools do not display until you
change the WindowStyle to normal or docked.

Examples Create a uitoolbar object and places a uitoggletool object on it by
specifying the toolbar handle as the toggle tool parent. Generate a
random set of colors for the tool icon and specify a tool tip.

h = figure('ToolBar','none');
ht = uitoolbar(h);
a = rand(16,16,3);
htt = uitoggletool(ht,'CData',a,'TooltipString','Hello');

Alternatives You can create toolbars with toggle tools using GUIDE.

See Also get | set | uicontrol | uipushtool | uitoolbar

Tutorials • “GUI That Accepts and Returns Arguments”

How To • “Create Toolbars for Programmatic GUIs”

1-7450

uitoggletool

• “Create Toolbars for Programmatic GUIs”

1-7451

Uitoggletool Properties

Purpose Describe toggle tool properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uitoggletool properties by typing:

set(h,'DefaultUitoggletoolPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, a uitoolbar handle,
or a uitoggletool handle. PropertyName is the name of the Uitoggletool
property and PropertyValue is the value you specify as the default
for that property.

For more information about changing the default value of a property
see “Setting Default Property Values”.

Properties This section lists all properties useful to uitoggletool objects along
with valid values and a descriptions of their use. Curly braces { }
enclose default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

CData Truecolor image displayed on the toggle
tool.

ClickedCallback Control action independent of the toggle
tool position.

1-7452

Uitoggletool Properties

Property Purpose

CreateFcn Callback routine executed during object
creation.

DeleteFcn Callback routine executed during object
deletion.

Enable Enable or disable the uitoggletool.

HandleVisibility Control access to object’s handle.

Interruptible Callback routine interruption mode.

OffCallback Control action when toggle tool is set to
the off position.

OnCallback Control action when toggle tool is set to
the on position.

Parent Handle of uitoggletool’s parent toolbar.

Separator Separator line mode.

State Uitoggletool state.

Tag User-specified object label.

TooltipString Content of object’s tooltip.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uitoggletool

UserData User specified data.

Visible Uitoggletool visibility.

BeingDeleted
on | {off} (read only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are
in the process of being deleted. MATLAB software sets the

1-7453

Uitoggletool Properties

BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property) It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

CData
3-dimensional array

Truecolor image displayed on control as its icon. An n-by-m-by-3
array of RGB values that defines a truecolor image displayed
on either a push button or toggle button. Each value must be

1-7454

./uitoggletool_props.html#DeleteFcn

Uitoggletool Properties

between 0.0 and 1.0. If your CData array is larger than 16 in
the first or second dimension, it can be clipped or result in
other undesirable effects. If the array is clipped, only the center
16-by-16 part of the array is used.

ClickedCallback
string or function handle

Control action independent of the toggle tool position. A routine
that executes after either the OnCallback routine or OffCallback
routine runs to completion. The uitoggletool Enable property
must be set to on.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uitoggletool object.
MATLAB sets all property values for the uitoggletool before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the toggle tool being created.

Setting this property on an existing uitoggletool object has no
effect.

You can define a default CreateFcn callback for all new
uitoggletools. This default applies unless you override it
by specifying a different CreateFcn callback when you call
uitoggletool. For example, the statement,

set(0,'DefaultUitoggletoolCreateFcn',...
'set(gcbo,''Enable'',''off'')'

creates a default CreateFcn callback that runs whenever you
create a new toggle tool. It sets the toggle tool Enable property
to off.

1-7455

Uitoggletool Properties

To override this default and create a toggle tool whose Enable
property is set to on, you could call uitoggletool with code
similar to

htt = uitoggletool(...,'CreateFcn',...
'set(gcbo,''Enable'',''on'')',...)

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback
runs after the property values are set, and can override property
values you have set explicitly in the uitoggletool call. In the
example above, if instead of redefining the CreateFcn property
for this toggle tool, you had explicitly set Enable to on, the default
CreateFcn callback would have set CData back to off.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uitoggletool object (e.g.,
when you call the delete function or cause the figure containing
the uitoggletool to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

1-7456

../ref/rootobject_props.html#RecursionLimit

Uitoggletool Properties

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

Enable
{on} | off

Enable or disable the uitoggletool. This property controls how
uitoggletools respond to mouse button clicks, including which
callback routines execute.

• on – The uitoggletool is operational (the default).

• off – The uitoggletool is not operational and its icon (set by the
Cdata property) is grayed out.

When you left-click on a uitoggletool whose Enable property is on,
MATLAB performs these actions in this order:

1 Executes the toggle tool OnCallback or OffCallback routine,
depending on its current state, and its ClickedCallback
routine.

2 Does not set the figure CurrentPoint property and does not
execute the figure’s WindowButtonDownFcn callback.

3 Does not set the figure SelectionType property.

When you left-click a uitoggletool whose Enable property is off, or
when you right-click a uitoggletool whose Enable property has any
value, no action is reported, no callback executes, and neither the
SelectionType nor CurrentPoint figure properties are modified.

HandleVisibility
{on} | callback | off

1-7457

Uitoggletool Properties

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on
uitoggletool objects.

1-7458

./rootobject_props.html#ShowHiddenHandles

Uitoggletool Properties

Note Use of the uitoggletool HitTest property is not
recommended. This property might be removed in a future
release.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For user interface objects, the Interruptible property affects the
callbacks for these properties only:

• ButtonDownFcn

• KeyPressFcn

• KeyReleaseFcn

• WindowButtonDownFcn

• WindowButtonMotionFcn

• WindowButtonUpFcn

• WindowKeyPressFcn

• WindowKeyReleaseFcn

• WindowScrollWheelFcn
A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. MATLAB handles both callbacks based on the
Interruptible property of the object of the running callback.

When the Interruptible property is set to:

1-7459

Uitoggletool Properties

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

The BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting the Interruptible property to on (default), allows a
callback from other user interface objects to interrupt callback
functions originating from this object.

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

1-7460

Uitoggletool Properties

Note If the interrupting callback is a DeleteFcnor CreateFcn
callback, or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. An object’s ButtonDownFcn or Callback
routine is processed according to the rules described previously
in this section.

OffCallback
string or function handle

Control action. A routine that executes if the uitoggletool’s Enable
property is set to on, and either

• The toggle tool State is set to off.

• The toggle tool is set to the off position by pressing a mouse
button while the pointer is on the toggle tool itself or in a
5-pixel wide border around it.

The ClickedCallback routine, if there is one, runs after the
OffCallback routine runs to completion.

OnCallback
string or function handle

Control action. A routine that executes if the uitoggletool’s Enable
property is set to on, and either

• The toggle tool State is set to on.

• The toggle tool is set to the on position by pressing a mouse
button while the pointer is on the toggle tool itself or in a
5-pixel wide border around it.

1-7461

Uitoggletool Properties

The ClickedCallback routine, if there is one, runs after the
OffCallback routine runs to completion.

Parent
handle

Uitoggletool parent. The handle of the uitoggletool’s parent
toolbar. You can move a uitoggletool object to another toolbar by
setting this property to the handle of the new parent.

Separator
on | {off}

Separator line mode. Setting this property to on draws a dividing
line to left of the uitoggletool.

State
on | {off}

Uitoggletool state. When the state is on, the toggle tool appears in
the down, or pressed, position. When the state is off, it appears
in the up position. Changing the state causes the appropriate
OnCallback or OffCallback routine to run.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified toolbars) that have the
Tag value 'Bold'.

h = findobj(uitoolbarhandles, 'Tag', 'Bold')

1-7462

Uitoggletool Properties

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uitoggletool. When the
user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

To create a tooltip that has more than one line of text, use sprintf
to generate a string containing newline (\n) characters and then
set the TooltipString to that value. For example:

h = uitoggletool;

s = sprintf('Toggletool tooltip line 1\nToggletool tooltip line 2');

set(h,'TooltipString',s)

Type
string (read-only)

Object class. This property identifies the kind of graphics
object. For uitoggletool objects, Type is always the string
'uitoggletool'.

UIContextMenu
handle

Associate a context menu with uicontrol. This property has no
effect on uitoggletool objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uitoggletool object. The object does
not use this data, but you can access it using the set and get
functions.

Visible
{on} | off

1-7463

Uitoggletool Properties

Uitoggletool visibility. By default, all uitoggletools are visible.
When set to off, the uitoggletool is not visible, but still exists and
you can query and set its properties.

1-7464

uitoolbar

Purpose Create toolbar on figure

Syntax ht =
uitoolbar('PropertyName1',value1,'PropertyName2',value2,...)
ht = uitoolbar(h,...)

Description ht =
uitoolbar('PropertyName1',value1,'PropertyName2',value2,...)
creates an empty toolbar at the top of the current figure window, and
returns a handle to it. uitoolbar assigns the specified property values,
and assigns default values to the remaining properties. You can change
the property values at a later time using the set function.

Type get(ht) to see a list of uitoolbar object properties and their
current values. Type set(ht) to see a list of uitoolbar object properties
that you can set and legal property values. See the Uitoolbar Properties
reference page for more information.

ht = uitoolbar(h,...) creates a toolbar with h as a parent. h must
be a figure handle.

Tips uitoolbar accepts property name/property value pairs, as well as
structures and cell arrays of properties as input arguments.

Uitoolbars appear in figures whose Window Style is normal or docked.
They do not appear in figures whose WindowStyle is modal. If the
WindowStyle property of a figure containing a uitoolbar is changed to
modal, the uitoolbar still exists and is contained in the Children list
of the figure, but is not displayed until the WindowStyle is changed
to normal or docked.

Examples This example creates a figure with no toolbar, then adds a toolbar to it.

h = figure('ToolBar','none')
ht = uitoolbar(h)

1-7465

../ref/figure_props.html#WindowStyle

uitoolbar

See Also set | get | uicontrol | uipushtool | uitoggletool

1-7466

Uitoolbar Properties

Purpose Describe toolbar properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uitoolbar properties by typing:

set(h,'DefaultUitoolbarPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, or a uitoolbar
handle. PropertyName is the name of the Uitoolbar property and
PropertyValue is the value you specify as the default for that property.

For more information about changing the default value of a property
see Setting Default Property Values.

Uitoolbar
Properties

This section lists all properties useful to uitoolbar objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

Children Handles of uitoolbar’s children.

CreateFcn Callback routine executed during object
creation.

DeleteFcn Callback routine executed during object
deletion.

HandleVisibility Control access to object’s handle.

1-7467

Uitoolbar Properties

Property Purpose

Interruptible Callback routine interruption mode.

Parent Handle of uitoolbar’s parent.

Tag User-specified object identifier.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uitoolbar

UserData User specified data.

Visible Uitoolbar visibility.

BeingDeleted
on | {off} (read-only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are
in the process of being deleted. MATLAB software sets the
BeingDeleted property to on when the object’s delete function
callback is called (see the DeleteFcn property) It remains set to
on while the delete function executes, after which the object no
longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback queuing

Determines how MATLAB handles the execution of interrupting
callbacks.

1-7468

./uitoolbarproperties.html#DeleteFcn

Uitoolbar Properties

A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. The BusyAction property of the interrupting
callback determines how MATLAB handles its execution. When
the BusyAction property is set to:

• 'queue' — Puts the interrupting callback in a queue to be
processed after the running callback finishes execution.

• 'cancel' — Discards the interrupting callback as MATLAB
finishes execution.

For information about how the Interruptible property of the
callback controls whether other callbacks can interrupt the
running callback, see the Interruptible property description.

Children
vector of handles

Handles of tools on the toolbar. A vector containing the handles
of all children of the uitoolbar object, in the order in which they
appear on the toolbar. The children objects of uitoolbars are
uipushtools and uitoggletools. You can use this property to
reorder the children.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uitoolbar object.
MATLAB sets all property values for the uitoolbar before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the toolbar being created.

Setting this property on an existing uitoolbar object has no effect.

1-7469

Uitoolbar Properties

You can define a default CreateFcn callback for all new uitoolbars.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uitoolbar. For example, the
statement,

set(0,'DefaultUitoolbarCreateFcn',...
'set(gcbo,''Visibility'',''off'')')

creates a default CreateFcn callback that runs whenever you
create a new toolbar. It sets the toolbar visibility to off.

To override this default and create a toolbar whose Visibility
property is set to on, you could call uitoolbar with a call similar
to

ht = uitoolbar(...,'CreateFcn',...
'set(gcbo,''Visibility'',''on'')',...)

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uitoolbar call. In the example
above, if instead of redefining the CreateFcn property for this
toolbar, you had explicitly set Visibility to on, the default
CreateFcn callback would have set Visibility back to off.

Do not call copyobj or textwrap (which calls copyobj) inside
a CreateFcn. The act of copying the uicontrol object fires the
CreateFcn repeatedly, which raises a series of error messages
after exceeding the root object’s RecursionLimit property.

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

1-7470

../ref/rootobject_props.html#RecursionLimit

Uitoolbar Properties

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
function that executes when the uitoolbar object is deleted (e.g.,
when you call the delete function or cause the figure containing
the uitoolbar to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

Within the function, use gcbo to get the handle of the toolbar
being deleted.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI

1-7471

Uitoolbar Properties

(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on uitoolbar
objects.

Note Use of the uitoolbar HitTest property is not
recommended. This property might be removed in a future
release.

Interruptible
off | {on}

Callback routine interruption

Controls whether MATLAB can interrupt an object’s callback
function when subsequent callbacks attempt to interrupt it.

For user interface objects, the Interruptible property affects the
callbacks for these properties only:

• ButtonDownFcn

• KeyPressFcn

• KeyReleaseFcn

• WindowButtonDownFcn

1-7472

./rootobject_props.html#ShowHiddenHandles

Uitoolbar Properties

• WindowButtonMotionFcn

• WindowButtonUpFcn

• WindowKeyPressFcn

• WindowKeyReleaseFcn

• WindowScrollWheelFcn
A running callback is the currently executing callback. The
interrupting callback is the callback that tries to interrupt the
running callback. MATLAB handles both callbacks based on the
Interruptible property of the object of the running callback.

When the Interruptible property is set to:

• 'off', MATLAB finishes execution of the running callback
without any interruptions

• 'on', these conditions apply:

— If there is a drawnow, figure, getframe, waitfor, or pause
command in the running callback, then MATLAB executes
the interrupting callbacks which are already in the queue
and returns to finish execution of the current callback.

— If one of the above functions is not in the running callback,
then MATLAB finishes execution of the current callback
without any interruption.

The BusyAction property of the object of interrupting callback
determines whether the callback should be ignored or should be
put in the queue.

Setting the Interruptible property to on (default), allows a
callback from other user interface objects to interrupt callback
functions originating from this object.

1-7473

Uitoolbar Properties

Note MATLAB does not save the state of properties or the
display when an interruption occurs. For example, the handle
returned by the gca or gcf command may be changed as another
callback is executed.

After the function that interrupts a callback completes, the
callback resumes execution where it halted when interrupted.
For more information, see “Control Callback Execution and
Interruption”.

Note If the interrupting callback is a DeleteFcnor CreateFcn
callback, or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback
starts execution at the next drawnow, figure, getframe, pause,
or waitfor statement. An object’s ButtonDownFcn or Callback
routine is processed according to the rules described previously
in this section.

Parent
handle

Uitoolbar parent. The handle of the uitoolbar’s parent figure.
You can move a uitoolbar object to another figure by setting this
property to the handle of the new parent.

Tag
string

User-specified object identifier. The Tag property provides a
means to identify graphics objects with a user-specified label. You
can define Tag as any string.

1-7474

Uitoolbar Properties

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uitoolbar objects, Type is always the string 'uitoolbar'.

UIContextMenu
handle

Associate a context menu with uicontrol. This property has no
effect on uitoolbar objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uitoolbar object. The object does not use
this data, but you can access it using the set and get functions.

Visible
{on} | off

Uitoolbar visibility. By default, all uitoolbars are visible. When
set to off, the uitoolbar is not visible, but still exists and you can
query and set its properties.

1-7475

uiwait

Purpose Block program execution and wait to resume

Syntax uiwait
uiwait(h)
uiwait(h,timeout)

Description uiwait blocks execution until uiresume is called or the current figure
is deleted. This syntax is the same as uiwait(gcf).

uiwait(h) blocks execution until uiresume is called or the figure h is
deleted.

uiwait(h,timeout) blocks execution until uiresume is called, the
figure h is deleted, or timeout seconds elapse. The minimum value of
timeout is 1. If uiwait receives a smaller value, it issues a warning
and uses a 1 second timeout.

Tips The uiwait and uiresume functions block and resume MATLAB and
Simulink program execution. uiwait also blocks the execution of
Simulink models. The functions pause (with no argument) and waitfor
also block execution in this manner.uiwait is a convenient way to use
the waitfor command. You typically use it in conjunction with a dialog
box. It provides a way to block the execution of the MATLAB program
that created the dialog, until the user responds to the dialog box. When
used in conjunction with a modal dialog, uiwait can block the execution
of the program file and restrict user interaction to the dialog only.

Examples This example creates a GUI with a Continue push button. The example
calls uiwait to block MATLAB execution until uiresume is called. This
happens when the user clicks the Continue push button because the
push button’s Callback, which responds to the click, calls uiresume.

f = figure;
h = uicontrol('Position',[20 20 200 40],'String','Continue',...

'Callback','uiresume(gcbf)');
disp('This will print immediately');
uiwait(gcf);

1-7476

uiwait

disp('This will print after you click Continue');
close(f);

gcbf is the handle of the figure that contains the object whose callback
is executing.

See Also dialog | figure | uicontrol | uimenu | uiresume | waitfor

1-7477

uminus, -

Purpose Unary minus

Syntax C = -A
C = uminus(A)

Description C = -A negates the elements of A and stores the result in C.

C = uminus(A) is an alternative way to execute -A, but is rarely used.
It enables operator overloading for classes.

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Negate Elements of Matrix

Create a 2-by-2 matrix, A.

A = [1 -3; -2 4]

A =

1 -3
-2 4

Negate the elements of A.

C = -A

C =

1-7478

uminus, -

-1 3
2 -4

See Also minus | uplus

1-7479

undocheckout

Purpose Undo previous checkout from source control system (UNIX platforms)

Syntax undocheckout('filename')
undocheckout({'filename1','filename2', ...,'filenamen'})

Description undocheckout('filename') makes the file filename available for
checkout, where filename does not reflect any of the changes you made
after you last checked it out. Use the full path for filename and include
the file extension.

undocheckout({'filename1','filename2', ...,'filenamen'})
makes filename1 through filenamen available for checkout, where the
files do not reflect any of the changes you made after you last checked
them out. Use the full paths for the file names and include the file
extensions.

Examples Undo the checkouts of /myserver/myfiles/clock.m and
/myserver/myfiles/calendar.m from the source control system:

undocheckout({'/myserver/myfiles/clock.m', ...
'/myserver/myfiles/calendar.m'})

See Also checkin | checkout | verctrl

How To • “Undo the Checkout (UNIX Platforms)”

1-7480

unicode2native

Purpose Convert Unicode character representation to numeric bytes

Syntax bytes = unicode2native(unicodestr)
bytes = unicode2native(unicodestr,encoding)

Description bytes = unicode2native(unicodestr) converts a char vector of
Unicode character representations, unicodestr, to the user default
encoding, and returns the bytes as a uint8 vector, bytes. Output vector
bytes has the same general array shape as the unicodestr input.
You can save the output of unicode2native to a file using the fwrite
function.

bytes = unicode2native(unicodestr,encoding) converts
unicodestr to the character encoding scheme specified by the string
encoding. encoding must be the empty string ('') or a name or alias
for an encoding scheme. Some examples are 'UTF-8', 'latin1',
'US-ASCII', and 'Shift_JIS'. If encoding is unspecified or is the
empty string (''), the default encoding scheme is used.

Examples This example begins with two strings containing Unicode character
representations. It assumes that string str1 contains text in a Western
European language and string str2 contains Japanese text. The
example writes both strings into the same file, using the ISO-8859-1
character encoding scheme for the first string and the Shift-JIS encoding
scheme for the second string. The example uses unicode2native to
convert the two strings to the appropriate encoding schemes.

fid = fopen('mixed.txt', 'w');
bytes1 = unicode2native(str1, 'ISO-8859-1');
fwrite(fid, bytes1, 'uint8');
bytes2 = unicode2native(str2, 'Shift_JIS');
fwrite(fid, bytes2, 'uint8');
fclose(fid);

See Also native2unicode

1-7481

union

Purpose Set union of two arrays

Syntax C = union(A,B)
C = union(A,B,'rows')
[C,ia,ib] = union(A,B)
[C,ia,ib] = union(A,B,'rows')

[C,ia,ib] = union(___ ,setOrder)

[C,ia,ib] = union(A,B,'legacy')

[C,ia,ib] = union(A,B,'rows','legacy')

Description C = union(A,B) returns the combined data from A and B with no
repetitions.

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then union returns the
combined values from A and B. The values of C are in sorted order.

• If A and B are tables, then union returns the combined set of rows
from both tables. The rows of table C are in sorted order.

C = union(A,B,'rows') treats each row of A and each row of B as
single entities and returns the combined rows from A and B with no
repetitions. The rows of C are in sorted order.

The 'rows' option does not support cell arrays.

[C,ia,ib] = union(A,B) also returns index vectors ia and ib.

• If A and B are numeric arrays, logical arrays, character arrays,
categorical arrays, or cell arrays of strings, then the values in C are a
sorted combination of the values of A(ia) and B(ib).

• If A and B are tables, then C is a sorted combination of the rows
of A(ia,:) and B(ib,:).

1-7482

union

[C,ia,ib] = union(A,B,'rows') also returns index vectors ia and
ib, such that the rows of C are a sorted combination of the rows of
A(ia,:) and B(ib,:).

[C,ia,ib] = union(___ ,setOrder) returns C in a specific
order using any of the input arguments in the previous syntaxes.
setOrder='sorted' returns the values (or rows) of C in sorted order.
setOrder='stable' returns the values (or rows) of C in the same order
as A, and then B. If no value is specified, the default is 'sorted'.

[C,ia,ib] = union(A,B,'legacy') and [C,ia,ib] =
union(A,B,'rows','legacy') preserve the behavior of the union
function from R2012b and prior releases.

The 'legacy' option does not support categorical arrays or tables.

Input
Arguments

A,B - Input arrays
numeric arrays | logical arrays | character arrays | categorical arrays
| cell arrays of strings | tables

Input arrays, specified as numeric arrays, logical arrays, character
arrays, categorical arrays, cell arrays of strings, or tables.

A and B must be of the same class with the following exceptions:

• logical, char, and all numeric classes can combine with double
arrays.

• Cell arrays of strings can combine with char arrays.

• Categorical arrays can combine with cell arrays of strings or single
strings.

If A and B are both ordinal categorical arrays, they must have the same
sets of categories, including their order. If neither A nor B are ordinal,
they need not have the same sets of categories, and the comparison is
performed using the category names. In this case, the categories of C
are the sorted union of the categories from A and B.

1-7483

union

If you specify the 'rows' option, A and B must have the same number
of columns.

If A and B are tables, they must have the same variable names.
Conversely, the row names do not matter. Two rows that have the same
values, but different names, are considered equal.

Furthermore, A and B can be objects with the following class methods:

• sort (or sortrows for the 'rows' option)

• ne

The object class methods must be consistent with each other. These
objects include heterogeneous arrays derived from the same root class.

setOrder - Order flag
'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of
the values (or rows) in C.

Order Flag Meaning

'sorted' The values (or rows) in C return
in sorted order. For example:
C = union([5 5 3],[1 2],'sorted') returns
C = [1 2 3 5].

'stable' The values (or rows) in C return
in the same order as they
appear in A and B. For example:
C = union([5 5 3],[1 2],'stable') returns
C = [5 3 1 2].

Output
Arguments

C - Combined data of A and B
vector | matrix | table

Combined data of A and B, returned as a vector, matrix, or table. If the
inputs A and B are tables, the order of the variables in the resulting
table, C, is the same as the order of the variables in A.

1-7484

union

The following describes the shape of C when the inputs are vector or
matrices and when the 'legacy' flag is not specified:

• If the 'rows' flag is not specified, then C is a column vector unless
both A and B are row vectors.

• If the 'rows' flag is not specified and both A and B are row vectors,
then C is a row vector.

• If the 'rows' flag is specified, then C is a matrix containing the
combined rows of A and B.

The class of the inputs A and B determines the class of C:

• If the class of A and B are the same, then C is the same class.

• If you combine a char or nondouble numeric class with double, then
C is the same class as the nondouble input.

• If you combine a logical class with double, then C is double.

• If you combine a cell array of strings with char, then C is a cell array
of strings.

• If you combine a categorical array with a cell array of strings or
single string, then C is a categorical array.

ia - Index to A
column vector

Index to A, returned as a column vector when the 'legacy' flag is not
specified. ia indicates the values (or rows) in A that contribute to the
union. If a value (or row) appears multiple times in A, then ia contains
the index to the first occurrence of the value (or row). If a value appears
in both A and B, then ia contains the index to the first occurrence in A.

ib - Index to B
column vector

Index to B, returned as a column vector when the 'legacy' flag is not
specified. ib indicates the values (or rows) in B that contribute to the
union. If there is a repeated value (or row) appearing exclusively in B,

1-7485

union

then ib contains the index to the first occurrence of the value. If a value
(or row) appears in both A and B, then ib does not contain an index to
the value (or row).

Examples Union of Two Vectors

Define two vectors with a value in common.

A = [5 7 1]; B = [3 1 1];

Find the union of vectors A and B.

C = union(A,B)

C =

1 3 5 7

Union of Two Tables

Define two tables with rows in common.

A = table([1:5]',['A';'B';'C';'D';'E'],logical([0;1;0;1;0]))
B = table([1:2:10]',['A';'C';'E';'G';'I'],logical(zeros(5,1)))

A =

Var1 Var2 Var3
---- ---- -----
1 A false
2 B true
3 C false
4 D true
5 E false

B =

Var1 Var2 Var3

1-7486

union

---- ---- -----
1 A false
3 C false
5 E false
7 G false
9 I false

Find the union of tables A and B.

C = union(A,B)

C =

Var1 Var2 Var3
---- ---- -----
1 A false
2 B true
3 C false
4 D true
5 E false
7 G false
9 I false

Union of Two Vectors and Their Indices

Define two vectors with a value in common.

A = [5 7 1]; B = [3 1 1];

Find the union of vectors A and B, as well as the index vectors, ia and ib.

[C,ia,ib] = union(A,B)

C =

1 3 5 7

1-7487

union

ia =

3
1
2

ib =

1

The values in C are the combined values of A(ia) and B(ib).

Union of Two Tables and Their Indices

Define a table, A, of gender, age, and height for three people.

A = table(['M';'M';'F'],[27;52;31],[74;68;64],...
'VariableNames',{'Gender' 'Age' 'Height'},...
'RowNames',{'Ted' 'Fred' 'Betty'})

A =

Gender Age Height
------ --- ------

Ted M 27 74
Fred M 52 68
Betty F 31 64

Define a table, B with the same variables as A.

B = table(['F';'M'],[64;68],[31;47],...
'VariableNames',{'Gender' 'Height' 'Age'},...
'RowNames',{'Meg' 'Joe'})

B =

Gender Height Age

1-7488

union

------ ------ ---
Meg F 64 31
Joe M 68 47

Find the union of tables A and B, as well as the index vectors, ia and ib.

[C,ia,ib] = union(A,B)

C =

Gender Age Height
------ --- ------

Betty F 31 64
Ted M 27 74
Joe M 47 68
Fred M 52 68

ia =

3
1
2

ib =

2

The data for Meg and Betty are the same. union only returns the index
from A, which corresponds to Betty.

Union of Rows in Two Matrices

Define two matrices with a row in common.

A = [2 2 2; 0 0 1];
B = [1 2 3; 2 2 2; 2 2 2];

1-7489

union

Find the combined rows of A and B, with no repetition, as well as the
index vectors ia and ib.

[C,ia,ib] = union(A,B,'rows')

C =

0 0 1
1 2 3
2 2 2

ia =

2
1

ib =

1

The rows of C are the combined rows of A(ia,:) and B(ib,:).

Union of Two Vectors with Specified Output Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' if you want the values in C to have the same order as
in A and B.

A = [5 7 1]; B = [3 1 1];
[C,ia,ib] = union(A,B,'stable')

C =

5 7 1 3

1-7490

union

ia =

1
2
3

ib =

1

Alternatively, you can specify 'sorted' order.

A = [5 7 1]; B = [3 1 1];
[C,ia,ib] = union(A,B,'sorted')

C =

1 3 5 7

ia =

3
1
2

ib =

1

Union of Vectors Containing NaNs

Define two vectors containing NaN.

A = [5 NaN 1]; B = [4 NaN NaN];

Find the union of vectors A and B.

1-7491

union

C = union(A,B)

C =

1 4 5 NaN NaN NaN

union treats NaN values as distinct.

Cell Array of Strings with Trailing White Space

Create a cell array of strings, A.

A = {'dog','cat','fish','horse'};

Create a cell array of strings, B, where some of the strings have trailing
white space.

B = {'dog ','cat','fish ','horse'};

Combine the elements of A and B.

[C,ia,ib] = union(A,B)

C =

'cat' 'dog' 'dog ' 'fish' 'fish ' 'horse'

ia =

2
1
3
4

ib =

1

1-7492

union

3

union treats trailing white space in cell arrays of strings as distinct
characters.

Union of Vectors of Different Classes and Shapes

Create a column vector character array.

A = ['A';'B';'C'], class(A)

A =

A
B
C

ans =

char

Create a row vector containing elements of numeric type double.

B = [68 69 70], class(B)

B =

68 69 70

ans =

double

The union of A and B returns a column vector character array.

1-7493

union

C = union(A,B), class(C)

C =

A
B
C
D
E
F

ans =

char

Union of Char and Cell Array of Strings

Create a character array containing the letters a , b, and c.

A = ['a';'b';'c'];
class(A)

ans =

char

Create a cell array of strings containing the letters c, d, and e.

B = {'c','d','e'};
class(B)

ans =

cell

1-7494

union

Combine the elements of A and B.

C = union(A,B)

C =

'a'
'b'
'c'
'd'
'e'

The result, C, is a cell array of strings.

class(C)

ans =

cell

Preserve Legacy Behavior of union

Use the 'legacy' flag to preserve the behavior of union from R2012b
and prior releases in your code.

Find the union of A and B with the current behavior.

A = [5 7 1]; B = [3 1 1];
[C1,ia1,ib1] = union(A,B)

C1 =

1 3 5 7

ia1 =

3

1-7495

union

1
2

ib1 =

1

Find the union of A and B, and preserve the legacy behavior.

A = [5 7 1]; B = [3 1 1];
[C2,ia2,ib2] = union(A,B,'legacy')

C2 =

1 3 5 7

ia2 =

1 2

ib2 =

3 1

Tips • To find the union with respect to a subset of variables from a
table, you can use column subscripting. For example, you can use
union(A(:,vars),B(:,vars)), where vars is a positive integer, a
vector of positive integers, a variable name, a cell array of variable
names, or a logical vector.

See Also unique | intersect | ismember | issorted | setdiff | setxor | sort

Concepts • “Combine Categorical Arrays”

1-7496

unique

Purpose Unique values in array

Syntax C = unique(A)
C = unique(A,'rows')
[C,ia,ic] = unique(A)
[C,ia,ic] = unique(A,'rows')

[C,ia,ic] = unique(A,setOrder)

[C,ia,ic] = unique(A,'rows',setOrder)

[C,ia,ic] = unique(A,'legacy')

[C,ia,ic] = unique(A,'rows','legacy')

[C,ia,ic] = unique(A,occurrence,'legacy')

[C,ia,ic] = unique(A,'rows',occurrence,'legacy')

Description C = unique(A) returns the same data as in A, but with no repetitions.

• If A is a numeric array, logical array, character array, categorical
array, or a cell array of strings, then unique returns the unique
values in A. The values of C are in sorted order.

• If A is a table, then unique returns the unique rows in A. The rows of
table C are in sorted order.

C = unique(A,'rows') treats each row of A as a single entity and
returns the unique rows of A. The rows of the array C are in sorted order.

The 'rows' option does not support cell arrays.

[C,ia,ic] = unique(A) also returns index vectors ia and ic.

• If A is a numeric array, logical array, character array, categorical
array, or a cell array of strings, then C = A(ia) and A = C(ic).

1-7497

unique

• If A is a table, then C = A(ia,:) and A = C(ic,:).

[C,ia,ic] = unique(A,'rows') also returns index vectors ia and ic,
such that C = A(ia,:) and A = C(ic,:).

[C,ia,ic] = unique(A,setOrder) and [C,ia,ic] =
unique(A,'rows',setOrder) return C in a specific order.
setOrder='sorted' returns the values (or rows) of C in sorted order.
setOrder='stable' returns the values (or rows) of C in the same order
as A. If no value is specified, the default is 'sorted'.

[C,ia,ic] = unique(A,'legacy'), [C,ia,ic]
= unique(A,'rows','legacy'), [C,ia,ic] =
unique(A,occurrence,'legacy'),and [C,ia,ic] =
unique(A,'rows',occurrence,'legacy') preserve the behavior of the
unique function from R2012b and prior releases.

The 'legacy' option does not support categorical arrays or tables.

Input
Arguments

A - Input array
numeric array | logical array | character array | categorical array |
cell array of strings | table

Input array, specified as a numeric array, logical array, character array,
categorical array, cell array of strings, or table.

If A is a table, unique does not take row names into account. Two rows
that have the same values, but different names, are considered equal.

Furthermore, A can be an object with the following class methods:

• sort (or sortrows for the 'rows' option)

• ne

The object class methods must be consistent with each other. These
objects include heterogeneous arrays derived from the same root class.

setOrder - Order flag

1-7498

unique

'sorted' (default) | 'stable'

Order flag, specified as 'sorted' or 'stable', indicates the order of
the values (or rows) in C.

Order Flag Meaning

'sorted' The values (or rows) in C return
in sorted order. For example:
C = unique([5 5 3 4],'sorted') returns
C = [3 4 5].

'stable' The values (or rows) in C return in
the same order as in A. For example:
C = unique([5 5 3 4],'stable') returns
C = [5 3 4].

occurrence - Occurrence flag for legacy behavior
'last' (default) | 'first'

Occurrence flag for legacy behavior, specified as 'first' or 'last',
indicates whether ia should contain the first or last indices to repeated
values found in A.

Occurrence Flag Meaning

'last' If there are repeated values (or
rows) in A, then ia contains the
index to the last occurrence of
the repeated value. For example:
[C,ia,ic] = unique([9 9 9],'last','legacy') ret
ia = 3.

'first' If there are repeated values (or
rows) in A, then ia contains the
index to the first occurrence of
the repeated value. For example:
[C,ia,ic] = unique([9 9 9],'first','legacy') re
ia = 1.

1-7499

unique

Output
Arguments

C - Unique data of A
vector | matrix | table

Unique data of A, returned as a vector, matrix, or table. The following
describes the shape of C when the input, A, is a vector or a matrix:

• If the 'rows' flag is not specified and A is a row vector, then C is a
row vector.

• If the 'rows' flag is not specified and A is not a row vector, then C
is a column vector.

• If the 'rows' flag is specified, then C is a matrix containing the
unique rows of A.

The class of C is the same as the class of the input A.

ia - Index to A
column vector

Index to A, returned as a column vector of indices to the first occurrence
of repeated elements. When the 'legacy' flag is specified, ia is a row
vector that contains indices to the last occurrence of repeated elements.

The indices satisfy C = A(ia) (or C = A(ia,:) for the 'rows' option).

ic - Index to C
column vector

Index to C, returned as a column vector when the 'legacy' flag is not
specified. ic contains indices, such that A = C(ic) (or A = C(ic,:) for
the 'rows' option).

Examples Unique Values in Vector

Define a vector with a repeated value.

A = [9 2 9 5];

Find the unique values of A.

1-7500

unique

C = unique(A)

C =

2 5 9

Unique Rows in Table

Define a table with repeated data.

Name = {'Fred';'Betty';'Bob';'George';'Jane'};
Age = [38;43;38;40;38];
Height = [71;69;64;67;64];
Weight = [176;163;131;185;131];

A = table(Age,Height,Weight,'RowNames',Name)

A =

Age Height Weight
--- ------ ------

Fred 38 71 176
Betty 43 69 163
Bob 38 64 131
George 40 67 185
Jane 38 64 131

Find the unique rows of A.

C = unique(A)

C =

Age Height Weight
--- ------ ------

Bob 38 64 131
Fred 38 71 176
George 40 67 185
Betty 43 69 163

1-7501

unique

unique returns the rows of A in sorted order by the first variable, Age
and then by the second variable, Height.

Unique Values and Their Indices

Define a vector with a repeated value.

A = [9 2 9 5];

Find the unique values of A and the index vectors ia and ic, such that C
= A(ia) and A = C(ic).

[C, ia, ic] = unique(A)

C =

2 5 9

ia =

2
4
1

ic =

3
1
3
2

Unique Rows in Matrix

Define a matrix with a repeated row.

A = [9 2 9 5; 9 2 9 0; 9 2 9 5];

1-7502

unique

Find the unique rows of A and the index vectors ia and ic, such that
C = A(ia,:) and A = C(ic,:).

[C, ia, ic] = unique(A,'rows')

C =

9 2 9 0
9 2 9 5

ia =

2
1

ic =

2
1
2

Notice that the second row in A is identified as unique even though the
elements 9, 2, and 9 are repeated in the other rows.

Unique Values in Vector with Specified Order

Use the setOrder argument to specify the ordering of the values in C.

Specify 'stable' if you want the values in C to have the same order
as in A.

A = [9 2 9 5];
[C, ia, ic] = unique(A,'stable')

C =

9 2 5

1-7503

unique

ia =

1
2
4

ic =

1
2
1
3

Alternatively, you can specify 'sorted' order.

[C, ia, ic] = unique(A,'sorted')

C =

2 5 9

ia =

2
4
1

ic =

3
1
3

1-7504

unique

2

Unique Values in Array Containing NaNs

Define a vector containing NaN.

A = [5 5 NaN NaN];

Find the unique values of A.

C = unique(A)

C =

5 NaN NaN

unique treats NaN values as distinct.

Unique Entries in Cell Array of Strings

Define a cell array of strings.

A = {'one','two','twenty-two','One','two'};

Find the unique strings contained in A.

C = unique(A)

C =

'One' 'one' 'twenty-two' 'two'

Cell Array of Strings with Trailing White Space

Define a cell array of strings, A, where some of the strings have trailing
white space.

A = {'dog','cat','fish','horse','dog ','fish '};

Find the unique strings contained in A.

1-7505

unique

C = unique(A)

C =

'cat' 'dog' 'dog ' 'fish' 'fish ' 'horse'

unique treats trailing white space in cell arrays of strings as distinct
characters.

Preserve Legacy Behavior of unique

Use the 'legacy' flag to preserve the behavior of unique from R2012b
and prior releases in your code.

Find the unique elements of A with the current behavior.

A = [9 2 9 5];
[C1, ia1, ic1] = unique(A)

C1 =

2 5 9

ia1 =

2
4
1

ic1 =

3
1
3
2

Find the unique elements of A, and preserve the legacy behavior.

1-7506

unique

[C2, ia2, ic2] = unique(A, 'legacy')

C2 =

2 5 9

ia2 =

2 4 3

ic2 =

3 1 3 2

Tips • To find unique rows in table A with respect to a subset of variables,
you can use column subscripting. For example, you can use
unique(A(:,vars)), where vars is a positive integer, a vector of
positive integers, a variable name, a cell array of variable names,
or a logical vector.

See Also union | intersect | ismember | issorted | setdiff | setxor | sort

1-7507

matlab.unittest

Purpose Summary of packages and classes in MATLAB Unit Test Framework

Description The matlab.unittest package consists of the following classes and
packages:

matlab.unittest.constraints Summary of classes in MATLAB
Constraints Interface

matlab.unittest.diagnostics Summary of classes in MATLAB
Diagnostics Interface

matlab.unittest.fixtures Summary of classes in MATLAB
Fixtures Interface

matlab.unittest.parameters Summary of classes associated
with MATLAB Unit Test
parameters

matlab.unittest.plugins Summary of classes in MATLAB
Plugins Interface

matlab.unittest.plugins.plugindata Summary of classes in MATLAB
Plugin Data Interface

matlab.unittest.qualifications Summary of classes in MATLAB
Qualifications Interface

matlab.unittest.selectors Summary of classes in MATLAB
Selectors Interface

matlab.unittest.Test Specification of a single test
method

matlab.unittest.TestCase Superclass of all
matlab.unittest test classes

matlab.unittest.TestResult Result of running test suite

matlab.unittest.TestRunner Class for running tests in
matlab.unittest framework

matlab.unittest.TestSuite Class for grouping tests to run

1-7508

unix

Purpose Execute UNIX command and return output

Syntax status = unix(command)
[status,cmdout] = unix(command)
[status,cmdout] = unix(command,'-echo')

Description status = unix(command) calls the UNIX operating system to execute
the specified command. The operation waits for the command to finish
execution before returning the exit status of the command to the status
variable.

[status,cmdout] = unix(command) additionally returns the standard
output of the command to cmdout. This syntax is most useful for
commands that do not require user input.

[status,cmdout] = unix(command,'-echo') additionally displays
(echoes) the command output in the MATLAB Command Window. This
syntax is most useful for commands that require user input and that
run correctly in the MATLAB Command Window.

Input
Arguments

command - UNIX command
string

UNIX command, specified as a string. The command executes in a UNIX
shell, which might not be the shell from which you launched MATLAB.

Example: 'ls'

Output
Arguments

status - Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When
the command is successful, status is 0. Otherwise, status is a nonzero
integer.

• If command includes the ampersand character (&), then status is the
exit status upon command launch.

1-7509

unix

• If command does not include the ampersand character (&), then status
is the exit status upon command completion.

cmdout - Output of operating system command
string

Output of the operating system command, returned as a string.

Examples Save UNIX Command Exit Status and Output

List all users who are currently logged in, and save the command exit
status and output. Then, view the status.

command = 'who';
[status,cmdout] = unix(command);
status

status =

0

A status of zero indicates that the command completed successfully.
MATLAB returns a string containing the list of users in cmdout.

Tips • To execute the operating system command in the background, include
the trailing character, &, in the command argument (for example,
'emacs &'). The exit status is immediately returned to the status
variable. This syntax is useful for console programs that require
interactive user command input while they run, and that do not run
correctly in the MATLAB Command Window.

Note If command includes the trailing & character, cmdout is empty.

• The unix function redirects stdin to the invoked command, command,
by default. This redirection also forwards MATLAB script commands
and the keyboard type-ahead buffer to the invoked command while

1-7510

unix

the unix function executes. This can lead to corrupted output when
unix does not complete execution immediately. To disable stdin and
type-ahead redirection, include the formatted string < /dev/null in
the call to the invoked command.

Algorithms MATLAB uses a shell program to execute the given command. It
determines which shell program to use by checking environment
variables on your system. MATLAB first checks the MATLAB_SHELL
variable, and if either empty or not defined, then checks SHELL. If SHELL
is also empty or not defined, MATLAB uses /bin/sh.

See Also ! (exclamation point) | computer | dos | perl | system

Concepts • “Run External Commands, Scripts, and Programs”

1-7511

unloadlibrary

Purpose Unload shared library from memory

Syntax unloadlibrary libname

Description unloadlibrary libname unloads library libname from memory.

Limitations • Use with libraries that are loaded using the loadlibrary function.

Input
Arguments

libname - Name of shared library
string

Name of shared library, specified as a string. If you call loadlibrary
using the alias option, then you must use the alias name for the
libname argument.

Data Types
char

Examples Unload Library

Add path to examples folder.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

Load the library, if it is not already loaded.

if ~libisloaded('shrlibsample')
loadlibrary('shrlibsample')

end

Clean up.

unloadlibrary shrlibsample

Tips • To unload a MEX-file, use the clear function.

See Also loadlibrary | libisloaded | clear

1-7512

unmesh

Purpose Convert edge matrix to coordinate and Laplacian matrices

Syntax [L,XY] = unmesh(E)

Description [L,XY] = unmesh(E) returns the Laplacian matrix L and mesh vertex
coordinate matrix XY for the M-by-4 edge matrix E. Each row of the
edge matrix must contain the coordinates [x1 y1 x2 y2] of the edge
endpoints.

Input
Arguments

E M-by-4 edge matrix E.

Output
Arguments

L Laplacian matrix representation of the graph.

XY Mesh vertex coordinate matrix.

Examples Take a simple example of a square with vertices at (1,1), (1,–1),(–1,–1),
and (–1,1), where the connections between vertices are the four
perpendicular edges of the square plus one diagonal connection between
(–1, –1) and (1,1).

1-7513

unmesh

The edge matrix E for this graph is:

E=[1 1 1 -1; % edge from 1 to 2
1 -1 -1 -1; % edge from 2 to 3
-1 -1 -1 1; % edge from 3 to 4
-1 -1 1 1; % edge from 4 to 1
-1 1 1 1] % edge from 3 to 1

Use unmesh to create the output matrices,

[A,XY]=unmesh(E);
4 vertices:
4/4

The Laplacian matrix is defined as

1-7514

unmesh

L

v i j

i j vij

i

i=
=

− ≠
deg() if

 if and is adja1 ccent to

 otherwise

vj

0

⎧

⎨
⎪

⎩
⎪

unmesh returns the Laplacian matrix L in sparse notation.

L

L =

(1,1) 3
(2,1) -1
(3,1) -1
(4,1) -1
(1,2) -1
(2,2) 2
(4,2) -1
(1,3) -1
(3,3) 2
(4,3) -1
(1,4) -1
(2,4) -1
(3,4) -1

To see L in regular matrix notation, use the full command.

full(L)

ans =

3 -1 -1 -1
-1 2 0 -1
-1 0 2 -1
-1 -1 -1 3

The mesh coordinate matrix XY returns the coordinates of the corners of
the square.

1-7515

unmesh

XY

XY =

-1 -1
-1 1
1 -1
1 1

See Also gplot | treeplot

1-7516

unmkpp

Purpose Piecewise polynomial details

Syntax [breaks,coefs,l,k,d] = unmkpp(pp)

Description [breaks,coefs,l,k,d] = unmkpp(pp) extracts, from the piecewise
polynomial pp, its breaks breaks, coefficients coefs, number of pieces
l, order k, and dimension d of its target. Create pp using spline or the
spline utility mkpp.

Examples This example creates a description of the quadratic polynomial

x
x

2

4

as a piecewise polynomial pp, then extracts the details of that
description.

pp = mkpp([-8 -4],[-1/4 1 0]);
[breaks,coefs,l,k,d] = unmkpp(pp)

breaks =
-8 -4

coefs =
-0.2500 1.0000 0

l =
1

k =
3

d =
1

See Also mkpp | ppval | spline

1-7517

unregisterallevents

Purpose Unregister all event handlers associated with COM object events at
run time

Syntax h.unregisterallevents
unregisterallevents(h)

Description h.unregisterallevents unregisters all events previously registered
with COM object h. After calling unregisterallevents, the object no
longer responds to any events until you register them again using the
registerevent function.

unregisterallevents(h) is an alternate syntax.

COM functions are available on Microsoft Windows systems only.

Examples Register and unregister events for an instance of the mwsamp control,
using the eventlisteners function to see the event handler associated
with each event:

1 Register three events and their respective handler routines.

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
{'Click' 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

h.eventlisteners

ans =
'click' 'myclick'
'dblclick' 'my2click'
'mousedown' 'mymoused'

2 Unregister all events simultaneously with unregisterallevents.
eventlisteners returns an empty cell array, indicating that there
are no longer any events registered with the control:

h.unregisterallevents;

1-7518

unregisterallevents

h.eventlisteners

ans =
{}

See Also events (COM) | eventlisteners | registerevent | unregisterevent
| isevent

1-7519

unregisterevent

Purpose Unregister event handler associated with COM object event at run time

Syntax h.unregisterevent(eventhandler)
unregisterevent(h, eventhandler)

Description h.unregisterevent(eventhandler) unregisters specific event handler
routines from their corresponding events. Once you unregister an event,
the object no longer responds to the event.

unregisterevent(h, eventhandler) is an alternate syntax.

You can unregister events at any time after creating a control. The
eventhandler argument, which is a cell array, specifies both events
and event handlers.

h.unregisterevent({'event_name',@event_handler});

Specify events in the eventhandler argument using the names of the
events. Strings used in the eventhandler argument are not case
sensitive. unregisterevent does not accept numeric event identifiers.

COM functions are available on Microsoft Windows systems only.

Examples Unregister events for a control:

1 Create an mwsamp control and register all events with the same
handler routine, sampev. Use eventlisteners to see the event
handler used by each event. In this case, each event, when fired,
calls sampev.m:

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
'sampev');

h.eventlisteners

ans =

1-7520

unregisterevent

'Click' 'sampev'
'DblClick' 'sampev'
'MouseDown' 'sampev'
'Event_Args' 'sampev'

2 Unregister just the dblclick event. Now, when you list the
registered events using eventlisteners, dblclick is no longer
registered and the control does not respond when you double-click
the mouse over it:

h.unregisterevent({'dblclick' 'sampev'});
h.eventlisteners

ans =
'Click' 'sampev'
'MouseDown' 'sampev'
'Event_Args' 'sampev'

3 Now, register the click and dblclick events with a different event
handler for myclick and my2click, respectively:

h.unregisterallevents;
h.registerevent({'click' 'myclick'; ...

'dblclick' 'my2click'});
h.eventlisteners

ans =
'click' 'myclick'
'dblclick' 'my2click'

4 Unregister these same events by specifying event names and their
handler routines in a cell array. eventlisteners now returns an
empty cell array, meaning that no events are registered for the
mwsamp control:

h.unregisterevent({'click' 'myclick'; ...
'dblclick' 'my2click'});

h.eventlisteners

1-7521

unregisterevent

ans =
{}

Unregister Microsoft Excel workbook events:

1 Create a Workbook object and register two events with the event
handler routines, EvtActivateHndlr and EvtDeactivateHndlr:

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = wbs.Add;wb.registerevent({'Activate' 'EvtActivateHndlr'; ...

'Deactivate' 'EvtDeactivateHndlr'})
wb.eventlisteners

ans =
'Activate' 'EvtActivateHndlr'
'Deactivate' 'EvtDeactivateHndlr'

MATLAB shows the events with the corresponding event handlers.

2 Next, unregister the Deactivate event handler:

wb.unregisterevent({'Deactivate' 'EvtDeactivateHndlr'})
wb.eventlisteners

ans =
'Activate' 'EvtActivateHndlr'

MATLAB shows the remaining registered event (Activate) with
its corresponding event handler.

See Also events (COM) | eventlisteners | registerevent |
unregisterallevents | isevent

How To • “Writing Event Handlers”

1-7522

unstack

Purpose Unstack data from single variable into multiple variables

Syntax W = unstack(T,vars,ivar)
W = unstack(T,vars,ivar,Name,Value)
[W,it] = stack(___)

Description W = unstack(T,vars,ivar) converts the tall table, T, to an equivalent
table, W, that is in wide format. unstack unstacks a single variable in T,
specified by vars, into multiple variables in W. In general, W contains
more variables, but fewer rows, than T.

An indicator variable in T, specified by ivar, determines which variable
in W contains each value in var after it is unstacked. unstack treats
the remaining variables in T as grouping variables. Each unique
combination of values in the grouping variables identifies a group of
rows in T that will be unstacked into a single row of W.

W = unstack(T,vars,ivar,Name,Value) converts the table T to wide
format with additional options specified by one or more Name,Value
pair arguments.

For example, you can specify how unstack converts variables from T to
variables in W.

[W,it] = stack(___) also returns an index vector, it, indicating
the correspondence between rows in W and rows in T. You can use any
of the previous input arguments.

Input
Arguments

T - Tall table
table

Tall table, specified as a table. Tmust contain data variables to unstack,
vars, and an indicator variable, ivars. The remaining variables in T
are either grouping variables or constant variables.

vars - Variables in T to unstack

1-7523

unstack

positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables in T to unstack, specified as a positive integer, vector of
positive integers, variable name, cell array of variable names, or logical
vector.

ivar - Indicator variable in T
positive integer | variable name

Indicator variable in T, specified as a positive integer or a variable
name. The variable specified by ivar indicates which variable in W
each value in var is unstacked into.

ivar can be a numeric vector, logical vector, character array, cell array
of strings, or categorical vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'AggregationFunction',@mean applies the aggregation
function @mean to the values in vars.

’GroupingVariables’ - Grouping variables in T that define groups
of rows
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Grouping variables in T that define groups of rows, specified as the
comma-separated pair consisting of 'GroupingVariables' and a
positive integer, vector of positive integers, variable name, cell array
of variable names, or logical vector. Each group of rows in T becomes
one row in W.

The default is all the variables in T not listed in vars or ivar.

1-7524

unstack

’ConstantVariables’ - Variables constant within a group
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

Variables constant within a group, specified as the comma-separated
pair consisting of 'ConstantVariables' and a positive integer, vector
of positive integers, variable name, cell array of variable names, or
logical vector. The default is no variables.

The values for these variables in W are taken from the first row in each
group in T.

’NewDataVariableNames’ - Names for new data variables in W
cell array of strings

Names for new data variables in W, specified as the comma-separated
pair consisting of 'NewDataVariableNames' and a cell array of strings.
The default is strings based on the values of the grouping variable
specified in ivar.

’AggregationFunction’ - Aggregation function from values in vars
to single value
function handle

Aggregation function from values in vars to single value, specified as
the comma-separated pair consisting of 'AggregationFunction' and a
function handle. unstack applies this function to rows from the same
group that have the same value in ivar. The function must aggregate
the data values into a single value.

For a numeric data variable, the default is @sum. For nonnumeric
variables, there is no default function, and you must specify the
'AggregationFunction' name-value pair argument if multiple rows in
the same group have the same value in ivar.

1-7525

unstack

Output
Arguments

W - Wide table
table

Wide table, returned as a table. W contains the unstacked data
variables, the grouping variables, and the first value of each group from
any constant variables.

The order of the data in W is based on the order of the unique values
in the grouping variables.

You can store additional metadata such as descriptions, variable units,
variable names, and row names in the table. For more information, see
Table Properties.

it - Index to T
column vector

Index to T, returned as a column vector. For each row in W, the index
vector, it, identifies the index of the first value in the corresponding
group of rows in T.

Examples Separate One Variable into Three Variables

Create a table indicating the amount of snowfall in various towns for
various storms.

Storm = [3;3;1;3;1;1;4;2;4;2;4;2];
Town = {'T1';'T3';'T1';'T2';'T2';'T3';...

'T2';'T1';'T3';'T3';'T1';'T2'};
Snowfall = [0;3;5;5;9;10;12;13;15;16;17;21];

T = table(Storm,Town,Snowfall)

T =

Storm Town Snowfall
_____ ____ ________

3 'T1' 0

1-7526

unstack

3 'T3' 3
1 'T1' 5
3 'T2' 5
1 'T2' 9
1 'T3' 10
4 'T2' 12
2 'T1' 13
4 'T3' 15
2 'T3' 16
4 'T1' 17
2 'T2' 21

T contains three snowfall entries for each storm, one for each town.

Separate the variable Snowfall into three variables, one for each town
specified in the variable, Town.

W = unstack(T,'Snowfall','Town')

W =

Storm T1 T2 T3
_____ __ __ __

3 0 5 3
1 5 9 10
4 17 12 15
2 13 21 16

Each row in W contains data from rows in T that have the same value in
the grouping variable, Storm. The order of the unique values in Storm
determines the order of the data in W.

Apply Aggregation Function to Each Group

Unstack data and apply an aggregation function to multiple rows in the
same group that have the same values in the indicator variable.

Create a table containing data on the price of two stocks over 2 days.

1-7527

unstack

Date = [repmat({'4/12/2008'},6,1);...
repmat({'4/13/2008'},5,1)];

Stock = {'Stock1';'Stock2';'Stock1';'Stock2';...
'Stock2';'Stock2';'Stock1';'Stock2';...
'Stock2';'Stock1';'Stock2'};

Price = [60.35;27.68;64.19;25.47;28.11;27.98;...
63.85;27.55;26.43;65.73;25.94];

T = table(Date,Stock,Price)

T =

Date Stock Price
___________ ________ _____

'4/12/2008' 'Stock1' 60.35
'4/12/2008' 'Stock2' 27.68
'4/12/2008' 'Stock1' 64.19
'4/12/2008' 'Stock2' 25.47
'4/12/2008' 'Stock2' 28.11
'4/12/2008' 'Stock2' 27.98
'4/13/2008' 'Stock1' 63.85
'4/13/2008' 'Stock2' 27.55
'4/13/2008' 'Stock2' 26.43
'4/13/2008' 'Stock1' 65.73
'4/13/2008' 'Stock2' 25.94

T contains two prices for STOCK1 during the first day and four prices
for STOCK2 during the first day.

Create a table containing separate variables for each stock and one
row for each day. Use Date as the grouping variable and apply the
aggregation function, @mean, to the numeric values from the variable,
Price, for each group.

[W,it] = unstack(T,'Price','Stock',...
'AggregationFunction',@mean)

1-7528

unstack

W =

Date Stock1 Stock2
___________ ______ ______

'4/12/2008' 62.27 27.31
'4/13/2008' 64.79 26.64

it =

1
7

W contains the average price for each stock grouped by date.

it identifies the index of the first value for each group of rows in T. The
first value for the group '4/13/2008' is in the seventh row of T.

Tips • You can specify more than one data variable in T, and each variable
becomes a set of unstacked data variables in W. Use a vector of positive
integers, a cell array containing multiple variable names, or a logical
vector to specify vars. The one indicator variable, specified by the
input argument, ivar, applies to all data variables specifies by vars.

Definitions Grouping Variables

Grouping variables are utility variables used to group, or categorize,
data. Grouping variables are useful for summarizing or visualizing
data by group. You can define groups in your table by specifying one or
more grouping variables.

A grouping variable can be any of the following:

• Categorical vector

• Cell array of strings

• Character array

1-7529

unstack

• Numeric vector, typically containing positive integers

• Logical vector

Rows that have the same grouping variable value belong to the same
group. If you use multiple grouping variables, rows that have the same
combination of grouping variable values belong to the same group.

See Also stack | join

1-7530

untar

Purpose Extract contents of tar file

Syntax untar(tarfilename)
untar(tarfilename,outputdir)
untar(url, ___)
filenames = untar(___)

Description untar(tarfilename) extracts the archived contents of tarfilename
into the current directory and sets the files’ attributes. It overwrites
any existing files with the same names as those in the archive if the
existing files’ attributes and ownerships permit it. For example, if you
rerun untar on the same tarfilename, MATLAB software does not
overwrite files with a read-only attribute; instead, untar displays a
warning for such files. On Microsoft Windows platforms, the hidden,
system, and archive attributes are not set.

tarfilename is a string specifying the name of the tar file. tarfilename
is gunzipped to a temporary directory and deleted if its extension
ends in .tgz or .gz. If an extension is omitted, untar searches for
tarfilename appended with .tgz, .tar.gz, or .tar. tarfilename can
include the directory name; otherwise, the file must be in the current
directory or in a directory on the MATLAB path.

untar(tarfilename,outputdir) uncompresses the archive
tarfilename into the directory outputdir. If outputdir does not exist,
MATLAB creates it.

untar(url, ___) extracts the tar archive from an Internet URL.
The URL must include the protocol type (for example, 'http://' or
'ftp://'). MATLAB downloads the URL to a temporary directory,
and then deletes it.

filenames = untar(___) extracts the tar archive and returns the
names of the extracted files in the string cell array filenames. If
outputdir specifies a relative path, filenames contains the relative
path. If outputdir specifies an absolute path, filenames contains the
absolute path.

1-7531

untar

Examples Using tar and untar to Copy Files

Copy all .m files in the current directory to the directory backup.

tar('mymfiles.tar.gz','*.m');
untar('mymfiles','backup');

Using untar with URL

Run untar to list Cleve Moler’s "Numerical Computing with MATLAB"
examples to the output directory ncm.

url ='http://www.mathworks.com/moler/ncm.tar.gz';
ncmFiles = untar(url,'ncm')

See Also gzip | gunzip | tar | unzip | zip

1-7532

unwrap

Purpose Correct phase angles to produce smoother phase plots

Syntax Q = unwrap(P)
Q = unwrap(P,tol)
Q = unwrap(P,[],dim)
Q = unwrap(P,tol,dim)

Description Q = unwrap(P) corrects the radian phase angles in a vector P by adding
multiples of ±2π when absolute jumps between consecutive elements of
P are greater than or equal to the default jump tolerance of π radians. If
P is a matrix, unwrap operates columnwise. If P is a multidimensional
array, unwrap operates on the first nonsingleton dimension.

Q = unwrap(P,tol) uses a jump tolerance tol instead of the default
value, π.

Q = unwrap(P,[],dim) unwraps along dim using the default tolerance.

Q = unwrap(P,tol,dim) uses a jump tolerance of tol.

Note A jump tolerance less than π has the same effect as a tolerance of
π. For a tolerance less than π, if a jump is greater than the tolerance but
less than π, adding ±2π would result in a jump larger than the existing
one, so unwrap chooses the current point. If you want to eliminate
jumps that are less than π, try using a finer grid in the domain.

Examples Example 1

The following phase data comes from the frequency response of a
third-order transfer function. The phase curve jumps 3.5873 radians
between w = 3.0 and w = 3.5, from -1.8621 to 1.7252.

w = [0:.2:3,3.5:1:10];
p = [0

-1.5728
-1.5747
-1.5772

1-7533

unwrap

-1.5790
-1.5816
-1.5852
-1.5877
-1.5922
-1.5976
-1.6044
-1.6129
-1.6269
-1.6512
-1.6998
-1.8621
1.7252
1.6124
1.5930
1.5916
1.5708
1.5708
1.5708];

semilogx(w,p,'b*-'), hold

1-7534

unwrap

Using unwrap to correct the phase angle, the resulting jump is 2.6959,
which is less than the default jump tolerance π. This figure plots the
new curve over the original curve.

semilogx(w,unwrap(p),'r*-')

1-7535

unwrap

Example 2

Array P features smoothly increasing phase angles except for
discontinuities at elements (3,1) and (1,2).

P = [0 7.0686 1.5708 2.3562
0.1963 0.9817 1.7671 2.5525
6.6759 1.1781 1.9635 2.7489
0.5890 1.3744 2.1598 2.9452]

The function Q = unwrap(P) eliminates these discontinuities.

Q =
0 7.0686 1.5708 2.3562

0.1963 7.2649 1.7671 2.5525
0.3927 7.4613 1.9635 2.7489
0.5890 7.6576 2.1598 2.9452

1-7536

unwrap

See Also abs | angle

1-7537

unzip

Purpose Extract contents of zip file

Syntax unzip(zipfilename)
unzip(zipfilename,outputdir)
filenames = unzip(zipfilename,outputdir)

Description unzip(zipfilename) extracts the archived contents of zipfilename
into the current folder, preserving the files’ attributes and timestamps.
The unzip function can extract files from your local system or files from
an Internet URL.

unzip(zipfilename,outputdir) extracts the contents of zipfilename
into the folder outputdir.

filenames = unzip(zipfilename,outputdir) returns the names
of the extracted files in the string cell array filenames. Specifying
outputdir is optional.

Tips • unzip does not support password-protected or encrypted zip archives.

• If any files in the target folder have the same name as files in the zip
file, and you have write permission to the files, unzip overwrites the
existing files with the archived versions. If you do not have write
permission, unzip issues a warning.

• Extract files that contain non-7-bit ASCII characters on a machine
that has the appropriate language/encoding settings.

Input
Arguments

zipfilename

String that specifies the name of the zip file.

If zipfilename does not include the full path, unzip searches for the
file in the current folder and along the MATLAB path. If you do not
specify the file extension, unzip appends .zip.

If you are downloading a URL, zipfilename must include the protocol
type (for example, http://). The unzip function downloads the URL to
the temporary folder on your system, and deletes the URL on cleanup.

1-7538

unzip

outputdir

String that specifies the target folder for the extracted files.

Default: current folder ('.')

Output
Arguments

entrynames

Cell array of strings that contain the paths of the extracted files.

If outputdir specifies a relative path, filenames contains the relative
path. If outputdir specifies an absolute path, filenames contains the
absolute path.

Examples Copy the example MAT-files to the folder archive:

% Zip the example MAT-files to examples.zip
zip('examples.zip','*.mat',...

fullfile(matlabroot,'toolbox','matlab','demos'))

% Unzip examples.zip to the folder 'archive'
unzip('examples','archive')

Download Cleve Moler’s "Numerical Computing with MATLAB"
examples to the output folder ncm:

url ='http://www.mathworks.com/moler/ncm.zip';
ncmFiles = unzip(url,'ncm')

Alternatives To extract files from a zip file using the Current Folder browser, select
the zip file, right-click to open the context menu, and then select
Extract.

See Also fileattrib | gzip | gunzip | tar | untar | zip

1-7539

uplus, +

Purpose Unary plus

Syntax C = +A
C = uplus(A)

Description C = +A returns array A and stores it in C.

C = uplus(A) is an alternate way to execute +A, but is rarely used. It
enables operator overloading for classes.

Input
Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional
array.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char
Complex Number Support: Yes

Examples Unary Plus of Matrix

Create a 2-by-2 matrix, A.

A = [1 -3; -2 4]

A =

1 -3
-2 4

Use unary plus on A.

C = +A

C =

1-7540

uplus, +

1 -3
-2 4

C and A are the same.

See Also uminus | plus

1-7541

upper

Purpose Convert string to uppercase

Syntax t = upper('str')
B = upper(A)

Description t = upper('str') converts any lowercase characters in the string
str to the corresponding uppercase characters and leaves all other
characters unchanged.

B = upper(A) when A is a cell array of strings, returns a cell array the
same size as A containing the result of applying upper to each string
within A.

Examples upper('attention!') is ATTENTION!.

Tips Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also lower

1-7542

urlread

Purpose Download URL content to MATLAB string

Syntax str = urlread(URL)
str = urlread(URL,Name,Value)
[str,status] = urlread(___)

Description str = urlread(URL) downloads the HTML Web content from the
specified URL into the string str. urlread does not retrieve hyperlink
targets and images.

str = urlread(URL,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

[str,status] = urlread(___) suppresses the display of error
messages, using any of the input arguments in the previous syntaxes.
When the operation is successful, status is 1. Otherwise, status is 0

Input
Arguments

URL - Content location
string

Content location, specified as a string. Include the transfer protocol,
such as http, ftp, or file.

Example: 'http://www.mathworks.com/matlabcentral'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Timeout',10,'Charset','UTF-8' specifies that urlread
should time out after 10 seconds, and the character encoding of the
file is UTF-8.

’Get’ - Data to send to the Web form using the GET method

1-7543

urlread

cell array

Parameters of the data to send to the Web form using the GET method,
specified as the comma-separated pair consisting of 'get' and a
cell array of paired parameter names and values. The supported
parameters depend upon the URL.

'Get' includes the data in the URL, separated by ? and & characters.

Example: 'Get',{'term','urlread'}

’Post’ - Data to send to the Web form using the POST method
cell array

Parameters of the data to send to the Web form using the POST
method, specified as the comma-separated pair consisting of 'post'
and a cell array of paired parameter names and values. The supported
parameters depend upon the URL.

'Post' submits the data as part of the request headers, not explicitly
in the URL.

’Charset’ - Character encoding
string

Character encoding, specified as the comma-separated pair consisting
of 'Charset' and a string. If you do not specify Charset, the function
attempts to determine the character encoding from the headers of the
file. If the character encoding cannot be determined, Charset defaults
to the native encoding for the file protocol, and UTF-8 for all other
protocols.

Example: 'Charset','ISO-8859-1'

’Timeout’ - Timeout duration
scalar

Timeout duration in seconds, specified as the comma-separated pair
consisting of 'Timeout' and a scalar. The timeout duration determines
when the function errors rather than continues to wait for the server to
respond or send data.

1-7544

urlread

Example: 'Timeout',10

’UserAgent’ - Client user agent identification
string

Client user agent identification, specified as the comma-separated pair
consisting of 'UserAgent' and a string.

Example: 'UserAgent','MATLAB R2012b'

’Authentication’ - HTTP authentication mechanism
'Basic'

HTTP authentication mechanism, specified as the comma-separated
pair consisting of 'Authentication' and a string. Currently, only the
value 'Basic' is supported. 'Authentication','Basic' specifies
basic authentication.

If you include the Authentication argument, you must also include the
Username and Password arguments.

’Username’ - User identifier
string

User identifier, specified as the comma-separated pair consisting of
'Username' and a string. If you include the Username argument, you
must also include the Password and Authentication arguments.

Example: 'Username','myName'

’Password’ - User authentication password
string

User authentication password, specified as the comma-separated pair
consisting of 'Password' and a string. If you include the Password
argument, you must also include the Username and Authentication
arguments.

Example: 'Password','myPassword123'

1-7545

urlread

Output
Arguments

str - Contents of the file at the specified URL
string

Contents of the file at the specified URL, returned as a string. For
example, if the URL corresponds to an HTML page, str contains the
text and markup in the HTML file. If the URL corresponds to a binary
file, str is not readable.

status - Download status
1 | 0

Download status, returned as either 1 or 0. When the download is
successful, status is 1. Otherwise, status is 0.

Examples Download Web Content by Specifying Complete URL

Download the HTML for the page on the MATLAB Central File
Exchange that lists submissions related to urlread.

fullURL = ['http://www.mathworks.com/matlabcentral/fileexchange' ...
'?term=urlread'];

str = urlread(fullURL);

urlread reads from the specified URL and downloads the HTML
content to the string str.

Download Web Content Related to a Term

Download the HTML for the page on the MATLAB Central File
Exchange that lists submissions related to urlread.

URL = 'http://www.mathworks.com/matlabcentral/fileexchange';
str = urlread(URL,'Get',{'term','urlread'});

urlread reads from
http://www.mathworks.com/matlabcentral/fileexchange/?term=urlread
and downloads the HTML content to the string str.

1-7546

urlread

Specify Timeout Duration

Download content from a page on the MATLAB Central File Exchange
as in the first example, and specify a timeout duration of 5 seconds.

fullURL = ['http://www.mathworks.com/matlabcentral/fileexchange' ...
'?term=urlread'];

str = urlread(fullURL,'Timeout',5);

Tips • urlread saves Web content to a string. To save content to a file,
use urlwrite.

• urlread and urlwrite can download content from FTP sites.
Alternatively, use the ftp function to connect to an FTP server and
the mget function to download a file.

See Also urlwrite | ftp | web | mget

Concepts • “Specify Proxy Server Settings for Connecting to the Internet”

1-7547

urlwrite

Purpose Download URL content and save to file

Syntax urlwrite(URL,filename)
urlwrite(URL,filename,Name,Value)

[filestr,status] = urlwrite(___)

Description urlwrite(URL,filename) reads Web content at the specified URL and
saves it to the file specified by filename.

urlwrite(URL,filename,Name,Value)uses additional options specified
by one or more Name,Value pair arguments.

[filestr,status] = urlwrite(___) stores the file path in variable
filestr, and suppresses the display of error messages, using any of
the input arguments in the previous syntaxes. When the operation is
successful, status is 1. Otherwise, status is 0.

Input
Arguments

URL - Content location
string

Content location, specified as a string. Include the transfer protocol,
such as http, ftp, or file.

Example: 'http://www.mathworks.com/matlabcentral'

filename - Name of file to store Web content
string

Name of the file to store the Web content, specified as a string. If you
do not specify the path for filename, urlwrite saves the file in the
current folder.

Example: 'myfile.html'

1-7548

urlwrite

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Timeout',10,'Charset','UTF-8' specifies that urlread
should time out after 10 seconds, and the character encoding of the
file is UTF-8.

’Get’ - Data to send to the Web form using the GET method
cell array

Parameters of the data to send to the Web form using the GET method,
specified as the comma-separated pair consisting of 'get' and a
cell array of paired parameter names and values. The supported
parameters depend upon the URL.

'Get' includes the data in the URL, separated by ? and & characters.

Example: 'Get',{'term','urlread'}

’Post’ - Data to send to the Web form using the POST method
cell array

Parameters of the data to send to the Web form using the POST
method, specified as the comma-separated pair consisting of 'post'
and a cell array of paired parameter names and values. The supported
parameters depend upon the URL.

'Post' submits the data as part of the request headers, not explicitly
in the URL.

’Charset’ - Character encoding
string

Character encoding, specified as the comma-separated pair consisting
of 'Charset' and a string. If you do not specify Charset, the function
attempts to determine the character encoding from the headers of the

1-7549

urlwrite

file. If the character encoding cannot be determined, Charset defaults
to the native encoding for the file protocol, and UTF-8 for all other
protocols.

Example: 'Charset','ISO-8859-1'

’Timeout’ - Timeout duration
scalar

Timeout duration in seconds, specified as the comma-separated pair
consisting of 'Timeout' and a scalar. The timeout duration determines
when the function errors rather than continues to wait for the server to
respond or send data.

Example: 'Timeout',10

’UserAgent’ - Client user agent identification
string

Client user agent identification, specified as the comma-separated pair
consisting of 'UserAgent' and a string.

Example: 'UserAgent','MATLAB R2012b'

’Authentication’ - HTTP authentication mechanism
'Basic'

HTTP authentication mechanism, specified as the comma-separated
pair consisting of 'Authentication' and a string. Currently, only the
value 'Basic' is supported. 'Authentication','Basic' specifies
basic authentication.

If you include the Authentication argument, you must also include the
Username and Password arguments.

’Username’ - User identifier
string

User identifier, specified as the comma-separated pair consisting of
'Username' and a string. If you include the Username argument, you
must also include the Password and Authentication arguments.

1-7550

urlwrite

Example: 'Username','myName'

’Password’ - User authentication password
string

User authentication password, specified as the comma-separated pair
consisting of 'Password' and a string. If you include the Password
argument, you must also include the Username and Authentication
arguments.

Example: 'Password','myPassword123'

Output
Arguments

filestr - Path of the file
string

Path of the file specified by filename, returned as a string.

status - Download status
1 | 0

Download status, returned as either 1 or 0. When the download is
successful, status is 1. Otherwise, status is 0.

Examples Download Web Content by Specifying Complete URL

Download the HTML for the page on the MATLAB Central File
Exchange that lists submissions related to urlwrite. Save the results
to samples.html in the current directory.

fullURL = ['http://www.mathworks.com/matlabcentral/fileexchange' ...
'?term=urlwrite'];

filename = 'samples.html';
urlwrite(fullURL,filename);

View the file.

web(filename)

1-7551

urlwrite

Download Web Content Related to a Term

Download the HTML for the page on the MATLAB Central File
Exchange that lists submissions related to urlwrite. Save the results
to samples.html in the current directory.

URL = 'http://www.mathworks.com/matlabcentral/fileexchange';
filename = 'samples.html';
urlwrite(URL,filename,'get',{'term','urlwrite'});

urlwrite downloads the HTML content from
http://www.mathworks.com/matlabcentral/fileexchange/?term=urlwrite
and writes it to samples.html.

Specify Timeout Duration

Download content from a page on the MATLAB Central File Exchange
as in the first example, and specify a timeout duration of 5 seconds.

fullURL = ['http://www.mathworks.com/matlabcentral/fileexchange' ...
'?term=urlwrite'];

filename = 'samples.html';
urlwrite(fullURL,filename,'Timeout',5);

Tips • urlread and urlwrite can download content from FTP sites.
Alternatively, use the ftp function to connect to an FTP server and
the mget function to download a file.

See Also urlread | mget | web | ftp

Concepts • “Specify Proxy Server Settings for Connecting to the Internet”

1-7552

usejava

Purpose Determine if Java feature is available

Syntax tf = usejava(feature)

Description tf = usejava(feature) returns logical 1 (true) if the specified feature
is supported. Otherwise, it returns logical 0 (false). Use for error
handling if Java feature is unavailable.

Input
Arguments

feature - Java feature
'awt' | 'desktop' | 'jvm' | 'swing'

Java feature, specified as one of these values:

'awt' Java GUI components in the
Abstract Window Toolkit (AWT)
components are available.

'desktop' MATLAB interactive desktop is
running.

'jvm' Java Virtual Machine software
(JVM) is running.

'swing' Swing components (Java
lightweight GUI components in
the Java Foundation Classes) are
available.

Examples Display Error Message

Use the following code snippet to test that the AWT GUI components
are available before attempting to display a Java Frame.

if usejava('awt')
myFrame = java.awt.Frame;

else
disp('Unable to open a Java Frame');

end

1-7553

usejava

If the AWT is not available on your system, MATLAB displays the
message.

Call error Function

Use the following code snippet to terminate a script if MATLAB does
not have access to JVM software.

The variable, filename, is a function that contains Java code.

if ~usejava('jvm')
error([filename ' requires Java to run.']);

end

See Also javachk | error

Concepts • “Bringing Java Classes into MATLAB Workspace”

1-7554

userpath

Purpose View or change user portion of search path

Syntax userpath

userpath(newpath)
userpath('reset')
userpath('clear')

Description userpath returns a string specifying the first folder on the search path.
MATLAB adds the userpath to the search path upon startup.

userpath(newpath) sets the primary userpath folder to newpath. The
newpath folder appears at the top of the search path immediately and
at startup in future sessions. MATLAB removes the folder previously
specified by userpath from the search path.

userpath('reset') sets the primary userpath folder to the
default for that platform, creating the Documents/MATLAB (or My
Documents/MATLAB) folder, if it does not exist. MATLAB immediately
adds the default folder to the top of the search path, and also adds it
to the search path at startup in future sessions. On Linux, the MATLAB
directory is not created if the Documents directory does not exist.

userpath('clear') clears the value for the primary userpath
immediately, and for future MATLAB sessions. MATLAB removes the
folder previously specified by userpath from the search path.

Input
Arguments

newpath - New userpath value
string

New userpath value, specified as a string. newpath must be an absolute
path.

Example: 'C:\myFolder'

1-7555

userpath

Examples View userpath Folder

This example assumes userpath is set to the default value on the
Windows XP platform, My Documents\MATLAB. Start MATLAB and
display the current folder:

pwd

H:\My Documents\MATLAB

In this example, H is the drive at which My Documents is located.

Confirm that the current folder is the userpath.

userpath

H:\My Documents\MATLAB;

Display the search path.

path

MATLABPATH

H:\My Documents\MATLAB
C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops

...

MATLAB returns the search path. The userpath portion is at the top.

Set New Value for userpath

Assume userpath is set to the default value on the Windows XP
platform, My Documents\MATLAB. Change the value from the default for
userpath to C:\Research_Project.

newpath = 'C:\Research_Project';
userpath(newpath)

1-7556

userpath

View the effect of the change on the search path.

path

MATLABPATH

C:\Research_Project
C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops

...

MATLAB displays the search path, with the new value for userpath
portion at the top. Note that MATLAB automatically removed the
previous value of userpath, H:\My Documents\MATLAB, from the search
path when you assigned a new value to userpath.

Clear the Value for userpath

Assume userpath is set to the default value and you do not want any
folders to be added to the search path upon startup. Confirm the default
is currently set.

userpath

H:\My Documents\MATLAB;

Verify that the userpath folder is at the top of the search path.

path

MATLABPATH

H:\My Documents\MATLAB
C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

Clear the value.

userpath('clear')

1-7557

userpath

Verify the result.

userpath

ans =
''

Confirm the userpath folder was removed from the search path.

path

MATLABPATH

C:\Program Files\MATLAB\R2009a\toolbox\matlab\general
C:\Program Files\MATLAB\R2009a\toolbox\matlab\ops
...

Note By default, the startup folder is the userpath folder when you
start MATLAB by double-clicking the shortcut on Windows platforms,
or by double-clicking the application on Macintosh platforms. If you
clear the value for userpath, the startup folder will not necessarily be
on the search path. Removing the userpath folder from the search path
and saving the changes to the path has the same effect.

Tips • On Macintosh and UNIX platforms, you can automatically add
subfolders to the top of the search path upon startup by specifying
the path for the subfolders via the MATLABPATH environment variable.

See Also addpath | path | rmpath | savepath | startup

Concepts • “What Is the MATLAB Search Path?”
• “MATLAB Startup Folder”

1-7558

validateattributes

Purpose Check validity of array

Syntax validateattributes(A,classes,attributes)
validateattributes(A,classes,attributes,argIndex)
validateattributes(A,classes,attributes,funcName)
validateattributes(A,classes,attributes,funcName,varName)
validateattributes(A,classes,attributes,funcName,varName,argIndex)

Description validateattributes(A,classes,attributes) validates that array A
belongs to at least one of the specified classes (or its subclass) and has
all of the specified attributes. If A does not meet the criteria, MATLAB
throws an error and displays a formatted error message. Otherwise,
validateattributes completes without displaying any output.

validateattributes(A,classes,attributes,argIndex) includes
the position of the input in your function argument list as part of any
generated error messages.

validateattributes(A,classes,attributes,funcName) includes the
specified function name in generated error identifiers.

validateattributes(A,classes,attributes,funcName,varName)
includes the specified variable name in generated error messages.

validateattributes(A,classes,attributes,funcName,varName,argIndex)
includes the specified information in generated error
messages or identifiers.

Input
Arguments

A - Input
any type of array

Input, specified as any type of array.

1-7559

validateattributes

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char | struct | cell
| function_handle
Complex Number Support: Yes

classes - Valid data types
cell array of strings

Valid data types, specified as a cell array of strings. Each string can be
the name of any built-in or custom class, including:

'single' Single-precision number

'double' Double-precision number

'int8' Signed 8-bit integer

'int16' Signed 16-bit integer

'int32' Signed 32-bit integer

'int64' Signed 64-bit integer

'uint8' Unsigned 8-bit integer

'uint16' Unsigned 16-bit integer

'uint32' Unsigned 32-bit integer

'uint64' Unsigned 64-bit integer

'logical' Logical true or false

'char' Character or string

'struct' Structure array

'cell' Cell array

'function_handle' function handle

1-7560

validateattributes

'numeric' Any data type for which the isa(A,'numeric')
function returns true, including int8, int16,
int32, int64, uint8, uint16, uint32, uint64,
single, or double

'<class_name>' Any other class name

Data Types
cell

attributes - Valid attributes
cell array of strings

Valid attributes, specified as a cell array of strings.

Some attributes also require numeric values, such as attributes that
specify the size or number of elements of A. For these attributes, the
numeric value or vector must immediately follow the attribute name
string in the cell array.

Attributes that describe the size and shape of array A:

'2d' Two-dimensional array, including scalars,
vectors, matrices, and empty arrays

'3d' Array with three or fewer dimensions

'column' Column vector, N-by-1

'row' Row vector, 1-by-N

'scalar' Scalar value, 1-by-1

'vector' Row or column vector, or a scalar value

'size',
[d1,...,dN]

Array with dimensions d1-by-...-by-dN. To skip
checking a particular dimension, specify NaN for
that dimension, such as [3,4,NaN,2].

'numel', N Array with N elements

'ncols', N Array with N columns

1-7561

validateattributes

'nrows', N Array with N rows

'ndims', N N-dimensional array

'square' Squarematrix; in other words, a two-dimensional
array with equal number of rows and columns

'diag' Diagonal matrix

'nonempty' No dimensions that equal zero

'nonsparse' Array that is not sparse

Attributes that specify valid ranges for values in A:

'>', N All values greater than N

'>=', N All values greater than or equal to N

'<', N All values less than N

'<=', N All values less than or equal to N

Attributes that check types of values in a numeric or logical array, A:

'binary' Array of ones and zeros

'even' Array of even integers (includes zero)

'odd' Array of odd integers

'integer' Array of integer values

'real' Array of real values

'finite' Array of finite values

'nonnan' No NaN (Not a Number) elements

'nonnegative' No elements less than zero

'nonzero' No elements equal to zero

1-7562

validateattributes

'positive' No elements less than or equal to zero

'decreasing' Each element of a column is less than the
previous element and no element is NaN

'increasing' Each element of a column is greater than the
previous element and no element is NaN

'nondecreasing' Each element of a column is greater than or
equal to the previous element and no element
is NaN'nonincreasing' Each element of a column is less than or equal to
the previous element and no element is NaN

Data Types
cell

funcName - Name of function whose input you are validating
string

Name of function whose input you are validating, specified as a string.
If you specify an empty string, '', the validateattribute function
ignores the funcName input.

Data Types
char

varName - Name of input variable
string

Name of input variable, specified as a string. If you specify an empty
string, '', the validateattribute function ignores the varName input.

Data Types
char

argIndex - Position of input argument
positive integer

Position of input argument, specified as a positive integer.

1-7563

validateattributes

Data Types
double

Examples Validate the Size of an Array

classes = {'numeric'};
attributes = {'size',[4,6,2]};

A = rand(3,5,2);
validateattributes(A,classes,attributes)

Expected input to be of size 4x6x2 when it is actually size 3x5x2.

Because A did not match the specified attributes, MATLAB throws an
error message.

Validate Array Monotonicity

Determine if an array is increasing or nondecreasing.

A = [1 5 8 2;
9 6 9 4]

validateattributes(A, {'double'},{'nondecreasing'})
validateattributes(A, {'double'},{'increasing'})

A =

1 5 8 2
9 6 9 4

Since A is both increasing and nondecreasing, validateattributes
does not throw an error for either attribute check.

Setting A(2,3) equal to A(1,3) results in a column that is no longer
strictly increasing, so validateattributes throws an error.

A(2,3) = 8
validateattributes(A, {'double'},{'increasing'})

1-7564

validateattributes

A =

1 5 8 2
9 6 8 4

Expected input to be increasing valued.

However, the columns remain nondecreasing since each column element
is equal to or greater than the next. The following code does not throw
an error.

validateattributes(A, {'double'},{'nondecreasing'})

Check the Attributes of a Complex Number

Assuming that a is to be the second input argument to a function, check
that it is nonnegative.

a = complex(1,1);
validateattributes(a,{'numeric'},{'nonnegative'},2);

Expected input number 2 to be nonnegative.

Because complex numbers lack a well-defined ordering in the complex
plane, validateattributes does not recognize them as positive or
negative.

Ensure Array Values Are Within a Specified Range

Check that the values in an array are 8-bit integers between 0 and 10.

Assume that this code occurs in a function called Rankings.

classes = {'uint8','int8'};
attributes = {'>',0,'<',10};
funcName = 'Rankings';
A = int8(magic(4));

validateattributes(A,classes,attributes,funcName)

1-7565

validateattributes

Error using Rankings
Expected input to be an array with all of the values < 10.

Validate Function Input Parameters Using inputParser

Create a custom function that checks input parameters with
inputParser, and use validateattributes as the validating function
for the addRequired and addOptional methods.

Define the function.

function a = findArea(shape,dim1,varargin)
p = inputParser;
charchk = {'char'};
numchk = {'numeric'};
nempty = {'nonempty'};

addRequired(p,'shape',@(x)validateattributes(x,charchk,nempty));
addRequired(p,'dim1',@(x)validateattributes(x,numchk,nempty));
addOptional(p,'dim2',1,@(x)validateattributes(x,numchk,nempty));
parse(p,shape,dim1,varargin{:});

switch shape
case 'circle'

a = pi * dim1.^2;
case 'rectangle'

a = dim1 .* p.Results.dim2;
end

end

Call the function with a nonnumeric third input.

myarea = findArea('rectangle',3,'x')

Error using findArea (line 10)
Argument 'dim2' failed validation with error:
Expected input to be one of these types:

double, single, uint8, uint16, uint32, uint64, int8, int16, int32, int64

1-7566

validateattributes

Instead its type was char.

Validate Arguments of a Function

Check the inputs of a function and include information about the input
name and position in generated error.

Define the function.

function v = findVolume(shape,ht,wd,ln)
validateattributes(shape,{'char'},{'nonempty'},mfilename,'Shape',1)
validateattributes(ht,{'numeric'},{'nonempty'},mfilename,'Height',2
validateattributes(wd,{'numeric'},{'nonempty'},mfilename,'Width',3)
validateattributes(ln,{'numeric'},{'nonempty'},mfilename,'Length',4

Call the function without the shape input string.

vol = findVolume(10,7,4)

Error using findVolume
Expected input number 1, Shape, to be one of these types:

char

Instead its type was double.

Error in findVolume (line 2)
validateattributes(shape,{'char'},{'nonempty'},mfilename,'Shape',1)

The function name becomes part of the error identifier.

MException.last.identifier

ans =

MATLAB:findVolume:invalidType

See Also validatestring | is* | isa | isnumeric | inputParser

1-7567

validatestring

Purpose Check validity of text string

Syntax validStr = validatestring(str,validStrings)
validStr = validatestring(str,validStrings,argIndex)
validStr = validatestring(str,validStrings,funcName)
validStr =
validatestring(str,validStrings,funcName,varName)
validStr =
validatestring(str,validStrings,funcName,varName,argIndex)

Description validStr = validatestring(str,validStrings) checks the validity
of text string str. If str is an unambiguous, case-insensitive match
to a string in cell array validStrings, the validatestring function
returns the matching string in validstr. Otherwise, MATLAB throws
an error and issues a formatted error message.

validStr = validatestring(str,validStrings,argIndex) includes
the position of the input in your function argument list as part of any
generated error messages.

validStr = validatestring(str,validStrings,funcName) includes
the specified function name in generated error identifiers.

validStr =
validatestring(str,validStrings,funcName,varName) includes the
specified variable name in generated error messages.

validStr =
validatestring(str,validStrings,funcName,varName,argIndex)
includes the specified information in generated error
messages or identifiers.

Input
Arguments

str

String to validate, of type char.

validStrings

Cell array of allowed strings.

1-7568

validatestring

funcName

String that specifies the name of the function whose input you are
validating. If you specify an empty string, '', the validatestring
function ignores the funcname input.

varName

String that specifies the name of the input variable. If you specify an
empty string, '', the validatstring function ignores the varName
input.

argIndex

Positive integer that specifies the position of the input argument.

Output
Arguments

validStr

String that contains the element of validStrings that is an
unambiguous, case-insensitive match to str.

Example — Match
’ball’ with . . .

Return Value Type of Match

ball, barn, bell ball Exact match

balloon, barn balloon Partial match (leading
characters)

ballo, balloo,
balloon

ballo
(shortest
match)

Multiple partial matches
where each string is a subset
of another

balloon, ballet Error Multiple partial matches to
unique strings

barn, bell Error No match

Examples Check whether a string is in a set of valid values.

str = 'won';

1-7569

validatestring

validStrings = {'wind','wonder','when'};

validStr = validatestring(str,validStrings)

Because str is a partial match to a unique string, this code returns

validStr =
wonder

However, if str is a partial match to multiple strings, and the strings
are not subsets of each other, validatestring throws an error and
displays a formatted message.

str = 'won';
validStrings = {'wonder','wondrous','wonderful'};

validStr = validatestring(str,validStrings)

The error message is

Expected argument to match one of these strings:

wonder, wondrous, wonderful

The input, 'won', matched more than one valid string.

Check inputs to a custom function, and include information about the
input name and position in generated errors.

function a = findArea(shape,ht,wd,units)
a = 0;
expectedShapes = {'square','rectangle','triangle'};
expectedUnits = {'cm','m','in','ft','yds'};

shapeName = validatestring(shape,expectedShapes,mfilename,'Shape',1)
unitAbbrev = validatestring(units,expectedUnits,mfilename,'Units',4)

1-7570

validatestring

When you call the function with valid input strings,

myarea = findArea('rect',10,3,'cm')

the function stores the inputs in local variables shapeName and
unitAbbrev:

shapeName =
rectangle

unitAbbrev =
cm

However, if the inputs are not valid, such as

myarea = findArea('circle',10,3,'cm')

MATLAB displays

Error using findArea
Expected argument 1, Shape, to match one of these strings:

square, rectangle, triangle

The input, 'circle', did not match any of the valid strings.

The function name is part of the error identifier, so

MException.last.identifier

returns

MATLAB:findArea:unrecognizedStringChoice

See Also validateattributes | is* | isa | inputParser

1-7571

containers.Map.values

Purpose Identify values in containers.Map object

Syntax valueSet = values(mapObj)
valueSet = values(mapObj,keySet)

Description valueSet = values(mapObj) returns all of the values in mapObj.

valueSet = values(mapObj,keySet) returns values that correspond
to the specified keys.

Input
Arguments

mapObj

Object of class containers.Map.

keySet

Cell array that specifies keys in mapObj.

Output
Arguments

valueSet

Cell array containing values from mapObj. If you specify keySet,
the valueSet array has the same size and dimensions as keySet.

Examples Get All Values in a Map

Create a map, and view all values in the map:

myKeys = {'a','b','c'};
myValues = [1,2,3];
mapObj = containers.Map(myKeys,myValues);

valueSet = values(mapObj)

This code returns 1-by-3 cell array valueSet:

valueSet =
[1] [2] [3]

1-7572

containers.Map.values

Get Selected Values in a Map

View the values corresponding to keys a and c in mapObj, created in
the previous example:

keySet = {'a','c'};
valueSet = values(mapObj,keySet)

This code returns 1-by-2 cell array valueSet:

valueSet =
[1] [3]

See Also containers.Map | keys | isKey

1-7573

vander

Purpose Vandermonde matrix

Syntax A = vander(v)

Description A = vander(v) returns the Vandermonde matrix whose columns are
powers of the vector v, that is, A(i,j) = v(i)^(n-j), where n =
length(v).

Examples vander(1:.5:3)

ans =

1.0000 1.0000 1.0000 1.0000 1.0000
5.0625 3.3750 2.2500 1.5000 1.0000

16.0000 8.0000 4.0000 2.0000 1.0000
39.0625 15.6250 6.2500 2.5000 1.0000
81.0000 27.0000 9.0000 3.0000 1.0000

See Also gallery

1-7574

var

Purpose Variance

Syntax V = var(X)
V = var(X,1)
V = var(X,w)
V = var(X,w,dim)

Description V = var(X) returns the variance of X for vectors. For matrices,
var(X)is a row vector containing the variance of each column of X.
For N-dimensional arrays, var operates along the first nonsingleton
dimension of X. The result V is an unbiased estimator of the variance
of the population from which X is drawn, as long as X consists of
independent, identically distributed samples.

var normalizes V by N 1 if N > 1, where N is the sample size. This is
an unbiased estimator of the variance of the population from which X
is drawn, as long as X consists of independent, identically distributed
samples. For N = 1, V is normalized by 1.

V = var(X,1) normalizes by N and produces the second moment of the
sample about its mean. var(X,0) is equivalent to var(X).

V = var(X,w) computes the variance using the weight vector w. The
length of w must equal the length of the dimension over which var
operates, and its elements must be nonnegative. If X(i) is assumed
to have variance proportional to 1/w(i), then V * mean(w)/w(i) is an
estimate of the variance of X(i). In other words, V * mean(w) is an
estimate of variance for an observation given weight 1.

V = var(X,w,dim) takes the variance along the dimension dim of X.
Pass in 0 for w to use the default normalization by N – 1, or 1 to use N.

The variance is the square of the standard deviation (STD).

Examples Create a matrix and find the variance along the dimensions.

X = [4 -2 1; 9 5 7]
var(X,0,1)
ans =

1-7575

var

12.5000 24.5000 18.0000

var(X,0,2)
ans =

9
4

See Also corrcoef | cov | mean | median | std

1-7576

varargin

Purpose Variable-length input argument list

Syntax varargin

Description varargin is an input variable in a function definition statement that
allows the function to accept any number of input arguments. Specify
varargin using lowercase characters, and include it as the last input
argument after any explicitly declared inputs. When the function
executes, varargin is a 1-by-N cell array, where N is the number of
inputs that the function receives after the explicitly declared inputs.

Examples Variable Number of Function Inputs

Define a function in a file named varlist.m that accepts a variable
number of inputs and displays the values of each input.

function varlist(varargin)
fprintf('Number of arguments: %d\n',nargin);
celldisp(varargin)

Call varlist with several inputs.

varlist(ones(3),'some text',pi)

Number of arguments: 3

varargin{1} =
1 1 1
1 1 1
1 1 1

varargin{2} =
some text

varargin{3} =
3.1416

1-7577

varargin

varargin and Declared Inputs

Define a function in a file named varlist2.m that expects inputs X and
Y, and accepts a variable number of additional inputs.

function varlist2(X,Y,varargin)
fprintf('Total number of inputs = %d\n',nargin);

nVarargs = length(varargin);
fprintf('Inputs in varargin(%d):\n',nVarargs)
for k = 1:nVarargs

fprintf(' %d\n', varargin{k})
end

Call varlist2 with more than two inputs.

varlist2(10,20,30,40,50)

Total number of inputs = 5
Inputs in varargin(3):

30
40
50

See Also varargout | nargin | nargout | narginchk | nargoutchk | inputname

Related
Examples

• “Support Variable Number of Inputs”

Concepts • “Argument Checking in Nested Functions”

1-7578

varargout

Purpose Variable-length output argument list

Syntax varargout

Description varargout is an output variable in a function definition statement that
allows the function to return any number of output arguments. Specify
varargout using lowercase characters, and include it as the last output
argument after any explicitly declared outputs. When the function
executes, varargout is a 1-by-N cell array, where N is the number of
outputs requested after the explicitly declared outputs.

Examples Variable Number of Function Outputs

Define a function in a file named sizeout.m that returns an output size
vector s and a variable number of additional scalar values.

function [s,varargout] = sizeout(x)
nout = max(nargout,1) - 1;
s = size(x);
for k=1:nout

varargout{k} = s(k);
end

Output s contains the dimensions of the input array x. Additional
outputs correspond to the individual dimensions within s.

Call sizeout on a three-dimensional array and request three outputs.

[s,rows,cols] = sizeout(rand(4,5,2))

s =
4 5 2

rows =
4

cols =
5

1-7579

varargout

See Also varargin | nargout | nargin | nargoutchk | narginchk | inputname

1-7580

varfun

Purpose Apply function to table variables

Syntax B = varfun(func,A)
B = varfun(func,A,Name,Value)

Description B = varfun(func,A) applies the function func separately to each
variable of the table A and returns the results in the table B.

The function func must take one input argument and return arrays
with the same number of rows each time it is called. The ith variable in
the output table, B{:,i}, is equal to func(A{:,i}).

B = varfun(func,A,Name,Value) applies the function func separately
to each variable of the table A with additional options specified by one
or more Name,Value pair arguments.

For example, you can specify which variables to pass to the function.

Input
Arguments

func - Function
function handle

Function, specified as a function handle. You can define the function
in a file or as an anonymous function. If func corresponds to more
than one function file (that is, if func represents a set of overloaded
functions), MATLAB determines which function to call based on the
class of the input arguments.

Use the 'OutputFormat','cell' name-value pair argument, if the
function func take one input argument and returns arrays with a
different numbers of rows each time it is called. Otherwise, func must
return arrays with the same number of rows.

Example: func = @(x) x.^2; conputes the square of each element
of an input.

A - Input table
table

Input table, specified as a table.

1-7581

varfun

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'InputVariables',2 uses only the second variable in A
as an input to func.

’InputVariables’ - Variables of A to pass to func
positive integer | vector of positive integers | variable name | cell
array of variable names | logical vector | ...

Variables of A to pass to func, specified as the comma-separated pair
consisting of 'InputVariables' and a positive integer, vector of
positive integers, variable name, cell array of variable names, or logical
vector, or an anonymous function that returns a logical scalar. If you
specify 'InputVariables' as an anonymous function that returns a
logical scalar, varfun only passes the variables in A where the specified
function returns 1 (true).

’GroupingVariables’ - One or more variables in A that define
groups of rows
positive integer | vector of positive integers | variable name | cell array
of variable names | logical vector

One or more variables in A that define groups of rows, specified as
the comma-separated pair consisting of 'GroupingVariables' and a
positive integer, vector of positive integers, variable name, cell array of
variable names, or logical vector.

A grouping variable can be a numeric vector, logical vector, string (or
character array), cell array of strings, or a categorical vector. Rows in A
that have the same grouping variable values belong to the same group.
varfun applies func to each group of rows within each of the variables
of A, rather than to each entire variable.

1-7582

varfun

The output, B, has one row for each group when you specify
'OutputFormat','uniform' or 'OutputFormat','cell'. When you
specify 'OutputFormat','table', the sizes of the outputs from func
determine how many rows of B correspond to each group. When multiple
rows of B correspond to a group, varfun appends a unique identifier to
the row names.

’OutputFormat’ - Format of B
'table' (default) | 'uniform' | 'cell'

Format of B, specified as the comma-separated pair consisting of
'OutputFormat' and either the string 'uniform', 'table', or 'cell'.

'table' varfun returns a table with one variable for each variable
in A (or each variable specified with 'InputVariables').
For grouped computation, B, also contains the grouping
variables.

'table' allows you to use a function that returns values
of different sizes or data types for the different variables
in A. However, for ungrouped computation, func must
return arrays with the same number of rows each time it
is called. For grouped computation, func must return
values with the same number of rows each time it is
called for a given group.

This is the default output format.

'uniform' varfun concatenates the values into a vector. func must
return a scalar with the same data type each time it is
called.

'cell' varfun returns B as a cell array. 'cell' allows you to
use a function that returns values of different sizes or
data types.

’ErrorHandler’ - Function to call if func fails
function handle

1-7583

varfun

Function to call if func fails, specified as the comma-separated pair
consisting of 'ErrorHandler' and a function handle. Define this
function so that it rethrows the error or returns valid outputs for
function func.

MATLAB calls the specified error-handling function with two input
arguments:

• A structure with these fields:

identifier Error identifier.

message Error message text.

index Index of the variable for which the error occurred.

name Name of the variable for which the error occurred.

• The set of input arguments to function func at the time of the error.

For example,

function [A, B] = errorFunc(S, varargin)
warning(S.identifier, S.message);
A = NaN; B = NaN;

Output
Arguments

B - Output table
table

Output table, returned as a table. The table can store metadata such as
descriptions, variable units, variable names, and row names. For more
information, see Table Properties.

Examples Apply Element-wise Function

Define and apply an element-wise function to the variables of a table
to square all the elements.

Define a table containing numeric variables.

1-7584

varfun

A = table([0.71;-2.05;-0.35;-0.82;1.57],[0.23;0.12;-0.18;0.23;0.41])

A =

Var1 Var2
_____ _____

0.71 0.23
-2.05 0.12
-0.35 -0.18
-0.82 0.23
1.57 0.41

Define the anonymous function to find the square of an input.

func = @(x) x.^2;

Apply the function to all the variables of table A.

B = varfun(func,A)

B =

Fun_Var1 Fun_Var2
________ ________

0.5041 0.0529
4.2025 0.0144
0.1225 0.0324
0.6724 0.0529
2.4649 0.1681

The variables of B have names based on the function and the variable
names from A.

Apply Function that Returns Scalar From Vector

Compute the mean of each variable in a 5-by-2 table.

1-7585

varfun

Define a table containing numeric variables.

A = table([0.71;-2.05;-0.35;-0.82;1.57],[0.23;0.12;-0.18;0.23;0.41])

A =

Var1 Var2
_____ _____

0.71 0.23
-2.05 0.12
-0.35 -0.18
-0.82 0.23
1.57 0.41

Define the anonymous function to find the mean of an input.

func = @mean;

func uses an existing MATLAB function to define the operation.

Apply the function to all the variables of table A.

B = varfun(func,A)

B =

mean_Var1 mean_Var2
_________ _________

-0.188 0.162

B is a table containing the average value from each variable.
To return a numeric vector instead of a table, you can use B =
varfun(func,A,'OutputFormat','uniform').

Apply Function to Groups Within Variables

Compute the group-wise means of variables in a table, A, and return
them as rows in a table, B.

1-7586

varfun

Create a table where one variable defines groups.

A = table({'test2';'test1';'test2';'test3';'test1'},...
[0.71;-2.05;-0.35;-0.82;1.57],[0.23;0.12;-0.18;0.23;0.41])

A =

Var1 Var2 Var3
_______ _____ _____

'test2' 0.71 0.23
'test1' -2.05 0.12
'test2' -0.35 -0.18
'test3' -0.82 0.23
'test1' 1.57 0.41

Define the anonymous function to find the mean of an input.

func = @mean;

func uses an existing MATLAB function to define the operation.

Apply the function to each group of data defined by Var1.

B = varfun(func,A,'GroupingVariables','Var1')

B =

Var1 GroupCount mean_Var2 mean_Var3
_______ __________ _________ _________

test1 'test1' 2 -0.24 0.265
test2 'test2' 2 0.18 0.025
test3 'test3' 1 -0.82 0.23

B contains row names based on the grouping variables and a variable
called GroupCount to indicate the number of entries from table A in
that group.

1-7587

varfun

See Also rowfun | cellfun | structfun | arrayfun

Concepts • “Anonymous Functions”

1-7588

vectorize

Purpose Vectorize expression

Syntax vectorize(s)
vectorize(f)

Description vectorize(s) where s is a string expression, inserts a . before any ^, *
or / in s. The result is a character string.

Note vectorize will not accept inline function objects (f) in a future
release.

vectorize(f) where f is an inline function object, vectorizes the
formula for f. The result is the vectorized version of the function.

See Also inline | cd | dbtype | delete | dir | path | what | who

1-7589

ver

Purpose Version information for MathWorks products

Syntax ver
ver product

product_info = ver(product)

Description ver displays:

• A header containing the current MATLAB product family version
number, license number, operating system, and version of Java
software for the MATLAB product.

• The version numbers for MATLAB and all other installed MathWorks
products.

ver product displays, in addition to the header information:

• The current version number for product, where product is the
name of the folder that contains the Contents.m file for the product
you are inquiring about.

product_info = ver(product) returns product information to the
structure array, product_info.

Input
Arguments

product - product-specific information
string

The product or toolbox for which you want to view version information,
specified as a string.

To determine the string to use, run the following code, substituting the
name of a product function for toolbxfcn:

n = 'toolbxfcn';
pat = '(?<=^.+[\\/]toolbox[\\/])[^\\/]+';
regexp(which(n), pat, 'match', 'once')

1-7590

ver

Output
Arguments

product_info - product name, version, release, and date
structure array

Product name, version, release, and date, returned as a structure array
with these fields: Name, Version, Release, and Date. If a license is a
trial version, the value in the Version field is preceded by the letter T

Examples Version for All Installed Products

Display version information for all installed products. The output
shown here is representative. Your results may differ.

ver

--
MATLAB Version: 8.2.0.29 (R2013b)
MATLAB License Number: 234567
Operating System: Microsoft Windows 7 Version 6.1 (Build 7601: Service
Java Version: Java 1.7.0_11-b21 with Oracle Corporation Java HotSpot(T
--
MATLAB Version 8.2
Simulink Version 8.2
Control System Toolbox Version 9.6

Version for a Particular Product

Display version information for MATLAB and the Control System
Toolbox product. The output shown here is representative. Your results
may differ.

1. Determine the product name for Control System Toolbox by setting n
to the name of a function unique to Control System Toolbox, such as dss:

n = 'dss';
pat = '(?<=^.+[\\/]toolbox[\\/])[^\\/]+';
regexp(which(n), pat, 'match', 'once')

ans=
control

1-7591

ver

2. Specify the value returned in the previous step as an argument to
ver:

ver control

MATLAB Version: 8.2.0.29 (R2013b)
MATLAB License Number: 234567
Operating System: Microsoft Windows 7 Version 6.1 (Build 7601: Service Pa
Java Version: Java 1.7.0_11-b21 with Oracle Corporation Java HotSpot(TM)

Control System Toolbox Version 9.6

Structure Containing Version for the MATLAB family of
products

Create a structure containing version information, and then display
the structure values. The output shown here is representative. Your
results may differ.

v = ver;
for k = 1:length(v)

fprintf('%s\n', v(k).Name);
fprintf(' Version: %s\n', v(k).Version);

end

MATLAB
Version: 8.2

MATLAB Builder JA
Version: 2.3

MATLAB Builder NE
Version: 4.2

MATLAB Compiler
Version: 5.0

My Custom Toolbox

1-7592

ver

Version: 1.0

Structure Containing Version for a Particular Product

Create a structure containing version information for just the Symbolic
Math Toolbox™ product. The output shown here is representative.
Your results may differ.

1. Determine the product name for Symbolic Math Toolbox by setting n
to the name of a function unique to Symbolic Math Toolbox, such as sym:

n = 'sym';
pat = '(?<=^.+[\\/]toolbox[\\/])[^\\/]+';
regexp(which(n), pat, 'match', 'once')

ans =

symbolic

2. Specify the value returned in the previous step as an argument to
ver:

v = ver('symbolic')

v =

Name: 'Symbolic Math Toolbox'
Version: '5.11'
Release: '(R2013b)'

Date: '19-May-2013'

See Also computer | help | license | verlessthan | version |

Concepts • “Information About your Installation”
• “Create Help Summary Files (Contents.m)”

1-7593

verctrl

Purpose Source control actions (Windows platforms)

Syntax verctrl('action',{'filename1','filename2',....},0)
result=verctrl('action',{'filename1','filename2',....},0)
verctrl('action','filename',0)
result=verctrl('isdiff','filename',0)
list = verctrl('all_systems')

Description verctrl('action',{'filename1','filename2',....},0) performs the
source control operation specified by 'action' for a single file or
multiple files. Enter one file as a string; specify multiple files using a
cell array of strings. Use the full paths for each file name and include
the extensions. Specify 0 as the last argument. Complete the resulting
dialog box to execute the operation. Available values for 'action' are
as follows:

action
Argument Purpose

'add' Adds files to the source control system. Files can
be open in the Editor or closed when added.

'checkin' Checks files into the source control system,
storing the changes and creating a new version.

'checkout' Retrieves files for editing.

'get' Retrieves files for viewing and compiling, but not
editing. When you open the files, they are labeled
as read-only.

'history' Displays the history of files.

'remove' Removes files from the source control system. It
does not delete the files from disk, but only from
the source control system.

1-7594

verctrl

action
Argument Purpose

'runscc' Starts the source control system. The file name
can be an empty string.

'uncheckout' Cancels a previous checkout operation and
restores the contents of the selected files to the
precheckout version. All changes made to the
files since the checkout are lost.

result=verctrl('action',{'filename1','filename2',....},0)
performs the source control operation specified by 'action' on a single
file or multiple files. The action can be any one of: 'add', 'checkin',
'checkout', 'get', 'history', or 'undocheckout'. result is a logical
1 (true) when you complete the operation by clicking OK in the resulting
dialog box, and is a logical 0 (false) when you abort the operation by
clicking Cancel in the resulting dialog box.

verctrl('action','filename',0) performs the source control
operation specified by 'action' for a single file. Use the absolute path
for 'filename'. Specify 0 as the last argument. Complete any resulting
dialog boxes to execute the operation. Available values for 'action'
are as follows:

action Argument Purpose

'showdiff' Displays the differences between a file and
the latest checked in version of the file in the
source control system.

'properties' Displays the properties of a file.

result=verctrl('isdiff','filename',0) compares filename with
the latest checked in version of the file in the source control system.
result is a logical 1 (true) when the files are different, and is a logical 0

1-7595

verctrl

(false) when the files are identical. Use the full path for 'filename'.
Specify 0 as the last argument.

list = verctrl('all_systems') displays in the Command Window a
list of all source control systems installed on your computer.

Examples Check In a File

Check in D:\file1.ext to the source control system:

result = verctrl('checkin','D:\file1.ext', 0)

This opens the Check in file(s) dialog box. Click OK to complete the
check in. MATLAB displays

result = 1

indicating the checkin was successful.

Add Files to the Source Control System

Add D:\file1.ext and D:\file2.ext to the source control system.

verctrl('add',{'D:\file1.ext','D:\file2.ext'}, 0)

This opens the Add to source control dialog box. Click OK to complete
the operation.

Display the Properties of a File

Display the properties of D:\file1.ext.

verctrl('properties','D:\file1.ext', 0)

This opens the source control properties dialog box for your source
control system. The function is complete when you close the properties
dialog box.

Show Differences for a File

To show the differences between the version of file1.ext that you just
edited and saved, with the last version in source control, run

1-7596

verctrl

verctrl('showdiff','D:\file1.ext',0)

MATLAB displays differences dialog boxes and results specific to
your source control system. After checking in the file, if you run this
statement again, MATLAB displays

??? The file is identical to latest version under source control.

List All Installed Source Control Systems

To view all of the source control systems installed on your computer,
type

list = verctrl ('all_systems')

MATLAB displays all the source control systems currently installed
on your computer. For example:

list =
'Microsoft Visual SourceSafe'
'ComponentSoftware RCS'

See Also checkin | checkout | undocheckout | cmopts

How To • “Source Control Interface on Microsoft Windows”

1-7597

verLessThan

Purpose Compare toolbox version to specified version string

Syntax verLessThan(toolbox, version)

Description verLessThan(toolbox, version) returns logical 1 (true) if the version
of the toolbox specified by the string toolbox is older than the version
specified by the string version, and logical 0 (false) otherwise. Use
this function when you want to write code that can run across multiple
versions of the MATLAB software, when there are differences in the
behavior of the code in the different versions.

The toolbox argument is a string enclosed within single quotation
marks that contains the name of a MATLAB toolbox folder. The
version argument is a string enclosed within single quotation marks
that contains the version to compare against. This argument must be
in the form major[.minor[.revision]], such as 7, 7.1, or 7.0.1. If
toolbox does not exist, MATLAB generates an error.

To specify toolbox, find the folder that holds the Contents.m file
for the toolbox and use that folder name. To see a list of all toolbox
folder names, enter the following statement in the MATLAB Command
Window:

dir([matlabroot '/toolbox'])

Examples These examples illustrate usage of the verLessThan function.

Example 1 – Checking For the Minimum Required Version

if verLessThan('simulink', '4.0')
error('Simulink 4.0 or higher is required.');

end

Example 2 – Choosing Which Code to Run

if verLessThan('matlab', '7.0.1')
% -- Put code to run under MATLAB 7.0.0 and earlier here --
else
% -- Put code to run under MATLAB 7.0.1 and later here --

1-7598

verLessThan

end

Example 3 – Looking Up the Folder Name

Find the name of the Data Acquisition Toolbox folder:

dir([matlabroot '/toolbox/d*'])

daq database des distcomp dotnetbuilder
dastudio datafeed dials dml dspblks

Use the toolbox folder name, daq, to compare the Data Acquisition
Toolbox software version that MATLAB is currently running against
version number 3:

verLessThan('daq', '3')
ans =

1

See Also ver | version | license | ispc | isunix | ismac | dir

1-7599

version

Purpose Version number for MATLAB and libraries

Syntax version
version -date
version -description
version -release
version -java
v = version('-versionOption')
[v d] = version

Description version returns in ans the version and release number for the
MATLAB software currently running.

version -date returns in ans the release date for the MATLAB
software.

version -description returns in ans a description of the version.
Usually, the description is for special versions, such as beta versions.

version -release returns in ans the release number for the MATLAB
software currently running.

version -java returns in ans the version of the Oracle JVM software
that MATLAB is using.

v = version('-versionOption'), where versionOption is one of the
above option strings, is an alternate form of the syntax.

[v d] = version returns the version and release number in string
v and the release date in string d. No input arguments are allowed
in this syntax.

Examples Display MATLAB Version

version

ans =

8.2.0.29 (R2013b)

1-7600

version

Display MATLAB Release

Display the release, prefaced by a descriptor.

['Release R' version('-release')]

ans =

Release R2013b

Get Release Version and Date as Separate Strings

[v d] = version

v =

8.2.0.29 (R2013b)

d =

May 19, 2013

Display Java Version

version -java

ans =

Java 1.7.0_11-b21 with Oracle Corporation Java HotSpot(TM) 64-Bit Serv

See Also computer | ver | verlessthan

How To • “Check for Software Updates”

1-7601

vertcat

Purpose Concatenate arrays vertically

Syntax C = vertcat(A1,...,AN)

Description C = vertcat(A1,...,AN) vertically concatenates arrays A1,...,AN.
All arrys in the argument list must have the same number of columns.

• If the inputs are multidimensional arrays, vertcat concatenates
N-dimensional arrays along the first dimension. The remaining
dimensions must match.

• If the inputs are tables, vertcat concatenates by matching variable
names. Variable names for all tables must be identical, except for
order. Row names, when present, must be unique across tables.

vertcat fills in default row names when some of the inputs have
names and some do not. vertcat assigns values for each table
property (except for RowNames) using the first nonempty value for the
corresponding property in the tables A1,...,AN.

vertcat also concatenates character strings. Each string being
concatenated must have the same number of characters.

MATLAB calls C = vertcat(A1, A2, ...) for the syntax C = [A1;
A2; ...] when any of the inputs are an object.

Tips You can concatenate categorical arrays with cell arrays of strings. For
more information, see “Combine Categorical Arrays”.

If all the input arrays are ordinal categorical arrays, they must have
the same sets of categories including their order. For more information,
see “Ordinal Categorical Arrays”.

For information on combining unlike integer types, integers with
nonintegers, cell arrays with non-cell arrays, or empty matrices with
other elements, see “Valid Combinations of Unlike Classes”.

Examples Vertically Concatenate Two Matrices

Create a 5-by-3 matrix, A.

1-7602

vertcat

A = magic(5);
A(:, 4:5) = []

A =

17 24 1
23 5 7
4 6 13

10 12 19
11 18 25

Create a 3-by-3 matrix, B.

B = magic(3)*100

B =

800 100 600
300 500 700
400 900 200

Vertically concatenate A and B.

C = vertcat(A,B)

C =

17 24 1
23 5 7
4 6 13

10 12 19
11 18 25

800 100 600
300 500 700
400 900 200

Vertically Concatenate Two Tables

Create a table, A, with three rows and five variables.

1-7603

vertcat

A = table([5;6;5],['M';'M';'M'],[45;41;40],[45;32;34],{'NY';'CA';'MA'},..
'VariableNames',{'Age' 'Gender' 'Height' 'Weight' 'Birthplace'},...
'RowNames',{'Thomas' 'Gordon' 'Percy'})

A =

Age Gender Height Weight Birthplace
--- ------ ------ ------ ----------

Thomas 5 M 45 45 'NY'
Gordon 6 M 41 32 'CA'
Percy 5 M 40 34 'MA'

Create a table, B, with the same variables as A except for order.

B = table(['F';'M';'F'],[6;6;5],{'AZ';'NH';'CO'},[31;42;33],[39;43;40],..
'VariableNames',{'Gender' 'Age' 'Birthplace' 'Weight' 'Height'})

B =

Gender Age Birthplace Weight Height
------ --- ---------- ------ ------
F 6 'AZ' 31 39
M 6 'NH' 42 43
F 5 'CO' 33 40

Vertically concatenate tables A and B.

C = vertcat(A,B)

C =

Age Gender Height Weight Birthplace
--- ------ ------ ------ ----------

Thomas 5 M 45 45 'NY'
Gordon 6 M 41 32 'CA'
Percy 5 M 40 34 'MA'
Row4 6 F 39 31 'AZ'
Row5 6 M 43 42 'NH'

1-7604

vertcat

Row6 5 F 40 33 'CO'

The variables of C are in the same order as the variables of A and default
row names are used for the rows from B.

See Also horzcat | cat

How To • “Redefining Concatenation for Your Class”

1-7605

vertcat (tscollection)

Purpose Vertical concatenation for tscollection objects

Syntax tsc = vertcat(tsc1,tsc2,...)

Description tsc = vertcat(tsc1,tsc2,...) performs

tsc = [tsc1;tsc2;...]

This operation appends tscollection objects. The time vectors must
not overlap. The last time in tsc1 must be earlier than the first time
in tsc2. All tscollection objects to be concatenated must have the
same timeseries members.

See Also horzcat (tscollection) | tscollection

1-7606

TriRep.vertexAttachments

Purpose (Will be removed) Return simplices attached to specified vertices

Note vertexAttachments(TriRep) will be removed in a future
release. Use vertexAttachments(triangulation) instead.

TriRep will be removed in a future release. Use triangulation instead.

Syntax SI = vertexAttachments(TR, VI)

Description SI = vertexAttachments(TR, VI) returns the vertex-to-simplex
information for the specified vertices VI. For 2-D triangulations in
MATLAB, the triangles SI are arranged in counter-clockwise order
around the attached vertex VI.

Input
Arguments

TR Triangulation representation

VI VI is a column vector of indices into the array of
points representing the vertex coordinates, TR.X.
The simplices associated with vertex i are the
i’th entry in the cell array. If VI is not specified
the vertex-simplex information for the entire
triangulation is returned.

Output
Arguments

SI Cell array of indices of the simplices attached to a
vertex. A cell array is used to store the information
because the number of simplices associated with
each vertex can vary. The simplices associated with
vertex i are in the i’th entry in the cell array SI.

Definitions A simplex is a triangle/tetrahedron or higher dimensional equivalent.

1-7607

TriRep.vertexAttachments

Examples Example 1

Load a 2-D triangulation and use TriRep to compute the
vertex-to-triangle relations.

load trimesh2d
trep = TriRep(tri, x, y);

Find the indices of the tetrahedra attached to the first vertex:

Tv = vertexAttachments(trep, 1)
Tv{:}

Example 2

Perform a direct query of a 2-D triangulation created using
DelaunayTri.

x = rand(20,1);
y = rand(20,1);
dt = DelaunayTri(x,y);

Find the triangles attached to vertex 5:

t = vertexAttachments(dt,5);

Plot the triangulation:

triplot(dt);
hold on;

Plot the triangles attached to vertex 5 (in red):

triplot(dt(t{:},:),x,y,'Color','r');
hold off;

1-7608

TriRep.vertexAttachments

See Also delaunayTriangulation | triangulation

1-7609

VideoReader

Purpose Read video files

Description Use the VideoReader function with the read method to read video data
from a file into the MATLAB workspace.

The file formats that VideoReader supports vary by platform, as follows
(with no restrictions on file extensions):

All Platforms AVI, including uncompressed, indexed, grayscale,
and Motion JPEG-encoded video (.avi)
Motion JPEG 2000 (.mj2)

All Windows MPEG-1 (.mpg)
Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft DirectShow®

Windows 7 or
later

MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
Any format supported by Microsoft Media Foundation

Macintosh Most formats supported by QuickTime Player,
including:
MPEG-1 (.mpg)
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
3GPP
3GPP2
AVCHD
DV

Linux Any format supported by your installed plug-ins
for GStreamer 0.10 or above, as listed on
http://gstreamer.freedesktop.org/documentation/plugins.html,
including Ogg Theora (.ogg).

Construction obj = VideoReader(filename) constructs obj to read video data from
the file named filename. If it cannot construct the object for any
reason, VideoReader generates an error.

1-7610

http://gstreamer.freedesktop.org/documentation/plugins.html

VideoReader

obj = VideoReader(filename,Name,Value) constructs the object
with additional options specified by one or more Name,Value pair
arguments. Name is 'Tag' or 'UserData' and Value is the corresponding
value. You can specify two name and value pair arguments in any order
as Name1,Value1,Name2,Value2.

Input Arguments

filename

String in single quotation marks that specifies the video file to
read. The VideoReader constructor searches for the file on the
MATLAB path.

Name-Value Pair Arguments
Optional comma-separated pairs of Name,Value arguments, where
Name is 'Tag' or 'UserData' and Value is the corresponding value.
You can specify two name and value pair arguments in any order as
Name1,Value1,Name2,Value2.

Tag

String that identifies the object.

Default: ''

UserData

Generic field for data of any class that you want to add to the
object.

Default: []

Properties All properties are read-only except Tag and UserData.

BitsPerPixel

Bits per pixel of the video data.

1-7611

VideoReader

Duration

Total length of the file in seconds.

FrameRate

Frame rate of the video in frames per second.

Height

Height of the video frame in pixels.

Name

Name of the file associated with the object.

NumberOfFrames

Total number of frames in the video stream.

Some files store video at a variable frame rate, including many
Windows Media Video files. For these files, VideoReader cannot
determine the number of frames until you read the last frame.
When you construct the object, VideoReader returns a warning
and does not set the NumberOfFrames property.

To count the number of frames in a variable frame rate file, use
the read method to read the last frame of the file. For example:

vidObj = VideoReader('varFrameRateFile.wmv');
lastFrame = read(vidObj, inf);
numFrames = vidObj.NumberOfFrames;

For more information, see “Read Variable Frame Rate Video” in
the MATLAB Data Import and Export documentation..

Path

String containing the full path to the file associated with the
reader.

Tag

String that identifies the object.

1-7612

VideoReader

Default: ''

Type

Class name of the object: 'VideoReader'.

UserData

Generic field for data of any class that you want to add to the
object.

Default: []

VideoFormat

String indicating the MATLAB representation of the video format.

Video Format Value of VideoFormat

AVI or MPEG-4 files with
RGB24 video

'RGB24'

AVI files with indexed video 'Indexed'

AVI files with grayscale video 'Grayscale'

For Motion JPEG 2000 files, VideoFormat is one of the following.

Format of Image Data Value of VideoFormat

Single-band uint8 'Mono8'

Single-band int8 'Mono8 Signed'

Single-band uint16 'Mono16'

Single-band int16 'Mono16 Signed'

Three-banded uint8 'RGB24'

Three-banded int8 'RGB24 Signed'

Three-banded uint16 'RGB48'

Three-banded int16 'RGB48 Signed'

1-7613

VideoReader

Width

Width of the video frame in pixels.

Methods
get Query property values for video

reader object

getFileFormats File formats that VideoReader
supports

read Read video frame data from file

set Set property values for video
reader object

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples Construct VideoReader Object

Construct a VideoReader object for the example movie file
xylophone.mp4 and view its properties.

xyloObj = VideoReader('xylophone.mp4','Tag','My reader object');
get(xyloObj)

General Settings:
Duration = 4.7000
Name = xylophone.mp4
Path = matlabroot\toolbox\matlab\audiovideo
Tag = My reader object
Type = VideoReader
UserData = []

Video Settings:
BitsPerPixel = 24
FrameRate = 30
Height = 240

1-7614

VideoReader

NumberOfFrames = 141
VideoFormat = RGB24
Width = 320

Read and Play Back Movie File

Read and play back the movie file xylophone.mp4.

xyloObj = VideoReader('xylophone.mp4');

nFrames = xyloObj.NumberOfFrames;
vidHeight = xyloObj.Height;
vidWidth = xyloObj.Width;

Preallocate the movie structure.

mov(1:nFrames) = ...
struct('cdata',zeros(vidHeight,vidWidth, 3,'uint8'),...

'colormap',[]);

Read one frame at a time.

for k = 1 : nFrames
mov(k).cdata = read(xyloObj,k);

end

Size a figure based on the video’s width and height.

hf = figure;
set(hf, 'position', [150 150 vidWidth vidHeight])

Play back the movie once at the video’s frame rate.

movie(hf, mov, 1, xyloObj.FrameRate);

See Also mmfileinfo | VideoWriter

How To • “Read Video Files”

1-7615

VideoWriter

Purpose Write video files

Description Use the VideoWriter object with the open, writeVideo, and close
methods to create video files from figures, still images, or MATLAB
movies. VideoWriter can create uncompressed AVI and Motion JPEG
2000 compressed AVI files on all platforms, and MPEG-4 files on
Windows 7 or later and Mac OS X 10.7 and higher. VideoWriter
supports files larger than 2 GB, which is the limit for avifile.

To set video properties, VideoWriter includes predefined profiles such
as 'Uncompressed AVI' or 'MPEG-4'.

Construction writerObj = VideoWriter(filename) constructs a VideoWriter
object to write video data to an AVI file with Motion JPEG compression.

writerObj = VideoWriter(filename,profile) applies a set of
properties tailored to a specific file format (such as 'MPEG-4' or
'Uncompressed AVI') to a VideoWriter object.

Input Arguments

filename

String enclosed in single quotation marks that specifies the name
of the file to create.

VideoWriter supports these file extensions:

.avi AVI file

.mj2 Motion JPEG 2000 file

.mp4 or .m4v MPEG-4 file (systems with Windows 7 or
later, or Mac OS X 10.7 and later)

If you do not specify a valid file extension, VideoWriter appends
the extension .avi, .mj2 or .mp4, depending on the profile. If
you do not specify a value for profile, then VideoWriter creates
a Motion JPEG compressed AVI file with the extension .avi.

1-7616

VideoWriter

profile

String enclosed in single quotation marks that describes the type
of file to create. Specifying a profile sets default values for video
properties such as VideoCompressionMethod. Possible values:

'Archival' Motion JPEG 2000 file with lossless
compression

'Motion JPEG AVI' Compressed AVI file using Motion JPEG
codec

'Motion JPEG
2000'

Compressed Motion JPEG 2000 file

'MPEG-4' Compressed MPEG-4 file with H.264
encoding (systems with Windows 7 or
later, or Mac OS X 10.7 and later)

'Uncompressed
AVI'

Uncompressed AVI file with RGB24 video

'Indexed AVI' Uncompressed AVI file with indexed
video

'Grayscale AVI' Uncompressed AVI file with grayscale
video

Default: 'Motion JPEG AVI'

Properties ColorChannels

Number of color channels in each output video frame. (Read-only)

AVI and MPEG-4 files with RGB24 data have three color
channels. Indexed and Grayscale AVI files have one color channel.
The number of channels for Motion JPEG 2000 files depends on
the input data to the writeVideo method: one for monochrome
image data, three for color data.

Colormap

1-7617

VideoWriter

P-by-3 numeric matrix that contains color information about the
video file. The colormap can have a maximum of 256 entries
of type uint8 or double. The entries of the colormap must be
integers. Each row of Colormap specifies the red, green, and blue
components of a single color. The colormap can be set explicitly
before the call to open, or using the colormap field of a movie
frame structure at the time of writing the first frame.

Only applies to objects associated with Indexed AVI files.

After you call open, you cannot change the Colormap value.

Default: none

CompressionRatio

Number greater than 1 that specifies the target ratio between
the number of bytes in the input image and the number of bytes
in the compressed image. The data is compressed as much as
possible, up to the specified target.

Only available for objects associated with Motion JPEG 2000 files.
After you call open, you cannot change the CompressionRatio
value. If you previously set LosslessCompression to true,
setting CompressionRatio generates an error.

Default: 10

Duration

Scalar value specifying the duration of the file in seconds.
(Read-only)

FileFormat

String specifying the type of file to write: 'avi', 'mp4', or 'mj2'.
(Read-only)

Filename

String specifying the name of the file. (Read-only)

1-7618

VideoWriter

FrameCount

Number of frames written to the video file. (Read-only)

FrameRate

Rate of playback for the video in frames per second. After you call
open, you cannot change the FrameRate value.

Default: 30

Height

Height of each video frame in pixels. The writeVideo method
sets values for Height and Width based on the dimensions of the
first frame. (Read-only)

MPEG-4 files require frame dimensions that are divisible by
two. If the input frame height for an MPEG-4 file is not an even
number, VideoWriter pads the frame with a row of black pixels
at the bottom.

LosslessCompression

Boolean value (logical true or false) only available for objects
associated with Motion JPEG 2000 files. If true:

• The writeVideo method uses reversible mode so that the
decompressed data is identical to the input data.

• VideoWriter ignores any specified value for CompressionRatio.

After you call open, you cannot change the LosslessCompression
value.

Default: false for the 'Motion JPEG 2000' profile, true for
the 'Archival' profile

MJ2BitDepth

1-7619

VideoWriter

Number of least significant bits in the input image data, from
1 to 16.

Only available for objects associated with Motion JPEG 2000
files. If you do not specify a value before calling the open method,
VideoWriter sets the bit depth based on the input data type. For
example, if the input data to writeVideo is an array of uint8 or
int8 values, MJ2BitDepth is 8.

Path

String specifying the fully qualified path. (Read-only)

Quality

Integer from 0 through 100. Higher quality numbers result in
higher video quality and larger file sizes. Lower quality numbers
result in lower video quality and smaller file sizes.

Only available for objects associated with the MPEG-4 or Motion
JPEG AVI profile. After you call open, you cannot change the
Quality value.

Default: 75

VideoBitsPerPixel

Number of bits per pixel in each output video frame. (Read-only)

AVI and MPEG-4 files have 24 bits per pixel (8 bits for each of
three color bands).

For Motion JPEG 2000 files, the number of bits per pixel
depends on the value of MJ2BitDepth and the number of bands
of image data. For example, if the input data to writeVideo is a
three-dimensional array of uint16 or int16 values, the default
value of MJ2BitDepth is 16, and VideoBitsPerPixel is 48 (three
times the bit depth).

VideoCompressionMethod

1-7620

VideoWriter

String indicating the type of video compression: 'None', 'H.264',
'Motion JPEG', or 'Motion JPEG 2000'. (Read-only)

VideoFormat

String indicating the MATLAB representation of the video format.
(Read-only)

Video Format Value of VideoFormat

AVI or MPEG-4 files with
RGB24 video

'RGB24'

AVI files with indexed video 'Indexed'

AVI files with grayscale video 'Grayscale'

For Motion JPEG 2000 files, VideoFormat depends on the value
of MJ2BitDepth and the format of the input image data to the
writeVideo method. For example, if you do not specify the
MJ2BitDepth property, VideoWriter sets the format as shown in
this table.

Format of Image Data Value of VideoFormat

Single-band uint8 'Mono8'

Single-band int8 'Mono8 Signed'

Single-band uint16 'Mono16'

Single-band int16 'Mono16 Signed'

Three-banded uint8 'RGB24'

Three-banded int8 'RGB24 Signed'

Three-banded uint16 'RGB48'

Three-banded int16 'RGB48 Signed'

Width

1-7621

VideoWriter

Width of each video frame in pixels. The writeVideo method
sets values for Height and Width based on the dimensions of the
first frame. (Read-only)

MPEG-4 files require frame dimensions that are divisible by
two. If the input frame width for an MPEG-4 file is not an even
number, VideoWriter pads the frame with a column of black
pixels along the right side.

Methods close Close file after writing video data

getProfiles List profiles and file formats
supported by VideoWriter

open Open file for writing video data

writeVideo Write video data to file

Copy
Semantics

Handle. To learn how handle classes affect copy operations, see Copying
Objects in the MATLAB documentation.

Examples View and Set Object Properties

Construct a VideoWriter object and view its properties.

writerObj = VideoWriter('newfile.avi')

Set the frame rate to 60 frames per second, using the FrameRate
property.

writerObj.FrameRate = 60;

AVI File from Animation

Write a sequence of frames to a compressed AVI file, peaks.avi.

Prepare the new file.

writerObj = VideoWriter('peaks.avi');

1-7622

VideoWriter

open(writerObj);

Generate initial data and set axes and figure properties.

Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');
set(gcf,'Renderer','zbuffer');

Setting the Renderer property to zbuffer or Painters works around
limitations of getframe with the OpenGL renderer on some Windows
systems.

Create a set of frames and write each frame to the file.

for k = 1:20
surf(sin(2*pi*k/20)*Z,Z)
frame = getframe;
writeVideo(writerObj,frame);

end

close(writerObj);

See Also VideoReader | mmfileinfo

1-7623

view

Purpose Viewpoint specification

Syntax view(az,el)
view([az,el])
view([x,y,z])
view(2)
view(3)
view(ax,...)
[az,el] = view

Description The position of the viewer (the viewpoint) determines the orientation of
the axes. You specify the viewpoint in terms of azimuth and elevation,
or by a point in three-dimensional space.

view(az,el) and view([az,el]) set the viewing angle for a
three-dimensional plot. The azimuth, az, is the horizontal rotation
about the z-axis as measured in degrees from the negative y-axis.
Positive values indicate counterclockwise rotation of the viewpoint. el
is the vertical elevation of the viewpoint in degrees. Positive values
of elevation correspond to moving above the object; negative values
correspond to moving below the object.

view([x,y,z]) sets the view direction to the Cartesian coordinates x,
y, and z. The magnitude of (x,y,z) is ignored.

view(2) sets the default two-dimensional view, az = 0, el = 90.

view(3) sets the default three-dimensional view, az = 37.5, el = 30.

view(ax,...) uses axes ax instead of the current axes.

[az,el] = view returns the current azimuth and elevation.

Tips Azimuth is a polar angle in the x-y plane, with positive angles indicating
counterclockwise rotation of the viewpoint. Elevation is the angle above
(positive angle) or below (negative angle) the x-y plane.

This diagram illustrates the coordinate system. The arrows indicate
positive directions.

1-7624

view

Examples View the object from directly overhead.

az = 0;
el = 90;
view(az, el);

Set the view along the y-axis, with the x-axis extending horizontally
and the z-axis extending vertically in the figure.

view([0 0]);

Rotate the view about the z-axis by 180º.

az = 180;
el = 90;
view(az, el);

1-7625

view

See Also hgtransform | rotate3d | CameraPosition | CameraTarget |
CameraViewAngle | Projection

How To • “View Overview”

1-7626

viewmtx

Purpose View transformation matrices

Syntax viewmtx
T = viewmtx(az,el)
T = viewmtx(az,el,phi)
T = viewmtx(az,el,phi,xc)

Description viewmtx computes a 4-by-4 orthographic or perspective transformation
matrix that projects four-dimensional homogeneous vectors onto a
two-dimensional view surface (e.g., your computer screen).

T = viewmtx(az,el) returns an orthographic transformation matrix
corresponding to azimuth az and elevation el. az is the azimuth (i.e.,
horizontal rotation) of the viewpoint in degrees. el is the elevation of the
viewpoint in degrees. This returns the same matrix as the commands

view(az,el)
T = view

but does not change the current view.

T = viewmtx(az,el,phi) returns a perspective transformation matrix.
phi is the perspective viewing angle in degrees. phi is the subtended
view angle of the normalized plot cube (in degrees) and controls the
amount of perspective distortion.

Phi Description

0 degrees Orthographic projection

10 degrees Similar to telephoto lens

25 degrees Similar to normal lens

60 degrees Similar to wide-angle lens

T = viewmtx(az,el,phi,xc) returns the perspective transformation
matrix using xc as the target point within the normalized plot cube (i.e.,
the camera is looking at the point xc). xc is the target point that is the

1-7627

viewmtx

center of the view. You specify the point as a three-element vector, xc =
[xc,yc,zc], in the interval [0,1]. The default value is xc = [0,0,0].

A four-dimensional homogenous vector is formed by appending a 1 to
the corresponding three-dimensional vector. For example, [x,y,z,1]
is the four-dimensional vector corresponding to the three-dimensional
point [x,y,z].

Examples Determine the projected two-dimensional vector corresponding to the
three-dimensional point (0.5,0.0,-3.0) using the default view direction.
Note that the point is a column vector.

A = viewmtx(-37.5,30);
x4d = [.5 0 -3 1]';
x2d = A*x4d;
x2d = x2d(1:2)
x2d =

0.3967
-2.4459

These vectors trace the edges of a unit cube:

x = [0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0];
y = [0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1];
z = [0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0];

Transform the points in these vectors to the screen, then plot the object.

A = viewmtx(-37.5,30);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:);
y2(:) = x2d(2,:);
figure
plot(x2,y2)

1-7628

viewmtx

Use a perspective transformation with a 25 degree viewing angle:

A = viewmtx(-37.5,30,25);
x4d = [.5 0 -3 1]';
x2d = A*x4d;
x2d = x2d(1:2)/x2d(4) % Normalize
x2d =

0.1777
-1.8858

Transform the cube vectors to the screen and plot the object:

figure
A = viewmtx(-37.5,30,25);

1-7629

viewmtx

[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:)./x2d(4,:);
y2(:) = x2d(2,:)./x2d(4,:);
plot(x2,y2)

See Also view | hgtransform

Tutorials • “Camera Graphics Terminology”

1-7630

visdiff

Purpose Compare two text files, MAT-Files, binary files, Zip files, or folders

Syntax visdiff('fname1', 'fname2')
visdiff('filename1', 'filename2', 'type')

Description visdiff('fname1', 'fname2') opens the Comparison Tool and
presents the differences between the two files or folders. Either ensure
that the two files or folders appear on the MATLAB path, or provide
the full path for each file or folder. You can compare files or any
combination of folders, zip files, or Simulink manifests.

If you have Simulink Report Generator™ software, you can select a pair
of Simulink models to compare XML text files generated from them.

visdiff('filename1', 'filename2', 'type') opens the Comparison
Tool and presents the differences between the two files using the
specified comparison type. type can be 'text' or 'binary'. If you do
not specify type, visdiff creates the default comparison type for your
selected files. The type option does not apply when comparing folders.

If there are multiple comparison types available for your selections
(e.g., text, binary, file list, or XML comparison), you can create a new
comparison and choose a different comparison type.

1 In the Comparison Tool, click the New comparison button.

The dialog box Select Files or Folders for Comparison opens and
shows your previous comparison selections in the drop-down lists.

2 Change the comparison type and click Compare.

1-7631

visdiff

Examples Specifying Files or Folders to Compare

The visdiff function accepts fully qualified file names, relative file
names, or names of files on the MATLAB path.

If the files you want to compare appear on the MATLAB path or in the
current folder, you can specify the file names without the full path,
for example:

visdiff('lengthofline.m','lengthofline2.m')

or

visdiff('lengthofline','lengthofline2')

If the files you want to compare are not on the path, either specify the
full path to each file, or add the folders to the path.

For example, to specify the fully qualified file names to compare two
example files:

visdiff(fullfile(matlabroot,'toolbox','matlab','demos','gatlin.mat'), ...

fullfile(matlabroot,'toolbox','matlab','demos','gatlin2.mat'))

Specify the full path to files as follows:

visdiff('C:\Work\comp\lengthofline.m', 'C:\Work\comp\lengthofline2.m')

You can specify paths to files relative to the current folder. For the
preceding example, if the current folder is Work, then the relative paths
are:

visdiff('comp\lengthofline.m', 'comp\lengthofline2.m')

Compare Two Text Files

To view a comparison of the two example files, lengthofline.m and
lengthofline2.m:

visdiff(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline.m'), fullfile(matlabroot,'help',...

1-7632

visdiff

'techdoc','matlab_env','examples','lengthofline2.m'))

For information about using the report features, see “Comparing Text
Files”.

Note If the text files you compare are XML files, you see different
results if you have MATLAB Report Generator installed. For details,
see “Comparing Files and Folders”.

Compare Two MAT-Files

To compare two example files:

visdiff(fullfile(matlabroot,'toolbox','matlab','demos','gatlin.mat'), ...

fullfile(matlabroot,'toolbox','matlab','demos','gatlin2.mat'))

For information about the report features, see “Comparing MAT-Files”.

Compare Two Binary Files

The following example code adds a folder containing two MEX-files to
the MATLAB path, and then compares the files:

addpath([matlabroot '\extern\examples\shrlib'])
visdiff('shrlibsample.mexw32', 'yprime.mexw32')

The Comparison Tool opens and indicates that the files are different,
but does not provide details about the differences.

For more information on binary comparisons, see “Comparing Binary
Files”.

Compare Two Folders or Zip Files

You can perform file list comparisons for any combinations of folders
and zip files. To view an example folder comparison and instructions for
using the report features, see “Comparing Folders and Zip Files”.

1-7633

visdiff

Compare Files and Specify Type

To compare two example text files and specify comparison type as
binary:

visdiff(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline.m'), fullfile(matlabroot,'help',...
'techdoc','matlab_env','examples','lengthofline2.m'), 'binary')

If you do not specify type, visdiff creates the default comparison
type for your selected files, in this case, text comparison. By changing
to the binary comparison type you could examine differences such as
end-of-line characters.

Similarly, when you compare XML files without specifying type, you get
a hierarchical XML comparison report. If instead you want a text or
binary comparison, you can specify "text" or "binary" comparison types
to see more details. When you compare zip files, the default comparison
type is a file list comparison, and you might want to specify a binary
comparison instead.

Alternatives As an alternative to the visdiff function, compare files and folders
using any of these GUI methods:

• From the Current Folder browser:

- Select a file or folder. Right-click the file or folder, and select
Compare Against.

- For two files or subfolders in the same folder, select the files
or folders. Then, right-click, and select Compare Selected
Files/Folders.

• From the MATLAB desktop, on the Home tab, in the File section,
click Compare and then select the files or folders to compare.

• If you have a file open in the Editor, on the Editor tab, in the
File section, click Compare. Alternatively, under Compare, you
can choose a file to compare against, or compare with the autosave

1-7634

visdiff

version or the version on disk. See “Comparing Files with Autosave
Version or Version on Disk”.

How To • “Comparing Files and Folders”

1-7635

volumebounds

Purpose Coordinate and color limits for volume data

Syntax lims = volumebounds(X,Y,Z,V)
lims = volumebounds(X,Y,Z,U,V,W)
lims = volumebounds(V)
lims = volumebounds(U,V,W)

Description lims = volumebounds(X,Y,Z,V) returns the x, y, z, and color limits of
the current axes for scalar volume data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax cmin cmax]

You can pass this vector to the axis command.

lims = volumebounds(X,Y,Z,U,V,W) returns the x, y, and z limits of
the current axes for vector volume data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax]

lims = volumebounds(V) and lims = volumebounds(U,V,W) assumes
X, Y, and Z are determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(V).

Examples This example uses volumebounds to set the axis and color limits for an
isosurface generated by the flow function.

[x y z v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
daspect([1 1 1])
isocolors(x,y,z,fliplr(v),p)
shading interp
axis(volumebounds(x,y,z,v))

See Also isosurface | streamslice

1-7636

voronoi

Purpose Voronoi diagram

Note Qhull-specific options are no longer supported. Remove the
OPTIONS argument from all instances in your code that pass it to
voronoi.

Syntax voronoi(x,y)
voronoi(x,y,TRI)
voronoi(dt)
voronoi(AX,...)
voronoi(...,'LineSpec')
h = voronoi(...)
[vx,vy] = voronoi(...)

Description voronoi(x,y) plots the bounded cells of the Voronoi diagram for the
points x,y. Lines-to-infinity are approximated with an arbitrarily
distant endpoint.

voronoi(x,y,TRI) uses the triangulation TRI instead of computing
internally.

voronoi(dt) uses the Delaunay triangulation dt instead of computing
it.

voronoi(AX,...) plots into AX instead of gca.

voronoi(...,'LineSpec') plots the diagram with color and line style
specified.

h = voronoi(...) returns, in h, handles to the line objects created.

[vx,vy] = voronoi(...) returns the finite vertices of the Voronoi
edges in vx and vy.

1-7637

voronoi

Note For the topology of the Voronoi diagram, i.e., the vertices for each
Voronoi cell, use voronoin.

[v,c] = voronoin([x(:) y(:)])

Definitions Consider a set of coplanar points P. For each point Px in the set P, you
can draw a boundary enclosing all the intermediate points lying closer
to Px than to other points in the set P. Such a boundary is called a
Voronoi polygon, and the set of all Voronoi polygons for a given point
set is called a Voronoi diagram.

Visualization Use one of these methods to plot a Voronoi diagram:

• If you provide no output argument, voronoi plots the diagram.

• To gain more control over color, line style, and other figure properties,
use the syntax [vx,vy] = voronoi(...). This syntax returns the
vertices of the finite Voronoi edges, which you can then plot with
the plot function.

• To fill the cells with color, use voronoin with n = 2 to get the indices
of each cell, and then use patch and other plot functions to generate
the figure. Note that patch does not fill unbounded cells with color.

Examples Voronoi Diagram Based on Points

This code uses the voronoi function to plot the Voronoi diagram for 10
randomly generated points.

x = gallery('uniformdata',[1 10],0);
y = gallery('uniformdata',[1 10],1);
voronoi(x,y)

1-7638

voronoi

Voronoi Diagram Based on Vertices of Veronoi Edges

This code uses the vertices of the finite Voronoi edges to plot the Voronoi
diagram for the same 10 points used in the previous example.

x = gallery('uniformdata',[1 10],0);
y = gallery('uniformdata',[1 10],1);
[vx, vy] = voronoi(x,y);
plot(x,y,'r+',vx,vy,'b-'); axis equal

1-7639

voronoi

Note that you can add the following code to get the figure shown in
the previous example.

xlim([min(x) max(x)])
ylim([min(y) max(y)])

1-7640

voronoi

Voronoi Diagram with Color

This code uses voronoin and patch to fill the bounded cells of the same
Voronoi diagram with color.

x = gallery('uniformdata',[10 2],5);
[v,c]=voronoin(x);
for i = 1:length(c)
if all(c{i}~=1) % If at least one of the indices is 1,

% then it is an open region and we can't

1-7641

voronoi

% patch that.
patch(v(c{i},1),v(c{i},2),i); % use color i.
end
end

See Also delaunayTriangulation | convhull | delaunay | LineSpec | plot
| voronoin

1-7642

DelaunayTri.voronoiDiagram

Purpose (Will be removed) Voronoi diagram

Note voronoiDiagram(DelaunayTri) will be removed in a future
release. Use voronoiDiagram(delaunayTriangulation) instead.

DelaunayTri will be removed in a future release. Use
delaunayTriangulation instead.

Syntax [V, R] = voronoiDiagram(DT)

Description [V, R] = voronoiDiagram(DT) returns the vertices V and regions R
of the Voronoi diagram of the points DT.X. The region R{i} is a cell
array of indices into V that represents the Voronoi vertices bounding
the region. The Voronoi region associated with the i’th point, DT.X(i)
is R{i}. For 2-D, vertices in R{i} are listed in adjacent order, i.e.
connecting them will generate a closed polygon (Voronoi diagram). For
3-D the vertices in R{i} are listed in ascending order.

The Voronoi regions associated with points that lie on the convex hull
of DT.X are unbounded. Bounding edges of these regions radiate to
infinity. The vertex at infinity is represented by the first vertex in V.

Input
Arguments

DT Delaunay triangulation.

1-7643

DelaunayTri.voronoiDiagram

Output
Arguments

V numv-by-ndim matrix representing the
coordinates of the Voronoi vertices, where
numv is the number of vertices and ndim is
the dimension of the space where the points
reside.

R Vector cell array of length(DR.X),
representing the Voronoi cell associated with
each point.

Definitions The Voronoi diagram of a discrete set of points X decomposes the space
around each point X(i) into a region of influence R{i}. Locations within
the region are closer to point i than any other point. The region of
influence is called the Voronoi region. The collection of all the Voronoi
regions is the Voronoi diagram.

The convex hull of a set of points X is the smallest convex polygon (or
polyhedron in higher dimensions) containing all of the points of X.

Examples Compute the Voronoi Diagram of a set of points:

X = [0.5 0
0 0.5

-0.5 -0.5
-0.2 -0.1
-0.1 0.1
0.1 -0.1
0.1 0.1]

dt = DelaunayTri(X)
[V,R] = voronoiDiagram(dt)

See Also voronoi | voronoin | triangulation | delaunayTriangulation

1-7644

voronoin

Purpose N-D Voronoi diagram

Syntax [V,C] = voronoin(X)
[V,C] = voronoin(X,options)

Description [V,C] = voronoin(X) returns Voronoi vertices V and the Voronoi cells
C of the Voronoi diagram of X. V is a numv-by-n array of the numv Voronoi
vertices in n-dimensional space, each row corresponds to a Voronoi
vertex. C is a vector cell array where each element contains the indices
into V of the vertices of the corresponding Voronoi cell. X is an m-by-n
array, representing m n-dimensional points, where n > 1 and m >= n+1.

The first row of V is a point at infinity. If any index in a cell of the cell
array is 1, then the corresponding Voronoi cell contains the first point
in V, a point at infinity. This means the Voronoi cell is unbounded.

voronoin uses Qhull.

[V,C] = voronoin(X,options) specifies a cell array of strings options
to be used in Qhull. The default options are

• {'Qbb'} for 2- and 3-dimensional input

• {'Qbb','Qx'} for 4 and higher-dimensional input

If options is [], the default options are used. If code is {''}, no options
are used, not even the default. For more information on Qhull and its
options, see http://www.qhull.org.

Visualization You can plot individual bounded cells of an n-dimensional Voronoi
diagram. To do this, use convhulln to compute the vertices of the facets
that make up the Voronoi cell. Then use patch and other plot functions
to generate the figure.

Examples Example 1

Let

x = [0.5 0
0 0.5

1-7645

http://www.qhull.org

voronoin

-0.5 -0.5
-0.2 -0.1
-0.1 0.1
0.1 -0.1
0.1 0.1]

then

[V,C] = voronoin(x)

V =
Inf Inf
0.3833 0.3833
0.7000 -1.6500
0.2875 0.0000

-0.0000 0.2875
-0.0000 -0.0000
-0.0500 -0.5250
-0.0500 -0.0500
-1.7500 0.7500
-1.4500 0.6500

C =

[1x4 double]
[1x5 double]
[1x4 double]
[1x4 double]
[1x4 double]
[1x5 double]
[1x4 double]

Use a for loop to see the contents of the cell array C.

for i=1:length(C), disp(C{i}), end

4 2 1 3
10 5 2 1 9
9 1 3 7

1-7646

voronoin

10 8 7 9
10 5 6 8
8 6 4 3 7
6 4 2 5

In particular, the fifth Voronoi cell consists of 4 points: V(10,:),
V(5,:), V(6,:), V(8,:).

Example 2

The following example illustrates the options input to voronoin. The
commands

X = [-1 -1; 1 -1; 1 1; -1 1];
[V,C] = voronoin(X)

return an error message.

? qhull input error: can not scale last coordinate. Input is
cocircular

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add the option 'Qz'. The
following command passes the option 'Qz', along with the default
'Qbb', to voronoin.

[V,C] = voronoin(X,{'Qbb','Qz'})
V =

Inf Inf
0 0

C =

[1x2 double]
[1x2 double]
[1x2 double]
[1x2 double]

1-7647

voronoin

Algorithms voronoin is based on Qhull [1]. For information about Qhull, see
http://www.qhull.org/.

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

See Also delaunayTriangulation | convhull | convhulln | delaunay |
delaunayn | voronoi

1-7648

http://www.qhull.org/

waitbar

Purpose Open or update wait bar dialog box

Syntax h = waitbar(x,'message')
waitbar(x,'message','CreateCancelBtn','button_callback')
waitbar(x,'message',property_name,property_value,...)
waitbar(x)
waitbar(x,h)
waitbar(x,h,'updated message')

Description A wait bar is a figure that displays what percentage of a calculation is
complete as the calculation proceeds by progressively filling a bar with
red from left to right.

h = waitbar(x,'message') displays a wait bar of fractional length x.
The wait bar figure displays until the code that controls it closes it or
the use clicks its Close Window button. Its (figure) handle is returned
in h. The argument x must be between 0 and 1.

Note Wait bars are not modal figures (their WindowStyle is 'normal').
They often appear to be modal because the computational loops within
which they are called prevent interaction with the Command Window
until they terminate. For more information, see WindowStyle in the
MATLAB Figure Properties documentation.

waitbar(x,'message','CreateCancelBtn','button_callback')
specifying CreateCancelBtn adds a Cancel button to the figure that
executes the MATLAB commands specified in button_callback when
the user clicks the Cancel button or the Close Figure button. waitbar
sets both the Cancel button callback and the figure CloseRequestFcn
to the string specified in button_callback.

waitbar(x,'message',property_name,property_value,...)
optional arguments property_name and property_value enable you to
set figure properties for the waitbar.

1-7649

../ref/figure_props.html#CloseRequestFcn
../ref/figure_props.html

waitbar

waitbar(x) subsequent calls to waitbar(x) extend the length of the
bar to the new position x. Successive values of x normally increase. If
they decrease, the wait bar runs in reverse.

waitbar(x,h) extends the length of the bar in the wait bar h to the
new position x.

waitbar(x,h,'updated message') updates the message text in the
waitbar figure, in addition to setting the fractional length to x.

Examples Example 1 — Basic Wait Bar

Typically, you call waitbar repeatedly inside a for loop that performs a
lengthy computation. For example:

h = waitbar(0,'Please wait...');
steps = 1000;
for step = 1:steps

% computations take place here
waitbar(step / steps)

end
close(h)

Example 2 — Wait Bar with Dynamic Text and Cancel Button

Adding a Cancel button allows user to abort the computation. Clicking
it sets a logical flag in the figure’s application data (appdata). The
function tests for that value within the main loop and exits the loop as
soon as the flag has been set. The example iteratively approximates the
value of π. At each step, the current value is encoded as a string and
displayed in the wait bar’s message field. When the function finishes,

1-7650

waitbar

it destroys the wait bar and returns the current estimate of π and the
number of steps it ran.

Copy the following function to a code file and save it as approxpi.m.
Execute it as follows, allowing it to run for 10,000 iterations.

[estimated_pi steps] = approxpi(10000)

You can click Cancel or close the window to abort the computation and
return the current estimate of π.

function [valueofpi step] = approxpi(steps)
% Converge on pi in steps iterations, displaying waitbar.
% User can click Cancel or close button to exit the loop.
% Ten thousand steps yields error of about 0.001 percent.

h = waitbar(0,'1','Name','Approximating pi...',...
'CreateCancelBtn',...
'setappdata(gcbf,''canceling'',1)');

setappdata(h,'canceling',0)
% Approximate as pi^2/8 = 1 + 1/9 + 1/25 + 1/49 + ...
pisqover8 = 1;
denom = 3;
valueofpi = sqrt(8 * pisqover8);
for step = 1:steps

% Check for Cancel button press
if getappdata(h,'canceling')

break
end
% Report current estimate in the waitbar's message field
waitbar(step/steps,h,sprintf('%12.9f',valueofpi))
% Update the estimate
pisqover8 = pisqover8 + 1 / (denom * denom);
denom = denom + 2;
valueofpi = sqrt(8 * pisqover8);

end
delete(h) % DELETE the waitbar; don't try to CLOSE it.

1-7651

waitbar

The function sets the figure Name property to describe what is being
computed. In the for loop, calling waitbar sets the fractional
progress indicator and displays intermediate results. the code
waitbar(i/steps,h,sprintf('%12.9f',valueofpi)) sets the wait
bar’s message variable to a string representation of the current estimate
of pi. Naturally, the extra computation involved makes iterations last
longer than they need to, but such feedback can be helpful to users.

Note You should call delete to remove a wait bar when you give it
a CloseRequestFcn, as in the preceding code; calling close does not
close it, and makes its Cancel and Close Window buttons unresponsive.
This happens because the figure’s CloseRequestFcn recursively calls
itself. In such a situation you must forcibly remove the wait bar, for
example like this:

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

However, as issuing these commands will delete all open figures—not
just the wait bar—it is best never to use close in a CloseRequestFcn to
close a window.

See Also close | delete | dialog | msgbox | getappdata | setappdata

1-7652

waitfor

Purpose Block execution and wait for event or condition

Syntax waitfor(h)
waitfor(h,'PropertyName')
waitfor(h,'PropertyName',PropertyValue)

Description waitfor(h) blocks the caller from executing statements until the
graphics object identified by handle h closes (is deleted). h must be
scalar. When object h no longer exists, waitfor returns, enabling
execution to resume. If the object does not exist, waitfor returns
immediately without processing any events.

waitfor(h,'PropertyName') blocks the caller from executing until the
value of 'PropertyName' (any property of the graphics object h) changes
or h closes (is deleted). If 'PropertyName' is not a valid property for the
object, waitfor returns immediately without processing any events.

waitfor(h,'PropertyName',PropertyValue) blocks the caller from
executing until the value of 'PropertyName' for the graphics object h
changes to the specific value PropertyValue or h closes (is deleted).
If the value of 'PropertyName' is already PropertyValue, waitfor
returns immediately without processing any events.

Definitions • waitfor blocks execution so that command-line expressions and
subsequent statements in the blocked file do not execute until a
specified condition occurs.

• While waitfor prevents its caller from continuing, callbacks that
respond to various events (for example, pressing a mouse button) can
still run, unaffected by waitfor.

• waitfor also blocks Simulink models from executing, but callbacks
do still execute.

• waitfor can block nested function calls. For example, a callback
invoked while waitfor is active can invoke waitfor.

• If you type Ctrl+C in the Command Window while waitfor is
blocking execution, the executing program terminates. To avoid

1-7653

waitfor

terminating, the program can call waitfor within a try/catch block
that handles the exception that typing Ctrl+C generates. To learn
more, see the third following example.

Examples Create a plot and pause execution of the rest of the statements until
you close the figure window:

f = warndlg('This is a warning.', 'A Warning Dialog');
disp('This prints immediately');
drawnow % Necessary to print the message
waitfor(f);
disp('This prints after you close the warning dialog');

Suspend execution until name of figure changes:

f = figure('Name', datestr(now));
h = uicontrol('String','Change Name',...

'Position',[20 20 100 30],...
'Callback', 'set(gcbf, ''Name'', datestr(now))');
disp('This prints immediately');
drawnow % Necessary to print the message
waitfor(f, 'Name');
disp('This prints after button click that changes the figure''s name');

Display text object and wait for user to edit it:

figure;
textH = text(.5, .5, 'Edit me and click away');
set(textH,'Editing','on', 'BackgroundColor',[1 1 1]);
disp('This prints immediately.');
drawnow
waitfor(textH,'Editing','off');
set(textH,'BackgroundColor',[1 1 0]);

1-7654

waitfor

disp('This prints after text editing is complete.');

If you close the figure while waitfor is executing, an error occurs
because the code attempts to access handles of objects that no longer
exist. You can handle the error by enclosing code starting with the call
to waitfor in a try/catch block, as follows:

figure;
textH = text(.5, .5, 'Edit me and click away');
set(textH,'Editing','on', 'BackgroundColor',[1 1 1]);
disp('This prints immediately.');
drawnow
% Use try/catch block to handle errors,
% such as deleting figure

1-7655

waitfor

try
waitfor(textH,'Editing','off');
set(textH,'BackgroundColor',[1 1 0]);
disp('This prints after text editing is complete.');

catch ME
disp('This prints if figure is deleted:')
disp(ME.message)

% You can place other code to respond to the error here
end

The ME variable is a MATLAB Exception object that you can use to
determine the type of error that occurred. For more information, see
“Respond to an Exception”.

See Also drawnow | keyboard | pause | uiresume | uiwait |
waitforbuttonpress

How To • “Control Callback Execution and Interruption”

1-7656

waitforbuttonpress

Purpose Wait for key press or mouse-button click

Syntax k = waitforbuttonpress

Description k = waitforbuttonpress blocks the caller’s execution stream until
the function detects that the user has clicked a mouse button or pressed
a key while the figure window is active. The function returns

• 0 if it detects a mouse button click

• 1 if it detects a key press

If a WindowButtonDownFcn is defined for the figure, its callback is
executed before waitforbuttonpress returns a value.

Only keys that generate characters cause the function to return.
Pressing any of the following keys by itself does nothing: Ctrl, Shift,
Alt, Caps_lock, Num_lock, Scroll_lock.

Additional information about the event that causes execution to resume
is available through the figure CurrentCharacter, SelectionType, and
CurrentPoint properties.

You can interrupt waitforbuttonpress by typing Ctrl+C, but an error
results unless the function is called from within a try/catch block. You
also receive an error from waitforbuttonpress if you close the figure
by clicking the X close box unless you call waitforbuttonpress within
a try/catch block.

Examples These statements display text in the Command Window when the user
either clicks a mouse button or types a key in the figure window:

w = waitforbuttonpress;
if w == 0

disp('Button click')
else

disp('Key press')
end

1-7657

../ref/figure_props.html#CurrentCharacter
../ref/figure_props.html#SelectionType
../ref/figure_props.html#CurrentPoint

waitforbuttonpress

See Also dragrect | ginput | rbbox | waitfor

1-7658

warndlg

Purpose Open warning dialog box

Syntax h = warndlg
h = warndlg(warningstring)
h = warndlg(warningstring,dlgname)
h = warndlg(warningstring,dlgname,createmode)

Description h = warndlg displays a dialog box named Warning Dialog containing
the string This is the default warning string. The warndlg
function returns the handle of the dialog box in h. The warning dialog
box disappears after the user clicks OK.

h = warndlg(warningstring) displays a dialog box with the title
Warning Dialog containing the string specified by warningstring.
The warningstring argument can be any valid string format – cell
arrays are preferred.

To use multiple lines in your warning, define warningstring using
either of the following:

• sprintf with newline characters separating the lines

warndlg(sprintf('Message line 1 \n Message line 2'))

• Cell arrays of strings

warndlg({'Message line 1';'Message line 2'})

h = warndlg(warningstring,dlgname) displays a dialog box with
title dlgname.

h = warndlg(warningstring,dlgname,createmode) specifies whether
the warning dialog box is modal or nonmodal. Optionally, it can also
specify an interpreter for warningstring and dlgname. The createmode
argument can be a string or a structure.

If createmode is a string, it must be one of the values shown in the
following table.

1-7659

warndlg

createmode Value Description

modal Replaces the warning dialog box having the
specified Title, that was last created or
clicked on, with a modal warning dialog box
as specified. All other warning dialog boxes
with the same title are deleted. The dialog
box which is replaced can be either modal
or nonmodal.

non-modal (default) Creates a new nonmodal warning dialog
box with the specified parameters. Existing
warning dialog boxes with the same title
are not deleted.

replace Replaces the warning dialog box having the
specified Title, that was last created or
clicked on, with a nonmodal warning dialog
box as specified. All other warning dialog
boxes with the same title are deleted. The
dialog box which is replaced can be either
modal or nonmodal.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use the uiwait function.

If you open a dialog with errordlg, msgbox, or warndlg using
'CreateMode','modal' and a non-modal dialog created with any of
these functions is already present and has the same name as the modal
dialog, the non-modal dialog closes when the modal one opens.

For more information about modal dialog boxes, see WindowStyle in
the Figure Properties.

1-7660

warndlg

If CreateMode is a structure, it can have fields WindowStyle and
Interpreter. WindowStyle must be one of the options shown in the
table above. Interpreter is one of the strings 'tex' or 'none'. The
default value for Interpreter is 'none'.

Examples The statement

warndlg('Pressing OK will clear memory','!! Warning !!')

displays this dialog box:

See Also dialog | errordlg | helpdlg | inputdlg | listdlg | msgbox |
questdlg | figure | uiwait | uiresume | warning

1-7661

warning

Purpose Warning message

Syntax warning('message')
warning('message', a1, a2,...)
warning('message_id', 'message')
warning('message_id', 'message', a1, a2, ..., an)
s = warning(state, 'message_id')
s = warning(state, mode)

Description warning('message') displays descriptive text message and sets the
warning state that lastwarn returns. If message is an empty string
(''), warning resets the warning state but does not display any text.

warning('message', a1, a2,...) displays a message string that
contains formatting conversion characters, such as those used with the
MATLAB sprintf function. Each conversion character in message is
converted to one of the values a1, a2, ... in the argument list.

Note MATLAB converts special characters (like \n and %d) in the
warning message string only when you specify more than one input
argument with warning. See Example 3 below.

warning('message_id', 'message') attaches a unique identifier,
or message_id, to the warning message. The identifier enables you
to single out certain warnings during the execution of your program,
controlling what happens when the warnings are encountered.

warning('message_id', 'message', a1, a2, ..., an) includes
formatting conversion characters in message, and the character
translations in arguments a1, a2, ..., an.

s = warning(state, 'message_id') is a warning control statement
that enables you to indicate how you want MATLAB to act on certain
warnings. The state argument can be 'on', 'off', or 'query'. The
message_id argument can be a message identifier string, 'all', or
'last'.

1-7662

warning

Output s is a structure array that indicates the previous state of the
selected warnings. The structure has the fields identifier and state.

s = warning(state, mode) is a warning control statement that
enables you to display a stack trace or display more information with
each warning. The state argument can be 'on', 'off', or 'query'.
The mode argument can be 'backtrace' or 'verbose'.

Examples Example 1

Generate a warning that displays a simple string:

if ~ischar(p1)
warning('Input must be a string')

end

Example 2

Generate a warning string that is defined at run-time. The first
argument defines a message identifier for this warning:

warning('MATLAB:paramAmbiguous', ...
'Ambiguous parameter name, "%s".', param)

Example 3

MATLAB converts special characters (like \n and %d) in the warning
message string only when you specify more than one input argument
with warning. In the single argument case shown below, \n is taken to
mean backslash-n. It is not converted to a newline character:

warning('In this case, the newline \n is not converted.')
Warning: In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert
special characters. This is true regardless of whether the additional
argument supplies conversion values or is a message identifier:

warning('WarnTests:convertTest', ...
'In this case, the newline \n is converted.')

Warning: In this case, the newline

1-7663

warning

is converted.

Example 4

Turn on one particular warning, saving the previous state of this one
warning in s. Remember that this nonquery syntax performs an
implicit query prior to setting the new state:

s = warning('on', 'Control:parameterNotSymmetric');

After doing some work that includes making changes to the state of
some warnings, restore the original state of all warnings:

warning(s)

See Also lastwarn | warndlg | error | lasterror | errordlg | dbstop | disp
| sprintf

Related
Examples

• “Issue Warnings and Errors”
• “Suppress Warnings”
• “Restore Warnings”
• “Change How Warnings Display”

1-7664

waterfall

Purpose Waterfall plot

Syntax waterfall(Z)
waterfall(X,Y,Z)
waterfall(...,C)
waterfall(axes_handles,...)
h = waterfall(...)

Description The waterfall function draws a mesh similar to the meshz function,
but it does not generate lines from the columns of the matrices. This
produces a “waterfall” effect.

waterfall(Z) creates a waterfall plot using x = 1:size(Z,2) and
y = 1:size(Z,1). Z determines the color, so color is proportional to
surface height.

waterfall(X,Y,Z) creates a waterfall plot using the values specified in
X, Y, and Z. Z also determines the color, so color is proportional to the
surface height. If X and Y are vectors, X corresponds to the columns of
Z, and Y corresponds to the rows, where length(x) = n, length(y) =
m, and [m,n] = size(Z). X and Y are vectors or matrices that define
the x- and y-coordinates of the plot. Z is a matrix that defines the
z-coordinates of the plot (i.e., height above a plane). If C is omitted,
color is proportional to Z.

waterfall(...,C) uses scaled color values to obtain colors from the
current colormap. Color scaling is determined by the range of C, which
must be the same size as Z. MATLAB performs a linear transformation
on C to obtain colors from the current colormap.

waterfall(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = waterfall(...) returns the handle of the patch graphics object
used to draw the plot.

1-7665

waterfall

Tips For column-oriented data analysis, use waterfall(Z') or
waterfall(X',Y',Z').

Examples Produce a waterfall plot of the peaks function.

figure
[X,Y,Z] = peaks(30);
waterfall(X,Y,Z)

1-7666

waterfall

Algorithms The range of X, Y, and Z, or the current setting of the axes Xlim, YLim,
and ZLim properties, determines the range of the axes (also set by
axis). The range of C, or the current setting of the axes CLim property,
determines the color scaling (also set by caxis).

The CData property for the patch graphics objects specifies the color at
every point along the edge of the patch, which determines the color
of the lines.

The waterfall plot looks like a mesh surface; however, it is a patch
graphics object. To create a surface plot similar to waterfall, use the
meshz function and set the MeshStyle property of the surface to 'Row'.
For a discussion of parametric surfaces and related color properties,
see surf.

See Also axes | axis | caxis | meshz | ribbon | surf

1-7667

wavfinfo

Purpose Information about WAVE (.wav) sound file

Note wavfinfo will be removed in a future release. Use audioinfo
instead.

Syntax [m d] = wavfinfo(filename)

Description [m d] = wavfinfo(filename) returns information about the contents
of the WAVE sound file specified by the string filename. Enclose the
filename input in single quotes.

m is the string 'Sound (WAV) file', if filename is a WAVE file.
Otherwise, it contains an empty string ('').

d is a string that reports the number of samples in the file and the
number of channels of audio data. If filename is not a WAVE file, it
contains the string 'Not a WAVE file'.

See Also audioplayer | audiorecorder | audioread | audiowrite

1-7668

wavplay

Purpose Play recorded sound on PC-based audio output device

Note wavplay has been removed. Use audioplayer instead.

Syntax wavplay(y,Fs)
wavplay(y,Fs,mode)

Description wavplay(y,Fs) plays the audio signal stored in the vector y on a
PC-based audio output device. Fs is the integer sample rate in Hz
(samples per second). The default value for Fs is 11025 Hz. wavplay
supports only 1- or 2-channel (mono or stereo) audio signals. To play in
stereo, y must be a two-column matrix.

wavplay(y,Fs,mode) specifies how wavplay interacts with the
command line. The string mode is one of the following:

• 'sync' (default): You do not have access to the command line until
the sound has finished playing (a blocking device call).

• 'async': You have immediate access to the command line as soon as
the sound begins to play on the audio output device (a nonblocking
device call). If you call wavplay again in async mode while the
audio is playing, wavplay blocks access to the command line until
the original playback completes.

The audio signal y can be one of four data types. The number of bits
used to quantize and play back each sample depends on the data type.

Data Types for wavplay

Data Type Quantization

Double-precision (default value) 16 bits/sample

Single-precision 16 bits/sample

16-bit signed integer 16 bits/sample

8-bit unsigned integer 8 bits/sample

1-7669

wavplay

Tips The wavplay function is for use only with 32-bit Microsoft Windows
operating systems. To play audio data on other platforms, use
audioplayer.

Examples The MAT-files gong.mat and chirp.mat both contain an audio signal
y and a sampling frequency Fs. Load and play the gong and the chirp
audio signals. Change the names of these signals in between load
commands and play them sequentially using the 'sync' option for
wavplay.

load chirp;
y1 = y; Fs1 = Fs;
load gong;
wavplay(y1,Fs1,'sync') % The chirp signal finishes before the
wavplay(y,Fs) % gong signal begins playing.

See Also audioplayer | audioinfo | audioread | audiowrite

1-7670

wavread

Purpose Read WAVE (.wav) sound file

Note wavread will be removed in a future release. Use audioread
instead.

Syntax y = wavread(filename)
[y, Fs] = wavread(filename)
[y, Fs, nbits] = wavread(filename)
[y, Fs, nbits, opts] = wavread(filename)
[___] = wavread(filename, N)
[___] = wavread(filename, [N1 N2])
[___] = wavread(___ , fmt)
siz = wavread(filename,'size')

Description y = wavread(filename) loads a WAVE file specified by the string
filename, returning the sampled data in y. If filename does not
include an extension, wavread appends .wav.

[y, Fs] = wavread(filename) returns the sample rate (Fs) in Hertz
used to encode the data in the file.

[y, Fs, nbits] = wavread(filename) returns the number of bits
per sample (nbits).

[y, Fs, nbits, opts] = wavread(filename) returns a structure
opts of additional information contained in the WAV file. The content
of this structure differs from file to file. Typical structure fields
include opts.fmt (audio format information) and opts.info (text that
describes the title, author, etc.).

[___] = wavread(filename, N) returns only the first N samples from
each channel in the file.

[___] = wavread(filename, [N1 N2]) returns only samples N1
through N2 from each channel in the file.

1-7671

wavread

[___] = wavread(___ , fmt) specifies the data format of y used to
represent samples read from the file. fmt can be either of the following
values, or a partial match (case-insensitive):

'double' Double-precision normalized samples (default).

'native' Samples in the native data type found in the file.

siz = wavread(filename,'size') returns the size of the audio data
contained in filename instead of the actual audio data, returning the
vector siz = [samples channels].

Output Scaling

The range of values in y depends on the data format fmt specified. Some
examples of output scaling based on typical bit-widths found in a WAV
file are given below for both 'double' and 'native' formats.

Native Formats

Number of
Bits

MATLAB Data Type Data Range

8 uint8 (unsigned integer) 0 <= y <= 255

16 int16 (signed integer) -32768 <= y <= +32767

24 int32 (signed integer) -2^23 <= y <= 2^23-1

32 single (floating point) -1.0 <= y < +1.0

1-7672

wavread

Double Formats

Number of Bits MATLAB Data Type Data Range

N<32 double -1.0 <= y < +1.0

N=32 double -1.0 <= y <= +1.0
Note: Values in y
might exceed -1.0 or
+1.0 for the case of
N=32 bit data samples
stored in the WAV
file.

wavread supports multi-channel data, with up to 32 bits per sample.

wavread supports Pulse-code Modulation (PCM) data format only.

Examples Create a WAV file from the example file handel.mat, and read portions
of the file back into MATLAB.

% Create WAV file in current folder.
load handel.mat

hfile = 'handel.wav';
wavwrite(y, Fs, hfile)
clear y Fs

% Read the data back into MATLAB, and listen to audio.
[y, Fs, nbits, readinfo] = wavread(hfile);
sound(y, Fs);

% Pause before next read and playback operation.
duration = numel(y) / Fs;
pause(duration + 2)

% Read and play only the first 2 seconds.
nsamples = 2 * Fs;
[y2, Fs] = wavread(hfile, nsamples);

1-7673

wavread

sound(y2, Fs);
pause(4)

% Read and play the middle third of the file.
sizeinfo = wavread(hfile, 'size');

tot_samples = sizeinfo(1);
startpos = tot_samples / 3;
endpos = 2 * startpos;

[y3, Fs] = wavread(hfile, [startpos endpos]);
sound(y3, Fs);

See Also mmfileinfo | audioinfo | audiowrite | audioread | audioplayer
| audiorecorder | sound

1-7674

wavrecord

Purpose Record sound using PC-based audio input device

Note wavrecord has been removed. Use audiorecorder instead.

Syntax y = wavrecord(n,Fs)
y = wavrecord(___ ,ch)
y = wavrecord(___ ,'dtype')

Description y = wavrecord(n,Fs) records n samples of an audio signal, sampled
at a rate of Fs Hz (samples per second). The default value for Fs is
11025 Hz.

y = wavrecord(___ ,ch) uses ch number of input channels from the
audio device. ch can be either 1 or 2, for mono or stereo, respectively.
The default value for ch is 1.

y = wavrecord(___ ,'dtype') uses the data type specified by the
string 'dtype' to record the sound. The following table lists the string
values for 'dtype' along with the corresponding bits per sample and
acceptable data range for y.

dtype Bits/sample y Data Range

'double' 16 –1.0 <= y < +1.0

'single' 16 –1.0 <= y < +1.0

'int16' 16 –32768 <= y <= +32767

'uint8' 8 0 <= y <= 255

Tips Standard sampling rates for PC-based audio hardware are 8000,
11025, 22050, and 44100 samples per second. Stereo signals are
returned as two-column matrices. The first column of a stereo audio
matrix corresponds to the left input channel, while the second column
corresponds to the right input channel.

1-7675

wavrecord

The wavrecord function is for use only with 32-bit Microsoft Windows
operating systems. To record audio data from audio input devices on
other platforms, use audiorecorder.

Examples Record 5 seconds of 16-bit audio sampled at 11025 Hz. Play back the
recorded sound using wavplay. Speak into your audio device (or produce
your audio signal) while the wavrecord command runs.

Fs = 11025;
y = wavrecord(5*Fs,Fs,'int16');
wavplay(y,Fs);

See Also audiorecorder | audioinfo | audioread | audiowrite

1-7676

wavwrite

Purpose Write WAVE (.wav) sound file

Note wavwrite will be removed in a future release. Use audiowrite
instead.

Syntax wavwrite(y,filename)
wavwrite(y,Fs,filename)
wavwrite(y,Fs,N,filename)

Description wavwrite(y,filename) writes the data stored in the variable y to a
WAVE file called filename. The filename input is a string enclosed in
single quotes. The data has a sample rate of 8000 Hz and is assumed
to be 16-bit. Each column of the data represents a separate channel.
Therefore, stereo data should be specified as a matrix with two columns.

wavwrite(y,Fs,filename) writes the data stored in the variable y to
a WAVE file called filename. The data has a sample rate of Fs Hz
and is assumed to be 16-bit.

wavwrite(y,Fs,N,filename) writes the data stored in the variable y to
a WAVE file called filename. The data has a sample rate of Fs Hz and
is N-bit, where N is 8, 16, 24, or 32.

Input Data Ranges

The range of values in y depends on the number of bits specified by N
and the data type of y. The following tables list the valid input ranges
based on the value of N and the data type of y.

If y contains integer data:

N Bits y Data Type y Data Range Output
Format

8 uint8 0 <= y <= 255 uint8

16 int16 –32768 <= y <= +32767 int16

24 int32 –2^23 <= y <= 2^23 – 1 int32

1-7677

wavwrite

If y contains floating-point data:

N Bits y Data Type y Data Range Output
Format

8 single or double –1.0 <= y < +1.0 uint8

16 single or double –1.0 <= y < +1.0 int16

24 single or double –1.0 <= y < +1.0 int32

32 single or double –1.0 <= y <= +1.0 single

For floating point data where N < 32, amplitude values are clipped to
the range –1.0 <= y < +1.0.

Note 8-, 16-, and 24-bit files are type 1 integer pulse code modulation
(PCM). 32-bit files are written as type 3 normalized floating point.

See Also mmfileinfo | audioinfo | audioread | audiowrite | audioplayer
| audiorecorder | sound

1-7678

web

Purpose Open Web page or file in browser

Syntax web
web(url)
web(url,opt)
web(url,opt1,...,optN)

stat = web(___)
[stat,h] = web(___)
[stat,h,url] = web(___)

Description web opens an empty MATLAB Web browser.

web(url) opens the page specified by url in the MATLAB Web browser.
If multiple browsers are open, the page displays in the one that was
most recently used.

web(url,opt) opens the page using the specified browser option, such
as '-new' to create a new browser instance or '-browser' to use the
system browser.

web(url,opt1,...,optN) opens the page using one or more browser
options.

stat = web(___) returns the status of the operation: 0 if successful,
1 or 2 if unsuccessful. You can include any of the input arguments in
previous syntaxes.

[stat,h] = web(___) returns a handle to a MATLAB Web browser
that allows you to close it using the command close(h). If you do
not specify any inputs to the web function, such as [stat,h] = web,
then the handle corresponds to the most recently used MATLAB Web
browser.

1-7679

web

[stat,h,url] = web(___) returns the URL of the current page in
the MATLAB Web browser.

Input
Arguments

url - Web page address or file location
string

Web page address or file location, specified as a string. File locations
can include an absolute or relative path.

If url corresponds to a file in the installed product documentation, then
the page displays in the MATLAB Help browser instead of the Web
browser.

Example: 'http:\\www.mathworks.com'

Example: 'myfolder/myfile.html'

opt - Browser option
'-browser' | '-new' | '-noaddressbox' | '-notoolbar'

Browser option, specified as one of the following strings. Options can
appear in any order.

'-browser' Opens the page in a system browser window instead
of the MATLABWeb browser. OnMicrosoft Windows
and Apple Macintosh platforms, the operating
system determines the system Web browser. On
other systems, the default is the Mozilla® Firefox®

browser, but you can change the default using
MATLAB Web preferences.

'-new' Opens the page in a new MATLAB Web browser
window. Does not apply to the system browser.

1-7680

web

'-noaddressbox'Opens the page in a browser that does not display
the address box. Only applies to new instances of the
MATLAB Web browser.

'-notoolbar' Opens the page in a browser that does not display a
toolbar or address box. Only applies to new instances
of the MATLAB Web browser.

Example: '-new','-noaddressbox'

Output
Arguments

stat - Browser status
0 | 1 | 2

Browser status, returned as an integer with one of these values:

0 Found and launched system browser.

1 Could not find system browser.

2 Found, but could not launch system browser.

h - Handle to most recent MATLAB Web browser
scalar

Handle to the most recent MATLAB Web browser, returned as a scalar
instance of the associated Java class.

If you do not request the handle when you open the page, be aware that
this handle might not correspond to your most recent use of the web
function. Other MATLAB functionality also uses the web function, such
as links to external sites from the Help browser.

url - Current page address
string

Current page address in the most recent MATLAB Web browser,
returned as a string.

1-7681

web

Examples Web Page in MATLAB Web Browser

Open the MathWorks Web site home page.

url = 'http://www.mathworks.com';
web(url)

Open the page in a new instance of the browser that does not include a
toolbar.

web(url,'-new','-notoolbar')

File in MATLAB Web Browser

View an HTML file that resides on your system.

Create an HTML file by publishing an example program file. Copy the
program file to the current folder so that the code can run during the
publishing process.

program = fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','fourier_demo2.m');

copyfile(program);
htmlFile = publish('fourier_demo2.m');

View a file by specifying the file name.

web(htmlFile)

Alternatively, you can use the file:/// URL scheme, as long as you
include the full path. The publish function returns the path in the
htmlFile output.

url = ['file:///',htmlFile];
web(url)

Web Page in System Browser

Open the MathWorks Web site home page in the system browser.

url = 'http://www.mathworks.com';

1-7682

web

web(url,'-browser')

Email from System Browser

Send email from your system browser’s default mail application using
the mailto: URL scheme.

To run this example, replace the value for email with a valid email
address.

email = 'myaddress@provider.ext';
url = ['mailto:',email];
web(url)

Handle to MATLAB Web Browser

Open the MathWorks Web site home page, and then close the browser
using its handle.

url = 'http://www.mathworks.com';
[stat,h] = web(url);

Close the browser window.

close(h)

Text Displayed in MATLAB Web Browser

View formatted text using the text:// URL scheme.

web('text://<html><h1>Hello World</h1></html>')

Tips • If you plan to deploy an application that calls the web function using
the MATLAB Compiler product, then use the '-browser' option.

• If you are displaying Japanese streaming text in the MATLAB Web
browser, specify a header that includes the charset attribute. For
example:

web(['text://<html><head><meta http-equiv="content-type" ' ...

'content="text/html;charset=utf-8"></head><body>TEXT</body></html>'])

1-7683

web

See Also urlread | urlwrite

Concepts • “Web Browsers and MATLAB”
• “Specify Proxy Server Settings for Connecting to the Internet”
• “Specify the System Browser for UNIX Platforms”

1-7684

weekday

Purpose Day of week

Syntax DayNumber = weekday(D)
[DayNumber,DayName] = weekday(D)
[DayNumber,DayName] = weekday(D,DayForm)
[DayNumber,DayName] = weekday(D,language)
[DayNumber,DayName] = weekday(D,DayForm,language)

Description DayNumber = weekday(D) returns a number representing the day of
the week for each element in D.

[DayNumber,DayName] = weekday(D) additionally returns abbreviated
English names for the day of the week, in DayName.

[DayNumber,DayName] = weekday(D,DayForm) returns the name for
the day of the week in the format specified by DayForm, in US English.

[DayNumber,DayName] = weekday(D,language) returns the
abbreviated name for the day of the week in the language of the locale
specified in language.

[DayNumber,DayName] = weekday(D,DayForm,language) returns
the name for the day of the week in the specified format and in the
language of the specified locale. You can specify DayForm and language
in either order.

Input
Arguments

D - Serial date numbers or date strings
vector | matrix | string | cell array of strings | character array

Serial date numbers or date strings. Date numbers can be specified as a
vector or matrix. Date strings can be specified as a single string, a cell
array of strings, or a character array. If D is a cell array of strings, it
must be 1-by-n or n-by-1.

1-7685

weekday

If D is a single date string, a cell array of date strings, or a character
array of date strings, the date strings can be in one of the following
formats.

Date String Format Example

dd-mmm-yyyy 01-Mar-2000

mm/dd/yyyy 03/01/2000

yyyy-mm-dd 2000-03-01

For date strings in other formats, first convert them to serial date
numbers using the datenum function, before passing them to weekday.

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | char | cell

DayForm - Format of output day names
'short' (default) | 'long'

Format of the output day names, specified as one of the following
strings.

DayForm Format of DayName
Names

Example

'short' Abbreviated name Mon

'long' Full name Monday

language - Output language of day names
'en_US' (default) | 'local'

Output language of day names in DayName, specified as one of the
following strings.

1-7686

weekday

language Description

'en_US' US English

'local' Language of the current locale

Output
Arguments

DayNumber - Value representing day of week
array of integers in the range [1,7]

Value representing the day of the week, returned as an array of integers
in the range [1,7], where 1 represents Sunday, and 7 represents
Saturday.

• If input D is a numeric array, then the size of DayNumber is equivalent
to the size of D.

• If input D is a cell array of strings, then DayNumber is an m-by-1
vector, where m is equivalent to the length of D.

DayName - Name of day of week
character array

Name of the day of the week, returned as a character array. The content
of DayName depends on DayForm.

• If DayForm is 'short', then DayName contains an abbreviated name
(for example, Tues).

• If DayForm is 'long', then DayName contains the full name of the
weekday (for example, Tuesday).

DayName is m-by-n, where m is the number of serial date numbers or
date strings in D.

Examples Return Day of Week of a Date String

Determine the day of the week of December 21, 2012.

D = '21-Dec-2012';
[DayNumber,DayName] = weekday(D)

1-7687

weekday

DayNumber =

6

DayName =

Fri

December 21, 2012 falls on a Friday.

Return Full Day Names of Multiple Date Numbers

Return the full name of the day of the week for a vector of serial date
numbers.

D = [734999;735015];
DayForm = 'long';
[DayNumber,DayName] = weekday(D,DayForm)

DayNumber =

5
7

DayName =

Thursday
Saturday

Return Full Day Names in Local Language

Return day names in U.S. English using the language input argument.

D = 728647;
DayForm = 'long';
language = 'en_US';

1-7688

weekday

[DayNumber, DayName] = weekday(D,DayForm,language)

DayNumber =

2

DayName =

Monday

In U.S. English, the name of the day of the week is Monday.

Return day names in the language of the current locale.

language = 'local';
[DayNumber, DayName] = weekday(D,DayForm,language)

DayNumber =

2

DayName =

Lundi

In a French locale, the name of the day of the week is Lundi.

Return Day of Week of a Date String in Custom Format

Determine the day of the week for a date specified in the format
mmm.dd.yyyy. Call datenum inside of weekday to specify the format of
the input date string.

[DayNumber,DayName] = weekday(datenum('Dec.21.2012','mmmm.dd.yyyy'))

DayNumber =

1-7689

weekday

6

DayName =

Fri

See Also datenum | datevec | eomday

1-7690

what

Purpose List MATLAB files in folder

Syntax what
what folderName
what className
what packageName
s = what('folderName')

Description what lists the path for the current folder, and lists all files and folders
relevant to MATLAB found in the current folder. Files listed are M,
MAT, MEX, MDL, SLX, and P-files. Folders listed are all class and
package folders.

what folderName lists path, file, and folder information for folderName.

what className lists path, file, and folder information for method
folder @className. For example, what cfit lists the MATLAB files and
folders in toolbox/curvefit/curvefit/@cfit.

what packageName lists path, file, and folder information for package
folder +packageName. For example, what commsrc lists the MATLAB
files and folders in toolbox/comm/comm/+commsrc.

s = what('folderName') returns the results in a structure array with
the fields shown in the following table.

Field Description

path Path to folder

m Cell array of MATLAB program file names

mat Cell array of MAT-file names

mex Cell array of MEX-file names

mdl Cell array of MDL-file names

slx Cell array of SLX-file names

p Cell array of P-file names

1-7691

what

Field Description

classes Cell array of class folders

packages Cell array of package folders

Examples List the MATLAB files and folders in C:\Program
Files\MATLAB\Rnnnn\toolbox\matlab\audiovideo\+audiovideo,
where Rnnnn represents the folder for the MATLAB release, for
example, R2012b:

what audiovideo

MATLAB Code files in folder C:\Program Files\MATLAB\Rnnnn\toolbox\matlab\audiovideo\+audiovideo

FileFormatInfo

Packages in folder C:\Program Files\MATLAB\Rnnnn\toolbox\matlab\audiovideo\+audiovideo

internal writer

MATLAB Code files in folder C:\Program Files\MATLAB\Rnnnn\toolbox\matlab\audiovideo

Contents aufinfo mmcompinfo wavplay

audiodevinfo auread mmfileinfo wavread

audioinfo auwrite movie2avi wavrecord

audioplayerreg avgate mu2lin wavwrite

audioread avifinfo prefspanel

audiorecorderreg aviinfo sound

audiouniquename aviread soundsc

audiowrite lin2mu wavfinfo

MAT-files in folder C:\Program Files\MATLAB\Rnnnn\toolbox\matlab\audiovideo

chirp handel splat

gong laughter train

1-7692

what

Classes in folder C:\Program Files\MATLAB\Rnnnn\toolbox\matlab\audiovideo

VideoReader audioplayer avifile

VideoWriter audiorecorder mmreader

Packages in folder C:\Program Files\MATLAB\Rnnnn\toolbox\matlab\audiovideo

audiovideo

Obtain a structure array containing the file and folder names in
toolbox/matlab/codetools that are relevant to MATLAB, where
Rnnnn represents the folder for the MATLAB release, for example,
R2012a:

s = what('codetools')

s =

path: 'C:\Program Files\MATLAB\Rnnnn\toolbox\matlab\codetools'

m: {77x1 cell}

mat: {0x1 cell}

mex: {0x1 cell}

mdl: {0x1 cell}

slx: {0x1 cell}

p: {0x1 cell}

classes: {2x1 cell}

packages: {3x1 cell}

Find the supporting files for one of the packages in the Communications
System Toolbox product:

p1 = what('comm');
p1.packages
ans =

1-7693

what

'gpu'
'internal'

ans =

'internal'.
.
.
p2 = what('commsrc');
p2.m
ans =

'abstractJitter.m'
'abstractPulse.m'
'combinedjitter.m'
'diracjitter.m'
'periodicjitter.m'
'randomjitter.m'

See Also dir | exist | lookfor | ls | which | who

1-7694

whatsnew

Purpose Release Notes

Note whatsnew will be removed in a future release.

Syntax whatsnew

Description whatsnew displays the MATLAB Release Notes in the Help browser,
presenting information about new features, problems from previous
releases that have been fixed in the current release, and compatibility
issues.

See Also help | version

1-7695

which

Purpose Locate functions and files

Syntax which item
which fun1 in fun2

which ___ -all

str = which(item)
str = which(fun1,'in',fun2)

str = which(___ ,'-all')

Description which item displays the full path for item.

• If item is a MATLAB function in an M or P file, or a Simulink model
in an SLX or MDL file, then which displays the full path for the
corresponding file. item must be on the MATLAB path.

• If item is a method in a loaded Java class, then which displays the
package, class, and method name for that method.

• If item is a workspace variable, then which displays a message
identifying item as a variable.

• If item is a file name including the extension, and it is in the current
working folder or on the MATLAB path. then which displays the
full path of item.

If item is an overloaded function or method, then which item returns
only the path of the first function or method found.

which fun1 in fun2 displays the path to function fun1 that is called
by file fun2. Use this syntax to determine whether a local function is
being called instead of a function on the path. This syntax does not
locate nested functions.

which ___ -all displays the paths to all items on the MATLAB path
with the requested name. Such items include methods of instantiated

1-7696

which

classes. You can use -all with the input arguments of any of the
previous syntaxes.

str = which(item) returns the full path for item in the string, str.

str = which(fun1,'in',fun2) returns the path to function fun1 that
is called by file fun2. Use this syntax to determine whether a local
function is being called instead of a function on the path. This syntax
does not locate nested functions.

str = which(___ ,'-all') returns the results of which in the string
or cell array of strings, str. You can use this syntax with any of the
input arguments in the previous syntax group.

Input
Arguments

item - Function or file to locate
string

Function or file to locate, specified as a string. When using the function
form of which, enclose all input strings in single quotes. item can be in
one of the following forms.

Form of the item Input Path to Display

fun Display full path for fun, which can be
a MATLAB function, Simulink model,
workspace variable, method in a loaded
Java class, or file name that includes the
file extension.

To display the path for a file that has no
file extension, type which file. (The
period following the filename is required).
Use exist to check for the existence of files
anywhere else.

private/fun Limit the search to private functions named
fun. For example, which private/orthog
or which('private/orthog') displays
the path for orthog.m in the /private
subfolder of the parent folder.

fun(a1,...,an) Display the path to the implementation
of function fun which would be invoked
if called with the input arguments
a1,...,an. Use this syntax to query
overloaded functions. See the Example,
“Locate Function Invoked with Given Input
Arguments” on page 1-7700.

1-7697

which

fun1 - Function to locate
string

Function to locate, specified as a string. fun1 can be the name of a
function, or it can be in the form fun(a1,...,an). For more information
about the form, fun(a1,...,an), see “Locate Function Invoked with
Given Input Arguments” on page 1-7700.

When using the function form of which, enclose all input strings in
single quotes, for example, which('myfun1','in','myfun2').

fun2 - Calling file
string

Calling file, specified as a string. fun2 can be the name of a file, or it
can be in the form fun(a1,...,an). For more information about the
form, fun(a1,...,an), see “Locate Function Invoked with Given Input
Arguments” on page 1-7700.

When using the function form of which, enclose all input strings in
single quotes, for example, which('myfun1','in','myfun2').

Output
Arguments

str - Function or file location
string | cell array of strings

Function or file location, returned as a string, or returned as a cell array
of strings if you use '-all'.

• If item is a workspace variable, then str is the string 'variable'.

• If str is a cell array of strings, then each row of str identifies a
function, and the functions are in order of precedence.

Examples Locate MATLAB Function

Locate the pinv function.

which pinv

matlabroot\toolbox\matlab\matfun\pinv.m

1-7698

which

pinv is in the matfun folder of MATLAB.

You also can use function syntax to return the path to a string, str.
When using the function form of which, enclose all input strings in
single quotes.

str = which('pinv');

Locate Method in a Loaded Java Class

Create an instance of the Java class. This loads the class into MATLAB.

myDate = java.util.Date;

Locate the setMonth method.

which setMonth

setMonth is a Java method % java.util.Date method

Locate Private Function

Find the orthog function in a private folder.

which private/orthog

matlabroot\toolbox\matlab\elmat\private\orthog.m
% Private to elmat

MATLAB displays the path for orthog.m in the /private subfolder of
toolbox/matlab/elmat.

Determine if Local Function is Called

Determine which parseargs function is called by area.m.

which parseargs in area

matlabroot\toolbox\matlab\specgraph\area.m (parseargs)
% Subfunction of area

1-7699

which

You also can use function syntax to return the path to a string, str.
When using the function form of which, enclose all input strings in
single quotes.

str = which('parseargs','in','area');

Locate Function Invoked with Given Input Arguments

Suppose you have a matlab.io.MatFile object that corresponds to the
example MAT-file 'topography.mat':

matObj = matfile('topography.mat');

Display the path of the implementation of who that is invoked when
called with the input argument (matObj).

which who(matObj)

matlabroot\toolbox\matlab\iofun\+matlab\+io\MatFile.m
% matlab.io.MatFile method

Store the result to a string.

str = which('who(matObj)')

str =
matlabroot\toolbox\matlab\iofun\+matlab\+io\MatFile.m

If you do not specify the input argument (matObj), then which returns
only the path of the first function or method found.

which who

built-in (matlabroot\\toolbox\matlab\general\who)

Locate All Items with Given Name

Display the paths to all items on the MATLAB path with the name
fopen.

which fopen -all

1-7700

which

built-in (matlabroot\toolbox\matlab\iofun\fopen)
matlabroot\toolbox\matlab\iofun\@serial\fopen.m % serial met
matlabroot\toolbox\shared\instrument\@icinterface\fopen.m % icinterfac
matlabroot\toolbox\instrument\instrument\@i2c\fopen.m
% i2c method

Return Path Names as Strings

Return the results of which in the string str.

You must use the function form of which, enclosing all arguments in
parentheses and single quotes.

str = which('private/stradd','-all');
whos str

Name Size Bytes Class Attributes

str 2x1 650 cell

Tips • For more information about how MATLAB uses scope and precedence
when calling a function, see “Function Precedence Order”.

Limitations • When the class is not loaded, which only finds methods if they are
defined in separate files in an @-folder and are not in any packages.

See Also dir | doc | exist | lookfor | mfilename | path | type | what |
who | fileparts |

1-7701

while

Purpose Repeatedly execute statements while condition is true

Syntax while expression
statements

end

Description while expression, statements, end repeatedly executes one or
more MATLAB program statements in a loop as long as an expression
remains true.

An evaluated expression is true when the result is nonempty and
contains all nonzero elements (logical or real numeric). Otherwise, the
expression is false.

Expressions can include relational operators (such as < or ==) and
logical operators (such as &&, ||, or ~). MATLAB evaluates compound
expressions from left to right, adhering to operator precedence rules.

Note Within the condition expression of an if or while statement,
logical operators & and | behave as short-circuit operators. This
behavior is the same as && and ||, respectively. Since && and ||
consistently short-circuit in if and while condition expressions and
statements, it is good practice to use && and || instead of & and | within
expression.

Tips • If you inadvertently create an infinite loop (that is, a loop that never
ends on its own), stop execution of the loop by pressing Ctrl+C.

• To programmatically exit the loop, use a break statement. To skip
the rest of the instructions in the loop and begin the next iteration,
use a continue statement.

• You can nest any number of while statements. Each while statement
requires an end keyword.

1-7702

while

Examples Find the first integer n for which factorial(n) is a 100-digit number.

n = 1;
nFactorial = 1;
while nFactorial < 1e100

n = n + 1;
nFactorial = nFactorial * n;

end

Count the number of lines of code in the file magic.m, skipping all blank
lines and comments.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) || strncmp(line,'%',1) || ~ischar(line)

continue
end
count = count + 1;

end
fprintf('%d lines\n',count);
fclose(fid);

Find the root of the polynomial x3 - 2x - 5 using interval bisection.

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b

x = (a+b)/2;
fx = x^3-2*x-5;
if fx == 0

break
elseif sign(fx) == sign(fa)

a = x; fa = fx;

1-7703

while

else
b = x; fb = fx;

end
end
disp(x)

Take advantage of short-circuiting to avoid error or warning messages.

x = 42;
while exist('myfunction.m') && (myfunction(x) >= pi)

disp('Condition is true')
break

end

See Also return | continue | break | for | end | if | switch | Logical
Operators: Short Circuit

Concepts • “Relational Operators”

1-7704

whitebg

Purpose Change axes background color

Syntax whitebg
whitebg(fig)
whitebg(ColorSpec)
whitebg(fig, ColorSpec)
whitebg(fig, ColorSpec)
whitebg(fig)

Description whitebg complements the colors in the current figure.

whitebg(fig) complements colors in all figures specified in the vector
fig.

whitebg(ColorSpec) and whitebg(fig, ColorSpec) change the
color of the axes, which are children of the figure, to the color
specified by ColorSpec. Without a figure specification, whitebg or
whitebg(ColorSpec) affects the current figure and the root’s default
properties so subsequent plots and new figures use the new colors.

whitebg(fig, ColorSpec) sets the default axes background color of
the figures in the vector fig to the color specified by ColorSpec. Other
axes properties and the figure background color can change as well so
that graphs maintain adequate contrast. ColorSpec can be a 1-by-3
RGB color or a color string such as 'white' or 'w'.

whitebg(fig) complements the colors of the objects in the specified
figures. This syntax is typically used to toggle between black and white
axes background colors, and is where whitebg gets its name. Include
the root window handle (0) in fig to affect the default properties for
new windows or for clf reset.

Tips whitebg works best in cases where all the axes in the figure have the
same background color.

whitebg changes the colors of the figure’s children, with the exception
of shaded surfaces. This ensures that all objects are visible against the
new background color. whitebg sets the default properties on the root
such that all subsequent figures use the new background color.

1-7705

whitebg

Examples Set the background color to blue-gray.

whitebg([0 .5 .6])

Set the background color to blue.

whitebg('blue')

See Also ColorSpec | colordef

1-7706

who

Purpose List variables in workspace

Syntax who
who(variables)
who(location)
who(variables,location)
c = who(variables,location)

Description who lists in alphabetical order all variables in the currently active
workspace.

who(variables) lists only the specified variables.

who(location) lists variables in the specified location: 'global' for
the global workspace, or '-file' for a MAT-file. For MAT-files, you
must also include the file name as an input.

who(variables,location) lists the specified variables in the specified
location. The location input can appear before or after variables.

c = who(variables,location) stores the names of the variables in
cell array c. Specifying variables and location is optional.

Tips • The who function displays the variable list unless you specify an
output argument.

• When used within a nested function, the who function lists the
variables in the workspaces of that function and all functions
containing that function, grouped by workspace. This applies
whether you call who from your function code or from the MATLAB
debugger.

Input
Arguments

variables

Strings that specify the variables to list. Use one of these forms:

1-7707

who

var1, var2, ... List the specified variables.
Use the '*' wildcard to match
patterns. For example,
who('A*') lists all variables
that start with A.

'-regexp', expressions List variables whose names
match the specified regular
expressions.

Default: '*' (all variables)

location

String that indicates whether to list variables from the global workspace
or from a file:

'global' Global workspace.

'-file', filename MAT-file. The filename input
can include the full, relative, or
partial path.

Default: '' (current workspace)

Output
Arguments

c

Cell array of strings that correspond to each variable name.

Examples Display information about variables in the current workspace whose
names start with the letter a:

who a*

Show variables stored in MAT-file durer.mat:

who -file durer

1-7708

who

This code returns:

Your variables are:

X caption map

Store the variable names from durer.mat in cell array durerInfo:

durerInfo = who('-file', 'durer');

Display the contents of cell array durerInfo:

for k=1:length(durerInfo)
disp(durerInfo{k})

end

This code returns:

X
caption
map

Suppose that a file mydata.mat contains variables with names that
start with java and end with Array. Display information about those
variables:

whos -file mydata -regexp \<java.*Array\>

Call who within a nested function (get_date):

function who_demo
date_time = datestr(now);

[str pos] = textscan(date_time, '%s%s%s', ...
1, 'delimiter', '- :');

1-7709

who

get_date(str);

function get_date(d)
day = d{1};
mon = d{2};
year = d{3};
who

end

end

When you run who_demo, the who function displays the variables by
function workspace (although the name of the function does not appear
in the output):

Your variables are:

d mon ans pos
day year date_time str

Alternatives To view the variables in the workspace, use the Workspace browser. To
view the contents of MAT-files, use the Details Panel of the Current
Folder browser..

See Also assignin | clear | dir | evalin | exist | inmem | load | save |
what | whos | workspace

1-7710

matlab.io.MatFile.who

Purpose Names of variables in MAT-file

Syntax varlist = who(matObj)
varlist = who(matObj,variables)

Description varlist = who(matObj) lists alphabetically all variables in the
MAT-file associated with matObj. Optionally, returns the list in cell
array varlist.

varlist = who(matObj,variables) lists the specified variables.

Input
Arguments

matObj

Object created by the matfile function.

variables

Names of variables in the MAT-file corresponding to matObj. Use
one of these forms:

var1,...,varN Comma-separated list of
variable name strings.
Optionally, match patterns
with the '*' wildcard, such as
who(matobj,'A*').

'-regexp',expressions Regular expression strings
that describe variable names.

Output
Arguments

varlist

Cell array of strings that correspond to each variable name.

Examples Display a list of variables in the example file topography.mat:

matObj = matfile('topography.mat');
who(matObj)

This code returns:

1-7711

matlab.io.MatFile.who

Your variables are:

topo topolegend topomap1 topomap2

See Also matfile | whos

1-7712

whos

Purpose List variables in workspace, with sizes and types

Syntax whos
whos(variables)
whos(location)
whos(variables,location)

S = whos(___)

Description whos displays in alphabetical order all variables in the currently active
workspace, with information about their sizes and types.

whos(variables) displays only the specified variables.

whos(location) displays variables in the specified location.

whos(variables,location) displays the specified variables in the
specified location. The location and variables inputs can appear
in either order.

S = whos(___) stores information about the variables in structure
array, S, using no input arguments, or any of the input arguments from
the previous syntaxes.

Input
Arguments

variables - Variables to display
strings

Variables to display, specified as one or more strings in one of the
following forms.

1-7713

whos

Form of Variables Input Variable Names

var1 ... varN List the named variables, specified as
individual strings.
Use the '*' wildcard to match
patterns. For example, whos('A*')
lists all variables in the workspace
that start with A.

'-regexp',expr1 ...
exprN

List only the variables that
match the regular expressions,
specified as strings. For example,
whos('-regexp','^Mon','^Tues')
lists only the variables in the
workspace that begin with Mon or
Tues.

location - Location of variables
'global' | 'file',filename

Location of variables, specified as one of the following strings.

Value of location Location of Variables

'global' Global workspace.

'-file',filename MAT-file. The filename input
can include the full, relative,
or partial path. For example,
whos('file','myFile.mat') lists
all variables in the MAT-file named
myFile.mat.

whos('-file',filename) does not
return the sizes of any MATLAB
objects in file filename.

1-7714

whos

Output
Arguments

S - Information about variables
nested structure array

Information about variables, returned as a nested structure array that
contains a scalar struct for each variable. Each scalar struct contains
these fields.

Field Description

name Name of the variable.

size Dimensions of the variable array.

bytes Number of bytes allocated for the variable array.

class Class of the variable. If the variable has no value,
class is '(unassigned)'.

global True if the variable is global; otherwise, false.

sparse True if the variable is sparse; otherwise, false.

complex True if the variable is complex; otherwise, false.

nesting Structure with these fields:

• function—Name of the nested or outer function
that defines the variable.

• level— Nesting level of that function.

persistent True if the variable is persistent; otherwise, false.

Examples Display Information About Workspace Variables

Display information about variables in the current workspace whose
names start with the letter a.

whos('a*')

Display Variables Stored in a MAT-File

Display all variables stored in the MAT-file, durer.mat.

1-7715

whos

whos('-file','durer.mat')

Name Size Bytes Class Attributes

X 648x509 2638656 double
caption 2x28 112 char
map 128x3 3072 double

Show only variables in the MAT-file with names that end with ion.

whos('-file','durer.mat','-regexp','ion$')

Name Size Bytes Class Attributes

caption 2x28 112 char

Store Variable Information in a Structure Array

Store information about the variables in durer.mat in structure array S.

S = whos('-file','durer.mat');

Display the contents of S.

for k = 1:length(S)
disp([' ' S(k).name ...

' ' mat2str(S(k).size) ...
' ' S(k).class]);

end

X [648 509] double
caption [2 28] char
map [128 3] double

Create Function to Display Variable Attribute Information

In the Editor, create a function that creates variables with various
persistent, global, sparse, and complex attributes, and then displays
information about them.

1-7716

whos

function show_attributes
persistent p;
global g;
p = 1;
g = 2;
s = sparse(eye(5));
c = [4+5i 9-3i 7+6i];
whos

When you call the function, show_attributes displays the attributes.

show_attributes

Name Size Bytes Class Attributes

c 1x3 48 double complex
g 1x1 8 double global
p 1x1 8 double persistent
s 5x5 128 double sparse

Call whos Within a Nested or Anonymous Function

Create a function, whos_demo, that contains a nested function,
get_date. Call whos within the nested function.

function whos_demo
date_time = datestr(now);

C = strsplit(date_time,{'-',''});
get_date(C);

function get_date(d)
day = d{1};
mon = d{2};
year = d{3};
whos

end

1-7717

whos

end

When you run the whos_demo function, whos displays the variables of
the nested get_date function, and all functions that contain it, grouped
by function workspace. This applies whether you call whos from your
function code or from the MATLAB debugger.

whos_demo

Name Size Bytes Class Attributes

---- get_date --
d 1x3 372 cell
day 1x2 4 char
mon 1x3 6 char
year 1x13 26 char

---- whos_demo ---
C 1x3 372 cell
ans 0x0 0 (unassigned)
date_time 1x20 40 char

When called within an anonymous function, variables in the anonymous
function also display in a group, titled with the function’s signature

Tips • You also can view the contents of MAT-files using the Details Panel
of the Current Folder browser.

Algorithms whos returns the number of bytes each variable occupies in the
workspace, not in a MAT-file. Version 7 MAT-files and later are
compressed, so the number of bytes in the file is typically fewer than
the number of bytes required in the workspace.

See Also clear | exist | what | who

Concepts • “What Is the MATLAB Workspace?”

1-7718

matlab.io.MatFile.whos

Purpose Names, sizes, and types of variables in MAT-file

Syntax details = whos(matObj)
details = whos(matObj,variables)

Description details = whos(matObj) returns information about all variables in
the MAT-file associated with matObj.

details = whos(matObj,variables) returns information about the
specified variables.

Input
Arguments

matObj

Object created by the matfile function.

variables

Names of variables in the MAT-file corresponding to matObj. Use
one of these forms:

var1,...,varN Comma-separated list of
variable name strings.
Optionally, match patterns
with the '*' wildcard, such as
whos(matobj,'A*').

'-regexp',expressions Regular expression strings
that describe variable names.

Output
Arguments

details

Structure array with these fields (identical to the structure
returned by the whos function):

name Variable name

size Dimensions of the variable

1-7719

matlab.io.MatFile.whos

bytes Number of bytes allocated for the array when
you load the entire variable

class Class (data type) of the variable

global Whether the variable is global (true or false)

sparse Whether the variable is sparse

complex Whether the variable is complex

nesting Structure with these fields:

• function — Name of the nested or outer
function that defines the variable

• level — Nesting level

persistent Whether the variable is persistent

Examples Display a list of variables in the example file topography.mat:

matObj = matfile('topography.mat');
whos(matObj)

This code returns:

Name Size Bytes Class Attributes

topo 180x360 518400 double
topolegend 1x3 24 double
topomap1 64x3 1536 double
topomap2 128x3 3072 double

Without loading any data, find the size and number of dimensions of
the variable topo in topography.mat:

matObj = matfile('topography.mat');
info = whos(matObj,'topo');

1-7720

matlab.io.MatFile.whos

sizeX = info.size
nDimsX = length(sizeX)

This code returns:

sizeX =
180 360

nDimsX =
2

See Also matfile | size

1-7721

width

Purpose Number of table variables

Syntax W = width(T)

Description W = width(T) returns the number of variables in table T.

width(T) is equivalent to size(T,2).

Input
Arguments

T - Input table
table

Input table, specified as a table.

Variables in a table can have multiple columns, but width(T) only
counts the number of variables.

Examples Number of Variables in Table

Create a table, T.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

T = table(Age,Height,Weight,BloodPressure,'RowNames',LastName)

T =

Age Height Weight BloodPressure
___ ______ ______ _______________

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

1-7722

width

Find the number of variables in table T.

W = width(T)

W =

4

T contains 4 variables; width does not count the row names.

The variable BloodPressure counts as one variable even though it
contains two columns.

See Also height | size | numel

1-7723

wilkinson

Purpose Wilkinson’s eigenvalue test matrix

Syntax W = wilkinson(n)

Description W = wilkinson(n) returns one of J. H. Wilkinson’s eigenvalue test
matrices. It is a symmetric, tridiagonal matrix with pairs of nearly,
but not exactly, equal eigenvalues.

Examples wilkinson(7)

ans =

3 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 2 1
0 0 0 0 0 1 3

The most frequently used case is wilkinson(21). Its two largest
eigenvalues are both about 10.746; they agree to 14, but not to 15,
decimal places.

See Also eig | gallery | pascal

1-7724

winopen

Purpose Open file in appropriate application (Windows)

Syntax winopen(fileName)

Description winopen(fileName) opens fileName in the associated Microsoft
Windows application. The application is associated with the extension
in fileName in the Windows operating system. filename is a string
enclosed in single quotes. winopen uses a Windows shell command, and
performs the same action as double-clicking the file in the Windows
Explorer program. That is, winopen calls the application associated
the file extension to open the file. Use an absolute or relative path for
fileName.

Examples Open the file thesis.doc, located in the current folder, in the Microsoft
Word program:

winopen('thesis.doc')

Open myresults.html in the system Web browser:

winopen('D:/myfiles/myresults.html')

On Microsoft Windows platforms, open the current folder in the
Windows Explorer tool:

winopen(cd)

To open a file on the MATLAB path, use winopen with which. For
example, to open the meshgrid function in the Editor, use:

winopen(which('meshgrid'))

See Also dos | open | web

1-7725

winqueryreg

Purpose Item from Windows registry

Syntax valnames = winqueryreg('name', 'rootkey', 'subkey')
value = winqueryreg('rootkey', 'subkey', 'valname')
value = winqueryreg('rootkey', 'subkey')

Description valnames = winqueryreg('name', 'rootkey', 'subkey') returns
all value names in rootkey\subkey of Microsoft Windows operating
system registry to a cell array of strings. The first argument is the
literal quoted string, 'name'.

value = winqueryreg('rootkey', 'subkey', 'valname') returns
the value for value name valname in rootkey\subkey.

If the value retrieved from the registry is a string, winqueryreg returns
a string. If the value is a 32-bit integer, winqueryreg returns the value
as an integer of the MATLAB software type int32.

value = winqueryreg('rootkey', 'subkey') returns a value in
rootkey\subkey that has no value name property.

Note The literal name argument and the rootkey argument are
case-sensitive. The subkey and valname arguments are not.

Tips This function works only for the following registry value types:

• strings (REG_SZ)

• expanded strings (REG_EXPAND_SZ)

• 32-bit integer (REG_DWORD)

Examples Example 1

Get the value of CLSID for the MATLAB sample Microsoft COM control
mwsampctrl.2:

winqueryreg 'HKEY_CLASSES_ROOT' 'mwsamp.mwsampctrl.2\clsid'

1-7726

winqueryreg

ans =
{5771A80A-2294-4CAC-A75B-157DCDDD3653}

Example 2

Get a list in variable mousechar for registry subkey Mouse,
which is under subkey Control Panel, which is under root key
HKEY_CURRENT_USER.

mousechar = winqueryreg('name', 'HKEY_CURRENT_USER', ...
'control panel\mouse');

For each name in the mousechar list, get its value from the registry and
then display the name and its value:

for k=1:length(mousechar)

setting = winqueryreg('HKEY_CURRENT_USER', ...

'control panel\mouse', mousechar{k});

str = sprintf('%s = %s', mousechar{k}, num2str(setting));

disp(str)

end

ActiveWindowTracking = 0
DoubleClickHeight = 4
DoubleClickSpeed = 830
DoubleClickWidth = 4
MouseSpeed = 1
MouseThreshold1 = 6
MouseThreshold2 = 10
SnapToDefaultButton = 0
SwapMouseButtons = 0

1-7727

wk1finfo

Purpose Determine whether file contains 1-2-3 WK1 worksheet

Note wk1finfo has been removed.

Syntax [extens, typ] = wk1finfo(filename)

Description [extens, typ] = wk1finfo(filename) returns the string ’WK1’ in
extens, and ’ 1-2-3 Spreadsheet’ in typ if the file filename contains
a readable worksheet. The filename input is a string enclosed in single
quotes.

Examples This example returns information on spreadsheet file matA.wk1:

[extens, typ] = wk1finfo('matA.wk1')

extens =
WK1

typ =
123 Spreadsheet

See Also xlsread | xlswrite | dlmread | dlmwrite

1-7728

wk1read

Purpose Read Lotus 1-2-3 WK1 spreadsheet file into matrix

Note wk1read has been removed.

Syntax M = wk1read(filename)
M = wk1read(filename,r,c)
M = wk1read(filename,r,c,range)

Description M = wk1read(filename) reads a Lotus1-2-3 WK1 spreadsheet file into
the matrix M. The filename input is a string enclosed in single quotes.

M = wk1read(filename,r,c) starts reading at the row-column cell
offset specified by (r,c). r and c are zero based so that r=0, c=0
specifies the first value in the file.

M = wk1read(filename,r,c,range) reads the range of values specified
by the parameter range, where range can be

• A four-element vector specifying the cell range in the format

[upper_left_row upper_left_col lower_right_row lower_right_col]

• A cell range specified as a string, for example, 'A1...C5'

• A named range specified as a string, for example, 'Sales'

1-7729

wk1read

Examples Create a 8-by-8 matrix A and export it to Lotus spreadsheet matA.wk1:

A = [1:8; 11:18; 21:28; 31:38; 41:48; 51:58; 61:68; 71:78]
A =

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
51 52 53 54 55 56 57 58
61 62 63 64 65 66 67 68
71 72 73 74 75 76 77 78

wk1write('matA.wk1', A);

To read in a limited block of the spreadsheet data, specify the upper left
row and column of the block using zero-based indexing:

M = wk1read('matA.wk1', 3, 2)
M =

33 34 35 36 37 38
43 44 45 46 47 48
53 54 55 56 57 58
63 64 65 66 67 68
73 74 75 76 77 78

To select a more restricted block of data, you can specify both the upper
left and lower right corners of the block you want imported. Read in a
range of values from row 4, column 3 (defining the upper left corner)
to row 6, column 6 (defining the lower right corner). Note that, unlike
the second and third arguments, the range argument [4 3 6 6] is
one-based:

M = wk1read('matA.wk1', 3, 2, [4 3 6 6])
M =

33 34 35 36
43 44 45 46
53 54 55 56

1-7730

wk1read

See Also xlsread

1-7731

wk1write

Purpose Write matrix to Lotus 1-2-3 WK1 spreadsheet file

Note wk1write has been removed.

Syntax wk1write(filename,M)
wk1write(filename,M,r,c)

Description wk1write(filename,M) writes the matrix M into a Lotus1-2-3 WK1
spreadsheet file named filename. The filename input is a string
enclosed in single quotes.

wk1write(filename,M,r,c) writes the matrix starting at the
spreadsheet location (r,c). r and c are zero based so that r=0, c=0
specifies the first cell in the spreadsheet.

Examples Write a 4-by-5 matrix A to spreadsheet file matA.wk1. Place the matrix
with its upper left corner at row 2, column 3 using zero-based indexing:

A = [1:5; 11:15; 21:25; 31:35]
A =

1 2 3 4 5
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

1-7732

wk1write

wk1write('matA.wk1', A, 2, 3)

M = wk1read('matA.wk1')
M =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 2 3 4 5
0 0 0 11 12 13 14 15
0 0 0 21 22 23 24 25
0 0 0 31 32 33 34 35

See Also dlmwrite | dlmread | xlswrite | xlsread

1-7733

workspace

Purpose Open Workspace browser to manage workspace

Syntax workspace

Description workspace displays the Workspace browser, a graphical user interface
that allows you to view and manage the contents of the workspace in
MATLAB. It provides a graphical representation of the whos display,
and allows you to perform the equivalent of the clear, load, open, and
save functions.

The Workspace browser also displays and automatically updates
statistical calculations for each variable, which you can choose to show
or hide.

1-7734

workspace

You can edit a value directly in the Workspace browser for small numeric
and character arrays. To see and edit a graphical representation of
larger variables and for other classes, double-click the variable in the
Workspace browser. The variable displays in the Variables editor,
where you can view the full contents and make changes.

See Also openvar | who

How To • “What Is the MATLAB Workspace?”

1-7735

writetable

Purpose Write table to file

Syntax writetable(T)
writetable(T,filename)
writetable(___ ,Name,Value)

Description writetable(T) writes the table, T, to a comma delimited text file. The
file name is the workspace variable name of the table, appended with
the extension .txt. If writetable cannot construct the file name from
the input table name, then it writes to the file table.txt.

Each column of each variable in T becomes a column in the output file.
The variable names of T become column headings in the first line of
the file.

writetable(T,filename) writes table T to a file with the name and
extension specified by filename.

writetable determines the file format based on the specified extension.
The extension must be one of the following:

• .txt, .dat, or .csv for delimited text files

• .xls, .xlsb, .xlsm, or .xlsx for Excel spreadsheet files

writetable(___ ,Name,Value) writes the table to a file with additional
options specified by one or more Name,Value pair arguments and can
include any of the input arguments in previous syntaxes.

For example, you can specify whether to write the variable names as
column headings in the output file.

Input
Arguments

T - Input table
table

Input table, specified as a table.

filename - Name of file to write

1-7736

writetable

string

Name of file to write, specified as a string. If filename includes the
file’s extension, then writetable determines the file format from the
extension. Otherwise, writetable creates a comma separated text
file and appends the extension .txt. Alternatively, you can specify
filename without the file’s extension, and then include the 'FileType'
name-value pair arguments to indicate the type of file.

If filename does not exist in your current folder, then writetable
creates the file. writetable overwrites any existing file.

Example: 'myData.xls'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'WriteVariableNames',false indicates that the variable
names should not be included as the first row of the output file.

’FileType’ - Type of file
`text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of
'FileType' and the string 'text' or 'spreadsheet'.

The 'FileType' name-value pair must be used with the filename
input argument. You do not need to specify the 'FileType' name-value
pair argument if the file type can be determined from an extension
in the filename input argument.

• .txt, .dat, or .csv for delimited text files

• .xls, .xlsb, .xlsm, or .xlsx for Excel spreadsheet files

Example:
writetable(T,'mySpreadsheet','FileType','spreadsheet')

1-7737

writetable

’WriteVariableNames’ - Indicator for writing variable names as
column headings
true (default) | false | 1 | 0

Indicator for writing variable names as column headings, specified as
the comma-separated pair consisting of 'WriteVariableNames' and
either true, false, 1, or 0.

true writetable includes variable names as the column
headings of the output. This is the default behavior.

If both the 'WriteVariablesNames' and
'WriteRowNames' logical indicators are true, then
writetable uses the first dimension name from the
property T.Properties.DimensionNames as the
column heading for the first column of the output.

false writetable does not include variable names in the
output.

’WriteRowNames’ - Indicator for writing row names in first
column
false (default) | true | 0 | 1

Indicator for writing row names in first column, specified as the
comma-separated pair consisting of 'WriteRowNames' and either false,
true, 0, or 1.

true writetable includes the row names from T as the
first column of the output.

If both the 'WriteVariablesNames' and
'WriteRowNames' logical indicators are true, then
writetable uses the first dimension name from the
property T.Properties.DimensionNames as the
column heading for the first column of the output.

false writetable does not include the row names from T
in the output. This is the default behavior.

1-7738

writetable

’Delimiter’ - Field delimiter character
string

Field delimiter character, specified as the comma-separated pair
consisting of 'Delimiter' and one of the following strings:

','

'comma'

Comma. This is the default behavior.

' '

'space'

Space

'\t'

'tab'

Tab

';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

You can use the 'Delimiter' name-value pair only for delimited text
files.

Example: 'Delimiter','space'

’Sheet’ - Worksheet to write to
string containing worksheet name | positive integer indicating
worksheet index

Worksheet to write to, specified as the comma-separated pair consisting
of 'Sheet' and a string containing the worksheet name or a positive
integer indicating the worksheet index. The worksheet name string
cannot contain a colon (:). To determine the names of sheets in a
spreadsheet file, use [status,sheets] = xlsinfo(filename).

If the sheet does not exist, then writetable adds a new sheet at the
end of the worksheet collection. If the sheet is an index larger than the
number of worksheets, then writetable appends empty sheets until

1-7739

writetable

the number of worksheets in the workbook equals the sheet index. In
either case, writetable generates a warning indicating that it has
added a new worksheet.

You can use the 'Sheet' name-value pair only with spreadsheet files.

Example: 'Sheet',2

’Range’ - Rectangular portion of worksheet to write to
string

Rectangular portion of worksheet to write to, specified as the
comma-separated pair consisting of 'Range' and a string in one of the
following forms.

Form of the Value of
Range

Description

'Corner1' Corner1 specifies the first cell of the
region to write. writetable writes table T
beginning at this cell.

Example: 'Range','D2'

'Corner1:Corner2' Corner1 and Corner2 are two opposing
corners that define the region to write. For
example, 'D2:H4' represents the 3-by-5
rectangular region between the two corners
D2 and H4 on the worksheet. The 'Range'
name-value pair argument is not case
sensitive, and uses Excel A1 reference style
(see Excel help).

If the range you specify is larger than the
size of the input table T, Excel software fills
the remainder of the region with #N/A. If
the range specified is smaller than the size
of the input table T, then writetable writes
only the subset that fits into the range.

Example: 'Range','D2:H4'

1-7740

writetable

The 'Range' name-value pair can only be used with Excel files.

Examples Write Table to Text File

Create a table.

T = table(['M';'F';'M'],[45 45;41 32;40 34],...
{'NY';'CA';'MA'},[true;false;false])

T =
Var1 Var2 Var3 Var4
____ ______________ ____ _____
M 45 45 'NY' true
F 41 32 'CA' false
M 40 34 'MA' false

Write the table, T, to a comma delimited text file.

writetable(T)

writetable outputs a text file named T.txt.

Display the contents of the file.

type 'T.txt'

Var1,Var2_1,Var2_2,Var3,Var4
M,45,45,NY,1
F,41,32,CA,0
M,40,34,MA,0

writetable appends a unique suffix to the variable name, Var2, above
the two columns of corresponding data.

Write Table to Space Delimited Text File

Create a table.

T = table(['M';'F';'M'],[45 45;41 32;40 34],...
{'NY';'CA';'MA'},[true;false;false])

1-7741

writetable

T =
Var1 Var2 Var3 Var4
____ ______________ ____ _____
M 45 45 'NY' true
F 41 32 'CA' false
M 40 34 'MA' false

Write the table, T, to a space delimited text file, called myData.txt.

writetable(T,'myData.txt','Delimiter',' ')

Display the contents of the file.

type 'myData.txt'

Var1 Var2_1 Var2_2 Var3 Var4
M 45 45 NY 1
F 41 32 CA 0
M 40 34 MA 0

writetable appends a unique suffix to the variable name, Var2, above
the two columns of corresponding data.

Write Table to Text File Including Row Names

Create a table.

LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

T = table(Age,Height,Weight,BloodPressure,...
'RowNames',LastName)

T =

Age Height Weight BloodPressure

1-7742

writetable

___ ______ ______ _______________

Smith 38 71 176 124 93
Johnson 43 69 163 109 77
Williams 38 64 131 125 83
Jones 40 67 133 117 75
Brown 49 64 119 122 80

Write the table, T, to a comma delimited text file, called
myPatientData.dat.

writetable(T,'myPatientData.dat','WriteRowNames',true)

Display the contents of the file.

type 'myPatientData.dat'

Row,Age,Height,Weight,BloodPressure_1,BloodPressure_2
Smith,38,71,176,124,93
Johnson,43,69,163,109,77
Williams,38,64,131,125,83
Jones,40,67,133,117,75
Brown,49,64,119,122,80

The first column, which contains the row names, has the column
heading, Row. This is the first dimension name for the table from the
property T.Properties.DimensionNames.

Write Table to Specific Sheet and Range in Spreadsheet

Create a table.

T = table(['M';'F';'M'],[45 45;41 32;40 34],...
{'NY';'CA';'MA'},[true;false;false])

T =

Var1 Var2 Var3 Var4
____ ______________ ____ _____

1-7743

writetable

M 45 45 'NY' true
F 41 32 'CA' false
M 40 34 'MA' false

Write the table, T, to a spreadsheet, called myData.xls. Include the
data on the second sheet in the 5-by-5 region with corners at B2 and F6.

writetable(T,'myData.xls','Sheet',2,'Range','B2:F6')

Excel fills the row of the spreadsheet from B6 to F6 with #N/A since the
range specified is larger than the size of the input table T.

Algorithms Excel converts Inf values to 65535. MATLAB converts NaN values to
empty cells.

Tips • In the cases below, writetable creates a file that does not represent
T exactly. Then, if you use readtable to read that file and create a
new table, the result might not have the same format or contents as
the original table. Save T as a MAT-file if you need to import it again
as a table with the same data and organization.

- writetable outputs numeric variables using long g format, and
categorical or character variables as unquoted strings in text files.

- For variables that have more than one column, writetable
appends a unique identifier to the variable name to use as the
column headings.

- For output variables that have more than two dimensions,
writetable outputs these variables as two dimensional where
the trailing dimensions are collapsed. For example, writetable
outputs a 4-by-3-by-2 variable as if its size were 4-by-6.

- For variables with a cell data type, writetable outputs the
contents of each cell as a single row, in multiple fields. If the
contents are other than numeric, logical, character, or categorical,
then writetable outputs a single empty field.

1-7744

writetable

See Also table | readtable

1-7745

Tiff.write

Purpose Write entire image

Syntax tiffobj.write(imageData)
tiffobj.write(Y,Cb,Cr)

Description tiffobj.write(imageData) writes imageData to TIFF file associated
with the Tiff object, tiffobj. The write method breaks the data into
strips or tiles, depending on the value of the RowsPerStrip tag, or the
TileLength and TileWidth tags.

tiffobj.write(Y,Cb,Cr) writes the YCbCr component data to the
TIFF file. Use this syntax only for images with a YCbCr photometric
interpretation.

Examples Write Image Data

Write tags and image data to a new TIFF file.

Read sample data into an array, imdata. Create a Tiff object associated
with a new file, myfile.tif, and open the file for writing.

imdata = imread('example.tif');
t = Tiff('myfile.tif','w');

Set tag values.

t.setTag('ImageLength',size(imdata,1));
t.setTag('ImageWidth',size(imdata,2));
t.setTag('Photometric',Tiff.Photometric.RGB);
t.setTag('BitsPerSample',8);
t.setTag('SamplesPerPixel',size(imdata,3));
t.setTag('TileWidth',128);
t.setTag('TileLength',128);
t.setTag('Compression',Tiff.Compression.JPEG);
t.setTag('PlanarConfiguration',Tiff.PlanarConfiguration.Chunky);
t.setTag('Software','MATLAB');

Write the image data to the TIFF file.

1-7746

Tiff.write

t.write(imdata);
t.close();

See Also Tiff.writeDirectory

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

1-7747

Tiff.writeDirectory

Purpose Create new IFD and make it current IFD

Syntax tiffobj.writeDirectory()

Description tiffobj.writeDirectory() create a new image file directory (IFD) and
makes it the current IFD. Tiff object methods operate on the current
IFD. If you are creating a TIFF file that only contains one image, you do
not need to use this method. With single-image TIFF files, just close the
Tiff object to write data to the file.

Examples Open a TIFF file for modification and create a new IFD in the file.
writeDirectorymakes the newly created IFD the current IFD. Replace
the name myfile.tif with the name of a TIFF file on your MATLAB
path.

t = Tiff('myfile.tif', 'r+');
dnum = t.currentDirectory();
t.writeDirectory();
dnum = t.currentDirectory();

References This method corresponds to the TIFFWriteDirectory function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.write | Tiff.close

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-7748

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

Tiff.writeEncodedStrip

Purpose Write data to specified strip

Syntax tiffobj.writeEncodedStrip(stripNumber,imageData)
tiffobj.writeEncodedStrip(stripNumber,Y,Cb,Cr)

Description tiffobj.writeEncodedStrip(stripNumber,imageData) writes
the data in imageData to the strip specified by stripNumber. Strip
identification numbers are one-based. If imageData has fewer bytes
than fit into a strip, writeEncodedStrip silently pads the strip. If
imageData has more bytes than fit into a strip, writeEncodedStrip
issues a warning and truncates the data. To determine the size of a
strip, view the value of the RowsPerStrip tag.

tiffobj.writeEncodedStrip(stripNumber,Y,Cb,Cr) writes the
YCbCr component data to the specified tile. You must set the
YCbCrSubSampling tag.

Examples Write Image Data to Strips

Open a Tiff object for writing and set tag values.

t = Tiff('myfile.tif','w');
t.setTag('ImageLength',32);
t.setTag('ImageWidth',32);
t.setTag('Photometric',Tiff.Photometric.MinIsBlack);
t.setTag('BitsPerSample',8);
t.setTag('SamplesPerPixel',1);
t.setTag('RowsPerStrip',16);
t.setTag('PlanarConfiguration',Tiff.PlanarConfiguration.Chunky);

Write data to the first and second strips.

t.writeEncodedStrip(1,ones(16,32,'uint8'));
t.writeEncodedStrip(2,2*ones(16,32,'uint8'));
t.close();

References This method corresponds to the TIFFWriteEncodedStrip function in
the LibTIFF C API. To use this method, you must be familiar with the

1-7749

Tiff.writeEncodedStrip

TIFF specification and technical notes. View this documentation at
LibTIFF - TIFF Library and Utilities.

See Also Tiff.writeEncodedTile

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-7750

http://www.remotesensing.org/libtiff/

Tiff.writeEncodedTile

Purpose Write data to specified tile

Syntax tiffobj.writeEncodedTile(tileNumber,imageData)
tiffobj.writeEncodedTile(tileNumber,Y,Cb,Cr)

Description tiffobj.writeEncodedTile(tileNumber,imageData) writes the data
in imageData to the tile specified by tileNumber. Tile identification
numbers are one-based. If imageData has fewer bytes than fit into a
tile, writeEncodedTile silently pads the tile. If imageData has more
bytes than fit into a tile, writeEncodedTile issues a warning and
truncates the data. To determine the size of a tile, view the value of the
tileLength and tileWidth tags.

tiffobj.writeEncodedTile(tileNumber,Y,Cb,Cr) writes the
YCbCr component data to the specified tile. You must set the
YCbCrSubSampling tags.

Examples Write Image Data to Tiles

Open a Tiff object for writing and set tag values.

t = Tiff('myfile.tif','w');
t.setTag('ImageLength',32);
t.setTag('ImageWidth',32);
t.setTag('Photometric',Tiff.Photometric.MinIsBlack);
t.setTag('BitsPerSample',8);
t.setTag('SamplesPerPixel',1);
t.setTag('TileWidth',16);
t.setTag('TileLength',16);
t.setTag('PlanarConfiguration',Tiff.PlanarConfiguration.Chunky);

Write data to four tiles.

t.writeEncodedTile(1,ones(16,16,'uint8'));
t.writeEncodedTile(2,2*ones(16,16,'uint8'));
t.writeEncodedTile(3,3*ones(16,16,'uint8'));
t.writeEncodedTile(4,4*ones(16,16,'uint8'));
t.close();

1-7751

Tiff.writeEncodedTile

References This method corresponds to the TIFFWriteEncodedTile function in the
LibTIFF C API. To use this method, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF
- TIFF Library and Utilities.

See Also Tiff.writeEncodedStrip

Tutorials • “Exporting Image Data and Metadata to TIFF Files”

• “Reading Image Data and Metadata from TIFF Files”

1-7752

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

VideoWriter.writeVideo

Purpose Write video data to file

Syntax writeVideo(writerObj,img)
writeVideo(writerObj,images)
writeVideo(writerObj,frame)
writeVideo(writerObj,mov)

Description writeVideo(writerObj,img) writes data from an image to a video file.

writeVideo(writerObj,images) writes a sequence of color images
to a video file.

writeVideo(writerObj,frame) writes a frame to the video file
associated with writerObj.

writeVideo(writerObj,mov) writes a MATLAB movie to a video file.
mov is an array of frame structures.

You must call open(writerObj) before calling writeVideo.

Input
Arguments

writerObj

VideoWriter object created by the VideoWriter function.

img

When creating AVI or MPEG-4 files, img is an array of single,
double, or uint8 values representing a grayscale or RGB color
image, which writeVideo writes as an RGB video frame. Data of
type single or double must be in the range [0,1], except when
writing Indexed AVI files.

When creating Motion JPEG 2000 files, img is an array of uint8,
int8, uint16, or int16 values representing a monochrome or
RGB color image.

For grayscale, monochrome, or indexed data, img must be
two-dimensional: height-by-width. For color data that is not
indexed, img is three-dimensional: height-by-width-by-3. The
height and width must be consistent for all frames within a file.
For more information, see “Image Types”.

1-7753

VideoWriter.writeVideo

images

Four-dimensional array of grayscale
(height-by-width-by-1-by-frames) or RGB
(height-by-width-by-3-by-frames) images.

frame

Structure typically returned by the getframe function that
contains two fields: cdata and colormap. If the colormap is not
empty, writeVideo expects a two-dimensional (height-by-width)
array cdata. The height and width must be consistent for all
frames within a file. colormap can contain a maximum of 256
entries.

The profile of writerObj and the size of cdata determine how
the writeVideo method uses frame.

profile of
VideoWriter
object

Size of cdata Behavior of
writeVideo

2-dimensional
(height-by-width)

Use frame as
provided. For
'Grayscale AVI',
colormap should be
empty.

'Indexed AVI' or
'Grayscale AVI'

3-dimensional
(height-by-width-by-3)

Error

2-dimensional
(height-by-width)

Construct RGB
image frames using
the colormap field

All other profiles

3-dimensional
(height-by-width-by-3)

Colormap field
ignored. Construct
RGB image frames
using the cdata
field

1-7754

VideoWriter.writeVideo

mov

1-by-F array of frame structures, where F is the number of images.
Each frame structure contains fields cdata and colormap.

Examples AVI File from Animation

Write a sequence of frames to a compressed AVI file, peaks.avi.

Prepare the new file.

writerObj = VideoWriter('peaks.avi');
open(writerObj);

Generate initial data and set axes and figure properties.

Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');
set(gcf,'Renderer','zbuffer');

Setting the Renderer property to zbuffer or Painters works around
limitations of getframe with the OpenGL renderer on some Windows
systems.

Create a set of frames and write each frame to the file.

for k = 1:20
surf(sin(2*pi*k/20)*Z,Z)
frame = getframe;
writeVideo(writerObj,frame);

end

close(writerObj);

MPG to AVI Conversion

Convert an example file, xylophone.mp4, to an uncompressed AVI file:

1-7755

VideoWriter.writeVideo

Create objects to read and write the video, and open the AVI file for
writing.

readerObj = VideoReader('xylophone.mp4');
writerObj = VideoWriter('transcoded_xylophone.avi', ...

'Uncompressed AVI');

open(writerObj);

Read and write each frame.

for k = 1:readerObj.NumberOfFrames
img = read(readerObj,k);
writeVideo(writerObj,img);

end

close(writerObj);

See Also close | getframe | VideoReader | VideoWriter | movie2avi | open

1-7756

xlabel

Purpose Label x-axis

Syntax xlabel(str)
xlabel(str,Name,Value)

xlabel(axes_handle, ___)

h = xlabel(___)

Description xlabel(str) labels the x-axis of the current axes with the string, str.
Each axes graphics object has one predefined x-axis label. Reissuing the
xlabel command causes the new label to replace the old label. Labels
appear beneath the axis in a two-dimensional view and to the side or
beneath the axis in a three-dimensional view.

xlabel(str,Name,Value) additionally specifies the text object
properties using one or more Name,Value pair arguments.

xlabel(axes_handle, ___) adds the label to the axes specified by
axes_handle. This syntax allows you to specify the axes to which to
add a label. axes_handle can precede any of the input argument
combinations in the previous syntaxes.

h = xlabel(___) returns the handle to the text object used as the
x-axis label. The handle is useful when making future modifications
to the label.

Input
Arguments

str - Text to display as x-axis label
string

Text to display as the x-axis label, specified as a string or the name of
a function that returns a string.

Example: 'myLabel'

axes_handle - Axes handle

1-7757

xlabel

handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Color','red','FontSize',12 adds an x-axis label with
red, 12-point font.

In addition to the following, you can specify other text object properties
using Name,Value pair arguments. See Text Properties.

’Color’ - Text color
[0 0 0] (black) (default) | 3-element RGB vector | string

Text color, specified as the comma-separated pair consisting of 'Color'
and a 3-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

The following table lists the predefined colors and their RGB
equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

1-7758

xlabel

RGB Value Short Name Long Name

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

Example: 'Color',[0 1 0]

Example: 'Color','green'

’FontAngle’ - Character slant
'normal' (default) | 'italic' | 'oblique'

Character slant, specified as the comma-separated pair consisting
of 'FontAngle' and one of these values: 'normal', 'italic', or
'oblique'. MATLAB uses the FontAngle property to select a font
from those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

Example: 'FontAngle','italic'

’FontName’ - Font name
'Helvetica' (default) | string | 'FixedWidth'

Font name, specified as the comma-separated pair consisting of
'FontName' and a string. The string specifies the name of the font to
use for the text object. To display and print properly, this must be a
font that your system supports.

To use a fixed-width font that looks good in any locale, use the
case-sensitive string 'FixedWidth'. This eliminates the need to
hard-code the name of a fixed-width font, which might not display text
properly on systems that do not use ASCII character encoding.

Example: 'FontName','Courier'

’FontSize’ - Font size
10 points (default) | scalar

1-7759

xlabel

Font size, specified as the comma-separated pair consisting of
'FontSize' and a scalar in units determined by the FontUnits
property. The default value for FontUnits is points.

Example: 'FontSize',12.5

’FontUnits’ - Font size units
'points' (default) | 'normalized' | 'inches' | 'centimeters' |
'pixels'

Font size units, specified as the comma-separated pair consisting of
'FontUnits' and one of the following strings:

• 'points'

• 'normalized'

• 'inches'

• 'centimeters'

• 'pixels'

When the value of FontUnits is 'normalized', MATLAB interprets
the value of FontSize as a fraction of the height of the parent axes.
When you resize the axes, MATLAB modifies the screen FontSize
accordingly. points, inches, centimeters, and pixels are absolute
units. 1 point = 1/72 inch

Note When setting both the FontSize and the FontUnits, you must set
the FontUnits property first so that MATLAB can correctly interpret
the specified FontSize. For example, to set the font size to 0.3 inches,
call 'FontUnits','inches','FontSize',0.3 in the argument list.

’FontWeight’ - Weight of text characters
'normal' (default) | 'bold' | 'light' | 'demi'

Weight of text characters, specified as the comma-separated pair
consisting of 'FontWeight' and one of the following strings:

1-7760

xlabel

• 'normal'

• 'bold'

• 'light'

• 'demi'

MATLAB uses the FontWeight property to select a font from those
available on your particular system. Generally, setting this property to
'bold' or 'demi' causes MATLAB to use a bold font.

Example: 'FontWeight','bold'

’Interpreter’ - Character interpretation
'tex' (default) | 'latex' | 'none'

Character interpretation, specified as the comma-separated pair
consisting of 'Interpreter' and one of the following strings.

Interpreter value Result

'tex' Supports a subset of plain TeX
markup language. See the String
property for a list of supported
TeX instructions.

'latex' Supports a basic subset of the
LaTeX markup language.

'none' Interprets all characters as literal
characters.

Example: 'Interpreter','latex'

Output
Arguments

h - Handle to text object used as x-axis label
scalar

Handle to the text object used as the x-axis label, returned as a scalar.
This is a unique identifier, which you can use to query and modify the
properties of the label.

1-7761

xlabel

Examples Label x-Axis with String

figure
plot((1:10).^2)
xlabel('Population')

MATLAB® displays Population beneath the x-axis.

1-7762

xlabel

Label x-Axis with Numeric Input

figure
plot((1:10).^2)
xlabel(123)

MATLAB® displays 123 beneath the x-axis.

Create Multiline Label

Create a multiline label using a multiline cell array.

1-7763

xlabel

figure
plot((1:10).^2)
xlabel({date;'Population';'in Years'})

Include SuperScript or Subscript in Label

Use the '^' and '_' characters to include superscripts and subscripts
in the axis labels. Use braces to modify more than one character.

t = linspace(0,1);

1-7764

xlabel

y = exp(t);
figure
plot(t,y);
xlabel('t_{seconds}')
ylabel('e^t')

Create Label and Set Font Properties

Use Name,Value pair arguments to set the font size, font weight, and
text color properties of the x-axis label.

1-7765

xlabel

figure
plot((1:10).^2)
xlabel('Population','FontSize',12,...

'FontWeight','bold','Color','r')

'FontSize',12 displays the label text in 12-point font.
'FontWeight','bold' makes the text bold. 'Color','r' sets the text
color to red.

1-7766

xlabel

Label x-Axis of Specific Axes

Create a figure with two subplots and return the axes handles, s(1)
and s(2).

figure
s(1) = subplot(2,1,1);
plot((1:10).^2)
s(2) = subplot(2,1,2);
plot((1:10).^3)

1-7767

xlabel

Label the x-axis of the top plot by referring to its axes handle, s(1).

xlabel(s(1),'Population')

1-7768

xlabel

Label x-Axis and Return Object Handle

Label the x-axis and return the handle to the text object used as the
label.

figure
plot((1:10).^2)
str = 'Population';
h = xlabel(str);

1-7769

xlabel

MATLAB® returns the object handle in the output variable, h.

Set the color of the label to red, using the handle.

set(h,'Color','red')

1-7770

xlabel

See Also strings | ylabel | zlabel | text | title

Concepts • “Add Axis Labels to Graph Using Plot Tools”
Text Properties

1-7771

ylabel

Purpose Label y-axis

Syntax ylabel(str)
ylabel(str,Name,Value)

ylabel(axes_handle, ___)

h = ylabel(___)

Description ylabel(str) labels the y-axis of the current axes with the string, str.
Every axes has one predefined y-axis label. Reissuing the ylabel
command causes the new label to replace the old label. Labels appear
beside the axis in a two-dimensional view and to the side or in front of
the axis in a three-dimensional view.

ylabel(str,Name,Value) additionally specifies the text object
properties using one or more Name,Value pair arguments.

ylabel(axes_handle, ___) adds the label to the axes specified by
axes_handle. This syntax allows you to specify the axes to which to
add a label. axes_handle can precede any of the input argument
combinations in the previous syntaxes.

h = ylabel(___) returns the handle to the text object used as the
y-axis label. The handle is useful when making future modifications
to the label.

Input
Arguments

str - Text to display as y-axis label
string

Text to display as the y-axis label, specified as a string or the name of
a function that returns a string.

Example: 'myLabel'

axes_handle - Axes handle

1-7772

ylabel

handle

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Color','red','FontSize',12 adds a y-axis label with
red, 12-point font.

In addition to the following, you can specify other text object properties
using Name,Value pair arguments. See Text Properties.

’Color’ - Text color
[0 0 0] (black) (default) | 3-element RGB vector | string

Text color, specified as the comma-separated pair consisting of 'Color'
and a 3-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

The following table lists the predefined colors and their RGB
equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

1-7773

ylabel

RGB Value Short Name Long Name

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

Example: 'Color',[0 1 0]

Example: 'Color','green'

’FontAngle’ - Character slant
'normal' (default) | 'italic' | 'oblique'

Character slant, specified as the comma-separated pair consisting
of 'FontAngle' and one of these values: 'normal', 'italic', or
'oblique'. MATLAB uses the FontAngle property to select a font
from those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

Example: 'FontAngle','italic'

’FontName’ - Font name
'Helvetica' (default) | string | 'FixedWidth'

Font name, specified as the comma-separated pair consisting of
'FontName' and a string. The string specifies the name of the font to
use for the text object. To display and print properly, this must be a
font that your system supports.

To use a fixed-width font that looks good in any locale, use the
case-sensitive string 'FixedWidth'. This eliminates the need to
hard-code the name of a fixed-width font, which might not display text
properly on systems that do not use ASCII character encoding.

Example: 'FontName','Courier'

’FontSize’ - Font size
10 points (default) | scalar

1-7774

ylabel

Font size, specified as the comma-separated pair consisting of
'FontSize' and a scalar in units determined by the FontUnits
property. The default value for FontUnits is points.

Example: 'FontSize',12.5

’FontUnits’ - Font size units
'points' (default) | 'normalized' | 'inches' | 'centimeters' |
'pixels'

Font size units, specified as the comma-separated pair consisting of
'FontUnits' and one of the following strings:

• 'points'

• 'normalized'

• 'inches'

• 'centimeters'

• 'pixels'

When the value of FontUnits is 'normalized', MATLAB interprets
the value of FontSize as a fraction of the height of the parent axes.
When you resize the axes, MATLAB modifies the screen FontSize
accordingly. points, inches, centimeters, and pixels are absolute
units. 1 point = 1/72 inch

Note When setting both the FontSize and the FontUnits, you must set
the FontUnits property first so that MATLAB can correctly interpret
the specified FontSize. For example, to set the font size to 0.3 inches,
call 'FontUnits','inches','FontSize',0.3 in the argument list.

’FontWeight’ - Weight of text characters
'normal' (default) | 'bold' | 'light' | 'demi'

Weight of text characters, specified as the comma-separated pair
consisting of 'FontWeight' and one of the following strings:

1-7775

ylabel

• 'normal'

• 'bold'

• 'light'

• 'demi'

MATLAB uses the FontWeight property to select a font from those
available on your particular system. Generally, setting this property to
'bold' or 'demi' causes MATLAB to use a bold font.

Example: 'FontWeight','bold'

’Interpreter’ - Character interpretation
'tex' (default) | 'latex' | 'none'

Character interpretation, specified as the comma-separated pair
consisting of 'Interpreter' and one of the following strings.

Interpreter value Result

'tex' Supports a subset of plain TeX
markup language. See the String
property for a list of supported
TeX instructions.

'latex' Supports a basic subset of the
LaTeX markup language.

'none' Interprets all characters as literal
characters.

Example: 'Interpreter','latex'

Output
Arguments

h - Handle to text object used as y-axis label
scalar

Handle to the text object used as the y-axis label, returned as a scalar.
This is a unique identifier, which you can use to query and modify the
properties of the label.

1-7776

ylabel

Examples Label y-Axis with String

figure
plot((1:10).^2)
ylabel('Population')

MATLAB® displays Population beside the y-axis.

1-7777

ylabel

Label y-Axis with Numeric Input

figure
plot((1:10).^2)
ylabel(123)

MATLAB® displays 123 beside the y-axis.

Create Multiline Label

Create a multiline label using a multiline cell array.

1-7778

ylabel

figure
plot((1:10).^2)
ylabel({2010;'Population';'in Years'})

Include SuperScript or Subscript in Label

Use the '^' and '_' characters to include superscripts and subscripts
in the axis labels. Use braces to modify more than one character.

t = linspace(0,1);

1-7779

ylabel

y = exp(t);
figure
plot(t,y);
xlabel('t_{seconds}')
ylabel('e^t')

Create y-Axis Label and Set Font Properties

Use Name,Value pairs to set the font size, font weight, and text color
properties of the y-axis label.

1-7780

ylabel

figure
plot((1:10).^2)
ylabel('Population','FontSize',12,...

'FontWeight','bold','Color','r')

'FontSize',12 displays the label text in 12-point font.
'FontWeight','bold' makes the text bold. 'Color','r' sets the text
color to red.

1-7781

ylabel

Label y-Axis of Specific Axes

Create two subplots and return the axes handles, s(1) and s(2).

figure
s(1) = subplot(2,1,1);
plot((1:10).^2)
s(2) = subplot(2,1,2);
plot((1:10).^3)

1-7782

ylabel

Label the y-axis of the top plot by referring to its axes handle, s(1).

ylabel(s(1),'Population')

Label y-Axis and Return Object Handle

Label the y-axis and return the handle to the text object used as the
label.

figure

1-7783

ylabel

plot((1:10).^2)
str = 'Population';
h = ylabel(str);

MATLAB® returns the object handle in the output variable, h.

Set the color of the label to red, using the handle.

set(h,'Color','red')

1-7784

ylabel

See Also strings | xlabel | zlabel | text | title

Concepts • “Add Axis Labels to Graph Using Plot Tools”
Text Properties

1-7785

zlabel

Purpose Label z-axis

Syntax zlabel(str)
zlabel(str,Name,Value)

zlabel(axes_handle, ___)

h = zlabel(___)

Description zlabel(str) labels the z-axis of the current axes with the string, str.
Every axes has one predefined z-axis label. Reissuing the zlabel
command causes the new label to replace the old label.

zlabel(str,Name,Value) additionally specifies the text object
properties using one or more Name,Value pair arguments.

zlabel(axes_handle, ___) adds the label to the axes specified by
axes_handle. This syntax allows you to specify the axes to which to
add a label. axes_handle can precede any of the input argument
combinations in the previous syntaxes.

h = zlabel(___) returns the handle to the text object used as the
z-axis label. The handle is useful when making future modifications
to the label.

Input
Arguments

str - Text to display as z-axis label
string

Text to display as the z-axis label, specified as a string or the name of
a function that returns a string.

Example: 'myLabel'

axes_handle - Axes handle
handle

1-7786

zlabel

Axes handle, which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle
= gca;.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Color','red','FontSize',12 adds an z-axis label with
red, 12-point font.

In addition to the following, you can specify other text object properties
using Name,Value pair arguments. See Text Properties.

’Color’ - Text color
[0 0 0] (black) (default) | 3-element RGB vector | string

Text color, specified as the comma-separated pair consisting of 'Color'
and a 3-element RGB vector or a string containing the short or long
name of the color. The RGB vector is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0 1].

The following table lists the predefined colors and their RGB
equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

1-7787

zlabel

RGB Value Short Name Long Name

[1 1 1] w white

[0 0 0] k black

Example: 'Color',[0 1 0]

Example: 'Color','green'

’FontAngle’ - Character slant
'normal' (default) | 'italic' | 'oblique'

Character slant, specified as the comma-separated pair consisting
of 'FontAngle' and one of these values: 'normal', 'italic', or
'oblique'. MATLAB uses the FontAngle property to select a font
from those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

Example: 'FontAngle','italic'

’FontName’ - Font name
'Helvetica' (default) | string | 'FixedWidth'

Font name, specified as the comma-separated pair consisting of
'FontName' and a string. The string specifies the name of the font to
use for the text object. To display and print properly, this must be a
font that your system supports.

To use a fixed-width font that looks good in any locale, use the
case-sensitive string 'FixedWidth'. This eliminates the need to
hard-code the name of a fixed-width font, which might not display text
properly on systems that do not use ASCII character encoding.

Example: 'FontName','Courier'

’FontSize’ - Font size
10 points (default) | scalar

1-7788

zlabel

Font size, specified as the comma-separated pair consisting of
'FontSize' and a scalar in units determined by the FontUnits
property. The default value for FontUnits is points.

Example: 'FontSize',12.5

’FontUnits’ - Font size units
'points' (default) | 'normalized' | 'inches' | 'centimeters' |
'pixels'

Font size units, specified as the comma-separated pair consisting of
'FontUnits' and one of the following strings:

• 'points'

• 'normalized'

• 'inches'

• 'centimeters'

• 'pixels'

When the value of FontUnits is 'normalized', MATLAB interprets
the value of FontSize as a fraction of the height of the parent axes.
When you resize the axes, MATLAB modifies the screen FontSize
accordingly. points, inches, centimeters, and pixels are absolute
units. 1 point = 1/72 inch

Note When setting both the FontSize and the FontUnits, you must set
the FontUnits property first so that MATLAB can correctly interpret
the specified FontSize. For example, to set the font size to 0.3 inches,
call 'FontUnits','inches','FontSize',0.3 in the argument list.

’FontWeight’ - Weight of text characters
'normal' (default) | 'bold' | 'light' | 'demi'

Weight of text characters, specified as the comma-separated pair
consisting of 'FontWeight' and one of the following strings:

1-7789

zlabel

• 'normal'

• 'bold'

• 'light'

• 'demi'

MATLAB uses the FontWeight property to select a font from those
available on your particular system. Generally, setting this property to
'bold' or 'demi' causes MATLAB to use a bold font.

Example: 'FontWeight','bold'

’Interpreter’ - Character interpretation
'tex' (default) | 'latex' | 'none'

Character interpretation, specified as the comma-separated pair
consisting of 'Interpreter' and one of the following strings.

Interpreter value Result

'tex' Supports a subset of plain TeX
markup language. See the String
property for a list of supported
TeX instructions.

'latex' Supports a basic subset of the
LaTeX markup language.

'none' Interprets all characters as literal
characters.

Example: 'Interpreter','latex'

Output
Arguments

h - Handle to text object used as z-axis label
scalar

Handle to the text object used as the z-axis label, returned as a scalar.
This is a unique identifier, which you can use to query and modify the
properties of the label.

1-7790

zlabel

Examples Label z-Axis with String

figure
surf(peaks)
zlabel('Height')

MATLAB® displays Height beside the z-axis.

1-7791

zlabel

Label z-Axis with Numeric Input

figure
surf(peaks)
zlabel(123)

MATLAB® displays 123 beside the z-axis.

Create Multiline z-Axis Label

Create a multiline label using a multiline cell array.

1-7792

zlabel

figure
surf(peaks)
zlabel({'First Line';'Second Line'})

Label z-Axis and Set Font Properties

Use Name,Value pairs to set the font size, font weight, and text color
properties of the z-axis label.

figure

1-7793

zlabel

surf(peaks)
zlabel('Elevation','FontSize',12,...

'FontWeight','bold','Color','r');

'FontSize',12 displays the label text in 12-point font.
'FontWeight','bold' makes the text bold. 'Color','r' sets the text
color to red.

1-7794

zlabel

Label z-Axis of Specific Axes

Create two subplots and return the handles to the axes objects, s(1)
and s(2).

figure
s(1) = subplot(2,1,1);
surf(peaks(30))
s(2) = subplot(2,1,2);
surf(peaks(45))

1-7795

zlabel

Label the z-axis of each plot by referring to the axes handles, s(1) and
s(2).

zlabel(s(1),'Height1')
zlabel(s(2),'Height2')

1-7796

zlabel

Label z-Axis and Return Object Handle

Label the z-axis and return the handle to the text object used as the
label.

figure
surf(peaks)
str = 'Population Change';
h = zlabel(str);

1-7797

zlabel

MATLAB® returns the object handle in the output variable, h.

Set the color of the label to red, using the handle.

set(h,'Color','red')

1-7798

zlabel

See Also strings | ylabel | xlabel | text | title

Concepts • “Add Axis Labels to Graph Using Plot Tools”
Text Properties

1-7799

xlim

Purpose Set or query x-axis limits

Syntax xlim
xlim([xmin xmax])
xlim('mode')
xlim('auto')
xlim('manual')
xlim(axes_handle,...)

Description xlim with no arguments returns the limits of the current axes.

xlim([xmin xmax]) sets the axis limits in the current axes to the
specified values.

xlim('mode') returns the current value of the axis limits mode, which
can be either auto (the default) or manual.

xlim('auto') sets the axis limit mode to auto.

xlim('manual') sets the axis limit mode to manual.

xlim(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, it operates on the current axes.

Tips xlim sets or queries values of the axes object XLim, and XLimMode
property.

When the axis limit mode is set to auto (the default), MATLAB
uses limits, which are round numbers, to span the range of the data
being displayed. Setting a value for any of the limits also sets the
corresponding mode to manual. If you set the limits on an existing
graph and want to maintain these limits while adding more graphs, use
the hold command.

Note High-level plotting functions like plot and surf reset both the
modes and the limits.

1-7800

xlim

Examples Specify Axis Limits

Set the x-axis and y-axis limits to match the range of data.

[x,y] = meshgrid(-1.75:.2:3.25);
z = x.*exp(-x.^2-y.^2);

figure
surf(x,y,z)
xlim([-1.75,3.25])
ylim([-1.75,3.25])

1-7801

xlim

Alternatives To control the upper and lower axis limits on a graph, use the Property

Editor, one of the plotting tools . For details, see The Property
Editor.

See Also ylim | zlim | axis

1-7802

xlim

How To • XLim

• YLim

• ZLim

• Understanding Axes Aspect Ratio

1-7803

ylim

Purpose Set or query y-axis limits

Syntax ylim
ylim([ymin ymax])
ylim('mode')
ylim('auto')
ylim('manual')
ylim(axes_handle,...)

Description ylim with no arguments returns the limits of the current axes.

ylim([ymin ymax]) sets the axis limits in the current axes to the
specified values.

ylim('mode') returns the current value of the axis limits mode, which
can be either auto (the default) or manual.

ylim('auto') sets the axis limit mode to auto.

ylim('manual') sets the axis limit mode to manual.

ylim(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, it operates on the current axes.

Tips ylim sets or queries values of the axes object YLimand YLimMode
property.

When the axis limit mode is set to auto (the default), MATLAB
uses limits, which are round numbers, to span the range of the data
being displayed. Setting a value for any of the limits also sets the
corresponding mode to manual. If you set the limits on an existing
graph and want to maintain these limits while adding more graphs, use
the hold command.

Note High-level plotting functions like plot and surf reset both the
modes and the limits.

1-7804

ylim

Examples Specify Axis Limits

Set the x-axis and y-axis limits to match the range of data.

[x,y] = meshgrid(-1.75:.2:3.25);
z = x.*exp(-x.^2-y.^2);

figure
surf(x,y,z)
xlim([-1.75,3.25])
ylim([-1.75,3.25])

1-7805

ylim

Alternatives To control the upper and lower axis limits on a graph, use the Property

Editor, one of the plotting tools . For details, see The Property
Editor.

See Also xlim | zlim | axis

1-7806

ylim

How To • XLim

• YLim

• ZLim

• Understanding Axes Aspect Ratio

1-7807

zlim

Purpose Set or query z-axis limits

Syntax zlim
zlim([zmin zmax])
zlim('mode')
zlim('auto')
zlim('manual')
zlim(axes_handle,...)

Description zlim with no arguments returns the limits of the current axes.

zlim([zmin zmax]) sets the axis limits in the current axes to the
specified values.

zlim('mode') returns the current value of the axis limits mode, which
can be either auto (the default) or manual.

zlim('auto') sets the axis limit mode to auto.

zlim('manual') sets the axis limit mode to manual.

zlim(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, it operates on the current axes.

Tips zlim sets or queries values of the axes object ZLim and ZLimMode
property.

When the axis limit mode is set to auto (the default), MATLAB
uses limits, which are round numbers, to span the range of the data
being displayed. Setting a value for any of the limits also sets the
corresponding mode to manual. If you set the limits on an existing
graph and want to maintain these limits while adding more graphs, use
the hold command.

Note High-level plotting functions like plot and surf reset both the
modes and the limits.

1-7808

zlim

Examples Specify z-Axis Limits

Specify the z-axis limits for the graph.

[x,y] = meshgrid([-1.75:.2:3.25]);
z = x.*exp(-x.^2-y.^2);

figure
surf(x,y,z)
zlim([-0.35,0.3])

1-7809

zlim

Alternatives To control the upper and lower axis limits on a graph, use the Property

Editor, one of the plotting tools . For details, see The Property
Editor.

See Also xlim | ylim | axis

How To • XLim

• YLim

• ZLim

• Understanding Axes Aspect Ratio

1-7810

xlsfinfo

Purpose Determine if file contains Microsoft Excel spreadsheet

Syntax status = xlsfinfo(filename)
[status,sheets] = xlsfinfo(filename)
[status,sheets,xlFormat] = xlsfinfo(filename)

Description status = xlsfinfo(filename) indicates if filename is a file that the
xlsread function can read.

[status,sheets] = xlsfinfo(filename) additionally returns the
name of each spreadsheet in the file.

[status,sheets,xlFormat] = xlsfinfo(filename) also returns the
format description that Excel returns for the file. On systems without
Excel for Windows, xlFormat is an empty string, ''.

Input
Arguments

filename - Name of file
string

Name of file, specified as a string.

Example: 'myFile.xlsx'

Data Types
char

Output
Arguments

status - Type of file
string

Type of file, returned as a string.

• If filename is a file that xlsread can read, then status is a
descriptive string, such as 'Microsoft Excel Spreadsheet'.

• If filename is not a file that xlsread can read, then status is an
empty string, ''.

• If MATLAB cannot find the file, then xlsfinfo returns an error.

1-7811

xlsfinfo

sheets - Worksheet names
1-by-n cell array of strings

Worksheet names, returned as a 1-by-n cell array of strings, where n
is the number of worksheets in the file. Each cell contains the name
of a worksheet. If xlsread cannot read a particular worksheet, the
corresponding cell contains an error message.

If xlsfinfo cannot read the file, then sheets contains an error message.

xlFormat - File format description returned by Excel
string

File format description returned by Excel, returned as a string.

On Windows systems with Excel software, xlFormat is a nonempty
string, such as one of the following.

'xlOpenXMLWorkbook' Spreadsheet in XLSX format
(Excel 2007 or later)

'xlWorkbookNormal' or
'xlExcel8'

Spreadsheet in XLS format
(compatible with Excel 97-2003)

'xlCSV' File in comma-separated value
(CSV) format

'xlHtml' or 'xlWebArchive' Spreadsheet exported to HTML
format

On all other systems, xlFormat is an empty string, ''.

Examples View Information About Spreadsheet File

Create a sample Excel file named myExample.xlsx.

values = {1, 2, 3 ; 4, 5, 'x' ; 7, 8, 9};
headers = {'First', 'Second', 'Third'};
xlswrite('myExample.xlsx', [headers; values]);

Call xlsfinfo to get information about the file.

1-7812

xlsfinfo

[status,sheets,xlFormat] = xlsfinfo('myExample.xlsx')

status =

Microsoft Excel Spreadsheet

sheets =

'Sheet1' 'Sheet2' 'Sheet3'

xlFormat =

xlOpenXMLWorkbook

status is a descriptive string indicating that the xlsread function can
read the sample file.

Tips • If xlsfinfo warns that it cannot start an ActiveX server, then
the COM server, which is part of the typical Excel installation, is
unavailable. In this case, consider reinstalling your Excel software.
On systems with Excel for Windows, xlsfinfo uses the COM server
to obtain information.

Limitations • xlsfinfo supports only 7-bit ASCII characters.

See Also xlsread | xlswrite

1-7813

xlsread

Purpose Read Microsoft Excel spreadsheet file

Syntax num = xlsread(filename)
num = xlsread(filename,sheet)
num = xlsread(filename,xlRange)
num = xlsread(filename,sheet,xlRange)
num = xlsread(filename,sheet,xlRange,'basic')
[num,txt,raw] = xlsread(___)

___ = xlsread(filename,-1)

[num,txt,raw,custom] = xlsread(filename,sheet,xlRange,'',
functionHandle)

Description num = xlsread(filename) reads data from the first worksheet in the
Microsoft Excel spreadsheet file named filename and returns the
numeric data in array num.

On Windows systems with Microsoft Excel software, xlsread reads any
file format recognized by your version of Excel.

If your system does not have Excel for Windows, xlsread operates in
basic import mode, and reads only XLS, XLSX, XLSM, XLTX, and
XLTM files.

num = xlsread(filename,sheet) reads the specified worksheet.

num = xlsread(filename,xlRange) reads data from the specified
range, xlRange, of the first worksheet in the file.

num = xlsread(filename,sheet,xlRange) reads from the specified
sheet and range, xlRange.

num = xlsread(filename,sheet,xlRange,'basic') reads data from
the spreadsheet in basicmode, the default on systems without Excel for

1-7814

xlsread

Windows. If you do not specify all the arguments, use empty strings as
placeholders, for example, num = xlsread(filename,'','','basic').

[num,txt,raw] = xlsread(___) additionally returns the text fields
in cell array txt, and the unprocessed data (numbers and text) in cell
array raw using any of the input arguments in the previous syntaxes. If
xlRange is specified, leading blank rows and columns in the worksheet
that precede rows and columns with data are returned in raw.

___ = xlsread(filename,-1) opens an Excel window to interactively
select data. Select the worksheet, drag and drop the mouse over
the range you want, and click OK. This syntax is supported only on
Windows systems with Excel software.

[num,txt,raw,custom] = xlsread(filename,sheet,xlRange,'',
functionHandle) reads from the spreadsheet, executes the function
associated with functionHandle on the data, and returns the final
results as numeric data in array num. The xlsread function optionally
returns the text fields in cell array txt, the unprocessed data (numbers
and text) in cell array raw, and the second output from the function
associated with functionHandle in array custom. The xlsread function
does not change the data stored in the spreadsheet. This syntax is
supported only on Windows systems with Excel software.

Input
Arguments

filename - Name of file to read
string

Name of the file to read, specified as a string. If you do not include an
extension, xlsread searches for a file with the specified name and a
supported Excel extension. xlsread can read data saved in files that
are currently open in Excel for Windows.

Example: 'myFile.xlsx'

Data Types
char

1-7815

xlsread

sheet - Worksheet to read
string | positive integer

Worksheet to read, specified as one of the following:

• String that contains the worksheet name. Cannot contain a colon
(:). To determine the names of the sheets in a spreadsheet file, use
xlsfinfo. For XLS files in basic mode, sheet is case sensitive.

• Positive integer that indicates the worksheet index. Not supported
for XLS files in basic mode.

xlRange - Rectangular portion of the worksheet to read
string

Rectangular portion of the worksheet to read, specified as a string.

Specify xlRange using the syntax 'C1:C2', where C1 and C2 are two
opposing corners that define the region to read. For example, 'D2:H4'
represents the 3-by-5 rectangular region between the two corners D2
and H4 on the worksheet. The xlRange input is not case sensitive, and
uses Excel A1 reference style (see Excel help).

Range selection is not supported when reading XLS files in basic mode.
In this case, use '' in place of xlRange.

If you do not specify sheet, then xlRangemust include both corners and
a colon character, even for a single cell (such as 'D2:D2'). Otherwise,
xlsread interprets the input as a worksheet name (such as 'sales'
or 'D2').

If you specify sheet, then xlRange:

• Does not need to include a colon and opposite corner to describe a
single cell.

• Can refer to a named range that you defined in the Excel file (see
the Excel help).

Data Types
char

1-7816

xlsread

’basic’ - Flag to request reading in basic mode
literal string

Flag to request reading in basic mode, specified as the literal string,
'basic'.

basic mode is the default for systems without Excel for Windows. In
basic mode, xlsread:

• Reads XLS, XLSX, XLSM, XLTX, and XLTM files only.

• Does not support an xlRange input when reading XLS files. In this
case, use '' in place of xlRange.

• Does not support function handle inputs.

• Imports all dates as Excel serial date numbers. Excel serial date
numbers use a different reference date than MATLAB date numbers.

functionHandle - Handle to a custom function
function handle

Handle to a custom function, starting with the symbol @. Supported
only on Windows systems with Excel software. xlsread reads from
the spreadsheet, executes your function on a copy of the data, and
returns the final results. xlsread does not change the data stored in
the spreadsheet.

When xlsread calls the custom function, it passes a range interface
from the Excel application to provide access to the data. The custom
function must include this interface both as an input and output
argument. (See the Examples.)

Example: @myFunctionHandle

Output
Arguments

num - Numeric data
matrix

Numeric data, returned as a matrix of double values. The array does
not contain any information from header lines, or from outer rows or
columns that contain nonnumeric data. Text data in inner spreadsheet
rows and columns appear as NaN in the num output.

1-7817

xlsread

txt - Text data
cell array

Text data, returned as a cell array. Numeric values in inner spreadsheet
rows and columns appear as empty strings, '', in txt.

For XLS files in basic import mode, the txt output contains empty
strings, '', in place of leading columns of numeric data that precede
text data in the spreadsheet. In all other cases, txt does not contain
these additional columns.

Undefined values (such as '#N/A') appear in the txt output as '#N/A',
except for XLS files in basic mode.

raw - Unprocessed data
cell array

Unprocessed data from the worksheet, returned as a cell array.
Contains both numeric and text data.

On systems with Excel for Windows, undefined values (such as '#N/A')
appear in the raw output as 'ActiveX VT_ERROR:'. For XLSX, XLSM,
XLTX, and XLTM files on other systems, undefined values appear as
'#N/A'.

custom - Second output of the function corresponding to
functionHandle
defined by the function

Second output of the function corresponding to functionHandle. The
value and data type of custom are determined by the function.

Examples Read Data from First Worksheet Into Numeric Array

Create an Excel file named myExample.xlsx.

values = {1, 2, 3 ; 4, 5, 'x' ; 7, 8, 9};
headers = {'First','Second','Third'};
xlswrite('myExample.xlsx', [headers; values]);

1-7818

xlsread

Sheet1 of myExample.xlsx contains:

First Second Third
1 2 3
4 5 x
7 8 9

Read data from the first worksheet.

filename = 'myExample.xlsx';
A = xlsread(filename)

A =
1 2 3
4 5 NaN
7 8 9

xlsread returns the numeric data in array A.

Read a Specific Range of Data

Read a specific range of data from the Excel file in the previous example.

filename = 'myExample.xlsx';
sheet = 1;
xlRange = 'B2:C3';

subsetA = xlsread(filename, sheet, xlRange)

subsetA =
2 3
5 NaN

Read a Column of Data

Read the second column of data from the Excel file in the first example.

filename = 'myExample.xlsx';

columnB = xlsread(filename,'B:B')

1-7819

xlsread

columnB =
2
5
8

For better performance, specify the row numbers in the range, as shown
in the previous example.

Request Numeric, Text, and Unprocessed Data

Request the numeric data, text, and a copy of the unprocessed (raw)
data from the Excel file in the first example.

[ndata, text, alldata] = xlsread('myExample.xlsx')

ndata =
1 2 3
4 5 NaN
7 8 9

text =
'First' 'Second' 'Third'
'' '' ''
'' '' 'x'

alldata =
'First' 'Second' 'Third'
[1] [2] [3]
[4] [5] 'x'
[7] [8] [9]

xlsread returns numeric data in array ndata, text data in cell array
text, and unprocessed data in cell array alldata.

Execute a Function on a Worksheet and Return Numeric Data

In the Editor, create a function to process data from a worksheet. In
this case, set values outside the range [-3, 3] to -3 or 3.

1-7820

xlsread

function [Data] = setMinMax(Data)

minval = -3; maxval = 3;

for k = 1:Data.Count
v = Data.Value{k};
if v > maxval || v < minval

if v > maxval
Data.Value{k} = maxval;

else
Data.Value{k} = minval;

end
end

end

In the Command Window, add data to myExample.xlsx.

misc = pi*gallery('normaldata',[10,3],1);
xlswrite('myExample.xlsx',misc,'MyData');

Worksheet MyData contains the following values, which range from
-6.6493 to 3.4845:

2.7156 -6.1744 1.8064
0.2959 -2.3383 -2.7210

-2.6764 -1.7351 -6.6493
2.7442 -2.5752 -3.0300

-1.3761 3.4845 0.6683
-1.3498 -1.9319 1.5014
-3.4643 -0.8000 0.3162
1.2448 -0.8477 0.9344

-3.0314 -5.2527 1.7912
0.5292 -5.8938 -5.1035

Read the data from the worksheet, and reset any values outside the
range [-3, 3]. Specify the sheet name, but use '' as placeholders for
the xlRange and 'basic' inputs.

1-7821

xlsread

trim = xlsread('myExample.xlsx','MyData','','',@setMinMax)

trim =
2.7156 -3.0000 1.8064
0.2959 -2.3383 -2.7210

-2.6764 -1.7351 -3.0000
2.7442 -2.5752 -3.0000

-1.3761 3.0000 0.6683
-1.3498 -1.9319 1.5014
-3.0000 -0.8000 0.3162
1.2448 -0.8477 0.9344

-3.0000 -3.0000 1.7912
0.5292 -3.0000 -3.0000

Request Custom Output

Execute a function on a worksheet and display the custom index output.

In the Editor, modify the function setMinMax from the previous example
to return the indices of the changed elements (custom output).

function [Data,indices] = setMinMax(Data)

minval = -3; maxval = 3;
indices = [];

for k = 1:Data.Count
v = Data.Value{k};
if v > maxval || v < minval

if v > maxval
Data.Value{k} = maxval;

else
Data.Value{k} = minval;

end
indices = [indices k];

end
end

1-7822

xlsread

Read the data from the worksheet MyData, and request the custom
index output, idx.

[trim,txt,raw,idx] = xlsread('myExample.xlsx',...
'MyData','','',@setMinMax);
disp(idx)

7 9 11 15 19 20 23 24 30

Algorithms • If you do not specify xlRange, then xlsread ignores leading blank
rows and columns in the worksheet that precede your data.

• If you specify xlRange, then leading blank rows and columns in
the worksheet that precede your data are returned in raw, but not
in num or txt.

• When the specified xlRange overlaps merged cells:

- On Windows systems with Excel, xlsread expands the range to
include all merged cells.

- On systems without Excel for Windows, xlsread returns data for
the specified range only, with empty or NaN values for merged cells.

• xlsread imports formatted dates as strings (such as '10/31/96'),
except in basic mode and on systems without Excel for Windows.

Limitations • xlsread reads only 7-bit ASCII characters.

• xlsread does not support non-contiguous ranges.

See Also xlswrite | xlsfinfo | importdata | uiimport | readtable |
function_handle

Concepts • “When to Convert Dates from Excel Files”

1-7823

xlswrite

Purpose Write Microsoft Excel spreadsheet file

Syntax xlswrite(filename,A)
xlswrite(filename,A,sheet)
xlswrite(filename,A,xlRange)
xlswrite(filename,A,sheet,xlRange)

status = xlswrite(___)
[status,message] = xlswrite(___)

Description xlswrite(filename,A) writes array A to the first worksheet in Excel
file, filename, starting at cell A1.

xlswrite(filename,A,sheet) writes to the specified worksheet.

xlswrite(filename,A,xlRange) writes to the rectangular region
specified by xlRange in the first worksheet of the file.

xlswrite(filename,A,sheet,xlRange) writes to the specified sheet
and range, xlRange.

status = xlswrite(___) returns the status of the write operation,
and can include any of the input arguments in previous syntaxes. When
the operation is successful, status is 1. Otherwise, status is 0.

[status,message] = xlswrite(___) additionally returns any
warning or error message generated by the write operation in structure
message.

Input
Arguments

filename - Name of file to write
string

Name of file to write, specified as a string.

1-7824

xlswrite

If filename does not exist, xlswrite creates a file, determining the
format based on the specified extension. To create a file compatible with
Excel 97-2003 software, specify an extension of .xls. To create files in
Excel 2007 formats, specify an extension of .xlsx, .xlsb, or .xlsm. If
you do not specify an extension, xlswrite uses the default, .xls.

Example: 'myFile.xlsx'

A - Data to write
matrix | cell array

Data to write, specified as a two-dimensional numeric or character
array, or, if each cell contains a single element, a cell array.

If A is a cell array containing something other than a scalar numeric
or a string, then xlswrite silently leaves the corresponding cell in the
spreadsheet empty.

The maximum size of array A depends on the associated Excel version.
For more information on Excel specifications and limits, see the Excel
help.

Example: [10,2,45;-32,478,50]

Example: {92.0,'Yes',45.9,'No'}

Data Types
single | double | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64 | logical | char | cell

sheet - Worksheet name
string | positive integer

Worksheet name, specified as one of the following:

• String that contains the worksheet name. Cannot contain a colon
(:). To determine the names of the sheets in a spreadsheet file, use
xlsfinfo.

• Positive integer that indicates the worksheet index.

1-7825

xlswrite

If sheet does not exist, xlswrite adds a new sheet at the end of the
worksheet collection. If sheet is an index larger than the number
of worksheets, xlswrite appends empty sheets until the number of
worksheets in the workbook equals sheet. In either case, xlswrite
generates a warning indicating that it has added a new worksheet.

xlRange - Rectangular portion of the worksheet to write
string

Rectangular portion of the worksheet to write, specified as a string.

Specify xlRange using the syntax 'C1:C2', where C1 and C2 are two
opposing corners that define the region to write. For example, 'D2:H4'
represents the 3-by-5 rectangular region between the two corners D2
and H4 on the worksheet. The xlRange input is not case sensitive,
and uses Excel A1 reference style (see Excel help). xlswrite does not
recognize named ranges.

• If you do not specify sheet, then xlRange must include both corners
and a colon character, even for a single cell (such as 'D2:D2').
Otherwise, xlswrite interprets the input as a worksheet name (such
as 'D2').

• If you specify sheet, then xlRange can specify only the first cell
(such as 'D2'). xlswrite writes input array A beginning at this cell.

• If xlRange is larger than the size of input array A, Excel software
fills the remainder of the region with #N/A. If xlRange is smaller
than the size of A, then xlswrite writes only the subset that fits
into xlRange to the file.

Output
Arguments

status - Status of the write operation
1 | 0

Status of the write operation, returned as either 1 (true) or 0 (false).
When the write operation is successful, status is 1. Otherwise, status
is 0.

message - Error or warning generated during the write
operation

1-7826

xlswrite

structure array

Error or warning generated during the write operation, returned as a
structure array containing two fields:

message Text of the warning or error message, returned as a
string.

identifier Message identifier, returned as a string.

Examples Write Data to a Spreadsheet

Write a 7-element vector to an Excel file, testdata.xlsx.

filename = 'testdata.xlsx';
A = [12.7, 5.02, -98, 63.9, 0, -.2, 56];
xlswrite(filename,A)

Write Data to a Specific Sheet and Range in a Spreadsheet

Write mixed text and numeric data to an Excel file, testdata.xlsx,
starting at cell E1 of Sheet2.

filename = 'testdata.xlsx';
A = {'Time','Temperature'; 12,98; 13,99; 14,97};
sheet = 2;
xlRange = 'E1';
xlswrite(filename,A,sheet,xlRange)

Tips • If your system has Microsoft Office 2003 software, but you want
to create a file in an Excel 2007 format, install the Office 2007
Compatibility Pack.

• Excel and MATLAB can store dates as strings (such as '10/31/96')
or serial date numbers (such as 729329). If your array A includes
serial date numbers, convert the dates to strings using datestr
before calling xlswrite. Alternatively, see “When to Convert Dates
from Excel Files”.

1-7827

xlswrite

• To write data to Excel files with custom formats (such as fonts or
colors), access the Windows COM server directly using actxserver
rather than xlswrite. For example, Technical Solution 1-QLD4K
uses actxserver to establish a connection between MATLAB and
Excel, writes data to a worksheet, and specifies the colors of the cells.

Algorithms Excel converts Inf values to 65535. MATLAB converts NaN values to
empty cells.

If your system does not have Excel for Windows, or if the COM server
(part of the typical installation of Excel) is unavailable, then the
xlswrite function:

• Writes array A to a text file in comma-separated value (CSV) format.

• Ignores the sheet and xlRange arguments.

• Generates an error when input array A is a cell array.

See Also xlsread | xlsfinfo | writetable

1-7828

http://www.mathworks.com/support/solutions/en/data/1-QLD4K/index.html?solution=1-QLD4K

xmlread

Purpose Read XML document and return Document Object Model node

Syntax DOMnode = xmlread(filename)

Description DOMnode = xmlread(filename) reads the specified XML file and
returns a Document Object Model node representing the document.

Tips The display for a properly parsed document is [#document: null].
For example,

xDoc = xmlread('info.xml')

returns

xDoc =
[#document: null]

Input
Arguments

filename

String enclosed in single quotation marks that specifies the name of
the local file or URL.

Output
Arguments

DOMnode

Document Object Model node, as defined by the World Wide Web
consortium. For more information, see “What Is an XML Document
Object Model (DOM)?”.

Examples The root element in an XML file sometimes includes an
xsi:noNamespaceSchemaLocation attribute. The value of this attribute
is the name of the preferred schema file. Call the getAttribute method
to get this value:

xDoc = xmlread(fullfile(matlabroot,'toolbox',...

'matlab','general','info.xml'));

xRoot = xDoc.getDocumentElement;

schema = char(xRoot.getAttribute('xsi:noNamespaceSchemaLocation'))

1-7829

xmlread

This code returns:

schema =
http://www.mathworks.com/namespace/info/v1/info.xsd

Create functions that parse data from an XML file into a MATLAB
structure array with fields Name, Attributes, Data, and Children:

function theStruct = parseXML(filename)
% PARSEXML Convert XML file to a MATLAB structure.
try

tree = xmlread(filename);
catch

error('Failed to read XML file %s.',filename);
end

% Recurse over child nodes. This could run into problems
% with very deeply nested trees.
try

theStruct = parseChildNodes(tree);
catch

error('Unable to parse XML file %s.',filename);
end

% ----- Local function PARSECHILDNODES -----
function children = parseChildNodes(theNode)
% Recurse over node children.
children = [];
if theNode.hasChildNodes

childNodes = theNode.getChildNodes;
numChildNodes = childNodes.getLength;
allocCell = cell(1, numChildNodes);

children = struct(...
'Name', allocCell, 'Attributes', allocCell, ...

1-7830

xmlread

'Data', allocCell, 'Children', allocCell);

for count = 1:numChildNodes
theChild = childNodes.item(count-1);
children(count) = makeStructFromNode(theChild);

end
end

% ----- Local function MAKESTRUCTFROMNODE -----
function nodeStruct = makeStructFromNode(theNode)
% Create structure of node info.

nodeStruct = struct(...
'Name', char(theNode.getNodeName), ...
'Attributes', parseAttributes(theNode), ...
'Data', '', ...
'Children', parseChildNodes(theNode));

if any(strcmp(methods(theNode), 'getData'))
nodeStruct.Data = char(theNode.getData);

else
nodeStruct.Data = '';

end

% ----- Local function PARSEATTRIBUTES -----
function attributes = parseAttributes(theNode)
% Create attributes structure.

attributes = [];
if theNode.hasAttributes

theAttributes = theNode.getAttributes;
numAttributes = theAttributes.getLength;
allocCell = cell(1, numAttributes);
attributes = struct('Name', allocCell, 'Value', ...

allocCell);

for count = 1:numAttributes

1-7831

xmlread

attrib = theAttributes.item(count-1);
attributes(count).Name = char(attrib.getName);
attributes(count).Value = char(attrib.getValue);

end
end

See Also xmlwrite | xslt

How To • “What Is an XML Document Object Model (DOM)?”

• “Example — Finding Text in an XML File”

Related
Links

• DOM Package Summary (methods and properties for nodes)

1-7832

http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

xmlwrite

Purpose Write XML Document Object Model node

Syntax xmlwrite(filename,DOMnode)
str = xmlwrite(DOMnode)

Description xmlwrite(filename,DOMnode) writes the Document Object Model
(DOM) node DOMnode to the file filename.

str = xmlwrite(DOMnode) serializes the DOM node to a string.

Input
Arguments

filename

String enclosed in single quotation marks that specifies the name of a
local file or a URL.

DOMnode

Document Object Model node, as defined by the World Wide Web
consortium. For more information, see “What Is an XML Document
Object Model (DOM)?”

Output
Arguments

str

String that contains the serialized DOM node as it appears in an XML
file.

Examples Create and view an XML document:

docNode = com.mathworks.xml.XMLUtils.createDocument...

('root_element')

docRootNode = docNode.getDocumentElement;

docRootNode.setAttribute('attr_name','attr_value');

for i=1:20

thisElement = docNode.createElement('child_node');

thisElement.appendChild...

(docNode.createTextNode(sprintf('%i',i)));

docRootNode.appendChild(thisElement);

end

1-7833

xmlwrite

docNode.appendChild(docNode.createComment('this is a comment'));

xmlFileName = [tempname,'.xml'];

xmlwrite(xmlFileName,docNode);

type(xmlFileName);

See Also xmlread | xslt

How To • “What Is an XML Document Object Model (DOM)?”

• “Creating an XML File”

Related
Links

• DOM Package Summary (methods and properties for nodes)

1-7834

http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

xor

Purpose Logical exclusive-OR

Syntax C = xor(A, B)

Description C = xor(A, B) performs an exclusive OR operation on the
corresponding elements of arrays A and B. The resulting element
C(i,j,...) is logical true (1) if A(i,j,...) or B(i,j,...), but not
both, is nonzero.

A B C

Zero Zero 0

Zero Nonzero 1

Nonzero Zero 1

Nonzero Nonzero 0

Examples Given A = [0 0 pi eps] and B = [0 -2.4 0 1], then

C = xor(A,B)
C =

0 1 1 0

To see where either A or B has a nonzero element and the other matrix
does not,

spy(xor(A,B))

See Also all | any | find | and | or | not | Logical Operators: Short
Circuit

Concepts • “Truth Table for Logical Operations”

1-7835

xslt

Purpose Transform XML document using XSLT engine

Syntax result = xslt(source, style, dest)
[result,style] = xslt(___)
xslt(___ ,'-web')

Description result = xslt(source, style, dest) transforms an XML document
using a stylesheet and returns the resulting document’s URL. The
function uses these inputs, the first of which is required:

• source is the filename or URL of the source XML file. source can
also specify a DOM node.

• style is the filename or URL of an XSL stylesheet.

• dest is the filename or URL of the desired output document. If
dest is absent or empty, the function uses a temporary filename. If
dest is '-tostring', the function returns the output document as
a MATLAB string.

[result,style] = xslt(___) returns a processed stylesheet
appropriate for passing to subsequent XSLT calls as style. This
prevents costly repeated processing of the stylesheet.

xslt(___ ,'-web') displays the resulting document in the Help
Browser.

Tips MATLAB uses the Saxon XSLT processor, version 6.5.5, which
supports XSLT 1.0 expressions. For more information, see
http://saxon.sourceforge.net/saxon6.5.5/

For additional information on writing XSL stylesheets,
see the World Wide Web Consortium (W3C®) web site,
http://www.w3.org/Style/XSL/.

Examples This example converts the file info.xml using the stylesheet info.xsl,
writing the output to the file info.html. It launches the resulting
HTML file in the MATLAB Web Browser.

1-7836

http://saxon.sourceforge.net/saxon6.5.5/index.html
http://www.w3.org/Style/XSL/

xslt

xslt('info.xml', 'info.xsl', 'info.html', '-web')

See Also xmlread | xmlwrite

1-7837

zeros

Purpose Create array of all zeros

Syntax X = zeros
X = zeros(n)
X = zeros(sz1,...,szN)
X = zeros(sz)

X = zeros(classname)
X = zeros(n,classname)
X = zeros(sz1,...,szN,classname)
X = zeros(sz,classname)

X = zeros('like',p)
X = zeros(n,'like',p)
X = zeros(sz1,...,szN,'like',p)
X = zeros(sz,'like',p)

Description X = zeros returns the scalar 0.

X = zeros(n) returns an n-by-n matrix of zeros.

X = zeros(sz1,...,szN) returns an sz1-by-...-by-szN array of zeros
where sz1,...,szN indicates the size of each dimension. For example,
zeros(2,3) returns a 2-by-3 array of zeros.

X = zeros(sz) returns an array of zeros where the size vector, sz,
defines size(X). For example, zeros([2,3]) returns a 2-by-3 array
of zeros.

X = zeros(classname) returns a scalar 0 where the string, classname,
specifies the data type. For example, zeros('int8') returns a scalar,
8-bit integer 0.

1-7838

zeros

X = zeros(n,classname) returns an n-by-n array of zeros of data type
classname.

X = zeros(sz1,...,szN,classname) returns an sz1-by-...-by-szN
array of zeros of data type classname.

X = zeros(sz,classname) returns an array of zeros where the size
vector, sz, defines size(X) and classname defines class(X).

X = zeros('like',p) returns a scalar 0 with the same data type,
sparsity, and complexity (real or complex) as the numeric variable, p.

X = zeros(n,'like',p) returns an n-by-n array of zeros like p.

X = zeros(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array
of zeros like p.

X = zeros(sz,'like',p) returns an array of zeros like p where the
size vector, sz, defines size(X).

Input
Arguments

n - Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output
as a square, n-by-n matrix of zeros.

• If n is 0, then X is an empty matrix.

• If n is negative, then it is treated as 0.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

sz1,...,szN - Size of each dimension
two or more integer values

1-7839

zeros

Size of each dimension, specified as two or more integer values, defines
X as a sz1-by...-by-szN array.

• If the size of any dimension is 0, then X is an empty array.

• If the size of any dimension is negative, then it is treated as 0.

• If any trailing dimensions greater than 2 have a size of 1, then the
output, X, does not include those dimensions.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

sz - Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of
this vector indicates the size of the corresponding dimension.

• If the size of any dimension is 0, then X is an empty array.

• If the size of any dimension is negative, then it is treated as 0.

• If any trailing dimensions greater than 2 have a size of 1, then the
output, X, does not include those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64

classname - Output class
'double' (default) | 'single' | 'int8' | 'uint8' | ...

Output class, specified as 'double', 'single', 'int8', 'uint8',
'int16', 'uint16', 'int32', 'uint32', 'int64', or 'uint64'.

Data Types
char

1-7840

zeros

p - Prototype
numeric variable

Prototype, specified as a numeric variable.

Data Types
double | single | int8 | int16 | int32 | int64 | uint8 |
uint16 | uint32 | uint64
Complex Number Support: Yes

Examples Square Array of Zeros

Create a 4-by-4 array of zeros.

X = zeros(4)

X =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3-D Array of Zeros

Create a 2-by-3-by-4 array of zeros.

X = zeros(2,3,4);

size(X)

ans =

2 3 4

Size Defined by Existing Array

Define a 3-by-2 array A.

A = [1 4 ; 2 5 ; 3 6];

1-7841

zeros

sz = size(A)

sz =

3 2

Create an array of zeros that is the same size as A

X = zeros(sz)

X =

0 0
0 0
0 0

Nondefault Numeric Data Type

Create a 1-by-3 vector of zeros whose elements are 32-bit unsigned
integers.

X = zeros(1,3,'uint32'),
class(X)

X =

0 0 0

ans =

uint32

Complex Zero

Create a scalar 0 that is not real valued, but instead is complex like an
existing array.

Define a complex vector.

1-7842

zeros

p = [1+2i 3i];

Create a scalar 0 that is complex like p.

X = zeros('like',p)

X =

0.0000 + 0.0000i

Sparse Array

Define a 10-by-10 sparse matrix.

p = sparse(10,10,pi);

Create a 2-by-3 matrix of zeros that is sparse like p.

X = zeros(2,3,'like',p)

X =

All zero sparse: 2-by-3

Size and Numeric Data Type Defined by Existing Array

Define a 2-by-3 array of 8-bit unsigned integers.

p = uint8([1 3 5 ; 2 4 6]);

Create an array of zeros that is the same size and data type as p.

X = zeros(size(p),'like',p),
class(X)

X =

0 0 0
0 0 0

1-7843

zeros

ans =

uint8

See Also eye | ones | rand | randn | complex | false | size

Concepts • “Class Support for Array-Creation Functions”
• “Preallocating Arrays”

1-7844

zip

Purpose Compress files into zip file

Syntax zip(zipfile,files)
zip(zipfile,files,rootfolder)
entrynames = zip(zipfile,files,rootfolder)

Description zip(zipfile,files) creates a zip file with the name zipfile from the
list of files and folders specified in files. Folders recursively include
all of their content.

zip(zipfile,files,rootfolder) specifies the path for files relative
to rootfolder instead of the current folder.

entrynames = zip(zipfile,files,rootfolder) returns a string
cell array of the names of the files contained in zipfile. Specifying
rootfolder is optional.

Input
Arguments

zipfile

String that specifies the name of the zip file. If zipfile has no
extension, MATLAB appends the .zip extension.

If files includes relative paths, the zip file also contains relative paths.
The zip file does not include absolute paths.

files

String or cell array of strings containing the list of files or folders to
include in zipfile.

Individual files that are on the MATLAB path can be specified as partial
path names. Otherwise an individual file can be specified relative to the
current folder or with an absolute path.

Folders must be specified relative to the current folder or with absolute
paths. On UNIX systems, folders can also start with ~/ or ~username/,
which expands to the current user’s home folder or the specified user’s
home folder, respectively. The wildcard character * can be used when
specifying files or folders, except when relying on the MATLAB path to
resolve a file name or partial path name.

1-7845

zip

rootfolder

String that specifies the root of the paths for the files to zip.

Relative paths in the zip file reflect the relative paths in files, and do
not include path information from rootfolder.

Default: current folder ('.')

Output
Arguments

entrynames

Cell array of strings that contain the paths to the files in zipfile. If
files includes relative paths, entrynames also contains relative paths.

Examples Zip a File

Create a zip file of the file membrane.m, which is in the MATLAB
general folder. Save the zip file tmwlogo.zip in the current folder.

file = fullfile(matlabroot,'toolbox','matlab','general','membrane.m');
zip('tmwlogo',file);

Zip Selected Files

Suppose that your system has a folder named d:/myfiles. Zip the files
membrane.m and logo.m, which are on the MATLAB search path, into a
file named tmwlogo.zip.

myfile = fullfile('d:','myfiles','tmwlogo.zip');
zip(myfile,{'membrane.m','logo.m'});

Zip all .m and .mat files in the current folder to the file backup.zip.

zip('backup',{'*.m','*.mat'});

1-7846

zip

Zip a Folder

Suppose that your current folder contains a subfolder named mywork.
Zip the contents of all subfolders of mywork, and store the relative paths
in the zip file.

zip('myfiles.zip','mywork');

Zip Between Folders

Suppose that you have files thesis.doc and defense.ppt in d:/PhD.
Zip these files into thesis.zip, one level up from the current folder.

zip('../thesis.zip',{'thesis.doc','defense.ppt'},'d:/PhD');

Create Zip Archive of Web Page

Create a zip archive of a Web page.

Locate the list of files at the MATLAB Central File Exchange uploaded
within the past 7 days, that contain "Simulink."

filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
params = {'duration','7','term','simulink'};

Save the Web content to a file.

urlwrite(filex,'contains_simulink.html','get',params);

Create a zip archive of the retrieved Web page, using the zip function.

zip('simulink_matches.zip','contains_simulink.html');

zip creates a zip archive named simulink_matches.zip that contains
the file, contains_simulink.html.

Alternatives To zip files in the Current Folder browser, select the files, right-click to
open the context menu, and then select Create Zip File.

1-7847

zip

See Also gzip | gunzip | tar | untar | unzip

1-7848

zoom

Purpose Turn zooming on or off or magnify by factor

Syntax zoom on
zoom off
zoom out
zoom reset
zoom
zoom xon
zoom yon
zoom(factor)
zoom(fig, option)
h = zoom(figure_handle)

Description zoom on turns on interactive zooming. When interactive zooming is
enabled in a figure, pressing a mouse button while your cursor is within
an axes zooms into the point or out from the point beneath the mouse.
Zooming changes the axes limits. When using zoom mode, you

• Zoom in by positioning the mouse cursor where you want the center
of the plot to be and either

- Press the mouse button or

- Rotate the mouse scroll wheel away from you (upward).

• Zoom out by positioning the mouse cursor where you want the center
of the plot to be and either

- Simultaneously press Shift and the mouse button, or

- Rotate the mouse scroll wheel toward you (downward).

Each mouse click or scroll wheel click zooms in or out by a factor of 2.

Clicking and dragging over an axes when zooming in is enabled draws a
rubberband box. When you release the mouse button, the axes zoom in
to the region enclosed by the rubberband box.

Double-clicking over an axes returns the axes to its initial zoom setting
in both zoom-in and zoom-out modes.

zoom off turns interactive zooming off.

1-7849

zoom

zoom out returns the plot to its initial zoom setting.

zoom reset remembers the current zoom setting as the initial zoom
setting. Later calls to zoom out, or double-clicks when interactive zoom
mode is enabled, will return to this zoom level.

zoom toggles the interactive zoom status between off and on (restoring
the most recently used zoom tool).

zoom xon and zoom yon set zoom on for the x- and y-axis, respectively.

zoom(factor) zooms in or out by the specified zoom factor, without
affecting the interactive zoom mode. Values greater than 1 zoom in by
that amount, while numbers greater than 0 and less than 1 zoom out
by 1/factor.

zoom(fig, option) Any of the preceding options can be specified on a
figure other than the current figure using this syntax.

h = zoom(figure_handle) returns a zoom mode object for the figure
figure_handle for you to customize the mode’s behavior.

Using Zoom Mode Objects

Access the following properties of zoom mode objects via get and modify
some of them using set.

• Enable 'on'|'off' — Specifies whether this figure mode is
currently enabled on the figure

• FigureHandle <handle>— The associated figure handle, a read-only
property that cannot be set

• Motion 'horizontal'|'vertical'|'both'— The type of zooming
enabled for the figure

• Direction 'in'|'out'— The direction of the zoom operation

• RightClickAction 'InverseZoom'|'PostContextMenu' — The
behavior of a right-click action

A value of 'InverseZoom' causes a right-click to zoom out. A value of
'PostContextMenu' displays a context menu. This setting persists
between MATLAB sessions.

1-7850

zoom

• UIContextMenu <handle>— Specifies a custom context menu to be
displayed during a right-click action

This property is ignored if the RightClickAction property has been
set to 'on'.

Zoom Mode Callbacks

You can program the following callbacks for zoom mode operations.

• ButtonDownFilter <function_handle> — Function to intercept
ButtonDown events

The application can inhibit the zoom operation under circumstances
the programmer defines, depending on what the callback returns.
The input function handle should reference a function with two
implicit arguments (similar to Handle Graphics object callbacks),
as follows:

function [res] = myfunction(obj,event_obj)
% obj handle to the object clicked on
% event_obj struct for event data (empty in this release)
% res [output] a logical flag determines whether the zoom
% operation should take place(for 'res' set
% to 'false' or the 'ButtonDownFcn' property
% of the object should take precedence (when
% 'res' is 'true')

• ActionPreCallback <function_handle> — Function to execute
before zooming

Set this callback if you want to execute code when a zoom operation
starts. The input function handle should reference a function with
two implicit arguments (similar to Handle Graphics object callbacks),
as follows:

function myfunction(obj,event_obj)
% obj handle to the figure clicked on
% event_obj object containing struct of event data

1-7851

zoom

The event data has the following field.

Axes The handle of the axes that is
being zoomed

• ActionPostCallback <function_handle> — Function to execute
after zooming

Set this callback if you want to execute code when a zoom operation
finishes. The input function handle should reference a function with
two implicit arguments (similar to Handle Graphics object callbacks),
as follows:

function myfunction(obj,event_obj)
% obj handle to the figure clicked on
% event_obj object containing struct of event data
% (same as the event data of the
% 'ActionPreCallback' callback)

Zoom Mode Utility Functions

The following functions in zoom mode query and set certain of its
properties.

• flags = isAllowAxesZoom(h,axes) — Function querying
permission to zoom axes

Calling the function isAllowAxesZoom on the zoom object, h, with a
vector of axes handles, axes, as input returns a logical array of the
same dimension as the axes handle vector, which indicates whether a
zoom operation is permitted on the axes objects.

• setAllowAxesZoom(h,axes,flag)— Function to set permission to
zoom axes

Calling the function setAllowAxesZoom on the zoom object, h, with a
vector of axes handles, axes, and a logical scalar, flag, either allows
or disallows a zoom operation on the axes objects.

• info = getAxesZoomMotion(h,axes) — Function to get style of
zoom operations

1-7852

zoom

Calling the function getAxesZoomMotion on the zoom object, H, with
a vector of axes handles, axes, as input returns a character cell array
of the same dimension as the axes handle vector, which indicates the
type of zoom operation for each axes. Possible values for the type of
operation are 'horizontal', 'vertical', or 'both'.

• setAxesZoomMotion(h,axes,style)— Function to set style of zoom
operations

Calling the function setAxesZoomMotion on the zoom object, h, with
a vector of axes handles, axes, and a character array, style, sets
the style of zooming on each axes.

Examples Example 1 — Entering Zoom Mode

Plot a graph and turn on Zoom mode:

plot(1:10);
zoom on
% zoom in on the plot

Example 2 — Constrained Zoom

Create zoom mode object and constrain to x-axis zooming:

plot(1:10);
h = zoom;

set(h,'Motion','horizontal','Enable','on');
% zoom in on the plot in the horizontal direction.

Example 3 — Constrained Zoom in Subplots

Create four axes as subplots and set zoom style differently for each by
setting a different property for each axes handle:

ax1 = subplot(2,2,1);
plot(1:10);
h = zoom;
ax2 = subplot(2,2,2);
plot(rand(3));

1-7853

zoom

setAllowAxesZoom(h,ax2,false);
ax3 = subplot(2,2,3);
plot(peaks);
setAxesZoomMotion(h,ax3,'horizontal');
ax4 = subplot(2,2,4);
contour(peaks);
setAxesZoomMotion(h,ax4,'vertical');
% Zoom in on the plots.

Example 4 — Coding a ButtonDown Callback

Create a buttonDown callback for zoom mode objects to trigger. Copy
the following code to a new file, execute it, and observe zooming
behavior:

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');
h = zoom;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse click on the line
%
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true.
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

1-7854

zoom

Example 5 — Coding Pre- and Post-Callback Behavior

Create callbacks for pre- and post-buttonDown events for zoom mode
objects to trigger. Copy the following code to a new file, execute it, and
observe zoom behavior:

function demo
% Listen to zoom events
plot(1:10);
h = zoom;
set(h,'ActionPreCallback',@myprecallback);
set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');
%
function myprecallback(obj,evd)
disp('A zoom is about to occur.');
%
function mypostcallback(obj,evd)
newLim = get(evd.Axes,'XLim');
msgbox(sprintf('The new X-Limits are [%.2f %.2f].',newLim));

Example 6 — Creating a Context Menu for Zoom Mode

Coding a context menu that lets the user to switch to Pan mode by
right-clicking:

figure;plot(magic(10))
hCMZ = uicontextmenu;
hZMenu = uimenu('Parent',hCMZ,'Label','Switch to pan',...
'Callback','pan(gcbf,''on'')');
hZoom = zoom(gcf);
set(hZoom,'UIContextMenu',hCMZ);
zoom('on')

You cannot add items to the built-in zoom context menu, but you can
replace it with your own.

1-7855

zoom

Tips zoom changes the axes limits by a factor of 2 (in or out) each time you
press the mouse button while the cursor is within an axes. You can
also click and drag the mouse to define a zoom area, or double-click
to return to the initial zoom level.

You can create a zoom mode object once and use it to customize the
behavior of different axes, as Example 3 illustrates. You can also
change its callback functions on the fly.

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is
the figure WindowButtonMotionFcn callback, which can be changed
from within a mode. Therefore, if you are creating a GUI that updates
a figure’s callbacks, the GUI should somehow keep track of which
interactive mode is active, if any, before attempting to do this.

When you assign different zoom behaviors to different subplot axes
via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse carries over
to the linked axes, regardless of the behavior you previously set for
the other axes.

Alternatives Use the Zoom tools on the figure toolbar to zoom in or zoom
out on a plot, or select Zoom In or Zoom Out from the figure’s Tools
menu. For details, see “Zooming in Graphs”.

See Also linkaxes | pan | rotate3d

1-7856

../ref/figure_props.html#WindowButtonMotionFcn

closePreview

Purpose Close Webcam preview window

Syntax closePreview(cam)

Description closePreview(cam) closes the Webcam preview window for the
webcam object cam. You can close the preview at any time using the
closePreview function. If you do not explicitly close the preview, it
closes when you clear the webcam object.

Examples Close Webcam Preview

This example shows how to close the Webcam preview window.

Find the name of your camera using the webcamlist function to ensure
that MATLAB is discovering your camera(s).

webcamlist

ans =

'Logitech Webcam 250'
'Dell Camera C250'

Create the object. If you use the webcam function with the name of the
camera (as a string) as the input argument, it creates the object and
connects it to the camera with that name. You can use the exact name
that is displayed by the webcamlist function. In the example above
it would be 'Logitech Webcam 250'. You can also use a shortened
version of the name, for example, the brand of the camera. In this
case you could simply use 'Logitech' and it connects to the Logitech®

Webcam. Use cam as the name of the object.

cam = webcam('Logitech')

cam =

webcam with properties:

1-7857

closePreview

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

See that it creates the object and connects to the Logitech Webcam.

Preview the image from the Webcam.

preview(cam)

The preview window opens and displays live video stream from your
camera. The preview dynamically updates, so if you change a property
while previewing, the image changes to reflect the property change.

Close the preview.

closePreview(cam)

The preview window closes.

After you preview the image, the next steps are optionally changing
any properties you need to set, and then acquiring images using the
snapshot function. For more information on these steps, see the topics
listed below.

Related
Examples

• “Connecting to Webcams”
• “Acquiring Images from Webcams”
• “Setting Properties for Webcam Acquisition”

1-7858

preview

Purpose Preview live video data from Webcam

Syntax preview(cam)

Description preview(cam) creates a preview window that displays live video data
for webcam object cam. The size of the preview image is determined
by the value of the Resolution property. The preview window shows
a live RGB image from the Webcam and displays the camera name,
resolution, frame rate, and the timestamp. Timestamp is the elapsed
time since the object was created. To preview your image, call the
preview function on the object name, which is cam in this example.

Examples Preview Webcam Image

This example shows how to preview Webcam images.

Find the name of your camera using the webcamlist function to ensure
that MATLAB is discovering your camera(s).

webcamlist

ans =

'Logitech Webcam 250'
'Dell Camera C250'

Create the object. If you use the webcam function with the name of the
camera (as a string) as the input argument, it will create the object and
connect it to the camera with that name. You can use the exact name
that is displayed by the webcamlist function. In the example above it is
'Logitech Webcam 250'. You can also use a shortened version of the
name, for example, the brand of the camera. In this case you could
simply use 'Logitech' and it connects to the Logitech Webcam. Use
cam as the name of the object.

1-7859

preview

cam = webcam('Logitech')

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

See that it created the object and connected to the Logitech Webcam.

Preview the image from the Webcam.

preview(cam)

The preview window opens and displays live video stream from your
camera. The preview dynamically updates, so if you change a property
while previewing, the image changes to reflect the property change.
The banner of the preview window shows the camera name. The lower
portion of the window shows the timestamp in seconds, resolution, and
the frame rate in frames per second. Timestamp is the elapsed time
since the object was created.

1-7860

preview

After you preview the image, the next steps are optionally changing
any properties you need to set, and then acquiring images using the
snapshot function. For more information on these steps, see the topics
listed below.

1-7861

preview

Related
Examples

• “Connecting to Webcams”
• “Acquiring Images from Webcams”
• “Setting Properties for Webcam Acquisition”

1-7862

snapshot

Purpose Acquire single image frame from a Webcam

Syntax img = snapshot(cam);

Description img = snapshot(cam); acquires a single image from the Webcam cam
and assigns it to the variable img. The snapshot function returns the
current frame. Calling snapshot in a loop returns a new frame each
time. The returned image is always an RGB image. snapshot uses
the camera’s default resolution or another resolution that you specify
using the Resolution property.

Examples Acquire One Image Frame from Webcam

This example shows how to acquire and display one image frame from
a Webcam.

Find the name of your camera using the webcamlist function to ensure
that MATLAB is discovering your camera(s).

webcamlist

ans =

'Logitech Webcam 250'
'Dell Camera C250'

Create the object. If you use the webcam function with the name of the
camera (as a string) as the input argument, it creates the object and
connects it to the camera with that name. You can use the exact name
that is displayed by the webcamlist function. In the example above
it would be 'Logitech Webcam 250'. You can also use a shortened
version of the name, for example, the brand of the camera. In this case
you could simply use 'Logitech' and it would connect to the Logitech
Webcam. Use cam as the name of the object.

1-7863

snapshot

cam = webcam('Logitech')

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

See that it creates the object and connects to the Logitech Webcam.

Preview the image from the Webcam.

preview(cam)

The preview window opens and displays live video stream from your
camera. The preview dynamically updates, so if you change a property
while previewing, the image changes to reflect the property change.

Close the preview.

closePreview(cam)

The preview window closes.

Acquire a single image from the camera using the snapshot function
and assign it to the variable img.

img = snapshot(cam);

1-7864

snapshot

Display the acquired image.

imshow(img)

The imshow function is part of the Image Processing Toolbox. If you do
not have that, you can use the image function that is part of MATLAB.

image(img)

Clean up by clearing the object.

clear('cam');

Related
Examples

• “Connecting to Webcams”
• “Acquiring Images from Webcams”
• “Setting Properties for Webcam Acquisition”

1-7865

webcam

Purpose Create webcam object to acquire images from Webcams

Syntax cam = webcam
cam = webcam(devicenumber)
cam = webcam('cameraname')

Description cam = webcam creates the webcam object cam and connects to the single
Webcam on your system. If you have multiple cameras and you use
the webcam function with no input argument, it creates the object and
connects it to the first camera it finds. This is the first camera listed in
the output of the webcamlist function.

When the webcam object is created, it connects to the camera, establishes
exclusive access, and starts streaming data. You can then preview the
data and acquire images using the snapshot function.

cam = webcam(devicenumber) creates a webcam object cam where
devicenumber is a numeric scalar value that identifies a particular
Webcam by its index number. When you use the webcam function with
an index as the input argument, it creates the object corresponding to
that index and connects it to that camera. The index corresponds to the
order of cameras in the cell array returned by webcamlist when you
have multiple cameras connected.

Note that you cannot create more than one object connected to the same
device, and trying to do that generates an error.

cam = webcam('cameraname') creates a webcam object cam where
cameraname is a string value that identifies a particular Webcam by its
name. When you use the webcam function with the name of the camera
as the input argument, it creates the object and connects it to the
camera with that name. You can use the exact name that is displayed
by the webcamlist function, such as 'Logitech Webcam 250'. You can
also use a shortened version of the name, for example, the brand of the
camera. In this example you could simply use 'Logitech' and it would
connect to the Logitech Webcam.

1-7866

webcam

When the webcam object is created, it connects to the camera, establishes
exclusive access, and starts streaming data from the camera. You can
then preview the data and acquire images using the snapshot function.

Note that you cannot create more than one object connected to the same
device, and trying to do that generates an error.

Input
Arguments

devicenumber - Device number of your camera
numeric scalar

Device number of your hardware, specified as a numeric scalar. This
number identifies a particular Webcam by its index number. It creates
the object corresponding to that index and connects it to that camera.
The index corresponds to the order of cameras in the cell array returned
by webcamlist when you have multiple cameras connected.

Example: cam = webcam(2)

Data Types
double

cameraname - Name of your camera
character string

Name of your camera, specified as a character string. This argument
creates a webcam object cam where cameraname is a string value that
identifies a particular Webcam by its name. When you use the webcam
function with the name of the camera as the input argument, it creates
the object and connects it to the camera with that name. You can use
the exact name that is returned by the webcamlist function, such as
'Logitech Webcam 250'. You can also use a shortened version of the
name, for example, the brand of the camera. In this example you could
simply use 'Logitech' and it would connect to the Logitech Webcam.

Example: cam = webcam('Logitech')

Data Types
char

1-7867

webcam

Examples Create a Webcam Object Using No Arguments

This example shows how to create a webcam object with no arguments.

Find the name of your camera using the webcamlist function to ensure
that MATLAB is discovering your camera(s).

1-7868

webcam

webcamlist

ans =

'Logitech Webcam 250'
'Dell Camera C250'

If you use the webcam function with no input argument, it creates the
object and connects it to the first camera it finds. This will be the first
camera shown on the list if you have multiple cameras. If you only
have one camera connected to your system, it uses that one. So in the
example shown above, it creates the object using the Logitech camera,
since that appears in the webcamlist output first. In this example,
use cam as the name of the object.

cam = webcam

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

See that it created the object and connected to the Logitech Webcam.

1-7869

webcam

Create a Webcam Object Using Device Number as an Index

This example shows how to create a webcam object using the device
number as an index.

Find the name of your camera using the webcamlist function to ensure
that MATLAB is discovering your camera(s).

webcamlist

ans =

'Logitech Webcam 250'
'Dell Camera C250'

If you use the webcam function with an index as the input argument, it
creates the object corresponding to that index and connects it to that
camera. The index corresponds to the order of cameras in the cell array
returned by webcamlist when you have multiple cameras connected. So
in the example shown above, device 1 is the Logitech camera and device
2 is the built-in Dell® Webcam. Use cam as the name of the object.

cam = webcam(2)

cam =

webcam with properties:

Name: 'Dell Camera C250'
Resolution: '320x240'

AvailableResolutions: ('320x240' '160x120' '80x60')
Brightness: 128

Contrast: 32
Gain: 0

See that it created the object and connected to the Dell Webcam. If you
only have one camera, you do not need to use the index. You can use
the webcam function with no input argument and it creates the object

1-7870

webcam

with the single camera that is connected. The index is useful when
you have multiple cameras.

Create a Webcam Object Using Camera Name

This example shows how to create a webcam object using the camera
name.

Find the name of your camera using the webcamlist function to ensure
that MATLAB is discovering your camera(s).

webcamlist

ans =

'Logitech Webcam 250'
'Dell Camera C250'

If you use the webcam function with the name of the camera (as a
string) as the input argument, it creates the object and connects it
to the camera with that name. You can use the exact name that is
displayed by the webcamlist function. In the example above it would
be 'Logitech Webcam 250'. You can also use a shortened version of
the name, for example, the brand of the camera. In this case you could
simply use 'Logitech' and it would connect to the Logitech Webcam.
Use cam as the name of the object.

cam = webcam('Logitech')

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

1-7871

webcam

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

See that it created the object and connected to the Logitech Webcam.

Related
Examples

• “Connecting to Webcams”
• “Acquiring Images from Webcams”
• “Setting Properties for Webcam Acquisition”

1-7872

webcamlist

Purpose List of Webcams connected to your system

Syntax webcamlist

Description webcamlist returns a list of available UVC-compliant Webcams
connected to your system. The function returns a cell array of names
of the cameras. This supports the plug and play scenario, where using
the webcamlist function again in the same MATLAB session returns
an updated list of cameras if you plug in different cameras during the
session.

The name of the camera that is shown in this output, for example
'Logitech Webcam 250', is the name you can use to create the Webcam
object in order to acquire images.

Examples Display Single Webcam

This example shows the output with a single camera.

If you have a single Webcam connected to your system, the output of
webcamlist shows the one camera.

webcamlist

ans =

'Logitech Webcam 250'

Display Multiple Internal and External Webcams

This example shows the output with multiple cameras, including both
internal and external.

If you have multiple Webcams connected to your system, the output
shows all the cameras in a cell array.

1-7873

webcamlist

webcamlist

ans =

'Dell Camera C250'
'Logitech Webcam 250'

In this case it sees the built-in Webcam in the Dell computer, and a
connected USB Webcam.

Display Multiple External Webcams

This example shows the output with multiple cameras, including only
external.

In this case, there are two cameras connected by USB ports.

webcamlist

ans =

'Logitech Webcam 250'
'Logitech Webcam Pro 9000'

Related
Examples

• “Connecting to Webcams”
• “Acquiring Images from Webcams”
• “Setting Properties for Webcam Acquisition”

1-7874

2

Functions — Alphabetical
List

cameraboard

Purpose Create connection to Raspberry Pi Camera Board Module

Syntax mycamera = cameraboard(mypi)
mycamera = cameraboard(mypi,Name,Value)

Description mycamera = cameraboard(mypi) connects to a Camera Board and
returns a handle, mycamera. You can capture video and still images by
using mycamera with the record, stop, and snapshot methods.

mycamera = cameraboard(mypi,Name,Value)uses name-value pair
arguments to override the default values of writable Camera Board
properties. You can use these properties to control image properties
such as size, resolution, orientation, exposure, and special effects.

Name must appear inside single quotes (' '). You can
specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

’Resolution’ - Image dimensions

2-2

cameraboard

'640x480' (default) | '160x120' | '320x240' | '800x600' |
'1024x768' | '1280x720' | '1920x1080'

Image dimensions, specified as a string.

You can only specify this value when you create the mycamera handle.

Example: '1024x768'

Data Types
char

’Quality’ - JPEG image quality
10 (default) | integer from 0 to 100

JPEG image quality, specified as a scalar from 1 to 100 (low to high).

The value of this parameter is inversely related to the amount of
compression the camera performs upon the JPEG images. A value of 1
applies maximum compression, while a value of 100 applies minimal
compression.

You can only specify this value when you create the mycamera handle.

Example: 10

Data Types
double

’Rotation’ - Degrees of clockwise rotation
0 (default) | 90 | 180 | 270

Degrees of clockwise rotation, specified as 0, 90, 180, or 270.

Use this value to alter the orientation of the images captured by the
Camera Board.

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 180

Data Types
double

2-3

cameraboard

’HorizontalFlip’ - Enable horizontal flip
0 (default) | 1

Enable horizontal flip, specified as a logical value.

Use this value to reverse the left and right orientation of the images
captured by the Camera Board.

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 1

Data Types
logical

’VerticalFlip’ - Flip image vertically
0 (default) | 1

Flip image vertically, specified as a logical value.

Use this value to reverse the top and bottom orientation of the images
captured by the Camera Board.

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 1

Data Types
logical

’FrameRate’ - Video frame rate
30 (default) | integer from 2 to 30

Video frame rate, specified as a scalar from 2 to 30 frames per second
(fps).

You can only specify this value when you create the mycamera handle.

Example:

Data Types
double

2-4

cameraboard

’Brightness’ - Image brightness
50 (default) | integer from 0 to 100

Image brightness, specified as a scalar from 0 to 100 (low to high).

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 60

Data Types
double

’Contrast’ - Image contrast
0 (default) | integer from -100 to 100

Image contrast, specified as a scalar from -100 to 100 (low to high).

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 60

Data Types
double

’Saturation’ - Image color saturation
0 (default) | integer from -100 to 100

Image color saturation, specified as a scalar from -100 to 100 (low to
high).

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 60

Data Types
double

’Sharpness’ - Image sharpness
0 (default) | integer from -100 to 100

2-5

cameraboard

Image sharpness, specified as a scalar from -100 to 100 (low to high).

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 60

Data Types
double

’ExposureMode’ - Exposure mode
'auto' (default) | 'night' | 'nightpreview' | 'backlight' |
'spotlight' | 'sports' | 'snow' | 'beach' | 'verylong' |
'fixedfps' | 'antishake' | 'fireworks'

Exposure mode, specified as a string.

Select the exposure mode for a variety of conditions, indicated by the
name of the mode, or let the camera select the best mode (auto).

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 'backlight'

Data Types
char

’ExposureCompensation’ - Exposure compensation
0 (default) | integer from -10 to 10

Exposure compensation, specified as a scalar from -10 to 10 (low to
high).

Fine tune the automatic exposure. For example, if a backlit subject is
too dark when ExposureMode is 'backlight', increase the value of
ExposureCompensation.

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: -1

2-6

cameraboard

Data Types
double

’AWBMode’ - Automatic white balance mode
'auto (default) | 'off' | 'sun' | 'cloud' | 'shade' | 'tungsten' |
'fluorescent' | 'incandescent' | 'flash' | 'horizon'

Automatic white balance mode, specified as a string.

Select the white balance mode for a variety of conditions, indicated by
the name of the mode, or let the camera select the best mode (auto).

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

This mode adjusts the hue of the image to match the color temperature
of various light sources.

For example, tungsten light bulbs tend to produce images that have an
orange hue. To reduce this effect, set AWBMode to auto or tungsten. To
keep this effect, set AWBMode to off. To heighten this effect, set AWBMode
to auto or shade.

Example: 'backlight'

Data Types
char

’MeteringMode’ - Metering mode
'average' (default) | 'spot' | 'backlit' | 'matrix'

Metering mode, specified as a string.

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

This mode selects which portion of the image determines exposure.

• average— Uses values from across the scene, with a moderate bias
toward values near the center.

• spot — Uses values from a very narrow area in the center of the
image.

2-7

cameraboard

• backlit — Uses a cluster of lower values near the center of the
image.

• matrix— Uses a values from grid of specific points in the image.

Example: 'backlight'

Data Types
char

’ImageEffect’ - Special effect
'none (default) | 'negative' | 'solarise' | 'sketch' | 'denoise'
| 'emboss' | 'oilpaint' | 'hatch' | 'gpen' | 'pastel' |
'watercolour' | 'film' | 'blur' | 'saturation' | 'colourswap' |
'washedout' | 'posterise' | 'colourpoint' | 'colourbalance' |
'cartoon'

Special effect, specified as a string.

Select the special effect indicated by the name of the mode, or disable
special effects (auto).

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Example: 'cartoon'

Data Types
char

’VideoStabilization’ - Video stabilization
'off' (default) | 'on'

Video stabilization, specified as a string.

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

Activate built-in video stabilization to reduce effects of vibration.

Example: 'on'

2-8

cameraboard

Data Types
char

’ROI’ - Region of interest
[0.00 0.00 1.00 1.00] (default)

Region of interest (ROI), specified as a vector of four values: x, y, width,
height.

You can specify this value when you create the mycamera handle, and
later by writing a new value to the property that has the same name.

ROI defines which portion of the camera sensor to use. You can use this
definition to perform digital panning and zooming while you record
video.

For still images (snapshot) and video (record), the camera “smooths”
ROI changes by applying them gradually over a sequence of image
frames.

The following values define the starting point and size of the ROI:

• X, the vertical starting point, from 0.0000 to 1.0000 (top to bottom)

• Y, the horizontal starting point, from 0.0000 to 1.0000 (left to right)

• Height, from 0.0000 to 1.0000 (small to large)

• Width, from 0.0000 to 1.0000 (small to large)

The following illustration shows how X and Y position the ROI relative
to the Camera Board sensor:

• The red dot is at X = 0.00 and Y = 0.00.

• The blue dot is at X = 1.00, Y = 1.00.

2-9

cameraboard

The following illustration represents the ROI from entering:

mycam.ROI = [0.50 0.50 0.33 0.33]

The 0.50 0.50 values place the top left corner of the ROI in the center
of the sensor. The 0.33 0.33 values resize the ROI to one-third of the
sensor. If ROI exceeds the dimensions of the sensor, the method that
you are using produces the following error: Index exceeds matrix
dimensions.

2-10

cameraboard

Example: [0.50 0.50 0.33 0.33]

Data Types
double

Output
Arguments

mycamera - Connection to Raspberry Pi™ Camera Board
handle

Connection to a Raspberry Pi Camera Board.

You can use mycamera with the following methods:

• record

• stop

• snapshot

You can use mycamera to read and write the properties specified by the
“Name-Value Pair Arguments” on page 2-2.

You can use mycamera to read the value of the Recording property,
which indicates whether the Camera Board is recording video.

Examples Use the Camera Board

You can create a connection to the Camera Board, take a photograph,
and record video.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Create a connection to the Camera Board while changing the resolution,
and assign that connection to a handle, mycam. The handle displays the
Camera Board properties.

mycam = cameraboard(mypi,'Resolution','1280x720')

mycam =

Cameraboard with Properties:

2-11

cameraboard

Name: Camera Board

Resolution: '1280x720' (View available resolutions)

Quality: 10 (1 to 100)

Rotation: 0 (0, 90, 180 or 270)

HorizontalFlip: 0

VerticalFlip: 0

FrameRate: 30 (2 to 30)

Recording: 0

Picture Settings

Brightness: 50 (0 to 100)

Contrast: 0 (-100 to 100)

Saturation: 0 (-100 to 100)

Sharpness: 0 (-100 to 100)

Exposure and AWB

ExposureMode: 'auto' (View available exposure modes)

ExposureCompensation: 0 (-10 to 10)

AWBMode: 'auto' (View available AWB modes)

MeteringMode: 'average' (View available metering modes)

Effects

ImageEffect: 'none' (View available image effects)

VideoStabilization: 'off'

ROI: [0.00 0.00 1.00 1.00] (0.0 to 1.0 [top, left, width, height])

Import and display a sequence of ten snapshots on your host computer.

for ii = 1:10
img = snapshot(mycam);

imagesc(img);
drawnow;

end

If the image is upside down, change the orientation of the image.

mycam.Rotation = 180;

2-12

cameraboard

You can use the same approach to change the values of many mycamera
properties listed in the "Name-Value Pair Arguments" for cameraboard.

Record a 60 second video.

record(mycam,'myvideo.mp4',60)

Stop recording before the 60 seconds have elapsed.

stop(mycam)

Copy the video from the board to your host computer.

getFile(mypi,'myvideo.mp4','C:\MATLAB')

Delete the video file from the board to free up space.

deleteFile(mypi,'myvideo.mp4')

See Also raspi | snapshot | record | stop | getFile | deleteFile |
“Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• RaspiCam Documentation

2-13

http://www.raspberrypi.org/wp-content/uploads/2013/07/RaspiCam-Documentation.pdf

configureDigitalPin

Purpose Configure GPIO pin as input or output

Syntax configureDigitalPin(mypi,pinNumber,direction)

Description configureDigitalPin(mypi,pinNumber,direction) configures a
specific GPIO pin as a digital input or output.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

pinNumber - GPIO pin number
pin number

GPIO pin number, specified as a scalar. This argument does not
accept vectors because the hardware cannot access multiple pins
simultaneously.

To get a list of valid pin numbers, enter mypi.AvailableDigitalPins.

Example: 12

Data Types
double

direction - Pin direction
input | output

Pin direction, specified as an string. Configures the pin as an input or
an output. Accepts partial inputs.

Example: 'input'

Data Types
char

2-14

configureDigitalPin

Examples Configure Pin as Digital Input and Read Its Logical Value

You can configure a pin as digital input and read its logical value.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

The AvailableDigitalPins property shows the list of digital pins
that are available.

Redisplay AvailableDigitalPins.

mypi.AvailableDigitalPins

ans =

Columns 1 through 13

4 7 8 9 10 11 14 15 17 18 22 23 24

Columns 14 through 17

25 27 30 31

Show the location of the GPIO 4.

2-15

configureDigitalPin

showPins(mypi)

Connect the digital device you are using to GPIO 4.

Configure pin 4 as a digital input.

configureDigitalPin(mypi,4,'input')

2-16

configureDigitalPin

Read the value from pin 4.

readDigitalPin(mypi,4)

ans =

1

Configure Pin as Digital Output and Write Its Logical Value

You can configure a pin as digital output and write its logical value.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

The AvailableDigitalPins property shows the list of digital pins
that are available.

Redisplay AvailableDigitalPins.

mypi.AvailableDigitalPins

ans =

Columns 1 through 13

2-17

configureDigitalPin

4 7 8 9 10 11 14 15 17 18 22 23 24

Columns 14 through 17

25 27 30 31

Show the location of the GPIO 4.

showPins(mypi)

2-18

configureDigitalPin

Connect the digital device you are using to GPIO 4.

Configure pin 4 as a digital output.

configureDigitalPin(mypi,4,'output')

Write a logical value of 1 to pin 4.

2-19

configureDigitalPin

writeDigitalPin(mypi,4,1)

See Also readDigitalPin | writeDigitalPin | showPins | raspi | “Raspberry
Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-20

deleteFile

Purpose Delete file on target hardware

Syntax deleteFile(mypi,fileName)

Description deleteFile(mypi,fileName)

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

fileName - File to delete
file name

File to delete, specified as a string. You can delete a file on the
Raspberry Pi hardware. When you specify the file name, you can use
path information and wildcards.

Example: '/home/pi/cap.jpg'

Example: '/home/pi/*.jpg'

Data Types
cell

Examples Delete File on Raspberry Pi Hardware

You can delete a file on the Raspberry Pi hardware.

deleteFile(mypi,'/home/pi/cap.jpg');

Delete Multiple Files on Raspberry Pi Hardware

You can delete multiple files on the Raspberry Pi hardware using a
wildcard character, *.

deleteFile(mypi,'/home/pi/*.jpg')

2-21

deleteFile

Use the Camera Board

You can create a connection to the Camera Board, take a photograph,
and record video.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Create a connection to the Camera Board while changing the resolution,
and assign that connection to a handle, mycam. The handle displays the
Camera Board properties.

mycam = cameraboard(mypi,'Resolution','1280x720')

mycam =

Cameraboard with Properties:

Name: Camera Board

Resolution: '1280x720' (View available resolutions)

Quality: 10 (1 to 100)

Rotation: 0 (0, 90, 180 or 270)

HorizontalFlip: 0

VerticalFlip: 0

FrameRate: 30 (2 to 30)

Recording: 0

Picture Settings

Brightness: 50 (0 to 100)

Contrast: 0 (-100 to 100)

Saturation: 0 (-100 to 100)

Sharpness: 0 (-100 to 100)

Exposure and AWB

ExposureMode: 'auto' (View available exposure modes)

ExposureCompensation: 0 (-10 to 10)

AWBMode: 'auto' (View available AWB modes)

2-22

deleteFile

MeteringMode: 'average' (View available metering modes)

Effects

ImageEffect: 'none' (View available image effects)

VideoStabilization: 'off'

ROI: [0.00 0.00 1.00 1.00] (0.0 to 1.0 [top, left, width, height])

Import and display a sequence of ten snapshots on your host computer.

for ii = 1:10
img = snapshot(mycam);

imagesc(img);
drawnow;

end

If the image is upside down, change the orientation of the image.

mycam.Rotation = 180;

You can use the same approach to change the values of many mycamera
properties listed in the "Name-Value Pair Arguments" for cameraboard.

Record a 60 second video.

record(mycam,'myvideo.mp4',60)

Stop recording before the 60 seconds have elapsed.

stop(mycam)

Copy the video from the board to your host computer.

getFile(mypi,'myvideo.mp4','C:\MATLAB')

Delete the video file from the board to free up space.

deleteFile(mypi,'myvideo.mp4')

See Also system | openShell | getFile | putFile | cameraboard

2-23

deleteFile

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• http://elinux.org/CLI_Spells
• http://linuxcommand.org/learning_the_shell.php

2-24

http://elinux.org/CLI_Spells
http://linuxcommand.org/learning_the_shell.php

disableI2C

Purpose Disable I2C interface

Syntax disableI2C(mypi)

Description disableI2C(mypi) disables the I2C bus and makes the I2C pins
available for use as GPIO pins instead. By default, the I2C bus is
enabled.

For example, on a Raspberry Pi Model B Rev 2 board, disabling the
I2C bus makes I2C1_SDA (GPIO 2) and I2C1_SCL (GPIO 3) available
for use as GPIO pins.

To reenable I2C, use enableI2C.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

Examples Connect and Exchange Data with I2C Devices

You can connect and exchange data with a pair of I2C devices.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

2-25

disableI2C

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Redisplay AvailableI2CBuses and I2CBusSpeed.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

'i2c-0' 'i2c-1'

ans =

100000

Show the location of the I2C pins.

showPins(mypi)

2-26

disableI2C

The pin map shows that, for this model and revision of the board, the
i2c-1 bus is available on the GPIO header pins I2C1_SDA (GPIO 2)
and I2C1_SCL (GPIO 3).

After physically connecting your I2C device to the I2C pins, get the
addresses of I2C devices attached to the I2C bus, 'i2c-1'.

2-27

disableI2C

scanI2CBus(mypi,'i2c-1')

ans =

{'0x55','0x20'}

Create a connection to the I2C sensor at '0x20' and assign that
connection to a handle, i2csensor.

i2csensor = i2cdev(mypi,'i2c-1','0x20')

i2csensor =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x20
TimeOut: 10

Read two uint8 numbers from the sensor.

output1 = read(i2csensor,2);

Read the value of register 14 from the sensor

output2 = readRegister(i2csensor,14);

Create a connection to the I2C LED display at '0x55' and assign that
connection to a handle, i2cdisplay.

i2cdisplay = i2cdev(mypi,'i2c-1','0x55')

i2cdisplay =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x55
TimeOut: 10

2-28

disableI2C

Write characters to the display.

write(i2cdisplay,[hex2dec('20') hex2dec('51')]);

Write a scalar hexadecimal value, hex2dec('08'), to register 3 on an
I2C device.

writeRegister(i2cdisplay,3,hex2dec('08'),'uint8');

If you are not using I2C, disable I2C to make additional GPIO pins
available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

You can only change the mypi.I2CBusSpeed property when you enable
I2C.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

See Also raspi | scanI2CBus | i2cdev | read | write | readRegister |
writeRegister | enableI2C | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-29

disableSPI

Purpose Disable SPI interface

Syntax disableSPI(mypi)

Description disableSPI(mypi) disables the SPI bus and makes the SPI pins
available for use as GPIO pins instead. By default, SPI is disabled. This
method works only after you have used enableSPI.

For example, on a Raspberry Pi Model B Rev 2 board, disabling the
SPI bus makes GPIO 10 (SPI0_MOSI), GPIO 9 (SPI0_MISO), GPIO 11
(SPI0_SCLK) available for use as GPIO pins.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

Examples Connect and Exchange Data with SPI Devices

You can connect and exchange data with an SPI device.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

2-30

disableSPI

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

By default, SPI is disabled and AvailableSPIChannels does not show
any channels.

Enable SPI and get the channels.

enableSPI(mypi);
mypi.AvailableSPIChannels

ans =

'CE0' 'CE1'

Show the location of the SPI pins, GPIO 10 (SPI0_MOSI), GPIO 9
(SPI0_MISO), and GPIO 11 (SPI0_SCLK), on the GPIO header.

showPins(mypi)

2-31

disableSPI

After physically connecting your SPI device to the three SPI pins,
connect to the SPI device.

myspidevice = spidev(mypi,'CE1',0)

myspidevice =

2-32

disableSPI

Spidev with Properties:
Channel: 'CE1'

Mode: 0
BitsPerWord: 8

Speed: 500000

Write data to, and read data from, the SPI device.

out = writeRead(myspidevice,[hex2dec('08') hex2dec('D4')])

out =
7 211

If you are not using SPI, disable SPI to make additional GPIO pins
available.

disableSPI(mypi)

See Also raspi | spidev | writeRead | enableSPI | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-33

enableI2C

Purpose Enable I2C interface

Syntax enableI2C(mypi)
enableI2C(mypi,i2cBusSpeed)

Description enableI2C(mypi) enables the I2C bus at the default bus speed, 100000,
and makes the GPIO pins available for use as I2C pins instead. By
default, the I2C bus is enabled. This method works only after you use
disableI2C.

For example, on a Raspberry Pi Model B Rev 2 board, enabling the
I2C bus makes I2C1_SDA (GPIO 2) and I2C1_SCL (GPIO 3) available
for use as I2C pins.

enableI2C(mypi,i2cBusSpeed) enables the I2C bus and overrides the
current bus speed.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

i2cBusSpeed - I2C bus speed
100000 (default) | 400000

I2C bus speed, specified as a scalar.

Example: 100000

Data Types
double

Examples Connect and Exchange Data with I2C Devices

You can connect and exchange data with a pair of I2C devices.

2-34

enableI2C

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Redisplay AvailableI2CBuses and I2CBusSpeed.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

'i2c-0' 'i2c-1'

ans =

100000

Show the location of the I2C pins.

showPins(mypi)

2-35

enableI2C

The pin map shows that, for this model and revision of the board, the
i2c-1 bus is available on the GPIO header pins I2C1_SDA (GPIO 2)
and I2C1_SCL (GPIO 3).

After physically connecting your I2C device to the I2C pins, get the
addresses of I2C devices attached to the I2C bus, 'i2c-1'.

2-36

enableI2C

scanI2CBus(mypi,'i2c-1')

ans =

{'0x55','0x20'}

Create a connection to the I2C sensor at '0x20' and assign that
connection to a handle, i2csensor.

i2csensor = i2cdev(mypi,'i2c-1','0x20')

i2csensor =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x20
TimeOut: 10

Read two uint8 numbers from the sensor.

output1 = read(i2csensor,2);

Read the value of register 14 from the sensor

output2 = readRegister(i2csensor,14);

Create a connection to the I2C LED display at '0x55' and assign that
connection to a handle, i2cdisplay.

i2cdisplay = i2cdev(mypi,'i2c-1','0x55')

i2cdisplay =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x55
TimeOut: 10

2-37

enableI2C

Write characters to the display.

write(i2cdisplay,[hex2dec('20') hex2dec('51')]);

Write a scalar hexadecimal value, hex2dec('08'), to register 3 on an
I2C device.

writeRegister(i2cdisplay,3,hex2dec('08'),'uint8');

If you are not using I2C, disable I2C to make additional GPIO pins
available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

You can only change the mypi.I2CBusSpeed property when you enable
I2C.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

See Also raspi | scanI2CBus | i2cdev | read | write | readRegister |
writeRegister | disableI2C | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-38

enableSPI

Purpose Enable SPI interface

Syntax enableSPI(mypi)

Description enableSPI(mypi) enables the SPI bus and makes the GPIO pins
available for use as SPI pins instead. By default, SPI is disabled.

For example, on a Raspberry Pi Model B Rev 2 board, enabling the
SPI bus makes GPIO 10 (SPI0_MOSI), GPIO 9 (SPI0_MISO), GPIO 11
(SPI0_SCLK) available for use as SPI pins.

To disable SPI, use disableSPI.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

Examples Connect and Exchange Data with SPI Devices

You can connect and exchange data with an SPI device.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

2-39

enableSPI

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

By default, SPI is disabled and AvailableSPIChannels does not show
any channels.

Enable SPI and get the channels.

enableSPI(mypi);
mypi.AvailableSPIChannels

ans =

'CE0' 'CE1'

Show the location of the SPI pins, GPIO 10 (SPI0_MOSI), GPIO 9
(SPI0_MISO), and GPIO 11 (SPI0_SCLK), on the GPIO header.

showPins(mypi)

2-40

enableSPI

After physically connecting your SPI device to the three SPI pins,
connect to the SPI device.

myspidevice = spidev(mypi,'CE1',0)

myspidevice =

2-41

enableSPI

Spidev with Properties:
Channel: 'CE1'

Mode: 0
BitsPerWord: 8

Speed: 500000

Write data to, and read data from, the SPI device.

out = writeRead(myspidevice,[hex2dec('08') hex2dec('D4')])

out =
7 211

If you are not using SPI, disable SPI to make additional GPIO pins
available.

disableSPI(mypi)

See Also raspi | spidev | writeRead | disableSPI | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-42

getFile

Purpose Transfer file from Raspberry Pi hardware to host computer

Syntax getFile(mypi,source)
getFile(mypi,source,destination)

Description getFile(mypi,source) copies the specified file from the Raspberry Pi
hardware to the MATLAB Current Folder. Wildcards are supported.

getFile(mypi,source,destination) copies the file to a destination
path and optional file name.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

source - Path and name of file on Raspberry Pi hardware
path and name file name

Path and file name on the Raspberry Pi hardware, specified as a string.
You can use either the absolute path from the root folder, the relative
path from the present working folder. Use Linux path and file naming
conventions. The default path is /home/pi/.

Example: '.profile'

Example: '/home/pi/.profile'

Example: '/home/pi/.pro*'

Data Types
char

destination - Path and name of file on host computer
MATLAB Current Folder (default) | destination path

2-43

getFile

Path and name of file on host computer, specified as a string. If not
specified, getFile uses the MATLAB Current Folder and the current
file name. Use naming conventions of the operating system on the host
computer. This function does not create new folders. Folder names in
the path must already exist. Optional.

Example: 'C:\Users\myusername\Desktop'

Data Types
char

Examples Download a File to the MATLAB Current Folder

You can copy a file, such as .profile, from the Raspberry Pi hardware
to the MATLAB Current Folder on your host computer.

getFile(mypi,'/home/pi/.profile')

Download Multiple Files to a Specific Folder on Your Host
Computer

You can use a wildcard to copy any matching file or files from the
Raspberry Pi hardware to your host computer. You can specify the path
of a destination folder. The folder must already exist.

getFile(mypi,'/home/pi/*.png','C:\Users\myusername\Desktop')

Use the Camera Board

You can create a connection to the Camera Board, take a photograph,
and record video.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Create a connection to the Camera Board while changing the resolution,
and assign that connection to a handle, mycam. The handle displays the
Camera Board properties.

mycam = cameraboard(mypi,'Resolution','1280x720')

2-44

getFile

mycam =

Cameraboard with Properties:

Name: Camera Board

Resolution: '1280x720' (View available resolutions)

Quality: 10 (1 to 100)

Rotation: 0 (0, 90, 180 or 270)

HorizontalFlip: 0

VerticalFlip: 0

FrameRate: 30 (2 to 30)

Recording: 0

Picture Settings

Brightness: 50 (0 to 100)

Contrast: 0 (-100 to 100)

Saturation: 0 (-100 to 100)

Sharpness: 0 (-100 to 100)

Exposure and AWB

ExposureMode: 'auto' (View available exposure modes)

ExposureCompensation: 0 (-10 to 10)

AWBMode: 'auto' (View available AWB modes)

MeteringMode: 'average' (View available metering modes)

Effects

ImageEffect: 'none' (View available image effects)

VideoStabilization: 'off'

ROI: [0.00 0.00 1.00 1.00] (0.0 to 1.0 [top, left, width, height])

Import and display a sequence of ten snapshots on your host computer.

for ii = 1:10
img = snapshot(mycam);

imagesc(img);
drawnow;

end

2-45

getFile

If the image is upside down, change the orientation of the image.

mycam.Rotation = 180;

You can use the same approach to change the values of many mycamera
properties listed in the "Name-Value Pair Arguments" for cameraboard.

Record a 60 second video.

record(mycam,'myvideo.mp4',60)

Stop recording before the 60 seconds have elapsed.

stop(mycam)

Copy the video from the board to your host computer.

getFile(mypi,'myvideo.mp4','C:\MATLAB')

Delete the video file from the board to free up space.

deleteFile(mypi,'myvideo.mp4')

See Also system | openShell | putFile | deleteFile | cameraboard

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• http://elinux.org/CLI_Spells
• http://linuxcommand.org/learning_the_shell.php

2-46

http://elinux.org/CLI_Spells
http://linuxcommand.org/learning_the_shell.php

i2cdev

Purpose Create connection to I2C device

Syntax myi2cdevice = i2cdev(mypi,bus,i2cAddress)

Description myi2cdevice = i2cdev(mypi,bus,i2cAddress) connects to an
I2C device and returns a handle, myi2cdevice. You can exchange
data with the I2C device by using myi2cdevice with the read,
write, readRegister, and writeRegister methods. You can use
myi2cdevice to read properties of the I2C device.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

bus - I2C bus
'2c-0' | '2c-1'

I2C bus, specified as a string.

Example: 'i2c-1'

Data Types
char

i2cAddress - I2C device address
hexadecimal address

I2C device address, specified as a string. Use scanI2CBus to get a list of
addresses. The address is a Hexadecimal value.

Example: '0x20'

Data Types
char

2-47

i2cdev

Output
Arguments

myi2cdevice - Connection to specific I2C device
handle

Connection to a specific I2C device, specified as a handle.

You can use myi2cdevice with the following methods:

• read

• write

• readRegister

• writeRegister

You can read values from the following myi2cdevice properties:

• Bus

• I2CAddress

Examples Connect and Exchange Data with I2C Devices

You can connect and exchange data with a pair of I2C devices.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

2-48

i2cdev

Supported peripherals

Redisplay AvailableI2CBuses and I2CBusSpeed.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

'i2c-0' 'i2c-1'

ans =

100000

Show the location of the I2C pins.

showPins(mypi)

2-49

i2cdev

The pin map shows that, for this model and revision of the board, the
i2c-1 bus is available on the GPIO header pins I2C1_SDA (GPIO 2)
and I2C1_SCL (GPIO 3).

After physically connecting your I2C device to the I2C pins, get the
addresses of I2C devices attached to the I2C bus, 'i2c-1'.

2-50

i2cdev

scanI2CBus(mypi,'i2c-1')

ans =

{'0x55','0x20'}

Create a connection to the I2C sensor at '0x20' and assign that
connection to a handle, i2csensor.

i2csensor = i2cdev(mypi,'i2c-1','0x20')

i2csensor =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x20
TimeOut: 10

Read two uint8 numbers from the sensor.

output1 = read(i2csensor,2);

Read the value of register 14 from the sensor

output2 = readRegister(i2csensor,14);

Create a connection to the I2C LED display at '0x55' and assign that
connection to a handle, i2cdisplay.

i2cdisplay = i2cdev(mypi,'i2c-1','0x55')

i2cdisplay =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x55
TimeOut: 10

2-51

i2cdev

Write characters to the display.

write(i2cdisplay,[hex2dec('20') hex2dec('51')]);

Write a scalar hexadecimal value, hex2dec('08'), to register 3 on an
I2C device.

writeRegister(i2cdisplay,3,hex2dec('08'),'uint8');

If you are not using I2C, disable I2C to make additional GPIO pins
available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

You can only change the mypi.I2CBusSpeed property when you enable
I2C.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

See Also scanI2CBus | read | write | readRegister | writeRegister |
enableI2C | disableI2C | raspi | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-52

openShell

Purpose Open terminal on host computer to use Linux shell on Raspberry Pi
hardware

Syntax openShell(mypi)

Description openShell(mypi) opens an SSH terminal on your host computer that
provides encrypted access to the Linux command shell on the Raspberry
Pi hardware. When you are prompted, enter a user name and password.
The default user name and password are pi and raspberry.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

Examples Change Passwords Using a SSH Terminal

You can use an encrypted SSH terminal session to change the password
on your Raspberry Pi board.

It is a good security practice to immediately change the default password
to a secure one the first time you connect to the Raspberry Pi board.

mypi = raspi()
openShell(mypi)

2-53

openShell

Start the raspi-config utility.

sudo raspi-config

Select 2 Change User Password and change the default password to a
secure one.

2-54

openShell

See Also system | getFile | putFile | deleteFile | “Linux”

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• http://en.wikipedia.org/wiki/Secure_Shell
• http://elinux.org/CLI_Spells
• http://linuxcommand.org/learning_the_shell.php

2-55

http://en.wikipedia.org/wiki/Secure_Shell
http://elinux.org/CLI_Spells
http://linuxcommand.org/learning_the_shell.php

putFile

Purpose Transfer file from host computer to target hardware

Syntax putFile(mypi,source)
putFile(mypi,source,destination)

Description putFile(mypi,source) copies the specified file from the MATLAB
Current Folder to the current folder (pwd) on the Raspberry Pi
hardware. Wildcards are supported.

putFile(mypi,source,destination) copies the file to a destination
path and optional file name.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

source - Path and name of file on host computer
MATLAB Current Folder (default) | source path

Path and name of the file on the host computer. Specify the path as
a string. You can use an absolute path or a relative path from the
MATLAB Current Folder. Use the path and file naming conventions of
the operating system on your host computer.

Example: 'C:\Work\.profile'

Data Types
char

destination - Destination folder path and optional file name
destination path

Destination folder path and optional file name, specified as a string.
Use Linux path and file naming conventions. Optional.

2-56

putFile

Example: '/home/pi/.profile'

Data Types
char

Examples Upload a File to the Raspberry Pi Hardware

You can copy a file, such as out.jpg, from your host computer to the
Raspberry Pi hardware. Use the different file and path conventions
of each operating system.

putFile(mypi,'C:\Work\.profile','/home/pi/.profile');

See Also system | openShell | getFile | deleteFile

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• http://elinux.org/CLI_Spells
• http://linuxcommand.org/learning_the_shell.php

2-57

http://elinux.org/CLI_Spells
http://linuxcommand.org/learning_the_shell.php

raspi

Purpose Create connection to Raspberry Pi hardware

Syntax mypi = raspi
mypi = raspi(ipaddress,username,password)

Description mypi = raspi creates a connection to the Raspberry Pi board and
assigns that connection to a handle. Use this syntax to simply connect
or reconnect to the same board.

You do not need to supply the user IP address, user name, and password
because raspi reuses these settings from the most recent successful
connection to a Raspberry Pi board, including the setup process.

After connecting to the board, you can use mypi to interact with the
Raspberry Pi board and peripheral devices.

To close the connection, use clear to remove mypi and any other
handles that were created using mypi.

mypi = raspi(ipaddress,username,password) overrides the IP
address, user name, and password from the previous connection. Use
this syntax to connect to a board whose settings are different from the
previous successful connection. Use this syntax after changing the
password on a board, or to create a connection to a second board.

Note The firmware has a default user name, 'pi', and password,
'raspberry'. The pi user has sudo root powers on the command line.
It is a good security practice to change the default password to a strong
password.

Input
Arguments

ipaddress - IP address or host name of board
valid IPv4 address | valid host name

IP address or host name of the board, specified as a string.

Example: '169.254.0.2'

2-58

raspi

Example: 'raspberrypi-computername'

Data Types
char

username - Linux user name
user name

Linux user name, specified as a string.

Example: 'pi'

Data Types
char

password - Linux user password
password

Linux user password, specified as a string.

Note The firmware has a default user name, 'pi', and password,
'raspberry'. This user has sudo root powers on the command line. It
is a good security practice to change this default password to a strong
password.

Example: 'raspberry'

Data Types
char

Output
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

You can use mypi to connect to add-on peripherals using:

• serialdev

• i2cdev

2-59

raspi

• spidev

• cameraboard

You can use mypi with the following methods:

• configureDigitalPin

• readDigitalPin

• writeDigitalPin

• showPins

• writeLED

• showLEDs

• scanI2CBus

• enableI2C

• disableI2C

• enableSPI

• disableSPI

• system

• openShell

• getFile

• putFile

• deleteFile

You can use mypi to read the following properties for the Raspberry
Pi hardware:

• DeviceAddress — IP address or host name

• Port— IP port number used for TCP/IP connections

• BoardName — Board, model, and revision

• AvailableLEDs — Available LEDs

2-60

raspi

• AvailableDigitalPins— Numbers of the available GPIO pins

• AvailableSPIChannels— Names of the available SPI channels

• AvailableI2CBuses— Names of the available I2C buses

• I2CBusSpeed — Speed of the I2C buses

Examples Create a Connection to a Raspberry Pi Board

You can create a connection from the MATLAB software on your host
computer to a Raspberry Pi board.

When you create the connection, assign it to a handle. You can use this
handle later on to interact with the Raspberry Pi hardware.

You do not need to supply the user IP address, user name, and password
because raspi reuses these settings from the most recent successful
connection to a Raspberry Pi board, including the setup process.

Create a connection and assign it to a handle, mypi.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Use mypi to create a connection to a serial device.

2-61

raspi

myserialdevice = serialdev(mypi,'/dev/ttyAMA0');

To close the connection, use clear to remove mypi and any other
handles that were created using mypi.

clear mypi;
clear myserialdevice;

Create a Connection to a Board That Has Different Settings

You can create a connection to a Raspberry Pi board that has a different
IP address, user name, and password from the previous successful
connection.

Follow this example to reconnect to a board after you change its
settings, or to connect to multiple boards concurrently.

mysecondpi = raspi('169.254.0.4','rocky','bullwinkle')

mysecondpi =

Raspi with Properties:

DeviceAddress: '169.254.0.4'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Create a Connection Using a Host Name

You can use a host name, instead of an IP address, to create a
connection to a Raspberry Pi board.

2-62

raspi

During the setup process, Support Package Installer generated the
Raspberry Pi host name by appending the name of your computer to
raspberrypi-.

mysecondpi = raspi('raspberrypi-computername')

mysecondpi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

The DeviceAddress reflects whether a host name or IP address was
used to create the connection.

See Also “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-63

raspi_examples

Purpose Open featured examples for this support package

Syntax raspi_examples

Description raspi_examples opens the featured examples that are installed with
the MATLAB Support Package for Raspberry Pi Hardware.

Examples Open the Featured Examples for MATLAB Support for
Raspberry Pi

In the MATLAB Command Window, enter:

raspi_examples

A window opens and displays the examples.

2-64

raspi_examples

See Also “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-65

read

Purpose Read data from I2C device

Syntax [data] = read(myi2cdevice,count,dataPrecision)

Description [data] = read(myi2cdevice,count,dataPrecision) returns data
from the I2C device as a row vector.

The read method stops when it finishes reading the specified data from
the device, or when the timeout period elapses.

Input
Arguments

myi2cdevice - Connection to I2C device
handle

Connection to I2C device, specified as a handle.

Use i2cdev to create this connection.

Example: myi2cdevice

count - Size of I2C data
size of I2C data

Size of I2C data, specified as a scalar. This value is the number of data
elements that you expect.

Example: 2

Data Types
int8 | int16 | uint8 | uint16

dataPrecision - Data precision
'uint8 (default) | 'int8' | 'int16' | 'uint16'

Data precision, specified as a string. Match the data precision to the
size of the register on the device. Optional.

Example: 'int16'

Data Types
char

2-66

read

Output
Arguments

data - vector of numeric values
data

Data from the I2C device, returned as a row vector. The number of
elements of the row vector is specified by the count argument.

Examples Connect and Exchange Data with I2C Devices

You can connect and exchange data with a pair of I2C devices.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Redisplay AvailableI2CBuses and I2CBusSpeed.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

'i2c-0' 'i2c-1'

2-67

read

ans =

100000

Show the location of the I2C pins.

showPins(mypi)

2-68

read

The pin map shows that, for this model and revision of the board, the
i2c-1 bus is available on the GPIO header pins I2C1_SDA (GPIO 2)
and I2C1_SCL (GPIO 3).

After physically connecting your I2C device to the I2C pins, get the
addresses of I2C devices attached to the I2C bus, 'i2c-1'.

2-69

read

scanI2CBus(mypi,'i2c-1')

ans =

{'0x55','0x20'}

Create a connection to the I2C sensor at '0x20' and assign that
connection to a handle, i2csensor.

i2csensor = i2cdev(mypi,'i2c-1','0x20')

i2csensor =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x20
TimeOut: 10

Read two uint8 numbers from the sensor.

output1 = read(i2csensor,2);

Read the value of register 14 from the sensor

output2 = readRegister(i2csensor,14);

Create a connection to the I2C LED display at '0x55' and assign that
connection to a handle, i2cdisplay.

i2cdisplay = i2cdev(mypi,'i2c-1','0x55')

i2cdisplay =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x55
TimeOut: 10

2-70

read

Write characters to the display.

write(i2cdisplay,[hex2dec('20') hex2dec('51')]);

Write a scalar hexadecimal value, hex2dec('08'), to register 3 on an
I2C device.

writeRegister(i2cdisplay,3,hex2dec('08'),'uint8');

If you are not using I2C, disable I2C to make additional GPIO pins
available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

You can only change the mypi.I2CBusSpeed property when you enable
I2C.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

See Also scanI2CBus | i2cdev | write | readRegister | writeRegister |
enableI2C | disableI2C | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-71

read

Purpose Read data from serial device

Syntax serialData = read(myserialdevice,count)
serialData = read(myserialdevice,count,precision)

Description serialData = read(myserialdevice,count) returns data from the
serial device.

The read method stops when it finishes reading the specified data from
the device, or when the timeout period elapses.

serialData = read(myserialdevice,count,precision) overrides
the default value for precision.

Input
Arguments

myserialdevice - Connection to serial device
handle

Connection to a serial device, specified as a handle.

Use serialdev to create this connection.

Example: myserialdevice

count - Data size
data size

Data size to read from the serial device, specified as a scalar.

Example: 2

Data Types
double

precision - Data precision
'uint8' (default) | 'char' | 'int8' | 'int16' | 'uint16' | 'int32'
| 'uint32' | 'single' | 'double'

Data precision, specified as a string. Optional.

Example: 'uint8'

2-72

read

Data Types
char

Output
Arguments

serialData - Data from serial device
serial data

Data from the serial device, returned in the device- or user-defined
format.

Examples Connect and Exchange Data with Serial Device

You can create a connection to a serial device, write data to the device,
and read data from the device.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Show the location of the Tx and Rx pins, GPIO 14 (UART0_TXD) and
GPIO 15 (UART0_RXD), on the GPIO header.

showPins(mypi)

2-73

read

Raspberry Pi hardware uses +3.3V. Do not connect Raspberry Pi
hardware directly to devices that use higher voltages.

Connect the Raspberry Pi serial port to a +3.3V serial device.

• To receive data, connect the RXD pin (GPIO 15 UART0_RXD) on the
Raspberry Pi board to the TXD pin on the serial device.

2-74

read

• To transmit data, connect the TXD pin (GPIO 14 UART0_TXD) on the
Raspberry Pi board to the RXD pin on the serial device.

• Connect a ground pins (GND) on the Raspberry Pi board to the GND
pin on the serial device.

• Connect one of the +3.3V pins on the Raspberry Pi board to the VCC
pin on the serial device.

Research the values the serial device requires for the baud rate, data
bits, parity, and stop bit.

Use serialdev to create a connection to the serial device and assign
the connection to a handle.

myserialdevice = serialdev(mypi,'/dev/ttyAMA0',9600)

myserialdevice =

Serialdev with Properties:

BaudRate: 9600
DataBits: 8

Parity: 'none'
StopBits: 1
Timeout: 10

Write a pair of values to a serial device that requires a specific data type.

write(myserialdevice,[10 12],'uint16')

Read a 100-element array of numbers from the serial port.

output = read(myserialdevice,100,'uint16');

Increase the timeout period of the serial port.

myserialdevice.Timeout = 20

myserialdevice =

2-75

read

Serialdev with Properties:

BaudRate: 115200
DataBits: 8

Parity: 'none'
StopBits: 1
Timeout: 20

See Also serialdev | write | showPins | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-76

readDigitalPin

Purpose Read logical value from GPIO input pin

Syntax pinvalue = readDigitalPin(mypi,pinNumber)

Description pinvalue = readDigitalPin(mypi,pinNumber) returns the logical
value of a digital pin.

This method configures an unconfigured pin as a GPIO input.

If the pin is a GPIO output, or if another interface (I2C, Serial, SPI) is
using the pin, this method returns an error message.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

pinNumber - GPIO pin number
pin number

GPIO pin number, specified as a scalar. This argument does not
accept vectors because the hardware cannot access multiple pins
simultaneously.

To get a list of valid pin numbers, enter mypi.AvailableDigitalPins.

Example: 12

Data Types
double

Output
Arguments

pinvalue - Logical value of pin
0 | 1

Logical value of the pin, returned as a scalar.

2-77

readDigitalPin

Examples Configure Pin as Digital Input and Read Its Logical Value

You can configure a pin as digital input and read its logical value.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

The AvailableDigitalPins property shows the list of digital pins
that are available.

Redisplay AvailableDigitalPins.

mypi.AvailableDigitalPins

ans =

Columns 1 through 13

4 7 8 9 10 11 14 15 17 18 22 23 24

Columns 14 through 17

25 27 30 31

Show the location of the GPIO 4.

2-78

readDigitalPin

showPins(mypi)

Connect the digital device you are using to GPIO 4.

Configure pin 4 as a digital input.

configureDigitalPin(mypi,4,'input')

2-79

readDigitalPin

Read the value from pin 4.

readDigitalPin(mypi,4)

ans =

1

Pressing a button blinks an LED connected to a GPIO pin

You can press a button to blink an LED connected to a GPIO pin.

This example rapidly blinks an LED when you press a button. The
button connects from positive voltage to pin 23. Pressing the button
closes the circuit, raising the voltage. When readDigitalPin detects the
positive voltage, if buttonPressed becomes true. The program toggles
the voltages to pin 24 on and off ten times. Pin 14 connects to an LED,
which connects via a resistor to ground.

for ii = 1:100
buttonPressed = readDigitalPin(mypi,23);
if buttonPressed

for jj = 1:10
writeDigitalPin(mypi,24,1);
pause(0.05);
writeDigitalPin(mypi,24,0);
pause(0.05);

end
end
pause(0.1);

end

See Also configureDigitalPin | writeDigitalPin | showPins | raspi |
“Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-80

readRegister

Purpose Read from register on I2C device

Syntax [value] = readRegister(myi2cdevice,register,dataPrecision)

Description [value] = readRegister(myi2cdevice,register,dataPrecision)
returns data from the register on the I2C device as a scalar.

The readRegister method stops when it finishes reading the specified
data from the register, or when the timeout period elapses.

Input
Arguments

myi2cdevice - Connection to I2C device
handle

Connection to I2C device, specified as a handle.

Use i2cdev to create this connection.

Example: myi2cdevice

register - I2C register number
I2C register number

I2C register number, specified as a scalar. This number is available
from the device data sheet.

Example: 14

Data Types
double

dataPrecision - Data precision
'uint8 (default) | 'int8' | 'int16' | 'uint16'

Data precision, specified as a string. Match the data precision to the
size of the register on the device. Optional.

Example: 'int16'

Data Types
char

2-81

readRegister

Output
Arguments

value - Value of register
value of register

Value of the register, returned as a scalar.

Examples Connect and Exchange Data with I2C Devices

You can connect and exchange data with a pair of I2C devices.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Redisplay AvailableI2CBuses and I2CBusSpeed.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

'i2c-0' 'i2c-1'

ans =

2-82

readRegister

100000

Show the location of the I2C pins.

showPins(mypi)

2-83

readRegister

The pin map shows that, for this model and revision of the board, the
i2c-1 bus is available on the GPIO header pins I2C1_SDA (GPIO 2)
and I2C1_SCL (GPIO 3).

After physically connecting your I2C device to the I2C pins, get the
addresses of I2C devices attached to the I2C bus, 'i2c-1'.

scanI2CBus(mypi,'i2c-1')

ans =

{'0x55','0x20'}

Create a connection to the I2C sensor at '0x20' and assign that
connection to a handle, i2csensor.

i2csensor = i2cdev(mypi,'i2c-1','0x20')

i2csensor =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x20
TimeOut: 10

Read two uint8 numbers from the sensor.

output1 = read(i2csensor,2);

Read the value of register 14 from the sensor

output2 = readRegister(i2csensor,14);

Create a connection to the I2C LED display at '0x55' and assign that
connection to a handle, i2cdisplay.

i2cdisplay = i2cdev(mypi,'i2c-1','0x55')

i2cdisplay =

2-84

readRegister

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x55
TimeOut: 10

Write characters to the display.

write(i2cdisplay,[hex2dec('20') hex2dec('51')]);

Write a scalar hexadecimal value, hex2dec('08'), to register 3 on an
I2C device.

writeRegister(i2cdisplay,3,hex2dec('08'),'uint8');

If you are not using I2C, disable I2C to make additional GPIO pins
available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

You can only change the mypi.I2CBusSpeed property when you enable
I2C.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

See Also scanI2CBus | i2cdev | read | write | writeRegister | enableI2C |
disableI2C | “Raspberry Pi Hardware”

2-85

readRegister

Related
Examples

• “Open Interactive Examples”

2-86

record

Purpose Record video from Camera Board

Syntax record(mycamera,fileName,duration)

Description record(mycamera,fileName,duration) records video from the Camera
Board to a file on Raspberry Pi.

Input
Arguments

mycamera - Connection to Camera Board
handle

Connection to a Camera Board, specified as a handle.

Use cameraboard to create this connection.

Example: mycam

fileName - Video file name
video file name

Video file name, specified as a string.

Example: 'myvideo.mp4'

Data Types
char

duration - Duration of recording
duration of recording

Duration of recording, specified in seconds.

Example:

Data Types
double

Examples Use the Camera Board

You can create a connection to the Camera Board, take a photograph,
and record video.

2-87

record

Create a connection to the Raspberry Pi board.

mypi = raspi;

Create a connection to the Camera Board while changing the resolution,
and assign that connection to a handle, mycam. The handle displays the
Camera Board properties.

mycam = cameraboard(mypi,'Resolution','1280x720')

mycam =

Cameraboard with Properties:

Name: Camera Board

Resolution: '1280x720' (View available resolutions)

Quality: 10 (1 to 100)

Rotation: 0 (0, 90, 180 or 270)

HorizontalFlip: 0

VerticalFlip: 0

FrameRate: 30 (2 to 30)

Recording: 0

Picture Settings

Brightness: 50 (0 to 100)

Contrast: 0 (-100 to 100)

Saturation: 0 (-100 to 100)

Sharpness: 0 (-100 to 100)

Exposure and AWB

ExposureMode: 'auto' (View available exposure modes)

ExposureCompensation: 0 (-10 to 10)

AWBMode: 'auto' (View available AWB modes)

MeteringMode: 'average' (View available metering modes)

Effects

ImageEffect: 'none' (View available image effects)

VideoStabilization: 'off'

2-88

record

ROI: [0.00 0.00 1.00 1.00] (0.0 to 1.0 [top, left, width, height])

Import and display a sequence of ten snapshots on your host computer.

for ii = 1:10
img = snapshot(mycam);

imagesc(img);
drawnow;

end

If the image is upside down, change the orientation of the image.

mycam.Rotation = 180;

You can use the same approach to change the values of many mycamera
properties listed in the "Name-Value Pair Arguments" for cameraboard.

Record a 60 second video.

record(mycam,'myvideo.mp4',60)

Stop recording before the 60 seconds have elapsed.

stop(mycam)

Copy the video from the board to your host computer.

getFile(mypi,'myvideo.mp4','C:\MATLAB')

Delete the video file from the board to free up space.

deleteFile(mypi,'myvideo.mp4')

See Also cameraboard | snapshot | stop | getFile | deleteFile | “Raspberry
Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-89

record

External
Web Sites

• RaspiCam Documentation

2-90

http://www.raspberrypi.org/wp-content/uploads/2013/07/RaspiCam-Documentation.pdf

scanI2CBus

Purpose Scan I2C bus device addresses

Syntax [i2cAddresses] = scanI2CBus(mypi,bus)

Description [i2cAddresses] = scanI2CBus(mypi,bus) returns a list of addresses
for devices that are connected to the I2C bus.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

bus - I2C bus
'2c-0' | '2c-1'

I2C bus, specified as a string.

Example: 'i2c-1'

Data Types
char

Output
Arguments

i2cAddresses - I2C device addresses
I2C device addresses

I2C device addresses, returned as a cell of hex values.

Examples Connect and Exchange Data with I2C Devices

You can connect and exchange data with a pair of I2C devices.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

2-91

scanI2CBus

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Redisplay AvailableI2CBuses and I2CBusSpeed.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

'i2c-0' 'i2c-1'

ans =

100000

Show the location of the I2C pins.

showPins(mypi)

2-92

scanI2CBus

The pin map shows that, for this model and revision of the board, the
i2c-1 bus is available on the GPIO header pins I2C1_SDA (GPIO 2)
and I2C1_SCL (GPIO 3).

After physically connecting your I2C device to the I2C pins, get the
addresses of I2C devices attached to the I2C bus, 'i2c-1'.

2-93

scanI2CBus

scanI2CBus(mypi,'i2c-1')

ans =

{'0x55','0x20'}

Create a connection to the I2C sensor at '0x20' and assign that
connection to a handle, i2csensor.

i2csensor = i2cdev(mypi,'i2c-1','0x20')

i2csensor =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x20
TimeOut: 10

Read two uint8 numbers from the sensor.

output1 = read(i2csensor,2);

Read the value of register 14 from the sensor

output2 = readRegister(i2csensor,14);

Create a connection to the I2C LED display at '0x55' and assign that
connection to a handle, i2cdisplay.

i2cdisplay = i2cdev(mypi,'i2c-1','0x55')

i2cdisplay =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x55
TimeOut: 10

2-94

scanI2CBus

Write characters to the display.

write(i2cdisplay,[hex2dec('20') hex2dec('51')]);

Write a scalar hexadecimal value, hex2dec('08'), to register 3 on an
I2C device.

writeRegister(i2cdisplay,3,hex2dec('08'),'uint8');

If you are not using I2C, disable I2C to make additional GPIO pins
available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

You can only change the mypi.I2CBusSpeed property when you enable
I2C.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

See Also i2cdev | read | write | readRegister | writeRegister | enableI2C
| disableI2C | raspi | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• nxp.com search results for “I2C specification”

2-95

http://www.nxp.com/search?q=i2c+specification

serialdev

Purpose Create connection to serial device

Syntax myserialdevice = serialdev(mypi,port)
myserialdevice =
serialdev(mypi,port,baudRate,dataBits,parity,

stopBits)

Description myserialdevice = serialdev(mypi,port) connects to a serial
device and returns a handle, myserialdevice. You can use
myserialdevice to exchange data with the serial device using the
read and write methods. You can read and write myserialdevice
properties such as the baud rate.

On the Raspberry Pi hardware, the /boot/cmdline.txt file configures
/dev/ttyAMA0 as the serial device and sets the default baud rate to
115200. The serial device connects to the Rx and Tx pins on the GPIO
header.

By default, the serial console in the customized version of Raspian
Wheezy on your Raspberry Pi hardware is disabled. To use serialdev,
the serial console must be disabled.

myserialdevice =
serialdev(mypi,port,baudRate,dataBits,parity, stopBits)
connects to a serial device using optional arguments to override the
default values for baud rate, data bits, parity, and stop bits. Specify
values for each argument from left to right. To use default
values, omit the right-most arguments.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

2-96

serialdev

port - Serial device path and file name
serial device

Serial device path and file name, specified as a string.

Example: '/dev/ttyAMA0'

Data Types
char

baudRate - Serial device baud rate
115200 (default) | 50 | 75 | 110 | 134 | 150 | 200 | 300 | 600 | 1200 |
1800 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 230400

Serial device baud rate, specified as a scalar. Optional.

Example: 9600

Data Types
double

dataBits - Data bits per character
8 (default) | 5 | 6 | 7 | 9

Data bits per character, specified as a scalar. Optional.

Example: 8

Data Types
double

parity - Parity bit
'none' (default) | 'odd' | 'even' | 'mark' | 'space'

Parity bit, specified as a string. Optional.

This setting enables and selects the type of parity-bit error detection.

Example: 'none'

Data Types
char

2-97

serialdev

stopBits - Stop bits
1 (default) | 1.5 | 2

Stop bits, specified as a scalar. Optional.

Example: 1

Data Types
double

Output
Arguments

myserialdevice - Connection to specific serial device
handle

Connection to a specific serial device, specified as a handle.

You can use myserialdevice with the following methods:

• read

• write

You can use myserialdevice to read the following properties for the
serial device:

• BaudRate

• DataBits

• StopBits

• Parity

You can use myserialdevice to read and write the TimeOut property
for the serial device:

Examples Connect and Exchange Data with Serial Device

You can create a connection to a serial device, write data to the device,
and read data from the device.

Create a connection to the Raspberry Pi board.

mypi = raspi;

2-98

serialdev

Show the location of the Tx and Rx pins, GPIO 14 (UART0_TXD) and
GPIO 15 (UART0_RXD), on the GPIO header.

showPins(mypi)

2-99

serialdev

Raspberry Pi hardware uses +3.3V. Do not connect Raspberry Pi
hardware directly to devices that use higher voltages.

Connect the Raspberry Pi serial port to a +3.3V serial device.

• To receive data, connect the RXD pin (GPIO 15 UART0_RXD) on the
Raspberry Pi board to the TXD pin on the serial device.

• To transmit data, connect the TXD pin (GPIO 14 UART0_TXD) on the
Raspberry Pi board to the RXD pin on the serial device.

• Connect a ground pins (GND) on the Raspberry Pi board to the GND
pin on the serial device.

• Connect one of the +3.3V pins on the Raspberry Pi board to the VCC
pin on the serial device.

Research the values the serial device requires for the baud rate, data
bits, parity, and stop bit.

Use serialdev to create a connection to the serial device and assign
the connection to a handle.

myserialdevice = serialdev(mypi,'/dev/ttyAMA0',9600)

myserialdevice =

Serialdev with Properties:

BaudRate: 9600
DataBits: 8

Parity: 'none'
StopBits: 1
Timeout: 10

Write a pair of values to a serial device that requires a specific data type.

write(myserialdevice,[10 12],'uint16')

Read a 100-element array of numbers from the serial port.

output = read(myserialdevice,100,'uint16');

2-100

serialdev

Increase the timeout period of the serial port.

myserialdevice.Timeout = 20

myserialdevice =

Serialdev with Properties:

BaudRate: 115200
DataBits: 8

Parity: 'none'
StopBits: 1
Timeout: 20

See Also read | write | showPins | raspi | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• http://elinux.org/RPi_Serial_Connection

2-101

http://elinux.org/RPi_Serial_Connection

showLEDs

Purpose Show location, name, and color of user-controllable LEDs

Syntax showLEDs(mypi)

Description showLEDs(mypi) displays the location, name, and color of the
user-controllable LEDs on the current board.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

Examples Control the On-Board LED

You can locate and control the on-board LED, turning it on and off.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'
Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'
AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 14 15 17 18 22 23 24 25 27 30 31]
AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}
I2CBusSpeed: 100000

Supported peripherals

2-102

showLEDs

The AvailableLEDs property shows the name of the user-controllable
LED.

Show the location of the user-controllable LED on the board.

showLEDs(mypi)

2-103

showLEDs

Turn the specified LED on by setting its value to 1 or true.

writeLED(mypi,'led0',1)

2-104

showLEDs

Turn the LED off by setting its value to 0 or false.

writeLED(mypi,'led0',false)

Rebooting the Raspberry Pi hardware returns the LED to its previous
function as an activity indicator.

See Also writeLED | raspi | showLEDs | raspi | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-105

showPins

Purpose Show diagram of GPIO pins

Syntax showPins(mypi)

Description showPins(mypi) displays a diagram of the digital input and output
pins on the Raspberry Pi hardware. The diagram is a high-resolution
MATLAB figure that supports zooming and panning.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

Examples Show a Diagram of Raspberry Pi Pins

You can display a diagram with the name or purpose and location of
each GPIO pin on your Raspberry Pi hardware.

Show the location of the pins.

showPins(mypi)

2-106

showPins

See Also configureDigitalPin | readDigitalPin | writeDigitalPin | raspi
| “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-107

snapshot

Purpose Capture RGB image from Camera Board

Syntax img = snapshot(mycamera)

Description img = snapshot(mycamera) returns a still image from the Camera
Board in RGB format.

Input
Arguments

mycamera - Connection to Camera Board
handle

Connection to a Camera Board, specified as a handle.

Use cameraboard to create this connection.

Example: mycam

Output
Arguments

img - RGB image
RGB image

RGB image, returned as an n-by-n-by-3 matrix of values.

Examples Use the Camera Board

You can create a connection to the Camera Board, take a photograph,
and record video.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Create a connection to the Camera Board while changing the resolution,
and assign that connection to a handle, mycam. The handle displays the
Camera Board properties.

mycam = cameraboard(mypi,'Resolution','1280x720')

mycam =

Cameraboard with Properties:

2-108

snapshot

Name: Camera Board

Resolution: '1280x720' (View available resolutions)

Quality: 10 (1 to 100)

Rotation: 0 (0, 90, 180 or 270)

HorizontalFlip: 0

VerticalFlip: 0

FrameRate: 30 (2 to 30)

Recording: 0

Picture Settings

Brightness: 50 (0 to 100)

Contrast: 0 (-100 to 100)

Saturation: 0 (-100 to 100)

Sharpness: 0 (-100 to 100)

Exposure and AWB

ExposureMode: 'auto' (View available exposure modes)

ExposureCompensation: 0 (-10 to 10)

AWBMode: 'auto' (View available AWB modes)

MeteringMode: 'average' (View available metering modes)

Effects

ImageEffect: 'none' (View available image effects)

VideoStabilization: 'off'

ROI: [0.00 0.00 1.00 1.00] (0.0 to 1.0 [top, left, width, height])

Import and display a sequence of ten snapshots on your host computer.

for ii = 1:10
img = snapshot(mycam);

imagesc(img);
drawnow;

end

If the image is upside down, change the orientation of the image.

mycam.Rotation = 180;

2-109

snapshot

You can use the same approach to change the values of many mycamera
properties listed in the "Name-Value Pair Arguments" for cameraboard.

Record a 60 second video.

record(mycam,'myvideo.mp4',60)

Stop recording before the 60 seconds have elapsed.

stop(mycam)

Copy the video from the board to your host computer.

getFile(mypi,'myvideo.mp4','C:\MATLAB')

Delete the video file from the board to free up space.

deleteFile(mypi,'myvideo.mp4')

See Also cameraboard | record | stop | getFile | deleteFile | “Raspberry Pi
Hardware”

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• RaspiCam Documentation

2-110

http://www.raspberrypi.org/wp-content/uploads/2013/07/RaspiCam-Documentation.pdf

spidev

Purpose Create connection to SPI device

Syntax myspidevice = spidev(mypi,channel)
myspidevice = spidev(mypi,channel,modespeed)

Description myspidevice = spidev(mypi,channel) connects to an SPI device and
returns a handle, myspidevice. You can exchange data with the SPI
device by using myspidevice with the writeRead method. You can use
myspidevice to read properties of the SPI device.

myspidevice = spidev(mypi,channel,modespeed) overrides the
default SPI mode, 0, that many SPI devices use.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

channel - SPI channel
'CE0' | 'CE1'

SPI channel, specified as a string.

Example: 'CE1'

Data Types
char

mode - SPI mode
0 (default) | 1 | 2 | 3

SPI mode, specified as a scalar. This value determines the clock polarity
(CPOL) and phase (CPHA) values.

2-111

spidev

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

The most common mode is 0.

Example: 0

Data Types
double

speed - SPI speed
500000 | 1000000 | 2000000 | 4000000 | 8000000 | 16000000 |
32000000

SPI speed, specified as a scalar.

Example: 500000

Data Types
char

Output
Arguments

myspidevice - Connection to SPI device
handle

Connection to an SPI device, specified as a handle.

You can use myspidevice to exchange data with SPI devices using the
writeRead method.

You can use myspidevice to read the following properties for the SPI
connection.

2-112

spidev

Property
Name

Data Type Dimension Units

Channel char [1,N]

Mode double [1,1]

BitsPerWord double [1,1] Bits

Speed double [1,1] Clock cycles

Examples Connect and Exchange Data with SPI Devices

You can connect and exchange data with an SPI device.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

By default, SPI is disabled and AvailableSPIChannels does not show
any channels.

Enable SPI and get the channels.

enableSPI(mypi);

2-113

spidev

mypi.AvailableSPIChannels

ans =

'CE0' 'CE1'

Show the location of the SPI pins, GPIO 10 (SPI0_MOSI), GPIO 9
(SPI0_MISO), and GPIO 11 (SPI0_SCLK), on the GPIO header.

showPins(mypi)

2-114

spidev

After physically connecting your SPI device to the three SPI pins,
connect to the SPI device.

myspidevice = spidev(mypi,'CE1',0)

myspidevice =

2-115

spidev

Spidev with Properties:
Channel: 'CE1'

Mode: 0
BitsPerWord: 8

Speed: 500000

Write data to, and read data from, the SPI device.

out = writeRead(myspidevice,[hex2dec('08') hex2dec('D4')])

out =
7 211

If you are not using SPI, disable SPI to make additional GPIO pins
available.

disableSPI(mypi)

See Also raspi | writeRead | enableSPI | disableSPI | “Raspberry Pi
Hardware”

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

2-116

en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

stop

Purpose Stop video recording from Camera Board

Syntax stop(mycamera)

Description stop(mycamera) stops recording video from the Camera Board.

Input
Arguments

mycamera - Connection to Camera Board
handle

Connection to a Camera Board, specified as a handle.

Use cameraboard to create this connection.

Example: mycam

Examples Use the Camera Board

You can create a connection to the Camera Board, take a photograph,
and record video.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Create a connection to the Camera Board while changing the resolution,
and assign that connection to a handle, mycam. The handle displays the
Camera Board properties.

mycam = cameraboard(mypi,'Resolution','1280x720')

mycam =

Cameraboard with Properties:

Name: Camera Board

Resolution: '1280x720' (View available resolutions)

Quality: 10 (1 to 100)

Rotation: 0 (0, 90, 180 or 270)

HorizontalFlip: 0

2-117

stop

VerticalFlip: 0

FrameRate: 30 (2 to 30)

Recording: 0

Picture Settings

Brightness: 50 (0 to 100)

Contrast: 0 (-100 to 100)

Saturation: 0 (-100 to 100)

Sharpness: 0 (-100 to 100)

Exposure and AWB

ExposureMode: 'auto' (View available exposure modes)

ExposureCompensation: 0 (-10 to 10)

AWBMode: 'auto' (View available AWB modes)

MeteringMode: 'average' (View available metering modes)

Effects

ImageEffect: 'none' (View available image effects)

VideoStabilization: 'off'

ROI: [0.00 0.00 1.00 1.00] (0.0 to 1.0 [top, left, width, height])

Import and display a sequence of ten snapshots on your host computer.

for ii = 1:10
img = snapshot(mycam);

imagesc(img);
drawnow;

end

If the image is upside down, change the orientation of the image.

mycam.Rotation = 180;

You can use the same approach to change the values of many mycamera
properties listed in the "Name-Value Pair Arguments" for cameraboard.

Record a 60 second video.

2-118

stop

record(mycam,'myvideo.mp4',60)

Stop recording before the 60 seconds have elapsed.

stop(mycam)

Copy the video from the board to your host computer.

getFile(mypi,'myvideo.mp4','C:\MATLAB')

Delete the video file from the board to free up space.

deleteFile(mypi,'myvideo.mp4')

See Also cameraboard | snapshot | record | getFile | deleteFile |
“Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• RaspiCam Documentation

2-119

http://www.raspberrypi.org/wp-content/uploads/2013/07/RaspiCam-Documentation.pdf

system

Purpose Run command in Linux shell on Raspberry Pi hardware

Syntax system(mypi,command)
system(mypi,command,sudo)

Description system(mypi,command) runs the command in the Linux command shell
on Raspberry Pi hardware.

system(mypi,command,sudo) runs the command with superuser
privileges.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

command - Linux command
command

Linux command, specified as string.

Example: 'ls -al'

sudo - sudo command
sudo

sudo command, specified as string.

Example: 'sudo'

Data Types
char

Examples Run a Linux Command on the Raspberry Pi Hardware

You can run a command that lists the contents of a folder.

2-120

system

system(mypi,'ls -al')

ans =

total 100
drwxr-xr-x 10 pi pi 4096 Nov 22 14:18 .
drwxr-xr-x 3 root root 4096 Sep 25 16:22 ..
-rw------- 1 pi pi 21712 Nov 13 17:40 .bash_history
-rw-r--r-- 1 pi pi 220 Sep 25 16:22 .bash_logout
-rw-r--r-- 1 pi pi 3243 Sep 25 16:22 .bashrc
drwxr-xr-x 4 pi pi 4096 Oct 1 18:17 .cache
drwxr-xr-x 6 pi pi 4096 Oct 2 12:01 .config
drwx------ 3 pi pi 4096 Oct 1 18:17 .dbus
drwxr-xr-x 2 pi pi 4096 Nov 13 17:30 Desktop
-rw-r--r-- 1 pi pi 35 Nov 13 17:41 .dmrc
drwx------ 2 pi pi 4096 Oct 1 18:17 .gvfs
drwxr-xr-x 3 pi pi 4096 Oct 2 14:46 MATLAB
-rw-r--r-- 1 pi pi 5781 Feb 3 2013 ocr_pi.png
-rw-r--r-- 1 pi pi 675 Sep 25 16:22 .profile
drwxrwxr-x 2 pi pi 4096 Mar 10 2013 python_games
drwxr-xr-x 8 pi pi 4096 Oct 2 12:41 wiringPi
-rw------- 1 pi pi 66 Nov 13 17:41 .Xauthority
-rw------- 1 pi pi 261 Nov 13 17:41 .xsession-errors
-rw------- 1 pi pi 449 Nov 13 17:40 .xsession-errors.old

Run a Command with Superuser Privileges

You can run a command with superuser privileges.

system(mypi,'cp /etc/network/interfaces int.copy','sudo');

See Also openShell

Related
Examples

• “Open Interactive Examples”

External
Web Sites

• http://elinux.org/CLI_Spells
• http://linuxcommand.org/learning_the_shell.php

2-121

http://elinux.org/CLI_Spells
http://linuxcommand.org/learning_the_shell.php

write

Purpose Write data to I2C device

Syntax write(myi2cdevice,data,dataPrecision)

Description write(myi2cdevice,data,dataPrecision) writes data to an I2C
device.

The write method stops when it finishes writing the specified data to
the device, or when the timeout period elapses.

Input
Arguments

myi2cdevice - Connection to I2C device
handle

Connection to I2C device, specified as a handle.

Use i2cdev to create this connection.

Example: myi2cdevice

data - Data to write to I2C device
data

Data to write to I2C device, specified as vector of hexadecimal values.

Example: [hex2dec('20') hex2dec('51')]

Data Types
int8 | int16 | uint8 | uint16

dataPrecision - Data precision
'uint8 (default) | 'int8' | 'int16' | 'uint16'

Data precision, specified as a string. Match the data precision to the
size of the register on the device. Optional.

Example: 'int16'

Data Types
char

2-122

write

Examples Connect and Exchange Data with I2C Devices

You can connect and exchange data with a pair of I2C devices.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Redisplay AvailableI2CBuses and I2CBusSpeed.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

'i2c-0' 'i2c-1'

ans =

100000

Show the location of the I2C pins.

2-123

write

showPins(mypi)

The pin map shows that, for this model and revision of the board, the
i2c-1 bus is available on the GPIO header pins I2C1_SDA (GPIO 2)
and I2C1_SCL (GPIO 3).

2-124

write

After physically connecting your I2C device to the I2C pins, get the
addresses of I2C devices attached to the I2C bus, 'i2c-1'.

scanI2CBus(mypi,'i2c-1')

ans =

{'0x55','0x20'}

Create a connection to the I2C sensor at '0x20' and assign that
connection to a handle, i2csensor.

i2csensor = i2cdev(mypi,'i2c-1','0x20')

i2csensor =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x20
TimeOut: 10

Read two uint8 numbers from the sensor.

output1 = read(i2csensor,2);

Read the value of register 14 from the sensor

output2 = readRegister(i2csensor,14);

Create a connection to the I2C LED display at '0x55' and assign that
connection to a handle, i2cdisplay.

i2cdisplay = i2cdev(mypi,'i2c-1','0x55')

i2cdisplay =

I2C with Properties:
Bus: i2c-1

2-125

write

I2CAddress: 0x55
TimeOut: 10

Write characters to the display.

write(i2cdisplay,[hex2dec('20') hex2dec('51')]);

Write a scalar hexadecimal value, hex2dec('08'), to register 3 on an
I2C device.

writeRegister(i2cdisplay,3,hex2dec('08'),'uint8');

If you are not using I2C, disable I2C to make additional GPIO pins
available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

You can only change the mypi.I2CBusSpeed property when you enable
I2C.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

See Also scanI2CBus | i2cdev | read | readRegister | writeRegister |
enableI2C | disableI2C | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-126

write

Purpose Write data to serial device

Syntax write(myserialdevice,data,precision)

Description write(myserialdevice,data,precision)

The write method stops when it finishes writing the specified data to
the device, or when the timeout period elapses.

Input
Arguments

myserialdevice - Connection to serial device
handle

Connection to a serial device, specified as a handle.

Use serialdev to create this connection.

Example: myserialdevice

data - Data to write to serial device
data

Data to write to the serial device, specified as a vector.

Example: [10 12]

Data Types
single | double | int8 | int16 | int32 | uint8 | uint16 |
uint32 | char

precision - Data precision
'uint8' (default) | 'uint16' | 'uint32' | 'int8' | 'int16' |
'int32' | 'char' (default) | 'single' | 'double'

Data precision, specified as a string. Optional.

Example: 'uint8'

Data Types
char

2-127

write

Examples Connect and Exchange Data with Serial Device

You can create a connection to a serial device, write data to the device,
and read data from the device.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Show the location of the Tx and Rx pins, GPIO 14 (UART0_TXD) and
GPIO 15 (UART0_RXD), on the GPIO header.

showPins(mypi)

2-128

write

Raspberry Pi hardware uses +3.3V. Do not connect Raspberry Pi
hardware directly to devices that use higher voltages.

Connect the Raspberry Pi serial port to a +3.3V serial device.

• To receive data, connect the RXD pin (GPIO 15 UART0_RXD) on the
Raspberry Pi board to the TXD pin on the serial device.

2-129

write

• To transmit data, connect the TXD pin (GPIO 14 UART0_TXD) on the
Raspberry Pi board to the RXD pin on the serial device.

• Connect a ground pins (GND) on the Raspberry Pi board to the GND
pin on the serial device.

• Connect one of the +3.3V pins on the Raspberry Pi board to the VCC
pin on the serial device.

Research the values the serial device requires for the baud rate, data
bits, parity, and stop bit.

Use serialdev to create a connection to the serial device and assign
the connection to a handle.

myserialdevice = serialdev(mypi,'/dev/ttyAMA0',9600)

myserialdevice =

Serialdev with Properties:

BaudRate: 9600
DataBits: 8

Parity: 'none'
StopBits: 1
Timeout: 10

Write a pair of values to a serial device that requires a specific data type.

write(myserialdevice,[10 12],'uint16')

Read a 100-element array of numbers from the serial port.

output = read(myserialdevice,100,'uint16');

Increase the timeout period of the serial port.

myserialdevice.Timeout = 20

myserialdevice =

2-130

write

Serialdev with Properties:

BaudRate: 115200
DataBits: 8

Parity: 'none'
StopBits: 1
Timeout: 20

See Also serialdev | read | showPins | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-131

writeDigitalPin

Purpose Write logical value to GPIO output pin

Syntax writeDigitalPin(mypi,pinNumber,value)

Description writeDigitalPin(mypi,pinNumber,value) sets the logical value of a
GPIO pin to 0 or 1.

This method configures an unconfigured pin as a GPIO output.

If the pin is a GPIO input, or if another interface (I2C, Serial, SPI) is
using the pin, this method returns an error message.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

pinNumber - GPIO pin number
pin number

GPIO pin number, specified as a scalar. This argument does not
accept vectors because the hardware cannot access multiple pins
simultaneously.

To get a list of valid pin numbers, enter mypi.AvailableDigitalPins.

Example: 12

Data Types
double

value - Logical value of pin
0 | 1

Logical value of the pin, specified as a scalar.

Example: 1

2-132

writeDigitalPin

Data Types
double | logical

Examples Configure Pin as Digital Output and Write Its Logical Value

You can configure a pin as digital output and write its logical value.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

The AvailableDigitalPins property shows the list of digital pins
that are available.

Redisplay AvailableDigitalPins.

mypi.AvailableDigitalPins

ans =

Columns 1 through 13

4 7 8 9 10 11 14 15 17 18 22 23 24

Columns 14 through 17

2-133

writeDigitalPin

25 27 30 31

Show the location of the GPIO 4.

showPins(mypi)

Connect the digital device you are using to GPIO 4.

2-134

writeDigitalPin

Configure pin 4 as a digital output.

configureDigitalPin(mypi,4,'output')

Write a logical value of 1 to pin 4.

writeDigitalPin(mypi,4,1)

Pressing a button blinks an LED connected to a GPIO pin

You can press a button to blink an LED connected to a GPIO pin.

This example rapidly blinks an LED when you press a button. The
button connects from positive voltage to pin 23. Pressing the button
closes the circuit, raising the voltage. When readDigitalPin detects the
positive voltage, if buttonPressed becomes true. The program toggles
the voltages to pin 24 on and off ten times. Pin 14 connects to an LED,
which connects via a resistor to ground.

for ii = 1:100
buttonPressed = readDigitalPin(mypi,23);
if buttonPressed

for jj = 1:10
writeDigitalPin(mypi,24,1);
pause(0.05);
writeDigitalPin(mypi,24,0);
pause(0.05);

end
end
pause(0.1);

end

See Also configureDigitalPin | readDigitalPin | showPins | raspi |
“Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-135

writeLED

Purpose Turn LED on or off

Syntax writeLED(mypi,led,value)

Description writeLED(mypi,led,value) overrides the default behavior of the LED
and turns it on or off.

Input
Arguments

mypi - Connection to specific board
handle

Connection to a specific board, specified as a handle.

Use raspi to create this connection.

Example: mypi

led - LED name
'led0'

LED name, specified as a string.

To get the name and location of user-controllable LEDs, use showLEDs.

Example: 'led0'

Data Types
char

value - LED off or on
0 | 1 | false | true

LED off or on, specified as a logical value.

Example: 0

Data Types
logical

Examples Control the On-Board LED

You can locate and control the on-board LED, turning it on and off.

2-136

writeLED

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'
Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'
AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 14 15 17 18 22 23 24 25 27 30 31]
AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}
I2CBusSpeed: 100000

Supported peripherals

The AvailableLEDs property shows the name of the user-controllable
LED.

Show the location of the user-controllable LED on the board.

showLEDs(mypi)

2-137

writeLED

Turn the specified LED on by setting its value to 1 or true.

writeLED(mypi,'led0',1)

2-138

writeLED

Turn the LED off by setting its value to 0 or false.

writeLED(mypi,'led0',false)

Rebooting the Raspberry Pi hardware returns the LED to its previous
function as an activity indicator.

Flash the LED in Response to an Input

You can flash the LED in response to an input signal on one of the
GPIO pins.

For example, you could use a button and a resistor in series to connect
one of the +3.3V outputs to GPIO 23. When you press the button,
readDigitalPin reads the positive voltage, if buttonPressed becomes
true, and the program flashes the LED ten times.

for ii = 1:100
buttonPressed = readDigitalPin(mypi, 23);
if buttonPressed

for jj = 1:10
writeLED(mypi,'led0',1);
pause(0.05);
writeLED(mypi,'led0',0);
pause(0.05);

end
end
pause(0.1);

end

See Also showLEDs | raspi | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-139

writeRead

Purpose Write data to and read data from SPI device

Syntax [outputData] = writeRead(myspidevice,data,dataPrecision)

Description [outputData] = writeRead(myspidevice,data,dataPrecision)
writes new data to, and reads existing data from, an SPI device.

To read data from an SPI device, you must write data to the device.
Supply the data argument with the number of values that you expect
to read.

The writeRead method stops when it finishes writing and reading the
specified data from the device.

This method converts data of all other data types to uint8 for
transmission.

Input
Arguments

myspidevice - Connection to SPI device
handle

Connection to an SPI device, specified as a handle.

Use spidev to create this connection.

Example: myspidevice

data - Data to write to SPI device
data

Data to write to the SPI device, or the number of values to read from
the SPI device, specified as a vector of hexadecimal values.

Example: [hex2dec('08'), hex2dec('D4')]

Data Types
int8 | int16 | int32 | uint8 | uint16 | uint32

dataPrecision - Data precision
'uint8' (default) | 'uint16'

Data precision, specified as a string. Optional.

2-140

writeRead

The writeRead method converts data to the data type specified by this
argument.

Most SPI devices use uint8. Some SPI devices, such as EEPROMs,
use uint16.

Example: 'uint8'

Data Types
char

Output
Arguments

outputData - Data from SPI device
output data

Data from SPI device, returned as a row vector.

Examples Connect and Exchange Data with SPI Devices

You can connect and exchange data with an SPI device.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

2-141

writeRead

By default, SPI is disabled and AvailableSPIChannels does not show
any channels.

Enable SPI and get the channels.

enableSPI(mypi);
mypi.AvailableSPIChannels

ans =

'CE0' 'CE1'

Show the location of the SPI pins, GPIO 10 (SPI0_MOSI), GPIO 9
(SPI0_MISO), and GPIO 11 (SPI0_SCLK), on the GPIO header.

showPins(mypi)

2-142

writeRead

After physically connecting your SPI device to the three SPI pins,
connect to the SPI device.

myspidevice = spidev(mypi,'CE1',0)

myspidevice =

2-143

writeRead

Spidev with Properties:
Channel: 'CE1'

Mode: 0
BitsPerWord: 8

Speed: 500000

Write data to, and read data from, the SPI device.

out = writeRead(myspidevice,[hex2dec('08') hex2dec('D4')])

out =
7 211

If you are not using SPI, disable SPI to make additional GPIO pins
available.

disableSPI(mypi)

See Also raspi | spidev | enableSPI | disableSPI | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-144

writeRegister

Purpose Write to register on I2C device

Syntax writeRegister(myi2cdevice,register,value,dataPrecision)

Description writeRegister(myi2cdevice,register,value,dataPrecision)
writes a hexadecimal value to a register on an I2C device. Optionally,
you can match the data precision to the size of the register on the device.

The writeRegister method stops when it finishes writing the specified
data to the register, or when the timeout period elapses.

Input
Arguments

myi2cdevice - Connection to I2C device
handle

Connection to I2C device, specified as a handle.

Use i2cdev to create this connection.

Example: myi2cdevice

register - I2C register number
I2C register number

I2C register number, specified as a scalar. This number is available
from the device data sheet.

Example: 14

Data Types
double

value - Numeric value to write to register
hexadecimal value

Numeric value to write to register, specified as a scalar. (Does not
accept arrays.)

Example: hex2dec('08')

Data Types
int8 | int16 | uint8 | uint16

2-145

writeRegister

dataPrecision - Data precision
'uint8 (default) | 'int8' | 'int16' | 'uint16'

Data precision, specified as a string. Match the data precision to the
size of the register on the device. Optional.

Example: 'int16'

Data Types
char

Examples Connect and Exchange Data with I2C Devices

You can connect and exchange data with a pair of I2C devices.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

Raspi with Properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

Redisplay AvailableI2CBuses and I2CBusSpeed.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

2-146

writeRegister

'i2c-0' 'i2c-1'

ans =

100000

Show the location of the I2C pins.

showPins(mypi)

2-147

writeRegister

The pin map shows that, for this model and revision of the board, the
i2c-1 bus is available on the GPIO header pins I2C1_SDA (GPIO 2)
and I2C1_SCL (GPIO 3).

After physically connecting your I2C device to the I2C pins, get the
addresses of I2C devices attached to the I2C bus, 'i2c-1'.

2-148

writeRegister

scanI2CBus(mypi,'i2c-1')

ans =

{'0x55','0x20'}

Create a connection to the I2C sensor at '0x20' and assign that
connection to a handle, i2csensor.

i2csensor = i2cdev(mypi,'i2c-1','0x20')

i2csensor =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x20
TimeOut: 10

Read two uint8 numbers from the sensor.

output1 = read(i2csensor,2);

Read the value of register 14 from the sensor

output2 = readRegister(i2csensor,14);

Create a connection to the I2C LED display at '0x55' and assign that
connection to a handle, i2cdisplay.

i2cdisplay = i2cdev(mypi,'i2c-1','0x55')

i2cdisplay =

I2C with Properties:
Bus: i2c-1

I2CAddress: 0x55
TimeOut: 10

2-149

writeRegister

Write characters to the display.

write(i2cdisplay,[hex2dec('20') hex2dec('51')]);

Write a scalar hexadecimal value, hex2dec('08'), to register 3 on an
I2C device.

writeRegister(i2cdisplay,3,hex2dec('08'),'uint8');

If you are not using I2C, disable I2C to make additional GPIO pins
available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

You can only change the mypi.I2CBusSpeed property when you enable
I2C.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

See Also scanI2CBus | i2cdev | read | write | readRegister | enableI2C |
disableI2C | “Raspberry Pi Hardware”

Related
Examples

• “Open Interactive Examples”

2-150

3

Functions — Alphabetical
List

supportPackageInstaller

Purpose Find and install support for third-party hardware or software

Syntax supportPackageInstaller

Description The supportPackageInstaller function opens Support Package
Installer.

Support Package Installer can install support packages, which add
support for specific third-party hardware or software to specific
MathWorks products.

To see a list of available support packages, run Support Package
Installer and advance to the second screen.

You can also start Support Package Installer in one of the following
ways:

• On the MATLAB toolstrip, click Add-Ons > Get Hardware
Support Packages.

3-2

supportPackageInstaller

• Double-click a support package installation file (*.mlpkginstall).

See Also targetUpdater | matlabshared.supportpkg.checkForUpdate |
matlabshared.supportpkg.getInstalled

3-3

targetupdater

Purpose Open Support Package Installer and update firmware on third-party
hardware

Syntax

Description The targetupdater function skips over the support package installation
screens and opens Support Package Installer at the “Update firmware”
screen. You can use this function to update the firmware on hardware
without repeating the support package installation process.

Tip Use this function when you have multiple pieces of hardware.

The targetupdater function is only available for support packages
that have already been installed and that require special firmware or
setup steps.

If the Hardware parameter does not present an option for your
hardware, use the supportPackageInstaller function to open Support
Package Installer. Support Package Installer will guide you through
the process of installing a support package for your hardware and, if
required, updating the firmware.

See Also supportPackageInstaller |
matlabshared.supportpkg.checkForUpdate |
matlabshared.supportpkg.getInstalled

3-4

matlabshared.supportpkg.checkForUpdate

Purpose Get information about installed support packages

Syntax matlabshared.supportpkg.checkForUpdate
info = matlabshared.supportpkg.checkForUpdate

Description matlabshared.supportpkg.checkForUpdate displays information
about support package updates in the MATLAB Command Window. If
an update is available, use supportPackageInstaller to install the
updates.

info = matlabshared.supportpkg.checkForUpdate returns a
structured array of information about installed support packages.

Output
Arguments

info - Return argument from function
structure created using matlabshared.supportpkg.checkForUpdate

Information about support package updates, returned as a structured
array.

Examples Check for support package updates

matlabshared.supportpkg.checkForUpdate

No support packages need updates.

If one or more updates are available, the command line displays that
information in the response.

Get a structured array of support package updates

info = matlabshared.supportpkg.checkForUpdate

info =

Name: 'Arduino'
InstalledVersion: '3.0'

BaseProduct: 'Simulink'

3-5

matlabshared.supportpkg.checkForUpdate

See Also supportPackageInstaller | targetUpdater |
matlabshared.supportpkg.getInstalled

3-6

matlabshared.supportpkg.getInstalled

Purpose Get information about installed support packages

Syntax matlabshared.supportpkg.getInstalled
info = matlabshared.supportpkg.getInstalled

Description matlabshared.supportpkg.getInstalled displays information about
installed support packages in the MATLAB Command Window.

info = matlabshared.supportpkg.getInstalled returns a
structured array of information about installed support packages.

Output
Arguments

info - Return argument from function
structure created using matlabshared.supportpkg.getInstalled

Information about installed support packages, returned as a structured
array.

Examples Get a list of installed support packages

matlabshared.supportpkg.getInstalled

Name Version Base Product
------- ------- ------------
Arduino 3.0 Simulink

Get a structured array of installed support packages

info = matlabshared.supportpkg.getInstalled

info =

Name: 'Arduino'
InstalledVersion: '3.0'

BaseProduct: 'Simulink'

See Also supportPackageInstaller | targetUpdater |
matlabshared.supportpkg.checkForUpdate

3-7

	toc
	Alphabetical List
	Arrow Head Style Table
	Line Style Specifiers Table
	Arrow Head Style Table
	Line Style Specifiers Table
	Line Style Specifiers Table
	Line Style Specifiers Table
	Line Style Specifiers Table
	Arrow Head Style Table
	Line Style Specifiers Table
	Line Style Specifiers Table
	Line Style Specifiers Table
	Line Style Specifiers Table
	Backward Compatibility
	Line Style Specifiers Table
	HasSameSizeAs Class Definition Summary
	HammingDistance Class Definition Summary
	View the Contents of a Folder
	Find Information in the Return Structure
	– Use the Wildcard Character to Find Multiple Files
	– Exclude Certain Files from the Output
	– Find the Date a File Was Modified
	Line Style Specifiers Table
	Marker Specifiers Table
	Limitations
	Saturation
	Paper Sizes Table
	MATLAB Fundamental Types
	Categories of Numeric Types
	MATLAB Integer Types
	MATLAB Numeric Types
	try
 java.lang.Class.forName('foo');
catch e
 e.message

	Line Style Specifiers Table
	Marker Specifiers Table
	Line Style Specifiers Table
	Marker Specifiers Table
	Values for helpOption
	Values for envDispOption
	Values for archOption
	Values for dispOption
	Values for modeOption
	Notes for -Ddebugger Argument
	Variable Options for Startup File
	Line Style Specifiers Table
	Marker Specifiers Table
	Contents
	Contents
	Output Options
	Figure Options
	Code Options
	Integrand with a singularity at an integration end point
	Oscillatory integrand on a semi-infinite interval
	Contour integration around a pole
	DocPolynomSaveLoadTest Class Definition File
	IsSupportedTest Class Definition File
	DocPolynomSaveLoadTest Class Definition File
	DocPolynomTest Class Definition File
	Line Style Specifiers Table
	Marker Specifiers Table
	Line Style Specifiers Table
	Marker Specifiers Table
	Consider the 2-by-1-by-3 array Y = rand(2,1,3). This array has a
	Consider the 1-by-1-by-5 array mat=repmat(1,[1,1,5]). This array
	Line Style Specifiers Table
	Marker Specifiers Table
	Line Style Specifiers Table
	Marker Specifiers Table
	Line Style Specifiers Table
	Marker Specifiers Table
	Line Style Specifiers Table
	Marker Specifiers Table
	Line Style Specifiers Table
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values
	Supported Values

	Functions — Alphabetical List
	Functions — Alphabetical List

	tables
	BVP Error Tolerance Properties
	Vectorization Properties
	BVP Analytical Partial Derivative Properties
	Singular BVP Property
	BVP Mesh Size Property
	BVP Solution Statistic Property
	DDE Error Control Properties
	DDE Solver Output Properties
	DDE Step Size Properties
	DDE Events Property
	DDE Discontinuity Properties
	Data Arrays or Extensions
	Fields of the Attribute Structure
	Fields of the Raster8 and Raster24 Structures
	Fields of the SDS Structure
	Fields of the Vdata Structure
	Fields of the Vgroup Structure
	Fields of the Grid Structure
	Fields of the Point Structure
	Fields of the Swath Structure
	Values for helpOption
	ODE Events Property
	Jacobian Properties for All Implicit Solvers Except ode15i
	Jacobian Properties for ode15i
	Mass Matrix and DAE Properties (Solvers Other Than ode15i)
	ode15s and ode15i-Specific Properties
	Data Size Before and After Transposing
	Data Size Before and After Transposing
	Formats for strread
	Parameters and Values for strread
	Option Structure Fields and Descriptions
	Data Types for wavplay
	Native Formats
	Double Formats

